
HAL Id: hal-02987731
https://cel.hal.science/hal-02987731v1

Submitted on 4 Nov 2020 (v1), last revised 17 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Introduction to Optimal Control
Thierry Miquel

To cite this version:
Thierry Miquel. Introduction to Optimal Control. Master. Introduction to optimal control, ENAC,
France. 2020, pp.188. �hal-02987731v1�

https://cel.hal.science/hal-02987731v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Introduction to Optimal Control
Lecture notes - Draft

Thierry Miquel

thierry.miquel@enac.fr

September 25, 2020



Introduction

The application of optimal control theory to the practical design of multivari-
able control systems started in the 1960s: in 1957 R. Bellman applied dynamic
programming to the optimal control of discrete-time systems. His procedure
resulted in closed-loop, generally nonlinear, feedback schemes. By 1958, L.S.
Pontryagin had developed his maximum principle, which solved optimal control
problems relying on the calculus of variations developed by L. Euler (1707-
1783). He solved the minimum-time problem, de :riving an on/o� relay control
law as the optimal control in 1962. In 1960 three major papers were published
by R. Kalman and coworkers, working in the U.S. One of these publicized the
vital work of Lyapunov (1857-1918) in the time-domain control of nonlinear sys-
tems. The next discussed the optimal control of systems, providing the design
equations for the linear quadratic regulator (LQR). The third paper discussed
optimal �ltering and estimation theory, which is out of the scope of this sur-
vey, and has provided the design equations for the discrete Kalman �lter. The
continuous Kalman �lter was developed by Kalman and Bucy in 1961.

In control theory, Kalman introduced linear algebra and matrices, so that
systems with multiple inputs and outputs could easily be treated. He also for-
malized the notion of optimality in control theory by minimizing a very general
quadratic generalized energy function. In the period of a year, the major limita-
tions of classical control theory were overcome, important new theoretical tools
were introduced, and a new era in control theory had begun; we call it the era
of modern control. In the period since 1980 the theory has been further re�ned
under the name of H2 theory in the wake of the attention for the so-called H1

control theory. H1 and H2 control theory are out of the scope of this survey.
This lecture focuses on LQ (linear quadratic) theory and is a compilation

of a number of results dealing with LQ (linear quadratic) theory in the context
of control system design. This has been written thanks to the references put
in bibliographical section. It starts with a reminder of the main results in
optimization of non linear systems which will be used as a background for this
lecture. Then linear quadratic regulator (LQR) for �nite �nal time and for
in�nite �nal time where the solution to the LQ problem are discussed. The
robustness properties of the linear quadratic regulator (LQR) are then presented
where the asymptotic properties and the guaranteed gain and phase margins
associated with the LQ solution are presented. The next section presents some
design methods with a special emphasis on symmetric root locus. We conclude
with a short section dedicated to the Linear Quadratic Tracker (LQT) where
the usefulness of augmenting the plant with integrators is presented.
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Chapter 1

Overview of Pontryagin's
Minimum Principle

1.1 Introduction

Pontryagin's Minimum (or Maximum) Principle was formulated in 1956 by the
Russian mathematician Lev Pontryagin (1908 - 1988) and his students1. Its
initial application was to the maximization of the terminal speed of a rocket.
The result was derived using ideas from the classical calculus of variations.

This chapter is devoted to the main results of optimal control theory which
leads to conditions for optimality.

1.2 Variation

Optimization can be accomplished by using a generalization of the di�erential
called variation.

Let's consider the real scalar cost function J(x) of a vector x ∈ Rn. Cost
function J(x) has a local minimum at x∗ if and only if for all δx su�ciently
small;

J(x∗ + δx) ≥ J(x∗) (1.1)

An equivalent statement statement is that:

∆J(x∗, δx) = J(x∗ + δx)− J(x∗) ≥ 0 (1.2)

The term ∆J(x∗, δx) is called the increment of J(x). The optimality con-
dition can be found by expanding J(x∗ + δx) in a Taylor series around the
extremun point x∗. When J(x) is a scalar function of multiple variables, the
expansion of J(x) in the Taylor series involves the gradient and the Hessian of
the cost function J(x):

− Assuming that J(x) is a di�erentiable function, the term dJ(x∗)
dx is the

gradient of J(x) at x∗ ∈ Rn which is the vector of Rn de�ned by:

1https://en.wikipedia.org/wiki/Pontryagin's_maximum_principle
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dJ(x∗)

dx
= ∇J(x∗) =


dJ(x)
dx1
...

dJ(x)
dxn


x=x∗

(1.3)

− Assuming that J(x) is a twice di�erentiable function, the term d2J(x∗)
dx2

is the Hessian of J(x) at x∗ ∈ Rn which is the symmetric n × n matrix
de�ned by:

d2J(x∗)

dx2
= ∇2J(x∗) =


∂2J(x)
∂x1∂x1

· · · ∂2J(x)
∂x1∂xn

...
∂2J(x)
∂xn∂x1

· · · ∂2J(x)
∂xn∂xn


x=x∗

=

[
d2J(x∗)

dxidxj

]
1≤i,j≤n

(1.4)

Expanding J(x∗ + δx) in a Taylor series around the point x∗ leads to the
following expression, where HOT stands for Higher-Order Terms:

J(x∗ + δx) = J(x∗) + δxT∇J(x∗) +
1

2
δxT∇2J(x∗)δx+ HOT (1.5)

Thus:

∆J(x∗, δx) = J(x∗ + δx)− J(x∗)
= δxT∇J(x∗) + 1

2δx
T∇2J(x∗)δx+ HOT

(1.6)

When dealing with a functional (a real scalar function of functions) δx is
called the variation of x and the term in the increment ∆J(x∗, δx) which is
linear in δxT is called the variation of J and is denoted δJ(x∗). The variation of
J(x) is a generalization of the di�erential and can be applied to the optimization
of a functional. Equation (1.6) can be used to develop necessary conditions for
optimality. Indeed as δx approaches zero the terms δxT δx as well as HOT be-
come arbitrarily small compared to δx. As a consequence, a necessary condition
for x∗ to be a local extremum of the cost function J is that the �rst variation of
J (its gradient) at x∗ is zero:

δJ(x∗) = ∇J(x∗) = 0 (1.7)

A critical (or stationary) point x∗ is a point where δJ(x∗) = ∇J(x∗) = 0.
Furthermore the sign of the Hessian provides su�cient condition for a local
extremum. Let's write the Hessian ∇2J(x∗) at the critical point x∗ as follows:

∇2J(x∗) =

h11 · · · h1n
...

...
hn1 · · · hnn

 (1.8)

− The su�cient condition for the critical point x∗ to be a local minimum is
that the Hessian is positive de�nite, that is that all the principal minor
determinants are positive:
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∀ 1 ≤ k ≤ n Hk > 0

⇔



H1 = h11 > 0

H2 =

∣∣∣∣h11 h12

h21 h22

∣∣∣∣ > 0

H3 =

∣∣∣∣∣∣
h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣∣ > 0

and so on...

(1.9)

− The su�cient condition for the critical point x∗ to be a local maximum is
that the Hessian is negative de�nite, or equivalently that the opposite of
the Hessian is positive de�nite:

∀ 1 ≤ k ≤ n (−1)kHk > 0

⇔



H1 = h11 < 0

H2 =

∣∣∣∣h11 h12

h21 h22

∣∣∣∣ > 0

H3 =

∣∣∣∣∣∣
h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣∣ < 0

and so on...

(1.10)

− If the Hessian has both positive and negative eigenvalues then the critical
point x∗ is a saddle point for the cost function J(x).

It should be emphasized that if the Hessian is positive semi-de�nite or negative
semi-de�nite or has null eigenvalues at a critical point x∗, then it cannot be
concluded that the critical point is a minimizer or a maximizer or a saddle
point of the cost function J(x) and the test is inconclusive.

1.3 Example

Find the local maxima/minima for the following cost function:

J(x) = 5− (x1 − 2)2 − 2(x2 − 1)2 (1.11)

First let's compute the �rst variation of J , or equivalently its gradient:

dJ(x)

dx
= ∇J(x) =

[
dJ(x)
dx1
dJ(x)
dx2

]
=

[
−2(x1 − 2)
−4(x2 − 1)

]
(1.12)

A necessary condition for x∗ to be a local extremum is that the �rst variation
of J at x∗ is zero for all δx:

δJ(x∗) = ∇J(x∗) = 0 (1.13)

As a consequence, the following point is a critical point:

x∗ =

[
2
1

]
(1.14)
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Now, we compute the Hessian to conclude on the nature of this critical point:

∇2J(x∗) =

[
−2 0
0 −4

]
(1.15)

As far as the Hessian is negative de�nite we conclude that the critical point
x∗ is a local maximum.

1.4 Lagrange multipliers

Optimal control problems which will be tackled involve minimization of a cost
function subject to constraints on the state vector and the control. The nec-
essary condition given above is only applicable to unconstrained minimization
problems; Lagrange multipliers provide a method of converting a constrained
minimization problem into an unconstrained minimization problem of higher or-
der. Optimization can then be performed using the above necessary condition.
A constrained optimization problem is a problem of the form:

maximize (or minimize) cost function J(x) subject to the condition g(x) = 0

The most popular technique to solve this constrained optimization problem
is to use the Lagrange multiplier technique. Necessary condition for optimality
of J at a point x∗ are that x∗ satis�es g(x) = 0 and that the gradient of J is
zero in all direction along the surface g(x) = 0; this condition is satis�ed if the
gradient of J is normal to the surface at x∗. As far as the gradient of g(x) is
normal to the surface, including x∗, this condition is satis�ed if the gradient of
J is parallel (that is proportional) to the gradient of g(x) at x∗, or equivalently:

∂J(x∗)

∂x
+ λT

∂g(x∗)

∂x
= 0 (1.16)

As an illustration consider the cost function J(x) = (x1 − 1)2 + (x2 − 2)2:
this is the equation of a circle of center (1, 2) with radius J(x). It is clear that
J(x) is minimal when (x1, x2) is situated on the center of the circle. In this
case J(x)∗ = 0. Nevertheless if we impose on (x1, x2) to belong to the straight
line de�ned by x2 − 2x1 − 6 = 0 then J(x) will be minimized as soon as the
circle of radius J(x) tangent the straight line, that is if the gradient of J(x)
is normal to the surface at x∗. Parameter λ is called the Lagrange multiplier
and has the dimension of the number of constraints expressed through g(x).
The necessary condition for optimality can be obtained as the solution of the
following unconstrained optimization problem where L(x, λ) is the Lagrange
function:

L(x, λ) = J(x) + λT g(x) (1.17)

Setting to zero the gradient of the Lagrange function with respect to x
leads to (1.16) whereas setting to zero the derivative of the Lagrange function
with respect to the Lagrange multiplier λ leads to the constraint g(x) = 0.
As a consequence, a necessary condition for x∗ to be a local extremum of the
cost function J subject to the constraint g(x) = 0 is that the �rst variation of
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Lagrange function (its gradient) at x∗ is zero:

∂L(x∗)

∂x
= 0⇔ ∂J(x∗)

∂x
+ λT

∂g(x∗)

∂x
= 0 (1.18)

The bordered Hessian is the (n+m)× (n+m) symmetric matrix which is
used for the second-derivative test. If there are m constraints represented by
g(x) = 0, then there are m border rows at the top-right and m border columns
at the bottom-left (the transpose of the top-right matrix) and the zero in the
south-east corner of the bordered Hessian is anm×m block of zeros, represented
by 0m×m. The bordered Hessian Hb(p) is de�ned by:

Hb(p) =



∂2L(x)
∂x1∂x1

− p ∂2L(x)
∂x1∂x2

· · · ∂2L(x)
∂x1∂xn

∂g1(x)
∂x1

· · · ∂gm(x)
∂x1

∂2L(x)
∂x2∂x1

∂2L(x)
∂x2∂x2

− p · · · ∂2L(x)
∂x2∂xn

∂g1(x)
∂x2

· · · ∂gm(x)
∂x2

· · · · · · · · · · · · · · · · · · · · ·
∂2L(x)
∂xn∂x1

∂2L(x)
∂xn∂x2

· · · ∂2L(x)
∂xn∂xn

− p ∂g1(x)
∂xn

· · · ∂gm(x)
∂xn

∂g1(x)
∂x1

· · · · · · ∂g1(x)
∂xn

· · · · · · · · · 0m×m
∂gm(x)
∂x1

· · · · · · ∂gm(x)
∂xn


x=x∗

(1.19)
The su�cient condition for the critical point x∗ to be an extrema is that the

values of p obtained from det(Hb(p)) = 0 must be of the same sign.

− If all the values of p are strictly negative, then it is a maxima

− If all the values of p are strictly positive, then it is a minima

− However if some values of p are zero or of a di�erent sign, then the critical
point x∗ is a saddle point.

1.5 Example

Find the local maxima/minima for the following cost function:

J(x) = x1 + 3x2 (1.20)

Subject to the constraint:

g(x) = x2
1 + x2

2 − 10 = 0 (1.21)

First let's compute the Lagrange function of this problem:

L(x, λ) = J(x) + λT g(x) = x1 + 3x2 + λ(x2
1 + x2

2 − 10) (1.22)

A necessary condition for x∗ to be a local extremum is that the �rst variation
of J at x∗ is zero for all δx:

∂L(x∗)

∂x
=

[
1 + 2λx1

3 + 2λx2

]
= 0 s.t. x2

1 + x2
2 − 10 = 0 (1.23)
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As a consequence, the Lagrange multiplier λ shall be chosen as follows:[
x1 = − 1

2λ
x2 = − 3

2λ

]
⇒ x2

1 +x2
2− 10 =

1

4λ2
+

9

4λ2
− 10 = 0⇔ 10− 40λ2 = 0⇔ λ = ±1

2
(1.24)

Using the values of the Lagrange multiplier within (1.23) we then obtain 2
critical points:

λ =
1

2
⇒ x∗1 =

[
−1
−3

]
and λ = −1

2
⇒ x∗2 =

[
1
3

]
(1.25)

− For λ = 1
2 the bordered Hessian is:

Hb(p) =

2λ− p 0 2x1

0 2λ− p 2x2

2x1 2x2 0


x=x∗

=

1− p 0 −2
0 1− p −6
−2 −6 0

 (1.26)

Thus:
det (Hb(p)) = −40 + 40p (1.27)

We conclude that the critical point (−1;−3) is a local minima because
det(Hb(p)) = 0 for p = +1 which is strictly positive.

− For λ = −1
2 the bordered Hessian is:

Hb(p) =

2λ− p 0 2x1

0 2λ− p 2x2

2x1 2x2 0


x=x∗

=

−1− p 0 2
0 −1− p 6
2 6 0

 (1.28)

Thus:
det (Hb(p)) = 40 + 40p (1.29)

We conclude that the critical point (+1; +3) is a local maxima because det(Hb(p)) =
0 for p = −1 which is strictly negative.

1.6 Euler-Lagrange equation

Historically, Euler-Lagrange equation came with the study of the tautochrone
(or isochrone curve) problem. Lagrange solved this problem in 1755 and sent
the solution to Euler. Their correspondence ultimately led to the calculus of
variations 2.

The problem considered was to �nd the expression of x(t) which minimizes
the following performance index J(x(t)) where F (x(t), ẋ(t)) is a real-valued
twice continuous function:

J(x(t)) =

∫ tf

0
F (x(t), ẋ(t)) dt (1.30)

2https://en.wikipedia.org/wiki/Euler-Lagrange_equation
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Furthermore the initial and �nal values of x(t) are imposed:{
x(0) = x0

x(tf ) = xf
(1.31)

Let x∗(t) be a candidate for the minimization of J(x(t)). In order to see
whether x∗(t) is indeed an optimal solution, this candidate optimal input is
perturbed by a small amount δx which leads to a perturbation δx in the optimal
state vector x∗(t): {

x(t) = x∗(t) + δx(t)
ẋ(t) = ẋ∗(t) + δẋ(t)

(1.32)

The change δJ in the value of the performance index is obtained thanks to
the calculus of variation:

δJ =

∫ tf

0
δF (x(t), ẋ(t)) dt =

∫ tf

0

(
∂F

∂x

T

δx+
∂F

∂ẋ

T

δẋ

)
dt (1.33)

Integrating ∂F
∂ẋ

T
δẋ by parts leads to the following expression:

d
dt

(
∂F
∂ẋ

T
δx
)

= d
dt
∂F
∂ẋ

T
δx+ ∂F

∂ẋ

T
δẋ

⇒ δJ =
∫ tf

0

(
∂F
∂x

T
δx− d

dt
∂F
∂ẋ

T
δx
)
dt+ ∂F

∂ẋ

T
δx
∣∣∣tf
0

(1.34)

Because δx is a perturbation around the optimal state vector x∗(t) we shall
set to zero the �rst variation δJ whatever the value of the variation δx:

δJ = 0 ∀ δx (1.35)

This leads to the following necessary conditions for optimality:
∂F
∂x

T
δx− d

dt
∂F
∂ẋ

T
δx = 0

∂F
∂ẋ

T
δx
∣∣∣tf
0

= 0
(1.36)

As far as the initial and �nal values of x(t) are imposed no variation are
permitted on δx: {

x(0) = x0

x(tf ) = xf
⇒
{
δx(0) = 0
δx(tf ) = 0

(1.37)

On the other hand it is worth noticing that if the �nal value was not imposed

we shall have ∂F
∂ẋ

∣∣∣
t=tf

= 0.

Thus the �rst variation δJ of the functional cost reads:

δJ =

∫ tf

0

(
∂F

∂x

T

δx− d

dt

∂F

∂ẋ

T

δx

)
dt (1.38)

In order to set to zero the �rst variation δJ whatever the value of the varia-
tion δx the following second-order partial di�erential equation has to be solved:

∂F

∂x

T

− d

dt

∂F

∂ẋ

T

= 0 (1.39)
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Or by taking the transpose:

d

dt

∂F

∂ẋ
− ∂F

∂x
= 0 (1.40)

We retrieve the well known Euler-Lagrange equation of classical mechanics.
Euler-Lagrange equation is second order Ordinary Di�erential Equations

(ODE) which are usually very di�cult to solve. They could be transformed
into a set of �rst order Ordinary Di�erential Equations, which are much more
convenient to solve, by introducing a control u(t) de�ned by ẋ(t) = u(t) and by
using the Hamiltonian function H as it will be seen in the next sections.

Example 1.1. Let's �nd the shortest distance between two points P1 = (x1, y1)
and P2 = (x2, y2) in the euclidean plane.

The length of the path between the two points is de�ned by:

J(y(x)) =

∫ P2

P1

√
dx2 + dy2 =

∫ x2

x1

√
1 + (y′(x))2 dx (1.41)

For that example F (y(x), y′(x)) reads:

F
(
y(x), y′(x)

)
=

√
1 +

(
dy(x)

dx

)2

=

√
1 + (y′(x))2 (1.42)

The initial and �nal values on y(x) are imposed as follows:{
y(x1) = y1

y(x2) = y2
(1.43)

The Euler-Lagrange equation for this example reads:

d

dx

∂F

∂y′
− ∂F

∂y
= 0⇔ d

dx

y′(x)√
1 + (y′(x))2

= 0 (1.44)

From the preceding relationship it is clear that, denoting by c a constant,
y′(x) shall satisfy the following �rst order di�erential equation:

y′(x)√
1+(y′(x))2

= c⇒ (y′(x))2 = c2
(

1 + (y′(x))2
)

⇒ (y′(x))2 = c2

1−c2 ⇒ y′(x) =
√

c2

1−c2 := a = constant
(1.45)

Thus, the shortest distance between two �xed points in the euclidean plane
is a curve with constant slope, that is a straight-line:

y(x) = a x+ b (1.46)

With initial and �nal values imposed on y(x) we �nally get for y(x) the
Lagrange polynomial of degree 1:{

y(x1) = y1

y(x2) = y2
⇒ y(x) = y1

x− x2

x1 − x2
+ y2

x− x1

x2 − x1
(1.47)

�
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1.7 Fundamentals of optimal control theory

1.7.1 Problem to be solved

We �rst consider optimal control problems for general nonlinear time invariant
systems of the form: {

ẋ = f(x, u)
x(0) = x0

(1.48)

Where x ∈ Rn and u ∈ Rm are the state variable and control inputs, respec-
tively, and f(x, u) is a continuous nonlinear function and x0 the initial condi-
tions. The goal is to �nd a control u that minimizes the following performance
index:

J(u(t)) = G (x(tf )) +

∫ tf

0
F (x(t), u(t)) dt (1.49)

Where:

− t is the current time and tf the �nal time;

− J(u(t)) is the integral cost function;

− F (x(t), u(t)) is the scalar running cost function;

− G (x(tf )) is the scalar terminal cost function.

Note that the state equation serves as constraints for the optimization of the
performance index J(u(t)). In addition, notice that the use of function G (x(tf ))
is optional; indeed, if the �nal state x(tf ) is imposed then there is no need to
insert the expression G (x(tf )) in the cost to be minimized.

1.7.2 Bolza, Mayer and Lagrange problems

The problem de�ned above is known as the Bolza problem. In the special case
where F (x(t), u(t)) = 0 then the problem is known as the Mayer problem; on
the other hand if G (x(tf )) = 0 the problem is known as the Lagrange problem.

The Bolza problem is equivalent to the Lagrange problem and in fact leads
to it with the following change of variable:

J1(u(t)) =
∫ tf

0 (F (x(t), u(t)) + xn+1(t)) dt
ẋn+1(t) = 0

xn+1 =
G(x(tf ))

tf
∀ t

(1.50)

It also leads to the Mayer problem if one sets:
J2(u(t)) = G (x(tf )) + x0(tf )
ẋ0(t) = F (x(t), u(t))
x0(0) = 0

(1.51)
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1.7.3 First order necessary conditions

The optimal control problem is then a constrained optimization problem, with
cost being a functional of u(t) and the state equation providing the constraint
equations. This optimal control problem can be converted to an unconstrained
optimization problem of higher dimension by the use of Lagrange multipliers.
An augmented performance index is then constructed by adding a vector of La-
grange multipliers λ times each constraint imposed by the di�erential equations
driving the dynamics of the plant; these constraints are added to the perfor-
mance index by the addition of an integral to form the augmented performance
index Ja:

Ja(u(t)) = G (x(tf )) +

∫ tf

0

(
F (x(t), u(t)) + λT (t)(f(x, u)− ẋ)

)
dt (1.52)

Let u∗(t) be a candidate for the optimal input vector, and let the corre-
sponding state vector be x∗(t):

ẋ∗(t) = f(x∗(t), u∗(t)) (1.53)

In order to see whether u∗(t) is indeed an optimal solution, this candidate
optimal input is perturbed by a small amount δu which leads to a perturbation
δx in the optimal state vector x∗(t):{

u(t) = u∗(t) + δu(t)
x(t) = x∗(t) + δx(t)

(1.54)

Assuming that the �nal time tf is known, the change δJa in the value of the
augmented performance index is obtained thanks to the calculus of variation 3:

δJa =
∂G(x(tf ))
∂x(tf )

T

δx(tf )+∫ tf
0

(
∂F
∂x

T
δx+ ∂F

∂u

T
δu+ λT (t)

(
∂f
∂xδx+ ∂f

∂uδu−
dδx
dt

))
dt

=
∂G(x(tf ))
∂x(tf )

T

δx(tf )+∫ tf
0

((
∂F
∂x

T
+ λT (t)∂f∂x

)
δx+

(
∂F
∂u

T
+ λT (t)∂f∂u

)
δu− λT (t)dδxdt

)
dt

(1.55)
In the preceding equation:

− ∂G(x(tf ))
∂x(tf ) , ∂F∂u

T
and ∂F

∂x

T
are row vectors;

− ∂f
∂x and ∂f

∂u are matrices;

− ∂f
∂xδx,

∂f
∂uδu and dδx

dt are column vectors.

Then we introduce the functional H, known as the Hamiltonian function,
which is de�ned as follows:

H(x, u, λ) = F (x, u) + λT (t)f(x, u) (1.56)

3Ferguson J., Brief Survey of the History of the Calculus of Variations and its Applications
(2004) arXiv:math/0402357
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Then: {
∂H
∂x

T
= ∂F

∂x

T
+ λT (t)∂f∂x

∂H
∂u

T
= ∂F

∂u

T
+ λT (t)∂f∂u

(1.57)

Equation (1.55) becomes:

δJa =
∂G (x(tf ))

∂x(tf )

T

δx(tf ) +

∫ tf

0

(
∂H

∂x

T

δx+
∂H

∂u

T

δu− λT (t)
dδx

dt

)
dt (1.58)

Let's concentrate on the last term within the integral that we integrate by
parts:∫ tf

0 λT (t)dδxdt dt = λT (t)δx
∣∣tf
0
−
∫ tf

0 λ̇
T

(t)δx dt

⇔
∫ tf

0 λT (t)dδxdt dt = λT (tf )δx(tf )− λT (0)δx(0)−
∫ tf

0 λ̇
T

(t)δx dt
(1.59)

As far as the initial state is imposed, the variation of the initial condition is
null; consequently we have δx(0) = 0 and:∫ tf

0
λT (t)

dδx

dt
dt = λT (tf )δx(tf )−

∫ tf

0
λ̇
T

(t)δx dt (1.60)

Using (1.60) within (1.58) leads to the following expression for the �rst
variation of the augmented functional cost:

δJa =

(
∂G (x(tf ))

∂x(tf )

T

− λT (tf )

)
δx(tf )+∫ tf

0

(
∂H

∂u

T

δu+

(
∂H

∂x

T

+ λ̇
T

(t)

)
δx

)
dt

(1.61)

In order to set the �rst variation of the augmented functional cost δJa to
zero the time dependant Lagrange multipliers λ(t), which are also called costate
functions, are chosen as follows:

λ̇
T

(t) +
∂H

∂x

T

= 0⇔ λ̇(t) = −∂H
∂x

(1.62)

This equation is called the adjoint equation. As far as it is a di�erential
equation we need to know the value of λ(t) at a speci�c value of time t to be
able to compute its solution (also called its trajectory) :

− Assuming that �nal value x(tf ) is speci�ed to be xf then the variation
δx(tf ) in (1.61) is zero and λ(tf ) is set such that x(tf ) = xf .

− Assuming that �nal value x(tf ) is not speci�ed then the variation δx(tf )
in (1.61) is not equal to zero and the value of λ(tf ) is set by imposing that
the following di�erence vanishes at �nal time tf :

∂G (x(tf ))T

∂x(tf )
− λT (tf ) = 0⇔ λ(tf ) =

∂G (x(tf ))

∂x(tf )
(1.63)

This is the boundary condition, also known as transversality condition,
which set the �nal value of the Lagrange multipliers.
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Hence in both situations the �rst variation of the augmented functional cost
(1.61) can be written as:

δJa =

∫ tf

0

(
∂H

∂u

T

δu

)
dt (1.64)

1.7.4 Hamilton-Jacobi-Bellman (HJB) partial di�erential equa-
tion

Let J∗(x, t) be the optimal cost-to-go function between t and tf :

J∗(x, t) = minu(t)∈U

∫ tf

t
F (x(τ), u(τ))dτ (1.65)

The Hamilton-Jacobi-Bellman equation related to the optimal control prob-
lem (1.49) under the constraint (1.48) is the following �rst order partial deriva-
tive equation4:

−∂J
∗(x, t)

∂t
= minu(t)∈U

(
F (x, u) +

∂J∗(x, t)

∂x
f(x, u)

)
(1.66)

or, equivalently:

−∂J
∗(x, t)

∂t
= H∗

(
∂J∗(x, t)

∂x
, x(t)

)
(1.67)

where

H∗(λ(t), x(t)) = minu(t)∈U

(
F (x, u) +

∂J∗(x, t)

∂x
f(x, u)

)
(1.68)

For the time-dependent case, the terminal condition on the optimal cost-to-
go function solution of (1.66) reads:

J∗(x, tf ) = G (x(tf )) (1.69)

Those relationships lead to the so-called dynamic programming approach
which has been introduced by Bellman5 in 1957. This is a very powerful re-
sult which encompasses both necessary and su�cient conditions for optimality.
Nevertheless it may be di�cult to use in practice because it involves to �nd the
solution of a partial derivative equation.

It is worth noticing that the Lagrange multiplier λ(t) represents the partial
derivative with respect to the state of the optimal cost-to-go function6:

λ(t) =

(
∂J∗(x, t)

∂x

)T
(1.70)

4da Silva J., de Sousa J., Dynamic Programming Techniques for Feedback Control, Pro-
ceedings of the 18th World Congress, Milano (Italy) August 28 - September 2, 2011

5Bellman R., Dynamic programming, Princeton University Press, 1957
6Alazard D., Optimal Control & Guidance: From Dynamic Programming to Pontryagin's

Minimum Principle, lecture notes
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1.8 Unconstrained control

If there is no constraint on input u(t), then δu is free and the �rst variation of
the augmented functional cost δJa in (1.64) is set to zero through the following
necessary condition for optimality:

δJa = 0⇒ ∂H

∂u

T

= 0⇔ ∂H

∂u
= 0 (1.71)

For an autonomous system, the function f() is not an explicit function of
time. From (1.56) we get:

dH

dt
=
∂H

∂x

T dx

dt
+
∂H

∂u

T du

dt
+
∂H

∂λ

T dλ

dt
(1.72)

According to (1.48), (1.56) and (1.62) we have{
λ̇
T

(t) = −∂H
∂x

T

∂H
∂λ

T
= fT = ẋT

⇒ dH

dt
= −λ̇T (t)

dx

dt
+
∂H

∂u

T du

dt
+ ẋT

dλ

dt
(1.73)

Having in mind that the Hamiltonian H is a scalar functional we get:

λ̇
T

(t)
dx

dt
= ẋT (t)

dλ

dt
⇒ dH

dt
=
∂H

∂u

T du

dt
(1.74)

Finally, assuming no constraint on input u(t), we use (1.71) to obtain the
following result:

∂H

∂u
= 0⇒ dH

dt
= 0 (1.75)

In other words, for an autonomous system Hamiltonian functional H re-
mains constant along an optimal trajectory.

Example 1.2. As in example 1.1 we consider again the problem of �nding the
shortest distance between two points P1 = (x1, y1) and P2 = (x2, y2) in the
euclidean plane.

Setting u(x) = y′(x) the length of the path between the two points is de�ned
by:

J(u(x)) =

∫ P2

P1

√
dx2 + dy2 =

∫ x2

x1

√
1 + u(x)2 dx (1.76)

Here J(u(x)) is the performance index to be minimized under the following
constraints: 

y′(x) = u(x)
y(x1) = y1

y(x2) = y2

(1.77)

Let λ(x) be the Lagrange multiplier, which is here a scalar. The Hamiltonian
H reads:

H =
√

1 + u2(x) + λ(x)u(x) (1.78)
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The necessary conditions for optimality are the following:{ ∂H
∂y = −λ′(x)⇔ λ′(x) = 0
∂H
∂u = 0⇔ u(x)√

1+u2(x)
+ λ(x) = 0

(1.79)

Denoting by c a constant we get from the �rst equation of (1.79):

λ(x) = c (1.80)

Using this relationship in the second equation of (1.79) leads to the following
expression of u(x) where constant a is introduced:

u(x)√
1+u2(x)

+ c = 0⇒ u2(x) = c2

1−c2 ⇒ u(x) =
√

c2

1−c2 := a = constant (1.81)

Thus, the shortest distance between two �xed points in the euclidean plane
is a curve with constant slope, that is a straight-line:

y(x) = a x+ b (1.82)

We obviously retrieve the result of example 1.1.

�

1.9 Constrained control - Pontryagin's principle

In this section we consider the optimal control problem with control-state con-
straints. More speci�cally we consider the problem of �nding a control u that
minimizes the following performance index:

J(u(t)) = G (x(tf )) +

∫ tf

0
F (x(t), u(t)) dt (1.83)

Under the following constraints:

− Dynamics and boundary conditions:{
ẋ = f(x, u)
x(0) = x0

(1.84)

− Mixed control-state constraints:

c(x, u) ≤ 0, where c(x, u) : Rn × Rm → R (1.85)

Usually a slack variable α(t), which is actually a new control variable, is
introduced in order to convert the preceding inequality constraint into an
equality constraint:

c(x, u) + α2(t) = 0, where α(t) : R→ R (1.86)
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To solve this problem we introduce the augmented Hamiltonian function
Ha(x, u, λ, µ) which is de�ned as follows 7:

Ha(x, u, λ, µ, α) = H(x, u, λ) + µ
(
c(x, u) + α2

)
= F (x, u) + λT (t)f(x, u) + µ(t)

(
c(x, u) + α2

) (1.87)

Then the Pontryagin's principle states that the optimal control u∗ must
satisfy the following conditions:

− Adjoint equation and transversality condition: λ̇(t) = −∂Ha
∂x

λ(tf ) =
∂G(x(tf ))
∂x(tf )

(1.88)

− Local minimum condition for augmented Hamiltonian:{
∂Ha
∂u = 0
∂Ha
∂α = 0⇒ 2µα = 0

(1.89)

− Sign of multiplier µ(t) and complementarity condition: the equation ∂Ha
∂α =

0 implies 2µα = 0. Thus either µ = 0, which is an o�-boundary arc, or
α = 0 which is an on-boundary arc:

� For the o�-boundary arc where µ = 0 control u is obtained from
∂Ha
∂u = 0 and α from the equality constraint c(x, u) + α2 = 0;

� For the on-boundary arc where α = 0 control u is obtained from
equality constraint c(x, u) = 0. Indeed there always exists a smooth
function ub(x) called boundary control which satis�es:

c (x, ub(x)) = 0 (1.90)

Then multiplier µ is obtained from ∂Ha
∂u = 0:

0 =
∂Ha

∂u
=
∂H

∂u
+ µ

∂c(x, u)

∂u
⇒ µ = −

∂Ha
∂u

∂c(x,u)
∂u

∣∣∣∣∣∣
u=ub(x)

(1.91)

− Weierstrass conditions (proposed in 1879) for a variational extremum: it
states that optimal control u∗ and α∗ within the augmented Hamiltonian
function Ha must satisfy the following condition for a minimum at every
point of the optimal path:

Ha(x
∗, u∗, λ∗, µ∗, α∗)−Ha(x

∗, u, λ∗, µ∗, α) < 0 (1.92)

Since c(x, u) + α2(t) = 0 the Weierstrass conditions for a variational ex-
tremum can be rewritten as a function of the Hamiltonian function H and
the inequality constraint:{

H(x∗, u∗, λ∗)−H(x∗, u, λ∗) < 0
c(x∗, u∗) ≤ 0

(1.93)

7Hull D. G., Optimal Control Theory for Applications, Springer (2003)
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For a problem where the Hamiltonian function H is linear in the control u
and where u is limited between umin and umax Pontryagin's principle indicates
that the �rst variation of the augmented functional cost δJa in (1.64) will remain
positive (i.e. Ja is minimized) through the following necessary condition for
optimality: {

umin ≤ u(t) ≤ umax
δJa ≥ 0

⇒

{
u(t) = umax if ∂H∂u < 0

u(t) = umin if ∂H∂u > 0
(1.94)

Thus the control u(t) switches from umax to umin at times when ∂H/∂u
switches from negative to positive (or vice-versa). This type of control where
the control is always on the boundary is called bang-bang control.

In addition, and as the unconstrained control case, the Hamiltonian func-
tional H remains constant along an optimal trajectory for an autonomous system
when there are constraints on input u(t). Indeed in that situation control u(t)
is constant (it is set either to its minimum or maximum value) and consequently
du
dt is zero. From (1.74) we get dH

dt = 0.

1.10 Bang-bang control examples

1.10.1 Example 1

Consider a simple mass m which moves on the x-axis and is subject to a force
f(t)8. Equation of motion reads:

mÿ(t) = f(t) (1.95)

We set control u(t) as:

u(t) =
f(t)

m
(1.96)

Consequently the equation of motion reduces to:

ÿ(t) = u(t) (1.97)

The state space realization of this system is the following:{
x1(t) = y(t)
x2(t) = ẏ(t)

⇒
{
ẋ1(t) = x2(t)
ẋ2(t) = u(t)

⇔ f(x, u) =

[
x2(t)
u(t)

]
(1.98)

We will assume that the initial position of the mass is zero and that the
movement starts from rest: {

y(0) = 0
ẏ(0) = 0

(1.99)

We will assume that control u(t) is subject to the following constraint:

umin ≤ u(t) ≤ umax (1.100)

8 Linear Systems: Optimal and Robust Control 1st Edition, by Alok Sinha, CRC Press
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First we are looking for the optimal control u(t) which enables the mass to
cover the maximum distance in a �xed time tf :

The objective of the problem is to maximize y(tf ). This corresponds to
minimize the opposite of y(tf ); consequently the cost J(u(t)) reads as follows
where F (x, u) = 0 when compared to (1.49):

J(u(t)) = G (x(tf )) = −y(tf ) := −x1(tf ) (1.101)

As F (x, u) = 0 the Hamiltonian for this problem reads:

H(x, uλ) = λ(t)T f(x, u) =
[
λ1(t) λ2(t)

] [x2(t)
u(t)

]
= λ1(t)x2(t) + λ2(t)u(t)

(1.102)
Adjoint equation is:

λ̇(t) = −∂H
∂x
⇔

{
λ̇1(t) = − ∂H

∂x1
= 0

λ̇2(t) = − ∂H
∂x2

= −λ1(t)
(1.103)

Solutions of adjoint equations are the following where c and D are constants:{
λ1(t) = c

λ2(t) = −ct+ d
(1.104)

As far as �nal time tf is not speci�ed values of constants c and d are deter-
mined by transversality condition (1.63):

λ(tf ) =
∂G (x(tf ))

∂x(tf )
⇔

λ1(tf ) =
∂(−x1(tf ))
∂x1(tf ) = −1

λ2(tf ) =
∂(−x1(tf ))
∂x2(tf ) = 0

(1.105)

And consequently: {
c = −1
d = −tf

⇒
{

λ1(t) = −1
λ2(t) = t− tf

(1.106)

Thus the Hamiltonian H reads as follows:

H(x, u, λ) = λ1(t)x2(t) + λ2(t)u(t) = −x2(t) + (t− tf )u(t) (1.107)

Then ∂H
∂u = t− tf ≤ 0 ∀ 0 ≤ t ≤ tf . Applying (1.94) leads to the expression

of control u(t):
∂H

∂u
≤ 0⇒ u(t) = umax ∀ 0 ≤ t ≤ tf (1.108)

This is of common sense when the objective is to cover the maximum dis-
tance in a �xed time without any constraint on the vehicle velocity at the �nal
time. The optimal state trajectory can be easily obtained by solving the state
equations with given initial conditions:{

ẋ1 = x2

ẋ2 = umax
⇒
{
x1(t) = 1

2umaxt
2

x2(t) = umaxt
(1.109)
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The Hamiltonian along the optimal trajectory has the following value:

H(x, u, λ) = λ1(t)x2(t)+λ2(t)u(t) = −umaxt+(t−tf )umax = −umaxtf (1.110)

As expected the Hamiltonian along the optimal trajectory is constant. The
minimum value of the performance index is:

J(u(t)) = −x1(tf ) = −1

2
umaxt

2
f (1.111)

1.10.2 Example 2

We re-use the preceding example but now we are looking for the optimal control
u(t) which enables the mass to cover the maximum distance in a �xed time tf
with the additional constraint that the �nal velocity is equal to zero:

x2(tf ) = 0 (1.112)

The solution of this problem starts as in the previous case and leads to the
solution of adjoint equations where c and d are constants:{

λ1(t) = c
λ2(t) = −ct+ d

(1.113)

The di�erence when compared with the previous case is that now the �-
nal velocity is equal to zero, that is x2(tf ) = 0. Consequently transversality
condition (1.63) involves only state x1 and reads as follows:

λ(tf ) =
∂G (x(tf ))

∂x(tf )
⇔ λ1(tf ) =

∂ (−x1(tf ))

∂x1(tf )
= −1 (1.114)

Taking into account (1.114) into (1.113) leads to:{
λ1(t) = −1
λ2(t) = t+ d

(1.115)

The Hamiltonian H reads as follows:

H(x, u, λ) = λ1(t)x2(t) + λ2(t)u(t) = −x2(t) + (t+ d)u(t) (1.116)

Thus ∂H
∂u = t + d = λ2(t) ∀ 0 ≤ t ≤ tf where the value of constant d is not

known: it can be either d < −tf , d ∈ [−tf , 0] or d > 0. Figure 1.1 plots the
three possibilities.

− The possibility d < −tf leads to u(t) = umin ∀t ∈ [0, tf ] according to
(1.94), that is y(t) := x1(t) = 0.5umint

2 when taking into account initial
conditions (1.99). Thus there is no way to achieve the constraint that the
velocity is zero at instant tf and the possibility d < −tf is ruled out;

− Similarly, the possibility d > 0 leads to u(t) = umax ∀t ∈ [0, tf ], that
is y(t) := x1(t) = 0.5umaxt

2 when taking into account initial conditions
(1.99). Thus the possibility d > 0 is also ruled out.
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Figure 1.1: Three possibilities for the values of ∂H/∂u = λ2(t)

Hence d shall be chosen between −tf and 0. According to (1.94) and Figure
1.1 we have:

u(t) =

{
umax ∀ 0 ≤ t ≤ ts
umin ∀ ts < t ≤ tf

(1.117)

Instant ts is the switching instant, that is time at which ∂H
∂u = λ2(t) changes

in sign. Solving the state equations with initial velocity set to zero yields the
expression of x2(t) ∀ ts < t ≤ tf :

ẋ2 = umax ∀ 0 ≤ t ≤ ts
ẋ2 = umin ∀ ts < t ≤ tf

x2(0) = 0

⇒
{

x2(ts) = umaxts
x2(t) = umaxts + umin(t− ts) ∀ ts < t ≤ tf

(1.118)

Imposing x2(tf ) = 0 leads to the value of the switching instant ts:

x2(tf ) = 0⇒ umaxts + umin(tf − ts) = 0

⇒ ts =
umintf

umin−umax = − umintf
umax−umin

(1.119)

From Figure 1.1 it is clear that at t = ts we have λ2(ts) = 0. Using the fact
that λ2(t) = t+ d we �nally get the value of constant d:{

λ2(t) = t+ d
λ2(ts) = 0

⇒ d = −ts (1.120)

Furthermore the Hamiltonian along the optimal trajectory has the following
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value:
∀ 0 ≤ t ≤ ts H(x, u, λ) = λ1(t)x2(t) + λ2(t)u(t)

= −umaxt+ (t+ d)umax = −tsumax
∀ ts < t ≤ tf H(x, u, λ) = −umaxts − umin(t− ts) + (t− ts)umax

= −tsumax
(1.121)

As expected the Hamiltonian along the optimal trajectory is constant.

1.11 Free �nal time

It is worth noticing that if �nal time tf is not speci�ed, and after having noticed
that f(tf )− ẋ(tf ) = 0, the following term shall be added to δJa in (1.55):(

F (tf ) +
∂G (x(tf ))T

∂x
f(tf )

)
δtf (1.122)

In this case the �rst variation of the augmented performance index with
respect to δtf is zero as soon as:

F (tf ) +
∂G (x(tf ))T

∂x
f(tf ) = 0 (1.123)

As far as boundary conditions (1.63) apply we get:

λ(tf ) =
∂G (x(tf ))

∂x(tf )
⇒ F (tf ) + λ(tf )f(tf ) = 0 (1.124)

The preceding equation is called transversality condition. We recognize in
F (tf ) +λ(tf )f(tf ) the value of the Hamiltonian function H(t) de�ned in (1.56)
at �nal time tf . Because the Hamiltonian H(t) is constant along an optimal
trajectory for an autonomous system (see (1.75)) it is concluded that H(t) = 0
along an optimal trajectory for an autonomous system when �nal time tf is free.

Alternatively we can introduce a new variable, denoted s for example, which
is related to time t as follows:

t(s) = t0 + (tf − t0)s ∀ s ∈ [0, 1] (1.125)

From the preceding equation we get:

dt = (tf − t0) ds (1.126)

Then the optimal control problem with respect to time t where the �nal
time tf is free is changed into an optimal control problem with respect to new
variable s and an additional state tf (s) which is constant with respect to s. The
optimal control problem reads:

Minimize:

J(u(s)) = G (x(1)) +

∫ 1

0
(tf (s)− t0)F (x(s), u(s)) ds (1.127)

Under the following constraints:
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− Dynamics and boundary conditions:
d
dsx(s) = dx(t)

dt
dt
ds = (tf (s)− t0)f(x(s), u(s))

d
ds tf (s) = 0
x(0) = x0

(1.128)

− Mixed control-state constraints:

c(x(s), u(s)) ≤ 0, where c(x(s), u(s)) : Rn × Rm → R (1.129)

1.12 Singular arc - Legendre-Clebsch condition

The case where ∂H/∂u does not yield to a de�nite value for the control u(t) is
called singular control. Usually singular control arises when a multiplier σ(t) of
the control u(t) (which is called the switching function) in the Hamiltonian H
vanishes over a �nite length of time t1 ≤ t ≤ t2:

σ(t) :=
∂H

∂u
= 0 ∀ t1 ≤ t ≤ t2 (1.130)

The singular control can be determined by the condition that the switching
function σ(t) and its time derivatives vanish along the so-called singular arc.
Hence over a singular arc we have:

dk

dtk
σ(t) = 0 ∀ t1 ≤ t ≤ t2, ∀ k ∈ N (1.131)

At some derivative order the control u(t) does appear explicitly and its
value is thereby determined. Furthermore it can be shown that the control u(t)
appears at an even derivative order. So the derivative order at which the control
u(t) does appear explicitly will be denoted 2q. Thus:

k := 2q ⇒ d2q σ(t)

dt2q
:= A(t, x, λ) +B(t, x, λ)u = 0 (1.132)

The previous equation gives an explicit equation for the singular control,
once the Lagrange multiplier λ have been obtained through the relationship
λ̇(t) = −∂H

∂x .

The singular arc will be optimal if it satis�es the following generalized
Legendre-Clebsch condition, which is also known as the Kelley condition9, where
2q is the (always even) value of k at which the control u(t) explicitly appears

in dk

dtk
σ(t) for the �rst time:

(−1)q
∂

∂u

[
d2q σ(t)

dt2q

]
≥ 0 (1.133)

9Douglas M. Pargett & Douglas Mark D. Ardema, Flight Path Optimization at Con-
stant Altitude, Journal of Guidance Control and Dynamics, July 2007, 30(4):1197-1201, DOI:
10.2514/1.28954
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Note that for the regular arc the second order necessary condition for opti-
mality to achieve a minimum cost is the positive semi-de�niteness of the Hessian
matrix of the Hamiltonian along an optimal trajectory. This condition is ob-
tained by setting q = 0 in the generalized Legendre-Clebsch condition (1.133):

q = 0⇒ ∂

∂u
σ(t) =

∂2H

∂u2
= Huu ≥ 0 (1.134)

This inequality is also termed regular Legendre-Clebsch condition.



Chapter 2

Finite Horizon Linear Quadratic
Regulator

2.1 Problem to be solved

The Linear Quadratic Regulator (LQR) is an optimal control problem where
the state equation of the plant is linear, the performance index is quadratic and
the initial conditions are known. We discuss in this chapter linear quadratic
regulation in the case where the �nal time which appears in the cost to be
minimized is �nite whereas the next chapter will focus on the in�nite horizon
case. The optimal control problem to be solved is the following: assume a plant
driven by a linear dynamical equation of the form:{

ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

(2.1)

Where:

− A is the state (or system) matrix

− B is the input matrix

− x(t) is the state vector of dimension n

− u(t) is the control vector of dimension m

Then we have to �nd the control u(t) which minimizes the following quadratic
performance index:

J(u(t)) =
1

2

(
x(tf )− xf

)T
S
(
x(tf )− xf

)
+

1

2

∫ tf

0
xT (t)Qx(t) + uT (t)Ru(t) dt

(2.2)

where the �nal time tf is set and xf is the �nal state to be reached. The
performance index relates to the fact that a trade-o� has been done between the
rate of variation of x(t) and the magnitude of the control input u(t). Matrices
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S and Q shall be chosen to be symmetric positive semi-de�nite and matrix R
symmetric positive de�nite. 

S = ST ≥ 0
Q = QT ≥ 0
R = RT > 0

(2.3)

Notice that the use of matrix S is optional; indeed, if the �nal state xf is im-

posed then there is no need the insert the expression 1
2

(
x(tf )− xf

)T
S
(
x(tf )− xf

)
in the cost to be minimized.

2.2 Positive de�nite and positive semi-de�nite matrix

A positive de�nite matrix M is denoted M > 0 where 0 denotes here the zero
matrix. We remind that a real n × n symmetric matrix M = MT is called
positive de�nite if and only if we have either:

− xTMx > 0 for all x 6= 0;

− All eigenvalues of M are strictly positive;

− All of the leading principal minors are strictly positive (the leading prin-
cipal minor of order k is the minor of order k obtained by deleting the last
n− k rows and columns);

− M can be written as MT
s Ms where matrix Ms is square and invertible.

Similarly a semi-de�nite positive matrix M is denoted M ≥ 0 where 0
denotes here the zero matrix. We remind that a n × n real symmetric matrix
M = MT is called positive semi-de�nite if and only if we have either:

− xTMx ≥ 0 for all x 6= 0;

− All eigenvalues of M are non-negative;

− All of the principal (not only leading) minors are non-negative (the prin-
cipal minor of order k is the minor of order k obtained by deleting n− k
rows and the n − k columns with the same position than the rows. For
instance, in a principal minor where you have deleted rows 1 and 3, you
should also delete columns 1 and 3);

− M can be written as MT
s Ms where matrix Ms is full row rank.

Furthermore a real symmetric matrix M is called negative (semi-)de�nite if
−M is positive (semi-)de�nite.

Example 2.1. Check that M1 = MT
1 =

[
1 2
2 3

]
is not positive de�nite and that

M2 = MT
2 =

[
1 −2
−2 5

]
is positive de�nite. �
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2.3 Open loop solution

For this optimal control problem, the Hamiltonian (1.56) reads:

H(x, u, λ) =
1

2

(
xT (t)Qx(t) + uT (t)Ru(t)

)
+ λT (t) (Ax(t) + Bu(t)) (2.4)

The necessary condition for optimality (1.71) yields:

∂H

∂u
= Ru(t) + BTλ(t) = 0 (2.5)

Taking into account that R is a symmetric matrix, we get:

u(t) = −R−1BTλ(t) (2.6)

Eliminating u(t) in equation (2.1) reads:{
ẋ(t) = Ax(t)−BR−1BTλ(t)
x(0) = x0

(2.7)

The dynamics of Lagrange multipliers λ(t) is given by (see (1.62)):

λ̇(t) = −∂H
∂x

= −Qx(t)−ATλ(t) (2.8)

The �nal values of the Lagrange multipliers are given by (1.63). Using the
fact that S is a symmetric matrix we get:

λ(tf ) =
∂

∂x(tf )

(
1

2

(
x(tf )− xf

)T
S
(
x(tf )− xf

))
= S

(
x(tf )− xf

)
(2.9)

Taking into account that matrices Q and S are symmetric matrices, equa-
tions (2.8) and (2.9) are written as follows:{

λ̇(t) = −Qx(t)−ATλ(t)
λ(tf ) = S

(
x(tf )− xf

) (2.10)

Equations (2.7) and (2.10) represent a two-point boundary value problem.
Combining (2.7) and (2.10) into a single state equation yields:[

ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

] [
x(t)
λ(t)

]
= H

[
x(t)
λ(t)

]
(2.11)

where we have introduced the Hamiltonian matrix H de�ned by:

H =

[
A −BR−1BT

−Q −AT

]
(2.12)

Solving (2.11) yields: [
x(t)
λ(t)

]
= eHt

[
x(0)
λ(0)

]
(2.13)



32 Chapter 2. Finite Horizon Linear Quadratic Regulator

When exponential matrix eHt is partitioned as follows:

eHt =

[
E11(t) E12(t)
E21(t) E22(t)

]
(2.14)

Then (2.13) yields: {
x(t) = E11(t)x(0) + E12(t)λ(0)
λ(t) = E21(t)x(0) + E22(t)λ(0)

(2.15)

Then two options are possible: either �nal state x(tf ) is set to xf and the
matrix S is not used in the performance index J(u) (because it's useless in that
case) or �nal state x(tf ) is expected to be close to the �nal value xf and matrix
S is then used in the performance index J(u). In both possibilities di�erential
equation (2.11) has to be solved with some constraints on initial and �nal values,
for example on x(0) and λ(tf ): this is a two-point boundary value problem.

− In the case where �nal state x(tf ) is expected to be close to the �nal value
xf then the initial and �nal conditions turn to be:{

x(0) = x0

λ(tf ) = S
(
x(tf )− xf

) (2.16)

Then we have to mix (2.16) and (2.15) at t = tf to compute the value of
λ(0):

x(t) = E11(t)x(0) + E12(t)λ(0)
λ(t) = E21(t)x(0) + E22(t)λ(0)
λ(tf ) = S

(
x(tf )− xf

)
⇒ E21(tf )x(0) + E22(tf )λ(0) = S

(
E11(tf )x(0) + E12(tf )λ(0)− xf

)
(2.17)

We �nally get the following expression for λ(0):

λ(0) = (E22(tf )− SE12(tf ))−1 (S (E11(tf )x(0)− xf
)
−E21(tf )x(0)

)
(2.18)

− In the case where �nal state x(tf ) is imposed to be xf then the initial and
�nal conditions turn to be: {

x(0) = x0

x(tf ) = xf
(2.19)

Furthermore matrix S is no more used in the performance index (2.2) to be
minimized:

J(u(t)) =
1

2

∫ tf

0
xT (t)Qx(t) + uT (t)Ru(t) dt (2.20)

The value of λ(0) is obtained by solving the �rst equation of (2.15):

x(t) = E11(t)x0 + E12(t)λ(0)
⇒ xf = E11(tf )x0 + E12(tf )λ(0)

⇒ λ(0) = (E12(tf ))−1 (xf −E11(tf )x0

) (2.21)
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Figure 2.1: Open loop optimal control

It is worth noticing that λ(0) can be computed through (2.18) as the limit
of λ(0) when S→∞.

Nevertheless, in both situations, the two-point boundary value problem must
be solved again if initial conditions change. As a consequence the control u(t) is
only implementable in an open loop fashion because Lagrange multipliers λ(t)
are not a function of state vector x(t) but an explicit function of time t, initial
value x0 and �nal state xf .

From a system point of view, let's take the Laplace transform (denoted L)
of the dynamics of the linear system under consideration:

ẋ(t) = Ax(t) + Bu(t)

⇒ L [x(t)] = X(s) = (sI −A)−1 BU(s)

= Φ(s)BU(s) where Φ(s) = (sI −A)−1
(2.22)

Then we get the block diagram in Figure 2.1 for the open loop optimal
control; In the Figure, L−1[Φ(s)] denotes the inverse Laplace transform of Φ(s).
It is worth noticing that the Lagrange multiplier λ depends on time t as well as
on the initial value x0 and the �nal state xf : this is why it is denoted λ(t, x0, xf ).

2.4 Application to minimum energy control problem

Minimum energy control problem appears when Q := 0.

2.4.1 Moving a linear system close to a �nal state with mini-
mum energy

Let's consider the following dynamical system:

ẋ(t) = Ax(t) + Bu(t) (2.23)

We are looking for the control u(t) which moves the system from the initial
state x(0) = x0 to a �nal state which should be close to a given value x(tf ) = xf
at �nal time t = tf . We will assume that the performance index to be minimized
is the following quadratic performance index where R is a symmetric positive
de�nite matrix:

J(u(t)) =
1

2

(
x(tf )− xf

)T
S
(
x(tf )− xf

)
+

1

2

∫ tf

0
uT (t)Ru(t) dt (2.24)
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For this optimal control problem, the Hamiltonian (2.4) is:

H(x, u, λ) =
1

2
uT (t)Ru(t) + λT (t) (Ax(t) + Bu(t)) (2.25)

The necessary condition for optimality (2.5) yields:

∂H

∂u
= Ru(t) + BTλ(t) = 0 (2.26)

We get:

u(t) = −R−1BTλ(t) (2.27)

Eliminating u(t) in equation (2.24) reads:

ẋ(t) = Ax(t)−BR−1BTλ(t) (2.28)

The dynamics of Lagrange multipliers λ(t) is given by (2.8):

λ̇(t) = −∂H
∂x

= −ATλ(t) (2.29)

We get from the preceding equation:

λ(t) = e−AT tλ(0) (2.30)

The value of λ(0) will in�uence the �nal value of the state vector x(t). Indeed
let's integrate the linear di�erential equation:

ẋ(t) = Ax(t)−BR−1BTλ(t) = Ax(t) + BR−1BT e−AT tλ(0) (2.31)

This leads to the following expression of the state vector x(t):

x(t) = eAtx0 + eAt
∫ t

0 e
−AτBR−1BT e−AT τλ(0)dτ

= eAtx0 + eAt
(∫ t

0 e
−AτBR−1BT e−AT τdτ

)
λ(0)

(2.32)

Or:

x(t) = eAtx0 + eAt Wc(t)λ(0) (2.33)

where matrix Wc(t) is de�ned as follows:

Wc(t) =

∫ t

0
e−AτBR−1BT e−AT τdτ (2.34)

Now using (2.16) we set λ(tf ) as follows:

λ(tf ) = S
(
x(tf )− xf

)
(2.35)

Using (2.30) and (2.33) we get:{
λ(tf ) = e−AT tfλ(0)

x(tf ) = eAtfx0 + eAtf Wc(tf )λ(0)
(2.36)
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And the transversality condition (2.35) is rewritten as follows:

λ(tf ) = S
(
x(tf )− xf

)
⇔ e−AT tfλ(0) = S

(
eAtfx0 + eAtf Wc(tf )λ(0)− xf

) (2.37)

Solving the preceding linear equation in λ(0) gives the following expression:(
e−AT tf − SeAtfWc(tf )

)
λ(0) = S

(
eAtfx0 − xf

)
⇔ λ(0) =

(
e−AT tf − SeAtfWc(tf )

)−1
S
(
eAtfx0 − xf

) (2.38)

Using the expression of λ(0) in (2.30) leads to the expression of the Lagrange
multiplier λ(t):

λ(t) = e−AT t
(
e−AT tf − SeAtfWc(tf )

)−1
S
(
eAtfx0 − xf

)
(2.39)

Finally control u(t) is obtained thanks equation (2.27):

u(t) = −R−1BTλ(t) (2.40)

It is clear from the expression of λ(t) that the control u(t) explicitly depends
on the initial state x0.

2.4.2 Moving a linear system exactly to a �nal state with min-
imum energy

We are now looking for the control u(t) which moves the system from the initial
state x(0) = x0 to a given �nal state x(tf ) = xf at �nal time t = tf . We will
assume that the performance index to be minimized is the following quadratic
performance index where R is a symmetric positive de�nite matrix:

J =
1

2

∫ tf

0
uT (t)Ru(t) dt (2.41)

To solve this problem the same reasoning applies than in the previous exam-
ple. As far as control u(t) is concerned this leads to equation (2.27). The change
is that now the �nal value of the state vector x(t) is imposed to be x(tf ) = xf .
So there is no �nal value for the Lagrange multipliers. Indeed λ(tf ), or equiva-
lently λ(0), has to be set such that x(tf ) = xf . We have seen in (2.33) that the
state vector x(t) has the following expression:

x(t) = eAtx0 + eAt Wc(t)λ(0) (2.42)

where matrix Wc(t) is de�ned as follows:

Wc(t) =

∫ t

0
e−AτBR−1BT e−AT τdτ (2.43)

Then we set λ(0) as follows where c0 is a constant vector:

λ(0) = W−1
c (tf )c0 (2.44)
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We get:
x(t) = eAtx0 + eAt Wc(t) W−1

c (tf )c0 (2.45)

Constant vector c0 is used to satisfy the �nal value on the state vector x(t).
Setting x(tf ) = xf leads to the value of constant vector c0:

x(tf ) = xf ⇒ c0 = e−Atfxf − x0 (2.46)

Thus:
λ(0) = W−1

c (tf )
(
e−Atfxf − x0

)
(2.47)

Using (2.47) in (2.30) leads to the expression of the Lagrange multiplier λ(t):

λ(t) = e−AT tλ(0)

= e−AT tW−1
c (tf )

(
e−Atfxf − x0

) (2.48)

Finally the control u(t) which moves with the minimum energy the system
from the initial state x(0) = x0 to a given �nal state x(tf ) = xf at �nal time
t = tf has the following expression:

u(t) = −R−1BTλ(t)

= −R−1BT e−AT tλ(0)

= −R−1BT e−AT tW−1
c (tf )

(
e−Atfxf − x0

) (2.49)

It is clear from the preceding expression that the control u(t) explicitly de-
pends on the initial state x0. When comparing the initial value λ(0) of the
Lagrange multiplier obtained in (2.47) in the case where the �nal state is im-
posed to be x(tf ) = xf with the expression of the initial value of the Lagrange
multiplier obtained in (2.38) in the case where the �nal state x(tf ) is close to a
given �nal state xf we can see that the expression in (2.47) corresponds to the
limit of the initial value (2.38) when matrix S moves towards in�nity (note that(
eAtf

)−1
= e−Atf ):

limS→∞

(
e−AT tf − SeAtfWc(tf )

)−1
S
(
eAtfx0 − xf

)
= limS→∞

(
−SeAtfWc(tf )

)−1
S
(
eAtfx0 − xf

)
= limS→∞W−1

c (tf )e−AtfS−1S
(
eAtfx0 − xf

)
= W−1

c (tf )e−Atf
(
eAtfx0 − xf

) (2.50)

2.4.3 Example

Given the following scalar plant:{
ẋ(t) = ax(t) + bu(t)

x(0) = x0
(2.51)

Find the optimal control for the following cost functional and �nal states con-
straints:

We wish to compute a �nite horizon Linear Quadratic Regulator with either
a �xed or a weighted �nal state xf .
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− When the �nal state x(tf ) is set to a �xed value xf and the cost functional
is set to:

J =
1

2

∫ tf

0
ρu2(t) dt (2.52)

− When the �nal state x(tf ) shall be close of a �xed value xf so that the
cost functional is modi�ed as follows where is a positive scalar (S > 0):

J =
1

2
(x(tf )− xf )T S (x(tf )− xf ) +

1

2

∫ tf

0
ρu2(t) dt (2.53)

In both cases the two-point boundary value problem which shall be solved
depends on the solution of the following di�erential equation where Hamiltonian
matrix H appears:

[
ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

] [
x(t)
λ(t)

]
=

[
a −b2/ρ
0 −a

] [
x(t)
λ(t)

]
= H

[
x(t)
λ(t)

]
(2.54)

The solution of this di�erential equation reads:[
x(t)
λ(t)

]
= eHt

[
x(0)
λ(0)

]
(2.55)

Denoting by s the Laplace variable, the exponential of matrix Ht is obtained
thanks to the inverse of the Laplace transform denoted L−1:

eHt = L−1
(

(sI−H)−1
)

= L−1

([
s− a b2/ρ

0 s+ a

]−1
)

= L−1

(
1

(s−a)(s+a)

[
s+ a −b2/ρ

0 s− a

])
= L−1

([
1
s−a

−b2
ρ(s2−a2)

0 1
s+a

])

⇔ eHt =

[
eat

−b2(eat−e−at)
2ρa

0 e−at

]
(2.56)

That is: [
x(t)
λ(t)

]
= eHt

[
x(0)
λ(0)

]
=

[
eat

−b2(eat−e−at)
2ρa

0 e−at

] [
x(0)
λ(0)

]
(2.57)

− If the �nal state x(tf ) is set to the value xf then the value λ(0) is obtained
by solving the �rst equation of (2.57):

x(tf ) = xf = eatfx(0)− b2(eatf−e−atf )
2ρa λ(0)

⇒ λ(0) = −2ρa

b2(eatf−e−atf )

(
xf − eatfx(0)

) (2.58)
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And:

 x(t) = eatx(0) + eat−e−at

e
atf−e−atf

(
xf − eatfx(0)

)
λ(t) = e−atλ(0) = −2ρae−at

b2(eatf−e−atf )

(
xf − eatfx(0)

) (2.59)

The optimal control u(t) is given by:

u(t) = −R−1BTλ(t) =
−b
ρ
λ(t) =

2ae−at

b (eatf − e−atf )

(
xf − eatfx(0)

)
(2.60)

Interestingly enough, the open loop control is independent of the control
weighting ρ.

− If the �nal state x(tf ) is expected to be close to the �nal value xf then
we have to mix the two equations of (2.57) and the constraint λ(tf ) =
S (x(tf )− xf ) to compute the value of λ(0) :

λ(tf ) = S (x(tf )− xf )

⇒ e−atfλ(0) = S

(
eatfx(0)− b2(eatf−e−atf )

2ρa λ(0)− xf
)

⇔ λ(0) =
S(eatf x(0)−xf)

e
−atf+

Sb2
(
e
atf−e−atf

)
2ρa

(2.61)

Obviously, when S → ∞ we obtain for λ(0) the same expression than
(2.58).

2.5 Closed loop solution - Riccati di�erential equation

The closed loop solution involves the state vector x(t) within the expression
of the optimal control u(t). In order to achieve a closed loop solution we will
assume in the following that the state vector x(t) shall move towards the null
value:

xf = 0 (2.62)

Indeed, xf = 0 corresponds to the single equilibrium point for a linear
system.

2.5.1 Final state close to zero

We will use matrix S to weight the �nal state in the performance index (2.2)
but we will not set the �nal state x(tf ) which is assumed to be free.

The cost to be minimized reads:

J(u(t)) =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

0
xT (t)Qx(t) + uT (t)Ru(t) dt (2.63)
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We have seen in (2.15) that the solution of this optimal control problem
reads: {

x(t) = E11(t)x(0) + E12(t)λ(0)
λ(t) = E21(t)x(0) + E22(t)λ(0)

(2.64)

where: 
eHt =

[
E11(t) E12(t)
E21(t) E22(t)

]
H =

[
A −BR−1BT

−Q −AT

] (2.65)

The expression of λ(0) is obtained from (2.18) where we set xf = 0. We get
the following expression where x(0) can now be factorized:

λ(0) = (E22(tf )− SE12(tf ))−1 (S (E11(tf )x(0)− xf
)
−E21(tf )x(0)

)∣∣∣
xf=0

= (E22(tf )− SE12(tf ))−1 (SE11(tf )x(0)−E21(tf )x(0))

= (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf ))x(0)
(2.66)

Thus, from the second equation of (2.64) λ(t) reads as follows where x(0)
can again be factorized::

λ(t) = E21(t)x(0) + E22(t)λ(0)

=
(
E21(t) + E22(t) (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf ))

)
x(0)

(2.67)

That is:

λ(t) = X2(t)x(0) (2.68)

where

X2(t) = E21(t) + E22(t) (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf )) (2.69)

In addition, using the expression of λ(0) in the �rst equation of (2.64) we
can compute x(0) as a function of x(t):

x(t) = E11(t)x(0) + E12(t)λ(0)

=
(
E11(t) + E12(t) (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf ))

)
x(0)

(2.70)

That is:

x(t) = X1(t)x(0) (2.71)

where

X1(t) = E11(t) + E12(t) (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf )) (2.72)

Combining (2.68) and (2.71) shows that when xf = 0 then Lagrange multi-
pliers λ(t) linearly depends on the state vector x(t):

λ(t) = X2(t)X−1
1 (t)x(t) (2.73)
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Figure 2.2: Closed loop optimal control (L−1 [Φ(s)] denotes the inverse Laplace
transform of Φ(s))

Then the Lagrange multipliers λ(t) can be expressed as follows, where P(t)
is a n× n symmetric matrix:{

λ(t) = P(t)x(t)

P(t) = X2(t)X−1
1 (t)

(2.74)

Once matrix P(t) is computed (analytically or numerically), the optimal
control u(t) which minimizes (2.2) is given by (2.6) and (2.74):

u(t) = −K(t)x(t) (2.75)

where K(t) is the optimal state feedback gain matrix:

K(t) = R−1BTP(t) (2.76)

It can be seen that the optimal control is a state feedback law. Indeed,
because the matrix P(t) does not depend on the system states, the feedback
gain K(t) is optimal for all initial conditions x(0) on the state vector x(t).

From a system point of view, let's take the Laplace transform (denoted L)
of the dynamics of the linear system under consideration:

ẋ(t) = Ax(t) + Bu(t)

⇒ L [x(t)] = X(s) = (sI −A)−1 BU(s)

= Φ(s)BU(s) where Φ(s) = (sI −A)−1
(2.77)

Then we get the block diagram in Figure 2.2 for the closed-loop optimal
control: note that xf = 0 corresponds to the regulator problem. The tracker
problem where xf 6= 0 will be tackle in an following chapter. In addition it is
worth noticing that compared to Figure 2.1 the Lagrange multipliers λ no more
appears in the optimal control loop in Figure 2.2. Indeed, it has been replaced
by matrix P(t) which enables to provide a closed loop solution whatever the
initial conditions on state vector x(t).

2.5.2 Riccati di�erential equation

Using (2.8) and (2.9), we can compute the time derivative of the Lagrange
multipliers λ(t) = P(t)x(t) as follows:{

λ̇(t) = Ṗ(t)x(t) + P(t)ẋ(t) = −Qx(t)−ATλ(t)
λ(tf ) = P(tf )x(tf ) = Sx(tf )

(2.78)
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Then, substituting (2.1), (2.6) and (2.74) within (2.78) we get:
ẋ = Ax(t) + Bu(t)
u(t) = −R−1BTλ(t)
λ(t) = P(t)x(t)

⇒
{

Ṗ(t)x(t) + P(t)
(
Ax(t)−BR−1BTP(t)x(t)

)
= −Qx(t)−ATP(t)x(t)

P(tf )x(tf ) = Sx(tf )
(2.79)

Because the previous equation is true for all x(t) and x(tf ) we obtain the
following equation, which is known as the Riccati di�erential equation:{

−Ṗ(t) = ATP(t) + P(t)A−P(t)BR−1BTP(t) + Q
P(tf ) = S

(2.80)

From a computational point of view, the Riccati di�erential equation (2.80)
is integrated backward. The kernel P(t) is stored for each values of t and then
is used to compute K(t) and u(t).

2.5.3 Final state set to zero

When the �nal state x(tf ) is imposed to be exactly xf = 0 the cost to be
minimized reads:

J(u(t)) =
1

2

∫ tf

0
xT (t)Qx(t) + uT (t)Ru(t) dt (2.81)

We have seen in (2.73) that λ(t) has the following expression:

λ(t) = X2(t)X−1
1 (t)x(t) (2.82)

Square matrices X1(t) and X2(t) can be computed through relationships
(2.72) and (2.69) by taking the limit when S→∞:

X1(t) = limS→∞E11(t) + E12(t) (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf ))

= limS→∞E11(t)−E12(t)E−1
12 (tf )S−1SE11(tf )

= E11(t)−E12(t)E−1
12 (tf )E11(tf )

X2(t) = limS→∞E21(t) + E22(t) (E22(tf )− SE12(tf ))−1 (SE11(tf )−E21(tf ))

= limS→∞E21(t)−E22(t)E−1
12 (tf )S−1SE11(tf )

= E21(t)−E22(t)E−1
12 (tf )E11(tf )

(2.83)

As far as

[
E11(0) E12(0)
E21(0) E22(0)

]
:= eHt

∣∣
t=0

= e0 = I, where I is the 2n × 2n

identity matrix, we have:{
E11(0) = E22(0) = I
E12(0) = E21(0) = 0

⇒
{

X1(0) = I
X2(0) = −E−1

12 (tf )E11(tf )
(2.84)

Consequently we get for P(0) and λ(0) the following expressions:{
P(0) = X2(0)X−1

1 (0) = −E−1
12 (tf )E11(tf )

λ(0) = P(0)x(0) = −E−1
12 (tf )E11(tf )x(0)

(2.85)
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Furthermore, the Riccati di�erential equation (2.80) to get P(t) now reads:{
−Ṗ(t) = ATP(t) + P(t)A−P(t)BR−1BTP(t) + Q

P(0) = −E−1
12 (tf )E11(tf )

(2.86)

Now let's compute P(tf ). From (2.83) we get:

X1(tf ) = E11(tf )−E12(tf )E−1
12 (tf )E11(tf ) = 0

X2(tf ) = E21(tf )−E22(tf )E−1
12 (tf )E11(tf )

(2.87)

Consequently P(tf ) = X2(tf )X−1
1 (tf ) → ∞ because X1(tf ) = 0 when the

�nal value x(tf ) is set to zero. This is in line with the �nal value of P(t),
P(tf ) = S, as indicated by Equation (2.80). Indeed, when the �nal value x(tf )
is imposed, then S → ∞ and consequently P(tf ) → ∞ when the �nal value
x(tf ) is set to zero. To avoid the numerical di�culty when t = tf we shall set
u(tf ) = 0. Thus the optimal control reads:

u(t) =

{
−K(t)x(t) ∀ 0 ≤ t < tf
0 for t = tf

(2.88)

Where:
K(t) = R−1BTP(t) (2.89)

Besides it is worth noticing that when the �nal state is set to zero there is
no need to solve the Riccati di�erential equation (2.86). Indeed, when the �nal
state x(tf ) is imposed to be exactly x(tf ) = xf := 0, then equation (2.13) can
be rewritten as follows where t is shifted to t− tf :[

x(t)
λ(t)

]
= eHt

[
x(0)
λ(0)

]
⇔
[
x(t)
λ(t)

]
= eH(t−tf)

[
0

λ(tf )

]
=

[
E11(t− tf ) E12(t− tf )
E21(t− tf ) E22(t− tf )

] [
0

λ(tf )

] (2.90)

From Equation (2.90), the state vector x(t) and costate vector λ(t) can now
be obtained through the value of λ(tf ), which can be set thanks to the value of
x(0) = x0. We get:

x0 = x(0) = E12(−tf )λ(tf )⇔ λ(tf ) = E−1
12 (−tf )x0

⇒
{
x(t) = E12(t− tf )E−1

12 (−tf )x0

λ(t) = E22(t− tf )E−1
12 (−tf )x0

(2.91)

2.5.4 Using Hamilton-Jacobi-Bellman (HJB) equation

Let's apply the Hamilton-Jacobi-Bellman (HJB) partial di�erential equation
(1.66) that we recall hereafter:

−∂J
∗(x, t)

∂t
= minu(t)∈U

(
F (x, u) +

∂J∗(x, t)

∂x
f(x, u)

)
(2.92)
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For linear system with quadratic cost (we remind that Q = QT ≥ 0 and
R = RT > 0) we have:

F (x, u) +
(
∂J∗(x,t)
∂x

)
f(x, u) = 1

2

(
xTQx+ uTRu

)
+
(
∂J∗(x,t)
∂x

)
(Ax+ Bu)

(2.93)

Assuming no constraint on control u, the optimal control is computed as
follows:

minu(t)∈U

(
F (x, u) +

(
∂J∗(x,t)
∂x

)
f(x, u)

)
⇒ Ru+ BT

(
∂J∗(x,t)
∂x

)T
= 0

⇔ u = −R−1BT
(
∂J∗(x,t)
∂x

)T
(2.94)

Thus, using the fact that R = RT , the Hamilton-Jacobi-Bellman (HJB)
partial di�erential equation reads:

−∂J∗(x,t)
∂t = 1

2

(
xTQx+

(
∂J∗(x,t)
∂x

)
B����

R−1RR−1BT
(
∂J∗(x,t)
∂x

)T)
+
(
∂J∗(x,t)
∂x

)(
Ax−BR−1BT

(
∂J∗(x,t)
∂x

)T)
= 1

2x
TQx− 1

2

(
∂J∗(x,t)
∂x

)
BR−1BT

(
∂J∗(x,t)
∂x

)T
+
(
∂J∗(x,t)
∂x

)
Ax

(2.95)

Assuming that the �nal state at t = tf is set to zero, a candidate solution of
the Hamilton-Jacobi-Bellman (HJB) partial di�erential equation is the following
where P(t) = PT (t) ≥ 0:

J∗(x, t) = 1
2x

TP(t)x ⇒


∂J∗(x,t)

∂t = 1
2x

T Ṗ(t)x(
∂J∗(x,t)
∂x

)T
= P(t)x

(2.96)

Thus the Hamilton-Jacobi-Bellman (HJB) partial di�erential equation reads:

−∂λ(t)T

∂t = −1
2x

T Ṗ(t)x = 1
2x

TQx− 1
2x

TP(t)BR−1BTP(t)x
+xTP(t)Ax

(2.97)

Then, using the fact that P(t) = PT (t), we can write:

xTP(t)Ax = xTATP(t)x =
1

2
xT
(
P(t)A + ATP(t)

)
x (2.98)

Thus the Hamilton-Jacobi-Bellman (HJB) partial di�erential equation reads:

−1
2x

T Ṗ(t)x = 1
2x

TQx− 1
2x

TP(t)BR−1BTP(t)x
+1

2x
T
(
P(t)A + ATP(t)

)
x

(2.99)

Because this equation must be true ∀x, we conclude that P(t) = PT (t) shall
solve the following Riccati di�erential equation:

−Ṗ(t) = P(t)A + ATP(t)−P(t)BR−1BTP(t) + Q (2.100)
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Furthermore the terminal condition reads:

J∗(x, tf ) = G (x(tf ))⇔ 1

2
xT (tf )P(tf )x(tf ) =

1

2
xT (tf )Sx(tf ) (2.101)

Because this equation must be true ∀x(tf ) we get:

P(tf ) = S (2.102)

2.6 Solving the Riccati di�erential equation

2.6.1 Scalar Riccati di�erential equation

In the scalar case the Riccati di�erential equation has the following form:

˙P (t) = f(t) + g(t)P (t) + h(t)P 2(t) (2.103)

The general method to solve it when P (t) is a scalar function is the following:
let P1(t) be a particular solution of the scalar Riccati di�erential equation (2.103)
and consider the new function z(t) de�ned by:

Z(t) =
1

P (t)− P1(t)
⇔ P (t) = P1(t) +

1

Z(t)
(2.104)

Then the derivative of new variable z(t) leads to:

Ż = − Ṗ−Ṗ1

(P−P1)2
= −f(t)+g(t)P (t)+h(t)P 2(t)−f(t)−g(t)P1(t)−h(t)P 2

1 (t)

(P (t)−P1(t))2

⇔ Ż = −g(t)(P (t)−P1(t))+h(t)(P 2(t)−P 2
1 (t))

(P (t)−P1(t))2
= −g(t)

P (t)−P1(t) − h(t)P (t)+P1(t)
P (t)−P1(t)

⇔ Ż = −g(t)Z(t)− h(t)Z(t) (P (t) + P1(t))

(2.105)

Using the fact that P (t) = P1(t) + 1
Z(t) we �nally get:

Ż = −g(t)Z(t)− h(t)Z(t)
(
P1(t) + 1

Z(t) + P1(t)
)

⇔ Ż = −Z(t) (2P1(t)h(t) + g(t))− h(t)
(2.106)

This equation is a linear di�erential equation satis�ed by the new function
z(t). Once it is solved, we go back to P (t) via the relation P (t) = P1(t) + 1

Z(t) .

2.6.2 Matrix fraction decomposition

The general method which has been presented to solve the Riccati di�erential
equation in the scalar case is not easy to apply when P(t) is not a scalar function
but a matrix. In addition, The Riccati di�erential equation (2.80) to be solved
involves constant matrices A,B,R and Q and this special case is not exploited
in the general method which has been presented. The Riccati di�erential equa-
tion (2.80) can also be solved by using a technique called the matrix fraction
decomposition. Let X2(t) and X1(t) be n× n square matrices. A matrix prod-
uct of the type X2(t)X−1

1 (t) is called a matrix fraction. In the following, we will
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take the derivative of the matrix fraction X2(t)X−1
1 (t) with respect to t and use

the fact that:

d

dt

(
X−1

1 (t)
)

= −
(
X−1

1 (t)
)( d

dt
X1(t)

)(
X−1

1 (t)
)

= −
(
X−1

1 (t)
)
Ẋ1(t)

(
X−1

1 (t)
)

(2.107)
The preceding equation is a generalisation of the time derivative of the in-

verse of a scalar function:

d

dt
f−1(t) = − ḟ(t)

f(t)2
(2.108)

Let's decompose matrix P(t) using a matrix fraction decomposition:

P(t) = X2(t)X−1
1 (t) (2.109)

Applying (2.107) yields:

Ṗ(t) = Ẋ2(t)X−1
1 (t) + X2(t) ddtX

−1
1 (t)

⇔ Ṗ(t) = Ẋ2(t)X−1
1 (t)−X2(t)X−1

1 (t)Ẋ1(t)X−1
1 (t)

(2.110)

From the Riccati di�erential equation (2.80), substitution for P(t) with
X2(t)X−1

1 (t) leads to the following:

Ẋ2(t)X−1
1 (t)−X2(t)X−1

1 (t)Ẋ1(t)X−1
1 (t) + X2(t)X−1

1 (t)A

−X2(t)X−1
1 (t)BR−1BTX2(t)X−1

1 (t) + Q + ATX2(t)X−1
1 (t) = 0

(2.111)

Multiplying on the right by X1(t) yields:

Ẋ2(t)−X2(t)X−1
1 (t)Ẋ1(t) + X2(t)X−1

1 (t)AX1(t)

−X2(t)X−1
1 (t)BR−1BTX2(t) + QX1(t) + ATX2(t) = 0

(2.112)

Re-arranging the expression and putting X2(t)X−1
1 (t) in factor yields:

Ẋ2(t) + QX1(t) + ATX2(t)

−X2(t)X−1
1 (t)

(
Ẋ1(t)−AX1(t) + BR−1BTX2(t)

)
= 0

(2.113)

As a consequence, X2(t) and X1(t) can be chosen as follows:{
Ẋ1(t) = AX1(t)−BR−1BTX2(t)

Ẋ2(t) = −QX1(t)−ATX2(t)
(2.114)

Note that equations (2.114) are the linear di�erential equations with respect
to matrices X2(t) and X1(t). They can be re-written as follows:

d

dt

[
X1(t)
X2(t)

]
=

[
A −BR−1BT

−Q −AT

] [
X1(t)
X2(t)

]
(2.115)

We recognize the Hamiltonian matrix H which has already been de�ned in
(2.12):

H =

[
A −BR−1BT

−Q −AT

]
(2.116)
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Nevertheless X1(t) and X2(t) are matrices in (2.115) whereas x(t) and λ(t)
are vectors in (2.11). The expression of the numerator X2(t) and denominator
X1(t) of the matrix fraction decomposition of P(t) can be represented in the
following matrix form, where eHt is a 2n× 2n matrix:[

X1(t)
X2(t)

]
= eHt

[
X1(0)
X2(0)

]
(2.117)

In order to satisfy the constraint at the �nal time constraint tf , we do the
following choice where I represents the identity matrix of dimension n:{

P(tf ) = X2(tf )X−1
1 (tf )

P(tf ) = S
⇒
[

X1(tf )
X2(tf )

]
=

[
I
S

]
(2.118)

As a consequence, we get:[
X1(0)
X2(0)

]
= e−Htf

[
I
S

]
(2.119)

Using (2.119) within (2.117) leads to the following expression of matrices
X1(t) and X2(t): [

X1(t)
X2(t)

]
= eH(t−tf)

[
I
S

]
(2.120)

And the solution P(t) of the Riccati di�erential equation (2.80) reads as in
(2.74):

P(t) = X2(t)X−1
1 (t) (2.121)

2.6.3 Examples

Example 1

Given the following scalar plant:{
ẋ(t) = ax(t) + bu(t)

x(0) = x0
(2.122)

Find control u(t) which minimizes the following performance index where
S ≥ 0 and ρ > 0:

J =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

0
ρu2(t) dt (2.123)

Let's introduce the Hamiltonian matrix H de�ned by:

H =

[
A −BR−1BT

−Q −AT

]
=

[
a −b2

ρ

0 −a

]
(2.124)

Denoting by s the Laplace variable, the exponential of matrix eHt is obtained
thanks to the inverse of the Laplace transform, which is denoted L−1:
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eHt = L−1
(

(sI −H)−1
)

= L−1

([
s− a b2/ρ

0 s+ a

]−1
)

= L−1

(
1

(s−a)(s+a)

[
s+ a −b2/ρ

0 s− a

])
= L−1

([
1
s−a

−b2
ρ(s2−a2)

0 1
s+a

])

=

[
eat

−b2(eat−e−at)
2ρa

0 e−at

]
(2.125)

Matrices X1(t) and X2(t) are then obtained thanks to (2.120):

[
X1(t)
X2(t)

]
= eH(t−tf)

[
I
S

]

=

 ea(t−tf)
−b2

(
e
a(t−tf)−e−a(t−tf)

)
2ρa

0 e−a(t−tf)


[

1
S

]

=

 ea(t−tf) −
Sb2

(
e
a(t−tf)−e−a(t−tf)

)
2ρa

Se−a(t−tf)



(2.126)

From (2.121) we �nally get the solution P(t) of the Riccati di�erential equa-
tion (2.80) as follows:

P(t) = X2(t)X−1
1 (t)

= Se
−a(t−tf)

e
a(t−tf)−

Sb2

ea(t−tf)−e−a(t−tf)


2ρa

= S

e
2a(t−tf)+

Sb2

1−e
2a(t−tf)


2ρa

(2.127)

Finally the optimal control is:

u(t) = −K(t)x(t)
= −R−1BTP(t)x(t)

= − b
ρP(t)x(t)

= −bS

ρe
2a(t−tf)+

Sb2

1−e
2a(t−tf)


2a

x(t)

(2.128)
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If we want to ensure that the optimal control drives x(tf ) exactly to zero,
we can let S→∞ to weight more heavily in the performance index J . Then:

u(t) =
−2ab

b2
(

1− e2a(t−tf)
)x(t) =

−2a e−a(t−tf)

b
(
e−a(t−tf) − ea(t−tf)

)x(t) (2.129)

Example 2

Given the following plant, which actually represents a double integrator:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t) (2.130)

Find control u(t) which minimizes the following performance index:

J(u(t)) =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

0
u2(t)dt (2.131)

Where weighting matrix S reads as follows:

S = ST =

[
sp 0
0 sv

]
≥ 0 (2.132)

Hamiltonian matrix H as de�ned in (2.116) reads

H =

[
A −BR−1BT

−Q −AT

]
=


0 1 0 0
0 0 0 −1
0 0 0 0
0 0 −1 0

 (2.133)

In order to compute eHt we use the following relationship where L−1 stands
for the inverse Laplace transform:

eHt = L−1
[
(sI−H)−1

]
(2.134)

We get:

sI−H =


s −1 0 0
0 s 0 1
0 0 s 0
0 0 1 s

⇒ (sI−H)−1 =


1
s

1
s2

1
s4

− 1
s3

0 1
s

1
s3

− 1
s2

0 0 1
s 0

0 0 − 1
s2

1
s



⇒ eHt = L−1
[
(sI−H)−1

]
=


1 t t3

6 − t2

2

0 1 t2

2 −t
0 0 1 0
0 0 −t 1


(2.135)
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Matrices X1(t) and X2(t) are then obtained thanks to (2.120):[
X1(t)
X2(t)

]
= eH(t−tf)

[
I
S

]

=


1 t− tf

(t−tf )3

6 − (t−tf )2

2

0 1
(t−tf )2

2 −(t− tf )
0 0 1 0
0 0 −(t− tf ) 1




1 0
0 1
sp 0
0 sv



=


1 + sp

(t−tf )3

6 t− tf − sv
(t−tf )2

2

sp
(t−tf )2

2 1− sv(t− tf )
sp 0

−sp(t− tf ) sv



(2.136)

From (2.121) we �nally get the solution P(t) of the Riccati di�erential equa-
tion (2.80) as follows:

P(t) = X2(t)X−1
1 (t)

=

[
sp 0

−sp(t− tf ) sv

][
1 + sp

(t−tf )3

6 t− tf − sv
(t−tf )2

2

sp
(t−tf )2

2 1− sv(t− tf )

]−1

= 1
∆

[
sp 0

−sp(t− tf ) sv

][
1− sv(t− tf ) tf − t+ sv

(t−tf )2

2

−sp
(t−tf )2

2 1 + sp
(t−tf )3

6

]
(2.137)

where:

∆ =

(
1 + sp

(t− tf )3

6

)
(1− sv(t− tf ))− sp

(t− tf )2

2

(
t− tf − sv

(t− tf )2

2

)
(2.138)

2.7 Second order necessary condition for optimality

It is worth noticing that the second order necessary condition for optimality to
achieve a minimum cost is the positive semi-de�niteness of the Hessian matrix
of the Hamiltonian along an optimal trajectory (see (1.134)). This condition is
always satis�ed as soon as R > 0. Indeed we get from (2.5):

∂2H

∂u2
= Huu = R > 0 (2.139)

2.8 Finite horizon LQ regulator with cross term in
the performance index

Consider the following time invariant state di�erential equation:{
ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

(2.140)

Where:
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− A is the state (or system) matrix

− B is the input matrix

− x(t) is the state vector of dimension n

− u(t) is the control vector of dimension m

We will assume that the pair (A,B) is controllable. The purpose of this section
is to explicit the control u(t) which minimizes the following quadratic perfor-
mance index with cross terms:

J(u(t)) =
1

2

∫ tf

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Su(t) dt (2.141)

With the constraint on terminal state:

x(tf ) = 0 (2.142)

Matrices S and Q are symmetric positive semi-de�nite and matrix R sym-
metric positive de�nite: 

S = ST ≥ 0
Q = QT ≥ 0
R = RT > 0

(2.143)

It can be seen that:

xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Su(t) = xT (t)Qmx(t) + vT (t)Rv(t) (2.144)

Where: {
Qm = Q− SR−1ST

v(t) = u(t) + R−1STx(t)
(2.145)

Hence cost (2.141) to be minimized can be rewritten as:

J(u(t)) =
1

2

∫ ∞
0

xT (t)Qmx(t) + vT (t)Rv(t) dt (2.146)

Furthermore (2.140) is rewritten as follows, where v(t) appears as the control
vector rather than u(t). Using u(t) = v(t)−R−1STx(t) in (2.140) leads to the
following state equation:

ẋ(t) = Ax(t) + B
(
v(t)−R−1STx(t)

)
=
(
A−BR−1ST

)
x(t) + Bv(t)

= Amx(t) + Bv(t)
(2.147)

We will assume that symmetric matrix Qm is positive semi-de�nite:

Qm = Q− SR−1ST ≥ 0 (2.148)

Hamiltonian matrix H reads:

H =

[
Am −BR−1BT

−Qm −AT
m

]
=

[
A−BR−1ST −BR−1BT

−Q + SR−1ST −AT + SR−1ST

]
(2.149)
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The problem can be solved through the following Hamiltonian system whose
state is obtained by extending the state x(t) of system (2.140) with costate λ(t):[

ẋ(t)

λ̇(t)

]
=

[
A−BR−1ST −BR−1BT

−Q + SR−1ST −AT + SR−1ST

] [
x(t)
λ(t)

]
= H

[
x(t)
λ(t)

]
(2.150)

Ntogramatzidis1 has shown the results presented hereafter: let P1 and P2

be the positive semi-de�nite solutions of the following continuous time algebraic
Riccati equations:{

0 = ATP1 + P1A− (S + P1B) R−1 (S + P1B)T + Q

0 = −ATP2 −P2A− (S−P2B) R−1 (S−P2B)T + Q
(2.151)

Notice that pair (A,B) has been replaced by (−A,−B) in the second equa-
tion. We will denote by K1 and K2 the following in�nite horizon gain matrices:{

K1 = R−1
(
ST + BTP1

)
K2 = R−1

(
ST −BTP2

) (2.152)

Then the optimal control reads:

u(t) =

{
−K(t)x(t) ∀ 0 ≤ t < tf

0 for t = tf
(2.153)

Where: {
K(t) = R−1

(
ST + BTP(t)

)
P(t) = X2(t)X−1

1 (t)
(2.154)

And:{
X1(t) = e(A−BK1)t − e(A−BK2)(t−tf)e(A−BK1)tf

X2(t) = P1e
(A−BK1)t + P2e

(A−BK2)(t−tf)e(A−BK1)tf
(2.155)

Matrix P(t) satisfy the following Riccati di�erential equation:

−Ṗ(t) = ATP + PA− (S + BP(t)) R−1 (S + BP(t))T + Q (2.156)

Furthermore the optimal state x(t) and costate λ(t) have the following ex-
pressions: {

x(t) = X1(t)X−1
1 (0)x0

λ(t) = X2(t)X−1
1 (0)x0

(2.157)

It is clear that equations (2.91) and (2.157) are the same. Nevertheless when
the Hamiltonian matrix H has eigenvalues on the imaginary axis then algebraic
Riccati equations (2.151) are unsolvable and equation (2.91) shall then be used.

1Lorenzo Ntogramatzidis, A simple solution to the �nite-horizon LQ problem with zero
terminal state, Kybernetika - 39(4):483-492, January 2003
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2.9 Minimum cost achieved

The minimum cost achieved is given by:

J∗ = J(u∗(t)) =
1

2
xT (0)P(0)x(0) (2.158)

Indeed, from the Riccati equation (2.80), we deduce that:

xT
(
Ṗ + PA + ATP−PBR−1BTP + Q

)
x = 0

⇔ xT Ṗx+ xTPAx+ xTATPx− xTPBR−1BTPx+ xTQx = 0

⇔ xT Ṗx+ xTPAx+
(
xTPAx

)T − xTPBR−1BTPx+ xTQx = 0

(2.159)

Taking into account the fact that P = PT > 0, R = RT > 0 as well as (2.1),
(2.75) and (2.76), it can be shown that:

xTPBR−1BTPx = −xTPBu∗

= −xTPBR−1Ru∗

= u∗TRu∗

xTPAx = xTP (Ax+ Bu∗ −Bu∗)
= xTPẋ− xTPBu∗

= xTPẋ+ u∗TRu∗

⇒ xT Ṗx+ xTPAx +
(
xTPAx

)T − xTPBR−1BTPx

= xT Ṗx+ xTPẋ+ ẋTPx+ u∗TRu∗

= d
dt

(
xTPx

)
+ u∗TRu∗

(2.160)

As a consequence equation (2.159) can be written as follows:

d

dt

(
xT (t)P(t)x(t)

)
+ xT (t)Qx(t) + u∗T (t)Ru∗(t) = 0 (2.161)

And the performance index (2.2) to be minimized can be re-written as:

J(u∗(t)) = 1
2x

T (tf )Sx(tf ) + 1
2

∫ tf
0 xT (t)Qx(t) + u∗T (t)Ru∗(t) dt

⇔ J(u∗(t)) = 1
2

(
xT (tf )Sx(tf )−

∫ tf
0

d
dt

(
xT (t)P(t)x(t)

)
dt
)

⇔ J(u∗(t)) = 1
2

(
xT (tf )Sx(tf )− xT (tf )P(tf )x(tf ) + xT (0)P(0)x(0)

) (2.162)

Then taking into account the boundary conditions P(tf ) = S we �nally get
(2.158).

2.10 Extension to nonlinear system a�ne in control

We consider the following �nite horizon optimal control problem consisting in
�nding the control u that minimizes the following performance index where q(x)
is positive semi-de�nite and R = RT > 0:

J(u(t)) = G (x(tf )) +
1

2

∫ tf

0

(
q(x) + uTRu

)
dt (2.163)
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under the constraint that the system is nonlinear but a�ne in control:{
ẋ = f(x) + g(x)u

x(0) = x0
(2.164)

Assuming no constraint, control u∗(t) that minimizes the performance index
J(u(t)) is de�ned by:

u∗(t) = −R−1gT (x)λ(t) (2.165)

where:

λ̇(t) = −
(

1
2

(
∂q(x)
∂x

)T
+

∂(f(x)+g(x)u∗)
∂x λ(t)

)
= −

(
1
2

(
∂q(x)
∂x

)T
+

∂(f(x)−g(x)R−1gT (x)λ(t))
∂x λ(t)

) (2.166)

For boundary value problems, e�cient minimization of the Hamiltonian is
possible2.

2Todorov E. and Tassa Y., Iterative Local Dynamic Programming, IEEE ADPRL, 2009



Chapter 3

In�nite Horizon Linear
Quadratic Regulator (LQR)

3.1 Problem to be solved

We recall that we consider the following linear time invariant system, where x(t)
is the state vector of dimension n, u(t) is the control vector of dimension m and
z(t) is the controlled output (that is not the actual output of the system but
the output of interest for the design)

ẋ(t) = Ax(t) + Bu(t)
z(t) = Nx(t)
x(0) = x0

(3.1)

In this chapter we will focus on the case where the �nal time tf tends toward
in�nity (tf →∞). The performance index to be minimized turns out to be:

J(u(t)) =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (3.2)

Where Q = NTN (thus Q is symmetric and positive semi-de�nite), and R
is a symmetric and positive de�nite matrix.

When �nal time tf is set to in�nity, the Kalman gain K(t) which has been
computed in the previous chapter becomes constant. As a consequence, the
control is easier to implement as far as it is no more necessary to integrate
the di�erential Riccati equation and to store the gain K(t) before applying
the control. In practice in�nity means that �nal time tf becomes large when
compared to the time constants of the plant.

3.2 Stabilizability and detectability

We will assume in the following that (A,B) is stabilizable and (A,N) is de-
tectable. We recall that the pair (A,B) is said stabilizable if the uncontrollable
eigenvalues of A, if any, have negative real parts. Thus even though not all
system modes are controllable, the ones that are not controllable do not require
stabilization.
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Similarly the pair (A,N) is said detectable if the unobservable eigenvalues
of A, if any, have negative real parts. Thus even though not all system modes
are observable, the ones that are not observable do not require stabilization. We
may use the Kalman test to check the controllability of the system:

Rank
[
B AB ... An−1B

]
= n where n = size of state vector x (3.3)

Or equivalently the Popov-Belevitch-Hautus (PBH ) test which shall be ap-
plied to all eigenvalues of A, denoted λi, to check the controllability of the
system, or only on the eigenvalues which are not contained in the left half plane
to check the stabilizability of the system:

Rank
[
A− λiI B

]
= n

{
∀ λi for controllability
∀ λi s.t.<(λi) ≥ 0 for stabilizability

(3.4)

Similarly we may use the Kalman test to check the observability of the
system:

Rank


N

NA
...

NAn−1

 = n where n = size of state vector x (3.5)

Or equivalently the Popov-Belevitch-Hautus (PBH ) test which shall be ap-
plied to all eigenvalues of A, denoted λi, to check the observability of the system,
or only on the eigenvalues which are not contained in the left half plane to check
the detectability of the system:

Rank

[
A− λiI

N

]
= n

{
∀ λi for observability
∀ λi s.t.<(λi) ≥ 0 for detectability

(3.6)

3.3 Algebraic Riccati equation

When �nal time tf tends toward in�nity the matrix P(t) turns out to be a
constant symmetric positive de�nite matrix denoted P. The Riccati equation
(2.80) reduces to an algebraic equation, which is known as the algebraic Riccati
equation (ARE):

ATP + PA−PBR−1BTP + Q = 0 (3.7)

It is worth noticing that the algebraic Riccati equation (3.7) has two solu-
tions: one is positive semi-de�nite and the other is negative semi-de�nite. The
solution of the optimal control problem only retains the positive semi-de�nite
solution of the algebraic Riccati equation.

The convergence of limtf→∞P(t) → P where P ≥ 0 is some positive semi-
de�nite symmetric constant matrix is guaranteed by the stabilizability assump-
tion (PT is indeed a solution of the algebraic Riccati equation (3.7)). Since the
matrix P = PT ≥ 0 is constant, the optimal gain K(t) also turns out to be also
a constant denoted K. The optimal gain K and the optimal stabilizing control
u(t) are then de�ned as follows:{

u(t) = −Kx(t)
K = R−1BTP

(3.8)
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The need for the detectability assumption is to ensure that the optimal con-
trol computed using the limtf→∞P(t) generates a feedback gain K = R−1BTP
that stabilizes the plant, i.e. all the eigenvalues of A − BK lie on the open
left half plane. In addition, it can be shown that the minimum cost achieved is
given by:

J∗ =
1

2
xT (0)Px(0) (3.9)

To get this result �rst we notice that the Hamiltonian (1.56) reads:

H(x, u, λ) =
1

2

(
xT (t)Qx(t) + uT (t)Ru(t)

)
+ λT (t) (Ax(t) + Bu(t)) (3.10)

The necessary condition for optimality (1.71) yields:

∂H

∂u
= Ru(t) + BTλ(t) = 0 (3.11)

Taking into account that R is a symmetric matrix, we get:

u(t) = −R−1BTλ(t) (3.12)

Eliminating u(t) in equation (3.1) reads:

ẋ(t) = Ax(t)−BR−1BTλ(t) (3.13)

The dynamics of Lagrange multipliers λ(t) is given by (1.62):

λ̇(t) = −∂H
∂x

= −Qx(t)−ATλ(t) (3.14)

The key point in the LQR design is that Lagrange multipliers λ(t) are now
assume to linearly depends on state vector x(t) through a constant symmetric
positive de�nite matrix denoted P:

λ(t) = Px(t) where P = PT ≥ 0 (3.15)

By taking the time derivative of the Lagrange multipliers λ(t) and using
again equation (3.1) we get:

λ̇(t) = Pẋ(t) = P (Ax(t) + Bu(t)) = PAx(t) + PBu(t) (3.16)

Then using the expression of control u(t) provided in (3.12) as well as (3.15)
we get:

λ̇(t) = PAx(t)−PBR−1BTλ(t)
= PAx(t)−PBR−1BTPx(t)

(3.17)

Finally using (3.17) within (3.14) and using λ(t) = Px(t) (see (3.15)) we
get:

−PAx(t) + PBR−1BTPx(t) = Qx(t) + ATPx(t)
⇔
(
ATP + PA−PBR−1BTP + Q

)
x(t) = 0

(3.18)

As far as this equality stands for every value of the state vector x(t) we
retrieve the algebraic Riccati equation (3.7):

ATP + PA−PBR−1BTP + Q = 0 (3.19)
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3.4 Extension to nonlinear system a�ne in control

We consider the following in�nite horizon optimal control problem consisting
in �nding the control u that minimizes the following performance index where
q(x) is positive semi-de�nite:

J(u(t)) =
1

2

∫ ∞
0

(
q(x) + uTu

)
dt (3.20)

under the constraint that the system is nonlinear but a�ne in control:{
ẋ = f(x) + g(x)u

x(0) = x0
(3.21)

We assume that vector �eld f is such that f(x) = 0. Thus (xe := 0, ue := 0)
is an equilibrium point for the nonlinear system a�ne in control. Consequently
f(x) = F(x)x for some, possibly not unique, continuous function F : Rn →
Rn×n. The classical optimal control design methodology relies on the solution
of the Hamilton-Jacobi-Bellman (HJB) equation (1.66):

0 = minu(t)∈U

(
1

2

(
q(x) + uTu

)
+
∂J∗(x)

∂x

(
f(x) + g(x)u

))
(3.22)

Assuming no constraint, the minimum of the preceding Hamilton-Jacobi-
Bellman (HJB) equation with respect to u is attained for optimal control u∗(t)
de�ned by:

u∗(t) = −gT (x)

(
∂J∗(x)

∂x

)T
(3.23)

Then replacing u by u∗ = −gT (x)
(
∂J∗(x)
∂x

)T
, the Hamilton-Jacobi-Bellman

(HJB) equation reads:

0 = 1
2

(
q(x) +

(
∂J∗(x)
∂x

)
g(x)gT (x)

(
∂J∗(x)
∂x

)T)
+∂J∗(x)

∂x

(
f(x)− g(x)gT (x)

(
∂J∗(x)
∂x

)T) (3.24)

We �nally get:

1

2
q(x) +

∂J∗(x)

∂x
f(x)− 1

2

(
∂J∗(x)

∂x

)
g(x)gT (x)

(
∂J∗(x)

∂x

)T
= 0 (3.25)

In the linearized case the solution of the optimal control problem is a linear
static state feedback of the form u = −BT P̄, where P̄ is the symmetric positive
de�nite solution of the algebraic Riccati equation:

AT P̄ + P̄A− P̄BBT P̄ + Q = 0 (3.26)
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where: 
A =

∂f(x)

∂x

∣∣∣
x=0

B = g(0)

Q = 1
2

∂2q(x)

∂x2

∣∣∣
x=0

(3.27)

Following Sassano and Astol�1, there exists a matrix R = RT > 0, a neigh-
bourhood of the origin Ω ⊆ R2n and k̄ ≥ 0 such that for all k ≥ k̄ the function
V (x, ξ) is positive de�nite and satis�es the following partial di�erential inequal-
ity:

1

2
q(x) + Vx(x, ξ)f(x) + Vξ(x, ξ) ξ̇ −

1

2
Vx(x, ξ) g(x)gT (x)V T

x (x, ξ) ≤ 0 (3.28)

where: {
V (x, ξ) = P (ξ)x+ 1

2(x− ξ)TR(x− ξ)
ξ̇ = −k V T

ξ (x, ξ) ∀ (x, ξ) ∈ Ω
(3.29)

The C1 mapping P : Rn → R1×n, P (0) = 0T , is de�ned as follows:

1

2
q(x) + P (x)f(x)− 1

2
P (x)g(x)gT (x)P (x)T + σ(x) = 0 (3.30)

where σ(x) = xTΣ(x)x with Σ : Rn → Rn×n, Σ(0) = 0.
Furthermore P (x) is tangent at x = 0 to P̄:

∂P (x)T

∂x

∣∣∣∣
x=0

= P̄ (3.31)

Since P (x) is tangent at x = 0 to the solution P̄ of the algebraic Riccati
equation, the function P (x)x : Rn → R is locally quadratic around the origin
and moreover has a local minimum for x = 0.

Let Ψ(ξ) be Jacobian matrix of the mapping P (ξ) and Φ : Rn×Rn → Rn×n
a continuous matrix valued function such that:{

P (ξ) = ξTΨ(ξ)T

P (x)− P (ξ) = (x− ξ)TΦ(x, ξ)T
(3.32)

Then the approximate regional dynamic optimal control is found to be1:

u = −g(x)TV T
x (x, ξ)

= −g(x)T
(
P (ξ)T + R(x− ξ)

)
= −g(x)T

(
P (x)T + R(x− ξ)−

(
P (x)T − P (ξ)T

))
= −g(x)T

(
P (x)T +

(
R−Φ(x, ξ)

)
(x− ξ)

) (3.33)

where:
ξ̇ = −k V T

ξ (x, ξ) = −k
(
Ψ(ξ)Tx−R

(
x− ξ

))
(3.34)

Such control has been applied to internal combustion engine test benches2.

1Sassano M. and Astol� A, Dynamic approximate solutions of the HJ inequality and of the
HJB equation for input-a�ne nonlinear systems. IEEE Transactions on Automatic Control,
57(10):2490�2503, 2012.

2Passenbrunner T., Sassano M., del Re L., Optimal Control with Input Constraints applied
to Internal Combustion Engine Test Benches, 9th IFAC Symposium on Nonlinear Control
Systems, September 4-6, 2013. Toulouse, France
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3.5 Solution of the algebraic Riccati equation

3.5.1 Hamiltonian matrix based solution

It can be shown that if the pair (A,B) is stabilizable and the pair (A,N) is
detectable, with Q = NTN positive semi-de�nite and R positive de�nite, then
P is a the unique positive semi-de�nite (symmetric) solution of the algebraic
Riccati equation (ARE) (3.7).

Combining (3.13) and (3.14) into a single state equation yields:[
ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

] [
x(t)
λ(t)

]
= H

[
x(t)
λ(t)

]
(3.35)

We have seen that the following 2n×2n matrix H is called the Hamiltonian
matrix:

H =

[
A −BR−1BT

−Q −AT

]
(3.36)

It can be shown that the Hamiltonian matrix H has n eigenvalues in the open
left half plane and n eigenvalues in the open right half plane. The eigenvalues
are symmetric with respects to the imaginary axis: if λ is and eigenvalue of
H then −λ is also an eigenvalue of H. In addition H has no pure imaginary
eigenvalues.

Furthermore if the 2n × n matrix

[
X1

X2

]
has columns that comprise all the

eigenvectors associated with the n eigenvalues in the open left half plane then
X1 is invertible and the positive semi-de�nite solution of the algebraic Riccati
equation (ARE) is:

P = X2X
−1
1 (3.37)

Similarly the negative semi-de�nite solution of the algebraic Riccati equation
(ARE) is build thanks to the eigenvectors associated with the n eigenvalues in
the open right half plane (i.e. the unstable invariant subspace). Once again the
solution of the optimal control problem only retains the positive semi-de�nite
solution of the algebraic Riccati equation.

In addition it can be shown that the eigenvalues of A − BK where K =
R−1BTP (that are the eigenvalues of the closed loop plant) are equal to the n
eigenvalues in the open left half plane of the Hamiltonian matrix H.

3.5.2 Proof of the results on the the Hamiltonian matrix

To proof that H has n eigenvalues in the open left half plane and n eigenvalues
in the open right half plane which are symmetric with respects to the imaginary
axis we de�ne:

J =

[
0 I
−I 0

]
(3.38)

Matrix J as the following properties:

JJT =

[
I 0
0 I

]
and JTJT = −

[
I 0
0 I

]
(3.39)
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In addition, as far as matrices S and Q within Hamiltonian matrix H are
symmetric matrices, it can be easily veri�ed that:

HJ = (HJ)T ⇒ JTHJ = JTJTHT = −HT (3.40)

Let λ be an eigenvalue of Hamiltonian matrix H associated with eigenvector
x. We get:

Hx = λx
⇒ HJJTx = λx
⇒ JTHJJTx = λJTx
⇔ −HTJTx = λJTx
⇔ HTJTx = −λJTx

(3.41)

Thus −λ is an eigenvalue of HT with the corresponding eigenvector JTx.
Using the fact that det(M) = det(MT ) we get:

det(−λI−HT ) = det
(
(−λI−H)T

)
(3.42)

As a consequence we conclude that −λ is also an eigenvalue of H.
To show that H has no imaginary eigenvalues suppose:

H

[
x1

x2

]
=

[
A −BR−1BT

−Q −AT

] [
x1

x2

]
= λ

[
x1

x2

]
(3.43)

Where x1 and x2 are not both zero and

λ+ λ∗ = 0 (3.44)

where λ∗ stands for the complex conjugate of λ. We seek a contradiction.
Let's denote by x∗ the transpose conjugate of vector x.

− Equation (3.43) gives:

Ax1 −BR−1BTx2 = λx1 ⇒ x∗2BR−1BTx2 = x∗2Ax1 − λx∗2x1 (3.45)

− Taking into account that Q is a real symmetric matrix, equation (3.43)
also gives:

−Qx1 −ATx2 = λx2 ⇒ λxT2 = −xT1 Q− xT2 A⇒ λ∗x∗2 = −x∗1Q− x∗2A (3.46)

Denoting M = BR−1BT and taking into account (3.46) into (3.45) yields:{
x∗2BR−1BTx2 = x∗2Ax1 − λx∗2x1

x∗2A = −x∗1Q− λ∗x∗2
⇒ x∗2Mx2 = −x∗1Qx1 − λ∗x∗2x1 − λx∗2x1 = −x∗1Qx1 − (λ∗ + λ)x∗2x1

(3.47)

Using (3.44) we �nally get:

x∗2Mx2 = −x∗1 Qx1 (3.48)

Since R and Q are positive semi-de�nite matrices, and consequently also
M = BR−1BT , this implies: {

Mx2 = 0
Qx1 = 0

(3.49)
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Then using (3.45) we get:{
Ax1 = λx1

Qx1 = 0
⇒
[
A− λI

Q

]
x1 = 0 (3.50)

If x1 6= 0 then this contradicts observability of the pair (Q,A) by the Popov-
Belevitch-Hautus test. Similarly if x2 6= 0 then x∗2

[
M A + λ∗I

]
= 0 which

contradicts the observability of the pair (A,M).

3.5.3 Solving general algebraic Riccati and Lyapunov equations

The general algebraic Riccati equation reads as follows where all matrices are
square of dimension n× n:

AX + XB + C + XDX = 0 (3.51)

Matrices A, B, C and D are known whereas matrix X has to be determined.
The general algebraic Lyapunov equation is obtained as a special case of the

algebraic Riccati by setting D = 0.
The general algebraic Riccati equation can be solved3 by considering the

following 2n× 2n matrix H:

H =

[
B D
−C −A

]
(3.52)

Let the eigenvalues of matrix H be denoted λ1, i = 1, · · · , 2n, and the
corresponding eigenvectors be denoted vi. Furthermore let M be the 2n × 2n
matrix composed of all real eigenvectors of matrix H; for complex conjugate
eigenvectors, the corresponding columns of matrix M are changed into the real
and imaginary parts of such eigenvectors. Note that there are many ways to
form matrix M.

Then we can write the following relationship:

HM = MΛ =
[

M1 M2

] [ Λ1 0
0 Λ2

]
(3.53)

Matrix M1 contains the n �rst columns of M whereas matrix M2 contains
the n last columns of M.

Matrices Λ1 and Λ2 are diagonal matrices formed by the eigenvalues of H
as soon as there are distinct; for eigenvalues with multiplicity greater than 1,
the corresponding part in matrix Λ represents the Jordan form.

Thus we have: {
HM1 = M1Λ1

HM2 = M2Λ2
(3.54)

We will focus our attention on the �rst equation and split matrix M1 as
follows:

M1 =

[
M11

M12

]
(3.55)

3Optimal Control of Singularly Perturbed Linear Systems with Applications: High Accu-
racy Techniques, Z. Gajic and M. Lim, Marcel Dekker, New York, 2001
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Using the expression of H in (3.52), the relationship HM1 = M1Λ1 reads
as follows:

HM1 = M1Λ1 ⇒
{

BM11 + DM12 = M11Λ1

−CM11 −AM12 = M12Λ1
(3.56)

Assuming that matrix M11 is not singular, we can check that a solution X
of the general algebraic Riccati equation (3.51) reads:

X = M12M
−1
11 (3.57)

Indeed:
BM11 + DM12 = M11Λ1

CM11 + AM12 = −M12Λ1

X = M12M
−1
11

⇒ AX + XB + C + XDX = AM12M
−1
11 + M12M

−1
11 B + C

+M12M
−1
11 DM12M

−1
11

= (AM12 + CM11) M−1
11

+M12M
−1
11 (BM11 + DM12) M−1

11

= −M12Λ1M
−1
11 + M12M

−1
11 M11Λ1M

−1
11

= 0
(3.58)

It is worth noticing that each selection of eigenvectors within matrix M1

leads to a new solution of the general algebraic Riccati equation (3.51). Con-
sequently the solution to the general algebraic Riccati equation (3.51) is not
unique. The same statement holds for di�erent choice of matrix M2 and the
corresponding solution of (3.51) obtained from X = M21M

−1
22 .

3.6 Eigenvalues of full-state feedback control

Let's consider a linear plant controlled through a state feedback as follows:{
ẋ(t) = Ax(t) + Bu(t)
u(t) = −Kx(t) + r(t)

(3.59)

The dynamics of the closed loop system reads:

ẋ(t) = (A−BK)x(t) + Br(t) (3.60)

We will assume the following equation between the state x(t) and the con-
trolled output z(t):

z(t) = Nx(t) (3.61)

Let Φ(s) be the matrix de�ned by:

Φ(s) = (sI−A)−1 (3.62)
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Figure 3.1: Full-state feedback control

In order to compute the closed loop transfer matrix between Z(s) and R(s)
we will �rst compute X(s) as a function of R(s). When we take the Laplace
transform of (3.59) and assuming no initial condition we have:

sX(s) = AX(s) + B(−KX(s) +R(s))
⇒ X(s)(sI−A + BK) = BR(s)
⇒ X(s) = (sI−A + BK)−1BR(s)

(3.63)

And thus:

Z(s) = NX(s) = N(sI−A + BK)−1BR(s) (3.64)

The block diagram of the state feedback control is shown in Figure 3.59. We
get:

X(s) = Φ(s)B(R(s)−KX(s))
= (I + Φ(s)BK)−1Φ(s)BR(s)

(3.65)

Using the fact that (AB)−1 = B−1A−1 we get:

X(s) = (Φ−1(s)(I + Φ(s)BK))−1BR(s)
= (Φ−1(s) + BK)−1BR(s)
= (sI−A + BK)−1BR(s)

(3.66)

Thus, using the equation Z(s) = NX(s) we get the same result than (3.64).
The open loop characteristic polynomial is given by:

det (sI−A) = det(Φ−1(s)) (3.67)

Whereas the closed loop characteristic polynomial is given by:

det(sI−A + BK) (3.68)

We recall the Schur's formula:

det

[
A11 A12

A21 A22

]
= det(A22) det(A11 −A12A

−1
22 A21)

= det(A11) det(A22 −A21A
−1
11 A12)

(3.69)
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Setting A11 = Φ−1(s), A21 = −K, A12 = B and A22 = I we get:

det (sI−A + BK) = det(Φ−1(s) + BK)

= det

[
Φ−1(s) B
−K I

]
= det(A11) det(A22 −A21A

−1
11 A12)

= det(Φ−1(s)) det(I + KΦ(s)B)
= det (sI−A) det (I + KΦ(s)B)

(3.70)

It is worth noticing that the same result can be obtained by using the fol-
lowing properties of determinant: det(I + M1M2M3) = det(I + M3M1M2) =
det(I + M2M3M1) and det(M1M2) = det(M2M1) . Indeed:

det (sI−A + BK) = det
(

(sI−A)
(
I + (sI−A)−1 BK

))
= det ((sI−A) (I + Φ(s)BK))
= det (sI−A) det (I + Φ(s)BK)
= det (sI−A) det (I + KΦ(s)B)

(3.71)

The roots of det(sI−A+BK) are the eigenvalues of the closed loop system.
Consequently they are related to the stability of the closed loop system.

Moreover the roots of det(I+KΦ(s)B) are exactly the roots of det(sI−A+
BK). Indeed as far as Φ(s) = (sI−A)−1 the inverse of (sI−A) is computed as
the adjugate of matrix (sI−A) divided by det (sI−A) which �nally simpli�es
with the denominator of det(I + KΦ(s)B)

det(I + KΦ(s)B) = det
(
I + K (sI−A)−1 B

)
= det

(
I + KAdj(sI−A)

det(sI−A) B
)

= det
(

det(sI−A)I+K Adj(sI−A)B
det(sI−A)

)
= det(det(sI−A)I+K Adj(sI−A)B)

det(sI−A)

⇒ det (sI−A + BK) = det (det (sI−A) I + K Adj (sI−A) B)

(3.72)

Thus:

det(I + KΦ(s)B) = 0⇔ det (sI−A + BK) = 0 (3.73)

3.7 Generalized (MIMO) Nyquist stability criterion

Let's recall the generalized (MIMO) Nyquist stability criterion which will be
applied in the next section to the LQR design through Kalman equality.

We remind that the Nyquist plot of det(I+KΦ(s)B) is the image of det(I+
KΦ(s)B) as s goes clockwise around the Nyquist contour: this includes the
entire imaginary axis (s = jω) and an in�nite semi-circle around the right half
plane as shown in Figure 3.2.

The generalized (MIMO) Nyquist stability criterion states that the number
of unstable closed-loop poles (that are the roots of det(sI−A+BK)) is equal to
the number of unstable open-loop poles (that are the roots of det (sI−A)) plus
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Figure 3.2: Nyquist contour

the number of encirclements of the critical point (0, 0) by the Nyquist plot of
det(I+KΦ(s)B); the encirclement is counted positive in the clockwise direction
and negative otherwise.

An easy way to determine the number of encirclements of the critical point
is to draw a line out from the critical point, in any directions. Then by counting
the number of times that the Nyquist plot crosses the line in the clockwise
direction (i.e. left to right) and by subtracting the number of times it crosses
in the counterclockwise direction then the number of clockwise encirclements
of the critical point is obtained. A negative number indicates counterclockwise
encirclements.

It is worth noticing that for Single-Input Single-Output (SISO) systems K
is a row vector whereas B is a column vector. Consequently KΦ(s)B is a scalar
and we have:

det(I + KΦ(s)B) = det(1 + KΦ(s)B) = 1 + KΦ(s)B (3.74)

Thus for Single-Input Single-Output (SISO) systems the number of encir-
clements of the critical point (0, 0) by the Nyquist plot of det(I + KΦ(s)B) is
equivalent to the number of encirclements of the critical point (−1, 0) by the
Nyquist plot of KΦ(s)B.

In the context of output feedback the control u(t) = −Kx(t) is replaced
by u(t) = −Ky(t) where y(t) is the output of the plant: y(t) = Cx(t). As a
consequence the control u(t) reads u(t) = −KCx(t) and state feedback gain K
is replaced by output feedback gain KC in equation (3.70):

det(sI−A + BKC) = det (sI−A) det(I + KCΦ(s)B) (3.75)

This equation involves the transfer function CΦ(s)B between the output
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Y (s) and the control U(s) of the plant without any feedback and is used in the
Nyquist stability criterion for Single-Input Single-Output (SISO) systems.

It is also worth noticing that (I + KCΦ(s)B)−1 is attached to the so called
sensitivity function of the closed loop whereas CΦ(s)B is attached to the open
loop transfer function from the process' input U(s) to the plant output Y (s).

3.8 Kalman equality

Kalman equality reads as follows:

(I + KΦ(−s)B)T R (I + KΦ(s)B) = R + (Φ(−s)B)T Q (Φ(s)B) (3.76)

The proof of the Kalman equality is provided hereafter. Consider the alge-
braic Riccati equation (3.7):

PA + ATP−PBR−1BTP + Q = 0 (3.77)

Because K = R−1BTP, P = PT and R = RT , the previous equation can
be re-written as:

P (sI−A)− (−sI−A)TP + KTRK = Q (3.78)

Using the fact that Φ(s) = (sI−A)−1 we get:

PΦ−1(s) +
(
Φ−1(−s)

)T
P + KTRK = Q (3.79)

Left multiplying by BTΦT (−s) and right multiplying by Φ(s)B yields:

BTΦT (−s)PB + BTPΦ(s)B + BTΦT (−s)KTRKΦ(s)B =

BTΦT (−s)QΦ(s)B (3.80)

Adding R to both sides of equation (3.80) as using the fact that RK = BTP
we get:

R + BTΦT (−s)KTR + RKΦ(s)B + BTΦT (−s)KTRKΦ(s)B =

R + BTΦT (−s)QΦ(s)B (3.81)

The previous equation can be re-written as:

(I + KΦ(−s)B)T R (I + KΦ(s)B) = R + (Φ(−s)B)T Q (Φ(s)B) (3.82)

This complete the proof.

3.9 Robustness of Linear Quadratic Regulator

The robustness of the LQR design can be assessed through the Kalman equality
(3.76).
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We will specialize Kalman equality to the speci�c case where the plant is a
Single Input - Single Output (SISO) system. Then KΦ(s)B and R are scalars.
Setting Q = NTN, Kalman equality (3.76) reduces to:

Q = NTN

⇒ (1 + KΦ(−s)B)T (1 + KΦ(s)B) = 1 + 1
R (NΦ(−s)B)T (NΦ(s)B)

(3.83)

Substituting s = jω yields:

‖1 + KΦ(jω)B‖2 = 1 +
1

R
‖NΦ(jω)B‖2 (3.84)

Therefore:

‖1 + KΦ(jω)B‖ ≥ 1 (3.85)

Let's introduce the real partX(ω) and the imaginary part Y (ω) of KΦ(jω)B:

KΦ(jω)B = X(ω) + jY (ω) (3.86)

Then ‖1 + KΦ(jω)B‖2 reads as follows:

‖1 + KΦ(jω)B‖2 = ‖1 +X(ω) + jY (ω)‖2 = (1 +X(ω))2 + Y (ω)2 (3.87)

Consequently inequality (3.85) reads as follows:

‖1 + KΦ(jω)B‖ ≥ 1
⇔ ‖1 + KΦ(jω)B‖2 ≥ 1

⇔ (1 +X(ω))2 + Y (ω)2 ≥ 1

(3.88)

As a consequence, the Nyquist plot of KΦ(jω)B will be outside the circle of
unit radius centered at (−1, 0). Thus applying the generalized (MIMO) Nyquist
stability criterion and knowing that the LQR design always leads to a stable
closed loop plant, the implications of Kalman inequality are the following:

− If the open-loop system has no unstable pole, then the Nyquist plot of
KΦ(jω)B does not encircle the critical point (−1, 0). This corresponds
to a positive gain margin of +∞ as depicted as depicted in Figure 3.3.

− On the other hand if Φ(s) has unstable poles, the Nyquist plot of KΦ(jω)B
encircles the critical point (−1, 0) a number on times which corresponds
to the number of unstable open loop poles. This corresponds to a negative
gain margin which is always lower or equal to 20 log10(0.5) = −6 dB as
depicted in Figure 3.4.

− In both situations, if the process' phase increases by 60 degrees its Nyquist
plots rotates by 60 degrees but the number of encirclements still does not
change. Thus the LQR design always leads to a phase margin which is
always greater or equal to 60 degrees.
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Figure 3.3: Nyquist plot of KΦ(s)B: example where the open-loop system has
no unstable pole

Figure 3.4: Nyquist plot of KΦ(s)B: example where the open-loop system has
unstable poles
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Last but not least, it can be seen in Figure 3.3 and Figure 3.4 that at high-
frequency the open-loop gain KΦ(jω)B can have at most −90 degrees phase
for high-frequencies and therefore the roll-o� rate is at most −20 dB/decade.

Unfortunately those nice properties are lost as soon as the performance index
J(u(t)) contains state / control cross terms 4:

J(u(t)) =
1

2

∫ tf

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Su(t) dt (3.89)

This is especially the case for LQG (Linear Quadratic Gaussian) regulator
where the plant dynamics as well as the output measurement are subject to
stochastic disturbances and where a state estimator has to be used.

3.10 Discrete time LQ regulator

3.10.1 Finite horizon LQ regulator

There is an equivalent theory for discrete time systems. Indeed, for the system:{
x(k + 1) = Ax(k) + Bu(k)
x(0) = x0

(3.90)

with an equivalent performance criteria:

J(u(k)) =
1

2
xT (N)Sx(N) +

1

2

N−1∑
k=0

xT (k)Qx(k) + uT (k)Ru(k) (3.91)

Where Q ≥ 0 is a constant positive semi-de�nite matrix and R > 0 a
constant positive de�nite matrix. The optimal control is given by:

u(k) = −K(k)x(k) (3.92)

Where:
K(k) =

(
R + BTP(k + 1)B

)−1
BTP(k + 1)A (3.93)

And P(k) is given by the solution of the discrete time Riccati equation:{
P(k) = ATP(k + 1)A + Q−ATP(k + 1)B

(
R + BTP(k + 1)B

)−1
BTP(k + 1)A

P(N) = S
(3.94)

3.10.2 Finite horizon LQ regulator with zero terminal state

We consider the following performance criteria to be minimized:

J(u(k)) =
1

2

N−1∑
k=0

xT (k)Qx(k) + uT (k)Ru(k) + 2xT (k)Su(k) (3.95)

4Doyle J.C., Guaranteed margins for LQG regulators, IEEE Transactions on Automatic
Control, Volume: 23, Issue: 4, Aug 1978
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With the constraint on terminal state:

x(N) = 0 (3.96)

We will assume that matrices R > 0 and Q− SR−1ST ≥ 0 are symmetric.
Ntogramatzidis1 has shown the results presented hereafter: denote by P1 and
P2 the positive semi-de�nite solutions of the following continuous time algebraic
Riccati equations:

0 = P1 +
(
ATP1B + S

) (
R + BTP1B

)−1 (
BTP1A + ST

)
−ATP1A−Q

0 = P2 +
(
AT
b P2Bb + Sb

) (
Rb + BT

b P2Bb

)−1 (
BT
b P2Ab + STb

)
−AT

b P2Ab −Qb

(3.97)

Where:
Ab = A−1

Bb = −A−1B
Qb = A−TQA−1

Rb = R− STA−1B−BTA−TS + BTA−TQA−1B
Sb = A−TS−A−TQA−1B

(3.98)

We will denote by K1 and K2 the following in�nite horizon gain matrices:{
K1 =

(
R + BTP1B

)−1 (
BTP1A + ST

)
K2 =

(
Rb + BT

b P2Bb

)−1 (
BT
b P2Ab + STb

) (3.99)

Then the optimal control is:

u(k) =

{
−K(k)x(k) ∀ 0 ≤ k < N
0 for k = N

(3.100)

Where:{
K(k) =

(
R + BTP(k + 1)B

)−1 (
BTP(k + 1)A + ST

)
P(k) = X2(k)X−1

1 (k)
(3.101)

And:{
X1(k) = (A−BK1)k − (Ab −BbK2)(k−N) (A−BK1)N

X2(k) = P1 (A−BK1)k + P2 (Ab −BbK2)(k−N) (A−BK1)N
(3.102)

Matrix P(k) satisfy the following Riccati di�erence equation:

P(k) +
(
ATP(k + 1)B + S

) (
R + BTP(k + 1)B

)−1 (
BTP(k + 1)A + ST

)
−ATP(k + 1)A−Q = 0 (3.103)

Furthermore the optimal state x(k) and costate λ(k) have the following
expressions:{

x(k + 1) = (A−BK1) e1(k)− (Ab −BbK2) e2(k)
λ(k + 1) = P1 (A−BK1) e1(k) + P2 (Ab −BbK2) e2(k)

(3.104)

Where:{
e1(k) = (A−BK1)k X−1

1 (0)x0

e2(k) = (Ab −BbK2)(k−N) (A−BK1)N X−1
1 (0)x0

(3.105)
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3.10.3 In�nite horizon LQ regulator

For the in�nite horizon problem N →∞. We will assume that the performance
criteria to be minimized is:

J(u(k)) =
1

2

∞∑
k=0

xT (k)Qx(k) + uT (k)Ru(k) (3.106)

Then matrix P satis�es the following discrete time algebraic Riccati equa-
tion:

P + ATPB
(
R + BTPB

)−1
BTPA−ATPA−Q = 0 (3.107)

And the discrete time control u(k) is given by:

u(k) = −Kx(k) (3.108)

Where:

K =
(
R + BTPB

)−1
BTPA (3.109)

If (A,B) is stabilizable, then the closed loop system is stable, meaning that
all the eigenvalues of (A−BK), with K given by (3.109), will lie within the unit
disk (i.e. have magnitudes less than 1). Let's de�ne the following symplectic
matrix5:

H =

[
A−1 A−1G

QA−1 AT + QA−1G

]
(3.110)

Where:

G = BR−1BT (3.111)

A symplectic matrix is a matrix which satis�es:

HTJH = J where J =

[
0 I
−I 0

]
and J−1 = −J (3.112)

This implies:

HTJ = JH−1 ⇔ J−1HTJ = H−1

⇒ H−1 =

[
A + GA−TQ −GA−T

−A−TQ A−T

]
(3.113)

Where A−T = (A−1)T . Under detectability and stabilizability assumptions,
it can be shown that the eigenvalues of the closed loop plant (that are the eigen-
values of A − BK) are equal to the n eigenvalues inside the unit circle of the
Hamiltonian matrix H. The optimal control stabilizes the plant. Furthermore

if the 2n × n matrix

[
X1

X2

]
has columns that comprise all the eigenvectors as-

sociated with the n eigenvalues of the Hamiltonian matrix H outside the unit

5Alan J. Laub, A Schur Method for Solving Algebraic Riccati equations, IEEE Transac-
tions On Automatic Control, VOL. AC-24, NO. 6, December 1979
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circle (unstable eigenvalues) then X1 is invertible and the positive semi-de�nite
solution of the algebraic Riccati equation (ARE) is:

P = X2X
−1
1 (3.114)

Thus matrix P for the optimal steady state feedback can be computed thanks
to the unstable (eigenvalues outside the unit circle) eigenvectors of H or the
stable (eigenvalues inside the unit circle) eigenvectors of H−1.



Chapter 4

Design methods

4.1 Characteristics polynomials

Let's consider the following state space realization (A,B,N):{
ẋ(t) = Ax(t) + Bu(t)
z(t) = Nx(t)

(4.1)

We will assume that (A,B,N) is minimal, or equivalently that (A,B) is
controllable and (A,N) is observable, or equivalently that the following loop
gain (or open loop) transfer function is irreducible:

G(s) = N (sI−A)−1 B =
N Adj (sI−A) B

det (sI−A)
=
N(s)

D(s)
(4.2)

The polynomial D(s) = det (sI−A) is the loop gain characteristics poly-
nomial, which is assumed to be of degree n, and polynomial matrix N(s) is
the numerator of N (sI−A)−1 B. From the fact that the numerator of G(s)
involves Adj (sI−A) it is clear that the degree of its numerator N(s), which
will be denoted m, is strictly lower than the degree of its denominator D(s),
which will be denoted n:

deg(N(s)) = m < deg(D(s)) = n (4.3)

It can be shown that for single-input single-ouput (SISO) systems we have
the following relationship where N(s) is the polynomial (not matrix) numerator
of the transfer function:

G(s) = N (sI−A)−1 B =

det

([
sI−A −B

N 0

])
det (sI−A)

=
N(s)

D(s)
(4.4)

Now let's assume that the system is closed thanks to the following output
(not state !) feedback control u(t):

u(t) = −kpKoz(t) +Hr(t) (4.5)

Where:
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− kp is a scaling factor

− Ko is the output (not state !) feedback matrix gain

− H is the feedforward matrix gain

Then the state matrix of the closed loop system reads A − kpBKoN and the
polynomial det (sI−A + kpBKoN) is the closed loop characteristics polyno-
mial.

4.2 Root Locus technique reminder

The root locus technique1 has been developed in 1948 by Walter R. Evans (1920-
1999). This is a graphical method for sketching in the s-plane the locus of roots
of the following polynomial when parameter kp varies to 0 to in�nity:

det (sI−A + kpBKoN) = D(s) + kpN(s) (4.6)

Usually polynomial D(s) + kpN(s) represents the denominator of a closed
loop transfer function. Polynomial D(s) + kpN(s) represents here the denomi-
nator of the closed loop transfer function when control u(t) reads:

u(t) = −kpKoy(t) +Hr(t) (4.7)

Usually polynomial D(s) + kpN(s) represents the denominator of a closed
loop transfer function.

It is worth noticing that the roots of D(s) + kpN(s) are also the roots of

1 + kp
N(s)
D(s) :

D(s) + kpN(s) = 0⇔ 1 + kp
N(s)

D(s)
= 0⇔ G(s) = −1 (4.8)

Without loss of generality let's de�ne transfer function F (s) as follows:

F (s) =
N(s)

D(s)
= a

∏m
j=1(s− zj)∏n
i=1(s− pi)

(4.9)

Transfer function G(s) = kpF (s) is called the loop transfer function. In the
SISO case the numerator of the loop transfer function G(s) is scalar as well as
its denominator.

Equation G(s) = −1 can be equivalently split into two equations:{
|G(s)| = 1
arg (G(s)) = (2k + 1)π, k = 0,±1, · · · (4.10)

The magnitude condition can always be satis�ed by a suitable choice of kp.
On the other hand the phase condition does not depend on the value of kp but
only on the sign of kp. Thus we have to �nd all the points in the s-plane that
satisfy the phase condition. When scalar gain kp varies from zero to in�nity (i.e.
kp is positive), the root locus technique is based on the the following rules:

1Walter R. Evans , Graphical Analysis of Control Systems, Transactions of the American
Institute of Electrical Engineers, vol. 67, pp. 547 - 551, 1948
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− The root locus is symmetrical with respect to the horizontal real axis
(because roots are either real or complex conjugate);

− The number of branches is equal to the number of poles of the loop transfer
function. Thus the root locus has n branches;

− The root locus starts at the n poles of the loop transfer function;

− The root locus ends at the zeros of the loop transfer function. Thus m
branches of the root locus end on them zeros of F (s) and there are (n−m)
asymptotic branches;

− Assuming that coe�cient a in F (s) is positive, a point s∗ on the real
axis belongs to the root locus as soon as there is an odd number of poles
and zeros on its right. Conversely assuming that coe�cient a in F (s) is
negative, a point s∗ on the real axis belongs to the root locus as soon as
there is an even number of poles and zeros on its right. Be careful to take
into account the multiplicity of poles and zeros in the counting process;

− The (n −m) asymptotic branches of the root locus which diverge to ∞
are asymptotes.

� The angle δk of each asymptote with the real axis is de�ned by:

δk =
π + arg(a) + 2kπ

n−m
∀ k = 0, · · · , n−m− 1 (4.11)

� Denoting by pi the n poles of the loop transfer function (that are the
roots of D(s)) and by zj the m zeros of the loop transfer function
(that are the roots of N(s)), the asymptotes intersect the real axis
at a point (called pivot or centroid) given by:

σ =

∑n
i=1 pi −

∑m
j=1 zj

n−m
(4.12)

− The breakaway / break-in points are located at the roots sb of the following
equation as soon as there is an odd (if coe�cient a in F (s) is positive) or
even (if coe�cient a in F (s) is negative) number of poles and zeros on its
right (Be careful to take into account the multiplicity of poles and zeros
in the counting process):

d
ds

(
1

F (s)

)
s=sb

= 0⇔ d
ds

(
D(s)
N(s)

)
s=sb

= 0

⇔ D′(sb)N(sb)−D(sb)N
′(sb) = 0

(4.13)

4.3 Symmetric Root Locus

4.3.1 Chang-Letov design procedure

In this section we focus on single-input single-output (SISO) plants represented
by its transfer function (4.2) for which we study the problem of minimizing the
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following performance index:

J(u(t)) =
1

2

∫ ∞
0

(
zT (t)z(t) + Ru2(t)

)
dt where R > 0 (4.14)

Let z(t) be the controlled output: this is a �ctitious output which represents
the output of interest for the design. We will assume that the output z(t) can
be expressed as a linear function of the state vector x(t) as z(t) = Nx(t). Then
the cost to be minimized reads:{

J(u(t)) = 1
2

∫∞
0

(
zT (t)z(t) + Ru2(t)

)
dt

z(t) = Nx(t)
⇒ J(u(t)) = 1

2

∫∞
0

(
xT (t)NTNx(t) + Ru2(t)

)
dt

(4.15)

This cost is similar to cost de�ned in (3.2):

J(u(t)) =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (4.16)

Where:
Q = NTN (4.17)

We recall that the cost to minimize is constrained by the dynamics of the
system with the following state space representation:{

ẋ(t) = Ax(t) + Bu(t)
z(t) = Nx(t)

(4.18)

From this state space representation we obtain the following open loop trans-
fer function which is written as the ratio between a numerator N(s) and a
denominator D(s):

N (sI−A)−1 B =
N(s)

D(s)
(4.19)

The purpose of this section is to have some insight on how to drive the
modes of the closed loop plant thanks to the LQR design. We recall that the
cost (4.14) is minimized by choosing the following control law, where P is the
solution of the algebraic Riccati equation:{

u(t) = −Kx(t)
K = R−1BTP

(4.20)

This leads the classical structure of full-state feedback control with is repre-
sented in Figure 4.1 where Φ(s) = (sI−A)−1.

Let D(s) be the open loop gain characteristics polynomial and β(s) be the
closed loop characteristic polynomial:{

D(s) = det (sI−A)
β(s) = det (sI−A + BK)

(4.21)

In the single control case which is under consideration, it can be shown (see
section 4.3.2) that the characteristic polynomial of the closed loop system is
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Figure 4.1: Full-state feedback control

linked with the numerator and the denominator of the loop transfer function as
follows:

β(s)β(−s) = D(s)D(−s) +
1

R
N(s)N(−s) (4.22)

This relationship can be associated with the root locus of G(s)G(−s) =
N(s)N(−s)
D(s)D(−s) where �ctitious gain kp = 1

R varies from 0 to ∞. This leads to the
so-called Chang-Letov design procedure, which enables to �nd the closed loop
poles based on the open loop poles and zeros of G(s)G(−s). The di�erence
with the root locus of G(s) is that both the open loop poles and zeros and their
re�ections about the imaginary axis have to be taken into account (this is due to
the multiplication by G(−s)). The actual closed loop poles are those located in
the left half plane with negative real part; indeed optimal control leads always
to a stabilizing gain. It is worth noticing that matrix N is actually a design
parameter which is used to shape the root locus.

4.3.2 Proof of the symmetric root locus result

The proof of (4.22) can be done as follows: taking the determinant of the
Kalman equality (3.76) and having in mind that det(MT ) = det(M) and that
for SISO systems R is scalar yields:

det
(

(I + KΦ(−s)B)T R (I + KΦ(s)B)
)

= det
(
R + (Φ(−s)B)T Q (Φ(s)B)

)
⇔ det

(
(I + KΦ(−s)B)T (I + KΦ(s)B)

)
= det

(
I + (Φ(−s)B)TQ(Φ(s)B)

R

)
⇔ det

(
(I + KΦ(−s)B)T

)
det (I + KΦ(s)B) = det

(
I + (Φ(−s)B)TQ(Φ(s)B)

R

)
⇔ det (I + KΦ(−s)B) det (I + KΦ(s)B) = det

(
I + (Φ(−s)B)TQ(Φ(s)B)

R

)
(4.23)

Where:

Φ(s) = (sI−A)−1 =
Adj (sI−A)

det (sI−A)
(4.24)

Furthermore, it has been seen in (3.70) that thanks to the Schur's formula
we have:

det (I + KΦ(s)B) =
det (sI−A + BK)

det (sI−A)
(4.25)
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Let D(s) be the open loop gain characteristics polynomial and β(s) be the
closed loop characteristic polynomial:{

D(s) = det (sI−A)
β(s) = det (sI−A + BK)

(4.26)

As a consequence, using (4.25) in the left part of (4.23) yields:

β(s)β(−s)
D(s)D(−s)

= det

(
I +

(Φ(−s)B)T Q (Φ(s)B)

R

)
(4.27)

In the single control case R and I are scalars (I = 1). Using Q = NTN
(4.27) becomes:

β(s)β(−s)
D(s)D(−s) = det

(
1 + (NΦ(−s)B)T (NΦ(s)B)

R

)
= 1 + (NΦ(−s)B)T (NΦ(s)B)

R

(4.28)

We recognize in NΦ(s)B = N (sI−A)−1 B the open loop transfer function
G(s) which is the ratio between numerator polynomial N(s) and denominator
polynomial D(s) :

G(s) = NΦ(s)B = N (sI−A)−1 B =
N(s)

D(s)
(4.29)

Using (4.29) in (4.28) yields:

β(s)β(−s)
D(s)D(−s) = 1 + 1

R
N(s)N(−s)
D(s)D(−s)

⇔ β(s)β(−s) = D(s)D(−s) + 1
RN(s)N(−s)

(4.30)

This complete the proof.

4.4 Asymptotic properties

We will see that Kalman equality allows for loop shaping through LQR design.
Lectures from professor Faryar Jabbari (Henry Samueli School of Engineering,
University of California) and professor Perry Y. Li (University of Minnesota)
are the primary sources of this section.

We recall that Φ(s) = (sI−A)−1 where dim(A) = n × n and that Q =
NTN. For simplicity, we make in this section the following assumptions:

R = ρ2 I (4.31)

4.4.1 Closed loop poles location

Using (4.31) relationship (4.22) reads:

β(s)β(−s) = D(s)D(−s) +
1

ρ2
N(s)N(−s) (4.32)

From (4.32) we can get the following results:
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− When ρ is large, i.e. 1/ρ is small so that the control energy is weighted
very heavily in the performance index, the zeros of β(s), that are the
closed loop poles, approach the stable open loop poles or the negative of
the unstable open loop poles:

β(s)β(−s) ≈ D(s)D(−s) as ρ→∞ (4.33)

− When ρ is small (i.e. ρ → 0) then 1/ρ is large and the control is cheap.
Then the zeros of β(s), that are the closed loop poles, approach the stable
open loop zeros or the negative of the non-minimum phase open loop zeros:

β(s)β(−s) ≈ 1

ρ2
N(s)N(−s) as ρ→ 0 (4.34)

Equation (4.34) shows that any roots of β(s)β(−s) that remains �nite as
ρ→ 0 must tend toward the zeros of N(s)N(−s). But from (4.3) we know that
the degree of N(s)N(−s), say 2m, is less than the degree of β(s)β(−s), which
is 2n. Therefore m roots of β(s) are the roots of N(s)N(−s) in the open left
half plane (stable roots). The remaining n − m roots of β(s) asymptotically
approach in�nity in the left half plane. For very large s we can ignore all but
the highest power of s in (4.32) so that the magnitude (or modulus) of the roots
that tend toward in�nity shall satisfy the following approximate relation:

(−1)ns2n ≈ b2m
ρ2

(−1)ms2m (4.35)

Where we denote:{
β(s) = det (sI−A + BK) = sn + βn−1 s

n−1 + · · ·+ β1 s+ β0

N(s) = bm s
m + bm−1 s

m−1 + · · ·+ b1 s+ b0
(4.36)

The roots of β(−s) are the re�ection across the imaginary of the roots of
β(s). Now express s in the exponential form:

s = r ejθ (4.37)

We get from (4.35):

(−1)nr2nej2nθ ≈ b2m
ρ2

(−1)mr2mej2mθ ⇒ r2(n−m) ≈ b2m
ρ2

(4.38)

Therefore, the remaining n−m zeros of β(s) lie on a circle of radius r de�ned
by:

r ≈
(
bm
ρ

) 1
n−m

(4.39)

The particular pattern to which the 2(n−m) solutions of (4.39) lie is known
as the Butterworth con�guration. The angle of the 2(n − m) branches which
diverge to ∞ are obtained by adapting relationship (4.11) to the case where

transfer function reads G(s)G(−s) = N(s)N(−s)
D(s)D(−s) .
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4.4.2 Shape of the magnitude of the open-loop gain KΦ(s)B

For this particular choice of Q and R used in this section, Kalman equality
(3.76) becomes:

(I + KΦ(−s)B)T (I + KΦ(s)B) = I + 1
ρ2

(Φ(−s)B)T NTN (Φ(s)B)

= I + 1
ρ2

(NΦ(−s)B)T (N (Φ(s)B))

(4.40)

Denoting by λ(X(s)) the eigenvalues of matrix X(s) and by σ(X(s)) its
singular values (that are the strictly positive eigenvalues of either XT (s)X(s)
or X(s)XT (s)), the preceding equality implies:

λ
(

(I + KΦ(−s)B)T (I + KΦ(s)B)
)

= 1 + 1
ρ2
λ
(

(NΦ(−s)B)T (N (Φ(s)B))
)

⇔ σ (I + KΦ(s)B) =
√

1 + 1
ρ2
σ2 (NΦ(s)B)

(4.41)

For the range of frequencies for which σ (NΦ(jω)B) � 1 (typically low
frequencies) equation (4.41) shows that:

σ (KΦ(s)B) ≈ 1

ρ
σ (NΦ(s)B) (4.42)

For SISO system matrices N and K have the same dimension. Denoting by
|K| the absolute value of each element of K we get from the previous equation :

σ |KΦ(s)B) ≈ 1

ρ
σ (NΦ(s)B)⇒ |K| ≈ |N|

ρ
where Q = NTN (4.43)

Assuming that z = Nx, then NΦ(s)B represents the transfer function from
the control signal u(t) to the controlled output z(t). As a consequence:

− The shape of the magnitude of the open-loop gain KΦ(s)B is determined
by the magnitude of the transfer function from the control input u(t) to
the controlled output z(t)

− Parameter ρ moves the magnitude Bode plot up and down

Note that although the magnitude of KΦ(s)B mimics the magnitude of
NΦ(s)B, the phase of the open-loop gain KΦ(s)B always leads to a stable
closed-loop with an appropriate phase margin. At high-frequency, it has been
seen in Figure 3.3 or Figure 3.4 that the open-loop gain KΦ(jω)B can have
at most −90 degrees phase for high-frequencies and therefore the roll-o� rate
is at most −20 dB/decade. In practice, this means that for ω � 1, and for
some constant a , we have the following approximation (remind that Φ(s) =

(sI−A)−1 = Adj(sI−A)
det(sI−A) so that the degree of the denominator of KΦ(s)B is n

and the degree of its numerator is at most n− 1):

|KΦ(jω)B| ≈ a

ωρ
where

a

ρ
= lim

s→∞
s |KΦ(s)B| ≈ lim

s→∞
s

1

ρ
|NΦ(s)B| (4.44)
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and therefore the cross-over frequency ωc is approximately given by:

|KΦ(jωc)B| = 1 ≈ a

ωcρ
⇒ ωc ≈

a

ρ
(4.45)

Thus:

− LQR controllers always exhibit a high-frequency magnitude decay of −20
dB/decade. The (slow) −20 dB/decade magnitude decrease is the main
shortcoming of state-feedback LQR controllers because it may not be suf-
�cient to clear high-frequency upper bounds on the open-loop gain needed
to reject disturbances and/or for robustness with respect to process un-
certainty.

− The cross-over frequency is proportional to 1/ρ and generally small values
for ρ result in faster step responses.

4.4.3 Weighting matrices selection

The preceding results motivates the following design rule extended to the
case of multiple input multiple output systems:

− Modal point of view: assuming that all states are available for control,
choose N (remind that Q = NTN⇒ Q1/2 = N) such that n− 1 zeros of
NΦ(s)B are at the desired pole location. Then use cheap control ρ → 0
(and set R to ρ2I) to design LQ system so that n− 1 poles of the closed
loop system approach these desired locations. It is worth noticing that for
SISO plants the zeros of NΦ(s)B are also the roots of:

det

([
sI−A −B

N 0

])
= 0 (4.46)

− Frequency point of view: alternatively we have seen that at low frequen-
cies |K| ≈ |N|

ρ so that the open loop gain is approximately |KΦ(s)B| ≈
1
ρ |NΦ(s)B|. So the shape of the magnitude of the open-loop gain KΦ(s)B
is determined by the magnitude of NΦ(s)B, that is the transfer func-
tion from the control input u(t) to the controlled output z(t). In ad-
dition, we have seen that at high frequency |NΦ(jω)B| ≈ a

ωρ , where
a = lims→∞ s|NΦ(s)B| is some constant. So we can choose ρ to pick the
bandwidth ωc which is where |KΦ(jω)B| = 1. Thus choose ρ ≈ a

ωc
where

ωc is the desired bandwidth.

Thus contrary to the Chang-Letov design procedure for Single-Input Single-
Output (SISO) systems where scalar R was the design parameter the following
design rules for Multi Input Multi Output (MIMO) systems use matrix Q as
the design parameter. We may also use the fact that if λi is a stable eigenvalue
(i.e. eigenvalue in the open left half plane) of the Hamiltonian matrix H =[

A −BR−1BT

−Q −AT

]
with eigenvector

[
X1i

X2i

]
then λi is also an eigenvalue of
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A − BK with eigenvector X1i. Therefore in the single input case we can use
this result by �nding the eigenvalues of H and then realizing that the stable
eigenvalues are the poles of the optimal closed loop plant.

Alternatively, a simpler choice for matrices Q and R is given by the Bryson's
rule who proposed to take Q and R as diagonal matrices such that:{

qii = 1
max. acceptable value of z2i

rjj = 1
max. acceptable value of u2j

(4.47)

Diagonal matrices Q and R are associated to the following performance
index where ρ is a free parameter to be set by the designer:

J(u(t)) =
1

2

∫ ∞
0

(∑
i

qii z
2
i (t) + ρ2

∑
i

rjj u
2
j (t)

)
dt (4.48)

If after simulation |zi(t)| is to large then increase qii ; similarly if after
simulation |uj(t)| is to large then increase rjj .

4.5 Poles shifting in optimal regulator

4.5.1 Mirror property

The purpose of this section is to determine the relationships between the weight-
ing matrix Q and the closed loop eigenvalues of the optimal regulator.

We recall the expression of the 2n× 2n Hamiltonian matrix H:

H =

[
A −BR−1BT

−Q −AT

]
(4.49)

which corresponds to the following algebraic Riccati equation:

ATP + PA−PBR−1BTP + Q = 0 (4.50)

The characteristic polynomial of matrix H in (4.49) is given by2:

det (sI−H) = det (sI−A) det (I−QS(s)) det
(
sI + AT

)
(4.51)

Where the term S(s) is de�ned by:

S(s) = (sI−A)−1 BR−1BT
(
sI + AT

)−1
(4.52)

Setting Q = QT = 2αP where α ≥ 0 is a design parameter then the algebraic
Riccati equation reads:

Q = QT = 2αP⇒ (A + αI)T P + P (A + αI)−PBR−1BTP = 0 (4.53)

2Y. Ochi and K. Kanai, Pole placement in optimal regulator by continuous pole-shifting,
Journal of Guidance Control and Dynamics, Vol. 18, No. 6 (1995), pp. 1253-1258
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which corresponds to the following Hamiltonian matrix H:

H =

[
A + αI −BR−1BT

0 − (A + αI)T
]

(4.54)

Let λi be the open loop eigenvalues, that are the eigenvalues of matrix A,
and λKi be the corresponding closed loop eigenvalues, that are the eigenvalues
of matrix A−BK. Denoting by Re(λKi) the real part of λKi it can be shown3

that the positive semi-de�nite real symmetric solution P of (4.53) is such that
the following mirror property holds:

Re(λKi) ≤ −α
Im(λKi) = Im(λi)

(α+ λi)
2 = (α+ λKi)

2
∀ i = 1, · · · , n (4.55)

Once the algebraic Riccati equation (4.53) is solved in P the classical LQR
design is applied: {

u(t) = −Kx(t)
K = R−1BTP

(4.56)

Morever, Amin3 has shown that given a controllable pair (A,B), a pos-
itive de�nite symmetric matrix R and a positive real constant α such that
α+Re(λi) ≥ 0, then the algebraic Riccati equation (4.53) has a unique positive
de�nite solution P = PT > 0 satisfying the following property:

α+Re(λi) ≥ 0⇒
{
Re(λKi) = − (2α+Re(λi))
Im(λKi) = Im(λi)

(4.57)

It is worth noticing that the algebraic Riccati equation (4.53) can be changed
into a Lyapunov equation by pre- and post-multiplying (4.53) by P−1 and setting
X := P−1:

(A + αI)T P + P (A + αI)−PBR−1BTP = 0

⇒ P−1 (A + αI)T + (A + αI) P−1 −BR−1BT = 0

X := P−1 ⇒ X (A + αI)T + (A + αI) X = BR−1BT

(4.58)

Matrix R remains the degree of freedom for the design and it seems that
it may be used to set the damping ratio of the complex conjugate dominant
poles for example. Unfortunately (4.54) indicates that the eigenvalues of the
Hamiltonian matrix H, which are closely related to eigenvalues of the closed
loop system, are independent of matrix R. Thus matrix R has no in�uence on
the location of the closed loop poles in that situation.

Furthermore it is worth reminding that the higher the displacement of closed
loop eigenvalues with respect to the open loop eigenvalue is, the higher the con-
trol e�ort is. Thus specifying very fast dominant poles may lead to unacceptable
control e�ort.

3Optimal pole shifting for continuous multivariable linear systems, M. H. Amin, Int. Jour-
nal of Control 41 No. 3 (1985), 701�707.
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4.5.2 Reduced-order model

The preceding result can be used to recursively shift on the left all the real parts
of the poles of a system to any positions while preserving their imaginary parts.
Let A ∈ Rn×n be the state matrix of the system to be controlled and B ∈ Rn×m
the input matrix. We assume that all the eigenvalues of A are distinct and that
(A,B) is controllable and that the symmetric positive de�nite weighting matrix
R for the control is given. The purpose of this section is to compute the state
weighting matrix Q which leads to the desired closed loop eigenvalues by shifting
recursively the actual eigenvalues of the state matrix. It is worth noticing that,
through the shifting process, real eigenvalues remain real eigenvalues whereas
complex conjugate eigenvalues remain complex conjugate eigenvalues.

The core idea of the method is to consider the transformation zi = CTx
which leads to consider the following reduced order model where matrix Λ
corresponds to the diagonal (or Jordan) form of state matrix A:

zi = CTx⇒ żi = Λzi + Gu where

{
CTA = ΛCT ⇔ ATC = CΛT

G = CTB
(4.59)

In this new basis the performance index turns to be:

Ji =
1

2

∫ ∞
0

(
zTi Q̃zi + uTRu

)
dt (4.60)

4.5.3 Shifting one real eigenvalue

Let λi be an eigenvalue of A. We will �rst assume that λi is real. We wish to
shift λi to λKi.

Let v be a left eigenvector of A: vTA = λi v
T . In other words, v is a

(right) eigenvector of AT corresponding to λi: AT v = λi v. Then we de�ne zi
as follows:

zi := CTx where C = v (4.61)

Using the fact that v is a (right) eigenvector of AT (zi = vTx), we can write:

żi = vTAx+ vTBu
= vTλix+ vTBu
= λiv

Tx+ vTBu
= λizi + vTBu
= λizi + Gu where G := vTB = CTB

(4.62)

Then setting u := −R−1GT P̃zi, where scalar P̃ > 0 is a design parameter,
and having in mind that zi is scalar (thus λiI = λi), we get:

żi =
(
λi −GR−1GT P̃

)
zi (4.63)

Let λKi be the desired eigenvalue of the preceding reduced-order model.
Then we shall have:

λKi = λi −GR−1GT P̃ (4.64)
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Thus, matrix P̃ reads:

P̃ =
λi − λKi
GR−1GT

(4.65)

The state weighting matrix Qi that will shift the open-loop eigenvalue λi to
the closed-loop eigenvalue λKi is obtained through the following identi�cation:
zTi Q̃zi = xTQix. We �nally get:

zi = vTx := CTx⇒ Qi = CQ̃CT (4.66)

Matrix Q̃ is obtained thanks to the corresponding algebraic Riccati equation:

0 = P̃λi + λiP̃− P̃GR−1GT P̃ + Q̃

⇔ Q̃ = −2λiP̃ + P̃GR−1GT P̃
(4.67)

4.5.4 Shifting a pair of complex conjugate eigenvalues

The procedure to shift a pair of complex conjugate eigenvalues follows the same
idea: let λi and λ̄i be a pair of complex conjugate eigenvalues of A. We wish to
shift λi and λ̄i to λKi and λ̄Ki.

Let v and v̄ be a pair left eigenvectors of A. In other words, v and v̄ is a
pair of (right) eigenvector of AT corresponding to λi:[

vT v̄T
]
A =

[
vT v̄T

] [ λi 0
0 λ̄i

]
⇔ AT

[
v v̄

]
=
[
v v̄

] [ λi 0
0 λ̄i

] (4.68)

In order to manipulate real values, we will use the real part and the imaginary
part of the preceding equation. Denoting λi := a+ j b, that is a := Re(λi) and
b := Im(λi), the preceding relationship is equivalently replaced by the following
one :

AT
[
v v̄

]
=
[
v v̄

] [ λi 0
0 λ̄i

]
⇔ AT

[
Re(v) Im(v)

]
=
[
Re(v) Im(v)

] [ a −b
b a

] (4.69)

Then de�ne zi as follows:

zi := CTx where C =
[
Re(v) Im(v)

]
(4.70)

Using the fact that v and v̄ is a pair of (right) eigenvector of AT , we get:

żi =

[
a −b
b a

]
zi + Gu where G := CTB (4.71)

Then setting u := −R−1GT P̃ zi, , where 2× 2 positive de�nite matrix P̃ is
a design parameter, we get:

żi = Λi zi where


Λi :=

[
a −b
b a

]
−GR−1GT P̃

P̃ = P̃T :=

[
x y
y z

]
> 0

(4.72)
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Thus the closed-loop eigenvalues are the eigenvalues of matrix Λi. Here the
design process becomes a little bit more involved because parameters x, y and
z of matrix P̃ shall be chosen to meet the desired complex conjugate closed-
loop eigenvalues λKi and λ̄Ki while minimizing the trace of P̃ (indeed it can be
shown that min(Ji) = min(trace(P̃))). The design process has been described
by Arar & Sawan4.

Alternatively, when the imaginary part of the shifted eigenvalues is pre-
served, that is when Im(λKi) = Im(λi) and Im(λ̄Ki) = Im(λ̄i), then the design
process can be simpli�ed by using the mirror property underlined by Amin3 and
presented in Section 4.5.1: given a controllable pair (Λi,G), a positive de�nite
symmetric matrix R and a positive real constant α, then the following algebraic
Riccati equation has a unique positive de�nite solution P̃ = P̃T > 0:

(Λi + αI)T P̃ + P̃ (Λi + αI)− P̃GR−1GT P̃ = 0 (4.73)

Moreover the feedback control law u = −Ki x shift the pair of complex con-
jugate eigenvalues (λi, λ̄i) of matrix A to a pair of complex conjugate eigenvalues
(λKi, λ̄Ki) as follows, assuming α+Re(λi) ≥ 0:

Pi = CP̃CT

Qi = 2αPi

Ki = R−1GT P̃CT

⇒
{
Re(λKi) = − (2α+Re(λi))
Im(λKi) = Im(λi)

(4.74)

4.5.5 Sequential pole shifting via reduced-order models

The design process proposed by Amin3 to shift several eigenvalues recursively
is the following:

1. Set i = 1 and A1 = A.

2. Let λi be the eigenvalue of matrix Ai which is desired to be shifted:

− Assume that λi is real. We wish to shift λi to λKi ≤ λi. Then
compute a (right) eigenvector v of AT

i corresponding to λi. In other
words vT is the left eigenvector of Ai: v

TAi = λi v
T . Then compute

C, G, α and Λi de�ned by:
C = v
G = CTB

α = −λKi+λi
2 ≥ 0 where λKi ≤ λi ∈ R

Λi = λi ∈ R

(4.75)

− Now assume that λi = a+ jb is complex. We wish to shift λi and λ̄i
to λKi and λ̄Ki where:{

Re(λKi) ≤ Re(λi) := a
Im(λKi) = Im(λi) := b

(4.76)

4Abdul-Razzaq S. Arar, Mahmoud E. Sawan, Optimal pole placement with prescribed
eigenvalues for continuous systems, Journal of the Franklin Institute, Volume 330, Issue 5,
September 1993, Pages 985-994
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This means that the shifted poles shall have the same imaginary parts
than the original ones. Then compute (right) eigenvectors (v1, v2) of
AT
i corresponding to λi and λ̄i. In other words (vT1 , v

T
2 ) are the left

eigenvectors of Ai:

[
vT1
vT2

]
Ai =

[
λi 0
0 λ̄i

] [
vT1
vT2

]
. Then compute

C, G, α and Λi de�ned by:
v1 = v̄2 ⇒ C =

[
Re(v1) Im(v1)

]
G = CTB

α = −Re(λKi+λi)
2 ≥ 0

λi = a+ jb ∈ C⇒ Λi =

[
a −b
b a

] (4.77)

3. Compute P̃ = P̃T > 0, which is de�ned as the unique positive de�nite
solution of the following algebraic Riccati equation:

(Λi + αI)T P̃ + P̃ (Λi + αI)− P̃GR−1GT P̃ = 0 (4.78)

Alternatively, P̃ can be de�ned as follows:

P̃ = X−1 (4.79)

where X is the solution of the following Lyapunov equation:

(Λi + αI) X + X (Λi + αI)T = GR−1GT (4.80)

4. Compute Pi, Qi and Ki as follows:
Pi = CP̃CT

Qi = 2αPi

Ki = R−1GT P̃CT

(4.81)

5. Set i = i+ 1 and Ai = Ai−1 −B Ki−1. Go to step 2 if some others open
loop eigenvalues have to be shifted.

Once the loop is �nished compute P =
∑

i Pi, Q =
∑

i Qi and K =
∑

i Ki.
Gain K is such that eigenvalues of A − BK are located to the desired values
λKi. Furthermore Q is the weighting matrix for the state vector and P is the
positive de�nite solution of the corresponding algebraic Riccati equation.

4.6 Frequency domain approach

4.6.1 Non optimal pole assignment

We have seen in (3.70) that thanks to the Schur's formula the closed loop char-
acteristic polynomial det(sI−A + BK) reads as follows:

det (sI−A + BK) = det (sI−A) det(I + KΦ(s)B) (4.82)
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Let D(s) = det (sI−A) be the determinant of Φ(s), that is the plant char-
acteristic polynomial, and Nol(s) = Adj (sI−A) B be the adjugate matrix of
sI−A times matrix B:

Φ(s)B = (sI−A)−1 B =
Adj (sI−A) B

det (sI−A)
:=

Nol(s)

D(s)
(4.83)

Consequently (4.82) reads:

det (sI−A + BK) = det (D(s)I + KNol(s)) (4.84)

As soon as λKi is a desired closed loop eigenvalue then the following rela-
tionship holds:

det (D(s)I + KNol(s))|s=λKi = 0 (4.85)

Consequently it is desired that matrix D(s)I + KNol(s)|s=λKi is singular.
Let ωi be a vector belonging to the kernel of D(s)I + KNol(s)|s=λKi . Thus
replacing s by λKi we can write:

(D(λKi)I + KNol(λKi))ωi = 0 (4.86)

In order to get gain K the preceding relationship is rewritten as follows:

KNol(λKi)ωi = −D(λKi)ωi (4.87)

This relationship does not lead to the value of gain K as soon as Nol(λKi)ωi
is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relationship for the n desired closed
loop eigenvalues. We get:

K
[
vK1 · · · vKn

]
= −

[
p

1
· · · p

n

]
(4.88)

where vectors vKi and pi are given by:{
vKi = Nol(λKi)ωi
p
i

= D(λKi)ωi
(4.89)

We �nally get the following expression of gain K:

K = −
[
p

1
· · · p

n

] [
vK1 · · · vKn

]−1
(4.90)

4.6.2 Solving the algebraic Riccati equation

Let D(s) be the open loop characteristic polynomial and β(s) be the closed loop
characteristic polynomial:{

D(s) = det (sI−A)
β(s) = det (sI−A + BK)

(4.91)

We recall hereafter relationship (3.71) between the open loop and the closed
loop eigenvalues: {

β(s) = det (sI−A) det (I + KΦ(s)B)

Φ(s) = (sI−A)−1 (4.92)
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Coupling the previous relationship with Kalman equality (3.76) and using
the fact that det (XY) = det (X) det (Y) it can be shown that:

β(s)β(−s) = D(s)D(−s) det
(
I + R−1 (Φ(−s)B)T Q (Φ(s)B)

)
(4.93)

Thus the stable roots (that are the roots with negative real part) λKi of

rational fraction det
(
R + (Φ(−s)B)T Q (Φ(s)B)

)
are the closed loop eigen-

values:

det
(
R + (Φ(−s)B)T Q (Φ(s)B)

)∣∣∣
s=λKi

= 0 (4.94)

It is worth noticing that the denominator of det
(
R + (Φ(−s)B)T Q (Φ(s)B)

)
is D(s)D(−s).

Let Nol(s) be the following polynomial matrix:

Nol(s) = Adj (sI−A) B (4.95)

Then (4.90) can be used to get optimal gain K as follows where n denotes
the order of state matrix A:

K = −
[
p

1
· · · p

n

] ([
vK1 · · · vKn

])−1
(4.96)

where vectors vKi and pi are given as in the non optimal pole assignment
problem: {

vKi = Nol(λKi)ωi
p
i

= D(λKi)ωi
(4.97)

Nevertheless m×1 vectors ωi (m being the number of columns of input ma-
trix B) belongs to the kernel of matrixD(−λKi) RD(λKi)+NT

ol(−λKi) Q Nol(λKi).
In other words vectors ωi satisfy the following relationship5:(

D(−λKi) RD(λKi) + NT
ol(−λKi) Q Nol(λKi)

)
ωi = 0 (4.98)

4.6.3 Poles assignment in optimal regulator using root locus

Let λi be an eigenvalue of the open loop state matrix A corresponding to eigen-
vector vi. This open loop eigenvalue will not be modi�ed by state feedback gain
K by setting in (4.97) the m× 1 vector p

i
to zero and the n× 1 eigenvector vKi

to the open loop eigenvector vi corresponding to eigenvalue λi:

{
Avi = λi vi
K =

[
· · · 0m×1︸ ︷︷ ︸

ith column

· · ·
] [
· · · vi︸︷︷︸

ith column

· · ·
]−1

⇒ (A−BK) vi = λivi

(4.99)

5L.S. Shieh, H.M. Dib, R.E. Yates, Sequential design of linear quadratic state regulators
via the optimal root-locus techniques, IEE Proceedings D - Control Theory and Applications,
Volume: 135 , Issue: 4, July 1988, DOI: 10.1049/ip-d.1988.0040
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Coming back to the general case, let v1, · · · , vn be the eigenvectors of the
open loop state matrix A. Matrix V is de�ned as follows:

V =
[
v1 · · · vn

]
(4.100)

Let λ1, · · · , λr be the r ≤ n eigenvalues that are desired to be kept invariant
by state feedback gain K and v1, · · · , vr be the corresponding eigenvectors of
state matrix A. Similarly let λr+1, · · · , λn be the n − r eigenvalues that are
desired to be changed by state feedback gain K and vr+1, · · · , vn be the corre-
sponding eigenvectors of state matrix A. Assuming that matrix V is invertible,
matrix M is de�ned and split as follows where Mr is an r×n matrix and Mn−r
is an (n− r)× n matrix:

M = V−1 =
[
v1 · · · vr vr+1 · · · vn

]−1
=

[
Mr

Mn−r

]
(4.101)

Then it can be shown5 that once weighting matrix R = RT > 0 is set
the characteristic polynomial β(s) of the closed loop transfer function is linked
with the numerator and the denominator of the loop transfer function Φ(s)B =
(sI−A)−1 B as follows:

Φ(s)B = (sI−A)−1 B = Adj(sI−A)B
det(sI−A) := Nol(s)

D(s)

⇒ β(s)β(−s) = D(s)D(−s) + kpN rl(s) (N rl(−s))
T

(4.102)

where: 
N rl(s) = qT

0
Mn−rNol(s)

(
R1/2

)−1

(N rl(−s))
T =

(
qT

0
Mn−rNol(−s)

(
R1/2

)−1
)T

Nol(s) = Adj (sI−A) B

R = R1/2 R1/2

(4.103)

Matrix R1/2 is the root square of matrix R. By getting the modal decompo-
sition of matrix R, that is R = VDV−1 where V is the matrix whose columns
are the eigenvectors of R and D is the diagonal matrix whose diagonal elements
are the corresponding positive eigenvalues, the square root R1/2 of R is given
by R1/2 = VD1/2V−1, where D1/2 is any diagonal matrix whose elements are
the square root of the diagonal elements of D6.

Relationship (4.102) can be associated with root locus of the �ctitious trans-

fer function G(s)G(−s) =
NT
rl(s)Nrl(−s)
D(s)D(−s) where �ctitious gain kp varies from 0 to

∞. The arbitrary nonzero (n − r) × 1 column vector q
0
is used to shape the

locus.
Furthermore whatever the closed loop eigenvalues λK1, · · · , λKn weighting

matrix Q has the following expression where kp is the positive scalar obtained
through the root locus:

Q = kp MT
n−r

(
q

0
qT

0

)
Mn−r (4.104)

The following relationship also holds:

QMr = 0 (4.105)
6https://en.wikipedia.org/wiki/Square_root_of_a_matrix
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4.7 Poles assignment in optimal regulator through ma-
trix inequalities

In this section a method for designing linear quadratic regulator with prescribed
closed loop pole is presented.

Let Λcl = {λ1, λ2, · · · , λn} be a set of prescribed closed loop eigenvalues,
where Re(λi) < 0 and λi ∈ Λcl implies that the complex conjugate of λi, which
is denoted λ∗i , belongs also to Λcl. The problem consists in �nding a state
feedback controller u = −Kx such that the eigenvalues of A −BK, which are
denoted λ (A−BK), belongs to Λcl:

λ (A−BK) = Λcl (4.106)

while minimizing the quadratic performance index J(u(t)) for some Q > 0
and R > 0.

J(u(t)) =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (4.107)

We provide in that section the material written by He, Cai and Han7. As-
sume that (A,B) is controllable. Then, the pole assignment problem is solvable
if and only if there exist two matrices X1 ∈ Rn×n and X2 ∈ Rn×n such that the
following matrix inequalities are satis�ed:{

FTXT
2 X1 + XT

1 X2F + XT
2 BR−1BTX2 ≤ 0

XT
1 X2 = XT

2 X1 > 0
(4.108)

where F is any matrix such that λ (F) = Λcl and (X1,X2) satis�es the
following generalized Sylvester matrix equation8:

AX1 −X1F = BR−1BTX2 (4.109)

If (X1,X2) is a feasible solution to the above two inequalities, then the
weighting matrix Q in the quadratic performance index J(u(t)) can be chosen
as follows:

Q = −ATX2X
−1
1 −X2FX−1

1 (4.110)

In addition the solution the the corresponding Riccati Algebraic equation
reads:

P = X2X
−1
1 (4.111)

The starting point to get this result is the fact that there must exist an
eigenvector matrix X such that the following formula involving Hamiltonian
matrix H holds:

HX = XF (4.112)

7Hua-Feng He, Guang-Bin Cai and Xiao-Jun Han, Optimal Pole Assignment of Linear
Systems by the Sylvester Matrix Equations, Hindawi Publishing Corporation, Abstract and
Applied Analysis, Volume 2014, Article ID 301375, http://dx.doi.org/10.1155/2014/301375

8An explicit solution to right factorization with application in eigenstructure assignment,
Bin Zhou, Guangren Duan, Journal of Control Theory and Applications 08/2005; 3(3):275-
279. DOI: 10.1007/s11768-005-0049-7
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Splitting the 2n× n matrix X into 2 square n× n matrices X1 and X2 and
using the expression of the 2n×2n Hamiltonian matrix H leads to the following
relationship:

X =

[
X1

X2

]
⇒
[

A −BR−1BT

−Q −AT

] [
X1

X2

]
=

[
X1

X2

]
F (4.113)

The preceding relationship is expanded as follows:{
AX1 −BR−1BTX2 = X1F
−QX1 −ATX2 = X2F

⇔
{

AX1 −X1F = BR−1BTX2

Q = −ATX2X
−1
1 −X2FX−1

1

(4.114)

Since X1 is nonsingular matrix Q is positive de�nite if and only if XT
1 QX1

is positive de�nite. Using the �rst equation of (4.114) into the second one we
get:

XT
1 QX1 = −XT

1 ATX2 −XT
1 X2F

= −(AX1)TX2 −XT
1 X2F

= −(X1F + BR−1BTX2)TX2 −XT
1 X2F

= −(FTXT
2 X1 + XT

1 X2F + XT
2 BR−1BTX2)

(4.115)

Using the Schur complement and denoting S = XT
1 X2 the preceding rela-

tionship reads:

XT
1 QX1 ≥ 0⇔

[
FTST + SF XT

2 B
BTX2 −R−1

]
≤ 0 (4.116)

4.8 Model matching

4.8.1 Cross term in the performance index

Assume that the output z(t) of interest is expressed as a linear combination of
state vector x(t) and control u(t): z(t) = Nx(t) + Du(t). Thus the cost to be
minimized reads:{

J(u(t)) = 1
2

∫∞
0 zT (t)z(t) + uT (t)R1u(t) dt

z(t) = Nx(t) + Du(t)
⇒ J(u(t)) = 1

2

∫∞
0

(
xT (t)NT + uT (t)DT

)
(Nx(t) + Du(t)) + uT (t)R1u(t) dt

(4.117)
Then we get a more general form of the quadratic performance index. Indeed

the quadratic performance index can be rewritten as:

J(u(t)) = 1
2

∫∞
0

[
x
u

]T [
Q N

NT R

] [
x
u

]
dt

= 1
2

∫∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
+ 2xT (t)Nu(t) dt

(4.118)

Where: 
Q = NTN
R = DTD + R1

N = NTD
(4.119)
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It can be seen that:

xT (t)Qx(t) +uT (t)Ru(t) + 2xT (t)Nu(t) = xT (t)Qmx(t) + vT (t)Rv(t) (4.120)

Where: {
Qm = Q−NR−1NT

v(t) = u(t) + R−1NTx(t)
(4.121)

Hence cost (4.118) can be rewritten as:

J(u(t)) =
1

2

∫ ∞
0

xT (t)Qmx(t) + vT (t)Rv(t) dt (4.122)

And the plant dynamics ẋ = Ax(t) + Bu(t) is modi�ed as follows:

ẋ = Ax(t) + Bu(t)
= Ax(t) + B

(
v(t)−R−1NTx(t)

)
= Amx(t) + Bv(t)

where Am = A−BR−1NT

(4.123)

Assuming that Qm (which is symmetric) is positive semi-de�nite, we then
get a standard LQR problem for which the optimal state feedback control law
is given from (3.8):{

v(t) = −R−1BTPx(t)
v(t) = u(t) + R−1NTx(t)

⇒
{
u(t) = −Kx(t)

K = R−1 (PB + N)T
(4.124)

Where matrix P is the positive semi-de�nite matrix which solves the follow-
ing algebraic Riccati equation (see (3.7)):

PAm + AT
mP−PBR−1BTP + Qm = 0 (4.125)

It is worth noticing that robustness properties of the LQ state feedback are
lost if the cost to be minimized contains a state-control cross term as it is the
case here.

4.8.2 Implicit reference model

Let Ar be the desired closed loop system matrix of the system. In that section
we consider the problem to �nd control u(t) which minimizes the norm of the
following error vector e(t):

e(t) = ẋ(t)−Arx(t) (4.126)

The cost to be minimized is the following:

J(u(t)) = 1
2

∫∞
0 eT (t)e(t) dt

= 1
2

∫∞
0 (ẋ(t)−Arx(t))T (ẋ(t)−Arx(t)) dt

(4.127)

Expanding ẋ(t) we get:

J(u(t)) = 1
2

∫∞
0 (Ax(t) + Bu(t)−Arx(t))T (Ax(t) + Bu(t)−Arx(t)) dt

= 1
2

∫∞
0 ((A−Ar)x(t) + Bu(t))T ((A−Ar)x(t) + Bu(t)) dt

(4.128)
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We get a cost to be minimized which contains a state-control cross term:

J(u(t)) =
1

2

∫ ∞
0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
+ 2xT (t)Nu(t) dt (4.129)

Where: 
Q = (A−Ar)

T (A−Ar)
R = BTB

N = (A−Ar)
T B

(4.130)

Then we can re-use the results of section 4.8.1. Let P be the positive semi-
de�nite matrix which solves the following algebraic Riccati equation:

PAm + AT
mP−PBR−1BTP + Qm = 0 (4.131)

Where: 
Qm = Q−NR−1NT

Am = A−BR−1NT

v(t) = u(t) + R−1NTx(t)
(4.132)

The stabilizing control u(t) is then de�ned in a similar fashion than (4.124):{
v(t) = −R−1BTPx(t)
v(t) = u(t) + R−1NTx(t)

⇒
{
u(t) = −Kx(t)

K = R−1 (PB + N)T
(4.133)

It is worth noticing that robustness properties of the LQ state feedback are
lost if the cost to be minimized contains a state-control cross term as it is the
case here.

Furthermore let V be the change of basis matrix to the Jordan form Λr of
the desired closed loop state matrix Ar:

Λr = V−1ArV (4.134)

Let Acl be the state matrix of the closed loop which is written using matrix
V as follows :

ẋ(t) = Aclx(t) = VΛclV
−1x(t) (4.135)

Assuming that the desired Jordan form Λr is a diagonal matrix and using
the fact V−1 = VT the product eT (t)e(t) in (4.127) reads as follows:

eT (t)e(t) = xT (t) (Acl −Ar)
T (Acl −Ar)x(t)

= xT (t)V (Λcl −Λr)
T (Λcl −Λr) VTx(t)

(4.136)

From the preceding equation it is clear that minimizing the cost J(u(t)) =
1
2

∫∞
0 eT (t)e(t) dt consists in �nding the control u(t) which minimizes the gap

between the desired eigenvalues (which are set in Λr) and the actual eigenvalues
of the closed loop.
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4.9 Frequency shaped LQ control

Often system performances are speci�ed in the frequency domain. The purpose
of this section is to shift the time domain nature of the LQR problem in the
frequency domain as proposed by Gupta in 19809. This is done thanks to Parse-
val's theorem which enables to write the performance index J to be minimized
as follows, where w represents frequency (in rad/sec):

J =
∫∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

= 1
2π

∫∞
0 xT (−jω)Qx(jω) + uT (−jω)Ru(jω)dw

(4.137)

Then constant weighting matrices Q and R are modi�ed to be function of
the frequency w in order to place distinct penalties on the state and control cost
at various frequencies:{

Q = Q(w) = WT
q (−jω)Wq(jω)

R = R(w) = WT
r (−jω)Wr(jω)

(4.138)

For the existence of the solution of the LQ regulator, matrix R(w) shall be
of full rank. Since we seek to minimize the quadratic cost J , then large terms in
the integrand incur greater penalties than small terms and more e�ort is exerted
to make then small. Thus if there is for example an high frequency region where
the model of the plant presents unmodeled dynamics and if the control weight
Wr(jω) is chosen to have large magnitude over this region then the resulting
controller would not exert substantial energy in this region. This in turn would
limit the controller bandwidth.

Let us de�ne the following vectors to carry out the dynamics of the weights
in the frequency domain, where s denotes the Laplace variable:{

z(s) = Wq(s)x(s)
v(s) = Wr(s)u(s)

(4.139)

In order to simplify the process of selecting useful weights, it is common to
choose weighting matrices to be scalar functions multiplying the identity matrix:{

Wq(s) = wq(s)I
Wr(s) = wr(s)I

(4.140)

The performance index J to be minimized in (4.137) turns to be:

J =
1

2π

∫ ∞
0

zT (−jω)z(jω) + vT (−jω)v(jω)dw (4.141)

Using Parseval's theorem we get in the time domain:

J =

∫ ∞
0

zT (t)z(t) + vT (t)v(t) dt (4.142)

9Frequency-Shaped Cost Functionals: Extension of Linear Quadratic Gaussian Design
Methods, Narendra K. Gupta, Journal of Guidance Control and Dynamics. 11/1980; 3(6):529-
535. DOI: 10.2514/3.19722
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Let the state space model of the �rst equation of (4.139) be the following,
where z(t) is the output and x(t) the input of the following MIMO system:{

χ̇q(t) = Aqχq(t) + Bqx(t)
z(t) = Nqχq(t) + Dqx(t)

⇒ z(s) =
(
Nq (sI −Aq)

−1 Bq + Dq

)
x(s) = Wq(s)x(s)

(4.143)

Similarly, let the state space model of the second equation of (4.139) be the
following, where v(t) is the output and u(t) the input of the following MIMO
system: {

χ̇r(t) = Arχr(t) + Bru(t)
v(t) = Nrχr(t) + Dru(t)

⇒ v(s) =
(
Nr (sI −Ar)

−1 Br + Dr

)
u(s) = Wr(s)u(s)

(4.144)

Then it can be shown from (4.143) and (4.144) that:

zT (t)z(t) + vT (t)v(t) = (Nqχq(t) + Dqx(t))T (Nqχq(t) + Dqx(t))

+ (Nrχr(t) + Dru(t))T (Nrχr(t) + Dru(t)) (4.145)

That is:

zT (t)z(t) + vT (t)v(t) =
[
xT (t) χTq (t) χr(t)

T
]
Qf

 x(t)
χq(t)
χr(t)


+ 2

[
xT (t) χTq (t) χr(t)

T
]
Nfu(t) + uT (t)Rfu(t) (4.146)

Where: 

Qf =

DT
q Dq DT

q Nq 0

NT
q Dq NT

q Nq 0

0 0 NT
r Nr


Nf =

 0
0

NT
r Dr


Rf = DT

r Dr

(4.147)

Then de�ne the augmented state vector xa(t):

xa(t) =

 x(t)
χq(t)
χr(t)

 (4.148)

And the augmented state space model:

ẋa(t) =
d

dt

 x(t)
χq(t)
χr(t)

 = Aaxa(t) + Bau(t) (4.149)
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Where: 
Aa =

A 0 0
Bq Aq 0
0 0 Ar


Ba =

B
0

Br

 (4.150)

Using (4.146) the performance index J de�ned in (4.142) is written as fol-
lows:

J =

∫ ∞
0

xTa (t)Qfxa(t) + 2xa(t)Nfu(t) + u(t)TRfu(t) dt (4.151)

As far as cross term in the performance index J appears results obtained
in section 4.8.1 will be used: The algebraic Riccati equation (4.125) reads as
follows:

PAm + AT
mP−PBaR

−1BT
aP + Qm = 0 (4.152)

Where: {
Qm = Qf −NfR

−1
f NT

f

Am = Aa −BaR
−1
f NT

f

(4.153)

Denoting by P the positive semi-de�nite matrix which solves the algebraic
Riccati equation (4.152), the stabilizing control u(t) is then de�ned in a similar
fashion than (4.124): {

u(t) = −Kx(t)

K = R−1
f (PBa + Nf )T

(4.154)

4.10 Optimal transient stabilization

We provide in that section the material written by L. Qiu and K. Zhou10. Let's
consider the feedback system for stabilization system in Figure 4.2 where G(s)
is the plant and K(s) is the controller: The known transfer function G(s) of
the plant is assumed to be strictly proper with a monic polynomial on the
denominator (amonic polynomial is a polynomial in which the leading coe�cient
(the nonzero coe�cient of highest degree) is equal to 1):

G(s) =
N(s)

D(s)
=

bn−1s
n−1 + · · · b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
(4.155)

Similarly the unknown transfer function K(s) of the controller is assumed
to be strictly proper with a monic polynomial on the denominator:

K(s) =
q(s)

p(s)
=

qm−1s
m−1 + · · · q1s+ q0

sm + pm−1sm−1 + · · ·+ p1s+ p0
(4.156)

10Preclassical Tools for Postmodern Control, An optimal And Robust Control Theory For
Undergraduate Education, Li Qiu and Kemin Zhou, IEEE Control Systems Magazine, August
2013
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Figure 4.2: Feedback system for stabilization

The closed loop characteristic polynomial β(s) is:

β(s) = N(s)q(s) +D(s)p(s)
= sn+m + βn+m−1 s

n+m−1 + · · ·+ β1 s+ β0
(4.157)

For given coprime polynomials N(s) and D(s) as well as an arbitrarily cho-
sen closed loop characteristic polynomial β(s) the expression of p(s) and q(s)
amounts to solving the following Diophantine equation:

β(s) = N(s)q(s) +D(s)p(s) (4.158)

This linear equation in the coe�cients of p(s) and q(s) has solution for
arbitrary β(s) if and only if m ≥ n. The solution is unique if and only if
m = n. Now consider the following performance measure J(ρ, µ) where ρ and
µ are positive number to give relative weights to outputs y1(t) and y2(t) and to
inputs w1(t) and w2(t) respectively and δ(t) is the Dirac delta function:

J(ρ, µ) =
1

2

∫ ∞
0

y2
1(t) + ρy2

2(t) dt

∣∣∣∣ w1(t) = µδ(t)
w2(t) = 0

+
1

2

∫ ∞
0

y2
1(t) + ρy2

2(t) dt

∣∣∣∣ w1(t) = 0
w2(t) = δ(t)

(4.159)

The design procedure to obtain the controller which minimizes performance
measure J(ρ, µ) is the following:

− Find polynomial dµ(s) (also called spectral factor) which is formed with
the n roots with negative real parts of D(s)D(−s) + µ2N(s)N(−s):

D(s)D(−s) + µ2N(s)N(−s) = dµ(s)dµ(−s) (4.160)

− Find polynomial dρ(s) (also called spectral factor) which is formed with
the n roots with negative real parts of D(s)D(−s) + ρN(s)N(−s):

D(s)D(−s) + ρN(s)N(−s) = dρ(s)dρ(−s) (4.161)
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− Then the optimal controller K(s) = q(s)/p(s) is the unique nth order
strictly proper transfer function such that:

D(s)p(s) +N(s)q(s) = dµ(s)dρ(s) (4.162)



Chapter 5

Linear Quadratic Tracker (LQT)

5.1 Introduction

The regulator problem that has been tackled in the previous chapters is in fact
a spacial case of a wider class of problems where the outputs of the system are
required to follow a desired trajectory in some optimal sense. As underlined in
the book of Anderson and Moore trajectory following problems can be conve-
niently separated into three di�erent problems which depend on the nature of
the desired output trajectory:

− If the plant outputs are to follow a class of desired trajectories, for example
all polynomials up to certain order, the problem is referred to as a servo
(servomechanism) problem;

− When the plant outputs are to follow the response of another plant (or
model) the problem is referred to as model following problems;

− If the desired output trajectory is a particular prescribed function of time,
the problem is called a tracking problem.

This chapter is devoted to the presentation of some results common to all three of
these problems, with a particular attention being given on the tracking problem.

5.2 Optimal LQ tracker

5.2.1 Finite horizon Linear Quadratic Tracker

We will consider in this section the following linear system, where x(t) is the
state vector, u(t) the control, r(t) a reference output (which is omitted in the
regulator problem, meaning that G = 0 in that case) and y(t) the controlled
output (that is the output of interest):{

ẋ(t) = Ax(t) + Bu(t) + Gr(t)
y(t) = Cx(t)

(5.1)

It is now desired to �nd an optimal control law in such a way that the
controlled output y(t) tracks or follows a reference output r(t). Hence the
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performance index is de�ned as:

J(u(t)) =
1

2
eT (tf )Se(tf ) +

1

2

∫ tf

0
eT (t)Qe(t) + uT (t)Ru(t) dt (5.2)

Where e(t) is the trajectory error de�ned as:

e(t) = r(t)− y(t) = M r(t)−Cx(t) (5.3)

The Hamiltonian H is then de�ned as:

H(x, u, λ) =
1

2
eT (t)Qe(t) +

1

2
uT (t)Ru(t)

+ λT (t) (Ax(t) + Bu(t) + Gr(t)) (5.4)

The optimality condition (1.71) yields:

∂H

∂u
= 0 = Ru(t) + BTλ(t)⇒ u(t) = −R−1BTλ(t) (5.5)

Equation (1.62) yields:

λ̇(t) = −∂H
∂x

= −
(
eT (t)Q ∂e

∂x + λT (t)A
)T

= −
(
− (M r(t)−Cx(t))T QC + λT (t)A

)T
⇔ λ̇(t) = −ATλ(t)−CTQCx(t) + CTQM r(t)

(5.6)

With the terminal condition (1.63):

λ(tf ) =
∂G(x(tf ))
∂x(tf )

=
∂(M r(tf )−Cx(tf ))

T

∂x(tf ) Se(tf )

⇔ λ(tf ) = CTS (Cx(tf )−M r(tf ))

(5.7)

In order to determine the closed loop control law, the expression (2.74) is
modi�ed as follows:

λ(t) = P(t)x(t)− g(t) (5.8)

Where g(t) is to be determined. Using (5.8), the terminal conditions (5.7)
can be written as:

P(tf )x(tf )− g(tf ) = CTS (Cx(tf )−M r(tf )) (5.9)

Which implies: {
P(tf ) = CTSC

g(tf ) = CTSM r(tf )
(5.10)

Then from (5.5) and (5.8) the control law is:

u(t) = −R−1BTλ(t)
= −R−1BT (P(t)x(t)− g(t))
= −R−1BTP(t)x(t) + R−1BT g(t)

(5.11)

From the preceding equation it is clear that the optimal control is the sum
of two components:
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− A state feedback component: −R−1BTP(t)x(t) = −Kx(t)x(t)

− A feedforward component: R−1BT g(t)

In addition, di�erentiating (5.8) yields:

˙λ(t) = Ṗ(t)x(t) + P(t)ẋ(t)− ġ(t) (5.12)

Using (5.6) yields:

−ATλ(t)−CTQCx(t) + CTQM r(t) =

Ṗ(t)x(t) + P(t) (Ax(t) + Bu(t) + Gr(t))− ġ(t) (5.13)

Using (5.1), (5.8) and (5.11) to express u(t) as a function of x(t) and g(t) we
�nally get:

(
Ṗ(t) + ATP(t) + P(t)A−P(t)BR−1BTP(t) + CTQC

)
x(t)

−
(
ġ(t) +

(
CTQM−P(t)G

)
r(t) +

(
AT −P(t)BR−1BT

)
g(t)

)
= 0 (5.14)

The solution of (5.14) can be obtained by solving the preceding equation as
two separate problems:{

−Ṗ(t) = ATP(t) + P(t)A−P(t)BR−1BTP(t) + CTQC
−ġ(t) =

(
AT −P(t)BR−1BT

)
g(t) +

(
CTQM−P(t)G

)
r(t)

(5.15)

Obviously, we recognize in the �rst equation the Riccati equation (2.80)
with C = I. The second equation de�nes the feedforward gain g(t). Equations
(5.15) are solved backward: the time is reversed by setting τ = tf − t (thus the
minus signs to the left of equalities (5.15) are omitted) and equations (5.10) are
used as initial condition. The solution is then reversed in time to obtain P(t)
and g(t). Alternatively, we can use the fact that the �rst equation of (5.15) is
the di�erential Riccati equation which has been studied in section 2.6.2. Using
(2.109), (2.116) and (2.120) we get:

P(t) = X2(t)X−1
1 (t) (5.16)

Where: 
[
X1(t)
X2(t)

]
= eH(t−tf)

[
I

CTSC

]
H =

[
A −BR−1BT

−CTQC −AT

] (5.17)

It is worth noticing that the optimal linear quadratic LQ tracker is not
a causal system since it is needed to solve a system of di�erential equations
backward in time.



5.3. Control with feedforward gain 103

5.2.2 In�nite horizon Linear Quadratic Tracker

The control design problem is to �nd a linear optimal tracking controller which
minimizes the following performance index where error e(t) is de�ned in (5.3):

J(u(t)) =
1

2

∫ ∞
0

eT (t)Qe(t) + uT (t)Ru(t) dt (5.18)

When (A,B) is detectable and (A,
√

Q) is detectable there exists a unique
steady state solution of equations (5.15) obtained by meand of the associated
algebraic Riccati equation. Assuming that we want to achieve a perfect tracking
of r(t) at its constant steady state value rss the control law (5.11) can be written
as:

u(t) = −Kxx(t) + Kf r(t) (5.19)

Where Kx and Kf are the state feedback and the feedforward gain respec-
tively: {

Kx = R−1BTP

Kf = R−1BT
(
PBR−1BT −AT

)−1 (
CTQM−PG

) (5.20)

Matrix P is the positive de�nite solution of the following algebraic Riccati
equation which is derived from the �rst equation of (5.15):

0 = ATP + PA−PBR−1BTP + CTQC (5.21)

Similarly the feedforward gain Kf is derived from the constant steady state
value gss of g(t). Indeed we get from the second equation of (5.15):

0 =
(
AT −PBR−1BT

)
gss +

(
CTQM−PG

)
rss

⇒ gss =
(
PBR−1BT −AT

)−1 (
CTQM−PG

)
rss

(5.22)

The closed loop system is then de�ned as follows:{
ẋ(t) = Ax(t) + Bu(t) + Gr(t)
u(t) = −Kxx(t) + Kf r(t)

⇒ ẋ(t) = (A−BKx)x(t)+(G + BKf ) r(t)

(5.23)
Matrices Q and R shall be chosen so that a good response is obtained

without exceeding the bandwidth and position limitations of the actuators. It
is worth noticing that the gain computed in (5.20) are optimal only in steady
state. In particular the feedforward gain provides perfect tracking only when
r(t) = rss.

5.3 Control with feedforward gain

We will consider in this section the following linear system, where x(t) is the
state vector, u(t) the control and y(t) the controlled output (that is the output
of interest): {

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(5.24)
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Control with feedforward gain allows set point regulation. We will assume
that control u(t) has the following expression where H is the feedforward matrix
gain and where r(t) is the commanded value for the output y(t):

u(t) = −Kx(t) + Hr(t) (5.25)

The optimal control problem is then split into two separate problems which
are solved individually to form the suboptimal control:

− First the commanded value r(t) is set to zero and the gain K is computed
to solve the Linear Quadratic Regulator (LQR) problem;

− Then the feedforward matrix gain H is computed such that the steady
state value of output y(t) is equal to the commanded value r(t) = y

c
.

r(t) = y
c

(5.26)

Using the expression (5.25) of the control u(t) within the state space real-
ization (5.24) of the linear system leads to:{

ẋ(t) = Ax(t) + Bu(t) = (A−BK)x(t) + BHy
c

y(t) = Cx(t)
(5.27)

Then matrix H is computed such that the steady state value of output y(t)
is y

c
; assuming that ẋ = 0 which corresponds to the steady state the preceding

equations become:{
0 = (A−BK)x+ BHy

c
⇔ x = −(A−BK)−1BHy

c
y = Cx

(5.28)

That is:
y = −C(A−BK)−1BHy

c
(5.29)

Setting y to y
c
and assuming that the size of the output vector y(t) is the

same than the size of the control vector u (square plant) leads to the following
expression of the feedforward gain H:

y = y
c
⇒ H = −

(
C (A−BK)−1 B

)−1
(5.30)

For a square plant the feedforward gain H is nothing than the inverse of the
closed loop static gain. This gain is obtained by setting s = 0 in the expression
of the closed loop transfer matrix.

5.4 Plant augmented with integrator

5.4.1 Integral augmentation

An alternative to make the steady state error exactly equal to zero in response
to a step for the commanded value r(t) = y

c
is to replace the feedforward matrix

gain H by an integrator which will cancel the steady state error whatever the
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input step (the system's type is augmented to be of type 1). The advantage of
adding an integrator is that it eliminates the need to determine the feedforward
matrix gain H which could be di�cult because of the uncertainty in the model.
By augmenting the system with the integral error the LQR routine will choose
the value of the integral gain automatically. The integrator is denoted T/s ,
where T 6= 0 is a constant which may be used to increase the response of the
closed loop system. Adding an integrator augments the system's dynamics as
follows:


ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

ẋi(t) = e(t) = T
(
r(t)− y(t)

)
= Tr(t)−TCx(t)

⇔


d
dt

[
x(t)
xi(t)

]
=

[
A 0
−TC 0

] [
x(t)
xi(t)

]
+

[
B
0

]
u(t) +

[
0
T

]
r(t)

y(t) =
[
C 0

] [x(t)
xi(t)

] (5.31)

The suboptimal control is found by solving the LQR regulation problem
where r = 0:

− The augmented state space model reads:

d
dt

[
x(t)
xi(t)

]
= ẋa(t) = Aaxa(t) + Bau(t)

where


Aa =

[
A 0
−TC 0

]
Ba =

[
B
0

] (5.32)

− The performance index J(u(t)) to be minimized is the following:

J(u(t)) =
1

2

∫ ∞
0

xTa (t)Qaxa(t) + uT (t)Ru(t) dt (5.33)

Where, denoting by Na a design matrix, matrix Qa is de�ned as follows:

Qa = NT
aNa (5.34)

Note that design matrix Na shall be chosen such pair (Aa,Na) is de-
tectable.

Assuming that pair (Aa,Ba) is stabilizable and pair (Aa,Na) is detectable
the algebraic Riccati equation can be solved. This leads to the following expres-
sion of the control u(t):

u(t) = −Ka xa(t) + r(t)
= −R−1BT

aPxa(t) + r(t)

= −R−1
[
BT 0

] [P11 P12

P21 P22

] [
x(t)
xi(t)

]
+ r(t)

= −R−1BTP11 x(t)−R−1BTP12 xi(t) + r(t)
= −Kp x(t)−Ki xi(t) + r(t)

(5.35)
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Figure 5.1: Plant augmented with integrator

Obviously, the term Kp = R−1BTP11 represents the proportional gain of
the control whereas the term Ki = R−1BTP12 represents the integral gain of
the control.

The state space equation of closed loop system is obtained by setting u =
−Kaxa + r = −Kpx−Kixi + r in (5.31):

d
dt

[
x
xi

]
= (Aa −BaK)xa + Bar(t) +

[
0
T

]
r(t)

=

[
A−BKp −BKi

−TC 0

] [
x
xi

]
+

[
B
T

]
r

y =
[

C 0
] [ x

xi

] (5.36)

The corresponding bloc diagram is shown in Figure 5.1 where Φa(s) =
(sI−Aa)

−1.

5.4.2 Proof of the cancellation of the steady state error through
integral augmentation

In order to proof that integrator cancels the steady state error when r(t) is a
step input, let us compute the �nal value of the error e(t) using the �nal value
theorem where s denotes the Laplace variable:

lim
t→∞

e(t) = lim
s→0

sE(s) (5.37)

When r(t) is a step input with amplitude one, we have:

r(t) = 1 ∀ t ≥ 0⇒ R(s) =
1

s
(5.38)

Using the feedback u = −Kaxa + r the dynamics of the closed loop system
is:

ẋa = (Aa −BaKa)xa +

[
B
T

]
r(t)

⇒ e(t) = T
(
r(t)− y(t)

)
= T

(
r(t)−

[
C 0

] [x
xi

])
= T

(
r(t)−

[
C 0

]
xa
)

(5.39)

Using the Laplace transform, and denoting by I the identity matrix, we get:Xa(s) = (sI−Aa + BaKa)
−1

[
B
T

]
R(s)

E(s) = T
(
R(s)−

[
C 0

]
Xa(s)

) (5.40)
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Inserting (5.38) in (5.40) we get:

E(s) = T

(
1−

[
C 0

]
(sI−Aa + BaKa)

−1

[
B
T

])
1

s
(5.41)

Then the �nal value theorem (5.37) takes the following expression:

limt→∞ e(t) = lims→0 sE(s)

= lims→0 T

(
I−

[
C 0

]
(sI−Aa + BaKa)

−1

[
B
T

])
= T

(
1−

[
C 0

]
(−Aa + BaKa)

−1

[
B
T

]) (5.42)

Let us focus on the inverse of the matrix −Aa + BaKa. First we write Ka

as Ka =
[
Kp Ki

]
, where Kp and Ki represents respectively the proportional

and the integral gains. Then using (5.32) we get:

−Aa + BaKa =

[
−A 0
TC 0

]
+

[
B
0

] [
Kp Ki

]
=

[
−A + BKp BKi

TC 0

]
(5.43)

Assuming that X, Y and Z are square invertible matrices, it can be shown

that the inverse of the matrix

[
X Y
Z 0

]
is the following:

[
X Y
Z 0

]−1

=

[
0 Z−1

Y−1 −Y−1XZ−1

]
(5.44)

Thus:

(−Aa + BaKa)
−1 =

[
−A + BKp BKi

TC 0

]−1

=

[
0 (TC)−1

(BKi)
−1 − (BKi)

−1 (−A + BKp) (TC)−1

]
(5.45)

And:

(−Aa + BaK)−1

[
B
T

]
=

[
0 (TC)−1

(BKi)
−1 − (BKi)

−1 (−A + BKp) (TC)−1

] [
B
T

]
=

[
(TC)−1 T

(BKi)
−1
(
B + (A−BKp) (TC)−1 T

)]

⇒
[
C 0

]
(−Aa + BaK)−1

[
B
T

]
=
[
C 0

] [ (TC)−1 T

(BKi)
−1
(
B + (A−BKp) (TC)−1 T

)]
= C (TC)−1 T
= 1

(5.46)
Consequently, using (5.46) in (5.42), the �nal value of the error e(t) becomes:

lim
t→∞

e(t) = T

(
1−

[
C 0

]
(−Aa + BaKa)

−1

[
B
T

])
= T (1− 1) = 0 (5.47)
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As a consequence, the integrator allows to cancel the steady state error
whatever the input step. It is worth noticing that the result does not hold as
far as the output y(t) takes the form y = Cx+ Du rather than y = Cx.

5.5 Dynamic compensator

In the same spirit than what has been developed previously, we replace the
integrator by a dynamic compensator of prescribed structure into the system.
The dynamics of the compensator has the form:{

ẇ = Fw + Ge
v = Dw + Ee

(5.48)

With state w, output v and input e equal to the tracking error:

e = T(r − y) (5.49)

Matrices F,G,D,E and T are known and chosen to include the desired
structure in the compensator. Combining (5.1), (5.48) and (5.49) we get the
following expression for the dynamics and output written in augmented form:

ẋ = Ax+ Bu
y = Cx

ẇ = Fw + Ge
v = Dw + Ee
e = T(r − y) = Tr −TCx

⇒


d
dt

[
x
w

]
=

[
A 0

−GTC F

] [
x
w

]
+

[
B
0

]
u+

[
0

GT

]
r[

y

v

]
=

[
C 0

−ETC D

] [
x
w

]
+

[
0

ET

]
r

(5.50)

By rede�ning the state, the output and the matrix variables to streamline
the notation, we see that the augmented equations (5.50) are of the form:{

ẋa = Aaxa + Bau+ Gar
y
a

= Caxa + Far
(5.51)

− If the dynamic compensator is able to give satisfactory response without
the knowledge of reference r (through integral augmentation for example)
then we may solve the LQ regulator problem for the following augmented
system where reference r no more appears:

d

dt

[
x
w

]
=

[
A 0

−GTC F

] [
x
w

]
+

[
B
0

]
u = Aaxa + Bau (5.52)

− On the other hand we may use set point regulation. This option is devel-
oped hereafter.
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We will denote xae and ue the steady state and control of augmented state xa(t)
and control u(t), and by tilde the deviation from the steady state. By de�nition
of steady state and control we have:{

Aaxae + Baue + Gar = 0
Caxae + Far = 0

⇔
[

Aa Ba

Ca 0

] [
xae
ue

]
=

[
−Ga

−Fa

]
r (5.53)

We �nally get:
˙̃xa = ẋa − 0

= Aaxa + Bau+ Gar − (Aaxae + Baue + Gar)
= Aax̃a + Baũ

y
a

= Caxa + Far − (Caxae + Far)

= Cax̃a

(5.54)

Then the expression of the control ũ(t) is:

ũ(t) = −Kx̃a(t) = −R−1BTPx̃a(t) (5.55)

Where P is the solution of the following algebraic Riccati equation:

PAa + AT
aP−PBaR

−1BT
aP + CT

aQCa = 0 (5.56)

The control ũ(t) minimizes the following performance index:

J(ũ(t)) =
1

2

∫ ∞
0

x̃Ta (t)CT
aQCax̃a(t) + ũT (t)Rũ(t) dt (5.57)



Chapter 6

Linear Quadratic Gaussian
(LQG) regulator

6.1 Introduction

The design of the Linear Quadratic Regulator (LQR) assumes that the whole
state is available for control and that there is no noise. Those assumptions may
appear unrealistic in practical applications. We will assume in that chapter that
the process to be controlled is described by the following linear time invariant
model where w(t) and v(t) are random vectors which represents the process
noise and the measurement noise respectively:{

d
dtx(t) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t)

(6.1)

The preceding relationship can be equivalently represented by the block
diagram on Figure 6.1.

The Linear Quadratic Gaussian (LQG) regulator deals with the design of a
regulator which minimises a quadratic cost using the available output and taking
into account the noise into the process and the available output for control. As
far as only the output y(t) is now available for control (not the full state x(t)),
the separation principle will be used to design the LQG regulator:

Figure 6.1: Open-loop linear system with process and measurement noises
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− First an estimator will be used to estimate the the full state using the
available output y(t)

− Then an LQ controller will be designed using the the state estimation in
place of the true (but unknown) state x(t)

6.2 Luenberger observer

Consider a process with the following state space model where y(t) denotes the
measured output and u(t) the control input:{

d
dtx(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(6.2)

We assume that x(t) cannot be measured and the goal of the observer is to
estimate x(t) based on y(t). Luenberger observer (1964) provides an estimation
of the state vector through the following di�erential equation where matrices F,
J and L have to be determined:

d

dt
x̂(t) = Fx̂(t) + Ju(t) + Ly(t) (6.3)

The estimation error e(t) is de�ned as follows:

e(t) = x(t)− x̂(t) (6.4)

Thus using (6.2) and (6.3) its time derivative reads:

ė(t) = ẋ(t)− ˙̂x(t) = Ax(t) + Bu(t)− (Fx̂(t) + Ju(t) + Ly(t)) (6.5)

Using (6.4) and the output equation y(t) = Cx(t) the preceding relationship
can be rewritten as follows:

ė(t) = Ax(t) + Bu(t)− F (x(t)− e(t))− Ju(t)− LCx(t)
= Fe(t) + (A− F− LC)x(t) + (B− J)u(t)

(6.6)

As soon as the purpose of the observer is to move the estimation error e(t)
towards zero independently of control u(t) and true state vector x(t) we choose
matrices F and J as follows: {

J = B
F = A− LC

(6.7)

Thus the dynamics of the estimation error e(t) reduces to be:

ė(t) = Fe(t) = (A− LC) e(t) (6.8)

Where matrix L shall be chosen such that all the eigenvalues of A−LC are
situated in the left half plane. Furthermore the Luenberger observer (6.3) can
now be written as follows using (6.7):

d
dt x̂(t) = (A− LC) x̂(t) + Bu(t) + Ly(t)

= Ax̂(t) + Bu(t) + L (y(t)−Cx̂(t))
(6.9)

Figure 6.2 shows the structure of the Luenberger observer.
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Figure 6.2: Luenberger observer

6.3 White noise through Linear Time Invariant (LTI)
system

6.3.1 Assumptions and de�nitions

Let's consider the following linear time invariant system which is fed by a random
vector w(t) of dimension n (which is also the dimension of the state vector x(t)):{

d
dtx(t) = Ax(t) + Bw(t)
y(t) = Cx(t)

(6.10)

We will assume that w(t) is a white noise (i.e. uncorrelated) with zero
mean Gaussian probability density function (pdf). The covariance matrix of
the Gaussian probability density function p(w) will be denoted Pw, whereas its
mean will be denoted E [w(t)] and its autocorrelation function Rw(τ) will be
denoted E

[
w(t)wT (t+ τ)

]
where E designates the expectation operator and δ

the Dirac delta function:
p(w) = 1

(2π)n/2
√

det(Pw)
e−

1
2
wTP−1

w w

E [w(t)] = mw(t) = 0
Rw(τ) = E

[
w(t)wT (t+ τ)

]
= Pwδ(τ) where Pw = PT

w > 0

(6.11)

We said that w(t) is a wide-sense stationary (WSS) random process because
the two following properties hold:

− The mean mw(t) = E [w(t)] of w(t) is constant;

− The autocorrelation function Rw(t, t+τ) = E
[
(w(t)−mw(t)) (w(t+ τ)−mw(t+ τ))T

]
just depends on the time di�erence τ = (t+ τ)− t.

6.3.2 Mean and covariance matrix of the state vector

As far as w(t) is a random vector it is clear from (6.10) that the state vector
x(t) and the output vector y(t) are also a random vectors. Let mx(0) be the
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mean of the state vector x(t) at t = 0 and Px(0) be the covariance matrix of
the state vector x(t) at t = 0. Then it can be shown that x(t) is a Gaussian
random vector:

− with mean mx(t) given by:

mx(t) = E [x(t)] = eAtmx(0) (6.12)

− with covariance matrix Px(t) which is de�ned as follows:

Px(t) = E
[
(x(t)−mx(t)) (x(t)−mx(t))T

]
(6.13)

Matrix Px(t) is the solution of the following di�erential Lyapunov equa-
tion:

Ṗx(t) = APx(t) + Px(t)AT + BPwBT (6.14)

Assuming that the system is stable (i.e. all the eigenvalues of the state matrix
A have negative real part) the random process x(t) will become stationary after
a certain amount of time: its mean mx(t) will be zero whereas the value of its
covariance matrix Px(t) will turn to be the solution Px of the following algebraic
Lyapunov equation:

APx + PxA
T + BPwBT = 0 (6.15)

Thus after a certain amount of time the state vector x(t) as well as the
output vector y(t) are wide-sense stationary (WSS) random processes.

6.3.3 Autocorrelation function of the stationary output vector

The autocorrelation function Ry(τ) (which may be a matrix for vector signal)
of the output vector y(t) is de�ned as follows:

Ry(τ) = E
[
(y(t)−Cmx(t)) (y(t+ τ)−Cmx(t+ τ))T

]
= CRx(τ)CT

(6.16)

Where Rx(τ) is the autocorrelation function of the stationary state vector
x(t):

Rx(τ) = E
[
(x(t)−mx(t)) (x(t+ τ)−mx(t+ τ))T

]
(6.17)

It is clear from the de�nition of the autocorrelation function Ry(τ) that the
stationary value of the covariance matrix Py of y(t) is equal to the value of the
autocorrelation function Ry(τ) at τ = 0:

Py = E
[
(y(t)−Cmx(t)) (y(t)−Cmx(t))T

]
= CPxC

T

= Ry(τ)|τ=0

(6.18)

The power spectral density (psd) Sy(f) of a stationary process y(t) is given
by the Fourier transform of its autocorrelation function Ry(τ):

Sy(f) =

∫ +∞

−∞
Ry(τ)e−j2πfτdτ (6.19)
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Let Sy(s) be the (one-sided) Laplace transform of the autocorrelation func-
tion Ry(τ):

Sy(s) = L [Ry(τ)] =

∫ +∞

0
Ry(τ)e−sτdτ (6.20)

It can be seen that the power spectral density (psd) Sy(f) of y(t) can be
obtained thanks to the Laplace transform Sy(s) of Ry(τ) as:

Sy(f) = Sy(−s)|s=j2πf + Sy(s)|s=j2πf (6.21)

Indeed we can write:

Sy(f) =
∫ +∞
−∞ Ry(τ)e−j2πfτdτ

=
∫ 0
−∞Ry(τ)e−j2πfτdτ +

∫ +∞
0 Ry(τ)e−j2πfτdτ

=
∫ 0
−∞Ry(τ)e−sτdτ

∣∣∣
s=j2πf

+
∫ +∞

0 Ry(τ)e−sτdτ
∣∣∣
s=j2πf

=
∫ +∞

0 Ry(−τ)esτdτ
∣∣∣
s=j2πf

+
∫ +∞

0 Ry(τ)e−sτdτ
∣∣∣
s=j2πf

(6.22)

As far as Ry(τ) is an even function we get:

Ry(−τ) = Ry(τ)

⇒ Sy(f) =
∫ +∞

0 Ry(τ)esτdτ
∣∣∣
s=j2πf

+
∫ +∞

0 Ry(τ)e−sτdτ
∣∣∣
s=j2πf

(6.23)

The preceding equations reads:

Sy(f) = Sy(−s)|s=j2πf + Sy(s)|s=j2πf (6.24)

Furthermore let G(s) be the transfer function of the linear system, which is
assumed to be stable:

G(s) = C (sI−A)−1 B (6.25)

Then it can be shown that:

Sy(−s) + Sy(s) = G(−s)PwG
T (s)

⇒ Sy(f) = G(−s)PwG
T (s)

∣∣
s=j2πf

(6.26)

The preceding relationship indicates that the (one-sided) Laplace transform
Sy(s) can be obtained by identifying G(−s)PwG

T (s) to the sum Sy(−s)+Sy(s)
where Sy(s) is a stable transfer function. Furthermore using the initial value
theorem on the (one-sided) Laplace transform Sy(s) we get the following result:

Py = Ry(τ)|τ=0 = lim
s→∞

sSy(s) (6.27)

Example 6.1. Let G(s) be a �rst order system with time constant a and let
w(t) be a white noise with covariance Pw:{

G(s) = 1
1+as

Rw(τ) = E
[
w(t)wT (t+ τ)

]
= Pwδ(τ) where Pw = PT

w > 0
(6.28)

One realization of transfer function G(s) is the following:{
ẋ(t) = − 1

ax(t) + w(t)
y(t) = 1

ax(t)
(6.29)
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That is: {
ẋ(t) = Ax(t) + Bw(t)
y(t) = Cx(t)

(6.30)

Where: 
A = − 1

a
B = 1
C = 1

a

⇒ G(s) = C(sI−A)−1B (6.31)

As far as a > 0 the system is stable. The covariance matrix Px(t) is de�ned
as follows:

Px(t) = E
[
(x(t)−mx(t)) (x(t)−mx(t))T

]
(6.32)

Where matrix Px(t) is the solution of the following di�erential Lyapunov
equation:

Ṗx(t) = APx(t) + Px(t)AT + BPwBT = −2

a
Px(t) + Pw (6.33)

We get:

Px(t) =
a

2
Pw +

(
Px(0)− a

2
Pw

)
e−

2t
a (6.34)

The stationary value Px of the covariance matrix Px(t) of the state vector
x(t) is obtained as t→∞:

Px = lim
t→∞

Px(t) =
a

2
Pw (6.35)

Consequently the stationary value Py of the covariance matrix of the output
vector y(t) reads:

Py = CPxC
T =

1

a2
× a

2
Pw =

Pw

2a
(6.36)

This result can be retrieved thanks to the power spectral density (psd) of the
output vector y(t). Indeed let's compute the power spectral density (psd) Sy(f)
of the output stationary process y(t) of the system:

Sy(f) =

∫ +∞

−∞
Ry(τ)e−j2πfτdτ = G(−s)PwG

T (s)
∣∣
s=j2πf

(6.37)

We get:

G(−s)PwG
T (s) = Pw

(1+as)(1−as) = Pw
1−(as)2

⇒ Sy(f) = G(−s)PwG
T (s)

∣∣
s=j2πf

= Pw
1+(2πfa)2

(6.38)

Furthermore let's decompose Pw
1−(as)2

as the sum Sy(−s) + Sy(s):

Pw

1− (as)2
=

Pw

2

1

1− as
+

Pw

2

1

1 + as
= Sy(−s) + Sy(s) (6.39)

Thus by identi�cation we get for the stable transfer function Sy(s):

Sy(s) =
Pw

2

1

1 + as
(6.40)
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The autocorrelation function Ry(τ) is given by the inverse Laplace transform
of Sy(s):

Ry(τ) = L−1 [Sy(s)] = L−1

[
Pw

2a

1

1/a+ s

]
=

Pw

2a
e−

τ
a ∀ τ ≥ 0 (6.41)

As far as Ry(τ) is an even function we get:

Ry(τ) =
Pw

2a
e
τ
a ∀ τ ≤ 0 (6.42)

Thus the autocorrelation function Ry(τ) for τ ∈ R reads:

Ry(τ) =
Pw

2a
e−
|τ |
a ∀ τ ∈ R (6.43)

Finally we use the initial value theorem on the (one-sided) Laplace transform
Sy(s) to get the following result:

Py = Ry(τ)|τ=0 = lim
s→∞

sSy(s) =
Pw

2a
(6.44)

�

6.4 Kalman-Bucy �lter

6.4.1 Linear Quadratic Estimator

Let's consider the following linear time invariant model where w(t) and v(t) are
random vectors which represents the process noise and the measurement noise
respectively: {

d
dtx(t) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t)

(6.45)

The Kalman-Bucy �lter is a state estimator that is optimal in the sense that
it minimizes the covariance of the estimated error e(t) = x(t) − x̂(t) when the
following conditions are met:

− Random vectors w(t) and v(t) are zero mean Gaussian noise. Let p(w)
and p(v) be the probability density function of random vectors w(t) and
v(t). Then:  p(w) = 1

(2π)n/2
√

det(Pw)
e−

1
2
wTP−1

w w

p(v) = 1

(2π)p/2
√

det(Qv)
e−

1
2
vTQ−1

v v
(6.46)

− Random vectors w(t) and v(t) are white noise (i.e. uncorrelated). The
covariance matrices of w(t) and v(t) will be denoted Pw and Qv respec-
tively: {

E
[
w(t)wT (t+ τ)

]
= Pwδ(τ) where Pw > 0

E
[
v(t)vT (t+ τ)

]
= Qvδ(τ) where Qv > 0

(6.47)
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− The cross correlation between w(t) and v(t) is zero:

E
[
w(t)vT (t+ τ)

]
= 0 (6.48)

The Kalman-Bucy �lter is a special form of the Luenberger observer (6.9):

d

dt
x̂(t) = Ax̂(t) + Bu(t) + L(t) (y(t)−Cx̂(t)) (6.49)

Where the time dependent observer gain L(t), also called Kalman gain, is
given by:

L(t) = Π(t)CTQ−1
v (6.50)

The symmetric positive de�nite matrix Π(t) = ΠT (t) > 0 is the solution of
the following Riccati equation:

Π̇(t) = AΠ(t) + Π(t)AT −Π(t)CTQ−1
v CΠ(t) + Pw (6.51)

The suboptimal observer gain L = ΠCTQ−1
v is obtained thanks to the pos-

itive semi-de�nite steady state solution of the following algebraic Riccati equa-
tion: {

L = ΠCTQ−1
v

0 = AΠ + ΠAT −ΠCTQ−1
v CΠ + Pw

(6.52)

Kalman gain shall be tuned when the covariance matrices Pw and Qv are
not known:

− When measurements y(t) are very noisy the coe�cients of covariance ma-
trix Qv are high and Kalman gain will be quite small;

− On the other hand when we do not trust very much the linear time invari-
ant model of the process the coe�cients of covariance matrix Pw are high
and Kalman gain will be quite high.

From a practical point of view matrices Pw and Qv are design parameters
which are tuned to achieve the desired properties of the closed-loop.

6.4.2 Sketch of the proof

To get this result let's consider the following estimation error e(t):

e(t) = x(t)− x̂(t) (6.53)

Thus using (6.45) and (6.49) its time derivative reads:

ė(t) = ẋ(t)− ˙̂x(t)
= Ax(t) + Bu(t) + w(t)− (Ax̂(t) + Bu(t) + L(t) (y(t)−Cx̂(t)))
= Ae(t) + w(t)− L(t) (Cx(t) + v(t)−Cx̂(t))
= (A− L(t)C) e(t) + w(t)− L(t)v(t)

(6.54)
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Since v(t) and w(t) are zero mean white noise their weighted sum n(t) =
w(t)− L(t)v(t) is also a zero mean white noise. We get:

n(t) = w(t)− L(t)v(t)⇒ ė(t) = (A− L(t)C) e(t) + n(t) (6.55)

The covariance matrix QN of n(t) reads:

QN = E
[
n(t)nT (t)

]
= E

[
(w(t)− L(t)v(t)) (w(t)− L(t)v(t))T

]
= Pw + L(t)QvL

T (t)

(6.56)

Then the covariance matrix Π(t) of e(t) is obtained thanks to (6.14):

Π̇(t) = (A− L(t)C) Π(t) + Π(t) (A− L(t)C)T + QN

= AΠ(t) + Π(t)AT − L(t)CΠ(t)−Π(t)CTL(t)T + QN
(6.57)

By using the expression (6.56) of the covariance matrix QN of n(t) we get:

Π̇(t) = AΠ(t) + Π(t)AT + Pw

− L(t)CΠ(t)−Π(t)CTL(t)T + L(t)QvL
T (t) (6.58)

Let's complete the square of −L(t)CΠ(t)−Π(t)CTL(t)T + L(t)QvL
T (t). First

we will focus on the scalar case where we try to minimize the following quadratic
function f(L) where Qv > 0:

f(L) = −2LCΠ + QvL
2 (6.59)

Completing the square of f(L) means writing f(L) as follows:

f(L) = Q−1
v (LQv −ΠC)2 −Π2C2Q−1

v (6.60)

Then it is clear that f(L) is minimal when LQv−ΠC and that the minimal
value of f(L) is −Π2C2Q−1

v . This approach can be extended to the matrix case.
When we complete the square of −L(t)CΠ(t) − Π(t)CTL(t)T + L(t)QvL

T (t)
we get:

− L(t)CΠ(t)−Π(t)CTL(t)T + L(t)QvL
T (t) =(

L(t)Qv −Π(t)CT
)
Q−1
v

(
L(t)Qv −Π(t)CT

)T
−Π(t)CTQ−1

v CΠ(t) (6.61)

Using the preceding relationship within (6.58) reads:

Π̇(t) = AΠ(t) + Π(t)AT + Pw

+
(
L(t)Qv −Π(t)CT

)
Q−1
v

(
L(t)Qv −Π(t)CT

)T
−Π(t)CTQ−1

v CΠ(t) (6.62)
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In order to �nd the optimum observer gain L(t) which minimizes the covariance
matrix Π(t) we choose L(t) such that Π(t) decreases by the maximum amount
possible at each instant in time. This is accomplished by setting L(t) as follows:

L(t)Qv −Π(t)CT = 0⇔ L(t) = Π(t)CTQ−1
v (6.63)

Once L(t) is set such that L(t)Qv − Π(t)CT = 0 the matrix di�erential
equation (6.62) reads as follows:

Π̇(t) = AΠ(t) + Π(t)AT −Π(t)CTQ−1
v CΠ(t) + Pw (6.64)

This is Equation (6.51).

6.5 Duality principle

In the chapter dedicated to the closed-loop solution of the in�nite horizon Linear
Quadratic Regulator (LQR) problem we have seen that the minimization of the
cost functional J(u(t)):

J(u(t)) =
1

2

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt (6.65)

Under the constraint {
d
dtx(t) = Ax(t) + Bu(t)
x(0) = x0

(6.66)

This leads to solving the following algebraic Riccati equation where Q =
QT ≥ 0 (thus Q is symmetric and positive semi-de�nite matrix), and R =
RT > 0 is a symmetric and positive de�nite matrix:

0 = PA + ATP−PBR−1BTP + Q (6.67)

The constant suboptimal Kalman gain K and the suboptimal stabilizing
control u(t) are then de�ned as follows :{

u(t) = −Kx(t)
K = R−1BTP

(6.68)

Then let's compare the preceding relationships with the following relation-
ships which are actually those which have been seen in (6.52):{

L = ΠCTQ−1
v

0 = ΠAT + AΠ−ΠCTQ−1
v CΠ + Pw

(6.69)

Then it is clear than the duality principle on Table 6.1 between observer and
controller gains apply.
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Controller Observer

A AT

B CT

C BT

K LT

P = PT ≥ 0 Π = ΠT ≥ 0
Q = QT ≥ 0 Pw = PT

w ≥ 0
R = RT > 0 Qv = QT

v > 0
A−BK AT −CTLT

Table 6.1: Duality principle

6.6 Controller transfer function

First let's assume that a full state feedback u(t) = −Kx(t) is applied on the
following system: {

d
dtx(t) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t)

(6.70)

Then the dynamics of the closed-loop system is given by:

u(t) = −Kx(t)⇒ d

dt
x(t) = (A−BK)x(t) + w(t) (6.71)

If the full state vector x(t) is assumed not to be available the control u(t) =
−Kx(t) cannot be computed. Then an observer has to be added. We recall the
dynamics of the observer (see (6.9)):

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t)−Cx̂(t)) (6.72)

And the control u(t) = −Kx(t) has to be changed into:

u(t) = −Kx̂(t) (6.73)

Gathering (6.72) and (6.73) leads to the state space representation of the
controller: [

˙̂x(t)
−u(t)

] [
AK BK

CK DK

] [
x̂(t)
y(t)

]
(6.74)

Where: [
AK BK

CK DK

]
=

[
A−BK− LC L

K 0

]
(6.75)

The controller transfer matrix K(s) is the relationship between the Laplace
transform of its output, U(s), and the Laplace transform of its input, Y (s). By
taking the Laplace transform of equation (6.72) and (6.73) (and assuming no
initial condition) we get:{

sX̂(s) = AX̂(s) + BU(s) + L
(
Y (s)−CX̂(s)

)
U(s) = −KX̂(s)

(6.76)
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Figure 6.3: Block diagram of the controller

We �nally get:
U(s) = −K(s)Y (s) (6.77)

where the controller transfer matrix K(s) reads:

K(s) = K (sI−A + BK + LC)−1 L (6.78)

The preceding relationship can be equivalently represented by the block
diagram on Figure 6.1.

6.7 Separation principle

Let e(t) be the state estimation error:

e(t) = x(t)− x̂(t) (6.79)

Using (6.73) we get the following expressions for the dynamics of the state
vector x(t):

ẋ(t) = Ax(t) + Bu(t) + w(t)
= Ax(t)−BKx̂(t) + w(t)
= Ax(t)−BK (x(t)− e(t)) + w(t)
= (A−BK)x(t) + BKe(t) + w(t)

(6.80)

In addition using (6.72) and y(t) = Cx(t)+v(t) we get the following expres-
sions for the dynamics of the estimation error e(t) :

ė(t) = ẋ(t)− ˙̂x(t)
= Ax(t) + Bu(t) + w(t)− (Ax̂(t) + Bu(t) + L (y(t)−Cx̂(t)))
= (A− LC) e(t) + w(t)− Lv(t)

(6.81)

Thus the closed-loop dynamics is de�ned as follows:[
ẋ(t)
ė(t)

]
=

[
A−BK BK

0 A− LC

] [
x(t)
e(t)

]
+

[
w(t)

w(t)− Lv(t)

]
(6.82)
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From equations (6.82) it is clear that the 2n eigenvalues of the closed-loop
are just the union between the n eigenvalues of the state feedback coming from
the spectrum of A − BK and the n eigenvalues of the state estimator coming
from the spectrum of A − LC . This result is called the separation principle.
More precisely the separation principle states that the optimal control law is
achieved by adopting the following two steps procedure:

− First assume an exact measurement of the full state to solve the determin-
istic Linear Quadratic (LQ) control problem which minimizes the following
cost functional J(u(t)):

J(u(t)) =
1

2

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt (6.83)

This leads to the following stabilizing control u(t) :

u(t) = −Kx(t) (6.84)

Where the Kalman gain K = R−1BTP is obtained thanks to the positive
semi-de�nite solution P of the following algebraic Riccati equation:

0 = PA + ATP−PBR−1BTP + Q (6.85)

− Then obtain an optimal estimate of the state which minimizes the follow-
ing estimated error covariance:

E
[
eT (t)e(t)

]
= E

[
(x(t)− x̂(t))T (x(t)− x̂(t))

]
(6.86)

This leads to the Kalman-Bucy �lter:

d

dt
x̂(t) = Ax̂(t) + Bu(t) + L(t) (y(t)−Cx̂(t)) (6.87)

And the stabilizing control u(t) now reads:

u(t) = −Kx̂(t) (6.88)

The observer gain L = ΠCTQ−1
v is obtained thanks to the positive semi-

de�nite solution Π of the following algebraic Riccati equation:

0 = AΠ + ΠAT −ΠCTQ−1
v CΠ + Pw (6.89)

It is worth noticing that observer dynamics much be faster than the desired
state feedback dynamics.

Furthermore the dynamics of the state vector x(t) is slightly modi�ed
when compared with an actual state feedback control u(t) = −Kx(t).
Indeed we have seen in (6.80) that the dynamics of the state vector x(t)
is now modi�ed and depends on e(t) and w(t):

ẋ(t) = (A−BK)x(t) + BKe(t) + w(t) (6.90)
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6.8 Loop Transfer Recovery

6.8.1 Lack of guaranteed robustness of LQG design

According to the choice of matrix L which drives the dynamics of the error e(t)
the closed-loop may not be stable. So far LQR is shown to have either in�nite
gain margin (stable open-loop plant) or at least −6 dB gain margin and at
least sixty degrees phase margin. In 1978 John Doyle1 showed that all the nice
robustness properties of LQR design can be lost once the observer is added and
that LQG design can exhibit arbitrarily poor stability margins. Around 1981
Doyle along with Gunter Stein followed this line by showing that the loop shape
itself will, in general, change when a �lter is added for estimation. Fortunately
there is a way of designing the Kalman-Bucy �lter so that the full state feedback
properties are recovered at the input of the plant. This is the purpose of the
Loop Transfer Recovery design. The LQG/LTR design method was introduced
by Doyle and Stein in 1981 before the development of H2 and H∞ methods
which is a more general approach to directly handle many types of modelling
uncertainties.

6.8.2 Doyle's seminal example

Consider the following state space realization:
[
ẋ1(t)
ẋ2(t)

]
=

[
1 1
0 1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t) +

[
1
1

]
w(t)

y(t) =
[

1 0
] [ x1(t)

x2(t)

]
+ v(t)

(6.91)

where w(t) and v(t) are Gaussian white noise with covariance matrices Pw

and Qv, respectively: 
Pw = σ

[
1 1
1 1

]
σ > 0
Qv = 1

(6.92)

Let J(u(t)) be the following cost functional to be minimized :

J(u(t)) =
1

2

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt (6.93)

where: 
Q = q

[
1 1
1 1

]
q > 0
R = 1

(6.94)

Applying the separation principle the optimal control law is achieved by
adopting the following two steps procedure:

1Doyle J.C., Guaranteed margins for LQG regulators, IEEE Transactions on Automatic
Control, Volume: 23, Issue: 4, Aug 1978
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− First assume an exact measurement of the full state to solve the determin-
istic Linear Quadratic (LQ) control problem which minimizes the following
cost functional J(u(t)):

J(u(t)) =
1

2

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt (6.95)

This leads to the following stabilizing control u(t) :

u(t) = −Kx(t) (6.96)

Where the Kalman gain K = R−1BTP is obtained thanks to the positive
semi-de�nite solution P of the following algebraic Riccati equation:

0 = PA + ATP−PBR−1BTP + Q (6.97)

We get:

P =

[
? ?
α α

]
(6.98)

And:

K = R−1BTP = α
[

1 1
]
where α = 2 +

√
4 + q > 0 (6.99)

− Then obtain an optimal estimate of the state which minimizes the follow-
ing estimated error covariance :

E
[
eT (t)e(t)

]
= E

[
(x(t)− x̂(t))T (x(t)− x̂(t))

]
(6.100)

This leads to the Kalman-Bucy �lter:

d

dt
x̂(t) = Ax̂(t) + Bu(t) + L(t) (y(t)−Cx̂(t)) (6.101)

And the stabilizing control u(t) now reads:

u(t) = −Kx̂(t) (6.102)

The observer gain L = ΠCTQ−1
v is obtained thanks to the positive semi-

de�nite solution Π of the following algebraic Riccati equation:

0 = AΠ + ΠAT −ΠCTQ−1
v CΠ + Pw (6.103)

We get:

Π =

[
β ?
β ?

]
(6.104)

And:

L = ΠCTQ−1
v = β

[
1
1

]
where β = 2 +

√
4 + σ > 0 (6.105)
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Now assume that the input matrix of the plant is multiplied by a scalar gain
∆ (nominally unit) :

ẋ(t) = Ax(t) + ∆Bu(t) +

[
1
1

]
w(t) (6.106)

In order to assess the stability of the closed-loop system we will assume no
exogenous disturbance v(t) and w(t). Then the dynamics of the closed-loop
system reads: [

ẋ(t)
˙̂x(t)

]
= Acl

[
x(t)
x̂(t)

]
(6.107)

Where:

Acl =

[
A −∆BK

LC A−BK− LC

]
=


1 1 0 0
0 1 −∆α −∆α
β 0 1− β 1
β 0 −α− β 1− α

 (6.108)

The characteristic equation of the closed-loop system is:

det (sI−Acl) = s4 + p3s
3 + p2s

2 + p1s+ p0 = 0 (6.109)

The evaluation of coe�cients p3, p2, p1 and p0 is quite tedious. Nevertheless
coe�cient p0 reads;

p0 = 1 + (1−∆)αβ (6.110)

The closed-loop system is unstable if:

p0 < 0⇔ ∆ > 1 +
1

αβ
(6.111)

With large values of α and β even a slight increase in the value of ∆ from
its nominal value will render the closed-loop system to be unstable. Thus the
phase margin of the LQG control-loop can be almost 0. This example clearly
shows that the robustness of the LQG control-loop to modelling uncertainty is
not guaranteed.

6.8.3 Loop Transfer Recovery (LTR) design

Linear Quadratic (LQ) controller and the Kalman-Bucy �lter (KF) alone have
very good robustness property. Nevertheless we have seen with Doyle's seminal
example that Linear Quadratic Gaussian (LQG) control which simultaneously
involves a Linear Quadratic (LQ) controller and a Kalman-Bucy �lter (KF) does
not have any guaranteed robustness. Therefore the LQG / LTR design tries to
recover a target open-loop transfer function. The target loop transfer function
is either:

− the Linear Quadratic (LQ) control open-loop transfer function, which is
KΦ(s)B

− or the Kalman-Bucy �lter (KF) open-loop transfer function, which is
CΦ(s)L.



126 Chapter 6. Linear Quadratic Gaussian (LQG) regulator

Let ρ be a parameter design of either design matrix Q or matrix Pw and
G(s) the transfer function of the plant:

G(s) = CΦ(s)B (6.112)

Then two types of Loop Transfer Recovery are possible:

− Input recovery: the objective is to tune ρ such that:

lim
ρ→∞

K(s)G(s) = KΦ(s)B (6.113)

− Output recovery: the objective is to tune ρ such that:

lim
ρ→∞

G(s)K(s) = CΦ(s)L (6.114)

We recall that initial design matrices Q0 and R0 are set to meet control
requirements whereas initial design matrices Pw0 and Qv0 are set to meet ob-
server requirements. Let ρ be a parameter design of either design matrix Pw or
matrix Q. Weighting parameter ρ is tuned to make a trade-o� between initial
performances and stability margins and is set according to the type of Loop
Transfer Recovery:

− Input recovery: a new observer design with the following design matrices:{
Pw = Pw0 + ρ2BBT

Qv = Pv0
(6.115)

− Output recovery: a new controller is designed with the following design
matrices: {

Q = Q0 + ρ2CTC
R = R0

(6.116)

The preceding relationship is simply obtained by applying the duality
principle.

To apply Loop Transfer Recovery the transfer matrix CΦ(s)B shall be min-
imum phase (i.e. no zero with positive real part) and square (meaning that the
system has the same number of inputs and outputs).

Example 6.2. Let's the double integrator plant:
A =

[
0 1
0 0

]
B =

[
0
1

]
C =

[
1 0

] (6.117)

Let: 
K =

[
k1 k2

]
L =

[
l1
l2

]
(6.118)
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Then the controller transfer matrix is given by (6.78):

K(s) = K (sI−A + BK + LC)−1 L

=
[
k1 k2

] [ s+ l1 −1
k1 + l2 s+ k2

]−1 [
l1
l2

]
= (k1l1+k2l2)s+k1l2

s2+(k2+l1)s+k2l1+k1+l2

(6.119)

From (6.116) we set Q and R as follows:
Q0 = 0
Q = Q0 + ρ2CTC
R = R0 = 1

⇒ Q = ρ2CTC (6.120)

The Kalman gain K = R−1BTP is then obtained thanks to the positive
semi-de�nite solution P of the following algebraic Riccati equation:

0 = PA + ATP−PBR−1BTP + Q⇒ P =

[
? ?
ρ
√

2ρ

]
⇒ K = R−1BTP =

[
ρ
√

2ρ
]
≡
[
k1 k2

] (6.121)

Consequently:

limρ→∞K(s) = limρ→∞
(k1l1+k2l2)s+k1l2

s2+(k2+l1)s+k2l1+k1+l2

= k1l1s+k1l2
k1

= l1s+ l2

(6.122)

The transfer function of the plant reads:

G(s) = CΦ(s)B = C (sI−A)−1 B =
1

s2
(6.123)

Therefore:
lim
ρ→∞

K(s)G(s) = fracl1s+ l2s
2 (6.124)

Note that:
CΦ(s)L = fracl1s+ l2s

2 (6.125)

Therefore the loop transfer function has been recovered.
�

6.9 Proof of the Loop Transfer Recovery condition

6.9.1 Loop transfer function with observer

The Loop Transfer Recovery design procedure tries to recover a target loop
transfer function, here the open-loop full state LQ control, despite the use of
the observer.

The lecture of Faryar Jabbari, from the Henry Samueli School of Engineer-
ing, University of California, is the primary source of this section 2. We will �rst

2http://gram.eng.uci.edu/ fjabbari/me270b/chap9.pdf
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Figure 6.4: Block diagram for state space realization

Figure 6.5: Loop transfer function with full state feedback evaluated when the
loop is broken

show what happen when adding an observer-based closed-loop on the following
system where y(t) is the actual output of the system (not the controlled output):{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(6.126)

Taking the Laplace transform (assuming initial conditions to be zero), we
get: {

sX(s) = AX(s) + BU(s)
Y (s) = CX(s)

⇒
{
X(s) = Φ(s)BU(s)
Y (s) = CX(s)

(6.127)

Where:
Φ(s) = (sI−A)−1 (6.128)

The preceding relationships can be represented by the block diagram on
Figure 6.4. Let K be a full state feedback gain matrix such that the closed-
loop system is asymptotically stable, i.e. the eigenvalues of A −BK lie in the
left half s-plane, and the open-loop transfer function when the loop is broken
at the input point of the given system meets some given frequency dependent
speci�cations. The state feedback control uf with full state available is:

uf (t) = −Kx(t)⇔ Uf (s) = −KX(s) (6.129)

We will focus on the regulator problem and thus r = 0. As shown in Figure
6.5 the loop transfer function is evaluated when the loop is broken at the input
point of the system. The so called target loop transfer function Lt(s) is:

Uf (s) = Lt(s)U(s) where Lt = −KΦ(s)B (6.130)
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Figure 6.6: Loop transfer function with observer evaluated when the loop is
broken

If the full state vector x(t) is assumed not to be available, the control u(t) =
−Kx(t) cannot be computed. We then add an observer with the following
expression:

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t)−Cx̂(t)) (6.131)

The observed state feedback control uo is:

uo(t) = −Kx̂(t) (6.132)

Taking the Laplace transform would result in:{
sX̂(s) = AX̂(s) + BU(s) + L

(
Y (s)−CX̂(s)

)
Uo(s) = −KX̂(s)

(6.133)

The preceding relationships can be represented by the block diagram on
Figure 6.6. Then loop transfer function evaluated when the loop is broken at
the input point of the given system becomes:{

X̂(s) =
(
Φ(s)−1 + LC

)−1
(BU(s) + LY (s))

Y (s) = CΦ(s)BU(s)

⇒ X̂(s) =
(
Φ(s)−1 + LC

)−1
(BU(s) + LCΦs)BU(s))

⇔ X̂(s) =
(
Φ(s)−1 + LC

)−1
(B + LCΦ(s)B)U(s)

⇔ X̂(s) =
(
Φ(s)−1 + LC

)−1
BU(s) +

(
Φ(s)−1 + LC

)−1
LCΦ(s)BU(s)

(6.134)

Note that according to the choice of the observer matrix L the controller
may not be stable. In addition, equation (6.133), in general, is not the same as
(6.129).

The Loop Transfer Recovery condition indicates that if the following re-
lationship holds then we get for Uo(s) the same expression as the full state
feedback Uf (s):

L (I + CΦ(s)L)−1 = B (CΦ(s)B)−1 (6.135)
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6.9.2 Application of matrix inversion lemma to LTR

The matrix inversion lemma 3 is the equation:

(A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1 (6.136)

Simple manipulations show that:(
Φ(s)−1 + LC

)−1
= Φ(s)

(
I− L (I + CΦ(s)L)−1 CΦ(s)

)
(6.137)

So we have for the �rst term to the right of equation (6.134):(
Φ(s)−1 + LC

)−1
B = Φ(s)

(
I− L (I + CΦ(s)L)−1 CΦ(s)B

)
(6.138)

And for the second term to the right of equation (6.134):(
Φ(s)−1 + LC

)−1
LCΦ(s)B = Φ(s)

(
I− L (I + CΦ(s)L)−1 CΦ(s)

)
LCΦ(s)B

= Φ(s)
(
L− L (I + CΦ(s)L)−1 CΦ(s)L

)
CΦ(s)B

= Φ(s)L
(
I− (I + CΦ(s)L)−1 CΦ(s)L

)
CΦ(s)B

(6.139)
In addition, applying again the matrix inversion lemma to the following

equality, we have:
(I + A)−1 = I− (I + A)−1 A

⇒ (I + A)−1 A = I− (I + A)−1 (6.140)

Thus
(I + CΦ(s)L)−1 CΦ(s)L = I− (I + CΦ(s)L)−1 (6.141)

Applying this result to equation (6.139) leads to:(
Φ(s)−1 + LC

)−1
LCΦ(s)B = Φ(s)L (I + CΦ(s)L)−1 CΦ(s)B (6.142)

And here comes the light! Indeed, if we had:

L (I + CΦ(s)L)−1 = B (CΦ(s)B)−1 (6.143)

Then equations (6.142) and (6.138) become:{ (
Φ(s)−1 + LC

)−1
LCΦ(s)B = Φ(s)L (I + CΦ(s)L)−1 CΦ(s)B = Φ(s)B(

Φ(s)−1 + LC
)−1

B = Φ(s)
(
I− L (I + CΦ(s)L)−1 CΦ(s)B

)
= Φ(s) (I−B)

(6.144)
And thus:

X̂(s) = Φ(s)BU(s)⇒ Uo(s) = −KX̂(s) = −KΦ(s)BU(s) (6.145)

That is, we get for Uo(s) the same expression as the full state feedback given
in (6.129).

3D. J. Tylavsky, G. R. L. Sohie, Generalization of the matrix inversion lemma, Proceedings
of the IEEE, Year: 1986, Volume: 74, Issue: 7, Pages: 1050 - 1052
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6.9.3 Setting the Loop Transfer Recovery design parameter

Condition (6.135) is not an easy condition to satisfy. The traditional approaches
to this problem is to design matrix L of the observer such that the condition is
satis�ed asymptotically and ρ a design parameter.

One way to asymptotically satisfy (6.135) is to set L such that:

lim
ρ→∞

L

ρ
= BW0 (6.146)

where W0 is a non singular matrix.

Indeed in this case we have:

L (I + CΦ(s)L)−1 = L
ρ ρ (I + CΦ(s)L)−1

= L
ρ

(
1
ρI + CΦ(s)L

ρ

)−1 (6.147)

and as ρ→∞:

limρ→∞ L (I + CΦ(s)L)−1 = limρ→∞
L
ρ

(
1
ρI + CΦ(s)L

ρ

)−1

= BW0 (CΦ(s)BW0)−1

= B (CΦ(s)B)−1

(6.148)

Now let's concentrate how (6.146) can be achieved. First it can be shown
that if the transfer function CΦ(s)B is right invertible with no unstable zeros
then for some unitary matrix W (WW T = I) and some symmetric positive
de�nite matrix N (N = NT > 0) the following relationship holds:

R = ρ2N
Q = CTC
K = R−1BTP

⇒ lim
ρ→∞

K = R−0.5WC =
1

ρ
N−0.5WC (6.149)

Applying the duality principle we have the same result for the observer gain
L: 

Qv = ρ2N
Pw = BBT

L = ΠCTQ−1
v

⇒ lim
ρ→∞

L = BWQ−0.5
v =

1

ρ
BWN−0.5 (6.150)

Then if we replace Pw = BBT by Pw = Pw0 + ρ2BBT and Qv by Pv0 we
get:{

Pw = Pw0 + ρ2BBT

Qv = Pv0
⇒ lim

ρ→∞
L = ρBWP−0.5

v0 ⇔ lim
ρ→∞

L

ρ
= BWP−0.5

v0

(6.151)

By setting W0 = WP−0.5
v0 we �nally get (6.146):

lim
ρ→∞

L

ρ
= BW0 (6.152)



132 Chapter 6. Linear Quadratic Gaussian (LQG) regulator

Figure 6.7: Standard feedback control loop

6.10 H2 robust control design

Robust control problems are solved in a dedicated framework presented on Fig-
ure 6.7 where:

− G(s) is the transfer matrix of the generalized plant;

− K(s) is the transfer matrix of the controller ;

− u is the control vector of the generalized plant G(s) which is computed
by the controller K(s);

− w is the input vector formed by exogenous inputs such as disturbances or
noise;

− y is the vector of output available for the controller K(s);

− z is the performance output vector, also called the controlled output, that
is the vector that allows to characterize the performance of the closed-
loop system. This is a virtual output used only for design that we wish to
maintain as small as possible.

It is worth noticing that in the standard feedback control loop on Figure 6.7
all reference signals are set to zero.

The H2 control problem consists in �nding the optimal controller K(s) which
minimizes ‖Tzw(s)‖2, that is the H2 norm of the transfer between the exogenous
inputs vector w and the vector of interest variables z.

The general form of the realization of a plant is the following: ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (6.153)

Linear-quadratic-Gaussian (LQG) control is a special case of H2 optimal
control applied to stochastic system.
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Let's consider the following system realization:{
ẋ(t) = Ax(t) + B2u(t) + d(t)
y(t) = C2x(t) + n(t)

(6.154)

Where d(t) and n(t) are white noise with the intensity of their autocor-
relation function equals to Wd and Wn respectively. Denoting by E() the
mathematical expectation we have:

E

([
d(t)
n(t)

] [
dT (τ) nT (τ)

])
=

[
Wd 0

0 Wn

]
δ(t− τ) (6.155)

The LQG problem consists in �nding a controller u(s) = K(s)y(s) such that
the following performance index is minimized:

JLQG = E

(
lim
T→∞

∫ T

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

)
(6.156)

Where matrices Q ans R are symmetric and (semi)-positive de�nite matri-
ces: {

Q = QT ≥ 0
R = RT > 0

(6.157)

This problem can be cast as the H2 optimal control framework in the fol-
lowing manner. De�ne signal z(t) whose norm is to be minimized as follows:

z(t) =

[
Q0.5 0

0 R0.5

] [
x(t)
u(t)

]
(6.158)

And represent the stochastic inputs d(t) and n(t) as a function of the vector
w(t) of exogenous disturbances :[

d(t)
n(t)

]
=

[
W0.5

d 0
0 W0.5

n

]
w(t) (6.159)

Where w(t) is a white noise process of unit intensity. Then the LQG cost
function reads as follows:

JLQG = E

(
lim
T→∞

∫ T

0
zT (t)z(t)dt

)
= ‖Tzw(s)‖22 (6.160)

And the generalised plant reads as follows: ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (6.161)

Where: 

B1 =
[

W0.5
d 0

]
C1 =

[
Q0.5

0

]

D12 =

[
0

R0.5

]
D21 =

[
0 W0.5

n

]
(6.162)
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It follows that: {
B1w(t) =

[
W0.5

d 0
]
w(t) = d(t)

D21w(t) =
[

0 W0.5
n

]
w(t) = n(t)

(6.163)

And:

zT (t)z(t) = (C1x(t) + D12w(t))T (C1x(t) + D12w(t))
= xT (t)Qx(t) + uT (t)Ru(t)

(6.164)

Thus costs (6.156) and (6.160) are equivalent.


