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Introduction

The application of optimal control theory to the practical design of multivariable control systems started in the 1960s1 : in 1957 R. Bellman applied dynamic programming to the optimal control of discrete-time systems. His procedure resulted in nonlinear feedback schemes. By 1958, L.S. Pontryagin has developed the maximum principle relying on the calculus of variations developed by L. Euler (1707-1783). He solved the minimum-time problem, deriving in 1962 an on/o relay control law as an optimal control. In 1960 three major papers were published by R. Kalman and coworkers, working in the U.S. One of these publicized the vital work of Lyapunov in the time-domain control of nonlinear systems. The next discussed the optimal control of systems, providing the design equations for the Linear Quadratic Regulator (LQR). The third paper has provided the design equations for the discrete Kalman lter. The continuous Kalman lter was developed by Kalman and Bucy in 1961.

In control theory, Kalman introduced linear algebra and matrices, so that systems with multiple inputs and outputs could easily be treated. He also formalized the notion of optimality in control theory by minimizing a very general quadratic generalized energy function. In the period of a year, the major limitations of classical control theory were overcome, important new theoretical tools were introduced, and a new era in control theory had begun; we call it the era of modern control. In the period since 1980 the theory has been further rened under the name of H 2 theory which is out of the scope of this survey.

This lecture focuses on LQ (linear quadratic) theory and is a compilation of a number of results in the context of control system design. This has been written thanks to the references put in bibliographical section. It starts with a reminder of the main results in optimization of non linear systems which will be used as a background for this lecture. Then linear quadratic regulator (LQR) for nite nal time and for innite nal time where the solution to the LQ problem are discussed. The robustness properties of the linear quadratic regulator (LQR) are then presented where the asymptotic properties and the guaranteed gain and phase margins associated with the LQ solution are presented. The next section presents some design methods with a special emphasis on symmetric root locus. We conclude with a short section dedicated to the Linear Quadratic Tracker (LQT) where the usefulness of augmenting the plant with integrators is presented. Chapter (1908 -1988) and his students 1 . Its initial application was dedicated to the maximization of the terminal speed of a rocket. The result was derived using ideas from the classical calculus of variations.

This chapter is devoted to the main results of optimal control theory which leads to conditions for optimality.

Variation

Optimization can be accomplished by using a generalization of the dierential called variation.

Let's consider the real scalar cost function J(x) of a vector x ∈ R n . Cost function J(x) has a local minimum at x * if and only if for all δx suciently small; J(x * + δx) ≥ J(x * ) (1.1)

An equivalent statement statement is that:

∆J(x * , δx) = J(x * + δx) -J(x * ) ≥ 0 (1.2)
c The term ∆J(x * , δx) is called the increment of J(x). The optimality condition can be found by expanding J(x * + δx) in a Taylor series around the extremun point x * . When J(x) is a scalar function of multiple variables, the expansion of J(x) in the Taylor series involves the gradient and the Hessian of the cost function J(x):

-Assuming that J(x) is a dierentiable function, the term dJ(x * ) dx is the gradient of J(x) at x * ∈ R n which is the vector of R n dened by:

dJ(x * ) dx = ∇J(x * ) =     dJ(x) dx 1 . . . dJ(x) dxn     x=x * (1.3)
-Assuming that J(x) is a twice dierentiable function, the term d 2 J(x * ) dx 2

is the Hessian of J(x) at x * ∈ R n which is the symmetric n × n matrix dened by:

d 2 J(x * ) dx 2 = ∇ 2 J(x * ) =     ∂ 2 J(x) ∂x 1 ∂x 1 • • • ∂ 2 J(x) ∂x 1 ∂xn
. . .

∂ 2 J(x) ∂xn∂x 1 • • • ∂ 2 J(x) ∂xn∂xn     x=x * = d 2 J(x * ) dx i dx j 1≤i,j≤n (1.4) 
Expanding J(x * + δx) in a Taylor series around the point x * leads to the following expression, where HOT stands for Higher-Order Terms:

J(x * + δx) = J(x * ) + δx T ∇J(x * ) + 1 2 δx T ∇ 2 J(x * )δx + HOT (1.5) Thus:

∆J(x * , δx) = J(x * + δx) -J(x * ) = δx T ∇J(x * ) + 1 2 δx T ∇ 2 J(x * )δx + HOT (1.6) 
When dealing with a functional (a real scalar function of functions) δx is called the variation of x and the term in the increment ∆J(x * , δx) which is linear in δx T is called the variation of J and is denoted δJ(x * ). The variation of J(x) is a generalization of the dierential and can be applied to the optimization of a functional. Equation (1.6) can be used to develop necessary conditions for optimality. Indeed as δx approaches zero the terms δx T δx as well as HOT become arbitrarily small compared to δx. As a consequence, a necessary condition for x * to be a local extremum of the cost function J is that the rst variation of J (its gradient) at x * is zero:

δJ(x * ) = ∇J(x * ) = 0 (1.7)
A critical (or stationary) point x * is a point where δJ(x * ) = ∇J(x * ) = 0. Furthermore the sign of the Hessian provides sucient condition for a local extremum. Let's write the Hessian ∇ 2 J(x * ) at the critical point x * as follows:

∇ 2 J(x * ) =    h 11 • • • h 1n . . . . . . h n1 • • • h nn    (1.8)
-The sucient condition for the critical point x * to be a local minimum is that the Hessian is positive denite, that is that all the principal minor determinants are positive: -The sucient condition for the critical point x * to be a local maximum is that the Hessian is negative denite, or equivalently that the opposite of the Hessian is positive denite: -If the Hessian has both positive and negative eigenvalues then the critical point x * is a saddle point for the cost function J(x).

∀ 1 ≤ k ≤ n H k > 0 ⇔                    H 1 = h 11 > 0 H 2 =
∀ 1 ≤ k ≤ n (-1) k H k > 0 ⇔                    H 1 = h 11 < 0 H 2 =
It should be emphasized that if the Hessian is positive semi-denite or negative semi-denite or has null eigenvalues at a critical point x * , then it cannot be concluded that the critical point is a minimizer or a maximizer or a saddle point of the cost function J(x) and the test is inconclusive.

Example

Find the local maxima/minima for the following cost function:

J(x) = 5 -(x 1 -2) 2 -2(x 2 -1) 2 (1.11)
First let's compute the rst variation of J, or equivalently its gradient:

dJ(x) dx = ∇J(x) = dJ(x) dx 1 dJ(x) dx 2 = -2(x 1 -2) -4(x 2 -1) (1.12) 
A necessary condition for x * to be a local extremum is that the rst variation of J at x * is zero for all δx: δJ(x * ) = ∇J(x * ) = 0

(1.13)

As a consequence, the following point is a critical point:

x * = 2 1 (1.14)
Now, we compute the Hessian to conclude on the nature of this critical point:

∇ 2 J(x * ) = -2 0 0 -4 (1.15)
As far as the Hessian is negative denite we conclude that the critical point x * is a local maximum.

Lagrange multipliers

Optimal control problems which will be tackled involve minimization of a cost function subject to constraints on the state vector and the control. The necessary condition given above is only applicable to unconstrained minimization problems; Lagrange multipliers provide a method of converting a constrained minimization problem into an unconstrained minimization problem of higher order. Optimization can then be performed using the above necessary condition. A constrained optimization problem is a problem of the form:

Maximize (or minimize) cost function J(x) subject to the condition g(x) = 0

The most popular technique to solve this constrained optimization problem is to use the Lagrange multiplier technique. Necessary condition for optimality of J at a point x * are that x * satises g(x) = 0 and that the gradient of J is zero in all direction along the surface g(x) = 0; this condition is satised if the gradient of J is normal to the surface at x * . As far as the gradient of g(x) is normal to the surface, including x * , this condition is satised if the gradient of J is parallel (that is proportional) to the gradient of g(x) at x * , or equivalently:

∂J(x) ∂x + λ T ∂g(x) ∂x x=x * = 0 (1.16)
It is worth noticing that the following relations hold:

                                 J = a + b T x = a + x T b ⇒ ∂J ∂x =       ∂J ∂x 1 ∂J ∂x 2 . . . ∂J ∂xn       = b J = a + b T x ∥x∥ n ⇒ ∂J ∂x =       ∂J ∂x 1 ∂J ∂x 2 . . . ∂J ∂xn       = b ∥x∥ n - n ∥x∥ n+2 x T b x (1.17)
As an illustration, consider the cost function J(x) = (x 1 -1) 2 + (x 2 -2) 2 : this is the equation of a circle of center (1, 2) with radius J(x). It is clear that J(x) is minimal when (x 1 , x 2 ) is situated on the center of the circle. In this case J(x) * = 0. Nevertheless if we impose on (x 1 , x 2 ) to belong to the straight line dened by x 2 -2x 1 -6 = 0 then J(x) will be minimized as soon as the circle of radius J(x) tangent the straight line, that is if the gradient of J(x) is normal to the surface at x * . Parameter λ is called the Lagrange multiplier and has the dimension of the number of constraints expressed through g(x). The necessary condition for optimality can be obtained as the solution of the following unconstrained optimization problem where L(x, λ) is the Lagrange function:

L(x, λ) = J(x) + λ T g(x) (1.18) Setting to zero the gradient of the Lagrange function with respect to x leads to (1.16) whereas setting to zero the derivative of the Lagrange function with respect to the Lagrange multiplier λ leads to the constraint g(x) = 0.

As a consequence, a necessary condition for x * to be a local extremum of the cost function J subject to the constraint g(x) = 0 is that the rst variation of Lagrange function (its gradient) at x * is zero:

∂L(x, λ) ∂x x=x * = 0 ⇔ ∂J(x) ∂x + λ T ∂g(x) ∂x x=x * = 0 (1.19)
The bordered Hessian is the (n + m) × (n + m) symmetric matrix which is used for the second-derivative test. If there are m constraints represented by g(x) = 0, then there are m border rows at the top-right and m border columns at the bottom-left (the transpose of the top-right matrix) and the zero in the south-east corner of the bordered Hessian is an m×m block of zeros, represented by 0 m×m . The bordered Hessian H b (p) is dened by:

H b (p) =              ∂ 2 L(x) ∂x 1 ∂x 1 -p ∂ 2 L(x) ∂x 1 ∂x 2 • • • ∂ 2 L(x) ∂x 1 ∂xn ∂g 1 (x) ∂x 1 • • • ∂gm(x) ∂x 1 ∂ 2 L(x) ∂x 2 ∂x 1 ∂ 2 L(x) ∂x 2 ∂x 2 -p • • • ∂ 2 L(x) ∂x 2 ∂xn ∂g 1 (x) ∂x 2 • • • ∂gm(x) ∂x 2 • • • • • • • • • • • • • • • • • • • • • ∂ 2 L(x) ∂xn∂x 1 ∂ 2 L(x) ∂xn∂x 2 • • • ∂ 2 L(x) ∂xn∂xn -p ∂g 1 (x) ∂xn • • • ∂gm(x) ∂xn ∂g 1 (x) ∂x 1 • • • • • • ∂g 1 (x) ∂xn • • • • • • • • • 0 m×m ∂gm(x) ∂x 1 • • • • • • ∂gm(x) ∂xn              x=x *
(1.20) The sucient condition for the critical point x * to be an extrema is that the values of p obtained from det (H b (p)) = 0 must be of the same sign.

-If all the values of p are strictly negative, then it is a maxima -If all the values of p are strictly positive, then it is a minima -However if some values of p are zero or of a dierent sign, then the critical point x * is a saddle point.

Example

Find the local maxima/minima for the following cost function:

J(x) = x 1 + 3x 2 (1.21)
Subject to the constraint:

g(x) = x 2 1 + x 2 2 -10 = 0 (1.22)
First let's compute the Lagrange function of this problem:

L(x, λ) = J(x) + λ T g(x) = x 1 + 3x 2 + λ(x 2 1 + x 2 2 -10) (1.23) 
A necessary condition for x * to be a local extremum is that the rst variation of J at x * is zero for all δx:

∂L(x * ) ∂x = 1 + 2λx 1 3 + 2λx 2 = 0 s.t. x 2 1 + x 2 2 -10 = 0 (1.24)
As a consequence, the Lagrange multiplier λ shall be chosen as follows:

x 1 = -1 2λ x 2 = -3 2λ ⇒ x 2 1 + x 2 2 -10 = 1 4λ 2 + 9 4λ 2 -10 = 0 ⇔ 10 -40λ 2 = 0 ⇔ λ = ± 1 2 (1.25)
Using the values of the Lagrange multiplier within (1.24) we then obtain 2 critical points:

λ = 1 2 ⇒ x * 1 = -1 -3 and λ = - 1 2 ⇒ x * 2 = 1 3 (1.26) 
-For λ = 1 2 the bordered Hessian is: We conclude that the critical point (-1; -3) is a local minima because det (H b (p)) = 0 for p = +1 which is strictly positive.

H b (p) =   2λ -p 0 2x 1 0 2λ -p 2x 2 2x 1 2x 2 0   x=x * =   1 -p 0 -2 0 
-For λ = -1 2 the bordered Hessian is: We conclude that the critical point (+1; +3) is a local maxima because det (H b (p)) = 0 for p = -1 which is strictly negative.

H b (p) =   2λ -p 0 2x 1 0 2λ -p 2x 2 2x 1 2x 2 0   x=x * =   -1 -p 0 2 0 -1 -p 6

Euler-Lagrange equation

Historically, Euler-Lagrange equation came with the study of the tautochrone (or isochrone curve) problem. Lagrange solved this problem in 1755 and sent the solution to Euler. Their correspondence ultimately led to the calculus of variations 2 . The problem considered was to nd the expression of x(t) which minimizes the following performance index J(x(t)) where F (x(t), ẋ(t)) is a real-valued twice continuous function:

J(x(t)) = t f 0 F (x(t), ẋ(t)) dt (1.31)
Furthermore the initial and nal values of x(t) are imposed:

x(0) = x 0 x(t f ) = x f (1.32)
Let x * (t) be a candidate for the minimization of J(x(t)). In order to see whether x * (t) is indeed an optimal solution, this candidate optimal input is perturbed by a small amount δx which leads to a perturbation δx in the optimal state vector x * (t):

x(t) = x * (t) + δx(t)

ẋ(t) = ẋ * (t) + δ ẋ(t) (1.33) 
The change δJ in the value of the performance index is obtained thanks to the calculus of variation:

δJ = t f 0 δF (x(t), ẋ(t)) dt = t f 0 ∂F ∂x T δx + ∂F ∂ ẋ T δ ẋ dt (1.34)
Integrating ∂F ∂ ẋ T δ ẋ by parts leads to the following expression:

d dt ∂F ∂ ẋ T δx = d dt ∂F ∂ ẋ T δx + ∂F ∂ ẋ T δ ẋ ⇒ δJ = t f 0 ∂F ∂x T δx -d dt ∂F ∂ ẋ T δx dt + ∂F ∂ ẋ T δx t f 0 (1.35)
Because δx is a perturbation around the optimal state vector x * (t) we shall set to zero the rst variation δJ whatever the value of the variation δx: δJ = 0 ∀ δx (1.36) This leads to the following necessary conditions for optimality:

   ∂F ∂x T δx -d dt ∂F ∂ ẋ T δx = 0 ∂F ∂ ẋ T δx t f 0 = 0 (1.37)
As far as the initial and nal values of x(t) are imposed no variation are permitted on δx:

x(0

) = x 0 x(t f ) = x f ⇒ δx(0) = 0 δx(t f ) = 0 (1.38)
On the other hand it is worth noticing that if the nal value was not imposed we shall have ∂F ∂ ẋ t=t f = 0.

Thus the rst variation δJ of the functional cost reads:

δJ = t f 0 ∂F ∂x T δx - d dt ∂F ∂ ẋ T δx dt (1.39)
In order to set to zero the rst variation δJ whatever the value of the variation δx the following second-order partial dierential equation has to be solved:

∂F ∂x T - d dt ∂F ∂ ẋ T = 0 (1.40)
Or by taking the transpose:

d dt ∂F ∂ ẋ - ∂F ∂x = 0 (1.41)
We retrieve the well known Euler-Lagrange equation of classical mechanics. Euler-Lagrange equation is a second order Ordinary Dierential Equations (ODE) that x shall satisfy to minimize t f 0 F (x(t), ẋ(t)) dt. Euler-Lagrange equation is usually quite dicult to solve.

Nevertheless, because F (x(t), ẋ(t)) does not depends explicitly on time t, Beltrami identity 3 provides a rst integral of the Euler-Lagrange equation. Denoting by C a constant, the rst integral of the Euler-Lagrange equation reads as follows:

d dt ∂F ∂ ẋ - ∂F ∂x = 0 ⇔ F - ∂F ∂ ẋ T ẋ = C (1.42)
Indeed, multiplying both sides of the Euler-Lagrange equation by ẋT we get:

d dt ∂F ∂ ẋ - ∂F ∂x = 0 ⇒ ẋT d dt ∂F ∂ ẋ -ẋT ∂F ∂x = 0 (1.43)
Since F (x(t), ẋ(t)) does not depend explicitly on time t, we have: (1.44) Using this expression of ẋT ∂F ∂x in (1.43) reads:

dF (x(t), ẋ(t)) dt = ∂F ∂x T ∂x ∂t + ∂F ∂ ẋ T ∂ ẋ ∂t = ẋT ∂F ∂x + ∂F ∂ ẋ T ∂ ẋ ∂t ⇒ ẋT ∂F ∂x = dF dt -∂F ∂ ẋ T ∂ ẋ ∂t
ẋT d dt ∂F ∂ ẋ -dF dt -∂F ∂ ẋ T ∂ ẋ ∂t = 0 ⇔ d dt ∂F ∂ ẋ T ẋ + ∂F ∂ ẋ T ∂ ẋ ∂t -dF dt = 0 ⇔ d dt ∂F ∂ ẋ T ẋ -F = 0 (1.45)
Denoting by C a constant, the rst integral of the Euler-Lagrange equation nally reads as the Beltrami identity:

F - ∂F ∂ ẋ T ẋ = C (1.46)
Alternatively, Euler-Lagrange equation could be transformed into a set of rst order Ordinary Dierential Equations, which may be more convenient to manipulate, by introducing a control u(t) dened by ẋ(t) = u(t) and by using the Hamiltonian function H as it will be seen in the next sections.

Example 1.1. Let's nd the shortest distance between two points P 1 = (x 1 , y 1 ) and P 2 = (x 2 , y 2 ) in the euclidean plane.

The length of the path between the two points is dened by:

J(y(x)) = P 2 P 1 dx 2 + dy 2 = x 2
x 1

1 + (y ′ (x)) 2 dx (1.47)

For that example F (y(x), y ′ (x)) reads:

F y(x), y ′ (x) = 1 + dy(x) dx

2 = 1 + (y ′ (x)) 2 (1.48) 
The initial and nal values on y(x) are imposed as follows:

y(x 1 ) = y 1 y(x 2 ) = y 2 (1.49)

The Euler-Lagrange equation for this example reads: From the preceding relation it is clear that, denoting by c 1 a constant, y ′ (x) shall satisfy the following rst order dierential equation:

y ′ (x) √ 1+(y ′ (x)) 2 = c 1 ⇒ (y ′ (x)) 2 = c 2 1 1 + (y ′ (x)) 2 ⇒ (y ′ (x)) 2 = c 2 1 1-c 2 1 ⇒ y ′ (x) = a = constant (1.51)
Alternatively, Beltrami identity reads as follows:

F (y, y ′ ) = 1 + (y ′ ) 2 F -∂F ∂y ′ y ′ = C ⇒          1 + (y ′ ) 2 -(y ′ ) 2 √ 1+(y ′ ) 2 = C ⇒ 1 = C 1 + (y ′ ) 2 ⇒ y ′ (x) = a = constant (1.52)
Thus, the shortest distance between two xed points in the euclidean plane is a curve with constant slope, that is a straight-line:

y(x) = a x + b (1.53)
With initial and nal values imposed on y(x) we nally get for y(x) the Lagrange polynomial of degree 1:

y(x 1 ) = y 1 y(x 2 ) = y 2 ⇒ y(x) = y 1 x -x 2 x 1 -x 2 + y 2 x -x 1 x 2 -x 1 (1.54) ■ 1.
7 Fundamentals of optimal control theory 1.7.1 Problem to be solved

We rst consider optimal control problems for general nonlinear time invariant systems of the form:

ẋ = f (x, u) x(0) = x 0 (1.55)
Where x ∈ R n and u ∈ R m are the state variable and control inputs, respectively, and f (x, u) is a continuous nonlinear function and x 0 the initial conditions. The goal is to nd a control u that minimizes the following performance index:

J(u(t)) = G (x(t f )) + t f 0 F (x(t), u(t)) dt (1.56) 
Where:

-t is the current time and t f the nal time;

-J(u(t)) is the integral cost function;

-F (x(t), u(t)) is the scalar running cost function;

-G (x(t f )) is the scalar terminal cost function.

Note that the state equation serves as constraints for the optimization of the performance index J(u(t)). In addition, notice that the use of function G (x(t f )) is optional; indeed, if the nal state x(t f ) is imposed then there is no need to insert the expression G (x(t f )) in the cost to be minimized.

Bolza, Mayer and Lagrange problems

The problem dened above is known as the Bolza problem. In the special case where F (x(t), u(t)) = 0 then the problem is known as the Mayer problem; on the other hand if G (x(t f )) = 0 the problem is known as the Lagrange problem.

The Bolza problem is equivalent to the Lagrange problem and in fact leads to it with the following change of variable:

     J 1 (u(t)) = t f 0 (F (x(t), u(t)) + x n+1 (t)) dt ẋn+1 (t) = 0 x n+1 = G(x(t f )) t f ∀ t
(1.57) 1.7. Fundamentals of optimal control theory It also leads to the Mayer problem if one sets:

   J 2 (u(t)) = G (x(t f )) + x 0 (t f ) ẋ0 (t) = F (x(t), u(t))
x 0 (0) = 0

(1.58)

First order necessary conditions

The optimal control problem is then a constrained optimization problem, with cost being a functional of u(t) and the state equation providing the constraint equations. This optimal control problem can be converted to an unconstrained optimization problem of higher dimension by the use of Lagrange multipliers.

An augmented performance index is then constructed by adding a vector of Lagrange multipliers λ times each constraint imposed by the dierential equations driving the dynamics of the plant; these constraints are added to the performance index by the addition of an integral to form the augmented performance index J a :

J a (u(t)) = G (x(t f )) + t f 0 F (x(t), u(t)) + λ T (t)(f (x, u) -ẋ) dt (1.59)
Let u * (t) be a candidate for the optimal input vector and let the corresponding state vector be x * (t): ẋ * (t) = f (x * (t), u * (t))

(1.60)

In order to see whether u * (t) is indeed an optimal solution, this candidate optimal input is perturbed by a small amount δu which leads to a perturbation δx in the optimal state vector x * (t):

u(t) = u * (t) + δu(t) x(t) = x * (t) + δx(t) (1.61)
Assuming that the nal time t f is known, the change δJ a in the value of the augmented performance index is obtained thanks to the calculus of variation 4 : Then we introduce the functional H, known as the Hamiltonian function, which is dened as follows:

δJ a = ∂G(x(t f )) ∂x(t f ) T δx(t f )+ t f 0 ∂F ∂x T δx + ∂F ∂u T δu + λ T (
H(x, u, λ) = F (x, u) + λ T (t)f (x, u) (1.63)
Then:

∂H ∂x T = ∂F ∂x T + λ T (t) ∂f ∂x ∂H ∂u T = ∂F ∂u T + λ T (t) ∂f ∂u (1.64)
Equation (1.62) becomes:

δJ a = ∂G (x(t f )) ∂x(t f ) T δx(t f ) + t f 0 ∂H ∂x T δx + ∂H ∂u T δu -λ T (t) dδx dt dt (1.65)
Let's concentrate on the last term within the integral that we integrate by parts:

t f 0 λ T (t) dδx dt dt = λ T (t)δx t f 0 - t f 0 λT (t)δx dt ⇔ t f 0 λ T (t) dδx dt dt = λ T (t f )δx(t f ) -λ T (0)δx(0) - t f 0 λT (t)δx dt (1.66)
As far as the initial state is imposed, the variation of the initial condition is null; consequently we have δx(0) = 0 and:

t f 0 λ T (t) dδx dt dt = λ T (t f )δx(t f ) - t f 0 λT (t)δx dt (1.67)
Using (1.67) within (1.65) leads to the following expression for the rst variation of the augmented functional cost:

δJ a = ∂G (x(t f )) ∂x(t f ) T -λ T (t f ) δx(t f )+ t f 0 ∂H ∂u T δu + ∂H ∂x T + λT (t) δx dt (1.68)
In order to set the rst variation of the augmented functional cost δJ a to zero the time dependent Lagrange multipliers λ(t), which are also called costate functions, are chosen as follows:

λT (t) + ∂H ∂x T = 0 ⇔ λ(t) = - ∂H ∂x (1.69)
This equation is called the adjoint equation. As far as it is a dierential equation we need to know the value of λ(t) at a specic value of time t to be able to compute its solution (also called its trajectory) :

-Assuming that nal value x(t f ) is specied to be x f then the variation

δx(t f ) in (1.68) is zero and λ(t f ) is set such that x(t f ) = x f .
-Assuming that nal value x(t f ) is not specied then the variation δx(t f ) in (1.68) is not equal to zero and the value of λ(t f ) is set by imposing that the following dierence vanishes at nal time t f :

∂G (x(t f )) T ∂x(t f ) -λ T (t f ) = 0 ⇔ λ(t f ) = ∂G (x(t f )) ∂x(t f ) (1.70)
This is the boundary condition, also known as transversality condition, which set the nal value of the Lagrange multipliers.

Hence in both situations the rst variation of the augmented functional cost (1.68) can be written as:

δJ a = t f 0 ∂H ∂u T δu dt (1.71)
Moreover if there is no constraint on input u(t), then δu is free and the rst variation of the augmented functional cost δJ a in (1.71) is set to zero through the following necessary condition for optimality: A classic optimal control problem is the brachistochrone problem: it consists in computing the curve of fastest descent for a point of mass m which slides without friction and with constant gravitational acceleration g to a xed end point in the shortest time 5 . The control parameter is the slope γ(t) of the curve. Variable y(t) is the horizontal position of the point, z(t) its vertical position in the down direction and v(t) its velocity.

δJ a = 0 ⇒ ∂H ∂u T = 0 ⇔ ∂H ∂u = 0 (1.72)

System dynamics

First let's focus on the dynamics of the system using Lagrangian Mechanics. Let q be the vector of generalized coordinates. We choose:

q := q 1 (t) q 2 (t) = y(t) z(t) (1.73)
The kinetic energy T (q, q) and potential energy V (q) read as follows (remember that the vertical position is oriented downward):

T (q, q) = 1 2 m ẏ(t) 2 + ż(t) 2 V (q) = -mgz(t) (1.74)
The Lagrangian L (for classical mechanics) is dened as the dierence between kinetic and potential energy:

L = T (q, q) -V (q) = 1 2 m ẏ(t) 2 + ż(t) 2 + mgz(t) (1.75)
The dynamics of the system is then obtained by applying Euler-Lagrange equation:

d dt ∂L ∂ qi - ∂L ∂q i = 0 ⇒ ÿ(t) = 0 z(t) = g (1.76)
Now we introduce the following kinematic relations related to the velocity v(t) of the point and to the slope γ(t) of the curve on which the point slides on:

ẏ(t) = v(t) cos(γ(t)) ż(t) = v(t) sin(γ(t)) (1.77)
When taking the time derivative of the square of the velocity v(t) and using relations (1.76) we get the following expression of the time derivative of velocity v(t):

v(t) 2 = ẏ(t) 2 + ż(t) 2 ⇒ v(t) v(t) = ẏ(t)ÿ(t) + ż(t)z(t) ⇒ v(t) = v(t) sin(γ(t))g v(t) (1.78)
Finally the dynamics of the system is of dimension 3 and reads as follows:

   ẏ(t) = v(t) cos(γ(t)) ż(t) = v(t) sin(γ(t)) v(t) = g sin(γ(t)) (1.79)
In order to reduce the size of the system, it is worth noticing that ż(t) and v(t) depend on sin(γ(t)). So we can write:

v(t) = g ż(t) v(t) ⇔ v(t) v(t) = g ż(t) (1.80)
That is, after integration:

1 2 v(t) 2 -1 2 v(0) 2 = g z(t) -g z(0) ⇔ v(t) = 2g (z(t) -z(0)) + v(0) 2 (1.81)
Then the dynamics of the system is reduced to dimension 2:

   ẏ(t) = cos(γ(t)) √ 2g z + l 0 ż(t) = sin(γ(t)) √ 2g z + l 0 l 0 = v(0) 2 -2g z(0) (1.82)
Constant l 0 depends on initial conditions v(0) and z(0)

The dynamics of the system is reduced one step further through the use of innitesimal element of curvilinear abscissa ds. Indeed, on one side we have:

ds = dy 2 + dz 2 = 1 + (z ′ ) 2 dy (1.83)
where:

z ′ := dz dy (1.84)
On the other side, from (1.82) we have:

ds = dy 2 + dz 2 = ẏ2 + ż2 dt = 2g z + l 0 dt (1.85)
Thus by equating (1.83) and (1.85) we get the following relation between dy and dt:

2g z + l 0 dt = 1 + (z ′ ) 2 dy ⇒ dt = 1 + (z ′ ) 2 2g z + l 0 dy (1.86)
Finally the system is reduced to dimension 1 through the following relation:

t ′ := dt dy = 1 + (z ′ ) 2 2g z + l 0 (1.87)

Euler-Lagrange approach

Using Euler-Lagrange formalism, the optimal control problem can be formulated as follows: nd z(y)

which minimizes t f = t f 0 dt = y f 0 F (z, z ′ ) dy (1.88)
According to (1.87) the functional F (z, z ′ ) to be minimized reads:

F z, z ′ = 1 + (z ′ ) 2 2g z + l 0 (1.89)
Then we have to nd z(y) which solves the Euler-Lagrange equation:

d dt ∂F ∂ ẋ - ∂F ∂x = 0 (1.90)
Using Beltrami identity, the rst integral of the Euler-Lagrange equation reads as follows where C is a constant:

F - ∂F ∂z ′ z ′ = C ⇔ 1 + (z ′ ) 2 2g z + l 0 - 1 √ 2g z + l 0 (z ′ ) 2 1 + (z ′ ) 2 = C (1.91)
Multiplying both members by (2g z + l 0 ) 1 + (z ′ ) 2 and simplifying, we get:

C = 1 (2g z + l 0 ) 1 + (z ′ ) 2 (1.92)
We thus obtain the following dierential equation:

(2g z + l 0 ) 1 + (z ′ ) 2 = 1 C 2 ⇔ 2g z + l 0 2g 1 + (z ′ ) 2 = 1 C 2 (1.93)
The following reduced height z r (t) is introduced in order to normalize the solution:

z r := z + l 0 2g ⇒ dz r = dz (1.94)
We nally get:

z r 1 + z ′ r 2 = 1 2g C 2 where z ′ r = dz r dy (1.95)
The solution of this dierential equation is the cycloid curve. The parametric expression of the cycloid curve is the following where parameter θ varies from 0 to θ f :

y = R(C) (θ -sin(θ)) z r = R(C) (1 -cos(θ)) where R(C) := 1 4g C 2 (1.96)
The cycloid curve corresponds to the trajectory of a point on a circle of radius R(C) rolling along a straight line.

The values of C and θ f shall then be chosen such that the nal conditions on y and z r are fullled:

y(t f ) = R(C) (θ f -sin(θ f )) z r (t f ) = R(C) (1 -cos(θ f ))
(1.97)

Hamiltonian approach

We will use z ′ := u as the control variable. The optimal control problem can be formulated as follows: nd u(y)

which minimizes J (u) = t f 0 dt = y f 0 1+u 2
2g z(y)+l 0 dy under the following constraint :

z ′ = u (1.98)
The Hamiltonian function H reads:

H(x, u, λ) = F (x, u) + λ T (t)f (x, u) = 1 + u 2 2g z + l 0 + λ z u (1.99)
Because there is no constraint on control u, the necessary conditions for optimality read as follows:

∂H ∂u = 0 ∂H ∂z = -λ ′ z ⇒ 1 √ 2g z+l 0 u √ 1+u 2 + λ z = 0 -g √ 1 + u 2 (2g z + l 0 ) -3/2 = -λ ′ z (1.100)
Then we have to nd the expression of control u as a function of z and λ z and solve the dierential equations involving z and λ z :

z ′ = u(z, λ z ) λ ′ z = g 1 + u(z, λ z ) 2 (2g z + l 0 ) -3/2 (1.101)
This could be a tricky task be let's try it ! First from the rst equation of (1.100) we get the expression of 1 + u 2 as a function of z and λ z :

u √ 1 + u 2 = -λ z 2g z + l 0 ⇒ 1 + u 2 = 1 1 -λ 2 z (2g z + l 0 ) (1.102)
Using this expression in the second equation of (1.100), we get the following expression of λ ′ z :

λ ′ z = g √ 1 + u 2 (2g z + l 0 ) -3/2 = g 1 1-λ 2 z (2g z+l 0 ) (2g z + l 0 ) -3/2 (1.103)
As far as the dierential equation involving z is concerned, we use the expression of u 2 to get the following expression of (z ′ ) 2 :

z ′ = u ⇒ z ′ 2 = u 2 = 1 1 -λ 2 z (2g z + l 0 ) -1 = λ 2 z (2g z + l 0 ) 1 -λ 2 z (2g z + l 0 ) (1.104)
From the rst equation of (1.100), that is

1 √ 2g z+l 0 u √ 1+u 2 + λ z = 0, it is clear that u = z ′
and λ z have opposite sign. Thus we get:

z ′ = -λ z (2g z + l 0 ) 1 -λ 2 z (2g z + l 0 ) = -λ z 1 1 -λ 2 z (2g z + l 0 ) 2g z + l 0 (1.105)
Then we get the expression of 1 1-λ 2 z (2g z+l 0 ) that we insert in (1.103). We get:

1 1-λ 2 z (2g z+l 0 ) = - z ′ λz √ 2g z+l 0 ⇒ λ ′ z = -g z ′ λz √ 2g z+l 0 (2g z + l 0 ) -3/2 = -g λz z ′ (2g z+l 0 ) 2 (1.106)
We nally get:

λ ′ z λ z = - g z ′ (2g z + l 0 ) 2 (1.107)
Thus the rst integral of this dierential equation is the following where C 1 denotes a constant:

λ 2 z = 1 2g z + l 0 + C 1 (1.108)
Or, equivalently:

λ 2 z (2g z + l 0 ) = 1 + C 1 (2g z + l 0 ) (1.109)
Then this result is used in (1.102) to get the following relation:

1 + u 2 = 1 1-λ 2 z (2g z+l 0 ) = -1 C 1 (2g z+l 0 ) ⇒ (2g z + l 0 ) 1 + u 2 = -1 C 1 (1.110)
Having in mind that z ′ = u, we retrieve the rst integral (1.93) which has been obtained through Baltrami identity. Then the resolution process is similar to what has been done in the previous section.

1.9 Hamilton-Jacobi-Bellman (HJB) equation 1.9.1 Finite horizon control Let J * (x, t) be the optimal cost-to-go function between t and t f :

J * (x, t) = min u(t) ∈ U t f t F (x(t), u(t))dt (1.111)
The Hamilton-Jacobi-Bellman equation related to the optimal control problem (1.56) under the constraint (1.55) is the following rst order partial derivative equation 6 :

- ∂J * (x, t) ∂t = min u(t) ∈ U F (x, u) + ∂J * (x, t) ∂x T f (x, u) (1.112) 
or, equivalently:

- ∂J * (x, t) ∂t = H * ∂J * (x, t) ∂x , x(t) (1.113)
where

H * (λ(t), x(t)) = min u(t) ∈ U F (x, u) + ∂J * (x, t) ∂x T f (x, u) (1.114)
For the time-dependent case, the terminal condition on the optimal cost-togo function solution of (1.112) reads:

J * (x, t f ) = G (x(t f )) (1.115)
It is worth noticing that the Lagrange multiplier λ(t) represents the partial derivative with respect to the state of the optimal cost-to-go function 7 :

λ(t) = ∂J * (x, t) ∂x (1.116)
1.9.2 Principle of optimality, dynamic programming

The preceding results lead to the so-called dynamic programming approach which has been introduced by Bellman8 in 1957. This is a very powerful approach which encompasses both necessary and sucient conditions for optimality. Contrary to the Lagrange multipliers approach, the dynamic programming solves the constrained optimal problem directly. Behind the dynamic programming is the principle of optimality, which states that from any point on an optimal state space trajectory, the remaining trajectory is optimal for the corresponding problem initiated at that point. This result can be quite easily applied for discrete time system but for continuous time system it involves to nd the solution of a partial derivative equation which may be dicult in practice.

Innite horizon control

For innite horizon control problem, the problem is to nd the control u(t)

which minimizes the following cost-to-go function:

J(x) = ∞ 0 F (x(t), u(t))dt (1.117)
under the following nonlinear time invariant dynamics of the form:

ẋ = f (x, u) x(0) = x 0 (1.118)
Then, denoting by J * (x) the optimal cost function (which now no more depends on time t), the Hamilton-Jacobi-Bellman equation related to this optimal control problem reads:

0 = min u(t) ∈ U F (x, u) + ∂J * (x) ∂x T f (x, u) (1.119)
Lower bounds on the optimal cost are obtained by integrating the corresponding inequality:

0 ≤ F (x, u) + ∂J(x) ∂x T f (x, u) ∀ x, u (1.120) 
It it worth noticing that:

∞ 0 ∂J(x) ∂x T f (x, u)dt = ∞ 0 ∂J(x) ∂x T ẋ(t)dt = x(∞) x(0) ∂J(x) ∂x T dx = J(x(∞)) -J(x(0)) (1.121)
Thus, assuming that x(∞) = 0, we get:

J(x(0)) -J(0) = - ∞ 0 ∂J(x) ∂x T f (x, u)dt ≤ ∞ 0 F (x, u)dt (1.122)
Moreover, the optimal cost J * (x) has a decay rate given by -F (x, u * ), which is negative. Thus J * (x) may serve as a Lyapunov function to prove that the optimal control law is stabilizing9 .

Application of HJB equation to linear time invariant systems

We consider in this section linear time invariant systems, where x(t) is the state vector and u(t) is the control vector of dimension m. Furthermore we assume that the cost-to-go function J(x, t) to be minimized is quadratic:

ẋ(t) = Ax(t) + Bu(t) J(x, t) = t f t x T (t)Qx(t) + u T (t)Ru(t) dt (1.123)
where:

Q = Q T ≥ 0 R = R T > 0 (1.124)
Assuming that the nal state at t = t f is set to zero, a candidate solution J * (x, t) of the Hamilton-Jacobi-Bellman (HJB) partial dierential equation is the following quadratic function:

J * (x, t) := x T P(t)x where P(t) = P T (t) ≥ 0 (1.125) Thus:    ∂J * (x,t) ∂t = x T Ṗ(t)x ∂J * (x,t) ∂x = 2P(t)x(t) (1.126)
Finally, assuming unconstrained control, that is u(t) ∈ R m , the Hamilton-Jacobi-Bellman (HJB) equation (1.112) reads as follows:

-x T Ṗ(t)x = min u(t) ∈ R m F (x, u) + ∂J * (x) ∂x T f (x, u) = min u(t) ∈ R m x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)P(t) (Ax(t) + Bu(t)) (1.127)
To get min u(t) ∈ R m , we set the derivative of its argument with respect to u to zero:

∂ ∂u x T Qx + u T Ru + 2x T P (Ax + Bu) = 0 ⇒ 2 Ru + B T Px = 0 (1.128)
We nally get:

u(t) = -R -1 B T P(t)x(t) (1.129)
Thus the Hamilton-Jacobi-Bellman (HJB) partial dierential equation reads:

-x T Ṗ(t)x = x T Qx -x T P(t)BR -1 B T P(t)x + 2x T P(t)Ax (1.130)
Then, using the fact that P(t) = P T (t), we can write:

2x T P(t)Ax = 2x T A T P(t)x = x T P(t)A + A T P(t) x (1.131)
Then the Hamilton-Jacobi-Bellman (HJB) partial dierential equation becomes:

-x T Ṗ(t)x = x T Qx-x T P(t)BR -1 B T P(t)x+x T P(t)A + A T P(t) x (1.132)
Because this equation must be true ∀ x, we conclude that P(t) = P T (t) shall solve the following dierential Riccati dierential equation:

-Ṗ(t) = A T P(t) + P(t)A -P(t)BR -1 B T P(t) + Q (1.133)
For time invariant systems with innite horizon (t f → ∞), the optimal costto-go function J * (x, t) is independent of time t: J * (x, t) = J * (x). Thus matrix P(t) becomes a constant matrix:

t f → ∞ ⇒ J * (x, t) = J * (x) ⇒ P(t) = P (1.134)

Pontryagin's principle

In this section we consider the optimal control problem with possibly controlstate constraints. More specically we consider the problem of nding a control u that minimizes the following performance index:

J(u(t)) = G (x(t f )) + t f 0 F (x(t), u(t)) dt (1.135)
Under the following constraints:

-Dynamics and boundary conditions:

ẋ = f (x, u) x(0) = x 0 (1.136) -Mixed control-state constraints: c(x, u) ≤ 0, where c(x, u) : R n × R m → R (1.137)
Usually a slack variable α(t), which is actually a new control variable, is introduced in order to convert the preceding inequality constraint into an equality constraint:

c(x, u) + α 2 (t) = 0, where α(t) : R → R (1.138)
To solve this problem we introduce the augmented Hamiltonian function H a (x, u, λ, µ) which is dened as follows 10 :

H a (x, u, λ, µ, α) = H(x, u, λ) + µ c(x, u) + α 2 = F (x, u) + λ T (t)f (x, u) + µ(t) c(x, u) + α 2 (1.139)
Then the Pontryagin's principle states that the optimal control u * must satisfy the following conditions:

-Adjoint equation and transversality condition: For the on-boundary arc where α = 0 control u is obtained from equality constraint c(x, u) = 0. Indeed there always exists a smooth function u b (x) called boundary control which satises:

   λ(t) = -∂Ha ∂x λ(t f ) = ∂G(x(t f )) ∂x(t f ) (1.
c (x, u b (x)) = 0 (1.142)
Then multiplier µ is obtained from ∂Ha ∂u = 0:

0 = ∂H a ∂u = ∂H ∂u + µ ∂c(x, u) ∂u ⇒ µ = - ∂Ha ∂u ∂c(x,u) ∂u u=u b (x) (1.143)
Weierstrass conditions (proposed in 1879) for a variational extremum states that optimal control u * and α * within the augmented Hamiltonian function H a must satisfy the following condition for a minimum at every point of the optimal path:

H a (x * , u * , λ * , µ * , α * ) -H a (x * , u, λ * , µ * , α) < 0 (1.144)
Since c(x, u) + α 2 (t) = 0, the Weierstrass conditions for a variational extremum can be rewritten as a function of the Hamiltonian function H and the inequality constraint:

H(x * , u * , λ * ) -H(x * , u, λ * ) < 0 c(x * , u * ) ≤ 0 (1.145)
or, equivalently:

u * = min u(t) ∈ U H(x * , u, λ * ) (1.146)
where U denotes the set of admissible values for the control u (here u(t) ∈ U as soon as c(x * , u) ≤ 0). The last relation is the so-called Pontryagin's principle. 

H(x * , u * , λ * ) = constant (1.147)
Moreover, if the terminal time t f is free, then along the optimal trajectory we have:

H(x * , u * , λ * ) = 0 when t f is free (1.148)
1.11.2 Autonomous system without constraint on input

We will show that the Hamiltonian H is constant along the optimal trajectory in the particular case of autonomous system assuming no constraint on input u(t). For an autonomous system, the function f () is not an explicit function of time. From (1.63) we get:

dH dt = ∂H ∂x T dx dt + ∂H ∂u T du dt + ∂H ∂λ T dλ dt (1.149)
According to (1.55), (1.63) and (1.69) we have

λT (t) = -∂H ∂x T ∂H ∂λ T = f T = ẋT ⇒ dH dt = - λT (t) dx dt + ∂H ∂u T du dt + ẋT dλ dt (1.150)
Having in mind that the Hamiltonian H is a scalar functional we get:

λT (t) dx dt = ẋT (t) dλ dt ⇒ dH dt = ∂H ∂u T du dt (1.151)
Finally, assuming no constraint on input u(t), we use (1.72) to obtain relation (1.147):

∂H ∂u = 0 ⇒ dH dt = 0 ⇒ H(x * , u * , λ * ) = constant (1.152) Example 1.2.
As in example 1.1 we consider again the problem of nding the shortest distance between two points P 1 = (x 1 , y 1 ) and P 2 = (x 2 , y 2 ) in the euclidean plane. Setting u(x) = y ′ (x) the length of the path between the two points is dened by:

J(u(x)) = P 2 P 1 dx 2 + dy 2 = x 2 x 1 1 + u(x) 2 dx (1.153)
Here J(u(x)) is the performance index to be minimized under the following constraints:

   y ′ (x) = u(x) y(x 1 ) = y 1 y(x 2 ) = y 2 (1.154)
Let λ(x) be the Lagrange multiplier, which is here a scalar. The Hamiltonian H reads:

H = 1 + u 2 (x) + λ(x)u(x) (1.155)
The necessary conditions for optimality are the following:

∂H ∂y = -λ ′ (x) ⇔ λ ′ (x) = 0 ∂H ∂u = 0 ⇔ u(x) √ 1+u 2 (x) + λ(x) = 0 (1.156)
Denoting by c a constant we get from the rst equation of (1.156):

λ(x) = c (1.157)
Using this relation in the second equation of (1.156) leads to the following expression of u(x) where constant a is introduced:

u(x) √ 1+u 2 (x) + c = 0 ⇒ u 2 (x) = c 2 1-c 2 ⇒ u(x) = c 2 1-c 2 := a = constant (1.158)
Thus, the shortest distance between two xed points in the euclidean plane is a curve with constant slope, that is a straight-line:

y(x) = a x + b (1.159)
We obviously retrieve the result of example 1.1. Moreover, we can check that over the optimal trajectory the Hamiltonian H is constant (not null because here the nal value of x is set to x 2 ). Indeed:

λ(x) = c u(x) = c 2 1-c 2 ⇒ H = 1 + u 2 (x) + λ(x)u(x) = constant (1.160) ■

Free nal time

It is worth noticing that if nal time t f is not specied, and after having noticed that f (t f ) -ẋ(t f ) = 0, the following term shall be added to δJ a in (1.62):

F (t f ) + ∂G (x(t f )) T ∂x f (t f ) δt f (1.161)
In this case the rst variation of the augmented performance index with respect to δt f is zero as soon as:

F (t f ) + ∂G (x(t f )) T ∂x f (t f ) = 0 (1.162)
As far as boundary conditions (1.70) apply we get:

λ(t f ) = ∂G (x(t f )) ∂x(t f ) ⇒ F (t f ) + λ(t f )f (t f ) = 0 (1.163)
The preceding equation is called transversality condition. We recognize in

F (t f ) + λ(t f )f (t f ) the value of the Hamiltonian function H(t) dened in (1.63)
at nal time t f . Because the Hamiltonian H(t) is constant along an optimal trajectory for an autonomous system (see (1.147)) it is concluded that H(t) = 0 along an optimal trajectory for an autonomous system when nal time t f is free.

Alternatively we can introduce a new variable, denoted s for example, which is related to time t as follows:

t(s) = t 0 + (t f -t 0 )s ∀ s ∈ [0, 1] (1.164)
From the preceding equation we get:

dt = (t f -t 0 ) ds (1.165)
Then the optimal control problem with respect to time t where the nal time t f is free is changed into an optimal control problem with respect to new variable s and an additional state t f (s) which is constant with respect to s. The optimal control problem reads: Minimize:

J(u(s)) = G (x(1)) + 1 0 (t f (s) -t 0 ) F (x(s), u(s)) ds (1.166)
Under the following constraints:

-Dynamics and boundary conditions:

   d ds x(s) = dx(t) dt dt ds = (t f (s) -t 0 )f (x(s), u(s)) d ds t f (s) = 0 x(0) = x 0 (1.167) -Mixed control-state constraints: c(x(s), u(s)) ≤ 0, where c(x(s), u(s)) : R n × R m → R (1.168)
1.12 Bang-bang control 1.12.1 Pontryagin's principle application

Bangbang control is a term used to indicate that the control u switches abruptly between two values. It appears when the control u is restricted to be between a lower and an upper bound. We apply Pontryagin's principle in the following cases:

-For a problem where the Hamiltonian function H is linear in the scalar control u we can write:

H = a + σ u (1.169)
When scalar control u is limited between u min and u max , Pontryagin's principle provides the following necessary condition for optimality:

u min ≤ u(t) ≤ u max ⇒ u(t) =                u max if σ(t) = ∂H ∂u < 0 u min if σ(t) = ∂H ∂u > 0 ∈ [u min , u max ] if σ(t) = ∂H ∂u = 0 (1.170)
-For multi-inputs systems, suppose that the Hamiltonian function H is related to the control vector u(t) as follows:

H = a + b T u + ∥u∥ where b ̸ = 0 (1.171)
CauchySchwartz inequality may be applied to get12 :

b T u ≥ -∥b∥∥u∥ ⇒ H ≥ a + ∥u∥ (1 -∥b∥) (1.172)
and the equality is obtained when u is proportionnal to b:

u = -α b ∥b∥
where α ≥ 0 (1.173) Moreover Pontryagin's principle provides the following necessary condition for optimality 12 , assuming that ∥u∥ ≤ u max :

∥u∥ ≤ u max ⇒ α =    u max if σ < 0 0 if σ > 0 ∈ [0, u max ] if σ = 0 where σ = 1 -∥b∥ (1.174)
Function σ is usually called the switching function. Thus optimal control u(t) switches at times when switching function σ switches from negative to positive (or vice-versa). This type of control where the control is always set to boundary values is called bang-bang control.

In addition, and as the unconstrained control case, the Hamiltonian functional H remains constant along an optimal trajectory for an autonomous system when there are constraints on input u(t). Indeed in that situation control u(t) is constant (it is set either to its minimum or maximum value) and consequently du dt is zero. From (1.151) we get dH dt = 0.

Last but not least, assume that the performance index to be minimized reads as follows where λ 0 > 0:

J(u(t)) = λ 0 2 t f 0 ∥u(t)∥ dt (1.175)
Then, as suggested by Bertrand & Epenoy 12 , it could be valuable to deduce the solution of the initial problem from the successive solutions of an auxiliary problem through an homotopic approach by dening the following perturbed performance index:

J ϵ (u(t)) = λ 0 2 t f 0 (∥u(t)∥ -ϵ h (∥u(t)∥)) dt (1.176)
Parameter ϵ is assumed to be in the interval ]0, 1] and function h is a continuous function satisfying h (w) ≥ 0 ∀ w ∈ [0, 1]. For example, one could choose h(w) = w -w 2 ; with this choice ∥u(t)∥ -ϵ h (∥u(t)∥) = ∥u(t)∥ 2 for ϵ = 1 and ∥u(t)∥ -ϵ h (∥u(t)∥) = ∥u(t)∥ for ϵ = 0.

If h(w) → ∞ as w approaches 1 or 0, then h is called a barrier function, otherwise it is a penalty function.

The homotopic (or continuation) approach 12 consists in solving the perturbed problem with ϵ = 1. Then, after dening a decreasing sequence of ϵ values (ϵ

1 = 1 > ϵ 2 > • • • > ϵ n > 0)
, the current optimal control problem associated with ϵ = ϵ k where k = 2, • • • , n is solved with the solution of the previous one as a starting point.

Example 1

Consider a simple mass m which moves on the x-axis and is subject to a force f (t) 13 . Equation of motion reads:

mÿ(t) = f (t) (1.177)
We set control u(t) as:

u(t) = f (t) m (1.178)
Consequently the equation of motion reduces to:

ÿ(t) = u(t) (1.179)
The state space realization of this system is the following:

x 1 (t) = y(t) x 2 (t) = ẏ(t) ⇒ ẋ1 (t) = x 2 (t) ẋ2 (t) = u(t) ⇔ f (x, u) = x 2 (t) u(t) (1.180)
We will assume that the initial position of the mass is zero and that the movement starts from rest:

y(0) = 0 ẏ(0) = 0 (1.181)
We will assume that control u(t) is subject to the following constraint:

u min ≤ u(t) ≤ u max (1.182)
First we are looking for the optimal control u(t) which enables the mass to cover the maximum distance in a xed time t f :

The objective of the problem is to maximize y(t f ). This corresponds to minimize the opposite of y(t f ); consequently the cost J(u(t)) reads as follows where F (x, u) = 0 when compared to (1.56):

J(u(t)) = G (x(t f )) = -y(t f ) := -x 1 (t f ) (1.183)
As F (x, u) = 0 the Hamiltonian for this problem reads:

H(x, u, λ)) = λ(t) T f (x, u) = λ 1 (t) λ 2 (t) x 2 (t) u(t) = λ 1 (t)x 2 (t) + λ 2 (t)u(t) (1.184)
Adjoint equations read:

λ(t) = - ∂H ∂x ⇔ λ1 (t) = -∂H ∂x 1 = 0 λ2 (t) = -∂H ∂x 2 = -λ 1 (t) (1.185) 
Solutions of adjoint equations are the following where c and d are constants:

λ 1 (t) = c λ 2 (t) = -ct + d (1.186)
As far as nal time t f is not specied values of constants c and d are determined by transversality condition (1.70):

λ(t f ) = ∂G (x(t f )) ∂x(t f ) ⇒    λ 1 (t f ) = ∂(-x 1 (t f )) ∂x 1 (t f ) = -1 λ 2 (t f ) = ∂(-x 1 (t f )) ∂x 2 (t f ) = 0 (1.187) Consequently: c = -1 d = -t f ⇒ λ 1 (t) = -1 λ 2 (t) = t -t f (1.188)
Thus the Hamiltonian H reads as follows:

H(x, u, λ)) = λ 1 (t)x 2 (t) + λ 2 (t)u(t) = -x 2 (t) + (t -t f )u(t) (1.189) Then ∂H ∂u = t -t f ≤ 0 ∀ 0 ≤ t ≤ t f . Applying (1.170) leads to the expression of control u(t): ∂H ∂u ≤ 0 ⇒ u(t) = u max ∀ 0 ≤ t ≤ t f (1.190)
This is of common sense when the objective is to cover the maximum distance in a xed time without any constraint on the vehicle velocity at the nal time. The optimal state trajectory can be easily obtained by solving the state equations with given initial conditions:

ẋ1 = x 2 ẋ2 = u max ⇒ x 1 (t) = 1 2 u max t 2 x 2 (t) = u max t (1.191)
The Hamiltonian along the optimal trajectory has the following value:

H(x, u, λ)) = λ 1 (t)x 2 (t) + λ 2 (t)u(t) = -u max t + (t -t f )u max = -u max t f (1.
192) As expected the Hamiltonian along the optimal trajectory is constant. The minimum value of the performance index is:

J(u(t)) = -x 1 (t f ) = - 1 2 u max t 2 f (1.193)
Alternatively, we can write J(u(t)) as follows:

J(u(t)) = -y(t f ) = tf 0 - dy dt dt = tf 0 (-x 2 (t)) dt (1.194)
The Hamiltonian for this equivalent J(u(t)) now reads:

H(x, u, λ)) = -x 2 (t) + λ(t) T f (x, u) = -x 2 (t) + λ 1 (t)x 2 (t) + λ 2 (t)u(t) (1.195) 
Adjoint equations become:

λ(t) = - ∂H ∂x ⇔ λ1 (t) = -∂H ∂x 1 = 0 λ2 (t) = -∂H ∂x 2 = 1 -λ 1 (t) (1.196)
Solutions of adjoint equations are the following where c and d are constants:

λ 1 (t) = c λ 2 (t) = (1 -c) t + d (1.197)
Because the nal value of x(t f ) is no specied, we have G (x(t f )) = 0 and the transversality condition (1.70) now reads:

G (x(t f )) = 0 ⇒ λ(t f ) = ∂G (x(t f )) ∂x(t f ) = 0 ⇒    λ 1 (t f ) = ∂(-x 1 (t f )) ∂x 1 (t f ) = 0 λ 2 (t f ) = ∂(-x 1 (t f )) ∂x 2 (t f ) = 0 (1.198) Consequently: c = 0 d = -t f ⇒ λ 1 (t) = 0 λ 2 (t) = t -t f (1.199)
Obviously, we retrieve the same expressions for λ 1 (t) and λ 2 (t) than those obtained previously, and we nally get the same bang-bang optimal control.

Example 2

We re-use the preceding example but now we are looking for the optimal control u(t) which enables the mass to cover the maximum distance in a xed time t f with the additional constraint that the nal velocity is equal to zero:

x 2 (t f ) = 0 (1.200)
The solution of this problem starts as in the previous case and leads to the solution of adjoint equations where c and d are constants:

λ 1 (t) = c λ 2 (t) = -ct + d (1.201)
The dierence when compared with the previous case is that now the nal velocity is equal to zero, that is x 2 (t f ) = 0. Consequently transversality condition (1.70) involves only state x 1 and reads as follows:

λ(t f ) = ∂G (x(t f )) ∂x(t f ) ⇔ λ 1 (t f ) = ∂ (-x 1 (t f )) ∂x 1 (t f ) = -1 (1.202)
Taking into account (1.202) into (1.201) leads to:

λ 1 (t) = -1 λ 2 (t) = t + d (1.203)
The Hamiltonian H reads as follows: -The possibility d < -t f leads to u(t) = u min ∀t ∈ [0, t f ] according to (1.170), that is y(t) := x 1 (t) = 0.5u min t 2 when taking into account initial conditions (1.181). Thus there is no way to achieve the constraint that the velocity is zero at instant t f and the possibility d < -t f is ruled out;

H(x, u, λ)) = λ 1 (t)x 2 (t) + λ 2 (t)u(t) = -x 2 (t) + (t + d)u(t) (1.204) Thus ∂H ∂u = t + d = λ 2 (t) ∀ 0 ≤ t ≤ t f where the value of constant d is not known: it can be either d < -t f , d ∈ [-t f , 0] or d > 0.
-Similarly, the possibility d > 0 leads to u(t) = u max ∀t ∈ [0, t f ], that is y(t) := x 1 (t) = 0.5u max t 2 when taking into account initial conditions (1.181). Thus the possibility d > 0 is also ruled out.

Hence d shall be chosen between -t f and 0. According to (1.170) and Figure 1.1 we have:

u(t) = u max ∀ 0 ≤ t ≤ t s u min ∀ t s < t ≤ t f (1.205)
Instant t s is the switching instant, that is time at which ∂H ∂u = λ 2 (t) changes in sign. Solving the state equations with initial velocity set to zero yields the 

expression of x 2 (t) ∀ t s < t ≤ t f :    ẋ2 = u max ∀ 0 ≤ t ≤ t s ẋ2 = u min ∀ t s < t ≤ t f x 2 (0) = 0 ⇒ x 2 (t s ) = u max t s x 2 (t) = u max t s + u min (t -t s ) ∀ t s < t ≤ t f (1.206)
Imposing x 2 (t f ) = 0 leads to the value of the switching instant t s :

x 2 (t f ) = 0 ⇒ u max t s + u min (t f -t s ) = 0 ⇒ t s = u min t f u min -umax = - u min t f umax-u min (1.207)
From Figure 1.1 it is clear that at t = t s we have λ 2 (t s ) = 0. Using the fact that λ 2 (t) = t + d we nally get the value of constant d:

λ 2 (t) = t + d λ 2 (t s ) = 0 ⇒ d = -t s (1.208)
Furthermore the Hamiltonian along the optimal trajectory has the following value:

       ∀ 0 ≤ t ≤ t s H(x, u, λ)) = λ 1 (t)x 2 (t) + λ 2 (t)u(t) = -u max t + (t + d)u max = -t s u max ∀ t s < t ≤ t f H(x, u, λ)) = -u max t s -u min (t -t s ) + (t -t s )u max = -t s u max (1.
209) As expected the Hamiltonian along the optimal trajectory is constant.

Singular arc -Legendre-Clebsch condition

The case where ∂H/∂u does not yield to a denite value for the control u(t) is called singular control. Usually singular control arises when a multiplier σ(t) of the control u(t) (which is called the switching function) in the Hamiltonian H vanishes over a nite length of time t 1 ≤ t ≤ t 2 :

σ(t) := ∂H ∂u = 0 ∀ t 1 ≤ t ≤ t 2 (1.210)
The singular control can be determined by the condition that the switching function σ(t) and its time derivatives vanish along the so-called singular arc.

Hence over a singular arc we have:

d k dt k σ(t) = 0 ∀ t 1 ≤ t ≤ t 2 , ∀ k ∈ N (1.211)
At some derivative order the control u(t) does appear explicitly and its value is thereby determined. Furthermore it can be shown that the control u(t) appears at an even derivative order. So the derivative order at which the control u(t) does appear explicitly will be denoted 2q. Thus:

k := 2q ⇒ d 2q σ(t) dt 2q := A(t, x, λ) + B(t, x, λ)u = 0 (1.212)
The previous equation gives an explicit equation for the singular control, once the Lagrange multiplier λ have been obtained through the relation λ(t) = -∂H ∂x .

The singular arc will be optimal if it satises the following generalized Legendre-Clebsch condition, which is also known as the Kelley condition 14 , where 2q is the (always even) value of k at which the control u(t) explicitly appears in d k dt k σ(t) for the rst time:

(-1) q ∂ ∂u d 2q σ(t) dt 2q ≥ 0 (1.213)
Note that for the regular arc the second order necessary condition for optimality to achieve a minimum cost is the positive semi-deniteness of the Hessian matrix of the Hamiltonian along an optimal trajectory. This condition is obtained by setting q = 0 in the generalized Legendre-Clebsch condition (1.213):

q = 0 ⇒ ∂ ∂u σ(t) = ∂ 2 H ∂u 2 = H uu ≥ 0 (1.214)
This inequality is also termed regular Legendre-Clebsch condition. Finite Horizon Linear Quadratic Regulator

Problem to be solved

The Linear Quadratic Regulator (LQR) is an optimal control problem where the state equation of the plant is linear, the performance index is quadratic and the initial conditions are known. We discuss in this chapter linear quadratic regulation in the case where the nal time which appears in the cost to be minimized is nite whereas the next chapter will focus on the innite horizon case. The optimal control problem to be solved is the following: assume a plant driven by a linear dynamical equation of the form:

ẋ(t) = Ax(t) + Bu(t) x(0) = x 0 (2.1)
Where:

-A is the state (or system) matrix -B is the input matrix -x(t) is the state vector of dimension n -u(t) is the control vector of dimension m

Then we have to nd the control u(t) which minimizes the following quadratic performance index:

J(u(t)) = 1 2 x(t f ) -x f T S x(t f ) -x f + 1 2 t f 0 x T (t)Qx(t) + u T (t)Ru(t) dt (2.2)
where the nal time t f is set and x f is the nal state to be reached. The performance index relates to the fact that a trade-o has been done between the rate of variation of x(t) and the magnitude of the control input u(t). Matrices S and Q shall be chosen to be symmetric positive semi-denite and matrix R symmetric positive denite.

   S = S T ≥ 0 Q = Q T ≥ 0 R = R T > 0 (2.3)
Notice that the use of matrix S is optional; indeed, if the nal state x f is imposed then there is no need the insert the expression

1 2 x(t f ) -x f T S x(t f ) -x f
in the cost to be minimized.

Positive denite and positive semi-denite matrix

A positive denite matrix M is denoted M > 0. We remind that a real n × n symmetric matrix M = M T is called positive denite if and only if we have either:

-x T Mx > 0 for all x ̸ = 0;

-All eigenvalues of M are strictly positive;

-All of the leading principal minors are strictly positive (the leading principal minor of order k is the minor of order k obtained by deleting the last n -k rows and columns);

-Matrix M can be written as follows where matrix M 0.5 is square, symmetric and invertible: M = M 0.5 M 0.5 where M 0.5 T = M 0.5 (2.4) Matrix M 0.5 is called the root square of matrix M. By getting the modal decomposition of matrix M, that is M = VDV -1 where V is the matrix whose columns are the eigenvectors of M and D is the diagonal matrix whose diagonal elements are the corresponding positive eigenvalues, the square root M 0.5 of M is given by M 0.5 = VD 0.5 V -1 , where D 0.5 is any diagonal matrix whose elements are the square root of the diagonal elements of D 1 .

Similarly a semi-denite positive matrix M is denoted M ≥ 0. We remind that a n × n real symmetric matrix M = M T is called positive semi-denite if and only if we have either:

-x T Mx ≥ 0 for all x ̸ = 0; -All eigenvalues of M are non-negative; -All of the principal (not only leading) minors are non-negative (the principal minor of order k is the minor of order k obtained by deleting n -k rows and the n -k columns with the same position than the rows. For instance, in a principal minor where you have deleted rows 1 and 3, you should also delete columns 1 and 3);

-Matrix M can be written as M 0.5 T M 0.5 where matrix M 0.5 is full row rank.

Furthermore a real symmetric matrix M is called negative (semi-)denite if -M is positive (semi-)denite.

Example 2.1. Check that

M 1 = M T 1 = 1 2 2 3
is not positive denite and that

M 2 = M T 2 = 1 -2 -2 5
is positive denite.

■

Hamiltonian matrix

For this optimal control problem, the Hamiltonian (1.63) reads:

H(x, u, λ) = 1 2 x T (t)Qx(t) + u T (t)Ru(t) + λ T (t) (Ax(t) + Bu(t)) (2.5)
The necessary condition for optimality (1.72) yields:

∂H ∂u = Ru(t) + B T λ(t) = 0 (2.6) 
Taking into account that R is a symmetric matrix, we get:

u(t) = -R -1 B T λ(t) (2.7) 
Eliminating u(t) in equation (2.1) reads:

ẋ(t) = Ax(t) -BR -1 B T λ(t) x(0) = x 0 (2.8)
The dynamics of Lagrange multipliers λ(t) is given by (see (1.69)):

λ(t) = - ∂H ∂x = -Qx(t) -A T λ(t) (2.9) 
The nal values of the Lagrange multipliers are given by (1.70). Using the fact that S is a symmetric matrix we get:

λ(t f ) = ∂ ∂x(t f ) 1 2 x(t f ) -x f T S x(t f ) -x f = S x(t f ) -x f (2.10)
Taking into account that matrices Q and S are symmetric matrices, equations (2.9) and (2.10) are written as follows: 

λ(t) = -Qx(t) -A T λ(t) λ(t f ) = S x(t f ) -x f (2.
ẋ(t) λ(t) = A -BR -1 B T -Q -A T x(t) λ(t) = H x(t) λ(t) (2.12)
where we have introduced the Hamiltonian matrix H dened by:

H = A -BR -1 B T -Q -A T (2.13)
By denition, a matrix H is said to be an Hamiltonian matrix as soon as the following property holds:

(JH) T = JH (2.14)
where J is the following skew-symmetric matrix:

J = -J T = 0 I -I 0 (2.15)
2.4 Optimal control

State vector expression

Solving (2.12) yields:

x(t) λ(t) = e Ht x(0) λ(0) (2.16) 
In the previous equation, the value of λ(0) is not known. On the other hand, x(t f ) or λ(t f ) is known, depending on whether the nal state is imposed or weighted. Thus by replacing t by t -t f in the previous equation we obtain:

x(t) λ(t) = e Ht x(0) λ(0) = e H(t-t f ) x(t f ) λ(t f ) (2.

17)

Then exponential matrix e H(t-t f ) is partitioned as follows:

e H(t-t f ) := Y 1 (t) X 1 (t) Y 2 (t) X 2 (t) (2.18)
Then (2.17) yields:

x(t) = Y 1 (t) x(t f ) + X 1 (t) λ(t f ) λ(t) = Y 2 (t) x(t f ) + X 2 (t) λ(t f ) (2.19)
Furthermore notice the following relations obtained when t = t f :

e H(t-t f ) t=tf = I := Y 1 (t f ) X 1 (t f ) Y 2 (t f ) X 2 (t f ) ⇒ Y 1 (t f ) = X 2 (t f ) = I X 1 (t f ) = Y 2 (t f ) = 0 (2.20)

Lagrange multipliers for imposed nal state

Assume that the nal state x(t f ) is imposed:

x(t f ) := x f (2.21)
Then (2.19) can be manipulated to get rid of the unknown vector λ(t f ):

λ(t f ) = X -1 1 (t) x(t) -Y 1 (t) x f λ(t f ) = X -1 2 (t) λ(t) -Y 2 (t) x f (2.22)
Then equating λ(t f ) = λ(t f ) we get:

X -1 2 (t) λ(t) -Y 2 (t) x f = X -1 1 (t) x(t) -Y 1 (t) x f ⇔ λ(t) = X 2 (t) X -1 1 (t) x(t) -Y 1 (t) x f + Y 2 (t) x f ⇔ λ(t) = X 2 (t) X -1 1 (t) x(t) -X 2 (t) X -1 1 (t) Y 1 (t) -Y 2 (t) x f (2.23)
In order to factor x(t) and x f , let P(t) and F(t) be the following matrices:

P(t) := X 2 (t) X -1 1 (t) F(t) := P(t) Y 1 (t) -Y 2 (t) (2.24) 
We nally get:

λ(t) = P(t) x(t) -F(t) x f (2.25)

Lagrange multipliers for weighted nal state

In the case where nal state x(t f ) is expected to be close to the nal value x f then the nal condition λ(t f ) is given by (2.10):

λ(t f ) = S x(t f ) -x f (2.26)
Then (2.19) can be manipulated to get rid of the unknown vector x(t f ):

x(t) = Y 1 (t) x(t f ) + X 1 (t) λ(t f ) = Y 1 (t) x(t f ) + X 1 (t) S x(t f ) -x f = (Y 1 (t) + X 1 (t) S) x(t f ) -X 1 (t) S x f ⇒ x(t f ) = (Y 1 (t) + X 1 (t) S) -1 x(t) + X 1 (t) S x f and λ(t) = Y 2 (t) x(t f ) + X 2 (t) λ(t f ) = Y 2 (t) x(t f ) + X 2 (t) S x(t f ) -x f = (Y 2 (t) + X 2 (t) S) x(t f ) -X 2 (t) S x f ⇒ x(t f ) = (Y 2 (t) + X 2 (t) S) -1 λ(t) + X 2 (t) S x f (2.27) Then equating x(t f ) = x(t f ) : (Y 2 (t) + X 2 (t) S) -1 λ(t) + X 2 (t) S x f = (Y 1 (t) + X 1 (t) S) -1 x(t) + X 1 (t) S x f (2.28) Thus: λ(t) = (Y 2 (t) + X 2 (t) S) (Y 1 (t) + X 1 (t) S) -1 x(t) + X 1 (t) S x f -X 2 (t) S x f (2.29)
In order to factor x(t) and x f , let P S (t) and F S (t) be the following matrices:

P S (t) := (Y 2 (t) + X 2 (t) S) (Y 1 (t) + X 1 (t) S) -1 F S (t) := (X 2 (t) -P S (t) X 1 (t)) S (2.30)
We nally get: 

λ(t) = P S (t) x(t) -F S (t) x f (2.
(I -T) -1 = ∞ k=0 T k (2.32)
Applying this result to the right term of P S (t) reads:

(Y 1 (t) + X 1 (t) S) -1 = I + Y 1 (t) (X 1 (t) S) -1 X 1 (t) S -1 = (X 1 (t) S) -1 I + Y 1 (t) (X 1 (t) S) -1 -1 = (X 1 (t) S) -1 ∞ k=0 -Y 1 (t) (X 1 (t) S) -1 k ≈ (X 1 (t) S) -1 I -Y 1 (t) (X 1 (t) S) -1 = S -1 X -1 1 (t) I -Y 1 (t) (X 1 (t) S) -1
(2.33)

Thus P S (t) can be approximated as follows when ∥S∥ → ∞:

P S (t) ≈ (Y 2 (t) + X 2 (t) S) S -1 X -1 1 (t) I -Y 1 (t) (X 1 (t) S) -1 ≈ Y 2 (t) S -1 X -1 1 (t) + X 2 (t) X -1 1 (t) I -Y 1 (t) (X 1 (t) S) -1 ≈ Y 2 (t) S -1 X -1 1 (t) + X 2 (t) X -1 1 (t) I -Y 1 (t) S -1 X -1 1 (t)
(2.34) When ∥S∥ → ∞ we retrieve the expression of P(t) in (2.24) by using the order 0 approximation of P S (t). Indeed:

∥S∥ → ∞ ⇒ P S (t) ≈ X 2 (t) X -1 1 (t) I = X 2 (t) X -1 1 (t) = P(t) (2.35)
As far as F S (t) is concerned, we also retrieve the expression of F(t) in (2.24) when ∥S∥ → ∞ by using the order 1 approximation of P S (t). Indeed:

∥S∥ → ∞ ⇒ P S (t) X 1 (t) ≈ Y 2 (t) S -1 X -1 1 (t) + X 2 (t) X -1 1 (t) X 1 (t) -Y 1 (t) S -1 ≈ Y 2 (t) S -1 + X 2 (t) -X 2 (t) X -1 1 (t) Y 1 (t) S -1 ⇒ X 2 (t) -P S (t) X 1 (t) ≈ X 2 (t) X -1 1 (t) Y 1 (t) S -1 -Y 2 (t) S -1 ⇒ F S (t) := (X 2 (t) -P S (t) X 1 (t)) S ≈ X 2 (t) X -1 1 (t) Y 1 (t) -Y 2 (t) = P(t) Y 1 (t) -Y 2 (t) = F(t)
(2.36)

Closed-loop block diagram

Finally, using (2.7), optimal control u(t) reads as follows when the nal state is imposed (when the nal state is weighted, P(t) and F(t) have to be replaced by P S (t) and F S (t), respectively):

u(t) = -R -1 B T λ(t) = -R -1 B T P(t) x(t) -F(t) x f := -K(t)x(t) + F(t) x f (2.37)
where:

K(t) = R -1 B T P(t) (2.38)
The preceding expression leads to the closed-loop block diagram shown in Figure 2.1.

It is worth noticing that (2.20). This is in line with the nal value of P(t) as indicated by (2.10) when the nal state is close to zero:

P(t f ) = X 2 (t f )X -1 1 (t f ) → ∞ because X 1 (t f ) = 0 when the nal value x f of x(t f ) is imposed, as indicated by
x f = 0 ⇒ λ(t f ) = P(t f )x(t f ) = Sx(t f ) ⇒ P(t f ) = S (2.39)
Consequently, when it is desired that the nal value x(t f ) tends towards x f , then S → ∞. Thus S = P(t f ) is singular when the nal value x(t f ) is set to x f . In that case, and to avoid the numerical diculty when t = t f , we shall set u(t f ) = 0. Thus the optimal control reads:

u(t) = -K(t) x(t) + F(t) x f ∀ 0 ≤ t < t f 0 for t = t f (2.40)

Riccati dierential equation

When the nal value x f is set to zero, we have seen that that Lagrange multipliers λ(t) linearly depend on the state vector x(t) through the time dependent matrix P(t):

x f = 0 ⇒ λ(t) = P(t)x(t) (2.41)
Using (2.9) and (2.10), we can compute the time derivative of the Lagrange multipliers λ(t) = P(t)x(t) as follows:

λ(t) = Ṗ(t)x(t) + P(t) ẋ(t) = -Qx(t) -A T λ(t) λ(t f ) = P(t f )x(t f ) = Sx(t f ) (2.42)
Then substituting (2.1), (2.7) and (2.41) within (2.42) we get:

   ẋ = Ax(t) + Bu(t) u(t) = -R -1 B T λ(t) λ(t) = P(t)x(t) ⇒ Ṗ(t)x(t) + P(t) Ax(t) -BR -1 B T P(t)x(t) = -Qx(t) -A T P(t)x(t) P(t f )x(t f ) = Sx(t f ) (2.
43) Because the previous equation is true for all x(t) and x(t f ) we obtain the following equation, which is known as the Riccati dierential equation:

A T P(t) + P(t)A -P(t)BR -1 B T P(t) + Q = -Ṗ(t) P(t f ) = S (2.44)
From a computational point of view, the Riccati dierential equation (2.44) may be integrated backward. The kernel P(t) is stored for each values of t and then is used to compute K(t) and u(t).

Alternatively, the analytic solution of the Riccati dierential equation (2.44) is given either by

P(t) := X 2 (t) X -1 1 (t) in (2.24) when the nal state x f = 0 is imposed or by P S (t) := (Y 2 (t) + X 2 (t) S) (Y 1 (t) + X 1 (t) S) -1 in (2.30) when the nal state x f = 0 is weighted by matrix S = S T ≥ 0.
The key point to solve the Riccati dierential equation is the partition of matrix e H(t-t f ) shown in (2.18):

e H(t-t f ) := Y 1 (t) X 1 (t) Y 2 (t) X 2 (t) (2.45)
It is worth noticing that the Riccati dierential equation can be written in a compact form as follows where H denotes the Hamiltonian matrix dened in (2.13):

-

Ṗ(t) = A T P(t) + P(t)A -P(t)BR -1 B T P(t) + Q ⇔ -Ṗ(t) = P(t) -I n H I n P(t) (2.46)

Examples

Example 1

Given the following scalar plant:

ẋ(t) = ax(t) + bu(t) x(0) = x 0 (2.47)
Find control u(t) which minimizes the following performance index where x f = 0, S ≥ 0 and ρ > 0:

J(u(t)) = 1 2 x T (t f )Sx(t f ) + 1 2 t f 0 ρu 2 (t) dt (2.48)
Hamiltonian matrix H dened in (2.13) reads:

H = A -BR -1 B T -Q -A T = a -b 2 ρ 0 -a (2.49)
Denoting by s the Laplace variable, the exponential of matrix e Ht is obtained thanks to the inverse of the Laplace transform, which is denoted L -1 :

e Ht = L -1 (sI -H) -1 = L -1 s -a b 2 /ρ 0 s + a -1 = L -1 1 (s-a)(s+a) s + a -b 2 /ρ 0 s -a = L -1 1 s-a -b 2 ρ(s 2 -a 2 ) 0 1 s+a = e at -b 2 (e at -e -at ) 2ρa 0 e -at
(2.50) Following (2.18), the partition of e H(t-t f ) reads:

e H(t-t f ) =   e a(t-t f ) -b 2 e a(t-t f ) -e -a(t-t f ) 2ρa 0 e -a(t-t f )   := Y 1 (t) X 1 (t) Y 2 (t) X 2 (t) (2.51)
Because the nal state state x f = 0 is weighted by matrix S ≥ 0, we nally get the solution of the Riccati dierential equation thanks to P S (t) in (2.30):

P S (t) := (Y 2 (t) + X 2 (t) S) (Y 1 (t) + X 1 (t) S) -1 = e -a(t-t f ) S e a(t-t f ) + -b 2 e a(t-t f ) -e -a(t-t f ) 2ρa S -1 = Se -a ( t-t f ) e a ( t-t f ) - Sb 2   e a ( t-t f ) -e -a ( t-t f )   2ρa = S e 2a ( t-t f ) + Sb 2   1-e 2a ( t-t f )   2ρa (2.52)
Finally the optimal control reads:

u(t) = -K(t)x(t) = -R -1 B T P S (t)x(t) = -b ρ P S (t)x(t) = -bS ρe 2a ( t-t f ) + Sb 2   1-e 2a ( t-t f )   2a x(t) (2.53)
If we want to ensure that the optimal control drives x(t f ) exactly to x f = 0, we let S → ∞ to weight heavily x(t f ) in the performance index J(u(t)). Then:

P S (t) → S→∞ P(t) = X 2 (t) X -1 1 (t) = 2ρa b 2 1 -e 2a(t-t f ) (2.54)
and:

u(t) = -R -1 B T P(t)x(t) = -2a b 1 -e 2a(t-t f ) x(t) (2.55)

Example 2

Given the following plant, which actually represents a double integrator:

ẋ1 (t) ẋ2 (t) = 0 1 0 0 x 1 (t) x 2 (t) + 0 1 u(t) (2.56)
Find control u(t) which minimizes the following performance index where x f = 0 and S = S T ≥ 0:

J(u(t)) = 1 2 x T (t f )Sx(t f ) + 1 2 t f 0 u 2 (t)dt (2.57)
Weighting matrix S reads as follows:

S = S T = s p 0 0 s v ≥ 0 (2.58)
Hamiltonian matrix H dened in (2.13) reads:

H = A -BR -1 B T -Q -A T =     0 1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0     (2.59)
In order to compute e Ht we use the following relation where L -1 stands for the inverse Laplace transform:

e Ht = L -1 (sI -H) -1
(2.60)

We get:

sI -H =     s -1 0 0 0 s 0 1 0 0 s 0 0 0 1 s     ⇒ (sI -H) -1 =     1 s 1 s 2 1 s 4 -1 s 3 0 1 s 1 s 3 -1 s 2 0 0 1 s 0 0 0 -1 s 2 1 s     ⇒ e Ht = L -1 (sI -H) -1 =     1 t t 3 6 -t 2 2 0 1 t 2 2 -t 0 0 1 0 0 0 -t 1     (2.61)
Following (2.18), the partition of e H(t-t f ) reads: 3 6

e H(t-t f ) =      1 (t -t f ) (t-t f )
- (t-t f ) 2 2 0 1 (t-t f ) 2 2 -(t -t f ) 0 0 1 0 0 0 -(t -t f ) 1      := Y 1 (t) X 1 (t) Y 2 (t) X 2 (t) (2.62)
Because the nal state state x f = 0 is weighted by matrix S ≥ 0, we nally get the solution of the Riccati dierential equation thanks to P S (t) in (2.30):

P S (t) := (Y 2 (t) + X 2 (t) S) (Y 1 (t) + X 1 (t) S) -1 = s p 0 -s p (t -t f ) s v 1 + s p (t-t f ) 3 6 t -t f -s v (t-t f ) 2 2 s p (t-t f ) 2 2 1 -s v (t -t f ) -1 = 1 ∆ s p 0 -s p (t -t f ) s v 1 -s v (t -t f ) t f -t + s v (t-t f ) 2 2 -s p (t-t f ) 2 2 1 + s p (t-t f ) 3 6 
(2.63) where:

∆ = 1 + s p (t -t f ) 3 6 (1 -s v (t -t f )) -s p (t -t f ) 2 2 t -t f -s v (t -t f ) 2 2 (2.64)

Second order necessary condition for optimality

It is worth noticing that the second order necessary condition for optimality to achieve a minimum cost is the positive semi-deniteness of the Hessian matrix of the Hamiltonian along an optimal trajectory (see (1.214)). This condition is always satised as soon as R > 0. Indeed we get from (2.6):

∂ 2 H ∂u 2 = H uu = R > 0 (2.65)

Minimum cost achieved

The minimum cost achieved is given by:

J * = J(u * (t)) = 1 2 x T (0)P(0)x(0) (2.66)
Indeed, from the Riccati equation (2.44), we deduce that:

x T Ṗ + PA + A T P -PBR -1 B T P + Q x = 0 ⇔ x T Ṗx + x T PAx + x T A T Px -x T PBR -1 B T Px + x T Qx = 0 ⇔ x T Ṗx + x T PAx + x T PAx T -x T PBR -1 B T Px + x T Qx = 0 (2.67)
Taking into account the fact that P = P T > 0, R = R T > 0 as well as (2.1), (2.37) with x f = 0 and (2.38) it can be shown that:

               x T PBR -1 B T Px = -x T PBu * = -x T PBR -1 Ru * = u * T Ru * x T PAx = x T P (Ax + Bu * -Bu * ) = x T P ẋ -x T PBu * = x T P ẋ + u * T Ru * ⇒ x T Ṗx + x T PAx + x T PAx T -x T PBR -1 B T Px = x T Ṗx + x T P ẋ + ẋT Px + u * T Ru * = d dt x T Px + u * T Ru * (2.68)
As a consequence equation (2.67) can be written as follows:

d dt x T (t)P(t)x(t) + x T (t)Qx(t) + u * T (t)Ru * (t) = 0 (2.69)
And the performance index (2.2) to be minimized can be re-written as:

J(u * (t)) = 1 2 x T (t f )Sx(t f ) + 1 2 t f 0 x T (t)Qx(t) + u * T (t)Ru * (t) dt ⇔ J(u * (t)) = 1 2 x T (t f )Sx(t f ) - t f 0 d dt x T (t)P(t)x(t) dt ⇔ J(u * (t)) = 1 2 x T (t f )Sx(t f ) -x T (t f )P(t f )x(t f ) + x T (0)P(0)x(0) (2.70)
Then taking into account the boundary conditions P(t f ) = S we nally get (2.66).

Application to minimum energy control problem

Minimum energy control problem appears when Q := 0.

Moving a linear system close to a nal state with minimum energy

Let's consider the following dynamical system:

ẋ(t) = Ax(t) + Bu(t) (2.71)
We are looking for the control u(t) which moves the system from the initial state x(0) = x 0 to a nal state which should be close to a given value x(t f ) = x f at nal time t = t f . We will assume that the performance index to be minimized is the following quadratic performance index where R is a symmetric positive denite matrix:

J(u(t)) = 1 2 x(t f ) -x f T S x(t f ) -x f + 1 2 t f 0 u T (t)Ru(t) dt (2.72)
For this optimal control problem, the Hamiltonian (2.5) is:

H(x, u, λ) = 1 2 u T (t)Ru(t) + λ T (t) (Ax(t) + Bu(t)) (2.73)
The necessary condition for optimality (2.6) yields:

∂H ∂u = Ru(t) + B T λ(t) = 0 (2.74)
We get:

u(t) = -R -1 B T λ(t) (2.75)
Eliminating u(t) in equation ( 2.72) reads:

ẋ(t) = Ax(t) -BR -1 B T λ(t) (2.76)
The dynamics of Lagrange multipliers λ(t) is given by (2.9):

λ(t) = - ∂H ∂x = -A T λ(t) (2.77) 
We get from the preceding equation:

λ(t) = e -A T t λ(0) (2.78)
The value of λ(0) will inuence the nal value of the state vector x(t). Indeed let's integrate the linear dierential equation:

ẋ(t) = Ax(t) -BR -1 B T λ(t) = Ax(t) + BR -1 B T e -A T t λ(0) (2.79)
This leads to the following expression of the state vector x(t):

x(t) = e At x 0 + e At t 0 e -Aτ BR -1 B T e -A T τ λ(0)dτ = e At x 0 + e At t 0 e -Aτ BR -1 B T e -A T τ dτ λ(0) (2.80) Or: x(t) = e At x 0 + e At W c (t) λ(0) (2.81)
where matrix W c (t) is dened as follows:

W c (t) = t 0 e -Aτ BR -1 B T e -A T τ dτ (2.82)
Now using (2.10) we set λ(t f ) as follows:

λ(t f ) = S x(t f ) -x f (2.83)
Using (2.78) and (2.81) we get:

λ(t f ) = e -A T t f λ(0) x(t f ) = e At f x 0 + e At f W c (t f ) λ(0) (2.84)
And the transversality condition (2.83) is rewritten as follows:

λ(t f ) = S x(t f ) -x f ⇔ e -A T t f λ(0) = S e At f x 0 + e At f W c (t f ) λ(0) -x f (2.85)
Solving the preceding linear equation in λ(0) gives the following expression:

e -A T t f -Se At f W c (t f ) λ(0) = S e At f x 0 -x f ⇔ λ(0) = e -A T t f -Se At f W c (t f ) -1 S e At f x 0 -x f (2.86)
Using the expression of λ(0) in (2.78) leads to the expression of the Lagrange multiplier λ(t):

λ(t) = e -A T t e -A T t f -Se At f W c (t f ) -1 S e At f x 0 -x f (2.87)
Finally control u(t) is obtained thanks equation (2.75):

u(t) = -R -1 B T λ(t) (2.88) 
It is clear from the expression of λ(t) that the control u(t) explicitly depends on the initial state x 0 .

Moving a linear system exactly to a nal state with minimum energy

We are now looking for the control u(t) which moves the system from the initial state x(0) = x 0 to a given nal state x(t f ) = x f at nal time t = t f . We will assume that the performance index to be minimized is the following quadratic performance index where R is a symmetric positive denite matrix:

J = 1 2 t f 0 u T (t)Ru(t) dt (2.89)
To solve this problem the same reasoning applies than in the previous example. As far as control u(t) is concerned this leads to equation (2.75). The change is that now the nal value of the state vector x(t) is imposed to be x(t f ) = x f . So there is no nal value for the Lagrange multipliers. Indeed λ(t f ), or equivalently λ(0), has to be set such that x(t f ) = x f . We have seen in (2.81) that the state vector x(t) has the following expression:

x(t) = e At x 0 + e At W c (t) λ(0) (2.90)
where matrix W c (t) is dened as follows:

W c (t) = t 0 e -Aτ BR -1 B T e -A T τ dτ (2.91)
Then we set λ(0) as follows where c 0 is a constant vector:

λ(0) = W -1 c (t f )c 0 (2.92)
We get:

x(t) = e At x 0 + e At W c (t) W -1 c (t f )c 0 (2.93)
Constant vector c 0 is used to satisfy the nal value on the state vector x(t). Setting x(t f ) = x f leads to the value of constant vector c 0 :

x(t f ) = x f ⇒ c 0 = e -At f x f -x 0 (2.94) Thus: λ(0) = W -1 c (t f ) e -At f x f -x 0 (2.95)
Using (2.95) in (2.78) leads to the expression of the Lagrange multiplier λ(t):

λ(t) = e -A T t λ(0) = e -A T t W -1 c (t f ) e -At f x f -x 0 (2.96)
Finally the control u(t) which moves with the minimum energy the system from the initial state x(0) = x 0 to a given nal state x(t f ) = x f at nal time t = t f has the following expression:

u(t) = -R -1 B T λ(t) = -R -1 B T e -A T t λ(0) = -R -1 B T e -A T t W -1 c (t f ) e -At f x f -x 0 (2.97)
It is clear from the preceding expression that the control u(t) explicitly depends on the initial state x 0 . When comparing the initial value λ(0) of the Lagrange multiplier obtained in (2.95) in the case where the nal state is imposed to be x(t f ) = x f with the expression of the initial value of the Lagrange multiplier obtained in (2.86) in the case where the nal state x(t f ) is close to a given nal state x f we can see that the expression in (2.95) corresponds to the limit of the initial value (2.86) when matrix S moves towards innity (note that e At f -1 = e -At f ):

lim S→∞ e -A T t f -Se At f W c (t f ) -1 S e At f x 0 -x f = lim S→∞ -Se At f W c (t f ) -1 S e At f x 0 -x f = lim S→∞ W -1 c (t f )e -At f S -1 S e At f x 0 -x f = W -1 c (t f )e -At f e At f x 0 -x f (2.98)

Example

Given the following scalar plant:

ẋ(t) = ax(t) + bu(t) x(0) = x 0 (2.99)
Find the optimal control for the following cost functional and nal states constraints:

We wish to compute a nite horizon Linear Quadratic Regulator with either a xed or a weighted nal state x f .

-When the nal state x(t f ) is set to a xed value x f and the cost functional is set to:

J = 1 2 t f 0 ρu 2 (t) dt (2.100)
-When the nal state x(t f ) shall be close of a xed value x f so that the cost functional is modied as follows where is a positive scalar (S > 0):

J = 1 2 (x(t f ) -x f ) T S (x(t f ) -x f ) + 1 2 t f 0 ρu 2 (t) dt (2.101)
In both cases the two-point boundary value problem which shall be solved depends on the solution of the following dierential equation where Hamiltonian matrix H appears:

ẋ(t) λ(t) = A -BR -1 B T -Q -A T x(t) λ(t) = a -b 2 /ρ 0 -a x(t) λ(t) = H x(t) λ(t) (2.102)
The solution of this dierential equation reads:

x(t) λ(t) = e Ht x(0) λ(0) (2.103) 
Denoting by s the Laplace variable, the exponential of matrix Ht is obtained thanks to the inverse of the Laplace transform denoted L -1 :

e Ht = L -1 (sI -H) -1 = L -1 s -a b 2 /ρ 0 s + a -1 = L -1 1 (s-a)(s+a) s + a -b 2 /ρ 0 s -a = L -1 1 s-a -b 2 ρ(s 2 -a 2 ) 0 1 s+a ⇔ e Ht = e at -b 2 (e at -e -at ) 2ρa 0 e -at (2.104)
That is:

x(t) λ(t) = e Ht x(0) λ(0) = e at -b 2 (e at -e -at ) 2ρa 0 e -at x(0) λ(0) (2.105)
-If the nal state x(t f ) is set to the value x f then the value λ(0) is obtained by solving the rst equation of (2.105):

x(t f ) = x f = e at f x(0) - b 2 (e at f -e -at f ) 2ρa λ(0) ⇒ λ(0) = -2ρa b 2 (e at f -e -at f ) x f -e at f x(0) (2.106)
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And:

   x(t) = e at x(0) + e at -e -at e at f -e -at f x f -e at f x(0) λ(t) = e -at λ(0) = -2ρae -at b 2 (e at f -e -at f ) x f -e at f x(0) (2.107)
The optimal control u(t) is given by:

u(t) = -R -1 B T λ(t) = -b ρ λ(t) = 2ae -at b (e at f -e -at f ) x f -e at f x(0) (2.108)
Interestingly enough, the open-loop control is independent of the control weighting ρ.

-If the nal state x(t f ) is expected to be close to the nal value x f then we have to mix the two equations of (2.105) and the constraint λ(t f ) = S (x(t f ) -x f ) to compute the value of λ(0) :

λ(t f ) = S (x(t f ) -x f ) ⇒ e -at f λ(0) = S e at f x(0) - b 2 (e at f -e -at f ) 2ρa λ(0) -x f ⇔ λ(0) = S(e at f x(0)-x f ) e -at f + Sb 2 e at f -e -at f 2ρa (2.109)
Obviously, when S → ∞ we obtain for λ(0) the same expression than (2.106).

Finite horizon LQ regulator with cross-term in the performance index

Consider the following time invariant state dierential equation:

ẋ(t) = Ax(t) + Bu(t) x(0) = x 0 (2.

110)

Where:

-A is the state (or system) matrix -B is the input matrix -x(t) is the state vector of dimension n -u(t) is the control vector of dimension m

We will assume that the pair (A, B) is controllable. The purpose of this section is to explicit the control u(t) which minimizes the following quadratic performance index with cross-terms:

J(u(t)) = 1 2 t f 0 x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)Su(t) dt (2.111)
With the constraint on terminal state:

x(t f ) = 0 (2.112)
Matrices S and Q are symmetric positive semi-denite and matrix R symmetric positive denite:

   S = S T ≥ 0 Q = Q T ≥ 0 R = R T > 0 (2.113)
It can be seen that:

x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)Su(t) = x T (t)Q m x(t) + v T (t)Rv(t) (2.

114)

Where:

Q m = Q -SR -1 S T v(t) = u(t) + R -1 S T x(t) (2.115) 
Hence cost (2.111) to be minimized can be rewritten as:

J(u(t)) = 1 2 ∞ 0 x T (t)Q m x(t) + v T (t)Rv(t) dt (2.116)
Furthermore (2.110) is rewritten as follows, where v(t) appears as the control vector rather than u(t). Using u(t) = v(t) -R -1 S T x(t) in (2.110) leads to the following state equation:

ẋ(t) = Ax(t) + B v(t) -R -1 S T x(t) = A -BR -1 S T x(t) + Bv(t) = A m x(t) + Bv(t) (2.117) 
We will assume that symmetric matrix Q m is positive semi-denite:

Q m = Q -SR -1 S T ≥ 0 (2.118)
Hamiltonian matrix H reads:

H = A m -BR -1 B T -Q m -A T m = A -BR -1 S T -BR -1 B T -Q + SR -1 S T -A T + SR -1 B T (2.119)
The problem can be solved through the following Hamiltonian system whose state is obtained by extending the state x(t) of system (2.110) with costate λ(t):

ẋ(t) λ(t) = A -BR -1 S T -BR -1 B T -Q + SR -1 S T -A T + SR -1 B T x(t) λ(t) := H x(t) λ(t) (2.120)
Ntogramatzidis 2 has shown the following results: let P 1 and P 2 be the positive semi-denite solutions of the following continuous time algebraic Riccati equations:

0 = A T P 1 + P 1 A -(S + P 1 B) R -1 (S + P 1 B) T + Q 0 = -A T P 2 -P 2 A -(S -P 2 B) R -1 (S -P 2 B) T + Q (2.121)
Notice that pair (A, B) has been replaced by (-A, -B) in the second equation. We will denote by K 1 and K 2 the following innite horizon gain matrices:

K 1 = R -1 S T + B T P 1 K 2 = R -1 S T -B T P 2 (2.122)
Then the optimal control reads:

u(t) = -K(t)x(t) ∀ 0 ≤ t < t f 0 for t = t f (2.123)
Where:

K(t) = R -1 S T + B T P(t) P(t) = X 2 (t)X -1 1 (t) (2.124)
And:

X 1 (t) = e (A-BK 1 )t -e (A-BK 2 )(t-t f ) e (A-BK 1 )t f X 2 (t) = P 1 e (A-BK 1 )t + P 2 e (A-BK 2 )(t-t f ) e (A-BK 1 )t f (2.125)
Matrix P(t) satisfy the following Riccati dierential equation:

-

Ṗ(t) = A T P + PA -(S + BP(t)) R -1 (S + BP(t)) T + Q (2.126)
Furthermore the optimal state x(t) and costate λ(t) have the following expressions:

x

(t) = X 1 (t) X -1 1 (0) x 0 λ(t) = X 2 (t) X -1 1 (0) x 0 (2.127)

Extension to nonlinear system ane in control

We consider the following nite horizon optimal control problem consisting in nding the control u that minimizes the following performance index where q(x) is positive semi-denite and R = R T > 0:

J(u(t)) = G (x(t f )) + 1 2 t f 0 q(x) + u T (t)Ru(t) dt (2.128)
under the constraint that the system is nonlinear but ane in control:

ẋ(t) = f (x) + g(x) u(t) x(0) = x 0 (2.129)
Assuming no constraint, control u * (t) that minimizes the performance index

J(u(t)) is dened by: u * (t) = -R -1 g T (x)λ(t) (2.130)
where:

λ(t) = -1 2 ∂q(x) ∂x T + ∂(f (x)+g(x) u * ) ∂x λ(t) = -1 2 ∂q(x) ∂x T + ∂(f (x)-g(x)R -1 g T (x)λ(t)) ∂x λ(t) (2.131)
For boundary value problems, ecient minimization of the Hamiltonian is possible 3 .
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Problem to be solved

We recall that we consider the following linear time invariant system, where x(t) is the state vector of dimension n, u(t) is the control vector of dimension m and z(t) is the controlled output (that is not the actual output of the system but the output of interest for the design):

   ẋ(t) = Ax(t) + Bu(t) z(t) = N x(t) x(0) = x 0 (3.1)
We recall hereafter the performance index which was under consideration in the previous chapter dealing with nite horizon Linear Quadratic Regulator (LQR) when the nal state x f is set:

J(u(t)) = 1 2 t f 0 x T (t)Qx(t) + u T (t)Ru(t) dt (3.2) 
where Q = N T N ≥ 0 (thus Q is symmetric and positive semi-denite) and R = R T > 0 is a symmetric and positive denite matrix.

In this chapter we will focus on the case where the nal time t f tends toward innity (t f → ∞). The performance index to be minimized turns to be:

J(u(t)) = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) dt (3.3)
The results presented in this chapter can be envisioned as the results of the previous chapter as ∥S∥ → ∞ (x f := 0 here) and t f → ∞. When the nal time t f is set to innity, the Kalman gain K(t) which has been computed in the previous chapter becomes constant. As a consequence, the control is easier to implement as far as it is no more necessary to integrate the dierential Riccati equation and to store the gain K(t) before applying the control. In practice innity means that nal time t f becomes large when compared to the time constants of the plant.

Stabilizability and detectability

We will assume in the following that (A, B) is stabilizable and (A, N) is detectable.

We recall that the pair (A, B) is said stabilizable if the uncontrollable eigenvalues of A, if any, have negative real parts. Thus even though not all system modes are controllable, the ones that are not controllable do not require stabilization.

Similarly the pair (A, N) is said detectable if the unobservable eigenvalues of A, if any, have negative real parts. Thus even though not all system modes are observable, the ones that are not observable do not require stabilization. We may use the Kalman test to check the controllability of the system:

rank B AB • • • A n-1 B = n where n = size of state vector x (3.4)
Or equivalently the Popov-Belevitch-Hautus (PBH ) test which shall be applied to all eigenvalues of A, denoted λ i , to check the controllability of the system, or only on the eigenvalues which are not contained in the left half plane to check the stabilizability of the system:

rank A -λ i I B = n ∀ λ i for controllability ∀ λ i s.t. Re(λ i ) ≥ 0 for stabilizability (3.5) 
Similarly we may use the Kalman test to check the observability of the system:

rank      N NA . . . NA n-1     
= n where n = size of state vector x (3.6)

Or equivalently the Popov-Belevitch-Hautus (PBH ) test which shall be applied to all eigenvalues of A, denoted λ i , to check the observability of the system, or only on the eigenvalues which are not contained in the left half plane to check the detectability of the system:

rank A -λ i I N = n ∀ λ i for observability ∀ λ i s.t. Re(λ i ) ≥ 0 for detectability (3.7)

Algebraic Riccati equation

When nal time t f tends toward innity the matrix P(t) turns to be a constant symmetric positive denite matrix denoted P. The Riccati equation (2.44) reduces to an algebraic equation, which is known as the algebraic Riccati equation (ARE):

A T P + PA -PBR -1 B T P + Q = 0 (3.8)
It is worth noticing that the algebraic Riccati equation (3.8) may have several solutions. The solution of the optimal control problem only retains the positive semi-denite solution of the algebraic Riccati equation.

The convergence of lim t f →∞ P(t) → P where P ≥ 0 is some positive semi-denite symmetric constant matrix is guaranteed by the stabilizability assumption (P T is indeed a solution of the algebraic Riccati equation (3.8)). Since the matrix P = P T ≥ 0 is constant, the optimal gain K(t) also turns to be also a constant denoted K. The optimal gain K and the optimal stabilizing control u(t) are then dened as follows:

u(t) = -Kx(t) K = R -1 B T P (3.9)
The need for the detectability assumption is to ensure that the optimal control computed using the lim t f →∞ P(t) generates a feedback gain K = R -1 B T P that stabilizes the plant, i.e. all the eigenvalues of A -BK lie on the open left half plane. In addition, it can be shown that the minimum cost achieved is given by:

J * = 1 2 x T (0)Px(0) (3.10)
To get this result rst we notice that the Hamiltonian (1.63) reads:

H(x, u, λ) = 1 2 x T (t)Qx(t) + u T (t)Ru(t) + λ T (t) (Ax(t) + Bu(t)) (3.11)
The necessary condition for optimality (1.72) yields:

∂H ∂u = Ru(t) + B T λ(t) = 0 (3.12)
Taking into account that R is a symmetric matrix, we get:

u(t) = -R -1 B T λ(t) (3.13)
Eliminating u(t) in equation (3.1) reads:

ẋ(t) = Ax(t) -BR -1 B T λ(t) (3.14)
The dynamics of Lagrange multipliers λ(t) is given by (1.69):

λ(t) = - ∂H ∂x = -Qx(t) -A T λ(t) (3.15)
The key point in the LQR design is that Lagrange multipliers λ(t) are now assume to linearly depends on state vector x(t) through a constant symmetric positive denite matrix denoted P:

λ(t) = Px(t) where P = P T ≥ 0 (3.16)
By taking the time derivative of the Lagrange multipliers λ(t) and using again equation (3.1) we get:

λ(t) = P ẋ(t) = P (Ax(t) + Bu(t)) = PAx(t) + PBu(t) (3.17)
Then using the expression of control u(t) provided in (3.13) as well as (3.16) we get:

λ(t) = PAx(t) -PBR -1 B T λ(t) = PAx(t) -PBR -1 B T Px(t) (3.18)
Finally using (3.18) within (3.15) and using λ(t) = Px(t) (see (3.16)) we get:

-

PAx(t) + PBR -1 B T Px(t) = Qx(t) + A T Px(t) ⇔ A T P + PA -PBR -1 B T P + Q x(t) = 0 (3.19)
As far as this equality stands for every value of the state vector x(t) we retrieve the algebraic Riccati equation (3.8):

A T P + PA -PBR -1 B T P + Q = 0 (3.20)

Extension to nonlinear system ane in control

We consider the following innite horizon optimal control problem consisting in nding the control u that minimizes the following performance index where q(x) is positive semi-denite:

J(u(t)) = 1 2 ∞ 0 q(x) + u T (t)u(t) dt (3.21)
under the constraint that the system is nonlinear but ane in control:

ẋ = f (x) + g(x) u(t) x(0) = x 0 (3.22)
We assume that vector eld f is such that f (x) = 0. Thus (x e := 0, u e := 0) is an equilibrium point for the nonlinear system ane in control. Consequently f (x) = F(x) x for some, possibly not unique, continuous function F : R n → R n×n . The classical optimal control design methodology relies on the solution of the Hamilton-Jacobi-Bellman (HJB) equation (1.112):

0 = min u(t) ∈ U 1 2 q(x) + u T u + ∂J * (x) ∂x T f (x) + g(x) u (3.23)
Assuming no constraint, the minimum of the preceding Hamilton-Jacobi-Bellman (HJB) equation with respect to u is attained for optimal control u * (t) dened by:

u * (t) = -g T (x) ∂J * (x) ∂x (3.24)
Then replacing u by u * = -g T (x) ∂J * (x) ∂x , the Hamilton-Jacobi-Bellman (HJB) equation reads:

0 = 1 2 q(x) + ∂J * (x) ∂x T g(x)g T (x) ∂J * (x) ∂x + ∂J * (x) ∂x T f (x) -g(x)g T (x) ∂J * (x) ∂x (3.25)
We nally get:

1 2 q(x) + ∂J * (x) ∂x T f (x) - 1 2 ∂J * (x) ∂x T g(x)g T (x) ∂J * (x) ∂x = 0 (3.26)
In the linearized case the solution of the optimal control problem is a linear static state feedback of the form u = -B T P, where P is the symmetric positive denite solution of the algebraic Riccati equation:

A T P + PA -PBB T P + Q = 0 (3.27)
where:

         A = ∂f (x) ∂x x=0 B = g(0) Q = 1 2 ∂ 2 q(x) ∂x 2 x=0
(3.28)

Following Sassano and Astol1 , there exists a matrix R = R T > 0, a neighbourhood of the origin Ω ⊆ R 2n and k ≥ 0 such that for all k ≥ k the function V (x, ξ) is positive denite and satises the following partial dierential inequality:

1 2 q(x) + V x (x, ξ)f (x) + V ξ (x, ξ) ξ - 1 2 V x (x, ξ) g(x)g T (x)V T x (x, ξ) ≤ 0 (3.29)
where:

V (x, ξ) = P (ξ)x + 1 2 (x -ξ) T R(x -ξ) ξ = -k V T ξ (x, ξ) ∀ (x, ξ) ∈ Ω (3.30)
The C 1 mapping P : R n → R 1×n , P (0) = 0 T , is dened as follows:

1 2 q(x) + P (x)f (x) - 1 2 P (x)g(x)g T (x)P (x) T + σ(x) = 0 (3.31)
where σ(x) = x T Σ(x)x with Σ : R n → R n×n , Σ(0) = 0. Furthermore P (x) is tangent at x = 0 to P:

∂P (x) T ∂x x=0 = P (3.32)
Since P (x) is tangent at x = 0 to the solution P of the algebraic Riccati equation, the function P (x) x : R n → R is locally quadratic around the origin and moreover has a local minimum for x = 0.

Let Ψ(ξ) be Jacobian matrix of the mapping P (ξ) and Φ : R n × R n → R n×n a continuous matrix valued function such that:

P (ξ) = ξ T Ψ(ξ) T P (x) -P (ξ) = (x -ξ) T Φ(x, ξ) T (3.33)
Then the approximate regional dynamic optimal control is found to be 1 :

u = -g(x) T V T x (x, ξ) = -g(x) T P (ξ) T + R(x -ξ) = -g(x) T P (x) T + R(x -ξ) -P (x) T -P (ξ) T = -g(x) T P (x) T + R -Φ(x, ξ) (x -ξ) (3.34) where: ξ = -k V T ξ (x, ξ) = -k Ψ(ξ) T x -R x -ξ (3.35)
Such control has been applied to internal combustion engine test benches2 .

3.5 Solving the algebraic Riccati equation 

ẋ(t) λ(t) = A -BR -1 B T -Q -A T x(t) λ(t) := H x(t) λ(t) (3.36) 
We have seen that the following 2n × 2n matrix H is called the Hamiltonian matrix:

H = A -BR -1 B T -Q -A T (3.37)
It can be shown that the Hamiltonian matrix H has n eigenvalues in the open left half plane and n eigenvalues in the open right half plane. The eigenvalues are symmetric with respects to the imaginary axis: if λ is and eigenvalue of H then -λ is also an eigenvalue of H. In addition H has no pure imaginary eigenvalues.

Furthermore if the 2n × n matrix X 1 X 2 has columns that comprise all the eigenvectors of H corresponding to the n eigenvalues in the open left half plane. Then X 1 is invertible and the positive semi-denite solution of the algebraic Riccati equation (ARE) is:

P = X 2 X -1 1 (3.38)
Similarly the negative semi-denite solution of the algebraic Riccati equation (ARE) is build thanks to the eigenvectors associated with the n eigenvalues in the open right half plane (i.e. the unstable invariant subspace). Once again the solution of the optimal control problem only retains the positive semi-denite solution of the algebraic Riccati equation.

In addition it can be shown that the eigenvalues of A -BK where K = R -1 B T P (that are the eigenvalues of the closed-loop plant) are equal to the n eigenvalues in the open left half plane of the Hamiltonian matrix H.

Proof of the results on the Hamiltonian matrix

We recall that, by denition, a matrix H is said to be an Hamiltonian matrix as soon as the following property holds:

(JH) T = JH ⇔ (HJ) T = HJ where J = 0 I -I 0 (3.39)
Matrix J as the following properties:

J T J = JJ T = I 0 0 I and JJ = J T J T = - I 0 0 I (3.40)
In addition the following relation holds:

HJ = (HJ) T ⇒ J T HJ = J T J T H T = -H T (3.41)
Let λ be an eigenvalue of Hamiltonian matrix H associated with eigenvector x. We get:

Hx = λ x ⇒ HJJ T x = λ x ⇒ J T HJJ T x = λ J T x ⇔ -H T J T x = λ J T x ⇔ H T J T x = -λ J T x (3.42)
Thus -λ is an eigenvalue of H T with the corresponding eigenvector J T x. Using the fact that det (M) = det M T we get:

det -λI -H T = det (-λI -H) T (3.43)
As a consequence we conclude that -λ is also an eigenvalue of H.

To show that H has no eigenvalue on the imaginary axis suppose:

H x 1 x 2 = A -BR -1 B T -Q -A T x 1 x 2 = λ x 1 x 2 (3.44)
Where x 1 and x 2 are not both zero and

λ + λ * = 0 (3.45)
where λ * stands for the complex conjugate of λ. We seek a contradiction. Let's denote by x * the transpose conjugate of vector x.

-Equation (3.44) gives:

Ax 1 -BR -1 B T x 2 = λx 1 ⇒ x * 2 BR -1 B T x 2 = x * 2 Ax 1 -λx * 2 x 1 (3.46)
-Taking into account that Q is a real symmetric matrix, equation (3.44) also gives:

-Qx 1 -A T x 2 = λx 2 ⇒ λx T 2 = -x T 1 Q -x T 2 A ⇒ λ * x * 2 = -x * 1 Q -x * 2 A (3.47) Denoting M = BR -1 B
T and taking into account (3.47) into (3.46) yields:

x * 2 BR -1 B T x 2 = x * 2 Ax 1 -λx * 2 x 1 x * 2 A = -x * 1 Q -λ * x * 2 ⇒ x * 2 Mx 2 = -x * 1 Qx 1 -λ * x * 2 x 1 -λx * 2 x 1 = -x * 1 Qx 1 -(λ * + λ) x * 2 x 1 (3.48)
Using (3.45) we nally get:

x * 2 Mx 2 = -x * 1 Q x 1 (3.49)
Since R and Q are positive semi-denite matrices, and consequently also M = BR -1 B T , this implies:

Mx 2 = 0 Qx 1 = 0 (3.50)
Then using (3.46) we get:

Ax 1 = λ x 1 Qx 1 = 0 ⇒ A -λI Q x 1 = 0 (3.51)
If x 1 ̸ = 0 then this contradicts observability of the pair (Q, A) by the Popov-Belevitch-Hautus test. Similarly if x 2 ̸ = 0 then x * 2 M A + λ * I = 0 which contradicts the observability of the pair (A, M).

Solving general algebraic Riccati and Lyapunov equations

The general algebraic Riccati equation reads as follows where all matrices are square of dimension n × n:

AX + XB + C + XDX = 0 (3.52)
Matrices A, B, C and D are known whereas matrix X has to be determined. The general algebraic Lyapunov equation is obtained as a special case of the algebraic Riccati by setting D = 0.

The general algebraic Riccati equation can be solved3 by considering the following 2n × 2n matrix H:

H = B D -C -A (3.53)
Let the eigenvalues of matrix H be denoted λ 1 , i = 1, • • • , 2n, and the corresponding eigenvectors be denoted v i . Furthermore let M be the 2n × 2n matrix composed of all real eigenvectors of matrix H; for complex conjugate eigenvectors, the corresponding columns of matrix M are changed into the real and imaginary parts of such eigenvectors. Note that there are many ways to form matrix M.

Then we can write the following relation:

HM = MΛ = M 1 M 2 Λ 1 0 0 Λ 2 (3.54)
Matrix M 1 contains the n rst columns of M whereas matrix M 2 contains the n last columns of M.

Matrices Λ 1 and Λ 2 are diagonal matrices formed by the eigenvalues of H as soon as there are distinct; for eigenvalues with multiplicity greater than 1, the corresponding part in matrix Λ represents the Jordan form.

Thus we have:

HM 1 = M 1 Λ 1 HM 2 = M 2 Λ 2 (3.55)
We will focus our attention on the rst equation and split matrix M 1 as follows:

M 1 = M 11 M 12 (3.56)
Using the expression of H in (3.53), the relation HM 1 = M 1 Λ 1 reads as follows:

HM 1 = M 1 Λ 1 ⇒ BM 11 + DM 12 = M 11 Λ 1 -CM 11 -AM 12 = M 12 Λ 1 (3.57) 
Assuming that matrix M 11 is not singular, we can check that a solution X of the general algebraic Riccati equation (3.52) reads: 

X = M 12 M -1 11 (3.58) Indeed:    BM 11 + DM 12 = M 11 Λ 1 CM 11 + AM 12 = -M 12 Λ 1 X = M 12 M -1 11 ⇒ AX + XB + C + XDX = AM 12 M -1 11 + M 12 M -1 11 B + C +M 12 M -1 11 DM 12 M -1 11 = (AM 12 + CM 11 ) M -1 11 +M 12 M -1 11 (BM 11 + DM 12 ) M -1 11 = -M 12 Λ 1 M -1 11 + M 12 M -1 11 M 11 Λ 1 M -1 11 = 0 (3.

Application to the optimal control of any scalar LTI plant

We consider the following scalar linear time invariant plant where x(t) ∈ R, u(t) ∈ R:

ẋ(t) = a x(t) + b u(t) where b ̸ = 0 z(t) = c 1 x(t) where c 1 ̸ = 0 (3.60)
We wish to minimize the following performance index:

J(u(t)) = 1 2 ∞ 0 z 2 (t) + ρ u 2 (t) dt where ρ > 0 (3.61)
It is easy to check that pair (a, b) is controllable (meaning that b ̸ = 0) and that pair (a, c 1 ) is observable (meaning that c 1 ̸ = 0).

In order to match the considered performance index with the general expression 1 2 ∞ 0

x T (t)Qx(t) + u T (t)Ru(t) dt of the performance index, we dene weights Q and R as follows:

z 2 (t) = z T (t)z(t) = (c 1 x(t)) T (c 1 x(t)) = x T (t)c T 1 c 1 x(t) ⇒ Q := c T 1 c 1 = c 2 1 R := ρ (3.62)
The Hamiltonian matrix H reads:

H = A -BR -1 B T -Q -A T x(t) λ(t) = a -b 2 ρ -c 2 1 -a (3.63) 
The eigenvalues of H are obtained by solving:

det (sI -H) = 0 ⇒ det s -a b 2 ρ c 2 1 s + a = 0 ⇔ (s -a)(s + a) -(c 1 b) 2 ρ = 0 ⇔ s 2 -a 2 -(c 1 b) 2 ρ = 0 (3.64)
Thus the two eigenvalues of H read:

   λ 1 = + a 2 + (c 1 b) 2 ρ λ 2 = -a 2 + (c 1 b) 2 ρ (3.65)
We check that the eigenvalues of H are symmetric with respect to the imaginary axis.

The eigenvectors v 1 and v 2 corresponding to eigenvalues λ 1 and λ 2 , respectively, are obtained as follows:

Hv 1 = λ 1 v 1 ⇒ a -b 2 ρ -c 2 1 -a v 11 v 12 = λ 1 v 11 v 12 ⇔ a v 11 -b 2 ρ v 12 = λ 1 v 11 -c 2 1 v 11 -a v 12 = λ 1 v 12 ⇔ v 11 (a -λ 1 ) = b 2 ρ v 12 -c 2 1 v 11 = v 12 (a + λ 1 ) (3.66)
From the rst equation we can choose for example the following components for eigenvector v 1 :

v 1 = v 11 v 12 = 1 a-λ 1 ρ b 2
where

λ 1 = + a 2 + (c 1 b) 2 ρ (3.67)
We can check that this choice for v 11 and v 12 is compatible with the second equation. Indeed:

-c 2 1 v 11 = v 12 (a + λ 1 ) ⇒ -c 2 1 a-λ 1 = ρ b 2 (a + λ 1 ) ⇒ a 2 -λ 2 1 = -(c 1 b) 2 ρ (3.68)
Changing λ 1 by λ 2 leads to a possible choice of the components of eigenvector v 2 :

v 2 = v 21 v 22 = 1 a-λ 2 ρ b 2
where

λ 2 = -a 2 + (c 1 b) 2 ρ (3.69)
As far as λ 2 is the eigenvalue of H in the left half plane, we conclude that λ 2 will be the closed-loop eigenvalue once the optimal control has been applied (notice that we don't know so far the expression of the optimal control !).

As far as v 2 is the eigenvector of H corresponding to the eigenvalue in the left half plane, we split it as follows:

v 2 = X 1 X 2 = 1 a-λ 2 ρ b 2
where

λ 2 = -a 2 + (c 1 b) 2 ρ (3.70)
Then the solution of the algebraic Riccati equation which leads to the computation of the optimal control reads:

P = X 2 X -1 1 = ρ b 2 (a -λ 2 ) where λ 2 = -a 2 + (c 1 b) 2 ρ (3.71)
Thus:

P = ρ b 2 a + a 2 + (c 1 b) 2 ρ (3.72)
We will check those results by using the algebraic Ricatti equation, which reads:

A T P + PA -PBR -1 B T P + Q = 0 ⇔ 2aP -b 2 ρ P 2 + c 2 1 = 0 ⇔ b 2 ρ P 2 -2aP -c 2 1 = 0 (3.73)
The roots of this quadratic equation are:

           P 1 = 2a+ 4a 2 +4 (c 1 b) 2 ρ 2 b 2 ρ = ρ b 2 a + a 2 + (c 1 b) 2 ρ > 0 P 2 = 2a-4a 2 +4 (c 1 b) 2 ρ 2 b 2 ρ = ρ b 2 a -a 2 + (c 1 b) 2 ρ < 0 (3.74)
It is clear that P 1 is the positive denite solution of the algebraic Riccati equation (ARE). Thus we retrieve the result (3.72):

P := P 1 = ρ b 2 a + a 2 + (c 1 b) 2 ρ (3.75)
Furthermore we are now in position to compute the feedback gain K:

K = R -1 B T P = b ρ ρ b 2 a + a 2 + (c 1 b) 2 ρ = 1 b a + a 2 + (c 1 b) 2 ρ (3.76)
Finally, the eigenvalue of the feedback loop reads:

spec (A -BK) = A -BK = a -b 1 b a + a 2 + (c 1 b) 2 ρ = -a 2 + (c 1 b) 2 ρ (3.77)
We obviously retrieve the result (3.69) obtained through the Hamiltonian matrix H.

Hamiltonian matrix properties

Let H be the following Hamiltonian matrix:

H = A -G -Q -A T where G = G T , Q = Q T (3.78)
By denition, a matrix H is said to be an Hamiltonian matrix as soon as the following property holds:

(JH) T = JH (3.79)
where J is the following skew-symmetric matrix:

J = -J T = 0 I -I 0 (3.80)
Any matrix S ∈ R 2n×2n satisfying the following relation is called a symplectic matrix:

S T JS = SJS T = J (3.81)
If H has no eigenvalues on the imaginary axis, then the invariant subspace X belonging to the n (counting multiplicities) eigenvalues in the open left half plane is called the stable invariant subspace of H. If the columns of X form an orthonormal basis for X , then X JX is orthogonal and the following Hamiltonian block-Schur decomposition is obtained4 :

X JX T H X JX = T -G 0 -T T (3.82)
where T ∈ R n×n is an upper triangular matrix (we said that T has a real Schur form):

T =       t 11 t 12 • • • t 1n 0 t 21 . . . . . . . . . . . . 0 0 • • • t nn       (3.83)
Moreover, given Hamiltonian matrix H dened in (3.78), there is always a corresponding algebraic Riccati equation (ARE) 4 :

H = A -G -Q -A T where G = G T , Q = Q T Corresponding ARE : A T P + PA -PGP + Q = 0 (3.84)
Assume that P = P T is a symmetric solution of the algebraic Riccati equation (ARE). Then it is easy to see that the following relation holds:

H I n 0 P I n = I n 0 P I n A -GP -G 0 -(A -GP) T (3.85) Hence H I n P = I n P (A -GP).
Thus the columns of

I n P span the H-invariant subspace corresponding to λ (H) ∩ λ (A -GP)
. This implies that AREs can be solved by computing H-invariant subspaces. Finally, let G = BR -1 B T and Q = N T N. Thus Hamiltonian matrix (3.78) reads:

G = BR -1 B T Q = N T N ⇒ H = A -G -Q -A T = A -BR -1 B T -N T N -A T (3.86) where R = R T > 0 ⇒ R = R 0.5 T R 0.5 and R -0.5 = R -0.5 T .
Then GP = BR -1 B T P := BK where K = R -1 B T P and relation(3.85) reads as follows:

A -BR -1 B T -N T N -A T I n 0 P I n = I n 0 P I n A -BK -BR -1 B T 0 -(A -BK) T (3.87)
From the preceding relation, and using the fact that det Then is can be shown that the following relation holds:

I n 0 P I n = 1,
I + F(s)F T (-s) -1 = -N 0 (sI -H) -1 0 N T + I (3.90)
To get this result, consider 

e(s) = r(s) -F(s)F T (-s)e(s) ⇒ e(s) = I + F(s)F T (-s) -1 r(s) (3.91) 
On the other hand, the realization of F T (-s) is obtained from the realization of F(s) as follows:

F(s) = A BR -0.5 N 0 := N (sI -A) -1 BR -0.5 ⇒ F T (-s) = N (-sI -A) -1 BR -0.5 T = -R -0.5 B T sI --A T -1 N T = -A T N T -R -0.5 B T 0 ( 3 
.92) Thus, in the time domain we have:

       F(s) = A BR -0.5 N 0 ⇒ ẋ1 = Ax 1 + BR -0.5 u y = Nx 1 F T (-s) = -A T N T -R -0.5 B T 0 ⇒ ẋ2 = -A T x 2 + N T e u = -R -0.5 B T x 2 (3.93)
From Figure 3.1 we see that e = r -y. Thus the realization of Figure 3.1 reads as follows:

   e = r -y u = -R -0.5 B T x 2 y = Nx 1 ⇒        ẋ1 ẋ2 = A -BR -1 B T -N T N -A T x 1 x 2 + 0 N T r e = -N 0 x 1 x 2 + I r
(3.94) In the frequency domain we get:

e(s) = -N 0 (sI -H) -1 0 N T + I r(s) (3.95)
When identifying (3.91) with (3.95) we get relation (3.90). An alternate relation can also be obtained by replacing F T (-s)F(s) in Figure 3.1 by F(s)F T (-s). Then we get:

I + F T (-s)F(s) -1 = 0 -R -0.5 B T (sI -H) -1 BR -0.5 0 + I (3.96)
Having in mind that for any square invertible matrix Y we have XY

-1 Z = X adj(Y)Z det(Y) (here X = 0 -R -0.5 B T , Y = (sI -H) and Z = BR -0.5 0 ),
we conclude that relation (3.90) indicates that the eigenvalues of Hamiltonian matrix H are the roots of det I + F(s)F T (-s) . Moreover, let:

F(s) = N (sI -A) -1 BR -0.5 = N adj (sI -A) BR -0.5 det (sI -A) := N ol (s) D(s) (3.97) 
Then: λ) is an eigenvalue of matrix -N ol (λ)N T ol (-λ). This remark may be used for design purposes, especially to select matrix N to achieve some specied closed-loop eigenvalues (we recall that weighting matrix Q is given by Q = N T N).

det I + F(s)F T (-s) = det I + N ol (s) D(s) N T ol (-s) D(-s) = det D(s)D(-s) I+N ol (s)N T ol (-s) D(s)D(-s)

Discrete time LQ regulator 3.8.1 Finite horizon LQ regulator

There is an equivalent theory for discrete time systems. Indeed, for the system:

x(k + 1) = Ax(k) + Bu(k) x(0) = x 0 (3.100)
with an equivalent performance criteria:

J(u(k)) = 1 2 x T (N )Sx(N ) + 1 2 N -1 k=0 x T (k)Qx(k) + u T (k)Ru(k) (3.101)
Where Q ≥ 0 is a constant positive denite matrix and R > 0 a constant positive denite matrix. The optimal control is given by:

u(k) = -K(k)x(k) (3.102)
Where:

K(k) = R + B T P(k + 1)B -1 B T P(k + 1)A (3.103)
And P(k) is given by the solution of the discrete time Riccati equation:

P(k) = A T P(k + 1)A + Q -A T P(k + 1)B R + B T P(k + 1)B -1 B T P(k + 1)A P(N ) = S (3.104)

Finite horizon LQ regulator with zero terminal state

We consider the following performance criteria to be minimized:

J(u(k)) = 1 2 N -1 k=0 x T (k)Qx(k) + u T (k)Ru(k) + 2x T (k)Su(k) (3.105)
With the constraint on terminal state:

x(N ) = 0 (3.106)
We will assume that matrices R > 0 and Q -SR -1 S T ≥ 0 are symmetric. Ntogramatzidis 2 has shown the results presented hereafter: denote by P 1 and P 2 the positive denite solutions of the following continuous time algebraic Riccati equations:

         0 = P 1 + A T P 1 B + S R + B T P 1 B -1 B T P 1 A + S T -A T P 1 A -Q 0 = P 2 + A T b P 2 B b + S b R b + B T b P 2 B b -1 B T b P 2 A b + S T b -A T b P 2 A b -Q b (3.107)
Where:

           A b = A -1 B b = -A -1 B Q b = A -T QA -1 R b = R -S T A -1 B -B T A -T S + B T A -T QA -1 B S b = A -T S -A -T QA -1 B (3.108)
We will denote by K 1 and K 2 the following innite horizon gain matrices:

K 1 = R + B T P 1 B -1 B T P 1 A + S T K 2 = R b + B T b P 2 B b -1 B T b P 2 A b + S T b (3.109)
Then the optimal control is:

u(k) = -K(k)x(k) ∀ 0 ≤ k < N 0 for k = N (3.110)
Where:

K(k) = R + B T P(k + 1)B -1 B T P(k + 1)A + S T P(k) = X 2 (k)X -1 1 (k) (3.111)
And:

X 1 (k) = (A -BK 1 ) k -(A b -B b K 2 ) (k-N ) (A -BK 1 ) N X 2 (k) = P 1 (A -BK 1 ) k + P 2 (A b -B b K 2 ) (k-N ) (A -BK 1 ) N (3.112)
Matrix P(k) satisfy the following Riccati dierence equation:

P(k) + A T P(k + 1)B + S R + B T P(k + 1)B -1 B T P(k + 1)A + S T -A T P(k + 1)A -Q = 0 (3.113)
Furthermore the optimal state x(k) and costate λ(k) have the following expressions:

x(k + 1) = (A -BK 1 ) e 1 (k) -(A b -B b K 2 ) e 2 (k) λ(k + 1) = P 1 (A -BK 1 ) e 1 (k) + P 2 (A b -B b K 2 ) e 2 (k) (3.114)
Where:

e 1 (k) = (A -BK 1 ) k X -1 1 (0)x 0 e 2 (k) = (A b -B b K 2 ) (k-N ) (A -BK 1 ) N X -1 1 (0)x 0 (3.115)

Innite horizon LQ regulator

For the innite horizon problem N → ∞. We will assume that the performance criteria to be minimized is:

J(u(k)) = 1 2 ∞ k=0 x T (k)Qx(k) + u T (k)Ru(k) (3.116)
Then matrix P satises the following discrete time algebraic Riccati equation:

P + A T PB R + B T PB -1 B T PA -A T PA -Q = 0 (3.117)
And the discrete time control u(k) is given by:

u(k) = -Kx(k) (3.118) 
Where:

K = R + B T PB -1 B T PA (3.119) If (A, B
) is stabilizable, then the closed-loop system is stable, meaning that all the eigenvalues of (A-BK), with K given by (3.119), will lie within the unit disk (i.e. have magnitudes less than 1). Let's dene the following symplectic matrix 5 :

H = A -1 A -1 G QA -1 A T + QA -1 G (3.120)
Where:

G = BR -1 B T (3.121)
A symplectic matrix is a matrix which satises:

H T JH = J where J = 0 I -I 0 and J -1 = -J (3.122)
This implies:

H T J = JH -1 ⇔ J -1 H T J = H -1 ⇒ H -1 = A + GA -T Q -GA -T -A -T Q A -T (3.123)
Where A -T = (A -1 ) T . Under detectability and stabilizability assumptions, it can be shown that the eigenvalues of the closed-loop plant (that are the eigenvalues of A-BK) are equal to the n eigenvalues inside the unit circle of the Hamiltonian matrix H. The optimal control stabilizes the plant. Furthermore if the 2n×n matrix X 1 X 2 has columns that comprise all the eigenvectors associated with the n eigenvalues of the Hamiltonian matrix H outside the unit circle (unstable eigenvalues) then X 1 is invertible and the positive denite solution of the algebraic Riccati equation (ARE) is:

P = X 2 X - 1 1 (3.124) 
Thus matrix P for the optimal steady state feedback can be computed thanks to the unstable (eigenvalues outside the unit circle) eigenvectors of H or the stable (eigenvalues inside the unit circle) eigenvectors of H -1 .

3.9 Robustness property 3.9.1 Hsu-Chen theorem Let's consider a linear plant controlled through a state feedback as follows:

ẋ(t) = Ax(t) + Bu(t) u(t) = -Kx(t) + r(t) (3.125)
The dynamics of the closed-loop system reads:

ẋ(t) = (A -BK) x(t) + Br(t) (3.126)
In order to compute the closed-loop transfer matrix between X(s) and R(s) we take the Laplace transform of (3.125) assuming no initial condition: 

sX(s) = AX(s) + B(-KX(s) + R(s)) ⇒ X(s)(sI -A + BK) = BR(s) ⇒ X(s) = (sI -A + BK) -1 BR(s) (3.127)
Φ(s) = (sI -A) -1 (3.128)
The block diagram of the full-state feedback control is shown in Figure 3.2. We get:

X(s) = Φ(s)B(R(s) -KX(s)) = (I + Φ(s)BK) -1 Φ(s)BR(s) (3.129) 
Using the fact that (AB) -1 = B -1 A -1 we get:

X(s) = (Φ -1 (s)(I + Φ(s)BK)) -1 BR(s) = (Φ -1 (s) + BK) -1 BR(s) = (sI -A + BK) -1 BR(s) (3.130)
The open-loop characteristic polynomial is given by:

det (sI -A) = det Φ -1 (s) (3.131)
Whereas the closed-loop characteristic polynomial is given by:

det (sI -A + BK) (3.132)
Sylvester's determinant theorem 6 states that the following relation holds where M 1 is an m × n matrix and M 2 an n × m matrix (so that M 1 and M 2 have dimensions allowing them to be multiplied in either order forming a square matrix):

det

(I m + M 1 M 2 ) = det (I n + M 2 M 1 ) (3.133) 
Sylvester's determinant theorem may be proven using the Schur's formula, which is recalled hereafter:

det A 11 A 12 A 21 A 22 = det (A 22 ) det A 11 -A 12 A -1 22 A 21 = det (A 11 ) det A 22 -A 21 A -1 11 A 12 (3.134) Thus if M = I m -M 1 M 2 I n , we get: det (M) = det I m -M 1 M 2 I n = det (I m + M 1 M 2 ) = det (I n + M 2 M 1 ) (3.135) 
In addition, for square matrices M 3 and M 4 of equal size, the determinant of the matrix product equals the product of their determinants:

det (M 3 M 4 ) = det (M 3 ) det (M 4 ) (3.136)
Then we get:

det (sI -A + BK) = det (sI -A) I + (sI -A) -1 BK = det ((sI -A) (I + Φ(s)BK)) = det (sI -A) det (I + Φ(s)BK) = det (sI -A) det (I + KΦ(s)B) (3.137)
We nally get the following relation, which is known as the Hsu-Chen theorem 7 :

det (sI -A + BK) = det (sI -A) det (I + KΦ(s)B) (3.138) 
The roots of det (sI -A + BK) are the eigenvalues of the closed-loop system. Consequently they are related to the stability of the closed-loop system.

Moreover the roots of det (I + KΦ(s)B) are exactly the roots of det (sI -A + BK). Indeed, as far as Φ(s) = (sI -A) -1 , the inverse of (sI -A) is computed as the adjugate of matrix (sI -A) divided by det (sI -A) which nally becomes the denominator of det (I + KΦ(s)B):

det(I + KΦ(s)B) = det I + K (sI -A) -1 B = det I + K adj(sI-A) det(sI-A) B = det det(sI-A)I+K adj(sI-A)B det(sI-A) = det(det(sI-A)I+K adj(sI-A)B) det(sI-A) ⇒ det (sI -A + BK) = det (det (sI -A) I + K adj (sI -A) B) (3.139) Thus: det (sI -A + BK) = 0 ⇔ det (I + KΦ(s)B) = 0 (3.140)
Consequently, the eigenvalues of full-state feedback loop are the roots of det(I + KΦ(s)B). An easy way to determine the number of encirclements of the critical point is to draw a line out from the critical point, in any directions. Then by counting the number of times that the Nyquist plot crosses the line in the clockwise direction (i.e. left to right) and by subtracting the number of times it crosses in the counterclockwise direction then the number of clockwise encirclements of the critical point is obtained. A negative number indicates counterclockwise encirclements.

It is worth noticing that for Single-Input Single-Output (SISO) systems K is a row vector whereas B is a column vector. Consequently KΦ(s)B is a scalar and we have:

det(I + KΦ(s)B) = det(1 + KΦ(s)B) = 1 + KΦ(s)B (3.141)
Thus for Single-Input Single-Output (SISO) systems the number of encirclements of the critical point (0, 0) by the Nyquist plot of det(I + KΦ(s)B) is equivalent to the number of encirclements of the critical point (-1, 0) by the Nyquist plot of KΦ(s)B.

In the context of output feedback the control u(t) = -Kx(t) is replaced by u(t) = -Ky(t) where y(t) is the output of the plant: y(t) = Cx(t). As a consequence the control u(t) reads u(t) = -KCx(t) and state feedback gain K is replaced by output feedback gain KC in equation (3.138):

det(sI -A + BKC) = det (sI -A) det(I + KCΦ(s)B) (3.142)
This equation involves the transfer function CΦ(s)B between the output Y (s) and the control U (s) of the plant without any feedback and is used in the Nyquist stability criterion for Single-Input Single-Output (SISO) systems.

It is also worth noticing that (I + KCΦ(s)B) -1 is attached to the so called sensitivity function of the closed-loop whereas CΦ(s)B is attached to the openloop transfer function from the process' input U (s) to the plant output Y (s).

Kalman equality

Let's consider the full-state feedback control is shown in Figure 3.2. Kalman has shown the following result, known as Kalman equality:

(I + L(-s)) T R (I + L(s)) = R + (Φ(-s)B) T Q (Φ(s)B) (3.143) 
where L(s) is the loop gain and K the optimal feedback gain (obtained through the algebraic Riccati equation):

L(s) = KΦ(s)B (3.144)
The proof of the Kalman equality is provided hereafter. Consider the algebraic Riccati equation (3.8):

PA + A T P -PBR -1 B T P + Q = 0 (3.145)
Because K = R -1 B T P, P = P T and R = R T , the previous equation can be re-written as:

P (sI -A) -(-sI -A) T P + K T RK = Q (3.146)
Using the fact that Φ(s) = (sI -A) -1 we get:

PΦ -1 (s) + Φ -1 (-s) T P + K T RK = Q (3.147)
Left multiplying by B T Φ T (-s) and right multiplying by Φ(s)B yields:

B T Φ T (-s)PB + B T PΦ(s)B + B T Φ T (-s)K T RKΦ(s)B = B T Φ T (-s)QΦ(s)B (3.148)
Adding R to both sides of equation (3.148) as using the fact that RK = B T P we get:

R + B T Φ T (-s)K T R + RKΦ(s)B + B T Φ T (-s)K T RKΦ(s)B = R + B T Φ T (-s)QΦ(s)B (3.149)
The previous equation can be re-written as:

(I + KΦ(-s)B) T R (I + KΦ(s)B) = R + (Φ(-s)B) T Q (Φ(s)B) (3.150)
This completes the proof. ■ Let R -0.5 be the root-square of matrix R -1 :

R -1 = R -0.5 T R -0.5 (3.151)
Multiplying Kalman equality (3.143) by R -0.5 T on the left side and by R -0.5 on the right side we get:

R -0.5 T (I + L(-s)) T R (I + L(s)) R -0.5 = R -0.5 T R + (Φ(-s)B) T Q (Φ(s)B) R -0.5 (3.152) Matrix R 0.5 = R 0.5 T
is the root square of matrix R. By getting the modal decomposition of matrix R, that is R = VDV -1 where V is the matrix whose columns are the eigenvectors of R and D is the diagonal matrix whose diagonal elements are the corresponding positive eigenvalues, the square root R 0.5 of R is given by R 0.5 = VD 0.5 V -1 , where D 0.5 is any diagonal matrix whose elements are the square root of the diagonal elements of D. Thus we get:

R = VDV -1 ⇒ R -1 = VD -1 V -1 ⇒ R -0.5 T RR -0.5 = R -0.5 RR -0.5 = VD -0.5 V -1 VDV -1 VD -0.5 V -1 = VD -0.5 DD -0.5 V -1 = I (3.153)
Thus:

R -0.5 T R + (Φ(-s)B) T Q (Φ(s)B) R -0.5 = I + Φ(-s)BR -0.5 T Q Φ(s)BR -0.5 (3.154)
On the other hand, we have:

R -0.5 T (I + L(-s)) T R (I + L(s)) R -0.5 = R -0.5 + L(-s)R -0.5 T R R -0.5 + L(s)R -0.5 = R -0.5 + L(-s)R -0.5 T R 0.5 R 0.5 R -0.5 + L(s)R -0.5 = I + R 0.5 L(-s)R -0.5 T I + R 0.5 L(s)R -0.5 (3.155)
Finally, let Q := N T N. Then Kalman equality (3.143) can equivalently be written as follows:

I + R 0.5 L(-s)R -0.5 T I + R 0.5 L(s)R -0.5
= I + NΦ(-s)BR -0.5 T NΦ(s)BR -0.5 (3.156)

Robustness of Linear Quadratic Regulator

The robustness of the LQR design can be assessed through the Kalman equality (3.143). We will specialize Kalman equality to the specic case where the plant is a Single Input -Single Output (SISO) system. Then KΦ(s)B and R are scalars. Setting Q = N T N, and using the fact that NΦ(s)B is scalar for SISO plants, Kalman equality (3.143) reduces as follows:

Q = N T N ⇒ (1 + L(-s)) (1 + L(s)) = 1 + 1 R (NΦ(-s)B) (NΦ(s)B) (3 
.157) Transfer function L(s) is the loop gain, which is scalar for SISO plants:

L(s) = KΦ(s)B (3.158)
Substituting s = jω yields:

∥1 + L(jω)∥ 2 = 1 + 1 R ∥NΦ(jω)B∥ 2 (3.159) Therefore: ∥1 + L(jω)∥ ≥ 1 ∀ω ∈ R (3.160)
For SISO plants, the sensitivity function S(s) and the complementary sensitivity function T(s) are dened as follows: We recall that:

S(s) = 1 1+L(s) T(s) = 1 -S(s) = L(s)
-A small sensitivity function is desirable for good disturbance rejection. Generally, this is especially important at low frequencies.

-A complementary sensitivity function close to one is desirable for good reference tracking. Generally, this is especially important at low frequencies.

-A small complementary sensitivity function is desirable for good noise rejection. Generally, this is especially important at high frequencies.

Furthermore, let's introduce the real part X(ω) and the imaginary part

Y (ω) of L(jω): L(jω) = X(ω) + jY (ω) (3.163)
Then ∥1 + L(jω)∥ 2 reads as follows: 

∥1 + L(jω)∥ 2 = ∥1 + X(ω) + jY (ω)∥ 2 = (1 + X(ω)) 2 + Y (ω) 2 (3.164)
∥1 + L(jω)∥ ≥ 1 ⇔ ∥1 + L(jω)∥ 2 ≥ 1 ⇔ (1 + X(ω)) 2 + Y (ω) 2 ≥ 1 (3.165)
As a consequence, the Nyquist plot of L(jω) will be outside the circle of unit radius centered at (-1, 0). Thus applying the generalized (MIMO) Nyquist stability criterion and knowing that the LQR design always leads to a stable closed-loop plant, the implications of Kalman inequality are the following:

-If the open-loop system has no unstable pole, then the Nyquist plot of L(jω) does not encircle the critical point (-1, 0). This corresponds to a positive gain margin of +∞ as depicted as depicted in Figure 3.5.

-On the other hand if Φ(s) has unstable poles, the Nyquist plot of L(jω) encircles the critical point (-1, 0) a number on times which corresponds to the number of unstable open-loop poles. This corresponds to a negative gain margin which is always lower or equal to 20 log 10 (0.5) = -6 dB as depicted in Figure 3.6.

In both situations, if the process' phase increases by 60 degrees its Nyquist plots rotates by 60 degrees but the number of encirclements still does not change. Thus the LQR design always leads to a phase margin which is always greater or equal to 60 degrees.

Last but not least, it can be seen in Figure 3.5 and Figure 3.6 that at high-frequency the loop gain L(jω) can have at most -90 degrees phase for high-frequencies and therefore the roll-o rate is at most -20 dB/decade. Unfortunately those nice properties are lost as soon as the performance index J(u(t)) contains state / control cross-terms8 :

J(u(t)) = 1 2 t f 0 x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)Su(t) dt (3.166)
This is especially the case for LQG (Linear Quadratic Gaussian) regulator where the plant dynamics as well as the output measurement are subject to stochastic disturbances and where a state estimator has to be used. 

ẋ(t) = Ax(t) + Bu(t) z(t) = N x(t) (4.1) 
We will assume that (A, B, N) is minimal, or equivalently that (A, B) is controllable and (A, N) is observable, or equivalently that the following loop gain (or open-loop) transfer function is irreducible:

G(s) = N (sI -A) -1 B = N adj (sI -A) B det (sI -A) = N (s) D(s) (4.2)
The polynomial D(s) = det (sI -A) is the loop gain characteristics polynomial, which is assumed to be of degree n, and polynomial matrix N (s) is the numerator of N (sI -A) -1 B. From the fact that the numerator of G(s) involves adj (sI -A) it is clear that the degree of its numerator N (s), which will be denoted m, is strictly lower than the degree of its denominator D(s), which will be denoted n:

deg(N (s)) = m < deg(D(s)) = n (4.3)
It can be shown that for single-input single-ouput (SISO) systems we have the following relation where N (s) is the polynomial (not matrix) numerator of the transfer function:

G(s) = N (sI -A) -1 B = det sI -A -B N 0 det (sI -A) = N (s) D(s) (4.4)
Now let's assume that the system is closed thanks to the following output (not state !) feedback control u(t):

u(t) = -k p K o z(t) + Fr(t) (4.5) 
Where:

-k p is a scaling factor -K o is the output (not state !) feedback matrix gain -F is the pre-lter gain

Then the state matrix of the closed-loop system reads A -k p BK o N and the polynomial det (sI -A + k p BK o N) is the closed-loop characteristics polynomial.

Root Locus reminder

The root locus technique1 has been developed in 1948 by Walter R. Evans . This is a graphical method for sketching in the s-plane the locus of roots of the following polynomial when parameter k p varies to 0 to innity:

det (sI -A + k p BK o N) = D(s) + k p N (s) (4.6) 
Usually polynomial D(s) + k p N (s) represents the denominator of a closed-loop transfer function. Polynomial D(s) + k p N (s) represents here the denominator of the closed-loop transfer function when control u(t) reads:

u(t) = -k p K o y(t) + Fr(t) (4.7) 
It is worth noticing that the roots of D(s) + k p N (s) are also the roots of

1 + k p N (s) D(s) : D(s) + k p N (s) = 0 ⇔ 1 + k p N (s) D(s) = 0 ⇔ L(s) := k p F (s) = -1 (4.8)
Without loss of generality let's dene transfer function F (s) as follows:

F (s) = N (s) D(s) = a m≤n j=1 (s -z j ) n i=1 (s -p i ) (4.9) 
Transfer function L(s) = k p F (s) is called the loop transfer function. In the SISO case the numerator of the loop transfer function L(s) is scalar as well as its denominator.

Equation L(s) = -1 can be equivalently split into two equations:

|L(s)| = 1 arg (L(s)) = (2k + 1) π, k = 0, ±1, • • • (4.10)
The magnitude condition can always be satised by a suitable choice of k p . On the other hand the phase condition does not depend on the value of k p but only on the sign of k p . Thus we have to nd all the points in the s-plane that satisfy the phase condition. When scalar gain k p varies from zero to innity (i.e. k p is positive), the root locus technique is based on the following rules:

-The root locus is symmetrical with respect to the horizontal real axis (because roots are either real or complex conjugate);

-The number of branches is equal to the number of poles of the loop transfer function. Thus the root locus has n branches;

-The root locus starts at the n poles of the loop transfer function;

-The root locus ends at the zeros of the loop transfer function. Thus m branches of the root locus end on the m zeros of F (s) and there are (n-m) asymptotic branches;

-Assuming that coecient a in F (s) is positive, a point s * on the real axis belongs to the root locus as soon as there is an odd number of poles and zeros on its right. Conversely assuming that coecient a in F (s) is negative, a point s * on the real axis belongs to the root locus as soon as there is an even number of poles and zeros on its right. Be careful to take into account the multiplicity of poles and zeros in the counting process;

-The (n -m) asymptotic branches of the root locus which diverge to ∞ are asymptotes.

The angle δ k of each asymptote with the real axis is dened by:

δ k = π + arg(a) + 2kπ n -m ∀ k = 0, . . . , n -m -1 (4.11) 
Denoting by p i the n poles of the loop transfer function (that are the roots of D(s)) and by z j the m zeros of the loop transfer function (that are the roots of N (s)), the asymptotes intersect the real axis at a point (called pivot or centroid) given by:

σ = n i=1 p i -m≤n j=1 z j n -m (4.12)
-The breakaway / break-in points are located on the real axis and always have a vertical tangent. They are located at the roots s b of the following equation as soon as there is an odd (if coecient a in F (s) is positive) or even (if coecient a in F (s) is negative) number of poles and zeros on its right (Be careful to take into account the multiplicity of poles and zeros in the counting process):

d ds 1 F (s) s=s b = d ds D(s) N (s) s=s b = 0 ⇔ D ′ (s b )N (s b ) -D(s b )N ′ (s b ) = 0 (4.13)
Indeed from the fact that breakaway / break-in points have always a vertical tangent we can write:

1 + k p F (s) = 1 + k p N (s) D(s) = 0 ⇒ dk p dp = - D ′ (s)N (s) -D(s)N ′ (s) N 2 (s) = 0
(4.14) From this relation we get (4.13).

-On the imaginary axis we have s = jω. Thus the value of the (positive) critical gain beyond which the closed-loop system becomes unstable is the value of k p (k p ≥ 0) such that the root locus of F (s) crosses the imaginary axis. In that situation at least one pole of the closed-loop system is purely imaginary. As far as D(s) + k p N (s) represents the denominator of the closed-loop transfer function the critical gain can be obtained by replacing s by jω and by solving:

1 + k p F (jω) = 0 ⇔ D(jω) + k p N (jω) = 0 (4.15)
The previous equation is then split into its real and imaginary part and provides a system of 2 equations which lead to the value of the critical gain and the oscillation frequency at the critical gain. It is worth noticing that the Routh criterion can be used for the same purpose.

-Note that if the degree of polynomial D(s) is greater than or equal to the degree of polynomial N (s) plus 2, meaning that the relative degree of transfer function F (s) is greater than or equal to 2 (n -m ≥ 2), then the sum of the poles of the feedback system is independent of the value of parameter k p , and therefore is equal to the sum of the poles of the open loop system when k p = 0. This property is known as the centroid theorem.

To get this result, we have simply to expand D(s) + k p N (s) taking into account n -m ≥ 2:

F (s) = N (s) D(s) = a m≤n-2 j=1 (s-z j ) n i=1 (s-p i ) ⇒ D(s) + k p N (s) = n i=1 (s -p i ) + k p a m≤n-2 j=1 (s -z j ) = s n -(r 1 + r 2 + • • • + r n ) s n-1 + • • • (4.16)
Assuming that n -m ≥ 2, the coecient of the term s n-1 in polynomial D(s) + k p N (s) does not depend on parameter k p . Because this coecient is obtained has the opposite of the sum r 1 + r 2 + • • • + r n of the roots of polynomial D(s) + k p N (s), we conclude the sum of the poles of the feedback system is independent of the value of parameter k p .

Chang-Letov design procedure

The purpose of this section is to have some insight on how to drive the modes of the closed-loop plant thanks to the LQR design applied to SISO plants. More precisely, we focus on single-input plants for which the cost to be minimized is dened as in (3.3):

J(u(t)) = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) dt (4.17)
Nevertheless, weight matrix Q is here dened as follows, where matrix N is a design matrix: Let z(t) := N x(t) be the controlled output: this is a ctitious output which represents the output of interest for the design. The controlled output z(t) is expressed as a linear function of the state vector x(t) as:

Q = N T N (4.18)
z(t) := N x(t) (4.19)
Thus the cost to be minimized can be rewritten as follows:

J(u(t)) = 1 2 ∞ 0 x T (t)N T Nx(t) + Ru 2 (t) dt = 1 2 ∞ 0 z T (t)z(t) + Ru 2 (t) dt (4.20)
Furthermore the cost to be minimized is now constrained by the dynamics of the system with the following state space representation:

ẋ(t) = Ax(t) + Bu(t) z(t) = Nx(t) (4.21)
From this state space representation we obtain the following open-loop transfer function which is written as the ratio between a numerator N (s) and a denominator D(s):

N (sI -A) -1 B = N (s) D(s) (4.22)
We recall that the cost (4.20) is minimized by choosing the following control law, where P is the solution of the algebraic Riccati equation:

u(t) = -Kx(t) K = R -1 B T P (4.23)
This leads to a full-state feedback control with ctitious output z which is represented in Figure 4.1 where Φ(s) = (sI -A) -1 . Let D(s) be the open-loop characteristics polynomial and β(s) be the closedloop characteristic polynomial:

D(s) = det (sI -A) β(s) = det (sI -A + BK) (4.24)
In the single control case which is under consideration, it can be shown (see section 4.1.4) that the characteristic polynomial of the closed-loop system is linked with the numerator and the denominator of the loop transfer function as follows:

β(s) β(-s) = D(s)D(-s) + 1 R N (s)N (-s) (4.25)
This relation can be associated with the root locus of G(s)G(-s) = N (s)N (-s) D(s)D(-s) where ctitious gain k p = 1 R varies from 0 to ∞. This leads to the so-called Chang-Letov design procedure, which enables to nd the closed-loop poles based on the open-loop poles and zeros of G(s)G(-s). The dierence with the root locus of G(s) is that both the open-loop poles and zeros and their reections about the imaginary axis have to be taken into account (this is due to the multiplication by G(-s)). The actual closed-loop poles are those located in the left half plane with negative real part; indeed optimal control leads always to a stabilizing gain. It is worth noticing that matrix N is actually a design parameter which is used to shape the root locus.

Proof of the symmetric root locus result

The proof of (4.25) can be done as follows: taking the determinant of the Kalman equality (3.143) and having in mind that det(M T ) = det(M) and that for SISO systems R is scalar yields: 

det (I + KΦ(-s)B) T R (I + KΦ(s)B) = det R + (Φ(-s)B) T Q (Φ(s)B) ⇔ det (I + KΦ(-s)B) T (I + KΦ(s)B) = det I + (Φ(-s)B) T Q(Φ(s)B)
Φ(s) = (sI -A) -1 = adj (sI -A) det (sI -A) (4.27)
Furthermore it has been seen in (3.138) that thanks to the Hsu-Chen theorem we have:

det (I + KΦ(s)B) = det (sI -A + BK) det (sI -A) (4.28) Let D(s)
be the open-loop characteristics polynomial and β(s) be the closedloop characteristic polynomial:

D(s) = det (sI -A) β(s) = det (sI -A + BK) (4.29)
As a consequence, using (4.28) in the left part of (4.26) yields:

β(s) β(-s) D(s)D(-s) = det I + (Φ(-s)B) T Q (Φ(s)B) R (4.30)
In the single control case R and I are scalars (I = 1). Using Q = N T N (4.30) becomes:

β(s) β(-s) D(s)D(-s) = det 1 + (NΦ(-s)B) T (NΦ(s)B) R = 1 + (NΦ(-s)B) T (NΦ(s)B) R (4.31)
We recognize in NΦ(s)B = N (sI -A) -1 B the open-loop transfer function G(s) which is the ratio between numerator polynomial N (s) and denominator polynomial D(s) :

G(s) = NΦ(s)B = N (sI -A) -1 B = N (s) D(s) (4.32)
Using (4.32) in (4.31) yields:

β(s) β(-s) D(s)D(-s) = 1 + 1 R N (s)N (-s) D(s)D(-s) ⇔ β(s) β(-s) = D(s)D(-s) + 1 R N (s)N (-s) (4.33)
This completes the proof. ■

Asymptotic properties of LQR applied to SISO plants

We will see that Kalman equality allows for loop shaping through LQR design for SISO plants. Lectures from professor Faryar Jabbari (Henry Samueli School of Engineering, University of California) and professor Perry Y. Li (University of Minnesota) are the primary sources of this section. We recall that Φ(s) = (sI -A) -1 where dim(A) = n × n, which is also the dimension of weight Q := N T N.

Closed-loop poles location

Relation (4.25) reads:

β(s) β(-s) = D(s)D(-s) + 1 R N (s)N (-s) (4.34)
From (4.34) we can get the following results:

-When R is large, i.e. 1/R is small so that the control energy is weighted very heavily in the performance index, the roots of β(s), that are the closed-loop poles, approach the stable open-loop poles or the negative of the unstable open-loop poles:

β(s) β(-s) ≈ D(s)D(-s) as R → ∞ (4.35)
-When R is small (i.e. R → 0) then 1/R is large and the control is cheap. Then the roots of β(s), that are the closed-loop poles, approach the stable open-loop zeros or the negative of the non-minimum phase open-loop zeros:

β(s) β(-s) ≈ 1 R N (s)N (-s) as R → 0 (4.36)
Equation (4.36) shows that any roots of β(s) β(-s) that remains nite as R → 0 must tend toward the roots of N (s)N (-s). But from (4.3) we know that the degree of N (s)N (-s), say 2m, is less than the degree of β(s) β(-s), which is 2n. Therefore m roots of β(s) are the roots of N (s)N (-s) in the open left half plane (stable roots). The remaining n -m roots of β(s) asymptotically approach innity in the left half plane. For very large s we can ignore all but the highest power of s in (4.34) so that the magnitude (or modulus) of the roots that tend toward innity shall satisfy the following approximate relation:

(-1) n s 2(n-m) ≈ b 2 m R (-1) m (4.37)
where we denote:

β(s) = det (sI -A + BK) = s n + β n-1 s n-1 + • • • + β 1 s + β 0 N (s) = b m s m + b m-1 s m-1 + • • • + b 1 s + b 0 (4.38)
The roots of β(-s) are the reection across the imaginary of the roots of β(s). Now express s in the exponential form:

s = r e jθ (4.39) 
We get from (4.37):

(-1) n r 2n e j2nθ ≈ b 2 m R (-1) m r 2m e j2mθ ⇒ r 2(n-m) ≈ b 2 m R (4.40)
Therefore, the remaining n-m zeros of β(s) lie on a circle of radius r dened by:

r ≈ b m √ R 1 n-m (4.41)
The particular pattern to which the 2(n -m) solutions of (4.41) lie is known as the Butterworth conguration. The angle of the 2(n -m) branches which diverge to ∞ are obtained by adapting relation (4.11) to the case where transfer function reads G(s)G(-s) = N (s)N (-s) D(s)D(-s) .

Shape of the magnitude of the loop gain

We recall that the loop gain L(s) is dened as follows:

L(s) := KΦ(s)B (4.42)
When Q = N T N, and assuming a SISO plant, Kalman equality (3.143) becomes:

(1 + L(-s)) T (1 + L(s)) = 1 + 1 R (Φ(-s)B) T N T N (Φ(s)B) = 1 + 1 R (NΦ(-s)B) T (N (Φ(s)B)) (4.43)
Denoting by λ(X(jω)) the eigenvalues of matrix X(jω) and by σ(X(jω)) its singular values (that are the root square of the strictly positive eigenvalues of either X T (-jω)X(jω) or X(jω)X T (-jω)), the preceding equality implies:

λ (1 + L(-jω)) T (1 + L(jω)) = 1 + 1 R λ (NΦ(-jω)B) T (N (Φ(jω)B)) ⇔ σ (1 + L(jω)) = 1 + 1 R σ 2 (NΦ(jω)B) (4.
44) For the range of frequencies for which σ (NΦ(jω)B) ≫ 1 (typically low frequencies) equation ( 4.44) shows that:

σ (L(jω)) ≈ 1 √ R σ (NΦ(jω)B) (4.45)
For SISO system matrices N and K have the same dimension. Denoting by |K| the absolute value of each element of K, and using the fact that L(s) := KΦ(s)B, we get from the previous equation :

σ (L(jω)) ≈ 1 √ R σ (NΦ(jω)B) ⇒ |K| ≈ |N| √ R where Q = N T N (4.46)
Assuming that z = N x, then NΦ(s)B represents the transfer function from the control signal u(t) to the controlled output z(t). As a consequence:

-The shape of the magnitude of the loop gain L(s) is determined by the magnitude of the transfer function from the control input u(t) to the controlled output z(t);

-Parameter √ R, that is weight R, moves the magnitude Bode plot up and down.

Note that although the magnitude of L(s) mimics the magnitude of NΦ(s)B, the phase of the loop gain L(s) always leads to a stable closed-loop with an appropriate phase margin. At high-frequency, it has been seen in Figure 3.5 and Figure 3.6 that the loop gain L(jω) can have at most -90 degrees phase for high-frequencies and therefore the roll-o rate is at most -20 dB/decade. In practice, this means that for ω ≫ 1, and for some constant a , we have the following approximation (remind that Φ(s) = (sI -A) -1 = adj(sI-A) det(sI-A) so that the degree of the denominator of L(s) is n and the degree of its numerator is at most n -1): Therefore the cross-over frequency ω c is approximately given by:

|L(jω)| ≈ a ω √ R where a √ R = lim s→∞ s |L(s)| ≈ lim s→∞ s 1 √ R |NΦ ( 
|L(jω c )| = 1 ≈ a ω c √ R ⇒ ω c ≈ a √ R (4.49) 
Consequently:

-LQR controllers always exhibit a high-frequency magnitude decay of -20 dB/decade. The (slow) -20 dB/decade magnitude decrease is the main shortcoming of state-feedback LQR controllers because it may not be sucient to clear high-frequency upper bounds on the loop gain needed to reject disturbances and/or for robustness with respect to process uncertainty.

-The cross-over frequency is proportional to 1/ √ R and generally small values for R result in faster step responses.

Weighting matrices selection

The preceding results motivates the following design rule extended to the case of multiple input multiple output systems:

-Modal point of view: assuming that all states are available for control, choose N (remind that Q = N T N ⇒ Q 0.5 = N) such that n -1 zeros of NΦ(s)B are at the desired pole location. Then use cheap control √ R → 0 to design LQ system so that n-1 poles of the closed-loop system approach these desired locations. It is worth noticing that for SISO plants the roots of NΦ(s)B are also the roots of:

det sI -A -B N 0 = 0 (4.50) 
-Frequency point of view: alternatively we have seen that at low frequencies |K| ≈ |N| √ R so that the loop gain is approximately |L(s)| ≈ 1 √ R |NΦ(s)B|. So the shape of the magnitude of the loop gain L(s) is determined by the magnitude of NΦ(s)B, that is the transfer function from the control input u(t) to the controlled output z(t). In addition, we have seen that at high frequency |NΦ(jω)B| ≈ a ω √ R , where a = lim s→∞ s|NΦ(s)B| is some constant. So we can choose √ R to pick the bandwidth ω c which is where |L(jω)| = 1. Thus choose √ R ≈ a ωc where ω c is the desired bandwidth. Thus contrary to the Chang-Letov design procedure for Single-Input Single-Output (SISO) systems where scalar R was the design parameter the following design rules for Multi Input Multi Output (MIMO) systems use matrix Q as the design parameter. We may also use the fact that if λ i is a stable eigenvalue (i.e. eigenvalue in the open left half plane) of the Hamiltonian matrix

H = A -BR -1 B T -Q -A T with eigenvector X 1i X 2i
then λ i is also an eigenvalue of A -BK with eigenvector X 1i . Therefore in the single input case we can use this result by nding the eigenvalues of H and then realizing that the stable eigenvalues are the poles of the optimal closed-loop plant. Alternatively, a simpler choice for matrices Q and R is given by the Bryson's rule who proposed to take Q and R as diagonal matrices such that:

q ii = 1 max. acceptable value of z 2 i r jj = 1 max. acceptable value of u 2 j (4.51)
Diagonal matrices Q and R are associated to the following performance index where ρ is a free parameter to be set by the designer:

J(u(t)) = 1 2 ∞ 0 i q ii z 2 i (t) + ρ 2 i r jj u 2 j (t) dt (4.52)
If after simulation |z i (t)| is to large then increase q ii ; similarly if after simulation |u j (t)| is to large then increase r jj .

Poles assignment in optimal regulator using root locus

Let λ i be an eigenvalue of the open-loop state matrix A corresponding to eigenvector v i . This open-loop eigenvalue will not be modied by state feedback gain K by setting in (4.120) the m × 1 vector p i to zero and the n × 1 eigenvector v Ki to the open-loop eigenvector v i corresponding to eigenvalue λ i :

Av i = λ i v i K = • • • 0 m×1 i th column • • • • • • v i i th column • • • -1 ⇒ (A -BK) v i = λ i v i (4.53)
Coming back to the general case, let v 1 , • • • , v n be the eigenvectors of the open-loop state matrix A. Matrix V is dened as follows:

V = v 1 • • • v n (4.54)
Note that if λ i and λ j := λi are complex conjugate eigenvalues, then the corresponding eigenvectors v i and v j are also complex conjugate:

λ j = λi ⇔ v j = vi (4.55)
In order to get a real valued matrix V, v i and v j shall be changed into the real part and imaginary part of v i , that is Re(v i ) and Im(v i ), respectively. Let λ 1 , • • • , λ r be the r ≤ n eigenvalues that are desired to be changed by state feedback gain K and v 1 , • • • , v r the corresponding eigenvectors of the state matrix A. Similarly let λ r+1 , • • • , λ n be the n -r eigenvalues that are desired to be kept invariant by state feedback gain K and v r+1 , • • • , v n the corresponding eigenvectors of the state matrix A. Assuming that matrix V is invertible, matrix M is dened and split as follows where M r is an r × n matrix and M n-r is an (n -r) × n matrix:

M = V -1 = v 1 • • • v r v r+1 • • • v n -1 = M r M n-r (4.56)
Shieh & al. 7 have shown that, once weighting matrix R = R T > 0 is set, the characteristic polynomial β(s) of the closed-loop transfer function is linked with the numerator and the denominator of the loop transfer function Φ(s)B = (sI -A) -1 B as follows:

Φ(s)B = (sI -A) -1 B = adj(sI-A)B det(sI-A) := N ol (s) D(s) ⇒ β(s) β(-s) = D(s) D(-s) + k p N rl (s) (N rl (-s)) T (4.57)
where:

     N ol (s) = adj (sI -A) B N rl (s) = q T 0 M r N ol (s) R 0.5 -1 q 0 ∈ R r×1 (4.58)
Matrix R 0.5 = R 0.5 T is the root square of matrix R. By getting the modal decomposition of matrix R, that is R = VDV -1 where V is the matrix whose columns are the eigenvectors of R and D is the diagonal matrix whose diagonal elements are the corresponding positive eigenvalues, the square root R 0.5 of R is given by R 0.5 = VD 0.5 V -1 , where D 0.5 is any diagonal matrix whose elements are the square root of the diagonal elements of D2 .

Relation (4.57) can be associated with root locus of the ctitious transfer

function G(s)G(-s) = N T rl (s) N rl (-s) D(s) D(-s)
where ctitious gain k p varies from 0 to ∞. The arbitrary nonzero r × 1 column vector q 0 is used to shape the locus. It is worth noticing that M r N ol (s) and D(s) share λ r+1 , • • • , λ n as common roots, and thus pole / zero simplication within G(s) and G(-s) shall be done before drawing the root locus.

Once the positive scalar k p has been selected on the root locus such that the r closed-loop eigenvalues λ K1 , • • • , λ Kr are appropriately placed (note that for k p = 0, the corresponding branches start at λ 1 , • • • , λ r ), the weighting matrix Q has the following expression:

Q = k p M T r q 0 q T 0 M r (4.59)
The following relation also holds:

Q v r+1 • • • v n = 0 (4.60)
The preceding results is a generalization of the Chang-Letov design procedure seen in section 4.1.3. This may be used as follows: rst choose R and set Q = 0 to get the minimum energy optimal control law. Then identify the r closed-loop eigenvalues which do not meet design specications. Finally compute Q as previously seen such that all eigenvalues are appropriately placed.

Poles shifting in optimal regulator

Mirror property

The purpose of this section is to underline the relation between the weighting matrix Q and the closed-loop eigenvalues of the optimal regulator. We recall the expression of the 2n × 2n Hamiltonian matrix H:

H = A -BR -1 B T -Q -A T (4.61)
which corresponds to the following algebraic Riccati equation:

A T P + PA -PBR -1 B T P + Q = 0 (4.62)
The characteristic polynomial of matrix H in (4.61) is given by 3 :

det (sI -H) = det (sI -A) det (I -QS(s)) det sI + A T (4.63)
Where the term S(s) is dened by:

S(s) = (sI -A) -1 BR -1 B T sI + A T -1 (4.64) Setting Q = Q T = 2αP
, where α ≥ 0 is a design parameter, the algebraic Riccati equation reads:

Q = Q T = 2αP ⇒ (A + αI) T P + P (A + αI) -PBR -1 B T P = 0 (4.65)
which corresponds to the following Hamiltonian matrix H:

H = A + αI -BR -1 B T 0 -(A + αI) T (4.66) 
Let λ i be the open-loop eigenvalues, that are the eigenvalues of matrix A. As far as the eigenvalues of a matrix are the same than the eigenvalues of its transpose, we can see that the 2n eigenvalues of the preceding Hamiltonian matrix is the set

{λ i + α} ∪ {-(λ i + α)}, i = 1, • • • , n.
Because the eigenvalues λ α i of A + αI -BK are the n eigenvalues of the Hamiltonian matrix H with negative real part, and denoting Re(λ) the real part of λ, there are two possibilities:

Re(λ i + α) = Re(λ i ) + α ≤ 0 ⇒ λ α i = λ i + α Re (-(λ i + α)) = -Re(λ i ) -α < 0 ⇒ λ α i = -λ i -α (4.67)
Finally let λ Ki be the closed-loop eigenvalues, that are the eigenvalues of matrix A -BK. The eigenvalues of A -BK are obtained from the eigenvalues of A + αI -BK by subtracting α to λ α i . Thus from (4.67), and given a controllable pair (A, B), a positive denite symmetric matrix R and a positive real constant α, the algebraic Riccati equation (4.65) where Q = Q T = 2αP has a unique positive denite solution P = P T > 0 such that λ Ki have the following property: Consequently, and denoting by Re(λ Ki ) the real part of λ Ki , it can be shown that the positive denite real symmetric solution P of (4.65) is such that the following mirror property holds 4 :

   Re(λ i ) ≤ -α ⇒ λ Ki = λ i Re(λ i ) > -α ⇒ λ Ki = -λ i -2α Im(λ Ki ) = Im(λ i ) ∀ i = 1, • • • , n (4.68) 
   Re(λ Ki ) ≤ -α Im(λ Ki ) = Im(λ i ) (α + λ i ) 2 = (α + λ Ki ) 2 ∀ i = 1, • • • , n (4.69) 
Once the algebraic Riccati equation (4.65) is solved in P the classical LQR design is applied:

u(t) = -Kx(t) K = R -1 B T P (4.70)
It is worth noticing that the algebraic Riccati equation (4.65) can be changed into a Lyapunov equation by pre-and post-multiplying (4.65) by P -1 and setting X := P -1 :

(A + αI) T P + P (A + αI) -PBR -1 B T P = 0 ⇒ P -1 (A + αI) T + (A + αI) P -1 -BR -1 B T = 0 X := P -1 ⇒ X (A + αI) T + (A + αI) X = BR -1 B T (4.71)
Matrix R remains the degree of freedom for the design and it seems that it may be used to set the damping ratio of the complex conjugate dominant poles for example. Unfortunately (4.66) indicates that the eigenvalues of the Hamiltonian matrix H, which are closely related to eigenvalues of the closedloop system, are independent of matrix R. Thus matrix R has no inuence on the location of the closed-loop poles in that situation.

Furthermore it is worth reminding that the higher the displacement of closed-loop eigenvalues with respect to the open-loop eigenvalue is, the higher the control eort is. Thus specifying very fast dominant poles may lead to unacceptable control eort.

Reduced-order model

The preceding result can be used to recursively shift on the left all the real parts of the poles of a system to any positions while preserving their imaginary parts. Let A ∈ R n×n be the state matrix of the system to be controlled and B ∈ R n×m the input matrix. We assume that all the eigenvalues of A are distinct and that (A, B) is controllable and that the symmetric positive denite weighting matrix R for the control is given. The purpose of this section is to compute the state weighting matrix Q which leads to the desired closed-loop eigenvalues by shifting recursively the actual eigenvalues of the state matrix. It is worth noticing that, through the shifting process, real eigenvalues remain real eigenvalues whereas complex conjugate eigenvalues remain complex conjugate eigenvalues.

The core idea of the method is to consider the transformation z i = C T x where C is appropriately chosen. This leads to the following reduced order model where matrix Λ corresponds to the diagonal (or Jordan) form of state matrix A:

z i = C T x ⇒ żi = Λz i + Gu where C T A = ΛC T ⇔ A T C = CΛ T G = C T B (4.72)
In this new basis the performance index turns to be:

J i = 1 2 ∞ 0 z T i Q i z i + u T Ru dt where Q = C Q i C T (4.73)

Shifting one real eigenvalue

Let λ i be an eigenvalue of A. We will rst assume that λ i is real. We wish to shift λ i to λ Ki .

Let v be a left eigenvector of A: v T A = λ i v T . In other words, v is a (right) eigenvector of A T corresponding to λ i :

A T v = λ i v.
Then we dene z i as follows:

z i := C T x where C = v (4.74)
Using the fact that v is a (right) eigenvector of A T (z i = v T x), we can write:

żi = v T Ax + v T Bu = v T λ i x + v T Bu = λ i v T x + v T Bu = λ i z i + v T Bu = λ i z i + Gu where G := v T B = C T B (4.75)
Then setting u := -R -1 G T Pz i , where scalar P > 0 is a design parameter, and having in mind that z i is scalar (thus λ i I = λ i ), we get:

żi = λ i -GR -1 G T P z i (4.76)
Let λ Ki be the desired eigenvalue of the preceding reduced-order model. Then we shall have:

λ Ki = λ i -GR -1 G T P (4.77)
Thus, matrix P reads:

P = λ i -λ Ki GR -1 G T (4.78)
The state weighting matrix Q i that will shift the open-loop eigenvalue λ i to the closed-loop eigenvalue λ Ki is obtained through the following identication:

z T i Q i z i = x T Q i x.
We nally get:

z i = v T x := C T x ⇒ Q i = C Q i C T (4.79)
Once matrix P has been computed, matrix Q i is obtained thanks to the corresponding algebraic Riccati equation:

0 = Pλ i + λ i P -PGR -1 G T P + Q i ⇔ Q i = -2λ i P + PGR -1 G T P (4.80)

Shifting a pair of complex conjugate eigenvalues

The procedure to shift a pair of complex conjugate eigenvalues follows the same idea: let λ i and λi be a pair of complex conjugate eigenvalues of A. We wish to shift λ i and λi to λ Ki and λKi .

Let v and v be a pair left eigenvectors of A. In other words, v and v is a pair of (right) eigenvector of A T corresponding to λ i :

v T vT A = v T vT λ i 0 0 λi ⇔ A T v v = v v λ i 0 0 λi (4.81)
In order to manipulate real values, we will use the real part and the imaginary part of the preceding equation. Denoting λ i := a + j b, that is a := Re(λ i ) and b := Im(λ i ), the preceding relation is equivalently replaced by the following one:

A T v v = v v λ i 0 0 λi ⇔ A T Re(v) Im(v) = Re(v) Im(v) a -b b a (4.82)
Then dene z i as follows:

z i := C T x where C = Re(v) Im(v) (4.83)
Using the fact that v and v is a pair of (right) eigenvector of A T , we get:

żi = A i z i + Gu (4.84)
where:

   G = C T B A i = a -b b a (4.85)
Then setting u = -R -1 G T P z i , , where 2 × 2 positive denite matrix P is a design parameter, we get:

żi = Λ i z i where        Λ i = A i -GR -1 G T P P = P T = p 1 p 2 p 2 p 3 > 0 (4.86)
Thus the closed-loop eigenvalues are the eigenvalues of matrix Λ i . Here the design process becomes a little bit more involved because parameters p 1 , p 2 and p 3 of matrix P shall be chosen to meet the desired complex conjugate closedloop eigenvalues λ Ki and λKi while minimizing the trace of P (indeed it can be shown that min(J i ) = min(tr( P))). The design process has been described by Arar & Sawan 5 .

Alternatively, we can choose the three coecients q 1 , q 2 and q 3 of matrix

Q i = Q T
i ≥ 0 such that the eigenvalues with negative real part of the following Hamiltonian matrix H i correspond to the desired eigenvalues λ Ki and λKi , as proposed by Fujinaka & Omatu 6 .

Thus the problem consists to nd matrix Q i :

Q i = q 1 q 2 q 2 q 3 = Q T i ≥ 0 (4.87)
such that:

det(sI -H i ) = (s -λ Ki )(s -λKi )(s + λ Ki )(s + λKi ) = s 4 + c 2 s 2 + c 0 (4.88)
where:

H i = A i -GR -1 G T -Q i -A i (4.89)
Once matrix Q i has been computed, matrix Q is obtained as follows:

Q = C Q i C T (4.90)

Sequential pole shifting via reduced-order models

When the imaginary part of the shifted eigenvalues is preserved, that is when Im(λ Ki ) = Im(λ i ) and Im( λKi ) = Im( λi ), then the design process can be simplied by using the mirror property underlined by Amin 4 and presented in Section 4.3.1: given a controllable pair (Λ i , G), a positive denite symmetric matrix R and a positive real constant α, then the following algebraic Riccati equation has a unique positive denite solution P = P T > 0:

(Λ i + αI) T P + P (Λ i + αI) -PGR -1 G T P = 0 (4.91)
Moreover the feedback control law u = -K i x shift the pair of complex conjugate eigenvalues (λ i , λi ) of matrix A to a pair of complex conjugate eigenvalues (λ Ki , λKi ) as follows, assuming α + Re(λ i ) ≥ 0:

   P i = C PC T Q i = 2α P i K i = R -1 B T P i = R -1 G T PC T ⇒ Re(λ Ki ) = -(2α + Re(λ i )) Im(λ Ki ) = Im(λ i ) (4.
92) The design process proposed by Amin 4 to shift several eigenvalues recursively is the following:

1. Set i = 1 and A 1 = A.
2. Let λ i be the eigenvalue of matrix A i which is desired to be shifted:

-Assume that λ i is real. We wish to shift λ i to λ Ki ≤ λ i . Then compute a (right) eigenvector v of A T i corresponding to λ i . In other

words v T is the left eigenvector of A i : v T A i = λ i v T . Then compute
C, G, α and Λ i dened by:

       C = v G = C T B α = -λ Ki +λ i 2 ≥ 0 where λ Ki ≤ λ i ∈ R Λ i = λ i ∈ R (4.93)
-Now assume that λ i = a + jb is complex. We wish to shift λ i and λi to λ Ki and λKi where:

Re(λ Ki ) ≤ Re(λ i ) := a Im(λ Ki ) = Im(λ i ) := b (4.94)
This means that the shifted poles shall have the same imaginary parts than the original ones. Then compute (right) eigenvectors (v 1 , v 2 ) of A T i corresponding to λ i and λi . In other words

(v T 1 , v T 2 ) are the left eigenvectors of A i : v T 1 v T 2 A i = λ i 0 0 λi v T 1 v T 2 .
Then compute C, G, α and Λ i dened by:

           v 1 = v2 ⇒ C = Re(v 1 ) Im(v 1 ) G = C T B α = -Re(λ Ki +λ i ) 2 ≥ 0 λ i = a + jb ∈ C ⇒ Λ i = a -b b a (4.95)
3. Compute P = P T > 0, which is dened as the unique positive denite solution of the following algebraic Riccati equation:

(Λ i + αI) T P + P (Λ i + αI) -PGR -1 G T P = 0 (4.96)
Alternatively, P can be dened as follows:

P = X -1 (4.97)
where X is the solution of the following Lyapunov equation:

(Λ i + αI) X + X (Λ i + αI) T = GR -1 G T (4.98)
4. Compute P i , Q i and K i as follows:

   P i = C PC T Q i = 2α P i K i = R -1 B T P i = R -1 G T PC T (4.99) 5. Set i = i + 1 and A i = A i-1 -B K i-1 .
Go to step 2 if some others open-loop eigenvalues have to be shifted.

Once the loop is nished compute

P = i P i , Q = i Q i and K = i K i .
Gain K is such that eigenvalues of A -BK are located to the desired values λ Ki . Furthermore Q is the weighting matrix for the state vector and P is the positive denite solution of the corresponding algebraic Riccati equation. Consequently it is desired that matrix D(s)I + KN ol (s)| s=λ Ki is singular. Let ω i be a vector belonging to the kernel of D(s)I + KN ol (s)| s=λ Ki . Thus replacing s by λ Ki we can write:

Frequency domain approach

(D(λ Ki )I + KN ol (λ Ki )) ω i = 0 (4.104)
Actually, vector ω i ̸ = 0 can be used as a design parameter. Alternatively, when making the parallel that λ i is an eigenvalue of matrix A as soon as det (sI -A)| s=λ i = 0, we conclude that D(λ Ki ) is an eigenvalue of matrix -KN ol (λ Ki ), and thus ω i is an eigenvector of -KN ol (λ Ki ) corresponding to the eigenvalue D(λ Ki ). This remark can be extended to the output feedback case where N ol (s) = C adj (sI -A) B.

In order to get gain K the preceding relation is rewritten as follows:

KN ol (λ Ki )ω i = -D(λ Ki )ω i (4.105)
This relation does not lead to the value of gain K as soon as N ol (λ Ki )ω i is a vector which is not invertible. Nevertheless assuming that n denotes the order of state matrix A we can apply this relation for the n desired closed-loop eigenvalues. We get:

K v K1 • • • v Kn = -p 1 • • • p n (4.106)
where vectors v Ki and p i are given by:

v Ki = N ol (λ Ki ) ω i p i = D(λ Ki ) ω i (4.107)
We nally get the following expression of gain K:

K = -p 1 • • • p n v K1 • • • v Kn -1 (4.108)

Assignment of weighting matrices Q and R

The starting point is the Kalman equality (3.143) that we recall hereafter:

(I + KΦ(-s)B) T R (I + KΦ(s)B) = R + (Φ(-s)B) T Q (Φ(s)B) (4.109)
Using the fact that det (XY) = det (X) det (Y) leads to the following result: 

det (I + KΦ(-s)B) T det (R) det ((I + KΦ(s)B)) = det R + (Φ(-s)B) T Q (Φ(s)B) ⇔ det (I + KΦ(-s)B) T det ((I + KΦ(s)B)) = det I + R -1 (Φ(-s)B) T Q (Φ(s)B) ( 4 
D(s) = det (sI -A) β(s) = det (sI -A + BK) (4.111)
As in the previous section, let N ol (s) be the following polynomial matrix:

N ol (s) := adj (sI -A) B (4.112)
Then we get:

Φ(s) := (sI -A) -1 ⇒ Φ(s) B = (sI -A) -1 B := N ol (s) D(s) (4.113)
Furthermore the Hsu-Chen equality (3.138) reads as follows with those notations:

det (sI -A + BK) = det (sI -A) det (I + KΦ(s)B) ⇔ det (I + KΦ(s)B) = det (sI -A + BK) det (sI -A) := β(s) D(s) (4.114)
Finally, using the fact that det X T = det (X), relation (4.110) becomes:

β(-s) D(-s) β(s) D(s) = det I + R -1 (Φ(-s)B) T Q (Φ(s)B) (4.115)
We nally get the following result where

det I + R -1 (Φ(-s)B) T Q (Φ(s)B
) is a rational fraction whose denominator is D(s) D(-s), that is the denominator of Φ(-s)Φ(s):

β(s) β(-s) = D(s) D(-s) det I + R -1 (Φ(-s)B) T Q (Φ(s)B) = D(s) D(-s) det I + R -1 N ol (-s) D(-s) T Q N ol (s) D(s) = det D(s) D(-s) I + R -1 N ol (-s) T Q N ol (s) (4.116)
Thus the closed-loop eigenvalues are the roots λ Ki with negative real part such that:

det D(s) D(-s) I + R -1 N ol (-s) T Q N ol (s) s=λ Ki = 0 (4.117)
Relation (4.117) indicates there exists eigenvectors ω i ̸ = 0 such that for a given closed-loop eigenvalue λ Ki the following relation holds 7 :

D(-λ Ki )D(λ Ki )I + R -1 (N ol (-λ Ki )) T Q N ol (λ Ki ) ω i = 0 (4.118)
Let n be the order of state matrix A. Once eigenvector ω i ̸ = 0 has been obtained for each λ Ki , relation (4.108) can be used to compute the optimal gain K as follows:

K = -p 1 • • • p n v K1 • • • v Kn -1 (4.119)
where vectors v Ki and p i are given as in the non optimal pole assignment problem:

v Ki = N ol (λ Ki ) ω i p i = D(λ Ki ) ω i (4.120)
It is worth noticing that if the open-loop eigenvalue λ i is desired to be kept in the closed-loop, then applying (4.118) with relations D(λ i ) = 0 and λ i = λ Ki imply that p i = 0 and that v Ki shall be chosen such that Q v Ki = 0. Indeed:

     D(-λ Ki )D(λ Ki )I + R -1 (N ol (-λ Ki )) T Q N ol (λ Ki ) ω i = 0 D(λ i ) = 0 λ i = λ Ki ⇒ p i = D(λ Ki ) ω i = D(λ i ) ω i = 0 Q N ol (λ i ) ω i = Q v Ki = 0 (4.121)
On the other hand, if λ Ki and ω i are set, then Q and R shall be chosen such that (4.118) holds ∀ i. Once matrix R = R > 0 has been set, matrix Q can be assumed to be a real diagonal matrix whose coecients q i shall be computed to comply with (4.118):

Q = Q T =    q 1 . . . q n    ∈ R n (4.122)
Nevertheless, take care that the computed matrix Q = Q T may not be positive semi-denite in that case.

Finally, for single input system, ω i := ω i ̸ = 0 and R := R > 0 are scalars and (4.118) reduces as follows:

ω i ̸ = 0 ∈ R ⇒ D(-λ Ki )D(λ Ki ) + (N ol (-λ Ki )) T Q R N ol (λ Ki ) = 0 ∀ i (4.123)
Example 4.1. We consider the following state equation:

ẋ = 0 1 10 -9 x + 0 1 u (4.124)
We wish to design an optimal state feedback controller such that the closedloop poles are located at {λ K1 = -10, λ K2 = -2}.

To solve this problem, we rst observe that the eigenvalues of A are {λ 1 = -10, λ 2 = 1}. Thus the problem consists in preserving λ 1 = -10 in the state feedback loop while shifting λ 2 = 1 towards λ K2 = -2. Because we are looking for an optimal state feedback controller, we have to select matrix Q = Q T ≥ 0 and R > 0 to achieve those specications.

The characteristic polynomial D(s) of state matrix A reads:

D(s) = det (sI -A) = s 2 + 9s -10 ⇒ D(λ K1 ) = D(-10) = 0 D(λ K2 ) = D(-2) = -24 (4.125)
In addition, let N ol (s) be the following polynomial matrix:

N ol (s) := adj (sI -A) B = s + 9 1 10 s 0 1 = 1 s ⇒          N ol (λ K1 ) = N ol (-10) = 1 -10 T N ol (-λ K1 ) = N ol (10) = 1 10 T N ol (λ K2 ) = N ol (-2) = 1 -2 T N ol (-λ K2 ) = N ol (2) = 1 2 T (4.126)
Because we focus on a single input system, we use relation (4.123) to select

Q = Q T ≥ 0 and R > 0. Furthermore we will assume that Q R is a diagonal matrix: Q R := q r1 0 0 q r2 (4.127)
We get:

D(-λ Ki )D(λ Ki ) + (N ol (-λ Ki )) T Q R N ol (λ Ki ) = 0 ⇔ q r1 -100 q r2 = 0 q r1 -4 q r2 -288 = 0 ⇔ 1 -100 1 -4 q r1 q r2 = 0 288 (4.128)
We nally get:

q r1 q r2 = 1 -100 1 -4 -1 0 288 = 300 3 ⇒ Q R := q r1 0 0 q r2 = 300 0 0 3 (4.129) ■

Poles assignment in optimal regulator through matrix inequalities

In this section a method for designing linear quadratic regulator with prescribed closed-loop pole is presented.

Let Λ cl = {λ 1 , λ 2 , • • • , λ n }
be a set of prescribed closed-loop eigenvalues, where Re(λ i ) < 0 and λ i ∈ Λ cl implies that the complex conjugate of λ i , which is denoted λ * i , belongs also to Λ cl . The problem consists in nding a state feedback controller u = -Kx such that the eigenvalues of A -BK, which are denoted λ (A -BK), belongs to Λ cl :

λ (A -BK) = Λ cl (4.130)
while minimizing the quadratic performance index J(u(t)) for some Q > 0 and R > 0.

Since X 1 is nonsingular matrix Q is positive denite if and only if X T 1 QX 1 is positive denite. Using the rst equation of (4.138) into the second one we get:

X T 1 QX 1 = -X T 1 A T X 2 -X T 1 X 2 F = -(AX 1 ) T X 2 -X T 1 X 2 F = -(X 1 F + BR -1 B T X 2 ) T X 2 -X T 1 X 2 F = -(F T X T 2 X 1 + X T 1 X 2 F + X T 2 BR -1 B T X 2 ) (4.139)
We recall the Schur's formula:

det A 11 A 12 A 21 A 22 = det(A 22 ) det(A 11 -A 12 A -1 22 A 21 ) = det(A 11 ) det(A 22 -A 21 A -1 11 A 12 ) (4.140)
Using the Schur's formula and denoting S = X T 1 X 2 we nally get:

X T 1 QX 1 ≥ 0 ⇔ F T S T + SF X T 2 B B T X 2 -R -1 ≤ 0 (4.141)
4.6 Model matching

cross-term in the performance index

Assume that the output z(t) of interest is expressed as a linear combination of state vector x(t) and control u(t): z(t) = N x(t) + D u(t). Thus the cost to be minimized reads:

   J(u(t)) = 1 2 ∞ 0 z T (t)z(t) + u T (t)R 1 u(t) dt z(t) = N x(t) + D u(t) R 1 = R T 1 > 0 ⇒ J(u(t)) = 1 2 ∞ 0 x T (t)N T + u T (t)D T (N x(t) + D u(t)) + u T (t)R 1 u(t) dt (4.
142) Then we get a more general form of the quadratic performance index. Indeed the quadratic performance index can be rewritten as:

J(u(t)) = 1 2 ∞ 0 x u T Q S S T R x u dt = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)Su(t) dt (4.143)
where:

   Q = Q T := N T N ≥ 0 R = R T := D T D + R 1 > 0 S := N T D (4.144)
It can be seen that:

x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)Su(t) = x T (t)Q m x(t) + v T (t)Rv(t) (4.145)
where:

Q m = Q -SR -1 S T v(t) = u(t) + R -1 S T x(t) (4.146)
Hence cost (4.143) can be rewritten as:

J(u(t)) = 1 2 ∞ 0 x T (t)Q m x(t) + v T (t)Rv(t) dt (4.147)
Moreover the plant dynamics ẋ(t) = Ax(t) + Bu(t) is modied as follows:

ẋ = Ax(t) + Bu(t) = Ax(t) + B v(t) -R -1 S T x(t) = A m x(t) + Bv(t) where A m = A -BR -1 S T (4.148)
Assuming that Q m (which is symmetric) is positive denite, we then get a standard LQR problem for which the optimal state feedback control law is given from (3.9):

v(t) = -R -1 B T Px(t) v(t) = u(t) + R -1 S T x(t) ⇒ u(t) = -Kx(t) K = R -1 (PB + S) T (4.149)
Where matrix P is the positive denite matrix which solves the following algebraic Riccati equation (see (3.8)):

PA m + A T m P -PBR -1 B T P + Q m = 0 (4.150)
It is worth noticing that robustness properties of the LQ state feedback are lost if the cost to be minimized contains a state-control cross-term as it is the case here.

Implicit reference model

Let A r be the desired closed-loop state matrix of the system and e(t) be the following error vector: e(t) := ẋ(t) -A r x(t) (4.151)

In that section we consider the problem to nd control u(t) which minimizes the following performance index:

J(u(t)) = 1 2 ∞ 0 e T (t)e(t) dt = 1 2 ∞ 0 ( ẋ(t) -A r x(t)) T ( ẋ(t) -A r x(t)) dt (4.152)
Expanding ẋ(t) we get:

J(u(t)) = 1 2 ∞ 0 (Ax(t) + Bu(t) -A r x(t)) T (Ax(t) + Bu(t) -A r x(t)) dt = 1 2 ∞ 0 ((A -A r ) x(t) + Bu(t)) T ((A -A r ) x(t) + Bu(t)) dt (4.153)
We get a cost to be minimized which contains a state-control cross-term:

J(u(t)) = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) + 2x T (t)Nu(t) dt (4.154)
Where:

   Q = (A -A r ) T (A -A r ) R = B T B N = (A -A r ) T B (4.155)
Then we can re-use the results of section 4.6.1. Let P be the positive denite matrix which solves the following algebraic Riccati equation:

PA m + A T m P -PBR -1 B T P + Q m = 0 (4.156)
Where:

   Q m = Q -NR -1 N T A m = A -BR -1 N T v(t) = u(t) + R -1 N T x(t) (4.157)
The stabilizing control u(t) is then dened in a similar fashion than (4.149):

v(t) = -R -1 B T Px(t) v(t) = u(t) + R -1 N T x(t) ⇒ u(t) = -Kx(t) K = R -1 (PB + N) T (4.158)
It is worth noticing that robustness properties of the LQ state feedback are lost because the cost to be minimized contains a state-control cross-term here.

Furthermore let V be the change of basis matrix to the Jordan form Λ r of the desired closed-loop state matrix A r :

Λ r = V -1 A r V (4.159)
Let A cl be the state matrix of the closed-loop which is written using matrix V as follows :

ẋ(t) = A cl x(t) = VΛ cl V -1 x(t) (4.160)
Assuming that the desired Jordan form Λ r is a diagonal matrix and using the fact V -1 = V T the product e T (t)e(t) in (4.152) reads as follows:

e T (t)e(t) = x T (t) (A cl -A r ) T (A cl -A r ) x(t) = x T (t)V (Λ cl -Λ r ) T (Λ cl -Λ r ) V T x(t) (4.161)
From the preceding equation it is clear that minimizing the cost

J(u(t)) = 1 2
∞ 0 e T (t)e(t) dt consists in nding the control u(t) which minimizes the gap between the desired eigenvalues (which are set in Λ r ) and the actual eigenvalues of the closed-loop.

Optimal output feedback 4.7.1 Reformulation of the state feedback optimal control problem

We consider in this section the following plant:

ẋ(t) = Ax(t) + Bu(t) (4.162)
We which minimizes the following performance index J where Q = Q T ≥ 0 and R = R T > 0:

J = ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) dt (4.163)
We will assume that we seek for a stabilizing static state feedback gain K:

u(t) = -Kx(t) (4.164)
Using the relation u(t) = -Kx(t), the performance index J reads:

J = ∞ 0 x T (t)Qx(t) + (Kx(t)) T RKx(t) dt = ∞ 0 x T (t) Q + K T RK x(t) dt (4.165)
Moreover, the dynamics of the plant where u(t) = -Kx(t) reads:

u(t) = -Kx(t) ⇒ ẋ(t) = (A -BK) x(t) (4.166)
Thus, after integration, and denoting by x(0) the initial value of x(t), we get:

x(t) = e (A-BK) t x(0) (4.167)

Consequently, the performance index J reads:

J = ∞ 0 x T (t) Q + K T RK x(t) dt = ∞ 0 x(0) T e (A-BK) T t Q + K T RK e (A-BK) t x(0) dt (4.168)
Using the property of trace, i.e. tr (XYZ) = tr (YZX), the performance index J is written as follows:

J = ∞ 0 x(0) T e (A-BK) T t Q + K T RK e (A-BK) t x(0) dt = tr ∞ 0 x(0) T e (A-BK) T t Q + K T RK e (A-BK) t x(0) dt = tr ∞ 0 e (A-BK) T t Q + K T RK e (A-BK) t x(0)x(0) T dt (4.169)
Because the initial value x(0) of the state vector is usually unknown, the product x(0)x(0) T is removed from the performance index J. We get:

J = tr (P) (4.170)
where matrix P is the so-called grammian:

P = ∞ 0 e (A-BK) T t Q + K T RK e (A-BK) t dt = P T > 0 (4.171)
When multiplying P by e (A-BK) T t 0 on the left and by e (A-BK) t 0 on the right, we get ∀ t 0 ∈ R:

e (A-BK) T t 0 P e (A-BK) t 0 = ∞ 0 e (A-BK) T (t+t 0 ) Q + K T RK e (A-BK) (t+t 0 ) dt = ∞ t 0 e (A-BK) T t Q + K T RK e (A-BK) t dt (4.172)
Dierentiation with respect to t 0 and using the facts that matrix A -BK is assumed to be stable (that is lim t→∞ e (A-BK) t = lim t→∞ e (A-BK) T t = 0) and that g

(x) = b(x) a(x) f (τ ) dτ ⇒ g ′ (x) = f (b(x)) b ′ (x) -f (a(x)) a ′ (x) yields:
(A -BK) T e (A-BK) T t 0 P e (A-BK) t 0 + e (A-BK) T t 0 P e (A-BK) t 0 (A -BK)

= -e (A-BK) T t 0 Q + K T RK e (A-BK) t 0 (4.173) Finally setting t 0 = 0 leads to the following Lyapunov equation:

(A -BK) T P + P (A -BK) = -Q + K T RK (4.174)
Alternatively, and following Lewis & al. 10 , assume that there exists a positive denite matrix P = P T > 0 such that the following equality holds:

d dt x T (t)Px(t) = -x T (t) Q + K T RK x(t) (4.175)
Then the performance index J dened in (4.165) reads:

J = ∞ 0 x T (t) Q + K T RK x(t) dt = - ∞ 0 d dt x T (t)Px(t) dt = -x T (t)Px(t) t→∞ t=0 = x T (0) P x(0) -lim t→∞ x T (t) P x(t) (4.176)
Assuming that the closed-loop is stable so that x(t) vanishes with time, we get the following relation where tr (X) denotes the trace of matrix X: lim t→∞ x(t) = 0 ⇒ J = x T (0) P x(0) = tr P x(0) x T (0) (4.177) Furthermore, when using (4.162) and (4.163) in (4.175), we can write:

-x T (t) Q + K T RK x(t) = d dt x T (t)Px(t) = ẋT (t)Px(t) + x T (t)P ẋ(t) = (Ax(t) + Bu(t)) T Px(t) + x T (t)P (Ax(t) + Bu(t)) = ((A -BK) x(t)) T Px(t) + x T (t)P ((A -BK) x(t)) = x T (t) (A -BK) T P + P (A -BK) x(t) (4.178)
Since this relation shall hold for all value of x(t), we shall have:

-Q + K T RK = (A -BK) T P + P (A -BK) (4.179)
We retrieve the Lyapunov equation (4.174).

Consequently, the dynamic optimization control problem can be converted into the following equivalent static optimization control problem: Find P = P T > 0 and K which minimizes tr (P) under the constraint

A T cl P + PA cl + Q + K T RK = 0 where A cl := A -BK (4.180)
The constraint to be satised is simply the algebraic Riccati equation. Indeed by adding and subtracting terms PBK and (BK) T P within the algebraic Riccati equation we get:

A T P + PA -PBR -1 B T P + Q = 0 ⇔ (A -BK) T P + P (A -BK) + (BK) T P + PBK -PBR -1 B T P + Q = 0 ⇔ (A -BK) T P + P (A -BK) + K T B T P + PBK -PBR -1 B T P + Q = 0 K = R -1 B T P ⇒ (A -BK) T P + P (A -BK) + K T B T P + $ $ $ PBK -$ $ $ PBK + Q = 0 B T P = RK ⇒ (A -BK) T P + P (A -BK) + Q + K T RK = 0 (4.181)

Output feedback optimal control problem

The preceding result can be extended to output feedback optimal control problem. Indeed, consider the following plant:

ẋ(t) = Ax(t) + Bu(t) y(t) = C x(t) (4.182)
We wish to nd a stabilizing static output feedback gain K, u(t) = -Ky(t), which minimizes the following performance index J where

Q = Q T ≥ 0 and R = R T > 0: J = ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) dt u(t) = -Ky(t) = -KCx(t) (4.183) 
Let:

Q K = Q + C T K T RKC = Q T K ≥ 0 (4.184)
Then the performance index J reads:

J = ∞ 0 x T (t)Qx(t) + (KCx(t)) T RKCx(t) dt = ∞ 0 x T (t) Q + C T K T RKC x(t) dt = ∞ 0 x T (t) Q K x(t) dt (4.185)
Following Lewis & al. 10 , assume that there exists a positive denite matrix P = P T > 0 such that the following equality holds:

d dt x T (t)Px(t) = -x T (t) Q K x(t) (4.186)
The performance index J now reads:

J = - ∞ 0 d dt x T (t)Px(t) dt = -x T (t)Px(t) t→∞ t=0 = x T (0) P x(0) -lim t→∞ x T (t) P x(t) (4.187)
Assuming that the closed-loop is stable so that x(t) vanishes with time, we get the following relation where tr (X) denotes the trace of matrix X:

lim t→∞ x(t) = 0 ⇒ J = x T (0) P x(0) = tr P x(0) x T (0) (4.188)
Furthermore, when using (4.182) and (4.183) in (4.186), we can write:

-x T (t) Q K x(t) = d dt x T (t)Px(t) = ẋT (t)Px(t) + x T (t)P ẋ(t) = (Ax(t) + Bu(t)) T Px(t) + x T (t)P (Ax(t) + Bu(t)) = ((A -BKC) x(t)) T Px(t) + x T (t)P ((A -BKC) x(t)) = x T (t) (A -BKC) T P + P (A -BKC) x(t)
(4.189) Since this relation shall hold for all value of x(t), we shall have:

-Q K = (A -BKC) T P + P (A -BKC) (4.190)
Consequently, the dynamical optimization control problem can be converted into the following equivalent static optimization control problem: Find P = P T > 0 and K which minimizes tr (P) under the constraint (A -BKC) T P + P (A -BKC)

+ Q K = 0 (4.191)

Solution of the output feedback optimal control problem

First, we recall the following property: let XYZ be a square matrix where matrices X, Y and Z are of appropriate dimension. Then the following properties hold 10 :

           ∂ tr(XY) ∂Y = X T ∂ tr(XYZ) ∂Y = X T Z T ∂ tr(XY T Z) ∂Y = ∂ tr(Z T YX T ) ∂Y = ZX (4.192)
Example 4.2. In order to illustrate the rst relation, we consider the following matrices: ■ Now, we are in position to solve the output feedback optimal control problem thanks to the Lagrange multiplier approach. We dene the (scalar) Hamiltonian H as follows where Λ = Λ T is a n × n diagonal matrix of Lagrange multipliers to be determined:

       X = 2 
H = tr (P) + tr Λ (A -BKC) T P + P (A -BKC) + Q K (4.196)
The necessary conditions to solve this optimization problem with respect to matrices K, Λ and P read as follows:

       ∂H ∂K = 0 ⇒ 2 RKCΛC T -B T PΛC T = 0 ∂H ∂Λ = 0 ⇒ (A -BKC) T P + P (A -BKC) + Q K = 0 ∂H ∂P = 0 ⇒ I + (A -BKC) T Λ + Λ (A -BKC) = 0 (4.197)
From the rst equation, and assuming that CΛC T is nonsingular, the static output feedback gain K can be computed as a function of Lagrange multipliers

Λ: ∂H ∂K = 0 ⇒ K = R -1 B T PΛC T CΛC T -1 (4.198)
It is worth noticing that for the static state feedback case where C = I, the static state feedback K no more depends of Lagrange multipliers Λ:

C = I ⇒ K = R -1 B T P (4.199) 
Moreover, in the state feedback case the Lyapunov equation specifying the constraint turns to be the algebraic Riccati equation:

C = I ⇒ K = R -1 B T P ⇒ Q K = Q + K T RK = Q + PBR -1 B T P ⇒ 0 = (A -BKC) T P + P (A -BKC) + Q K = (A -BK) T P + P (A -BK) + Q + PBR -1 B T P = A T P + PA -PBR -1 B T P + Q (4.200)

Poles placement in a specied region

In this section, we still wish to nd a stabilizing static output feedback gain K, u(t) = -Ky(t), which minimizes the performance index J dened in (4.183).

We add the constraint that closed-loop poles are situated in the sector region C(α, θ) shown in Figure 4.3. Let Q K be dened as in (4.184) and let A cl be the closed-loop state matrix:

A cl = A -BKC (4.201)
We have seen in the previous section that if there exists a positive denite matrix P = P T > 0 such that the following equality holds: Then the minimum cost J * reads as follows where tr (X) denotes the trace of matrix X:

A T cl P + PA cl + Q K = 0 (4.202)
J * = x T (0) P x(0) = tr P x(0) x T (0) (4.203)
Following Yuan & al.11 , let matrix A be dened as follows, where ⊗ denotes the Kronecker product:

   A α = A -αI where α ≤ 0 A = sin(θ)A α cos(θ)A α -cos(θ)A α sin(θ)A α := sin(θ) cos(θ) -cos(θ) sin(θ) ⊗ A α (4.204) 
Then it can be shown 11 that all the eigenvalues of matrix A will be situated inside the sector region C(α, θ) shown in Figure 4.3 if and only if all the eigenvalues of matrix A are situated in the left half plane. Denoting by Ψ(s) the polynomial whose companion matrix is A, this can be tested for example with the Routh-Hurwitz criterion.

This result can be extended to the case where we add the constraint that all the eigenvalues of state matrix A shall have a real part greater than α m . This will be the case if and only if all the eigenvalues of the following block diagonal matrix A e are situated in the left half plane:

A e = A 0 0 α m I -A (4.205) 
Moreover let:

     B 1 B 2 := sin(θ) cos(θ) -cos(θ) sin(θ) ⊗ B A cl = A -B 1 B 2 KC (4.206)
Then the optimal control problem for poles placement in a specied region reads as follows 11 : Find P = P T > 0 and K which minimize tr (P) under the constraints :

(A -BKC) T P + P (A -BKC) + Q K = 0 A T cl P + P A cl < 0 (4.207) 
where:

A cl = sin(θ) cos(θ) -cos(θ) sin(θ) ⊗ (A -αI -BKC) (4.208) 
4.8 Frequency shaped LQ control

Often system performances are specied in the frequency domain. The purpose of this section is to shift the time domain nature of the LQR problem in the frequency domain as proposed by Gupta in 198012 . This is done thanks to Parseval's theorem which enables to write the performance index J to be minimized as follows, where w represents frequency (in rad/sec):

J = ∞ 0 x T (t)Qx(t) + u T (t)Ru(t) dt = 1 2π ∞ 0 x T (-jω)Qx(jω) + u T (-jω)Ru(jω)dw (4.209)
Then constant weighting matrices Q and R are modied to be function of the frequency w in order to place distinct penalties on the state and control cost at various frequencies:

Q = Q(w) = W T q (-jω)W q (jω) R = R(w) = W T r (-jω)W r (jω) (4.210) 
For the existence of the solution of the LQ regulator, matrix R(w) shall be of full rank. Since we seek to minimize the quadratic cost J, then large terms in the integrand incur greater penalties than small terms and more eort is exerted to make then small. Thus if there is for example an high frequency region where the model of the plant presents unmodeled dynamics and if the control weight W r (jω) is chosen to have large magnitude over this region then the resulting controller would not exert substantial energy in this region. This in turn would limit the controller bandwidth.

Let us dene the following vectors to carry out the dynamics of the weights in the frequency domain, where s denotes the Laplace variable:

z(s) = W q (s) x(s) v(s) = W r (s) u(s) (4.211) 
In order to simplify the process of selecting useful weights, it is common to choose weighting matrices to be scalar functions multiplying the identity matrix:

W q (s) = w q (s)I W r (s) = w r (s)I (4.212)
The performance index J to be minimized in (4.209) turns to be:

J = 1 2π ∞ 0 z T (-jω)z(jω) + v T (-jω)v(jω)dw (4.213)
Using Parseval's theorem we get in the time domain:

J = ∞ 0 z T (t)z(t) + v T (t)v(t) dt (4.214)
Let the state space model of the rst equation of (4.211) be the following, where z(t) is the output and x(t) the input of the following MIMO system:

χq (t) = A q χ q (t) + B q x(t) z(t) = N q χ q (t) + D q x(t) ⇒ z(s) = N q (sI -A q ) -1 B q + D q x(s) = W q (s)x(s) (4.215)
Similarly, let the state space model of the second equation of (4.211) be the following, where v(t) is the output and u(t) the input of the following MIMO system:

χr (t) = A r χ r (t) + B r u(t) v(t) = N r χ r (t) + D r u(t) ⇒ v(s) = N r (sI -A r ) -1 B r + D r u(s) = W r (s)u(s) (4.216)
Then it can be shown from (4.215) and (4.216) that: z T (t)z(t) + v T (t)v(t) = (N q χ q (t) + D q x(t)) T (N q χ q (t) + D q x(t))

+ (N r χ r (t) + D r u(t)) T (N r χ r (t) + D r u(t)) (4.217)
That is:

z T (t)z(t) + v T (t)v(t) = x T (t) χ T q (t) χ r (t) T Q f   x(t) χ q (t) χ r (t)   + 2 x T (t) χ T q (t) χ r (t) T N f u(t) + u T (t)R f u(t) (4.218) 
Where:

                   Q f =   D T q D q D T q N q 0 N T q D q N T q N q 0 0 0 N T r N r   N f =   0 0 N T r D r   R f = D T r D r (4.219)
Then dene the augmented state vector x a (t):

x a (t) =   x(t) χ q (t) χ r (t)   (4.220)
And the augmented state space model:

ẋa (t) = d dt   x(t) χ q (t) χ r (t)   = A a x a (t) + B a u(t) (4.221) 
Where:

               A a =   A 0 0 B q A q 0 0 0 A r   B a =   B 0 B r   (4.222) 
Using (4.218) the performance index J dened in (4.214) is written as follows:

J = ∞ 0 x T a (t)Q f x a (t) + 2x a (t)N f u(t) + u(t) T R f u(t) dt (4.223) 
As far as cross-term in the performance index J appears results obtained in section 4.6.1 will be used: The algebraic Riccati equation (4.150) reads as follows:

PA m + A T m P -PB a R -1 B T a P + Q m = 0 (4.224) 
Where:

Q m = Q f -N f R -1 f N T f A m = A a -B a R -1 f N T f (4.225)
Denoting by P the positive denite matrix which solves the algebraic Riccati equation (4.224), the stabilizing control u(t) is then dened in a similar fashion than (4.149):

u(t) = -Kx(t) K = R -1 f (PB a + N f ) T (4.226) 

Optimal transient stabilization

We provide in that section the material written by L. Qiu and K. Zhou13 . Let's consider the feedback system for stabilization system in Figure 4.4 where F (s) is the plant and K(s) is the controller: The known transfer function F (s) of the plant is assumed to be strictly proper with a monic polynomial on the denominator (a monic polynomial is a polynomial in which the leading coecient (the nonzero coecient of highest degree) is equal to 1): Similarly the unknown transfer function K(s) of the controller is assumed to be strictly proper with a monic polynomial on the denominator:

F (s) = N (s) D(s) = b n-1 s n-1 + • • • b 1 s + b 0 s n + a n-1 s n-1 + • • • + a 1 s + a 0 (4.227)
K(s) = q(s) p(s) = q m-1 s m-1 + • • • q 1 s + q 0 s m + p m-1 s m-1 + • • • + p 1 s + p 0 (4.228)
The closed-loop characteristic polynomial β(s) is:

β(s) = N (s)q(s) + D(s)p(s) = s n+m + β n+m-1 s n+m-1 + • • • + β 1 s + β 0 (4.229) 
For given coprime polynomials N (s) and D(s) as well as an arbitrarily chosen closed-loop characteristic polynomial β(s) the expression of p(s) and q(s) amounts to solving the following Diophantine equation:

β(s) = N (s)q(s) + D(s)p(s) (4.230) 
This linear equation in the coecients of p(s) and q(s) has solution for arbitrary β(s) if and only if m ≥ n. The solution is unique if and only if m = n. Now consider the following performance measure J(ρ, µ) where ρ and µ are positive number to give relative weights to outputs y 1 (t) and y 2 (t) and to inputs w 1 (t) and w 2 (t) respectively and δ(t) is the Dirac delta function:

J(ρ, µ) = 1 2 ∞ 0 y 2 1 (t) + ρy 2 2 (t) dt w 1 (t) = µδ(t) w 2 (t) = 0 + 1 2 ∞ 0 y 2 1 (t) + ρy 2 2 (t) dt w 1 (t) = 0 w 2 (t) = δ(t) (4.231) 
The design procedure to obtain the controller which minimizes performance measure J(ρ, µ) is the following:

-Find polynomial d µ (s) (also called spectral factor) which is formed with the n roots with negative real parts of D(s)D(-s) + µ 2 N (s)N (-s):

D(s)D(-s) + µ 2 N (s)N (-s) = d µ (s)d µ (-s) (4.232) 
-Find polynomial d ρ (s) (also called spectral factor) which is formed with the n roots with negative real parts of D(s)D(-s) + ρN (s)N (-s):

D(s)D(-s) + ρN (s)N (-s) = d ρ (s)d ρ (-s) (4.233) 
-Then the optimal controller K(s) = q(s)/p(s) is the unique n th order strictly proper transfer function such that:

D(s)p(s) + N (s)q(s) = d µ (s)d ρ (s) (4.234) 
Chapter 5

Linear Quadratic Tracker (LQT)

Introduction

The regulator problem that has been tackled in the previous chapters is in fact a spacial case of a wider class of problems where the outputs of the system are required to follow a desired trajectory in some optimal sense. As underlined in the book of Anderson and Moore trajectory following problems can be conveniently separated into three dierent problems which depend on the nature of the desired output trajectory:

-If the plant outputs are to follow a class of desired trajectories, for example all polynomials up to certain order, the problem is referred to as a servo (servomechanism) problem;

-When the plant outputs are to follow the response of another plant (or model) the problem is referred to as model following problems;

-If the desired output trajectory is a particular prescribed function of time, the problem is called a tracking problem.

This chapter is devoted to the presentation of some results common to all three of these problems, with a particular attention being given on the tracking problem.

Control with feedforward

We will consider in this section the following linear system, where x(t) is the state-vector, u(t) the control and y(t) the controlled output (that is the output of interest):

ẋ(t) = Ax(t) + Bu(t) y(t) = C x(t) (5.1) 
Control with feedforward gain allows set point regulation. We will assume that control u(t) has the following expression where F is the feedforward gain and where r(t) is the commanded value for the output y(t):

u(t) = -K x(t) + Fr(t) (5.2) 
Where e(t) is the trajectory error dened as:

e(t) := y(t) -r(t) = C x(t) -r(t) (5.10) 
The Hamiltonian H is then dened as:

H(x, u, λ) = 1 2 e T (t)Q e(t) + 1 2 u T (t)Ru(t) + λ T (t) (Ax(t) + Bu(t)) (5.11)
The optimality condition (1.72) yields:

∂H ∂u = 0 = Ru(t) + B T λ(t) ⇒ u(t) = -R -1 B T λ(t) (5.12) 
Equation (1.69) yields:

λ(t) = -∂H ∂x = -∂e T (t) ∂x Q e(t) + A T λ(t) = -C T Q (C x(t) -r(t)) + A T λ(t) ⇔ λ(t) = -A T λ(t) -C T QC x(t) + C T Q r(t) (5.13)
With the terminal condition (1.70):

λ(t f ) = ∂ 1 2 e T (t f )Se(t f ) ∂x(t f ) = ∂(Cx(t f )-r(t f )) T ∂x(t f ) Se(t f ) = C T S (Cx(t f ) -r(t f )) (5.14)
In order to get the closed-loop control law, expression (2.25) is modied through a feedforward term g(t) to be determined:

λ(t) = P(t)x(t) -g(t)
(5.15) Using (5.15) the terminal conditions (5.14) can be written as:

P(t f )x(t f ) -g(t f ) = C T S (Cx(t f ) -r(t f )) (5.16) 
Which implies by identication:

P(t f ) = C T SC g(t f ) = C T Sr(t f ) (5.17) 
Furthermore from (5.12) and (5.15) the control law reads:

u(t) = -R -1 B T λ(t) = -R -1 B T P(t)x(t) -g(t) = -R -1 B T P(t) x(t) + R -1 B T g(t)
(5.18)

From the preceding equation it is clear that the optimal control is the sum of two components:

a state-feedback component: -K(t) x(t) where K(t) = R -1 B T P(t); -and a feedforward component:

v(t) := R -1 B T g(t)
In addition, dierentiating (5.15) yields:

λ(t) = Ṗ(t)x(t) + P(t) ẋ(t) -ġ(t) (5.19) 
Using (5.13) we get:

-A T λ(t) -C T QC x(t) + C T Q r(t) = Ṗ(t)x(t) + P(t) (Ax(t) + Bu(t)) -ġ(t) (5.20)
Using (5.8), (5.15) and (5.18) to express u(t) as a function of x(t) and g(t) we nally get:

Ṗ(t) + A T P(t) + P(t)A -P(t)BR -1 B T P(t) + C T QC x(t) -ġ(t) -A T -P(t)BR -1 B T g(t) -C T Q r(t) = 0 (5.21)
The solution of (5.21) can be obtained by solving the preceding dierential equation with nal conditions (5.17) as two separate problems

-Ṗ(t) = A T P(t) + P(t)A -P(t)BR -1 B T P(t) + C T QC P(t f ) = C T SC (5.22) 
and:

   -ġ(t) = A T -P(t)BR -1 B T g(t) + C T Q r(t) := (A -BK(t)) T g(t) + C T Q r(t) g(t f ) = C T Sr(t f ) (5.23)
Thus the implementation of the tracker (5.18) in real-time involves a standard optimal feedback regulator and a feedforward controller:

-The feedback regulator term requires the backward-in-time solution of the dierential Riccati equation (5.22). This dierential Riccati equation is independent of the reference signal r(t) and its solution has been studied in section 2.5.

-For particular applications where the reference signal r(t) is known a priori, the feedforward term g(t) can also be computed o-line by integrating, backwards in time, the dierential equation (5.23). Backward integration is achieved when the time is reversed, that is by setting τ = t f -t (thus the minus signs to the left of equality (5.23) is omitted). Then the initial value of the feedforward term g(0) is known and during the actual control run g(0) can be used to solve a forward dierential equation instead 1 .

Innite horizon Linear Quadratic Tracker

General result

When innite horizon is considered, the performance index (5.9) is changed as follows where the tracking error e(t) is dened in (5.10):

J(u(t)) = 1 2 ∞ 0 e T (t)Qe(t) + u T (t)Ru(t) dt (5.24) 
Assuming that (A, B) is detectable and (A, √ Q C) is detectable, there exists a unique steady-state solution of equations (5.22) obtained through the corresponding algebraic Riccati equation. Assuming that we want to achieve a perfect tracking of r(t), control law (5.18) can be written as:

u(t) = -R -1 B T Px(t) + R -1 B T g(t)
(5.25)

Matrix P is the positive denite solution of the following algebraic Riccati equation which is derived from (5.22) by setting Ṗ = 0:

Ṗ = 0 ⇒ 0 = A T P + PA -PBR -1 B T P + C T QC (5.26)
On the other hand, feedforward term g(t) is derived from (5.23):

ġ(t) = -(A -BK) T g(t) -C T Q r(t) lim t f →∞ g(t f ) = C T Sr(t f ) (5.27) 
However, it is worth noticing that all the eigenvalues of state matrix -(A -BK) T are situated in the right half plane (thus unstable) because gain K is such that all the eigenvalues of (A -BK) are stable. Thus feedforward term g(t) is not bounded in general. Nevertheless the innite horizon tracker can be approximated over a nite control interval [0, t f ] by using the steady-state gain K and the auxiliary function g(t) where t f is large enough.

Asymptotically stable linear reference model

We will assume hereafter that the reference signal r(t) is given as the output of the following asymptotically stable linear reference model where A r is known and has all its eigenvalues in the left-half plane:

ṙ(t) = A r r(t) (5.28) 
Then by combining (5.8) and (5.28) the following augmented plant can be build with state-vector x a (t) := x(t) r(t) . We will denote A a , B a and C a the related matrices corresponding to the state-space representation of this augmented system:

x a (t) := x(t) r(t) ⇒            ẋ(t) ṙ(t) = A 0 0 A r x(t) r(t) + B 0 u(t) := A a x a (t) + B a u(t) e(t) = y(t) -r(t) = C -I x a (t) := C a x a (t) (5.29) 
Then minimization of performance index (5.24) is achieved by applying classical results on LQR problems and control u(t) reads as follows 2 :

u(t) = -K a x(t) r(t)
where K a = R -1 B T a P a (5.30)

where P a is the positive denite solution of the following algebraic Riccati equation:

0 = A T a P a + P a A a -P a B a R -1 B T a P a + C T a QC a (5.31)

Constant reference tracking

Finally, let's assume a constant value for r(t), which will be denoted r ss . Then at steady-state (5.8) reads as follows, where x ss denotes the steady-state of x(t):

0 = Ax ss + Bu ss y ss = C x ss (5.32)
If we impose y ss := r ss , the preceding relations read:

y ss := r ss ⇒ 0 r ss = A B C 0 x ss u ss (5.33) 
Assuming that matrix A B C 0 is square and invertible, we get:

x ss u ss = A B C 0 -1 0 r ss := M 11 M 12 M 21 M 22 0 r ss = M 12 M 22 r ss (5.34) 
Then let x(t) the error between the actual state-vector x(t) and its steadystate value x ss and u(t) the error between the actual control u(t) and its steadystate value u ss :

x(t) := x(t) -x ss u(t) := u(t) -u ss (5.35)

Then using (5.35) the dynamics of x(t) reads:

˙ x(t) = ẋ(t) = Ax(t) + Bu(t) = A ( x(t) + x ss ) + B ( u(t) + u ss ) (5.36)
It is clear from (5.33) that Ax ss + Bu ss = 0. We nally get:

Ax ss + Bu ss = 0 ⇒ ˙ x(t) = A x(t) + B u(t) (5.37) 
In addition, the tracking error dened in (5.10) becomes:

e(t) := y(t) -r ss = C x(t) -C x ss = C x(t) (5.38) 
Then we consider the minimization of following performance index :

J( u(t)) = 1 2 ∞ 0 e T (t)Qe(t) + u T (t)R u(t) dt (5.39) 
The minimization of J( u(t)) is achieved by applying classical results on LQR problems and control u(t) reads as follows:

u(t) = -K x(t) where K = R -1 B T P (5.40)
Matrix P is the positive denite solution of the following algebraic Riccati equation:

0 = A T P + PA -PBR -1 B T P + C T QC (5.41)
The actual control is nally obtained thanks to (5.35):

u(t) = u(t) + u ss = -K x(t) + u ss = -K (x(t) -x ss ) + u ss (5.42) 
That is, using (5.34): 

u(t) = -K x(t) + K x ss + u ss = -K x(t) + K I x ss u ss = -K x(t) + K I A B C 0 -1 0 r ss = -K x(t) + (K M 12 + M 22 ) r ss = -K x(t) + F

Integral augmentation

An alternative to make the steady-state error exactly equal to zero in response to a step for the commanded value r(t) = y c is to replace the feedforward gain F by an integrator which will cancel the steady-state error whatever the input step (the system's type is augmented to be of type 1). The advantage of adding an integrator is that it eliminates the need to determine the feedforward gain F which could be dicult because of the uncertainty in the model. By augmenting the system with the integral error the LQR routine will choose the value of the integral gain automatically.

The integrator is denoted T/s , where T ̸ = 0 is a constant which may be used to increase the response of the closed-loop system. Let x i be the additional component of the state-vector which is proportional to the integral of the error e(t) = r(t) -y(t). Adding an integrator augments the system's dynamics as follows:

   ẋ(t) = Ax(t) + Bu(t) y(t) = C x(t) ẋi (t) = Te(t) = T r(t) -y(t) = Tr(t) -TC x(t) ⇔        d dt x(t) x i (t) = A 0 -TC 0 x(t) x i (t) + B 0 u(t) + 0 T r(t) y(t) = C 0 x(t) x i (t) (5.44) 
Then, the suboptimal control is found by solving the LQR regulation problem where r = 0:

-The augmented state space model reads:

d dt x(t) x i (t) = ẋa (t) = A a x a (t) + B a u(t)
where

       A a = A 0 -TC 0 B a = B 0 (5.45) 
-The performance index J(u(t)) to be minimized is the following:

J(u(t)) = 1 2 ∞ 0 x T a (t)Q a x a (t) + u T (t)Ru(t) dt (5.46) 
Where, denoting by N a a design matrix, matrix Q a is dened as follows:

Q a = N T a N a (5.47) 
Note that design matrix N a shall be chosen such pair (A a , N a ) is detectable.

Assuming that pair (A a , B a ) is stabilizable and pair (A a , N a ) is detectable the algebraic Riccati equation can be solved. This leads to the following expression of the control u(t) (here feedforward gain F no more exists):

u(t) = -K a x a (t) = -R -1 B T a P x a (t) = -R -1 B T 0 P 11 P 12 P 21 P 22 x(t) x i (t) = -R -1 B T P 11 x(t) -R -1 B T P 12 x i (t) := -K p x(t) -K i x i (t) (5.48)
Obviously, term K p = R -1 B T P 11 represents the proportional gain of the controller whereas term K i = R -1 B T P 12 represents the integral gain of the controller. The state space equation of closed-loop system is obtained by setting

u(t) = -K a x a (t) = -K p x(t) -K i x i (t) in (5.44):                    d dt x(t) x i (t) = (A a -B a K a ) x a (t) + 0 T r(t) = A -BK p -BK i -TC 0 x(t) x i (t) + 0 T r(t) y(t) = C 0 x(t) x i (t) x i (t) = T t 0 r(τ ) -y(τ ) dτ (5.49)
The corresponding bloc diagram is shown in Figure 5.1 where Φ a (s) = (sI -A a ) -1 .

Proof of the cancellation of the steady-state error through integral augmentation

In order to proof that integrator cancels the steady-state error when r(t) is a step input, let us compute the nal value of the error e(t) using the nal value theorem where s denotes the Laplace variable:

lim t→∞ e(t) = lim s→0 sE(s) (5.50) 
When r(t) is a step input with amplitude one, we have:

r(t) = 1 ∀ t ≥ 0 ⇒ R(s) = 1 s (5.51)
Using the feedback u = -K a x a the dynamics of the closed-loop system is:

ẋa = (A a -B a K a ) x a + 0 T r(t) ⇒ e(t) = T r(t) -y(t) = T r(t) -C 0 x x i = T r(t) -C 0 x a (5.52)
Using the Laplace transform, and denoting by I the identity matrix, we get:

   X a (s) = (sI -A a + B a K a ) -1 0 T R(s) E(s) = T R(s) -C 0 X a (s)
(5.53) Inserting (5.51) in (5.53) we get:

E(s) = T I -C 0 (sI -A a + B a K a ) -1 0 T 1 s (5.54)
Then the nal value theorem (5.50) takes the following expression:

lim t→∞ e(t) = lim s→0 sE(s)

= lim s→0 T I -C 0 (sI -A a + B a K a ) -1 0 T = T I -C 0 (-A a + B a K a ) -1 0 T (5.55)
Let us focus on the inverse of the matrix -A a + B a K a . First we write K a as K a = K p K i , where K p and K i represents respectively the proportional and the integral gains. Then using (5.45) we get:

-A a + B a K a = -A 0 TC 0 + B 0 K p K i = -A + BK p BK i TC 0 (5.56)
Assuming that X is a square invertible matrix, it can be shown that the inverse of the matrix X Y Z 0 is the following:

X Y Z 0 -1 = 0 Y (ZY) -1 Y T YY T -1 W
where XY (ZY) -1 + YW = 0 (5.57) Thus:

(-A a + B a K a ) -1 = -A + BK p BK i TC 0 -1 = 0 BK i (TCBK i ) -1 (BK i ) T BK i (BK i ) T -1 W
(5.58) And: 

(-A a + B a K) -1 0 T = 0 BK i (TCBK i ) -1 * W 0 T = BK i (TCBK i ) -1 T WT ⇒ C 0 (-A a + B a K) -1 0 T = C 0 BK i (TCBK i ) -1 T WT = CBK i (TCBK i ) -1 T (5.59)
lim t→∞ e(t) = T I -C 0 (-A a + B a K a ) -1 0 T = T I -CBK i (TCBK i ) -1 T = T -TCBK i (TCBK i ) -1 T = T -T = 0 (5.60)
As a consequence, the integrator allows to cancel the steady-state error whatever the input step r(t).

Tracking with prelter

Tracking without integral augmentation

We consider Figure 5.2 and the problem to design a control u(t) which minimizes the error e(t) between the output y r (t) of the reference model represented by G r (s) and the actual output y(t) of the plant represented by F(s).

The state space realization of G r (s) and F(s) are assumed to read as follows, where r ss is a constant reference signal and where input matrix B 2 has been introduced to tackle the case where an integrator is inserted in the feedforward path of the loop, as presented in Section 5.5:

       F(s) : ẋ(t) = A 1 x(t) + B 1 u(t) + B 2 r ss y(t) = C 1 x(t) G r (s) : ẋr (t) = A r x r (t) + B r r ss y r (t) = C r x r (t) (5.61)
Assuming that no integrator is inserted in the feedforward path of the loop, matrices A 1 , B 1 and C 1 are related to the state-space representation of the actual plant:

       A 1 := A B 1 := B B 2 := 0 C 1 := C (5.62)
The tracking error e(t) reads: e(t) := y(t) -y r (t) = C 1 x(t) -C r x r (t) (5.63)

In order to solve this problem, we rst compute the steady-state values imposing that at steady-state we shall have y ss = y rss . From (5.61) we get:

   0 = A 1 x ss + B 1 u ss + B 2 r ss 0 = A r x rss + B r r ss y ss = y rss ⇔ C 1 x ss = C r x rss ⇔   -B 2 -B r 0   r ss =   A 1 0 B 1 0 A r 0 C 1 -C r 0     x ss x rss u ss   (5.64)
Let matrix M be dened as follows:

M :=   A 1 0 B 1 0 A r 0 C 1 -C r 0   (5.65)
Assuming that matrix M is invertible, we get:

  x ss x rss u ss   = M -1   -B 2 -B r 0   r ss (5.66) 
Let:

M -1   -B 2 -B r 0   :=   M 1 M 2 M 3   (5.67) Thus:   x ss x rss u ss   =   M 1 M 2 M 3   r ss (5.68) 
Note that if matrix M is not invertible, its pseudo inverse (MoorePenrose inverse) M + can be used instead of its inverse M -1 . We recall that M + is a generalization of the inverse of a matrix and is such that MM + M = M and

M + MM + = M + .
It can be computed by using the singular value decomposition (SVD) of M: If M = UΣV * is the singular value decomposition (SVD) of M, then M + = VΣ + U * .

Then let x(t) the error between the actual state-vector x(t) and its steadystate value x ss , x r (t) the error between the reference model state-vector x r (t) and its steady-state value x rss and u(t) the error between the actual control u(t) and its steady-state value u ss :    x(t) := x(t) -x ss x r (t) := x r (t) -x rss u(t) := u(t) -u ss (5.69) Using (5.69) the dynamics of x(t) reads:

˙ x(t) = ẋ(t) = A 1 x(t) + B 1 u(t) + B 2 r ss = A 1 ( x(t) + x ss ) + B 1 ( u(t) + u ss ) + B 2 r ss = A 1 x(t) + B 1 u(t) + A 1 x ss + B 1 u ss + B 2 r ss (5.70) Similarly: ˙ x r (t) = ẋr (t) = A r x r (t) + B r r ss = A r x r (t) + x rss + B r r ss = A r x r (t) + A r x rss + B r r ss (5.71)
It is clear from (5.64) that A 1 x ss +B 1 u ss +B 2 r ss = 0 and A r x rss +B r r ss = 0. We nally get the following state space equation:

˙ x(t) ˙ x r (t) = A 1 0 0 A r x(t) x r (t) + B 1 0 u(t) := A a x(t) x r (t) + B a u(t)
(5.72)

In addition, the tracking error dened in (5.63) becomes:

e(t) := y(t) -y r (t) = C 1 x(t) -C r x r (t) = C 1 ( x(t) + x ss ) -C r x r (t) + x rss = C 1 x(t) -C r x r (t) + C 1 x ss -C r x rss (5.73) 
Using the last equation of (5.64), we nally get the following output equation:

C 1 x ss = C r x rss ⇒ e(t) = C 1 x(t) -C r x r (t) = C 1 -C r x(t) x r (t) := C a x(t)
x r (t)

(5.74)

Then we consider the minimization of following performance index :

J( u(t)) = 1 2 ∞ 0 e T (t)Qe(t) + u T (t)R u(t) dt (5.75)
The minimization of J( u(t)) is achieved by applying classical results on LQR problems and control u(t) reads as follows:

u(t) = -K a x(t) x r (t)
where K a = R -1 B T a P (5.76)

Matrix P is the positive denite solution of the following algebraic Riccati equation: The actual control u(t) is nally obtained thanks to (5.69):

0 = A T a P + PA a -PB a R -1 B T a P + C T a QC a (5.77)
u(t) = u(t) + u ss = -K a x(t) x r (t) + u ss = -K a x(t) x r (t) + K a x ss x rss + u ss (5.78)
That is, when splitting K a as K a := K x K r and using (5.68):

u(t) = -K a x(t) x r (t) + K a M 1 M 2 r ss + M 3 r ss := -K x K r x(t) x r (t) + D pf r ss := -K x x(t) + y pf (t) (5.79) 
where:

   y pf (t) = -K r x r (t) + D pf r ss D pf := K a M 1 M 2 + M 3 (5.80)
Consequently the actual optimal control u(t) is the sum of two components:

a state-feedback component: -K x x(t);

and a feedforward component y pf (t) with is obtained as the output of the a prelter C pf (s) with the following realization:

C pf (s) : ẋr (t) = A r x r (t) + B r r ss y pf (t) = -K r x r (t) + D pf r ss (5.81)
This is illustrated in Figure 5.3.

Tracking with integral augmentation

Assuming that an integrator is inserted in the feedforward path of the loop, as presented in Section 5.5, the state vector x(t) of the plant has to be extended by adding a new component x i (t) in the state vector:

x(t) → x(t) x i (t)
where ẋi (t) = Te(t) = T r(t) -y(t) (5.82)

Then using (5.44) matrices A 1 , B 1 and C 1 in (5.61) read as follows:

                   A 1 := A 0 -TC 0 B 1 := B 0 B 2 := 0 T C 1 := C 0 (5.83)
Nevertheless the algebraic Riccati equation (5.77) is not solvable because pair (A a , C a ) is no more observable. In order to tackle this point, weighting matrix C a := C 1 -C r = C 0 -C r has to be changed, for example as follows:

C a := [ C I 0 becomes I -C r ] (5.84)
Finally steady-state value of the integral term x i (t) is x iss = 0. Consequently, tracking with integral augmentation will not the change steady-state values and (5.68) is still valid (meaning that B 2 is assumed to be zero to compute steady-state values). This implies that the expression of the structure of the prelter remains unchanged. Finally (5.80) now reads as follows where matrix 0 has been added after M 1 in the expression of D pf to take into account the presence of integral term in the state vector of the augmented plant:

       y pf (t) = -K r x r (t) + D pf r ss D pf := K a   M 1 0 M 2   + M 3
(5.85)

Chapter 6

Linear Quadratic Gaussian (LQG) regulator

Introduction

The design of the Linear Quadratic Regulator (LQR) assumes that the whole state is available for control and that there is no noise. Those assumptions may appear unrealistic in practical applications. We will assume in this chapter that the process to be controlled is described by the following linear time invariant model where w(t) and v(t) are random processes which represents the process noise and the measurement noise, respectively:

ẋ(t) = Ax(t) + Bu(t) + w(t) y(t) = Cx(t) + v(t) (6.1)
The preceding relation can be equivalently represented by the block diagram in Figure 6.1.

Linear Quadratic Gaussian (LQG) control deals with the design of a regulator which minimizes a quadratic cost using the available output and taking into account the noise into the process and the available output for control. More precisely the LQG control problem is to nd the optimal control u(t) which minimizes the following performance index J(u(t)) where E() is the Figure 6.1: Open-loop linear system with process and measurement noises mathematical expectation, Q = Q T ≥ 0 and R = R T > 0:

J(u(t)) = E lim t f →∞ 1 2 t f t f 0 x T (t)Qx(t) + u T (t)Ru(t) dt (6.2)
As far as only the output y(t) is now available for control (not the full state x(t)), the separation principle will be used to design the LQG regulator. Indeed, the solution of the LQG problem can be split into two steps:

-First an estimator will be used to estimate the full state using the available output y(t)

-Then an LQ controller will be designed using the state estimation in place of the true (but unknown) state x(t)

Luenberger observer

Consider a process with the following state space model where y(t) denotes the measured output and u(t) the control input:

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) (6.3) 
We assume that x(t) cannot be measured and the goal of the observer is to estimate x(t) based on y(t). Luenberger observer (1964) provides an estimation of the state vector through the following dierential equation where matrices F, J and L have to be determined:

d dt x(t) = F x(t) + Ju(t) + Ly(t) (6.4) 
The estimation error e(t) is dened as follows:

e(t) = x(t) -x(t) (6.5) 
Thus using (6.3) and (6.4) its time derivative reads:

ė(t) = ẋ(t) -˙ x(t) = Ax(t) + Bu(t) -F x(t) + Ju(t) + Ly(t) (6.6) 
Using (6.5) and the output equation y(t) = Cx(t) the preceding relation can be rewritten as follows:

ė(t) = Ax(t) + Bu(t) -F (x(t) -e(t)) -Ju(t) -LCx(t) = Fe(t) + (A -F -LC) x(t) + (B -J) u(t) (6.7)
As soon as the purpose of the observer is to move the estimation error e(t)

towards zero independently of control u(t) and true state vector x(t) we choose matrices F and J as follows: Where matrix L shall be chosen such that all the eigenvalues of A -LC are situated in the left half plane. Furthermore the Luenberger observer (6.4) can now be written as follows using (6.8):

J = B F = A -LC (6.8)
˙ x(t) = (A -LC) x(t) + Bu(t) + Ly(t) = A x(t) + Bu(t) + L y(t) -C x(t) (6.10) 
Figure 6.2 shows the structure of the Luenberger observer.

6.3 White noise through Linear Time Invariant (LTI) system

Assumptions and denitions

Let's consider the following linear time invariant system which is fed by a random process w(t) of dimension n (which is also the dimension of the state vector x(t)):

ẋ(t) = Ax(t) + Bw(t) y(t) = Cx(t) (6.11)
The mean of w(t) will be denoted E [w(t)] and its autocorrelation function R w (τ ) will be denoted E w(t)w T (t + τ ) where E designates the expectation operator. We said that w(t) is a wide-sense stationary (WSS) random process when the two following properties hold:

-The mean m w (t) := E [w(t)] of w(t) is independent of t, that is constant; -The autocorrelation function R w (t, t + τ ) just depends on the time dierence τ = (t + τ ) -t: R w (t, t + τ ) = E (w(t) -m w (t)) (w(t + τ ) -m w (t + τ )) T := R w (τ ) (6.12)

We will assume that w(t) is a white noise (which is a special case of a widesense stationary (WSS) random process) with zero mean Gaussian probability density function (pdf) p(w). The covariance matrix of the Gaussian probability density function p(w) will be denoted P w and the Dirac delta function will be denoted δ(τ ):

     p(w) = 1 (2π) n/2 √ det(Pw) e -1 2 w T P -1 w w E [w(t)] = m w (t) = 0 R w (τ ) = E w(t)w T (t + τ ) = P w δ(τ )
where P w = P T w > 0 (6.13)

Because w(t) is a stochastic process, the dierential equation ẋ(t) = Ax(t)+ Bw(t) is called a stochastic dierential equation. Moreover this particular type of stochastic dierential equation where w(t) comes from the derivative of a Wiener process is called Langevin equation and can be written more elegantly as the following Ornstein-Uhlenbeck process where w(t) is a vector of Wiener process, also called Brownian motion:

dx(t) = Ax(t) dt + B dw(t) (6.14)

Mean and covariance matrix of the state vector

As far as w(t) is a random process it is clear from (6.11) that the state vector x(t) and the output vector y(t) are also a random processes. When expending the expression of the state vector obtained for deterministic signals we get:

x(t) = e At x 0 + t 0 e A(t-τ ) B w(τ ) dτ (6.15)

Let m x (0) = E [x 0 ] be the mean of the initial value x 0 of the state vector x(t) and P x (0) the covariance matrix of the initial value x 0 of the state vector. Then it can be shown that x(t) is a Gaussian random process with:

-Mean m x (t) given by:

m x (t) = E [x(t)] = e At m x (0) (6.16)
Assuming that m x (0) = 0 we get zero for the mean value of x(t):: m x (0) = 0 ⇒ m x (t) = 0 (6.17) -Covariance matrix P x (t) which is dened as follows:

P x (t) = E (x(t) -m x (t)) (x(t) -m x (t)) T (6.18)
Assuming that m x (0) = 0 we get:

m x (0) = 0 ⇒ P x (t) = E x(t) x(t) T (6.19)
Finally, assuming that m x (0) = 0 and the input random process w(t) is a zero mean white noise with autocorrelation function R w (τ ) = P w δ(τ ) and is uncorrelated with the initial value x 0 of the state vector, that is E x 0 w T (τ ) = 0, then matrix P x (t) reads as follows:

P x (t) = E x(t) x(t) T = E e At x 0 + t 0 e A(t-τ ) B w(τ ) dτ e At x 0 + t 0 e A(t-τ ) B w(τ ) dτ T = e At P x (0)e A T t + E t 0 e A(t-τ 1 ) B w(τ 1 ) dτ 1 t 0 e A(t-τ 2 ) B w(τ 2 ) dτ 2 T = e At P x (0)e A T t + t 0 t 0 e A(t-τ ) B E w(τ )w T (τ 1 )
B T e A T (t-τ 1 ) dτ dτ 1 = e At P x (0)e A T t + t 0 t 0 e A(t-τ ) B P w δ(τ 1 -τ ) B T e A T (t-τ 1 ) dτ dτ 1 (6.20)

Using the fact that t 0 g(τ 1 ) δ(τ 1 -τ ) dτ 1 = g(τ ), we nally obtain:

P x (t) = e At P x (0)e A T t + t 0 e A(t-τ ) BP w B T e A T (t-τ ) dτ (6.21)
Because the evaluation of the preceding integral is dicult, we take the derivative of P x (t) to get the following Lyapunov matrix dierential equation where P x (t) = P T x (t) ≥ 0:

Ṗx (t) = AP x (t) + P x (t)A T + BP w B T (6.22)
Assuming that the system is stable (i.e. all the eigenvalues of the state matrix

A have negative real part) the random process x(t) will become stationary after a certain amount of time: its mean m x (t) will be zero whereas the value of its covariance matrix P x (t) turns to be a constant matrix P x = P T x ≥ 0 ∀ t which solves the following matrix algebraic Lyapunov equation:

AP x + P x A T + BP w B T = 0 (6.23)
Thus after a certain amount of time the state vector x(t) as well as the output vector y(t) are wide-sense stationary (WSS) random processes.

Autocorrelation function of the stationary output vector

As in the previous section, we will assume in the following that m x (0) = 0. Let R x (τ ) be the autocorrelation function of the stationary state vector x(t): R x (τ ) = E x(t) x(t + τ ) T (6.24)

The autocorrelation function R y (τ ) (which may be a matrix for vector signal) of the output vector y(t) = C x(t) is dened as follows: R y (τ ) = E y(t) y(t + τ ) T = CR x (τ )C T (6.25)

It is clear from the denition of the autocorrelation function R y (τ ) that the stationary value of the covariance matrix P y of y(t) is equal to the value of the autocorrelation function R y (τ ) at τ = 0:

P y = E y(t) y(t) T = CP x C T = R y (τ )| τ =0 (6.26)
The power spectral density (psd) S y (f ) of a stationary process y(t) is given by the Fourier transform of its autocorrelation function R y (τ ):

S y (f ) = +∞ -∞ R y (τ )e -j2πf τ dτ (6.27)
Then we will see in Section 6.3.4 that the following result holds:

S y (f ) = F(-s) P w F T (s) s=j2πf (6.28)
where F(s) is the transfer function of the linear system, which is assumed to be stable:

F(s) = C (sI -A) -1 B (6.29)
Relation (6.28) indicates that the power spectral density (psd) S y (f ) of y(t) can be obtained thanks to the transfer function F(s) of the stable linear system and the spectral density matrix P w of the exciting white noise w(t).

Let S y (s) be the (one-sided) Laplace transform of the autocorrelation function R y (τ ):

S y (s) = L [R y (τ )] = +∞ 0 R y (τ )e -sτ dτ (6.30)
It can be seen that the power spectral density (psd) S y (f ) of y(t) can be obtained thanks to the (one-sided) Laplace transform S y (s) of R y (τ ) as:

S y (f ) = S y (-s)| s=j2πf + S y (s)| s=j2πf (6.31)
Indeed we can write: Finally using the initial value theorem on the (one-sided) Laplace transform S y (s) we get the following result:

S y (f ) = +∞ -∞ R y (τ )e -j2πf τ dτ = 0 -∞ R y (τ )e -j2πf τ dτ + +∞ 0 R y (τ )e -j2πf τ dτ = 0 -∞ R y (τ )e -sτ dτ
P y = R y (τ )| τ =0 = lim s→∞ s S y (s) (6.37)
Example 6.1. Let F(s) be a rst order system with time constant a and let w(t) be a white noise with covariance P w :

F(s) = 1 1+as
R w (τ ) = E w(t)w T (t + τ ) = P w δ(τ ) where P w = P T w > 0 (6.38)

One realization of transfer function F(s) is the following:

ẋ(t) = -1 a x(t) + w(t) y(t) = 1 a x(t) (6.39) 
That is:

ẋ(t) = Ax(t) + Bw(t) y(t) = Cx(t) (6.40) 
Where:

   A = -1 a B = 1 C = 1 a ⇒ F(s) = C(sI -A) -1 B (6.41)
As far as a > 0 the system is stable. The covariance matrix P x (t) is dened as follows:

P x (t) = E (x(t) -m x (t)) (x(t) -m x (t)) T (6.42)
Where matrix P x (t) is the solution of the following Lyapunov dierential equation:

Ṗx (t) = AP x (t) + P x (t)A T + BP w B T = - 2 a P x (t) + P w (6.43)
We get:

P x (t) = a 2 P w + P x (0) - a 2 P w e -2t a (6.44)
The stationary value P x of the covariance matrix P x (t) of the state vector x(t) is obtained as t → ∞:

P x = lim t→∞ P x (t) = a 2 P w (6.45)
Consequently the stationary value P y of the covariance matrix of the output vector y(t) reads: 6.46) This result can be retrieved thanks to the power spectral density (psd) of the output vector y(t). Indeed let's compute the power spectral density (psd) S y (f ) of the output stationary process y(t) of the system:

P y = CP x C T = 1 a 2 × a 2 P w = P w 2a ( 
S y (f ) = +∞ -∞ R y (τ )e -j2πf τ dτ = F(-s) P w F T (s) s=j2πf (6.47)
We get: The autocorrelation function R y (τ ) is given by the inverse Laplace transform of S y (s):

F(-s) P w F T (s) = Pw (1+as)(1-as) = Pw 1-(as) 2 ⇒ S y (f ) = F(-s) P w F T (s) s=j2πf = Pw 1+(2πf a)
R y (τ ) = L -1 [S y (s)] = L -1 P w 2a 1 1/a + s = P w 2a e -τ a ∀ τ ≥ 0 (6.51)
As far as R y (τ ) is an even function we get:

R y (τ ) = P w 2a e τ a ∀ τ ≤ 0 (6.52)

Thus the autocorrelation function R y (τ ) for τ ∈ R reads:

R y (τ ) = P w 2a e -|τ | a ∀ τ ∈ R (6.53)
Finally we use the initial value theorem on the (one-sided) Laplace transform S y (s) to get the following result: The autocorrelation function R y (t, t + τ ) of a non-stationary process reads as follows:

P y = R y (τ )| τ =0 = lim
R y (t, t + τ ) = E y(t) y T (t + τ ) = E C x(t) x T (t + τ )C T = C E x(t) x T (t + τ ) C T = C E t 0 e A(t-τ 1 ) B w(τ 1 ) dτ 1 t+τ 0 e A(t+τ -τ 2 ) B w(τ 2 ) dτ 2 T C T = C t 0
t+τ 0 e A(t-τ 1 ) B E w(τ 1 ) w T (τ 2 ) B T e A T (t+τ -τ 2 ) dτ 1 dτ 2 C T (6.55) Using the facts that w(t) is a white noise, that is E w(τ 1 ) w T (τ 2 ) = P w δ(τ 2 -τ 1 ), and that t 0 g(τ 1 ) δ(τ 2 -τ 1 ) dτ 1 = g(τ 2 ), we get: Because t is the upper limit of the integral, the preceding autocorrelation function R y (t, t + τ ) is not stationary. But stationary comes at t → ∞ when the process reaches steady state:

R y (t, t + τ ) = C t 0 t+τ 0 e A(t-τ 1 ) B P w δ(τ 2 -τ 1 ) B T e A T (t+τ -τ 2 ) dτ 1 dτ 2 C T = C t 0 e A(t-τ 2 ) B P w B T e A T (t+τ -τ 2 ) dτ 2 C T (6.56) Let ξ := t -τ 2 ⇒ dξ = -dτ 2 . Then:
lim t→∞ R y (t, t + τ ) = ∞ 0 C e Aξ B P w C e A(ξ+τ ) B T dξ := R y (τ ) (6.59)
Of course (6.59) is valid only if the process has a steady state response, that is if the process is stable.

Then the power spectral density (psd) S y (f ) of y(t) is dened as the Fourier transform of the autocorrelation function R y (τ ). We get from (6.59): Replacing ξ + τ by t in the bracketed integral yields:

S y (f ) = +∞ -∞ R y (τ )e -j2πf τ dτ = +∞ -∞ ∞ 0 C e Aξ B P w C e A(ξ+τ ) B T dξ e -j2πf τ dτ = ∞ 0 C e Aξ B P w +∞ -∞ C e A(ξ+τ ) B T e -j2πf
+∞ -∞ C e A(ξ+τ ) B T e -j2πf τ dτ = +∞ -∞ C e At B T e -j2πf (t-ξ) dt = e j2πf ξ +∞ -∞ C e At B
T e -j2πf t dt = e j2πf ξ F T (j2πf ) (6.61) where F(j2πf ) is dened as follows:

F(j2πf ) = +∞ -∞ C e At B e -j2πf t dt (6.62)
It is worth noticing that the time response of a causal system is zero ∀t < 0.

So we recognize in F(j2πf ) the transfer function of the linear system when s = j2πf . Indeed for a linear and causal system we have:

F(j2πf ) = +∞ -∞ C e At B e -j2πf t dt = +∞ 0 C e At B e -j2πf t dt = +∞ 0 C e At B e -st dt s=j2πf = +∞ 0 C e -(sI-A)t B dt s=j2πf = C (sI -A) -1 B s=j2πf = F(s)| s=j2πf (6.63)
Returning to (6.60), we get from the preceding results:

S y (f ) = ∞ 0 C e Aξ B P w e j2πf ξ F T (j2πf ) dξ = ∞ 0 C e Aξ B e j2πf ξ dξ P w F T (j2πf ) = F(-j2πf ) P w F T (j2πf ) (6.64)
We nally retrieve result (6.28): The Kalman-Bucy lter is a state estimator that is optimal in the sense that it minimizes the covariance of the estimated error e(t) = x(t) -x(t) when the following conditions are met:

S y (f ) = F(-s) P w F T (s) s=j2πf ( 
-Random vectors w(t) and v(t) are zero mean Gaussian noise. Let p(w) and p(v) be the probability density function (pdf) of random processes w(t) and v(t). Then: 

   p(w) = 1 (2π) n/2 √ det(Pw) e -1 2 w T P -1 w w p(v) = 1 (2π) p/2 √ det(Pv) e -1 2 v T P -1 v v ( 
= P T w > 0 E v(t)v T (t + τ ) = P v δ(τ ) where P v = P T v ≥ 0 (6.68)
-The cross correlation between w(t) and v(t) is zero:

E w(t)v T (t + τ ) = 0 E v(t)w T (t + τ ) = 0 (6.69)
The Kalman-Bucy lter is a special form of the Luenberger observer (6.10):

˙ x(t) = A x(t) + Bu(t) + L(t) y(t) -C x(t) (6.70) 
Where the time dependent observer gain L(t), also-called Kalman gain, is given by:

L(t) = Y(t)C T P -1 v (6.71)
where matrix Y(t) is the solution of the following dierential Riccati equation:

Ẏ(t) = AY(t) + Y(t)A T -Y(t)C T P -1 v CY(t) + P w (6.72)
The suboptimal observer gain L = YC T P -1 v is obtained thanks to the positive denite steady state solution Y = Y T > 0 of the following algebraic Riccati equation:

L = YC T P -1 v 0 = AY + YA T -YC T P -1 v CY + P w (6.73)
For discrete time systems, the following discrete time algebraic Riccati equation has be be solved to get the suboptimal observer gain, as shown in section 3.8:

Y + AYC T P v + CYC T -1 CYA T -AYA T -P w = 0 (6.74)
Kalman gain shall be tuned when the covariance matrices P w and P v are not known:

-When measurements y(t) are very noisy the coecients of covariance matrix P v are high and Kalman gain will be quite small; -On the other hand when we do not trust very much the linear time invariant model of the process the coecients of covariance matrix P w are high and Kalman gain will be quite high.

From a practical point of view matrices P w and P v are design parameters which are tuned to achieve the desired properties of the closed-loop.

Moreover, when the Riccati equation (6.72) related to the Kalman-Bucy lter is identied to the Riccati equation related the Linear-Quadratic-Regulator (LQR) we get:

Ẏ(t) = AY(t) + Y(t)A T -Y(t)C T P -1 v CY(t) + P w := A T Y(t) + Y(t)A -Y(t)BR -1 B T Y(t) + Q ⇒        Q := P w ≥ 0 R := P v > 0 B → C T A → A T (6.75)

Sketch of the proof

To get this result let's consider the following estimation error e(t):

e(t) = x(t) -x(t) (6.76) 
Thus using (6.66) and (6.70) its time derivative reads:

ė(t) = ẋ(t) -˙ x(t) = Ax(t) + Bu(t) + w(t) -A x(t) + Bu(t) + L(t) y(t) -C x(t) = Ae(t) + w(t) -L(t) (Cx(t) + v(t) -C x(t)) = (A -L(t)C) e(t) + w(t) -L(t)v(t)
(6.77) Since v(t) and w(t) are zero mean white noise their weighted sum n(t) = w(t) -L(t)v(t) is also a zero mean white noise. We get:

n(t) = w(t) -L(t)v(t) ⇒ ė(t) = (A -L(t)C) e(t) + n(t) (6.78) 
The covariance matrix P n of n(t) reads:

P n = E n(t)n T (t) = E (w(t) -L(t)v(t)) (w(t) -L(t)v(t)) T = P w + L(t)P v L T (t) (6.79) 
Then the covariance matrix Y(t) of e(t) is obtained thanks to (6.22):

Ẏ(t) = (A -L(t)C) Y(t) + Y(t) (A -L(t)C) T + P n = AY(t) + Y(t)A T -L(t)CY(t) -Y(t)C T L(t) T + P n (6.80)
By using the expression (6.79) of the covariance matrix P n of n(t) we get:

Ẏ(t) = AY(t) + Y(t)A T + P w -L(t)CY(t) -Y(t)C T L(t) T + L(t)P v L T (t) (6.81) Under the constraint ẋ(t) = Ax(t) + Bu(t) x(0) = x 0 (6.89)
This leads to solving the following algebraic Riccati equation where Q = Q T ≥ 0 (thus Q is symmetric and positive semi-denite matrix), and R = R T > 0 is a symmetric and positive denite matrix:

0 = A T P + PA -PBR -1 B T P + Q (6.90)
The constant suboptimal Kalman gain K and the suboptimal stabilizing control u(t) are then dened as follows :

u(t) = -Kx(t) K = R -1 B T P (6.91)
Then let's compare the preceding relations with the following relations which are actually those which have been seen in (6.73):

L = YC T P -1 v 0 = YA T + AY -YC T P -1 v CY + P w (6.92)
Then it is clear than the duality principle on Table 6.1 between observer and controller gains apply. In addition using (6.108) and y(t) = Cx(t) + v(t) we get the following expressions for the dynamics of the estimation error e(t) :

Controller Observer

A A T B C T C B T K L T P = P T ≥ 0 Y = Y T ≥ 0 Q = Q T ≥ 0 P w = P T w ≥ 0 R = R T > 0 P v = P T v > 0 A -BK A T -C T L T
ė(t) = ẋ(t) -˙ x(t) = Ax(t) + Bu(t) + w(t) -A x(t) + Bu(t) + L y(t) -C x(t) = (A -LC) e(t) + w(t) -Lv(t)
(6.95) Thus the closed-loop dynamics is dened as follows:

ẋ(t) ė(t) = A -BK BK 0 A -LC x(t) e(t) + w(t) w(t) -Lv(t) (6.96)
From equations (6.96) it is clear that the 2n eigenvalues of the closed-loop are just the union between the n eigenvalues of the state-feedback coming from the spectrum of A -BK and the n eigenvalues of the state estimator coming from the spectrum of A -LC . This result is called the separation principle. More precisely the separation principle states that the optimal control law is achieved by adopting the following two steps procedure:

-First assume an exact measurement of the full state to solve the deterministic Linear Quadratic (LQ) control problem which minimizes the following cost functional J(u(t)):

J(u(t)) = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t)dt (6.97) 
This leads to the following stabilizing control u(t) :

u(t) = -Kx(t) (6.98)
Where the Kalman gain K = R -1 B T P is obtained thanks to the positive semi-denite solution P of the following algebraic Riccati equation:

0 = A T P + PA -PBR -1 B T P + Q (6.99)
-Then obtain an optimal estimate of the state which minimizes the following estimated error covariance:

E e T (t)e(t) = E (x(t) -x(t)) T (x(t) -x(t)) (6.100)
This leads to the Kalman-Bucy lter:

d dt x(t) = A x(t) + Bu(t) + L y(t) -C x(t) (6.101)
And the stabilizing control u(t) now reads:

u(t) = -K x(t) (6.102)
The observer gain L reads:

L = YC T P -1 v (6.103)
where matrix Y = Y T > 0 is the positive denite solution of the following algebraic Riccati equation

0 = AY + YA T -YC T P -1 v CY + P w (6.104)
It is worth noticing that the optimal state estimate is independent of Q and R. Moreover the observer dynamics much be faster than the desired state-feedback dynamics.

Furthermore the dynamics of the state vector x(t) is slightly modied when compared with an actual state-feedback control u(t) = -Kx(t). Indeed we have seen in ( 6.94) that the dynamics of the state vector x(t) is now modied and depends on e(t) and w(t): Then the dynamics of the closed-loop system is given by:

ẋ(t) = (A -BK) x(t
u(t) = -Kx(t) ⇒ ẋ(t) = (A -BK) x(t) + w(t) (6.107)
If the full state vector x(t) is assumed not to be available the control u(t) = -Kx(t) cannot be computed. Then an observer has to be added. We recall the dynamics of the observer (see (6.10)):

˙ x(t) = A x(t) + Bu(t) + L y(t) -C x(t) (6.108)
and the control u(t) = -Kx(t) has to be changed into:

u(t) = -K x(t) (6.109) 
Gathering (6.108) and (6.109) leads to the state space representation of the controller: ˙ x(t) u(t)

A K B K C K D K x(t) y(t) (6.

110)

Where:

A K B K C K D K = A -BK -LC L -K 0 (6.111)
The controller transfer function K(s) is the relation between the Laplace transform of its output, U (s), and the Laplace transform of its input, Y (s). By 

s X(s) = A X(s) + BU (s) + L Y (s) -C X(s) U (s) = -K X(s) (6.112)
We nally get:

U (s) = -K(s)Y (s) (6.113)
where the controller transfer function K(s) reads:

K(s) = K (sI -A + BK + LC) -1 L (6.114)
The preceding relation can be equivalently represented in the time domain or the frequency domain by the block diagram shown in Figure 6.3 where: Φ(s) := (sI -A) -1 (6.115) 

       ẋ1 (t) ẋ2 (t) = 1 1 0 1 x 1 (t) x 2 (t) + 0 1 u(t) + 1 1 w(t) y(t) = 1 0 x 1 (t) x 2 (t) + v(t) (6.116)
where w(t) and v(t) are Gaussian white noise with covariance matrices P w and P v , respectively:

       P w = σ 1 1 1 1 σ > 0 P v = 1 (6.117)
Let J(u(t)) be the following cost functional to be minimized : 6.118) where:

J(u(t)) = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t)dt ( 
       Q = q 1 1 1 1 q > 0 R = 1 (6.119)
Applying the separation principle the optimal control law is achieved by adopting the following two steps procedure:

-First assume an exact measurement of the full state to solve the deterministic Linear Quadratic (LQ) control problem which minimizes the following cost functional J(u(t)): 6.120) This leads to the following stabilizing control u(t) :

J(u(t)) = 1 2 ∞ 0 x T (t)Qx(t) + u T (t)Ru(t)dt ( 
u(t) = -Kx(t) (6.121)
Where the Kalman gain K = R -1 B T P is obtained thanks to the positive semi-denite solution P of the following algebraic Riccati equation:

0 = A T P + PA -PBR -1 B T P + Q (6.122)
We get:

P = * * α α (6.123)
And:

K = R -1 B T P = α 1 1 where α = 2 + 4 + q > 0 (6.124) 
-Then obtain an optimal estimate of the state which minimizes the following estimated error covariance : E e T (t)e(t) = E (x(t) -x(t)) T (x(t) -x(t)) (6.125)

This leads to the Kalman-Bucy lter:

d dt x(t) = A x(t) + Bu(t) + L(t) y(t) -C x(t) (6.126) 
And the stabilizing control u(t) now reads:

u(t) = -K x(t) (6.127) 
The observer gain L = YC T P -1 v is obtained thanks to the positive semidenite solution Y of the following algebraic Riccati equation:

0 = AY + YA T -YC T P -1 v CY + P w (6.128)
We get:

Y = β * β * (6.129)
And:

L = YC T P -1 v = β 1 1 where β = 2 + √ 4 + σ > 0 (6.130)
Now assume that the input matrix of the plant is multiplied by a scalar gain ∆ (nominally unit) :

ẋ(t) = Ax(t) + ∆Bu(t) + 1 1 w(t) (6.131)
In order to assess the stability of the closed-loop system we will assume no exogenous disturbance v(t) and w(t). Then the dynamics of the closed-loop system reads:

ẋ(t) ˙ x(t) = A cl x(t) x(t) (6.132)
where, using (6.108) and (6.131):

A cl = A -∆BK LC A -BK -LC =     1 1 0 0 0 1 -∆α -∆α β 0 1 -β 1 β 0 -α -β 1 -α     (6.133)
The characteristic equation of the closed-loop system is:

det (sI -A cl ) = s 4 + p 3 s 3 + p 2 s 2 + p 1 s + p 0 = 0 (6.134)
The evaluation of coecients p 3 , p 2 , p 1 and p 0 is quite tedious. Nevertheless coecient p 0 reads;

p 0 = 1 + (1 -∆)αβ (6.135)
The closed-loop system is unstable if:

p 0 < 0 ⇔ ∆ > 1 + 1 αβ (6.136)
With large values of α and β even a slight increase in the value of ∆ from its nominal value will render the closed-loop system to be unstable. Thus the phase margin of the LQG control-loop can be almost 0. This example clearly shows that the robustness of the LQG control-loop to modeling uncertainty is not guaranteed.

Closed-loop eigenvalues and eigenvectors

Let λ be a closed-loop eigenvalue and v the corresponding eigenvector of the LQ state-feedback:

(λI -(A -BK)) v = 0 where K = R -1 B T P ⇔ λv -Av + BR -1 B T Pv = 0 (6.137)
Thus we can equivalently write:

λI -A BR -1 B T v Pv = 0 (6.138)
Furthermore we have seen that matrix P is the positive semi-denite solution of the following algebraic Riccati equation:

A T P + PA -PBR -1 B T P + Q = 0 (6.139)
Thus, multiplying this equality by eigenvector -v, and adding and subtracting λPv, we get:

-A T P -PA + PBR -1 B T P -Q v + λPv -λPv = 0 ⇔ P λI -A + BR -1 B T P v -Q + λP + A T P v = 0 (6.140)
Inserting (6.137) within (6.140) yields:

λI -A + BR -1 B T P v = 0 ⇒ Q + λP + A T P v = 0 ⇔ Q λI + A T v Pv = 0 (6.141)
Finally, (6.138) and (6.141) together read:

λI -A BR -1 B T Q λI + A T v Pv = 0 ⇔ λI - A -BR -1 B T -Q -A T v Pv = 0 (6.142)
The preceding relation indicates the equivalence between any closed-loop eigenvalue λ and the corresponding eigenvector v of the LQ state-feedback correspond and any eigenvalue of the Hamiltonian matrix

H := A -BR -1 B T -Q -A T
and the corresponding eigenvector v Pv where matrix P is the positive semi-denite solution of the algebraic Riccati equation.

Asymptotic behavior of Riccati equation

Now, let W be some unitary matrix (W T W = I) and M be some symmetric positive denite matrix (M = M T > 0) such that R = ϵ 2 M. Then if the transfer function CΦ(s)B is right invertible with no unstable zeros the following relation holds:

   R = ϵ 2 M Q = C T C K = R -1 B T P ⇒ lim ϵ→0 K = 1 ϵ M -0.5 WC = R -0.5 WC (6.143)
Indeed, the algebraic Riccati equation becomes in that case:

R = ϵ 2 M = ϵM 0.5 T ϵM 0.5 Q = C T C = C T W T WC = (WC) T (WC) ⇒ 0 = A T P + PA -PBR -1 B T P + Q = A T P + PA -PB M -1 ϵ 2 B T P + (WC) T (WC) = A T P + PA -M -0.5 ϵ B T P T M -0.5 ϵ B T P + (WC) T (WC) (6.144)
If the transfer function CΦ(s)B is right invertible with no unstable zeros then P → 0 as ϵ → 0 and the preceding equation reads as follows, where A T P + PA has been neglected:

0 ≈ ϵ→0 -M -0.5 ϵ B T P T M -0.5 ϵ B T P + (WC) T (WC) ⇒ M -0.5 ϵ B T P ≈ ϵ→0 WC (6.145)
We nally get, using the fact that R = ϵ 2 M: Let ρ be a parameter design of either design matrix Q or matrix P w and F(s) the transfer function of the plant:

K = R -1 B T P = 1 ϵ M -0.5 M -0.5 ϵ B T P ≈ ϵ→0 1 ϵ M -0.5 WC = R -0.
F(s) = CΦ(s)B (6.147)
Then two types of Loop Transfer Recovery are possible:

-Input recovery: let ω c be the cut-o frequency (i.e. 0 dB) of the targeted dynamics. The objective is to tune ρ such that:

lim ρ→∞ K(s)F(s) s = jω ω < ω c ≈ KΦ(s)B| s = jω ω < ω c (6.148)
The objective of the input recovery design is shown in Figure 6.4. The corresponding objective in the state space domain is the following: The objective of the output recovery design is shown in Figure 6.5 3 . The corresponding objective in the state space domain is the following:

ẋ(t) = Ax(t) + Bu(t) u(t) = -Kx(t) + r(t) (6 
˙ x(t) = A x(t) + L r(t) -y(t) y(t) = C x(t) (6.151) 
We recall that initial design matrices Q 0 and R 0 are set to meet control requirements whereas initial design matrices P w0 and P v0 are set to meet observer requirements. Let ρ be a parameter design of either design matrix P w or matrix Q. Weighting parameter ρ is tuned to make a trade-o between initial performances and stability margins and is set according to the type of Loop Transfer Recovery:

-Input recovery: a new observer design with the following design matrices: 

P w = P w0 + ρ 2 BB T P v = P v0 ( 
Q = Q 0 + ρ 2 C T C R = R 0 (6.153)
The preceding relation is simply obtained by applying the duality principle.

From a practical point of view, design parameter ρ is increased until satisfactory robust properties of the loop transfer function are achieved. It is worth noticing that to apply Loop Transfer Recovery (LTR) the transfer function CΦ(s)B shall be minimum phase (i.e. no zero with positive real part) and square (meaning that the system has the same number of inputs and outputs). Example 6.2. Let's the double integrator plant:

           A = 0 1 0 0 B = 0 1 C = 1 0 (6.154) Let:    K = k 1 k 2 L = l 1 l 2 (6.155)
Then the controller transfer function is given by (6.114):

K(s) = K (sI -A + BK + LC) -1 L = k 1 k 2 s + l 1 -1 k 1 + l 2 s + k 2 -1 l 1 l 2 = (k 1 l 1 +k 2 l 2 )s+k 1 l 2 s 2 +(k 2 +l 1 )s+k 2 l 1 +k 1 +l 2 (6.156)
From (6.153) we set Q and R as follows:

   Q 0 := 0 Q = Q 0 + ρ 2 C T C R = R 0 := 1 ⇒ Q = ρ 2 C T C = ρ 2 0 0 0 (6.157)
The Kalman gain K = R -1 B T P is then obtained thanks to the positive semi-denite solution P of the following algebraic Riccati equation:

0 = A T P + PA -PBR -1 B T P + Q ⇒ P = * * ρ √ 2ρ ⇒ K = R -1 B T P = ρ √ 2ρ := k 1 k 2 (6.158)
Consequently:

lim ρ→∞ K(s) = lim ρ→∞ (k 1 l 1 +k 2 l 2 )s+k 1 l 2 s 2 +(k 2 +l 1 )s+k 2 l 1 +k 1 +l 2 = lim ρ→∞ (ρl 1 + √ 2ρl 2 )s+ρl 2 s 2 +( √ 2ρ+l 1 )s+ √ 2ρl 1 +ρ+l 2 = lim ρ→∞ ρl 1 s+ρl 2 ρ = l 1 s + l 2 (6.159)
The transfer function of the plant reads:

F(s) = CΦ(s)B = C (sI -A) -1 B = 1 s 2 (6.160) 
Therefore: The lecture of Faryar Jabbari, from the Henry Samueli School of Engineering, University of California, is the primary source of this section4 .

lim ρ→∞ K(s)F(s) = l 1 s + l 2 s 2 ( 
We will rst show what happen when adding an observer-based closed-loop on the following system where y(t) is the actual output of the system (not the controlled output): Taking the Laplace transform and assuming no initial condition, we get:

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) (6 
sX(s) = AX(s) + BU (s) Y (s) = CX(s) ⇒ X(s) = Φ(s)BU (s) Y (s) = CX(s) (6.164) 
where: Φ(s) = (sI -A) -1 (6.165)

The preceding relations can be represented by the block diagram in Figure 6.6. Let K be a full state-feedback gain matrix such that the closed-loop system is asymptotically stable, i.e. the eigenvalues of A -BK lie in the left half splane, and the open-loop transfer function when the loop is broken at the input point of the given system meets some given frequency dependent specications. The state feedback control u f with full state available is:

u f (t) = -Kx(t) ⇔ U f (s) = -KX(s) (6.166)
We will focus on the regulator problem and thus r = 0. As shown in Figure 6.7 the loop transfer function is evaluated when the loop is broken at the input point of the system. The so-called target loop transfer function L t (s) is dened as follows:

U f (s) = L t (s)U (s) where L t (s) = -KΦ(s)B (6.167)
If the full state vector x(t) is assumed not to be available, the control u(t) = -Kx(t) cannot be computed. We then add an observer with the following expression:

˙ x(t) = A x(t) + Bu(t) + L y(t) -C x(t) (6.168)
The observer-based state-feedback control u o is:

u o (t) = -K x(t) (6.169) where L a (s) = -K Φ(s) -1 + LC -1 (B + LCΦ(s)) B (6.173) 6.9.2 Loop Transfer Recovery (LTR) condition

Loop Transfer Recovery (LTR) will be achieved when the loop transfer function with state-feedback and with state-based observer are equal, that is when L a (s) = L t (s), where loop transfer functions L t (s) and L a (s) are given by (6.167) and (6.173) respectively.

The matrix inversion lemma 5 is the equation: That is, we get for U o (s) the same expression than the expression obtained through the full state-feedback given in (6.166). As a conclusion, the Loop Transfer Recovery (LTR) is achieved when the loop transfer function with state-feedback and with state-based observer are equal, that is when L a (s) = L t (s). This property is achieved as soon as U o (s) has the same expression as the full state-feedback U f (s), that is when the following relation holds:

(A -BD -1 C) -1 = A -1 + A -1 B(D -CA -1 B) -1 CA -1 (6.
L (I + CΦ(s)L) -1 = B (CΦ(s)B) -1 (6.185) 6.9.3 Setting the Loop Transfer Recovery design parameter Condition (6.185) is not an easy condition to satisfy. The traditional approaches to this problem is to design matrix L of the observer such that the condition is satised asymptotically and ρ a design parameter. One way to asymptotically satisfy (6.185) is to set L such that: = BW 0 (CΦ(s)BW 0 ) -1 = B (CΦ(s)B) -1 (6.188) Now let's concentrate how (6.186) can be achieved. First we have seen in (6.143) that if the transfer function CΦ(s)B is right invertible with no unstable zeros then for some unitary matrix W (W T W = I) and some symmetric positive denite matrix M (M = M T > 0), the asymptotic value of feedback gain K reads as follows, where ϵ has been replaced by 1 ρ : Linear-quadratic-Gaussian (LQG) control is a special case of H 2 optimal control applied to stochastic system.

   R = M ρ 2 Q = C T C K = R -
Let's consider the following system realization: The LQG problem consists in nding a controller u(s) = K(s)y(s) such that the following performance index is minimized:

ẋ(t
J LQG = E lim T →∞ T 0
x T (t)Qx(t) + u T (t)Ru(t) dt (6.197) Where matrices Q ans R are symmetric and (semi)-positive denite matrices: 6.198) This problem can be cast as the H 2 optimal control framework in the following manner. Dene signal z(t) whose norm is to be minimized as follows:

Q = Q T ≥ 0 R = R T > 0 ( 
z(t) = Q 0.5 0 0 R 0.5
x(t) u(t) (6.199)

And represent the stochastic inputs d(t) and n(t) as a function of the vector w(t) of exogenous disturbances : Where: The basic idea of complementary lter consists in taking the measurements of two sensors, ltering out low-frequency and high-frequency noises of each sensor, and combining the ltered outputs to get a better estimate of the signal Let y 1 (t) and y 2 (t) noisy measurements of some signal y(t), coming for example from a baro-altimeter and a vertical accelerometer, respectively. Denoting by v(t) some low frequency zero mean noise process, by w(t) some high frequency zero mean noise process and by s the Laplace variable, we will assume that:

                           B 1 = W 0.5 d 0 C 1 = Q 0.
y 1 (t) = y(t) + v(t) y 2 (t) = ÿ(t) + w(t) ⇔ Y 1 (s) = Y (s) + V (s) Y 2 (s) = s 2 Y (s) + W (s) (6.206) 
The complementary lter that implements the fusion between the two measurements is shown in Figure 6.106 .

From Figure 6.10, the expression of Y (s) reads: Relation (6.210) leads to an equivalent version of the complementary lter shown in Figure 6.11 where the low-pass lter F (s) operates only on the noises.

Y (s) = 1 s k 1 Y 1 (s) -Y (s) + 1 s Y 2 (s) + k 0 Y 1 (s) -Y (s) ⇔ 1 + k 1 s + k 0 s 2 Y (s) = k 1 s + k 0 s 2 Y 1 (s) + 1 s 2 Y 2 (s) ⇔ Y (s) = k 1 s+k 0 s 2 +k 1 s+k 0 Y 1 (s) +

Kalman lter

More generally, there are two measurements for sensor data fusion problems, y 1 (t) and y 2 (t), and one of it serves as an input to the state equation, which is seen as the process model. Denoting v(t) the random process which represents the measurement noise and x(t) the noisy state vector, we have: ˙ x(t) = A x(t) + B y 2 (t) (process) y 1 (t) = C x(t) + v(t) (measurement) (6.211) Take care that in the measurement equation, this is the actual state vector x(t) which is used, not the noisy state vector x(t) of the process equation. Furthermore, denoting w(t) the random processes which represents the process noise, and y 2 (t) := u(t) + w(t), we nally get: y 2 (t) := u(t) + w(t) ⇒ ˙ x(t) = A x(t) + B (u(t) + w(t)) y 1 (t) = C x(t) + v(t) (6.212)

Assuming no noise, v(t) = w(t) = 0, then x(t) changes into its noiseless value x(t) and actual measurement y 1 (t) changes into its noiseless value y(t). Then we get the following noiseless state equation:

v(t) = w(t) = 0 ⇒ ẋ(t) = A x(t) + B u(t) y(t) = C x(t) (6.213)
The error equations reads as follows where δx(t) is the error state vector and δy(t) the error output vector. Note that we dene δy(t) as δy(t) := y 1 (t)-C x(t) to be compliant with Figure 6 Example 6.3. In the specic case of sensor fusion between baro-altimeter and vertical accelerometer presented in (6.206), the state vector can be chosen as follows, assuming no noise:

x 1 (t) := y(t) x 2 (t) := ẏ(t) (6.225) Then (6.211) reads:

             ˙ x 1 (t) ˙ x 2 (t) = 0 1 0 0 x 1 (t)
x 2 (t) 0 1 (ÿ(t) + w(t))

:= A x(t) + B y 2 (t) y 1 (t) = 1 0 x(t) + v(t) := C x(t) + v(t) (6.226) 
Let L be the steady state observer gain, also-called steady state Kalman gain, which is obtained as follows: Then, according to (6.224), the transfer function F (s) of the low-pass lter reads as follows:

L := k 1 k 0 ⇒ F (s) = C (sI -(A -LC)) -1 L = 1 0 s + k 1 -1 k 0 s -1 k 1 k 0 = k 1 s+k 0 s 2 +k 1 s+k 0 (6.229)
We then retrieve the expression of F (s) obtained in (6.209).

■

More generally, and following Higgins 6 , typical application of the Kalman lter in navigation systems extends Figure 6.11 as shown in Figure 6.12, although, as seen before, the actual implementation may be dierent. Note that the Kalman lter just operates on noises and is not aected by actual signals that are to be estimated. Figure 6.12: Typical application of the Kalman lter in inertial navigation 6.12 Euler angles estimation 6.12.1 One dimensional attitude estimation

System description

We consider the simple pendulum in Figure 6.13 tted with an accelerometer and a gyroscope in the ball at the end of the arm. Let a x and a z the x-component and z-component provided by the accelerometer. Because the accelerometer is linked to the body frame, and denoting by R b i the rotation matrix from the inertial frame to the body frame, its provides the following data, known as specic acceleration: Attitude estimation problem For this one dimensional example, the gyroscope provides q := θ. Then attitude estimation problem consists in computing an estimate of θ from noisy measurements of a x , a z and q.

a x a z = R b i ÿ z - 0 -g ( 
6.12.2 One dimensional complementary lter

Sensor data fusion considers the problem to integrate redundant measurement information from separate sensor systems. The basic idea of complementary lter consists in taking the measurements of two sensors, ltering out low-frequency and high-frequency noises of each sensor, and combining the ltered outputs to get a better estimate of the signal of interest. An example of two sensors that complement each other are gyro and accelerometer.

Let y 1 (t) and y 2 (t) noisy measurements of some signal y(t), coming for example from an accelerometer and a gyroscope, respectively. Denoting by v(t) some low frequency zero mean noise process, by w(t) some high frequency zero mean noise process and by s the Laplace variable, we will assume that: For the example of section 6.12.1, we have y 1 (t) := θ a (t) and y 2 (t) := q(t). The complementary lter that implements the fusion between the two measurements is shown in Figure 6.14 7 .

From Figure 6.14, the expression of Y (s) reads: Transfer function F (s) is a low-pass lter with unity static gain whereas 1 -F (s) is a high-pass lter.

Y (s) = 1 s Y 2 (s) + k 0 Y 1 (s) -Y (s) ⇔ 1 + k 0 s Y (s) = k 0 s Y 1 (s) + 1 s Y 2 (s) ⇔ Y (s) = k 0 s+k 0 Y 1 (s) + 1 s+k 0 Y 2 (s) (6 
In the continuous time domain, (6.239) reads:

Y (s) = k 0 s+k 0 Y 1 (s) + 1 s+k 0 Y 2 (s) ⇔ k 0 Y (s) + s Y (s) = k 0 Y 1 (s) + Y 2 (s) ⇒ k 0 y(t) + d
dt y(t) = k 0 y 1 (t) + y 2 (t) (6.242)

In order to discretize this continuous time complementary lter, we have to nd an approximation of the dierentiation operator d dt . Let T s be the sampling period and denote z -1 the sample period delay operator. Several options can be used to approximate the dierentiation operator. Using backward dierence we get:

d dt ≈ 1 -z -1
T s (6.243) Then (6.242) is approximated as follows at discrete-time t = k T s : k 0 y(k T s ) + ˙ y(k T s ) = k 0 y 1 (k T s ) + y 2 (k T s ) ⇒ k 0 y(k T s ) + y(k Ts)-y((k-1) Ts) Ts ≈ k 0 y 1 (k T s ) + y 2 (k T s ) (6.244)

Usually the sampling period is omitted in the expression of the discrete-time, and the preceding relation is written as follows:

k 0 y k + y k -y k-1 T s ≈ k 0 y 1 k + y 2 k (6.245)
We nally get: 6.12.4 Roll and pitch angles estimation from accelerometer measurements

y k ≈ 1 1 + k 0 T s ( y k-1 + T s (k 0 y 1 k + y 2 k )) (6 
Let g be the gravitational acceleration, a i the acceleration in the inertial frame, a b the acceleration in the body frame and R b i the rotation matrix from the inertial frame to the body frame. The accelerometer provides the following measurement, called the specic acceleration:

a m = R b i a i -g (6.259)
Denoting v i the velocity in the inertial frame and v b the velocity in the body frame, we have the following relation where R i b the rotation matrix from the body frame to the inertial frame:

v i = R i b v b (6.260)
Thus, after derivation:

a i := d dt v i = R i b vb + Ṙi b v b (6.261)
Thus the specic acceleration a m in (6.259) reads:

a m = R b i R i b vb + Ṙi b v b -R b i g = vb + R b i Ṙi b v b -R b i g (6.262)
Once the computation achieved, we get the following expression for the measurements provided by a 3-axis accelerometer 8 : Note that if the Inertial Measurement Unit (IMU) is not situated at the center of mass, then the accelerometers coordinates (l x , l y , l z ) along each axis in the body frame with its origin at the center of gravity shall be taken into account and the measurements (6.263) provided by a 3-axis accelerometer becomes 8 :

a m =   a x a y a z   =   u v ẇ   +   0 w -v -w 0 u v -u 0     p q r   -g
a m =   a x a y a z   =   u v ẇ   +   0 w -v -w 0 u v -u 0     p q r   -g  
-sin(θ) cos(θ) sin(ϕ) cos(θ) cos(ϕ)   +   -r 2 -q 2 p q -r 2 p r + q p q + ṙ -p 2 -r 2 r q -ṗ p r -q r q + ṗ -q 2 -p 2 Those two equations can be used to approximate yaw angle ψ as follows: ψ = arctan sin (ϕ) m z -cos (ϕ) m y cos (θ) m x + sin (ϕ) sin (θ) m y + cos (ϕ) sin (θ) m z (6.268) [START_REF] Jerey | Linear Optimal Control[END_REF].12.6 Angular velocity from gyroscope measurements

Gyroscope provides the roll, pitch and yaw rate, p, q and r, respectively, with respect to its body axis system. The relationship between rate gyro output and angular velocity of the Euler angles is similar to (6.258). Nevertheless, because the actual values of the Euler angles ϕ, θ and ψ is not known, it is their estimated values ϕ, θ and ψ which is used in matrix W( η): The purpose of the Attitude and Heading Reference System (AHRS) is to compute the best estimate of the Euler angles ϕ, θ and ψ from the roll and pitch estimates (6.264) provided by the accelerometers, from the yaw estimate (6.268) provided by the magnetometer and from the angular velocities (6.269) provided by the gyroscopes. Because each channel is decoupled, the best estimate can be achieved by 3 independent complementary lters of the form (6.241) for continuous time

1 -

 1 (H b (p)) = -40 + 40p (1.28)

140 )--

 140 Local minimum condition for augmented Hamiltonian: Sign of multiplier µ(t) and complementarity condition: the equation ∂Ha ∂α = 0 implies 2µα = 0. Thus either µ = 0, which is an o-boundary arc, or α = 0 which is an on-boundary arc: For the o-boundary arc where µ = 0 control u is obtained from ∂Ha ∂u = 0 and α from the equality constraint c(x, u) + α 2 = 0;

Figure 1 .

 1 1 plots the three possibilities.

Figure 1 . 1 :

 11 Figure 1.1: Three possibilities for the values of ∂H/∂u = λ 2 (t)
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Figure 2 . 1 :

 21 Figure 2.1: Finite horizon closed-loop optimal control

  59)It is worth noticing that each selection of eigenvectors within matrix M 1 leads to a new solution of the general algebraic Riccati equation(3.52). Consequently the solution to the general algebraic Riccati equation (3.52) is not unique. The same statement holds for dierent choice of matrix M 2 and the corresponding solution of (3.52) is obtained from X = M 21 M -1 22 .
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 31 Figure 3.1: Closed-loop Hamiltonian transfer function

  Figure 3.1. The relation between e(s) and r(s) is obtained by reading Figure 3.1 against the arrows:

  (3.98) Consequently, the eigenvalues of the Hamiltonian matrix H are the roots of det D(s)D(-s) I + N ol (s)N T ol (-s) : det (sI -H)| s=λ = 0 ⇔ det D(s)D(-s) I + N ol (s)N T ol (-s) s=λ = 0 (3.99) Alternatively, the preceding relation indicates that D(λ)D(-

Figure 3 . 2 :

 32 Figure 3.2: Full-state feedback control

Figure 3 . 3 :

 33 Figure 3.3: Nyquist contour

  s = jω, Kalman's inequality guarantees that:∥S(jω)∥ ≤ 1 ∥T(jω)∥ ≤ 2 (3.162)Those inequalities are represented in Figure3.4.
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 34 Figure 3.4: Upper bounds of sensitivity function S(s) and complementary sensitivity function T(s) through LQR design

Figure 3 . 5 :Figure 3 . 6 :

 3536 Figure 3.5: Nyquist plot of L(s): example where the open-loop system has no unstable pole

1

 1 Characteristics polynomialsLet's consider the following state space realization (A, B, N):

Figure 4 . 1 :

 41 Figure 4.1: Full-state feedback control with ctitious output z

R⇔

  det (I + KΦ(-s)B) T det (I + KΦ(s)B) = det I + (Φ(-s)B) T Q(Φ(s)B) R ⇔ det (I + KΦ(-s)B) det (I + KΦ(s)B) = det I + (Φ(-s)B) T Q(Φ(s)

Figure 4 . 2 :

 42 Figure 4.2: Mirror property of LQR design when Q = Q T = 2αP

4. 4 . 1

 41 Non optimal pole assignmentWe have seen in(3.138) that thanks to the Hsu-Chen theorem the closed-loop characteristic polynomial det(sI -A + BK) reads as follows:det (sI -A + BK) = det (sI -A) det(I + KΦ(s)B) (4.100)Let D(s) = det (sI -A) be the determinant of Φ(s), that is the plant characteristic polynomial, and N ol (s) = adj (sI -A) B be the adjugate matrix of sI -A times matrix B:Φ(s)B = (sI -A) -1 B = adj (sI -A) B det (sI -A) := N ol (s) D(s)(4.101)Consequently (4.100) reads:det (sI -A + BK) = det (D(s)I + KN ol (s)) (4.102)As soon as λ Ki is a desired closed-loop eigenvalue then the following relation holds:det (D(s)I + KN ol (s))| s=λ Ki = 0 (4.103)

  .110) On the other hand, let D(s) be the open-loop characteristic polynomial and β(s) be the closed-loop characteristic polynomial:
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 43 Figure 4.3: Sector region C(α, θ)
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 44 Figure 4.4: Feedback system for stabilization

  r ss where F := K M 12 + M 22 (5.43) 5.5 Plant augmented with integrator 5.5.

Figure 5 . 1 :

 51 Figure 5.1: Plant augmented with integrator
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 52 Figure 5.2: Linear Quadratic Tracker with constant reference signal r ss
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 53 Figure 5.3: Linear Quadratic Tracker with prelter
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 62 Figure 6.2: Luenberger observer

R

  y (τ )e -sτ dτ s=j2πf(6.32) As far as R y (τ ) is an even function we get:R y (-τ ) = R y (τ ) ⇒ S y (f ) = +∞ 0 R y (τ )e sτ dτ s=j2πf + +∞ 0 R y (τ )e -sτ dτ s=j2πf (6.33)The preceding equations reads:S y (f ) = S y (-s)| s=j2πf + S y (s)| s=j2πf (6.34)Then, using (6.28), we can write:S y (-s) + S y (s) = F(-s) P w F T (s) (6.35)When identifying the stable transfer function S y (s) in the preceding relation, we get the autocorrelation function R y (τ ) ∀τ ≥ 0 thank to the inverse (onesided) Laplace transform of S y (s):S y (-s) + S y (s) = F(-s) P w F T (s)⇒ R y (τ ) = L -1 [S y (s)] ∀τ ≥ 0 where S y (s) stable(6.36) 

■ 6 . 3 . 4

 634 s→∞ s S y (s) = P w 2a (6.54) Proof of the expression of the autocorrelation function

R 0 C

 0 y (t, t + τ ) = -C 0 t e Aξ B P w B T e A T (ξ+τ ) dξ C T = C t 0 e Aξ B P w B T e A T (ξ+τ ) dξ C T(6.57) We nally get 1 : R y (t, t + τ ) = t e Aξ B P w C e A(ξ+τ ) B T dξ (6.58)
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 63 Figure 6.3: Block diagram of the controller in the time domain and the frequency domain
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 64 Figure 6.4: Input recovery objective

6 . 152 )Figure 6 . 5 :

 615265 Figure 6.5: Output recovery objective

Figure 6 . 6 :Figure 6 . 7 :

 6667 Figure 6.6: Block diagram of open-loop transfer function

Figure 6 . 8 :

 68 Figure 6.8: Broken observer-based feedback loop

- 1 B

 1 174)Simple manipulations show that: Φ(s) -1 + LC -1 = Φ(s) I -L (I + CΦ(s)L) -1 CΦ(s) (6.175)So we have for the rst term to the right of equation (6.172):Φ(s) -1 + LC -1 B = Φ(s) I -L (I + CΦ(s)L) -1 CΦ(s)B (6.176)And for the second term to the right of equation (6.172):Φ(s) -1 + LC -1 LCΦ(s)B = Φ(s) I -L (I + CΦ(s)L) -1 CΦ(s) LCΦ(s)B = Φ(s) L -L (I + CΦ(s)L) -1 CΦ(s)L CΦ(s)B = Φ(s)L I -(I + CΦ(s)L) -1 CΦ(s)L CΦ(s)B (6.177) In addition, applying again the matrix inversion lemma to the following equality, we have:(I + A) -1 = I -(I + A) -1 A ⇔ (I + A) -1 A = I -(I + A) -1 (6.178) Thus : (I + CΦ(s)L) -1 CΦ(s)L = I -(I + CΦ(s)L) -1 (6.179)Applying this result to equation (6.177) leads to:Φ(s) -1 + LC -1 LCΦ(s)B = Φ(s)L (I + CΦ(s)L) -1 CΦ(s)B (6.180)And here comes the light ! Indeed, if we impose:L (I + CΦ(s)L) -1 = B (CΦ(s)B) -1(6.181)Then equations (6.176) and (6.180) become: = Φ(s)I -L (I + CΦ(s)L) -1 CΦ(s)B = Φ(s) (I -B) Φ(s) -1 + LC -1 LCΦ(s)B = Φ(s)L (I + CΦ(s)L) -1 CΦ(s)B = Φ(s)B(6.182) and thus, when summing those two terms, (6.172) reads: X(s) = Φ(s)BU (s) (6.183)We nally get:U o (s) = -K X(s) = -KΦ(s)BU (s) (6.184)

L ρ 1 ρ 1 ( 6 ρ 1 ρ

 1161 where W 0 is a non-singular matrix.Indeed in this case we have:L (I + CΦ(s)L) -1 = L ρ ρ (I + CΦ(s)L) -1 = I + CΦ(s) L ρ -.187)Thus, as ρ → ∞:lim ρ→∞ L (I + CΦ(s)L) -1 = lim ρ→∞ L I + CΦ(s)
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 69 Figure 6.9: Standard feedback control loop
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 26 t) is a white noise process of unit intensity. Then the LQG cost function reads as follows:J LQG = E lim T →∞ T 0 z T (t)z(t)dt = ∥T zw (s)∥ 2

B 1

 1 w(t) = W 0.5 d 0 w(t) = d(t) D 21 w(t) = 0 W 0.

Figure 6 . 10 :

 610 Figure 6.10: Complementary lter implementing fusion between baro-altimeter and vertical accelerometer measurements

1 s 2 1 s 2 2 WF

 12122 +k 1 s+k 0 Y 2 (s)(6.207) Using the fact that Y 1 (s) = Y (s) + V (s) and Y 2 (s) = s 2 Y (s) + W (s), we nally get:Y (s) = Y (s) + k 1 s+k 0 s 2 +k 1 s+k 0 V (s) + +k 1 s+k 0 W (s) := Y (s) + F (s) V (s) + 1-F (s) s (s) := k 1 s + k 0 s 2 + k 1 s + k 0 ⇔ 1 -F (s) := s 2 s 2 + k 1 s + k 0 (6.209)Transfer function F (s) is a low-pass lter with unity static gain whereas 1 -F (s) is a high-pass lter.

Figure 6 . 2 Y 2

 622 Figure 6.11: Equivalent lter implementing fusion between baro-altimeter and vertical accelerometer measurements

  .11:δx(t) := x(t) -x(t) δy(t) := y 1 (t) -C x(t) ⇒ δ ẋ(t) = A δx(t) + B w(t) δy(t) = -C δx(t) + v(t) (6.214)Then let y(t) = C x(t). Multiplying (6.222) by C yields:C X(s) = Y (s) = C (sI -(A -LC)) -1 (L Y 1 (s) + B Y 2 (s)) (6.223)Comparing the preceding relation with (6.210), we conclude that complementary lter and Kalman lter are equivalent. Furthermore the transfer function F (s) of the low-pass lter reads as follows:F (s) = C (sI -(A -LC)) -1 L (6.224)

L

  = -YC T P -1 v (6.227)where matrix Y is the constant positive solution of the following algebraic Riccati equation:0 = AY + YA T -YC T P -1 v CY + BP w B T(6.228) 

Figure 6 .--

 6 Figure 6.13: Simple pendulum

y 1

 1 (t) = y(t) + v(t) y 2 (t) = ẏ(t) + w(t) ⇔ Y 1 (s) = Y (s) + V (s) Y 2 (s) = s Y (s) + W (s) (6.238)

Figure 6 .

 6 Figure 6.14: Complementary lter implementing fusion between gyro and accelerometer measurements

F

  .239) Using the fact that Y 1 (s) = Y (s) + V (s) and Y 2 (s) = s Y (s) + W (s), we nally get:Y (s) = Y (s) + k 0 s+k 0 V (s) + 1 s+k 0 W (s) := Y (s) + F (s) V (s) + 1-F (s) (s) := k 0 s + k 0 ⇔ 1 -F (s) := s s + k 0 (6.241)

c

  .246) Or equivalently:y k ≈ α ( y k-1 + T s y 2 k ) + (1 -α) y 1 k where α := 1 1 + k 0 T s (6.247)6.12.3 Direct Cosine Matrix (DCM) and kinematic relations Let x i be a vector expressed in the inertial frame, x b a vector expressed in the body frame and R b i (η) the rotation matrix, also called Direct Cosine Matrix (DCM), from the inertial frame to the body frame:x b = R b i (η)x i (6.248)Rotation matrix R b i (η) is obtained by the multiplication of the rotation matrices around Euler angles, namely yaw angle ψ, pitch angle θ and then roll angle ϕ, respectively. Denoting c x = cos(x), s x = sin(x) and R y the rotation matrix dedicated to angle y we get:R b i (η) = R ϕ R θ R ψ ψ c θ s ψ -s θ (s ϕ s θ c ψ -c ϕ s ψ ) (s ϕ s θ s ψ + c ϕ c ψ ) s ϕ c θ (c ϕ s θ c ψ + s ϕ s ψ ) (c ϕ s θ s ψ -s ϕ c ψ ) c ϕ c θ   (6.249)It is worth noticing that R b i (η) is an orthogonal matrix. Consequently the rotation matrix R i b (η) from the body frame to the inertial frame is obtained as follows:θ c ψ (s ϕ s θ c ψ -c ϕ s ψ ) (c ϕ s θ c ψ + s ϕ s ψ ) c θ s ψ (s ϕ s θ s ψ + c ϕ c ψ ) (c ϕ s θ s ψ -s ϕ c ψ ) -s θ s ϕ c θ c ϕ c θ   (6.250)The relation between the angular velocities (p, q, r) in the body frame and the time derivative of the Euler angles (ϕ, θ, ψ) is the following: ϕ) sin(ϕ) cos θ 0 -sin(ϕ) cos(ϕ) cos θ ϕ) sin(ϕ) cos(θ) 0 -sin(ϕ) cos(ϕ) cos(θ) noticing that the preceding relation can be obtained from the following equality which simply states that the time derivative of matrix R i b (η) can be seen as matrix Ω(ν) of the angular velocities in the body frame expressed in the inertial frame:d dt R i b (η) = R i b (η) Ω(ν)where Ω(ν) = -Ω(ν) T =

  The last term of equation (6.263) can be used to approximate roll angle ϕ and pitch angle θ as follows:

T

  be the geomagnetic eld measurements in the inertial frame and m x m y m z T be the geomagnetic eld measurements in the body frame. Those those vectors are related as follows:cos (ψ) cos (θ) -m i z sin (θ) m i z cos (θ) sin (ϕ) -m i x (cos (ϕ) sin (ψ) -cos (ψ) sin (ϕ) sin (θ)) m ix (sin (ϕ) sin (ψ) + cos (ϕ) cos (ψ) sin (θ)) + m i z cos (ϕ) cos (θ) Then it is worth noticing that the following relations hold:sin (ϕ) m z -cos (ϕ) m y = m i x sin (ψ) cos (θ) m x + sin (ϕ) sin (θ) m y + cos (ϕ) sin (θ) m z = m ix cos (ψ) (6.267)
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 7 ϕ ) tan( θ ) cos( ϕ ) tan( θ ) 0 cos( ϕ ) -sin( Attitude and Heading Reference System (AHRS) based on complementary lter

  

  1.11 Hamiltonian over time 1.11.1 General resultFrom Pontryagin's principle, special conditions for the Hamiltonian can be derived 11 . When the nal time t f is xed and the Hamiltonian H does not depend explicitly on time, that is when ∂H ∂t = 0, then the Hamiltonian functional H remains constant along an optimal trajectory:

  6.67)-Random vectors w(t) and v(t) are white noise (i.e. uncorrelated). The covariance matrices of w(t) and v(t) will be denoted P w and P v respectively:E w(t)w T (t + τ ) = P w δ(τ ) where P w

Table 6 .

 6 

	1: Duality principle

= Ax(t) -BK x(t) + w(t) = Ax(t) -BK (x(t) -e(t)) + w(t) = (A -BK) x(t) + BKe(t) + w(t)

(6.94) 

  6.8 Loop Transfer Recovery 6.8.1 Lack of guaranteed robustness of LQG designAccording to the choice of matrix L which drives the dynamics of the error e(t) the closed-loop may not be stable. So far LQR is shown to have either innite gain margin (stable open-loop plant) or at least -6 dB gain margin and at least sixty degrees phase margin. In 1978 John Doyle 2 showed that all the nice robustness properties of LQR design can be lost once the observer is added and that LQG design can exhibit arbitrarily poor stability margins. Around 1981 Doyle along with Gunter Stein followed this line by showing that the loop shape itself will, in general, change when a lter is added for estimation. Fortunately there is a way of designing the Kalman-Bucy lter so that the full state-feedback properties are recovered at the input of the plant. This is the purpose of the Loop Transfer Recovery design. The LQG/LTR design method was introduced by Doyle and Stein in 1981 before the development of H 2 and H ∞ methods which is a more general approach to directly handle many types of modeling uncertainties.

6.8.2 Doyle's seminal example

Consider the following state space realization:

  Proof of the Loop Transfer Recovery condition 6.9.1 Loop transfer function with observer The Loop Transfer Recovery design procedure tries to recover a target loop transfer function, here the open-loop full state LQ control, despite the use of the observer.

				6.161)
	Note that:	CΦ(s)L =	l 1 s + l 2 s 2	(6.162)
	Therefore the loop transfer function has been recovered.	

■ 6.9

  are white noise with the intensity of their autocorrelation function equals to W d and W n respectively. Denoting by E() the mathematical expectation we have:

	E	d(t) n(t)	d T (τ ) n T (τ )	=	W d 0 W n 0	δ(t -τ )	(6.196)

) = Ax(t) + B 2 u(t) + d(t) y(t) = C 2 x(t) + n(t) (6.195)

Where d(t) and n(t)

  Thus a rst approximation of angle θ, provided by the accelerometer, is θ a where:

								6.233)
	where:						
			R b i =	cos(θ) sin(θ) -sin(θ) cos(θ)	(6.234)
	Thus:		a x a z	=	L θ + g sin(θ) L θ2 + g cos(θ)	(6.235)
	Then neglecting θ2 and θ we get:			
	a x a z	=	L θ + g sin(θ) L θ2 + g cos(θ)	≈	g sin(θ) g cos(θ)	= tan(θ)	(6.236)
			θ a ≈ arctan	a x a z	(6.237)

https://lewisgroup.uta.edu/history.htm

https://en.wikipedia.org/wiki/Pontryagin's_maximum_principle

https://en.wikipedia.org/wiki/Euler-Lagrange_equation

https://en.wikipedia.org/wiki/Beltrami_identity

Ferguson J., Brief Survey of the History of the Calculus of Variations and its Applications (2004) arXiv:math/0402357

https://apmonitor.com/wiki/index.php/Apps/BrachistochroneProblem

da Silva J., de Sousa J., Dynamic Programming Techniques for Feedback Control, Proceedings of the 18th World Congress, Milano (Italy) August 28 -September 2, 2011

Alazard D., Optimal Control & Guidance: From Dynamic Programming to Pontryagin's Minimum Principle, lecture notes

Bellman R., Dynamic programming, Princeton University Press, 1957

Anders Rantzer and Mikael Johansson, Piecewise Linear Quadratic Optimal Control, IEEE Transactions On Automatic Control, Vol. 45, No. 4, April 2000

Hull D. G., Optimal Control Theory for Applications, Springer(2003) 

https://en.wikipedia.org/wiki/Hamiltonian_(control_theory)

Bertrand R., Epenoy R., New smoothing techniques for solving bang-bang optimal control problems -Numerical results and statistical interpretation, Optimal Control Applications and Methods 23(4):171 -197, July 2002, DOI:10.1002/oca.709

Linear Systems: Optimal and Robust Control 1st Edition, by Alok Sinha, CRC Press

https://en.wikipedia.org/wiki/Square_root_of_a_matrix

Lorenzo Ntogramatzidis, A simple solution to the nite-horizon LQ problem with zero terminal state, Kybernetika -39(4):483-492, January 2003

Sassano M. and Astol A, Dynamic approximate solutions of the HJ inequality and of the HJB equation for input-ane nonlinear systems. IEEE Transactions on Automatic Control, 57(10):24902503,

Passenbrunner T., Sassano M., del Re L., Optimal Control with Input Constraints applied to Internal Combustion Engine Test Benches, 9th IFAC Symposium on Nonlinear Control Systems, September 4-6, 2013. Toulouse, France

Optimal Control of Singularly Perturbed Linear Systems with Applications: High Accuracy Techniques, Z. Gajic and M. Lim, Marcel Dekker, New York, 2001

Peter Benner, Daniel Kressner, Volker Mehrmann, Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications, January 2005, Proceedings of the Conference on Applied Mathematics and Scientic Computing (pp.3-39), DOI: 10.1007/1-4020-3197-1_1

Alan J. Laub, A Schur Method for Solving Algebraic Riccati equations, IEEE Transactions On Automatic Control, VOL. AC-24, NO.

6, December 1979 

https://en.wikipedia.org/wiki/Determinant

Pole-shifting techniques for multivariable feedback systems, Retallack D.G., MacFarlane A.G.J., Proceedings of the Institution of Electrical Engineers, 1970

Doyle J.C., Guaranteed margins for LQG regulators, IEEE Transactions on Automatic Control, Volume: 23, Issue: 4, Aug 1978

Walter R. Evans , Graphical Analysis of Control Systems, Transactions of the American Institute of Electrical Engineers, vol. 67, pp.547 -551, 1948 

https://en.wikipedia.org/wiki/Square_root_of_a_matrix

Y. Ochi and K. Kanai, Pole placement in optimal regulator by continuous pole-shifting, Journal of Guidance Control and Dynamics, Vol. 18, No. 6 (1995), pp. 1253-1258

Optimal pole shifting for continuous multivariable linear systems, M. H. Amin, Int. Journal of Control 41 No.3 (1985), 701707.

Abdul-Razzaq S. Arar, Mahmoud E. Sawan, Optimal pole placement with prescribed eigenvalues for continuous systems, Journal of the Franklin Institute, Volume 330, Issue 5, September 1993, Pages 985-994

Toru Fujinaka, Sigeru Omatu, Pole Placement Using Optimal Regulators, IEEJ Transactions on Electronics Information and Systems 121(1):240-245, January 2001, DOI:10.1541/ieejeiss1987.121.1_240

L.S. Shieh, H.M. Dib, R.E. Yates, Sequential design of linear quadratic state regulators via the optimal root-locus techniques, IEE Proceedings D -Control Theory and Applications, Volume: 135 , Issue: 4, July 1988, DOI: 10.1049/ip-d.1988.0040

Lewis F., Vrabie D., Syrmos V., Optimal Control, John Wiley & Sons, 3rd Edition, 2012

Yuan L., Achenie L., Jiang W., Linear Quadratic Optimal Output Feedback Control For Systems With Poles In A Specied Region, International Journal of Control, Vol. 64(6), pages = 1151-1164, 1996

Frequency-Shaped Cost Functionals: Extension of Linear Quadratic Gaussian Design Methods, Narendra K. Gupta, Journal of Guidance Control and Dynamics. 11/1980; 3(6):529-535. DOI: 10.2514/3.19722

Preclassical Tools for Postmodern Control, An optimal And Robust Control Theory For Undergraduate Education, Li Qiu and Kemin Zhou, IEEE Control Systems Magazine, August

Rocio Alba-Flores and Enrique Barbieri, Real-time Innite Horizon Linear-Quadratic Tracking Controller for Vibration Quenching in Flexible Beams,

IEEE Conference on Systems, Man, and Cybernetics, October 8-11, 2006, Taipei, Taiwan

Hamidreza Modares, Frank L. Lewis, Online Solution to the Linear Quadratic Tracking Problem of Continuous-time Systems using Reinforcement Learning, 52nd IEEE Conference on Decision and Control, December 10-13, 2013. Florence, Italy

Doyle J.C., Guaranteed margins for LQG regulators, IEEE Transactions on Automatic Control, Volume: 23, Issue: 4, Aug 1978

Ronaldo Waschburger and Karl Heinz Kienitz, A root locus approach to loop transfer recovery based controller design, 13th International Conference on Control Automation Robotics & Vision (ICARCV), 2014

http://mae2.eng.uci.edu/~fjabbari//me270b/chap9.pdf

D. J. Tylavsky, G. R. L. Sohie, Generalization of the matrix inversion lemma, Proceedings of the IEEE, Year: 1986, Volume: 74, Issue: 7, Pages: 1050 -1052

W. T. Higgins, A Comparison of Complementary and Kalman Filtering, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 3, pp. 321-325, May 1975, doi: 10.1109/TAES.1975.308081.

W. T. Higgins, A Comparison of Complementary and Kalman Filtering, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 3, pp. 321-325, May 1975, doi: 10.1109/TAES.1975.308081.

Marian J. Blachuta and Rafal T. Grygiel and Roman Czyba and Grzegorz Szafranski, Attitude and heading reference system based on 3D complementary lter, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)

x T (t)Qx(t) + u T (t)Ru(t) dt (4.131)

We provide in that section the material written by He, Cai and Han 8 . Assume that (A, B) is controllable. Then, the pole assignment problem is solvable if and only if there exist two matrices X 1 ∈ R n×n and X 2 ∈ R n×n such that the following matrix inequalities are satised:

where F is any matrix such that λ (F) = Λ cl and (X 1 , X 2 ) satises the following generalized Sylvester matrix equation 9 :

) is a feasible solution to the above two inequalities, then the weighting matrix Q in the quadratic performance index J(u(t)) can be chosen as follows:

In addition the solution the corresponding Riccati Algebraic equation reads:

The starting point to get this result is the fact that there must exist an eigenvector matrix X such that the following formula involving Hamiltonian matrix H holds:

Splitting the 2n × n matrix X into 2 square n × n matrices X 1 and X 2 and using the expression of the 2n × 2n Hamiltonian matrix H leads to the following relation:

The preceding relation is expanded as follows: The optimal control problem is then split into two separate problems which are solved individually to form the suboptimal control:

-First the commanded value r(t) is set to zero and the gain K is computed to solve the Linear Quadratic Regulator (LQR) problem;

-Then the feedforward gain F is computed such that the steady-state value of output y(t) is equal to the commanded value r(t) := y c .

Using the expression (5.2) of the control u(t) within the state space realization (5.1) of the linear system leads to:

Then matrix F is computed such that the steady-state value of output y(t) is y c . Assuming that ẋ = 0, which corresponds to the steady-state, the preceding equations becomes:

That is:

Setting y to y c and assuming that the size of the output vector y(t) is the same than the size of the control vector u (square plant) leads to the following expression of the feedforward gain F:

For a square plant the feedforward gain F is nothing than the inverse of the closed-loop static gain (the closed-loop static gain is obtained by setting the Laplace variable s to 0 in the expression of the closed-loop transfer function).

Finite horizon Linear Quadratic Tracker

We will consider in this section the following linear system, where x(t) is the state-vector, u(t) the control and y(t) the measured output:

It is now desired to nd an optimal control law in such a way that the controlled output y(t) tracks or follows a reference output r(t). Hence the performance index is dened as:

Let's complete the square of -L(t)CY(t) -Y(t)C T L(t) T + L(t)P v L T (t). First we will focus on the scalar case where we try to minimize the following quadratic function f (L) where P v > 0:

Completing the square of f (L) means writing f (L) as follows:

Then it is clear that f (L) is minimal when LP v -YC and that the minimal

v . This approach can be extended to the matrix case. When we complete the square of -L(t)CY(t) -Y(t)C T L(t) T + L(t)P v L T (t) we get:

Using the preceding relation within (6.81) reads:

In order to nd the optimum observer gain L(t) which minimizes the covariance matrix Y(t) we choose L(t) such that Y(t) decreases by the maximum amount possible at each instant in time. This is accomplished by setting L(t) as follows:

Once L(t) is set such that L(t)P v -Y(t)C T = 0 the matrix dierential equation (6.85) reads as follows:

This is Equation (6.72).

Duality principle

In the chapter dedicated to the closed-loop solution of the innite horizon Linear Quadratic Regulator (LQR) problem we have seen that the minimization of the cost functional J(u(t)):

Applying the duality principle we have the same result for the asymptotic value of the observer gain L:

Then, we concentrate on input recovery (6.152). We design a new observer with the following design matrices:

Then if we replace P v by P v0 and P w = BB T by P w = P w0 + ρ 2 BB T in (6.190), the asymptotic value of the observer gain L reads as follows:

= BWP -0.5 v0 (6.192) By setting W 0 := WP -0.5 v0 we nally get (6.186):

Robust control design

Robust control problems, and especially H 2 robust control problems, are solved in a dedicated framework presented in Figure 6.9 where:

-G(s) is the transfer function of the generalized plant; -K(s) is the transfer function of the controller ;

-u is the control vector of the generalized plant G(s) which is computed by the controller K(s);

-w is the input vector formed by exogenous inputs such as disturbances or noise;

-y is the vector of output available for the controller K(s);

-z is the performance output vector, also-called the controlled output, that is the vector that allows to characterize the performance of the closedloop system. This is a virtual output used only for design that we wish to maintain as small as possible.

It is worth noticing that in the standard feedback control loop in Figure 6.9 all reference signals are set to zero.

The H 2 control problem consists in nding the optimal controller K(s) which minimizes ∥T zw (s)∥ 2 , that is the H 2 norm of the transfer between the exogenous inputs vector w and the vector of interest variables z.

According to (6.10), the dynamics of the observer, which is actually a Kalman-Bucy lter, reads:

The time dependent observer gain L(t), also-called Kalman gain, is similar to (6.71):

where matrix Y(t) is the solution of the following dierential Riccati equation (see (6.72) where P w has been replaced by BP w B T , that is the covariance of noise B w(t)):

The steady-state Kalman lter is achieved when Ẏ(t) = 0. Then the preceding dierential Riccati equation turns to be the algebraic Riccati equation and matrix Y is the constant positive solution of the following algebraic Riccati equation:

Furthermore the actual estimate of the signal reads: estimate, or (6.247) for discrete time estimate. In those equations, y 1 stands for the measurements provided by the accelerometers or the magnetometer, and y 2 stands for the measurements provided by the gyroscopes.