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Course overview

Following Wikipedia a system is a set of interacting or interdependent compo-
nents forming an integrated whole.

System control exists for more than 2000 years. Water clocks control was one
of the �rst application of system control. Nevertheless the scienti�c approach
appears after the mid of the 19th century. In 1868 James Clerk Maxwell (1831-
1879) published a paper entitled "On Governors" within which he described
how to derive the linear di�erential equations for various governor mechanisms.
In 1798 James Watt (1736-1819) developed the automatic control of the speed
of a steam motor.

The theory of control has been developed during the �rst half of the 20th
century both in the western countries and in the ex-URSS but the motivations
were di�erent. Indeed they were based on mathematical interests in the East.
For example Nicholas Minorsky (1885-1970) presented in 1922 a clear analysis
of the control involved in position control systems and formulated a control law
that we now refer to PID control. On the other side engineering issues were the
main drivers in the West. In 1914 Lawrence Burst Sperry (1892-1923) invented
the �rst autopilot which he demonstrated with success in France. In the US
telephone repeaters based on electronic ampli�cation of the signal were used
around 1920 but the distortion they introduced limited the number that could
be used in series. Harold Stephen Black (1898-1983) developed the electronic
ampli�er with negative feedback in 1927 to overcome the issue.

The so called classical control period extends approximatively from 1935
to 1960. By the end of this period the classical control techniques had been
established. The design methodologies were for linear SISO (Single Input and
Single Output) systems; those systems can be described by linear di�erential
equations with constant coe�cients.

Starting in the late 50's � beginning of the 60's, the modern control period
tackles problems involving the analysis and control of linear MIMO (Multiple
Input and Multiple Output) systems and nonlinear systems (e.g. Sputnik in
1957). An important step was accomplished with Rudolf (Rudi) Emil Kalman's
(born in Budapest in 1930) treatment of the linear multivariable optimal control
problem with a quadratic performance index.

You may read the paper entitled A Brief History of Automatic Control, EEE
Control Systems, June 1996 by Stuart Bennett for further details.

This course will focus on classical control. More speci�cally, the objectives
are the following:
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− to learn how to model dynamic systems and to present mathematical rep-
resentation of theses models;

− to learn how to analyse dynamic properties of open loop (and also closed
loop) systems;

− to learn how to design basic feedback control loop to achieve stability and
precision goals.

This lecture is organized as follows: the �rst chapter present the Laplace
transform which is the dedicated mathematical tool to study systems driven
by linear di�erential equations. The second chapter introduces Linear Time
Invariant (LTI) systems and focuses on their time and frequency responses. The
third chapter is dedicated to the stability analysis of LTI systems. Then basic
control designs based on steady state analysis or transient response speci�cations
are provided in chapter four. The last chapter focuses on discrete time systems
and more speci�cally on the Z transform and the modeling of continuous system
with sampled input and output.
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Chapter 1

Introduction to dynamical

systems

1.1 Chapter overview

Usually an appropriate mathematical model of the system to be controlled is
needed before controlling it. The mathematical model may be obtained either
from physical laws or experimental data. In this chapter we recall what are
di�erential equations. As far as most physical systems are described by non-
linear di�erential equations we present how to get a linearized model around an
equilibrium point in order to be in position to apply all the mathematical tools
dedicated to linear time invariant systems.

1.2 Refresher on derivatives

Let's consider the curve in Figure 1.1 which represents a function y = f(t).
At any value of t the slope of the curve between two points is de�ned as the

change in y divided by the change in t:

slope =
change in y

change in t
=
f(t+ ∆t)− f(t)

∆t
(1.1)

The derivative of function f at t is de�ned as the limit of the slope when ∆t
tends towards 0:

f ′(t) = lim
∆t→0

f(t+ ∆t)− f(t)

∆t
(1.2)

The following notations are equivalent to denote the �rst derivative of y =
f(t) with respect to time t:

− Lagrange's notation: f ′(t)

− Leibniz's notation: dy
dt or

d
dtf(t)

− Newton's notation: ẏ(t)

− Euler's notation uses a di�erential operator D which is applied to a func-
tion f(t) to give the �rst derivative Df(t)
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Figure 1.1: Curve y = f(t)

We recall on Tables 1.1 and 1.2 some basic di�erentiation formulas and basic
di�erentiation rules for combined functions1.

d
dt t

n = ntn−1

d
dte

f(t) = ef(t) × d
dtf(t)

d
dt

(
at
)

= d
dt

(
et ln(a)

)
= (ln(a))× at

d
dte

t = et

d
dt loga(f(t)) = d

dt
ln(f(t))

ln(a) = 1
ln(a)

d
dt
f(t)

f(t)
d
dt ln(t) = 1

t
d
dt sin(t) = cos(t)
d
dt cos(t) = − sin(t)

d
dt tan(t) = 1 + tan2(t)

Table 1.1: Basic di�erentiation formulas

Derivative of constant multiple d
dt (a× f(t)) = a× d

dtf(t)

Derivative of sum d
dt (a1f1(t) + a2f2(t)) = a1

d
dtf1(t) + a2

d
dtf2(t)

Product Rule d
dt (f1(t)× f2(t)) = d

dtf1(t)× f2(t) + f1(t)× d
dtf2(t)

Quotient Rule d
dt
f1(t)
f2(t) =

d
dt
f1(t)×f2(t)−f1(t)× d

dt
f2(t)

(f2(t))2

Chain Rule d
dtf1(f2(t)) = d

dtf1(t)
∣∣
t=f2(t)

× d
dtf2(t)

Table 1.2: Basic di�erentiation rules for combined functions

The derivative of order n of f(t) is equivalently denoted by f (n)(t), dny
dtn ,

dn

dtn f(t) or Dnf(t).
The derivative of order n of f(t) is the derivative of the n − 1th derivative

of f(t) :
dn

dtn
f(t) =

d

dt

(
dn−1

dtn−1
f(t)

)
(1.3)

1https://www.math.wustl.edu/ freiwald/Math131/derivativetable.pdf
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1.3 Di�erential equations

Di�erential equations �rst appears with Gottfried Wilhelm von Leibniz (1646-
1716) and Isaac Newton (1642-1727)2

A di�erential equation is a mathematical equation that relates some function
with its derivatives.

Di�erential equations can be divided into several types:

− Ordinary di�erential equation: an ordinary di�erential equation (ODE)
is a di�erential equation that contains unknown one-variable or multi-
variable functions and their derivatives.

An example of ordinary di�erential equation with respect to the unknown
one-variable-variable function y(t) is the following:

d2

dt2
y(t)− 5y(t) = cos(t) (1.4)

− Partial di�erential equation: a partial di�erential equation (PDE) is a
di�erential equation that contains unknown multi-variable functions and
their partial derivatives. The partial derivative of a function of several
variables is its derivative with respect to one of those variables with the
others held constant.

An example of partial di�erential equation with respect to the unknown
multi-variable function u(x, y) is the following:

∂u(x, y)

∂x
y +

∂u(x, y)

∂y
x = 0 (1.5)

− Linear di�erential equation: linear di�erential equations are di�erential
equations (either ODE or PDE) having solutions whose linear combina-
tion form further solutions3. We recall that a linear combination is an
expression constructed from a set of terms by multiplying each term by a
constant and adding the results4.

For example the general form of �rst-order linear di�erential equations
with respect to the unknown one-variable-variable function y(t) reads:

d

dt
y(t) + a0(t)y(t) = f(t) (1.6)

Then if y1(t) is a solution of (1.6) and y2(t) is another solution of (1.6)
then α1y1(t) + α2y2(t), where α1 and α2 are constants, is also a solution
of (1.6).

More generally a linear ordinary di�erential equation can be written as
follows where an−1(t), · · · , a1(t), a0(t) and f(t) are known functions and
where function y(t) has to be found:

dn

dtn
y(t) + an−1(t)

dn−1

dtn−1
y(t) + · · ·+ a1(t)

d

dt
y(t) + a0(t)y(t) = f(t) (1.7)

2History of Ordinary Di�erential Equations: the First Hundred Years, John E. Sasser
3https://en.wikipedia.org/wiki/Linear_di�erential_equation
4https://en.wikipedia.org/wiki/Linear_combination
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− The order of a di�erential equation is the order of the highest deriva-
tive that appears in the equation. For example the following di�erential
equation is a di�erential equation of order 2:

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = t2 (1.8)

1.4 From nonlinear to linear systems

Applying fundamental physical rules (i.e. Euler-Lagrange or Newton dynamic
principles for mechanical systems, Kirchho�'s rules for electrical systems, Maxwell
rules for electro-magnetic systems, ...) the modeling of a system always leads
to an input-output relationship between inputs u(t) and outputs y(t) and their
derivatives:

h (y(t), ẏ(t), ÿ(t), · · · , u(t), u̇(t), · · · ) = 0 (1.9)

Function h is called the input-output relationship. The model de�ned by
the relationship h can be:

− Either a discrete time or a continuous time model. For discrete time
models the values of the time variable t are de�ned at distinct points in
time. This is not the case for continuous time models;

− Either a time invariant or a time variant model. For time variant model
time t appears explicitly in the input-output relationship h.

− Either a non-linear or a linear model. The model is linear if h is a linear
combination of y(t), ẏ(t), ÿ(t), · · · , u(t), u̇(t), · · · ;

− Either a SISO (Single Input and Single Output) or a MIMO (Multiple
Input and Multiple Output) model.

When the input-output relationship h is nonlinear there exists quite few
mathematical tools which enable to catch the intrinsic behavior of the system.
Nevertheless this situation radically changes when h is linear and the good news
is that it is quite simple to approximate a nonlinear model with a linear model
around an equilibrium point. We will �rst de�ne what we mean by equilibrium
point and then we will see how to get a linear model from a nonlinear model.

An equilibrium point is a constant value of the pair (y, u), which will be
denoted (ye, ue), such that:

h (ye, ue) = 0 (1.10)

It is worth noticing that as soon as (ye, ue) is a constant value then we have
ẏe = ÿe = · · · = 0 and u̇e = üe = · · · = 0.

Then the linearization process consists in computing the Taylor series ex-
pansion of h around the equilibrium point (ye, ue) and to stop it at the order 1.
The linearization of a multivariable function h(x) around the equilibrium point
xe reads:

h(x) ≈ h(xe) + ∇h(x)|x=xe
(x− xe) (1.11)
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Where ∇ is the Jacobian of h that is the vector (or matrix) composed with
all �rst-order partial derivatives of h:

∇T =
[

∂
∂x1

· · · ∂
∂xn

]
(1.12)

Applying this relationship to the implicit di�erential equation (1.9) reads:

0 = h(y(t), ẏ(t), ÿ(t), · · · , u(t), u̇(t), · · · ) ≈ h (ye, ue) +

∂h

∂y

∣∣∣∣
y=ye,u=ue

δy +
∂h

∂ẏ

∣∣∣∣
y=ye,u=ue

δẏ + · · ·

+
∂h

∂u

∣∣∣∣
y=ye,u=ue

δu+
∂h

∂u̇

∣∣∣∣
y=ye,u=ue

δu̇+ · · · (1.13)

Where: 

δy = y − ye
δẏ = ẏ − ẏe = ẏ
...
δu = u− ue
δu̇ = u̇− u̇e = u̇
...

(1.14)

Using the fact that h (ye, ue) = 0 the preceding relationship can be rewritten
as follows:

a0δy + a1
d

dt
δy + · · ·+ an−1

dn−1

dtn−1
δy + an

dn

dtn
δy ≈

b0δu+ b1
d

dt
δu+ · · ·+ bm−1

dm−1

dtm−1
δu+ bm

dm

dtm
δu (1.15)

Where: 

a0 = ∂h
∂y

∣∣∣
y=ye,u=ue

a1 = ∂h
∂ẏ

∣∣∣
y=ye,u=ue

...

b0 = − ∂h
∂u

∣∣
y=ye,u=ue

b1 = − ∂h
∂u̇

∣∣
y=ye,u=ue

...

(1.16)

Usually the δ sign which indicates that the system approximation is made
around an equilibrium point is omitted and the system model (1.15) simply
reads:

a0y + a1
dy

dt
+ · · ·+ an−1

dn−1y

dtn−1
+ an

dny

dtn
=

b0u+ b1
du

dt
+ · · ·+ bm−1

dm−1u

dtm−1
+ bm

dmu

dtm
(1.17)
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Figure 1.2: Robot arm

Consequently the nonlinear input-output relationship h can be approximated
around an equilibrium point by a linear di�erential equation of the form (1.17).
Nevertheless is worth noticing that the linearization process is an approximation
that is only valid around a region close to the equilibrium point.

Example 1.1. Again let's consider Figure 1.2 where a robotic arm is depicted:
u(t) is the torque applied by a motor drive and y(t) is the angular position of
the arm. In addition we denote m the mass of the arm, l the distance between
the axis of the motor and the centre of mass of the arm, b the viscous friction
coe�cient, J its inertia and g the acceleration of gravity. The dynamics of the
robotic arm is the following:

Jÿ(t) + bẏ(t) +mlg sin (y(t)) = u(t) (1.18)

This system model is :

− a continuous time model;

− a time invariant model;

− a non-linear model;

− a SISO (Single Input and Single Output) model.

The input-output relationship h is de�ned as follows:

h (y(t), ẏ(t), ÿ(t), u(t)) = Jÿ(t) + bẏ(t) +mlg sin (y(t))− u(t) (1.19)

As far as equilibrium points are concerned, every couples (ye, ue) which sat-
isfy the following relationship are possible:

mlg sin (ye) = ue (1.20)

Imposing ue = 0 (no torque applied on the arm at the equilibrium point) the
preceding relationship reduces to:

mlg sin (ye) = 0 (1.21)
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Consequently (ye = 0, ue = 0) and (ye = π, ue = 0) are two equilibrium
points. Let's linearize the nonlinear model around those two equilibrium points:

− Around (ye = 0, ue = 0) where the arm is vertical and downward oriented
we get: 

a0 = ∂h
∂y

∣∣∣
y=0,u=0

= mlg cos(y)|y=0 = mlg

a1 = ∂h
∂ẏ

∣∣∣
y=0,u=0

= b

a2 = ∂h
∂ÿ

∣∣∣
y=0,u=0

= J

b0 = − ∂h
∂u

∣∣
y=0,u=0

= 1

(1.22)

So the linearized model of the robotic arm around (ye = 0, ue = 0) reads:

Jδÿ(t) + bδẏ(t) +mlgδy(t) = δu(t) (1.23)

− Around (ye = π, ue = 0) where the arm is vertical and upward oriented we
get: 

a0 = ∂h
∂y

∣∣∣
y=π,u=0

= mlg cos(y)|y=π = −mlg

a1 = ∂h
∂ẏ

∣∣∣
y=π,u=0

= b

a2 = ∂h
∂ÿ

∣∣∣
y=π,u=0

= J

b0 = − ∂h
∂u

∣∣
y=π,u=0

= 1

(1.24)

So the linearized model of the robotic arm around (ye = π, ue = 0) reads:

Jδÿ(t) + bδẏ(t)−mlgδy(t) = δu(t) (1.25)

In both situation we get a linear di�erential equation with constant coe�-
cients.

�

Example 1.2. Let's consider the following non-linear di�erential equation:

sin(ÿ(t)) + u2(t)− 2 + ey(t) = 0 (1.26)

The equilibrium points satisfy the following relationship:

u2
e − 2 + eye = 0 (1.27)

We arbitrarily choose the following equilibrium point:{
ue = 1
ye = 0

(1.28)

Let's linearize the nonlinear model around those the equilibrium point (ye =
0, ue = 1). We get:

h (y(t), ẏ(t), ÿ(t), u(t)) = sin(ÿ(t)) + u2(t)− 2 + ey(t)

⇒



a0 = ∂h
∂y

∣∣∣
y=0,u=1

= ey|y=0 = 1

a1 = ∂h
∂ẏ

∣∣∣
y=0,u=1

= 0

a2 = ∂h
∂ÿ

∣∣∣
y=0,u=1

= cos(ÿ)|y=0 = 1

b0 = − ∂h
∂u

∣∣
y=0,u=1

= − 2u|u=1 = −2

(1.29)
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So the linearized model around (ye = 0, ue = 1) reads:

ÿ(t) + δy(t) = −2 δu(t)⇔ ÿ(t) = −δy(t)− 2 δu(t) (1.30)

Figure 1.3 represents the response of the linear and the nonlinear model for
u(t) = 1 + 0.01sin(t) over 30 seconds. We can see that both responses are quite
similar.

To simulate the response of the system we create the following state vector:{
x1(t) = y(t)
x2(t) = ẏ(t)

(1.31)

Consequently the nonlinear di�erential equation reads:

sin(ÿ(t)) + u2(t)− 2 + ey(t) = 0

⇔
{
ẏ(t) = ẋ1(t) = x2(t)

ÿ(t) = ẋ2(t) = asin
(
2− ex1(t) − u2(t)

) (1.32)

For asin () to exist the inequality
∣∣2− ex1(t) − u2(t)

∣∣ ≤ 1 shall be checked.
The Scilab code to simulate both the nonlinear and the linear responses is the
following:

function xdot = nonLinearModel(t,x,A)

xdot = zeros(2,1);

xdot(1) = x(2);

ue = 1; //equilibrium point

du = A*sin(t);

u = ue + du;

siny2dot = 2 - exp(x(1))-u^2;

xdot(2) = asin(siny2dot);

endfunction

function xdot = linearModel(t,x,A)

xdot = zeros(2,1);

xdot(1) = x(2);

du = A*sin(t);

xdot(2) = -x(1) - 2*du;

endfunction

ye = 0; //equilibrium point

y0=0;

ydot0 = 0;

A = 0.01;

t=0:0.1:30;

yNonLinear = ode([y0;ydot0],0,t,list(nonLinearModel,A));

dyLinear = ode([y0;ydot0],0,t,list(linearModel,A));

figure();
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Figure 1.3: Block diagram representation of a LTI system

plot(t,[yNonLinear(1,:); ye + dyLinear(1,:)]);

xgrid();

legend(['Nonlinear model'; 'Lineal model'])

title('Model response (A=0.01)')

�
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Chapter 2

Laplace transform

2.1 Chapter overview

This chapter introduces the Laplace transform for continuous time functions.
This is a powerful tool to solve linear di�erential equations with constants co-
e�cients. Indeed linear operators like derivation or integration are transformed
thanks to the Laplace transform into algebraic operations involving a complex
variable which will be denoted s. Consequently the Laplace transform changes
a constant coe�cients linear di�erential equation into and algebraic (i.e. poly-
nomial) equation. Assuming that this algebraic equation can be solved for the
Laplace transform of the function to be �nd then the function itself which solves
the linear di�erential equation is obtained by the inverse Laplace transform; this
is accomplished either by partial fraction expansion and the use of a table of
Laplace transform pairs or by the use of the Mellin-Fourier (or Bromwich) in-
tegral. The purpose of this chapter is to present the Laplace transform and to
overview its main properties as well as Laplace transform inversion methods.

2.2 Reference signals

A causal signal is a signal which is zero for negative values of time:

g(t) = 0 ∀t < 0 (2.1)

In the following we will assume that all the signals are causal.
The aim of this section is to present important signals which are currently

used to study continuous time systems: more speci�cally we will focus on the
Dirac delta function, the unit step function and the complex exponential func-
tion.

2.2.1 Dirac delta function

The Dirac delta function or δ(t) function is a generalized function (or distribu-
tion) which is zero everywhere except at t = 0 with an integral of one over the
entire values of t:

δ(t) =

{
0 ∀t 6= 0
∞ when t = 0

s.t.

∫ ∞
0

δ(t)dt = 1 (2.2)
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Figure 2.1: Dirac delta function δ(t)

Dirac delta function can bee seen as the limit as T → 0 of function rectT (t)
which is equal to 1/T ∀ t ∈]0, T [ and 0 elsewhere. The schematic representation
of the Dirac delta function is a vertical arrow at t = 0 as depicted on �gure 2.1.

The following properties of the Dirac delta function are often used:

− Multiplication between a signal x(t) and the Dirac delta function trans-
lated by t0 ∈ R:

x(t)δ(t− t0) = x(t0)δ(t− t0) (2.3)

− Convolution: the convolution product ∗ between two causal signals f(t)
and g(t) is de�ned by:

f(t) ∗ g(t) =

∫ ∞
0

f(τ)g(t− τ)dτ (2.4)

Using the fact that g(t) is causal we get:

g(t) = 0 ∀t < 0⇔ g(t− τ) = 0 ∀(t− τ) < 0⇔ τ > t (2.5)

Thus the convolution integral reduces to:

f(t) ∗ g(t) =

∫ t

0
f(τ)g(t− τ)dτ (2.6)

The convolution product is commutative:

f(t) ∗ g(t) = g(t) ∗ f(t) (2.7)

Indeed:

f(t) ∗ g(t) =
∫ t

0 f(τ)g(t− τ)dτ =
∫∞
−∞ f(τ)g(t− τ)dτ

u = t− τ ⇒ f(t) ∗ g(t) = −
∫ −∞
∞ f(t− u)g(u)du

⇔ f(t) ∗ g(t) =
∫∞
−∞ f(t− u)g(u)du

=
∫ t

0 f(t− u)g(u)du = g(t) ∗ f(t)

(2.8)

As far as the convolution product is concerned, the Dirac delta function
satis�es the following property:

f(t) ∗ δ(t− t0) = f(t− t0) ∀t0 ∈ R (2.9)
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Figure 2.2: Unit step function Γ(t)

Taking t0 = 0 we get:
f(t) ∗ δ(t) = f(t) (2.10)

From the preceding equation it is clear that the Dirac delta function is
the neutral element of the convolution product.

2.2.2 Unit step function

The unit step function (or Heaviside step function) which will be denoted Γ(t)
is a discontinuous function whose value is zero for negative values of t and one
for positive values of t.

Γ(t) =

{
0 ∀t < 0
1 ∀t > 1

(2.11)

The schematic representation of the unit step function is depicted on �gure
2.2.

The derivative of the Unit step function involves the Dirac delta function:

d

dt
Γ(t) = δ(t) (2.12)

2.2.3 Complex exponential function

The complex exponential function with natural frequency ω0 is a signal x(t)
where t ∈ R and x(t) ∈ C de�ned by:

x(t) = ejω0t (2.13)

The complex exponential function veri�es the law of exponents:

ej(ω1+ω2)t = ejω1tejω2t (2.14)

The Euler's formula gives the relationship between the complex exponential
function and cos() and sin() functions:

ejω0t = cos (ω0t) + j sin (ω0t) (2.15)

The complex exponential function is used to compute the frequency response
of linear and time invariant systems which will be discussed in the next chapter.
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2.3 De�nition

The Laplace transform enables to solve linear di�erential equations with initial
conditions. More speci�cally it transforms a constant coe�cients linear di�er-
ential equation into and algebraic (i.e. polynomial) equation.

The Laplace transform of a continuous time function x(t) which is causal
(i.e. x(t) = 0 ∀t < 0) is a function of the complex variable s and reads:

L [x(t)] ≡ X(s) =

∫ ∞
0

x(t)e−stdt (2.16)

As far as the integral involved in the Laplace transform is limited to positive
values of t (indeed x(t) is assumed to be causal) the integral converges as soon
as x(t) has an exponential order when t → +∞. This means that there exists
three positive constants T , M and σ0 such that:

|x(t)| < Meσ0t ∀t > T (2.17)

Consequently integral involved in the Laplace transform converges as soon
as the complex variable s which is used in the Laplace transform is chosen such
that its real part is greater than the abscissa of convergence σ0:

Re (s) > σ0 ⇒
∫ ∞

0
x(t)e−stdt <∞ (2.18)

From a mathematical point of view the Laplace transform is limited to pos-
itive values of t because the integral of e−σt where σ > σ0 is divergent when
t → −∞. As a consequence the Laplace transform is limited to causal signals,
i.e. signals which are null for t < 0. It is worth noticing that the abscissa of
convergence σ0 is never computed from a practical point of view.

In addition it is worth noticing that the Laplace transform is a linear oper-
ator, meaning that if x1(t) and x2(t) are two causal signals and a1 and a2 two
constants then the Laplace transform of the linear combination between x1(t)
and x2(t) is the linear combination of the Laplace transform of x1(t) and x2(t):

L [a1x1(t) + a2x2(t)] = a1L [x1(t)] + a2L [x2(t)] = a1X1(s) + a2X2(s) (2.19)

Example 2.1. Compute the Laplace transform of the causal exponential func-
tion x(t) = e−at ∀t ≥ 0.

The Laplace transform of e−at is given by:

L
[
e−at

]
=

∫ ∞
0

e−ate−stdt = − e−(s+a)t

s+ a

∣∣∣∣∣
∞

t=0

(2.20)

As far as the real part of the complex variable s is assumed to be greater than
the abscissa of convergence σ0 (which is never computed from a practical point
of view), the value of e−(s+a)t converges to 0 when t → ∞. Consequently the
Laplace transform of e−at reduces to:

L
[
e−at

]
=

1

s+ a
(2.21)
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Notice that when a = 0 this reduces to the Laplace transform of the unit step
function Γ(t):

Γ(t) = e−at
∣∣
a=0
⇒ L [Γ(t)] =

1

s+ a

∣∣∣∣
a=0

=
1

s
(2.22)

�

2.4 Properties

This section presents the main properties of the Laplace transform without
demonstration. In the following x(t) is a causal signal and X(s) its Laplace
transform.

2.4.1 Linearity

For any signals x1(t) and x2(t) and any constants a1 and a2 in R or C:

L [a1x1(t) + a2x2(t)] = a1X1(s) + a2X2(s) (2.23)

This property comes from the linearity of integration.

Example 2.2. Compute the Laplace transform of the causal signal x(t) =
cos(ω0t) ∀t ≥ 0.

Using the Euler's formula we get:

cos(ω0t) =
ejω0t + e−jω0t

2
(2.24)

Using the linearity property, the Laplace transform of cos(ω0t) is given by:

L [cos(ω0t)] = X(s) =
∫∞

0
ejω0t+e−jω0t

2 e−stdt
= 1

2

∫∞
0 ejω0te−stdt+ 1

2

∫∞
0 e−jω0te−stdt

= 1
2

∫∞
0 e(jω0−s)tdt+ 1

2

∫∞
0 e−(jω0+s)tdt

= 1
2

(
e(jω0−s)t

jω0−s

∣∣∣∞
t=0
− e−(jω0+s)t

jω0+s

∣∣∣∞
t=0

) (2.25)

As far as the real part of the complex variable s is assumed to be greater
than the abscissa of convergence σ0 (which is never computed from a practical
point of view), the values of e(jω0−s)t and e−(jω0+s)t converge to 0 when t→∞.
Consequently the Laplace transform of cos(ω0t) reduces to:

L [cos(ω0t)] = 1
2

(
− 1
jω0−s + 1

jω0+s

)
= 1

2

(
−jω0−s
−ω2

0−s2
+ jω0−s
−ω2

0−s2

) (2.26)

We �nally get:

L [cos(ω0t)] =
s

s2 + ω2
0

(2.27)

�
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2.4.2 Derivation

L
[
d

dt
x(t)

]
= sX(s)− x(0+) (2.28)

For the second time derivative we have:

L
[
d2

dt2
x(t)

]
= sL

[
d

dt
x(t)

]
− ẋ(0+) = s2X(s)− sx(0+)− ẋ(0+) (2.29)

And so on:

L
[
dn

dtn
x(t)

]
= snX(s)− sn−1x(0+)− sn−2ẋ(0+)− · · · − ẋ(n−1)(0+) (2.30)

Example 2.3. Use the expression of the Laplace transform of cos(ω0t) to com-
pute the Laplace transform of sin(ω0t) ∀t ≥ 0.

We have:
d

dt
cos(ω0t) = −ω0 sin(ω0t) (2.31)

Then using the property of the Laplace transform with respect to the deriva-
tive we get:

L [sin(ω0t)] = − 1
ω0
L
[
d
dt cos(ω0t)

]
= − 1

ω0
(sL [cos(ω0t)]− cos(ω0t)|t=0+)

= − 1
ω0

(
s2

s2+ω2
0
− 1
)

= − 1
ω0

(
s2

s2+ω2
0
− s2+ω2

0

s2+ω2
0

) (2.32)

We �nally get:

L [sin(ω0t)] =
ω0

s2 + ω2
0

(2.33)

�

2.4.3 Integration

L
[∫

x(τ)dτ

]
=
X(s)

s
+

1

s

∫
x(τ)dτ

∣∣∣∣
τ=0

(2.34)

Note that the integral shall be computed without taking into account the
integration constant.

Example 2.4. Use the expression of the Laplace transform of sin(ω0t) to com-
pute the Laplace transform of cos(ω0t) ∀t ≥ 0.

Without taking into account the integration constant we have:∫
sin(ω0τ)dτ = −cos(ω0τ)

ω0
(2.35)



2.4. Properties 27

Then using the property of the Laplace transform with respect to the integra-
tion we get:

L [cos(ω0t)] = −ω0L
[∫

sin(ω0τ)dτ
]

= −ω0

(
L[sin(ω0t)]

s + 1
s

∫
sin(ω0τ)dτ

∣∣
τ=0

)
= −ω0

(
ω0

s(s2+ω2
0)
− 1

s
cos(ω0τ)

ω0

∣∣∣
τ=0

)
= −ω0

(
ω0

s(s2+ω2
0)
− 1

ω0s

)
= − ω2

0

s(s2+ω2
0)

+ 1
s

= − ω2
0

s(s2+ω2
0)

+
s2+ω2

0

s(s2+ω2
0)

(2.36)

We �nally get:

L [cos(ω0t)] =
s

s2 + ω2
0

(2.37)

�

2.4.4 Multiplication by t

Assuming that n is a positive integer then:

L [tnx(t)] = (−1)n
dn

dsn
X(s) (2.38)

2.4.5 Time domain translation (delay)

It can be shown that:
L [x(t− T )] = e−sTX(s) (2.39)

It is worth noticing time delay does not yield to rational function in the
Laplace domain. In order to get a rational function in the Laplace domain the
usual approximations of e−sT are the following:

− One method is to write e−sT = e−
sT
2

e
sT
2

and to use the Taylor series expansion

of e−
sT
2 and e−

sT
2 . We recall that:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
k=0

xk

k!
(2.40)

Consequently e−sT can be approximated by the following rational function
where the polynomials at the numerator and the denominator have the
same degree. This is set to an arbitrary integer denoted n hereafter:

e−sT =
e−

sT
2

e
sT
2

≈
∑n

k=0
1
k!

(
− sT

2

)k∑n
k=0

1
k!

(
sT
2

)k (2.41)

Usually n = 1 and we get:

e−sT ≈
1− sT

2

1 + sT
2

(2.42)
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− An other method is to approximate e−sT by the following rational function:

e−sT ≈

(
1− sT

2n

1 + sT
2n

)n
n = 1, 2, . . . (2.43)

− Padé approximation consists in identifying the 2n + 1 �rst terms of the
Taylor series expansion of e−sT with the 2n + 1 �rst terms of the Taylor
series expansion of the following rational function N(sT )

D(sT ) around sT = 0:

N(sT )

D(sT )
=
bn(sT )n + bn−1(sT )n−1 + · · ·+ b1 sT + b0
an(sT )n + an−1(sT )n−1 + · · ·+ a1 sT + 1

(2.44)

It is worth noticing that the coe�cient a0 has been set to 1 without loss
of generality.

From a practical point of view the Taylor series expansion of N(sT )
D(sT ) around

sT = 0 can be obtained as the quotient of the polynomial long division,
that is the division according to the increasing power of s (this is very
close to the Euclidean division, but on the other way):

b0 + b1 sT + · · · + bn(sT )n 1 + a1 sT + · · ·+ an(sT )n

− (b0 + b0a1 sT + · · ·+ b0an(sT )n) b0 + (b1 − b0a1) sT + · · ·
(b1 − b0a1) sT + · · ·

(2.45)

The 2n + 1 coe�cients (bn, · · · , b1, b0, an, · · · , a1) are obtained by identi-
fying each coe�cient of (sT )k, k = 0, · · · , 2n in the following equality:

b0 + (b1 − b0a1) sT + · · · = 1− sT +
1

2!
(sT )2 + · · · ≈ e−sT (2.46)

It can be shown that Padé approximation of e−sT reads:

e−sT ≈
∑n

i=0 qi (−sT )i∑n
i=0 qi (sT )i

where qi =
(2n− i)!n!

2n!i!(n− i)!
(2.47)

Padé approximation of e−sT for degree n = 1, 2 and 3 is given on Table
2.1.

2.4.6 Frequency domain translation

It can be shown that:
L
[
e−ω0tx(t)

]
= X(s+ ω0) (2.48)

Example 2.5. Use the expression of the Laplace transform of Γ(t) to compute
the Laplace transform of e−at ∀t ≥ 0.

We get:

L [Γ(t)] = X(s) =
1

s
⇒ L

[
e−at

]
= L

[
e−atΓ(t)

]
= X(s+ a) =

1

s+ a
(2.49)

�
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Degree n Padé approximation of e−sT

1
1− sT

2

1+ sT
2

2
1− sT

2
+

(sT )2

12

1+ sT
2

+
(sT )2

12

3
1− sT

2
+

(sT )2

10
− (sT )3

120

1+ sT
2

+
(sT )2

10
+

(sT )3

120

Table 2.1: Padé approximation of e−sT

2.4.7 Initial value theorem

Assuming that the value of x(t) exists when t→ 0+ then:

lim
t→0+

x(t) = lim
s→∞

sX(s) (2.50)

Example 2.6. Knowing that the Laplace transform of cos(ω0t) is
s

s2+ω2
0
compute

limt→0+ cos(ω0t).
We check that:

lim
t→0+

cos(ω0t) = lim
s→∞

s
s

s2 + ω2
0

= lim
s→∞

s2

s2 + ω2
0

= 1 (2.51)

Obviously we rediscover the fact that limt→0+ cos(ω0t) = cos(0) = 1.
�

Example 2.7. Knowing that the Laplace transform of sin(ω0t) is
ω0

s2+ω2
0
compute

limt→0+
d
dt sin(ω0t).

Using the derivative property we check that:

limt→0+
d
dt sin(ω0t) = lims→∞ s

(
s ω0

s2+ω2
0
− sin(ω0t)|t=0+

)
= lims→∞

s2 ω0

s2+ω2
0

= ω0

(2.52)

Obviously we rediscover the fact that limt→0+
d
dt sin(ω0t) = ω0 cos(ω0t)|t=0+ =

ω0.
�

2.4.8 Final value theorem

Assuming that the value of x(t) exists when t→∞ then:

lim
t→∞

x(t) = lim
s→0

sX(s) (2.53)

Example 2.8. Knowing that the Laplace transform of the unit step function
Γ(t) is 1

s compute limt→∞ Γ(t).
We check that:

lim
t→∞

Γ(t) = lim
s→0

s
1

s
= lim

s→0
1 = 1 (2.54)

�
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It is worth noticing that the �nal value theorem gives the correct answer as
soon as the value of x(t) exists when t→∞. For example if we apply the �nal
value theorem on cos(ω0t) which has no limit when t → ∞ then result is not
correct.

2.4.9 Convolution

We have seen that the convolution product ∗ between two causal signals x(t)
and y(t) is de�ned by:

x(t) ∗ y(t) =

∫ t

0
x(τ)y(t− τ)dτ (2.55)

Then the Laplace transform of the convolution product between two causal
signals x(t) and y(t) is the product of the Laplace transforms of x(t) and y(t):

L [x(t) ∗ y(t)] = X(s)Y (s) (2.56)

2.4.10 Evaluating improper integrals

It can be shown1 that the following property holds to evaluate improper integrals
thanks to Laplace transform:∫ ∞

0

y(t)

t
dt =

∫ ∞
0

Y (s)ds (2.57)

2.4.11 Link with Fourier transform

The Fourier transform is widely used in communication theory to assess spectral
properties of a signal. The Fourier transform X(ω) of a signal x(t) is de�ned as
follows:

X(ω) = F [x(t)] =

∫ +∞

−∞
x(t)e−jωtdt (2.58)

Compared with the Laplace transform the integral involved in the Fourier
transform starts at −∞ and the complex variable s in the exponential which
appears in the Laplace transform is replaced by a pure imaginary number jω
in the Fourier transform. From those properties de�ning the integral of the two
transforms we obtain formulas for getting from one to the other:

− If x(t) is even then:

F [x(t)] = L [x(t)]s=jω + F [x(t)]s=−jω (2.59)

− If x(t) is odd then:

F [x(t)] = L [x(t)]s=jω −F [x(t)]s=−jω (2.60)
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x(t) ∀t ≥ 0 X(s)

δ(t) 1

Γ(t) (step function) 1
s

t 1
s2

tn n!
sn+1

e−at 1
s+a

tn−1

(n−1)!e
−at 1

(s+a)n

a
t
T

1

s− ln(a)
T

sin(ω0t)
ω0

s2+ω2
0

e−at sin(ω0t)
ω0

(s+a)2+ω2
0

cos(ω0t)
s

s2+ω2
0

e−at cos(ω0t)
s+a

(s+a)2+ω2
0

Table 2.2: Usual Laplace transform pairs

2.5 Usual Laplace transform pairs

Usual Laplace transform pairs are provided in Table 2.2.

2.6 Inverse Laplace transform

In the following G(s) is a rational expression involving polynomials in its nu-
merator and denominator which are respectively denoted N(s) and D(s):

G(s) =
N(s)

D(s)
(2.61)

We will assume in the following that the degree of D(s) is strictly greater
than the degree of N(s); then G(s) is said strictly proper.

2.6.1 Partial fraction expansion

The roots of N(s) are called the zeros of G(s) whereas the roots of D(s) are
called the poles of G(s). Without loss of generality we will assume that G(s)
can be written as follows where λ1, ..., λn are the poles of G(s) with multiplicity
n1, · · · , nn respectively:

G(s) =
N(s)

(s− λ1)n1 · · · (s− λn)nn
(2.62)

Then the partial fraction expansion of G(s) is:

G(s) = G1(s) + · · ·+Gk(s) + · · ·+Gn(s) (2.63)

1https://en.wikipedia.org/wiki/Laplace_transform
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Where Gk(s) is the partial fraction expansion of G(s) associated to the pole
λk of multiplicity nk (k = 1, · · · , n):

Gk(s) =

nk∑
jk=1

bjk
(s− λk)jk

(2.64)

Constant coe�cient which multiplies the rational expression 1
s−λk (the power

of s− λk is 1) is called the residue of G(s) around pole s = λk.

Coe�cients bjk are computed thanks to the following formula:

bjk =
1

(nk − jk)!
dnk−jk

dsnk−jk
(s− λk)nk G(s)

∣∣∣∣
s=λk

k = 1, · · · , nk (2.65)

It is worth noticing that when the multiplicity of pole λk is 1 this formula
reduces to:

nk = jk = 1⇒ bjk = (s− λk)G(s)|s=λk (2.66)

Notice that the residues can be computed using the function residue with
MatlabTM and pfss with Scilab.

Once G(s) has been broken up into components:

G(s) = G1(s) + · · ·+Gn(s) (2.67)

Then the inverse Laplace transform of G(s) is the causal signal g(t) given
by:

g(t) = L−1 [G(s)] = L−1 [G1(s)]+ · · ·+L−1 [Gn(s)] = g1(t)+ · · ·+gn(t) (2.68)

The advantage of the partial fraction expansion is that the individual terms
of G(s) resulting from the expansion into the partial fraction form are very
simple functions of s and their inverse Laplace transform are readily available.
We can use for example Table 2.2 of usual Laplace transform pairs.

Example 2.9. Compute the inverse Laplace transform of G(s) = s2+2s+3
(s+1)3 .

Laplace transform G(s) has a single pole λ1 = −1 with multiplicity n1 = 3.

The partial fraction expansion of G(s) reads:

G(s) =
b1

s+ 1
+

b2
(s+ 1)2

+
b3

(s+ 1)3
(2.69)

Where:

b3 = 1
(3−3)!

d3−3

ds3−3 (s+ 1)3G(s)
∣∣∣
s=−1

= s2 + 2s+ 3
∣∣
s=−1

= 2
(2.70)

b2 = 1
(3−2)!

d3−2

ds3−2 (s+ 1)3G(s)
∣∣∣
s=−1

= 1
1!

d
ds

(
s2 + 2s+ 3

)∣∣
s=−1

= 2s+ 2|s=−1 = 0

(2.71)



2.6. Inverse Laplace transform 33

b1 = 1
(3−1)!

d3−1

ds3−1 (s+ 1)3G(s)
∣∣∣
s=−1

= 1
2!

d2

ds2

(
s2 + 2s+ 3

)∣∣∣
s=−1

= 1
2

d
ds (2s+ 2)

∣∣
s=−1

= 1
2 2|s=−1 = 1

(2.72)

Thus the partial fraction expansion of G(s) is:

G(s) =
b1

s+ 1
+

b2
(s+ 1)2

+
b3

(s+ 1)3
=

1

s+ 1
+

2

(s+ 1)3
(2.73)

With the use of Table 2.2 of usual Laplace transform pairs we are able to
compute the inverse Laplace transform of G(s) as:

L−1 [G(s)] = L−1

[
1

s+ 1

]
+ L−1

[
2

(s+ 1)3

]
= e−t + 2

t3−1

(3− 1)!
e−t (2.74)

That is:

g(t) = L−1 [G(s)] = e−t + t2e−t =
(
1 + t2

)
e−t ∀t ≥ 0 (2.75)

�

2.6.2 Mellin-Fourier integral

The Mellin-Fourier integral originates from complex analysis, traditionally known
as the theory of functions of a complex variable, and more speci�cally from he
computation of the Mellin-Fourier (or Bromwich) integral which can be evalu-
ated by means of the Cauchy's residue theorem. Those notions are out of the
scope of this lecture and we will just use some results to compute the inverse
Laplace transform of G(s), assuming that G(s) is a rational expression of poly-
nomial strictly proper (i.e. the degree of the denominator is strictly greater than
the degree of the denominator).

The Mellin-Fourier integral reads:

G(s) = N(s)
D(s) where deg(N(s)) < deg(D(s))

⇒ g(t) = L−1 [G(s)] =
∑

k Ress=λk
[
G(s)est

]
∀t ≥ 0

(2.76)

Where the residue Ress=λk
[
G(s)est

]
shall be computed around each pole

λk of G(s). Assuming that λk is a pole of multiplicity nk then the residue of
G(s) around pole λk is given by:

Ress=λk
[
G(s)est

]
=

1

(nk − 1)!

dnk−1

dsnk−1
(s− λk)nk G(s)est

∣∣∣∣
s=λk

(2.77)

Example 2.10. Compute the inverse Laplace transform of G(s) = s2+2s+3
(s+1)3 .

Laplace transform G(s) has a single pole λ1 = −1 with multiplicity n1 = 3.
Using Mellin-Fourier integral we get:

g(t) = L−1 [G(s)] = Ress=λ1

[
G(s)est

]
∀t ≥ 0 (2.78)
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Where:

Ress=−1

[
G(s)est

]
= 1

(3−1)!
d3−1

ds3−1 (s+ 1)3G(s)est
∣∣∣
s=−1

= 1
2!

d2

ds2

(
s2 + 2s+ 3

)
est
∣∣∣
s=−1

(2.79)

We will �rst compute the �rst and second derivative of
(
s2 + 2s+ 3

)
est be-

fore evaluating them at s = −1:

d
ds

(
s2 + 2s+ 3

)
est = (2s+ 2) est +

(
s2 + 2s+ 3

)
test

⇒ d2

ds2

(
s2 + 2s+ 3

)
est = 2est + (2s+ 2) test

+ (2s+ 2) test +
(
s2 + 2s+ 3

)
t2est

=
(
2 + 2 (2s+ 2) test +

(
s2 + 2s+ 3

)
t2
)
est

⇒ d2

ds2

(
s2 + 2s+ 3

)
est
∣∣∣
s=−1

=
(
2 + 2t2

)
e−t

(2.80)
We �nally get:

g(t) = Ress=−1

[
G(s)est

]
= 1

2!
d2

ds2

(
s2 + 2s+ 3

)
est
∣∣∣
s=−1

=
(
1 + t2

)
e−t ∀t ≥ 0

(2.81)

�

Example 2.11. Compute the inverse Laplace transform of G(s) = s+2
(s+3)(s+4)2 .

Laplace transform G(s) has two poles:

− λ1 = −3 with multiplicity n1 = 1. We get for the residue:

Ress=−3

[
G(s)est

]
= 1

(1−1)!
d1−1

ds1−1 (s+ 3)1G(s)est
∣∣∣
s=−3

= s+2
(s+4)2 e

st
∣∣∣
s=−3

= −e−3t

(2.82)

− λ2 = −4 with multiplicity n2 = 2. We get for the residue:

Ress=−4

[
G(s)est

]
= 1

(2−1)!
d2−1

ds2−1 (s+ 4)2G(s)est
∣∣∣
s=−4

= d
ds
s+2
s+3e

st
∣∣∣
s=−4

=
(est+(s+2)test)(s+3)−(s+2)est

(s+3)2

∣∣∣∣
s=−4

= −e−4t + 2te−4t + 2e−4t

= (1 + 2t)e−4t

(2.83)

Using Mellin-Fourier integral the inverse Laplace transform of G(s) is ob-
tained bu summing the two residues:

g(t) = L−1 [G(s)] = Ress=−3

[
G(s)est

]
+Ress=−4

[
G(s)est

]
∀t ≥ 0 (2.84)

We �nally get:

g(t) = −e−3t + (1 + 2t)e−4t ∀t ≥ 0 (2.85)

�
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Example 2.12. Use Laplace transform to �nd the solution to the following
di�erential equation: {

2ẏ(t)− y(t) = 2e2t

y(0) = 3
(2.86)

Taking the Laplace transform of the di�erential equation yields:

2 (sY (s)− y(0))− Y (s) = 2
s−2

⇔ Y (s) (2s− 1) = 2
s−2 + 6 = 6s−10

s−2

⇔ Y (s) = 6s−10
(2s−1)(s−2) = 3s−5

(s−0.5)(s−2)

(2.87)

Then we will compute the inverse Laplace transform of Y (s) thanks to the
Mellin-Fourier integral:

y(t) = L−1 [Y (s)] =
∑
k

Ress=λk
[
Y (s)est

]
∀t ≥ 0 (2.88)

Laplace transform Y (s) has two poles:

− λ1 = 0.5 with multiplicity n1 = 1. We get for the residue:

Ress=0.5

[
Y (s)est

]
= 1

(1−1)!
d1−1

ds1−1 (s− 0.5)1 Y (s)est
∣∣∣
s=0.5

= 3s−5
s−2 e

st
∣∣∣
s=0.5

= 7
3e

0.5t

(2.89)

− λ1 = 2 with multiplicity n2 = 1. We get for the residue:

Ress=2

[
Y (s)est

]
= 1

(1−1)!
d1−1

ds1−1 (s− 2)1 Y (s)est
∣∣∣
s=2

= 3s−5
s−0.5e

st
∣∣∣
s=2

= 2
3e

2t

(2.90)

We �nally get:

y(t) =
7

3
e0.5t +

2

3
e2t (2.91)

We check that y(0) = 3. �

2.7 Norm of vector signal

Let x(t) =

 x1(t)
·

xn(t)

 ∈ Rn be a vector depending of time t ≥ 0. Vector x(t)

is called a vector signal. Assuming that the following integral is de�ned its
represents the L2 norm of vector signal x(t):

‖x(t)‖2 =

√∫ ∞
0

xT (t)x(t)dt <∞ (2.92)
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The L2 norm of a vector signal is also called its energy. Vector signal x(t)
is said of �nite energy, or equivalently x(t) ∈ L2[0,∞) where L2[0,∞) is the
Hilbert space of �nite energy signal de�ned ∀t ≥ 0, as soon as the integral in
Equation (2.92) exists.

Let X(s) be the Laplace transform of vector signal x(t). As soon as the
vector signal x(t) ∈ L2 its Laplace transform X(s) is strictly proper and all its
poles have negative real part (or equivalently x(t) ∈ L2[0,∞) ⇔ X(s) ∈ H2

where notation H is used after the mathematician G.H. Hardy). By Parseval's
theorem we have:

‖x(t)‖2 =

√
1

2πj

∮
C−
XT (−s)X(s)ds (2.93)

where C− is a contour following the imaginary axis of the complex plane and
then around an in�nite semicircle in the left half plane.

The use of the residue theorem �nally leads to the following expression:

‖x(t)‖2 =

√ ∑
poles with negative real part

Res
(
XT (−s)X(s)

)
(2.94)

Let λi be a pole (with negative real part) of X(s) with multiplicity ni.
Residue Res

(
XT (−s)X(s)

)
on pole λi is de�ned as follows:

Ress=λi
(
XT (−s)X(s)

)
=

1

(ni − 1)!

dni−1

dsni−1
(s− λi)niXT (−s)X(s)

∣∣∣∣
s=λi

(2.95)

The L∞ norm of vector signal x(t) is de�ned by:

‖x(t)‖∞ = sup
t∈R+

max
i
|xi(t)| (2.96)

Example 2.13. Let x(t) be de�ned as follows where τ is a positive time con-
stant:

x(t) = e−
t
τ ∀t ≥ 0 (2.97)

The square of the L2 norm of signal x(t) is:

‖x(t)‖22 =
∫∞

0 xT (t)x(t)dt

=
∫∞

0 e−
2t
τ dt

= τ
2e
− 2t
τ

∣∣∣∞
0

= τ
2

(2.98)

And consequently:

‖x(t)‖2 =

√
τ

2
(2.99)

The square of the L2 norm of signal x(t) can equivalently be computed using
the Laplace transform X(s) of x(t):

X(s) = 1
s+ 1

τ

= τ
1+sτ

⇒ X(−s)X(s) = τ2

(1+sτ)(1−sτ)

(2.100)
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Assuming τ > 0 the unique pole λ1 = − 1
τ of X(s) has a negative real part

and its multiplicity n1 is equal to 1. Then residue of XT (−s)X(s) on pole
λ1 = − 1

τ is computed as follows:

Ress=− 1
τ

(
XT (−s)X(s)

)
= 1

(1−1)!
d1−1

ds1−1 (s− λi)niXT (−s)X(s)
∣∣∣
s=− 1

τ

= (s+ 1
τ ) τ2

(1+sτ)(1−sτ)

∣∣∣
s=− 1

τ

= τ
1−sτ

∣∣∣
s=− 1

τ

= τ
2

(2.101)
We �nally get:

‖x(t)‖2 =

√ ∑
poles with negative real part

Res
(
XT (−s)X(s)

)
=

√
τ

2
(2.102)

The L∞ norm of signal x(t) is de�ned by:

‖x(t)‖∞ = sup
t∈R+

|e−
t
τ | = 1 (2.103)

�

2.8 Mellin transform

The mellin transform of a continuous time function x(τ) which is causal (i.e.
x(τ) = 0 ∀τ < 0) is a function of the complex variable s and reads:

M [x(τ)] =

∫ ∞
0

x(τ) τ s−1dτ (2.104)

Mellin's transform is closely related to an extended form of Laplace's. Indeed
let's consider the following change of variables:

τ = e−t ⇔ t = − ln(τ) (2.105)

This change of variables transforms the integral (2.104) into:

dτ = −e−tdt⇒M
[
x(e−t)

]
= −

∫ −∞
+∞ x(e−t)

(
e−t
)s−1

e−tdt

=
∫ +∞
−∞ x(e−t)e−stdt

(2.106)

The previous relationship de�nes the two-sided Laplace transform of y(t) =
x(e−t) de�ned by:

L2s [y(t)] =

∫ +∞

−∞
y(t)e−stdt (2.107)

This can be written symbolically as:

M [x(τ)] = L2s

[
x(e−t)

]
(2.108)
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Chapter 3

Linear Time Invariant systems

3.1 Chapter overview

This chapter introduces linear time invariant (LTI) systems. First the properties
of linear time invariant (LTI) systems are presented. Then concept of transfer
function is presented and the time response as well as the frequency response
of linear time invariant systems are discussed. The last part of this chapter
is dedicated to model reduction where we will see that �rst and second order
models constitute the ultimate approximation of a system.

3.2 Properties

Linear and Time Invariant (LTI) systems satisfy the two following properties:

− Linearity: this means that the relationship between the input and the
output of the system is a linear: if input u1(t) produces response y1(t)
and input u2(t) produces response y2(t) then the linear combination of the
inputs a1u1(t) + a2u2(t) produces the linear combination of the outputs
a1y1(t) + a2y2(t) where a1 and a2 are real scalars. Denoting by S the
system operator we get: {

S [u1(t)] = y1(t)
S [u2(t)] = y2(t)

⇒ S [a1u1(t) + a2u2(t)] = a1S [u1(t)] + a2S [u2(t)]
⇔ S [a1u1(t) + a2u2(t)] = a1y1(t) + a2y2(t)

(3.1)

Linearity leads to the superposition principle. The superposition princi-
ple states that, for all linear systems, the net response caused by two or
more inputs is the sum of the responses which are caused by each input
individually.

− Time invariance: this means that if the output due to input u(t) is y(t)
at time t then the output due to input u(t− T ) after a delay of T will be
y(t− T ):

S [u(t)] = y(t)⇒ S [u(t− T )] = y(t− T ) ∀T ≥ 0 (3.2)
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We will see that a linear system is time invariant as soon as initial condi-
tions are null.

3.3 Convolution integral

The time response of a linear system to a causal input u(t) (u(t) = 0 ∀t < 0)
can be computed as follows:

− First use the fact that the delta Dirac function is the neutral element for
the convolution product:

u(t) = u(t) ∗ δ(t) =

∫ ∞
0

u(τ)δ(t− τ)dτ (3.3)

− Then apply the system operator S on the input u(t):

S [u(t)] = S
[∫ ∞

0
u(τ)δ(t− τ)dτ

]
(3.4)

− Using the fact that the system is linear we can reverse
∫∞

0 and S operators:

S
[∫ ∞

0
u(τ)δ(t− τ)dτ

]
=

∫ ∞
0
S [u(τ)δ(t− τ)] dτ (3.5)

− In the expression S [u(τ)δ(t− τ)] the only term with depends on time t
is δ(t− τ). Indeed term u(τ) is viewed as an independent term of time t
because the integral is envisioned as an in�nite sum for di�erent values of
τ . Thus as far as the system is linear we get:

S [u(τ)δ(t− τ)] = u(τ)S [δ(t− τ)] (3.6)

− Let's us de�ne h(t) as the time response of the system to the delta Dirac
function; this is the impulse response of the system:

h(t) = S [δ(t)] (3.7)

As soon as the system is time invariant we get:

S [δ(t− τ)] = h(t− τ) (3.8)

− Consequently the system time response can be written as:

S [u(t)] =

∫ ∞
0

u(τ)S [δ(t− τ)] dτ =

∫ ∞
0

u(τ)h(t− τ)dτ (3.9)

Thus we have showed that a Linear and Time Invariant (LTI) system is
basically a convolutor, meaning that the relationship between the input u(t)
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Figure 3.1: Block diagram representation of a LTI system

and the output y(t) of the system is obtained thanks to a convolution product.
Denoting by h(t) the impulse response of the system we get:

h(t) = S [δ(t)]⇒ y(t) = S [u(t)] = u(t) ∗ h(t) =

∫ ∞
0

u(τ)h(t− τ)dτ (3.10)

Using the fact that the convolution product is commutative the preceding
relationship can also be written as follows:

y(t) = h(t) ∗ u(t) =

∫ ∞
0

h(τ)u(t− τ)dτ (3.11)

The convolution product is usually quite cumbersome to compute. Hopefully
the Laplace transform changes the convolution product into a simple product,
meaning that the Laplace transform of the system output is obtained thanks
to the simple product between the Laplace transform of the system impulse
response and the Laplace transform of the input signal:

L [u(t)] = U(s)
L [h(t)] = H(s)
L [y(t)] = Y (s)

⇒ Y (s) = H(s)U(s) (3.12)

The Laplace transform of the impulse response h(t) of the system, which is
denoted H(s), is called the transfer function of the system. Figure 3.1 provides
the block diagram representation of a linear time invariant (LTI) system.

3.4 System de�ned by a linear di�erential equation

We have seen that a nonlinear and time invariant system can be approximated
by a linear di�erential equation with constant coe�cients. Taking the Laplace
transform of (1.17) and assuming zero initial conditions we get:

a0Y (s) + a1sY (s) + · · ·+ an−1s
n−1Y (s) + ans

nY (s) =

b0U(s) + b1sU(s) + · · ·+ bm−1s
m−1U(s) + bms

mU(s) (3.13)

Thus the transfer function of the system is de�ned by:

H(s) =
Y (s)

U(s)
=
b0 + b1s+ · · ·+ bm−1s

m−1 + bms
m

a0 + a1s+ · · ·+ an−1sn−1 + ansn
(3.14)
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Notice that the coe�cient an is equal to 1 without loss of generality.
The denominator of the transfer function is called the characteristic polyno-

mial and the order of the model is the degree of the characteristic polynomial
(which is n for the transfer function (3.14)). In addition the transfer function
H(s) is said to be strictly proper if the degree of its denominator is strictly
greater than the degree of its numerator, i.e. n > m.

Coming back to the time domain and having in mind that the Laplace
transform of the convolution product between two causal signals h(t) and u(t)
is the simple multiplication between the Laplace transform of h(t) and u(t) we
get:

Y (s) = H(s)U(s)⇔ y(t) = h(t) ∗ u(t) (3.15)

As a consequence a system de�ned by a linear di�erential equation is a
Linear and Time Invariant system (LTI) as soon as initial conditions are equal
to zero.

If u(t) is a causal signal then lims→∞ U(s) < ∞. Similarly if H(s) is a
fraction involving polynomials in its numerator and denominator then the cor-
responding system is said to be causal when lims→∞H(s) < ∞. This means
that the degree of the denominator is greater than or equal to the degree of
the numerator. From a practical point of view a system is said to be causal
when the output depends on past and current inputs but not on future inputs
(non-anticipative system).

Settling time ts is the time required by the system response to reach and
stay within a range about the �nal value. The range is speci�ed by absolute
percentage of the �nal value which is usually 5%.

The static gain Gs of a continuous time system is the limit as t → ∞ of
the rational expression between the output signal y(t) and the input signal u(t).
Assuming that the limit exists and applying the �nal value theorem leads to the
following expression of the static gain:

Gs = lim
t→∞

y(t)

u(t)
= lim

s→0

sY (s)

sU(s)
= lim

s→0

Y (s)

U(s)
= H(0) (3.16)

3.5 E�ect of zeros on the system response

Consider a system with the following transfer function:

H(s) = K
N(s)

D(s)
= K

sm + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · · a1s+ a0
(3.17)

Numerator N(s) does not a�ect the homogeneous response of the system.
Now consider Figure 3.2 where the all-pole system 1/D(s) is excited by signal
x(t):

x(t) = K
m∑
k=0

bk
dk

dtk
u(t) (3.18)

As far as x(t) is the superposition of the derivatives of u(t) we conclude that
the zeros of the system shape the manner on how the pole of the system are
excited.
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Figure 3.2: E�ect of zeros of the system response

3.6 Frequency response

In this section we will focus on stable linear time invariant systems, meaning
that all the poles of the transfer function have negative real part. Stability
analysis will be tackled in the next chapter.

3.6.1 Relationship with transfer function

The frequency response of a system is the response of the system to the causal
input u(t) = ejωt where ω is the frequency of the complex exponential function.
More speci�cally the frequency response consists in the magnitude and phase
relationship between the input and the output signal when the input signal u(t)
is the causal complex exponential function ejωt.

We recall that a linear system is a convolutor. Specializing relationship
(3.11) to the case where u(t) is the complex exponential function reads:

u(t) = ejωt ⇒ y(t) =

∫ ∞
0

h(τ)ejω(t−τ)dτ (3.19)

Using the fact that the integration is a linear operation we get:

y(t) = ejωt
∫ ∞

0
h(τ)e−jωτdτ (3.20)

We recognize in the term
∫∞

0 h(τ)e−jωτdτ the Laplace transform of the im-
pulse response h(t) where the Laplace variable s is specialized to be jω:∫ ∞

0
h(τ)e−jωτdτ =

∫ ∞
0

h(τ)e−sτdτ

∣∣∣∣
s=ejω

= H(s)|s=jω (3.21)

Note that H(s)|s=jω = H(jω) is called the frequency response of the system.
As a consequence the frequency response of a linear system to the complex

exponential function reads:

u(t) = ejωt ⇒ y(t) = ejωt H(s)|s=jω = H(jω)ejωt (3.22)

The preceding relationship shows that frequency response of a linear system
is closely linked to its transfer function. The frequency of the output signal is
the same than the frequency of the input signal; only the amplitude and the
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phase of the input signal are changed by the linear system. In addition the
phase of the output signal is independent of the amplitude of the input signal.
Denoting by ‖H(jω)‖ the norm of H(jω) and by Φ(ω) the phase of H(jω) the
preceding relationship reads:{

u(t) = ejωt

H(jω) = ‖H(jω)‖ ejΦ(ω)

⇒ y(t) = ‖H(jω)‖ ejωtejΦ(ω) = ‖H(jω)‖ ej(ωt+Φ(ω))

(3.23)

Where Re stands for real part and Im stands for imaginary part: ‖H(jω)‖ =
√

(ReH(jω))2 + (ImH(jω))2

Φ(ω) = arg (H(jω)) = arctan
(
ImH(jω)
ReH(jω)

) (3.24)

As far as numerator and denominator of rational transfer function H(jω)
have real coe�cients we have:{

Re (H(jω)) = Re (H(−jω))
Im (H(jω)) = −Im (H(−jω))

⇒
{

‖H(jω)‖ = ‖H(−jω)‖
arg (H(jω)) = − arg (H(−jω))

(3.25)
Thus ‖H(jω)‖ is an even function of ω whereas arg (H(jω)) is an odd func-

tion of ω. Consequently ‖H(jω)‖ and arg (H(jω)) are only studied for positive
values of ω, which consistently corresponds to physically achievable frequencies:

ω ≥ 0 (3.26)

It is worth noticing that when the input signal u(t) is not the complex
exponential function but a real sinusoidal signal then the output signal y(t) is
obtained thanks to the real (or imaginary) part of the complex output signal:

u(t) = cos (ωt) = Re
(
ejωt

)
⇒ y(t) = Re

(
‖H(jω)‖ ej(ωt+Φ(ω))

)
= ‖H(jω)‖ cos (ωt+ Φ(ω))

(3.27)

And similarly:

u(t) = sin (ωt) = Im
(
ejωt

)
⇒ y(t) = Im

(
‖H(jω)‖ ej(ωt+Φ(ω))

)
= ‖H(jω)‖ sin (ωt+ Φ(ω))

(3.28)

3.6.2 Bode plot

Bode plot consists in drawing the log magnitude 20 log10 ‖H(jω)‖ (this is the
Bode magnitude plot) and the phase arg (H(jω)) (this is the Bode phase plot)
of the frequency response H(jω) over the frequency range from ω = 0 to in�nity.
The plot is usually presented on a semi-log graph where the ω axis is plotted
on a logarithmic scale.

Two units are used to express frequency ratios: there are octave and decade.
An octave is a frequency band from ω to 2ω whereas a decade is a frequency
band from ω to 10ω.

As far as the magnitude of the frequency response is concerned the unit used
for the logarithm of the magnitude is the decibel (dB). The dB value of 2 is 6 dB
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and the dB value of 1
2 is −6 dB. In addition as a number increases by a factor

10 the decibel values increases by 20 dB. More generally as a number increases
by a factor 10n the decibel values increases by 20n dB.

The Bode plot of the frequency response is easily obtained when considering
the factorized form of the transfer function. Let's us suppose that the transfer
function H(s) can be factorized into the following �rst and second order terms
where k is a real (either positive or negative) and α, ai, bj are integers either
positive or negative:

H(s) =
k

sα

∏
i

(1 + τis)
ai
∏
j

(
1 +

2mj

ωj
s+

s2

ω2
j

)bj
(3.29)

Integer α is the number of integrations in the transfer function H(s). First
order terms are of the form 1 + τis, τi > 0 and are related to the real poles
(ai < 0) and zeros (ai > 0) of the transfer function whereas second order terms

are of the form 1 +
2mj
ωj
s + s2

Ω2
i
, mj , ωj > 0 are related to the complex poles

(bj < 0) and zeros (bj > 0) of the transfer function.
Replacing the Laplace variable s by jω and rewriting the transfer function

in polar form yields:

H(jω) =
‖k‖
‖ω‖α

∏
i

‖1 + τis‖ai
∏
j

∥∥∥∥∥1 +
2mj

ωj
s+

s2

ω2
j

∥∥∥∥∥
bj

× ejΦ(ω) (3.30)

Taking the log magnitude of the frequency response reads:

20 log10 ‖H(jω)‖ = 20 log10 ‖k‖ − 20α log10 (ω)

+
∑
i

20ai log10 ‖1 + jωτi‖

+
∑
j

20bj log10

∥∥∥∥∥1−
(
ω

ωj

)2

+ 2mj
ω

ωj
j

∥∥∥∥∥ (3.31)

Thus when considering the factorized form of the transfer function the log
magnitude of the frequency response is readily obtained by summing the log
magnitude of the individual factors.

Similarly the phase of the frequency response is obtained by summing the
phase of the individual factors of the factorized form of the transfer function:

Φ(w) = arg(k)− arg((jω)α) +
∑
i

arg (1 + jωτi)
ai

+
∑
j

arg

(
1−

(
ω

ωj

)2

+ 2mj
ω

ωj
j

)bj
(3.32)

That is:

Φ(w) = arg(k)− απ
2

+
∑
i

ai arctan (ωτi) +
∑
j

bj arctan

(
2mjωjω

ω2
j − ω2

)
(3.33)
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slope in dB/decade phase in deg
ω < ωc ω > ωc ω < ωc ω > ωc

sα 20α 90α

(1 + τis)
ai , ωc = 1/τi 0 20ai 0 90ai sgn(ai)((

s2 + 2mjωjs+ ω2
j

)
/ω2

j

)bj
, ωc = ωj 0 40bj 0 180bj sgn(bj)

Table 3.1: Main characteristics of asymptotic Bode plot

Notice that arg(k) = 0 if k > 0 and arg(k) = π if k < 0.
Asymptotic Bode plot is obtained when drawing the shape of the individual

factors of H(jω) for the limit values of ω that are ω → 0 and ω →∞.
For the log magnitude we get:

lim
ω→0

20 log10 ‖H(jω)‖ = 20 log10 ‖k‖ − 20α log10 (ω) (3.34)

And:

lim
ω→∞

20 log10 ‖H(jω)‖ = 20 log10 ‖k‖ − 20α log10 (ω)

+
∑
i

20ai log10 (ωτi) +
∑
j

40bj log10

(
ω

ωj

)
(3.35)

Table 3.1 summarizes the main characteristics of the asymptotic Bode plot
of �rst order and second order individual factors where ωc stands for the corner
frequency and n is a positive or negative integer:

3.7 Model reduction

Model reduction consists in computing an approximate model of lower order of
a system in order to facilitate the control design. Several methods exist. We will
present in that section only the Padé (or dominant pole) approximation which
is one of the simplest method.

We will assume in the following that the transfer function H(s) of the model
to be reduced is strictly proper and that all the roots of its polynomial charac-
teristics have strictly negative real parts (i.e. all the poles of H(s) are situated
in the left half part of the complex plane):{

H(s) = b0+b1s+···+bn−1sn−1

a0+a1s+···+an−1sn−1+sn
= N(s)

D(s)

D(λi) = 0⇒ Re (λi) < 0
(3.36)

Notice that without loss of generality coe�cient an has been set to 1.
The Padé approximation or order (q, r) of H(s) is the transfer function

H̃q,r(s) whose Taylor series expansion around s = 0 has the same �rst q + r
coe�cients than those of H(s).

H̃q,r(s) =
b̃0 + b̃1s+ · · ·+ b̃qs

q

ã0 + ã1s+ · · ·+ ãr−1sr−1 + sr
(3.37)
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From a practical point of view Taylor series expansion around s = 0 can
be obtained through the quotient of the polynomial long division, that is the
division according to the increasing power of s. It is worth noticing that contrary
to the Euclidean division where the polynomials are written according to the
decreasing powers of s, in the polynomial long division the polynomials are
written according to the increasing powers of s.

As far as Taylor series expansion is obtained around s = 0 the Padé approx-
imation keeps the low frequency shape of the frequency response of H(s).

In the following we will set q = 0 and we will denote H̃0,r(s) ≡ H̃(s):

H̃0,r(s) ≡ H̃(s) =
b̃0

ã0 + ã1s+ · · ·+ ãr−1sr−1 + sr
=

b̃0

D̃(s)
(3.38)

The denominator D̃(s) of the reduced model H̃(s) is built thanks to the r
poles of H(s) whose real part are the closest to the imaginary axis. Those poles
are called the dominant poles of H(s). If the values obtained when dividing the
real part of the others poles of H(s) by the real part of the dominant poles of
H(s) are greater than 3 (or 2) then the low frequency model obtained through
the Padé approximation is quite representative of the long term response of the
system.

Once D̃(s) is known, the coe�cient b̃0 could be obtained thanks to the
identi�cation of the Taylor development of H̃(s) and H(s) around s = 0. In
order to avoid the computation of the �rst terms of the Taylor series expansion
it is worth noticing that coe�cient b̃0 can also be obtained by identifying the
static gain of the actual transfer functionH(s) and the static gain of the reduced
model H̃(s).

It is worth noticing that �rst and second order models are widely studied
because they can be viewed as reduced order models of actual transfer functions.
Indeed:

− When the dominant pole is real then r = 1: this leads a �rst order reduced
model.

− When the dominant poles are complex conjugate then r = 2: this leads
to a second order reduced model.

Example 3.1. Let's consider the following transfer function:

H(s) =
15

s2 + 6s+ 5
=
N(s)

D(s)
(3.39)

The poles of H(s) are the following (you may use function roots with Scilab):

D(s) = s2 + 6s+ 5 = (s+ 1)(s+ 5) = 0

⇒
{
λ1 = −1
λ2 = −5

(3.40)

All the poles of H(s) have negative real part and D(0) 6= 0. The dominant
poles of H(s) is −1 and the values obtained when dividing the real part of the
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others poles of H(s) by the real part of the dominant poles are greater than 3 (or
2). As a consequence the system is subject to Padé approximation. First we kept
the dominant poles of H(s) to build the denominator D̃(s) of the approximated
transfer function H̃(s):

H̃(s) =
b̃0

s+ 1
(3.41)

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of H̃(s):

b̃0 1 + s

−
(
b̃0 + b̃0s

)
b̃0 + · · ·

−b̃0s
(3.42)

We also compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of H(s):

15 5 + 6s+ s2

−
(
15 + 18s+ 3s2

)
3 + · · ·

−18s
(3.43)

The identi�cation of the two quotients leads to the expression of coe�cients
b̃0 and b̃1:

b̃0 = 3 (3.44)

Thus the Padé approximation of H(s) reads:

H̃(s) =
3

s+ 1
(3.45)

Figures 3.3 and 3.4 show the unit step responses as well as Bode plots of the
model H(s) and its Padé approximation H̃(s); it is clear that H̃(s) exhibits the
same low frequency shape than H(s).

�

Example 3.2. Let's consider the following transfer function:

H(s) =
1

(2s+ 1)(3s+ 1)(4s+ 1)
=

1

1 + 9s+ 26s2 + 24s3
(3.46)

It is clear that the poles of H(s) are the following:
λ1 = −1

2
λ2 = −1

3
λ3 = −1

4 = −0.25
(3.47)

All the poles of H(s) have negative real part and D(0) 6= 0. The dominant
poles of H(s) is −0.25. Despite the fact that all the values obtained when dividing
the real part of the others poles of H(s) by the real part of the dominant poles
are not greater than 3 (or 2) we will test Padé approximation. First we kept
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Figure 3.3: Unit step responses of H(s) and H̃(s)

Figure 3.4: Bode plots of H(s) and H̃(s)
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the dominant poles of H(s) to build the denominator D̃(s) of the approximated
transfer function H̃(s):

H̃(s) =
b̃0

s+ 0.25
(3.48)

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of H̃(s):

b̃0 0.25 + s

−
(
b̃0 + 4b̃0s

)
4b̃0 + · · ·

−4b̃0s

(3.49)

We also compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of H(s):

1 1 + 9s+ 26s2 + 24s3

− (1 + 9s+ · · · ) 1 + · · ·
−9s+ · · ·

(3.50)

The identi�cation of the two quotients leads to the expression of coe�cients
b̃0 and b̃1:

4b̃0 = 1⇒ b̃0 = 0.25 (3.51)

Thus the Padé approximation of H(s) reads:

H̃(s) =
0.25

s+ 0.25
=

1

4s+ 1
(3.52)

Figures 3.5 and 3.6 show the unit step responses as well as Bode plots of
the model H(s) and its Padé approximation H̃(s). We can see in that example
that the unit step response of the Padé approximation is not close from the unit
step response of the full model; nevertheless the two responses move towards
the same �nal values. Indeed both transfer functions have the same static gain:
H(0) = H̃(0).

�

Example 3.3. Let's consider the following transfer function:

H(s) =
156 + s+ 2s3 + s4

156 + 268s+ 216s2 + 84s3 + 15s4 + s5
=
N(s)

D(s)
(3.53)

The poles of H(s) are the following (you may use function roots with Scilab):

D(s) = 156 + 268s+ 216s2 + 84s3 + 15s4 + s5 = 0

⇒


λ1 = −5 + j
λ2 = −5− j
λ3 = −3
λ4 = −1 + j
λ5 = −1− j

(3.54)

All the poles of H(s) have negative real part and D(0) 6= 0. The dominant
poles of H(s) are −1 ± j and the values obtained when dividing the real part
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Figure 3.5: Unit step responses of H(s) and H̃(s)

Figure 3.6: Bode plots of H(s) and H̃(s)
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of the others poles of H(s) by the real part of the dominant poles are greater
than 3 (or 2). As a consequence the system is subject to Padé approximation.
First we kept the dominant poles of H(s) to build the denominator D̃(s) of the
approximated transfer function H̃(s):

H̃(s) =
b̃0 + b̃1s

(s+ 1− j)(s+ 1 + j)
(3.55)

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of H̃(s):

b̃0 + b̃1s 2 + 2s+ s2

−(b̃0 + b̃0s+ b̃0
2 s

2) b̃0
2 + b̃1−b̃0

2 s+ · · ·
(b̃1 − b̃0)s− b̃0

2 s
2

(3.56)

We also compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of H(s):

156 + s+ 2s3 + s4 156 + 268s+ 216s2 + 84s3 + 15s4 + s5

−(156 + 268s+ 216s2 + 84s3 + 15s4 + s5) 1− 267
156s+ · · ·

−267s− 216s2 − 82s3 − 14s4 − s5

(3.57)
The identi�cation of the two quotients leads to the expression of coe�cients

b̃0 and b̃1: {
b̃0
2 = 1⇒ b̃0 = 2
b̃1−b̃0

2 = −267
156 ⇒ b̃1 = 2

(
1− 267

156

)
≈ −2× 0.711

(3.58)

Thus the Padé approximation of H(s) reads:

H̃(s) = 2
1− 0.711s

2 + 2s+ s2
(3.59)

Figures 3.7 and 3.8 show the unit step responses as well as Bode plots of the
model H(s) and its Padé approximation H̃(s); it is clear that H̃(s) exhibits the
same low frequency shape than H(s).

Nevertheless the Padé approximation of H(s) is a non-minimum phase trans-
fer function, meaning that some of its zeros have positive real part. As a con-
sequence the response starts in the opposite direction of the �nal value. The
derivative at the starting time can be computed thanks to the initial value theo-
rem:

lim
t→0

ẏ(t) = lim
s→∞

sL [ẏ(t)] = lim
s→∞

s2Y (s) = lim
s→∞

s2H(s)U(s) (3.60)

As far as u(t) is the unit step function whose Laplace transform is 1/s we
�nally obtain:

U(s) =
1

s
⇒ lim

t→0
ẏ(t) = lim

s→∞
sH(s) (3.61)

�



3.7. Model reduction 53

Figure 3.7: Unit step responses of H(s) and H̃(s)

Figure 3.8: Bode plots of H(s) and H̃(s)
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3.8 First order model

3.8.1 Time response

An �rst order system is described by a linear di�erential equation of the �rst
order with constant coe�cients. Denoting by τ (τ > 0) the time constant and
by K the static gain, �rst order model reads:

τ
dy

dt
+ y(t) = Ku(t) (3.62)

We will assume in the following that:

y(0) = 0 (3.63)

The transfer function of such system reads:

H(s) =
K

1 + τs
(3.64)

The unit step response of a �rst order systems will be computed thanks to
the Laplace transform. Since the Laplace transform of the unit step function is
1/s and substituting U(s) = 1/s we obtain:

Y (s) = H(s)U(s) =
K

s(1 + τs)
(3.65)

Expanding Y (s) into partial fractions gives:

Y (s) =
K

s
− Kτ

1 + τs
=
K

s
− K

1/τ + s
(3.66)

Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K −Ke−
t
τ ∀t ≥ 0 (3.67)

This equation states that the output is initially zero (that is y(0)) and that
it �nally moves towards K when t→∞ as soon as τ > 0. Note that the smaller
the time constant τ is the faster the system response is.

We can check that y(t) = h(t) ∗ u(t) =
∫∞

0 h(τ)u(t− τ)dτ . Indeed:

h(t) = L−1 [H(s)] = L−1

[
K

τ

1

( 1
τ + s)

]
=
K

τ
e−

t
τ (3.68)

And:

y(t) = h(t) ∗ u(t) =
∫∞

0 h(x)u(t− x)dx =
∫ t

0 h(x)dx

⇔ y(t) = K
τ

∫ t
0 e
−x
τ dx = −K e−

x
τ

∣∣∣t
0

= K −Ke−
t
τ ∀t ≥ 0

(3.69)

The step response of a �rst order model has no overshoot. In addition the
slope of the tangent at t = 0 is K

τ since:

dy

dt

∣∣∣∣
t=0

=
K

τ
e−

t
τ

∣∣∣∣
t=0

=
K

τ
(3.70)
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Figure 3.9: First order system unit step response where K = 1 and τ = 2

The unit step response of a �rst order system is sketched in Figure 3.9.
For a �rst order system the 5% settling time is:

ts = 3τ (3.71)

Indeed:

0.95K = K
(

1− e−
ts
τ

)
⇒ 0.05 = e−

ts
τ ⇒ ts = τ ln

(
1

0.05

)
≈ 3τ (3.72)

Notice that time responses of linear time invariant systems can be com-
puted thanks to functions syslin and csim (and the use of symbol %s to de�ne
polynomials) with Scilab.

Example 3.4. Let's consider Figure 3.10 where an RC �lter is depicted: u(t)
is the voltage applied to the circuit, y(t) is the voltage across the capacitor and
i(t) the current through the capacitor.

The relationship between the input u(t) and the output y(t) is the following:{
u(t) = Ri(t) + y(t)
i(t) = Cẏ(t)

⇒ ẏ(t)− i(t)
C = 0

⇔ RCẏ(t) + y(t) = u(t)

(3.73)

Comparing the di�erential equation which drives the dynamic of RC �lter
with equation (3.62) we conclude that this system is a model for a �rst order
system with time constant τ = RC and static gain K = 1.

�
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Figure 3.10: RC Filter

3.8.2 Frequency response

Let's consider the following �rst order model where the static gain K has been
set to 1:

H(s) =
1

1 + τs
⇒ H(jω) =

1

1 + jωτ
(3.74)

The log magnitude of the frequency response reads:

20 log10 ‖H(jω)‖ = 20 log10

 1√
1 + (ωτ)2

 = −10 log10

(
1 + (ωτ)2

)
(3.75)

Thus when ωτ → 0 the log magnitude of H(jω) tends towards 0 whereas

when ωτ →∞ the log magnitude ofH(jω) is approximated by−10 log10

(
(ωτ)2

)
that is −20 log10 (ωτ). The two asymptotes cross each other when the frequency
ω is equal to the corner frequency ωc . Corner frequency ωc is de�ned by the
following equation:

0 = −20 log10 (ωcτ)⇔ ωc =
1

τ
(3.76)

The phase of the frequency response reads:

Φ(ω) = arg (H(jω)) = − arctan (ωτ) (3.77)

Thus when ωτ → 0 the phase of H(jω) tends towards 0 whereas when
ωτ → ∞ the phase of H(jω) is approximated by −90 deg. At the corner
frequency ωc the phase is equal to − arctan (1) = −45 deg.

Figure 3.11 presents the Bode plot as well as the asymptotic Bode plot for
a �rst order model where K = 1 and τ = 2.

3.9 Second order model

3.9.1 Di�erential equation and unit step response

A second order model is described by a linear di�erential equation of the second
order with constant coe�cients. Denoting by ω0 (ω0 > 0) the undamped natural
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Figure 3.11: Bode plot and asymptotic Bode plot of a �rst order model where
K = 1 and τ = 2

frequency of the model, by m (m > 0) the damping ratio and by K the static
gain, second order model reads:

1

ω2
0

d2y

dt2
+

2m

ω0

dy

dt
+ y(t) = Ku(t) (3.78)

The term mω0 is referred as the damping factor.
We will assume in the following that:

y(0) = ẏ(0) = 0 (3.79)

The transfer function of such system reads:

H(s) = K
ω2

0

s2 + 2mω0s+ ω2
0

(3.80)

The unit step response of a second order model will be computed thanks to
the Laplace transform. Since the Laplace transform of the unit step function is
1/s and substituting U(s) = 1/s we obtain:

Y (s) = H(s)U(s) = K
ω2

0

s(s2 + 2mω0s+ ω2
0)

(3.81)

Denoting by λ1 and λ2 the two roots of the characteristic polynomial s2 +
2mω0s + ω2

0 and assuming that those two values are distinct the preceding
relationship reads:

Y (s) = H(s)U(s) = K
ω2

0

s(s− λ1)(s− λ2)
(3.82)
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Figure 3.12: RLC Filter

Expanding Y (s) into partial fractions and using the fact that λ1λ2 = ω2
0 (we

also have λ1+λ2 = −2mω0 when identifying s
2+2mω0s+ω

2
0 with (s−λ1)(s−λ2))

gives
Y (s) = K λ1λ2

s(s−λ1)(s−λ2)

= K
(

1
s + 1

λ1−λ2

(
λ2
s−λ1

− λ1
s−λ2

)) (3.83)

Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K

(
1 +

1

λ1 − λ2

(
λ2e

λ1t − λ1e
λ2t
))
∀t ≥ 0 (3.84)

This equation states that the output is initially zero (that is y(0)) and that
it �nally moves towards K when t→∞ as soon as Re (λ1) < 0 and Re (λ2) < 0.
In addition as far as we have imposed ẏ(0) = 0 we can check that the slope of
the tangent at t = 0 is 0 since:

dy

dt

∣∣∣∣
t=0

= K

(
1

λ1 − λ2

(
λ2λ1e

λ1t − λ1λ2e
λ2t
))∣∣∣∣

t=0

= 0 (3.85)

The shape of y(t) depends on the roots of the characteristic polynomial
s2 + 2mω0s+ ω2

0:

− The �rst case deals with the case where m > 1

− The second case deals with the case wherem < 1

− The second case deals with the case wherem = 1

Example 3.5. Let's consider Figure 3.12 where an RLC �lter is depicted: u(t)
is the voltage applied to the circuit, y(t) is the voltage across the capacitor and
i(t) the current through the capacitor.

The relationship between the input u(t) and the output y(t) is the following:{
u(t) = Ri(t) + Ldi

dt + y(t)
i(t) = Cẏ(t)

⇒ u(t) = RCẏ(t) + LCÿ(t) + y(t)
⇔ LCÿ(t) +RCẏ(t) + y(t) = u(t)

(3.86)
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Figure 3.13: Second order system unit step response where m = 1.2, ω0 = 1
and K = 1

Comparing the di�erential equation which drives the dynamic of RLC �lter
with equation (3.78) we conclude that this system is a model for a second order
system with undamped natural frequency ω0 = 1√

LC
and damping ratio m de�ned

by 2m
ω0

= RC that is m = R
2

√
C
L . The damping factor is equal to mω0 = R

2L .
�

3.9.2 Overdamped model

Overdamped second order model corresponds to the case where m > 1. In that
situation the roots λ1 and λ2 are real and distinct:

m > 1⇒
{
λ1 = −mω0 + ω0

√
m2 − 1 ∈ R

λ2 = −mω0 − ω0

√
m2 − 1 ∈ R

(3.87)

The unit step response of a second order system where m = 1.2, ω0 = 1 and
K = 1 is sketched in Figure 3.13. It is worth noticing that there is no overshoot
on the step response.

Time ti at which the sign of the second derivative of y(t) changes is given
by:

ÿ(t) = 0⇒ λ1e
λ1ti = λ2e

λ2ti ⇒ ti =
1

λ1 − λ2
ln

(
λ2

λ1

)
(3.88)

After time ti the step response of a second order model where m > 1 is
very close to the step response of a �rst order model. Indeed exponential eλ1t

involves much greater values than the other exponential.
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In addition the case where m > 1 is not representative of a second order
system as far as this kind of system is equivalent to two cascaded �rst order
systems.

3.9.3 Underdamped model

Underdamped second order model corresponds to the case where m < 1. In
that situation the roots λ1 and λ2 are complex and conjugate:

m < 1⇒
{
λ1 = −mω0 + jω0

√
1−m2 ∈ C

λ2 = −mω0 − jω0

√
1−m2 ∈ C

(3.89)

As soon as λ1 and λ2 are complex and conjugate we can write them using
the Euler's formula :

λ1,2 = ω0

(
−m± j

√
1−m2

)
= ω0e

±jΦ

where

{
cos (Φ) = −m
sin (Φ) =

√
1−m2

(3.90)

Denoting a = Re (λ1) = −ω0m the real part of λ1 and b = Im (λ1) =
ω0

√
1−m2 the imaginary part of λ1 the unit step response (3.84) can be rewrit-

ten as follows:

y(t) = K
(

1 + 1
2j
√

1−m2

(
e−jΦeat+jbt − ejΦeat−jbt

))
= K

(
1 + eat

2j
√

1−m2

(
ej(bt−Φ) − e−j(bt−Φ)

))
= K

(
1 + eat√

1−m2
sin (bt− Φ)

) (3.91)

Using the expression a = −ω0m and b = ω0

√
1−m2 we �nally get:

y(t) = K

(
1 +

e−mω0t

√
1−m2

sin
(
ω0t
√

1−m2 − Φ
))
∀t ≥ 0 (3.92)

The unit step response of a second order system where m = 0.1, ω0 = 1,
and K = 1 is sketched in Figure 3.14.

Unlike the case wherem > 1 the step response whenm < 1 is oscillating and
overshoots appear. The envelope of the sinusoid function is the an exponential
function involving the real part of the roots of the characteristic polynomial
whereas the frequency of the sinusoid is given by the positive imaginary part of
the roots of the characteristic polynomial:{

Re (λ1) = −ω0m gives the exponential rate of decay/growth

Im (λ1) = ω0

√
1−m2 gives the oscillation frequency

(3.93)

The oscillation frequency ω0

√
1−m2 is also called the damped natural fre-

quency.
Local maximums are obtained when the �rst derivative of the step response

is null. This happen at time tk, where k is an integer, de�ned by:

tk =
kπ

wn
√

1−m2
(3.94)
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Figure 3.14: Second order system unit step response where m = 0.1, ω0 = 1
and K = 1

When k = 1 the �rst relative overshoot D with respect to the �nal value is
given by:

D =
y(t1)−K

K
= e
− πm√

1−m2 (3.95)

Consequently relative overshoot decreases when the damping ratio m in-
creases but is independent of the undamped natural frequency ω0. Furthermore
the �rst relative overshoot will be lower then 10% as soon as m > 0.6:

D < 0.1⇒ m > 0.6 (3.96)

Conversely we can �nd the damping ratio m to obtain a speci�c relative
overshoot D from the above:

D = e
− πm√

1−m2 ⇔ m =
− ln (D)√
π2 + ln2 (D)

(3.97)

Finally there is no simple expression which gives the settling time of a second
order system. Indeed the settling time is not a monotonic function of m: when
m = 0.4 the settling time is ts = 7.5

ω0
whereas when m = 0.7 the settling time

is ts = 2.85
ω0

. Nevertheless when the damping ratio is lower than 0.9 the settling
time can be approximated through the following relationship:

ts ≈
4

mω0
(3.98)
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The preceding relationship indicated that the settling time is closely linked
to the damping factormω0, that is to the opposite of the real part of the roots of
the characteristic polynomial: the faster the system is the higher the damping
factor mω0 is.

3.9.4 Critically damped model

Critically damped second order model corresponds to the case where the damp-
ing ratio m is equal to 1. In that case the roots λ1 and λ2 are real and equal:

m = 1⇒ λ1 = λ2 = −ω0 ∈ R (3.99)

In that situation the roots of the characteristic polynomial are no more
distinct. Thus the Laplace transform of the output signal y(t) reads:

Y (s) = H(s)U(s) = K
ω2

0

s(s+ ω0)2
(3.100)

Expanding Y (s) into partial fractions gives

Y (s) = K

(
1

s
− 1

s+ ω0
− ω0

(s+ ω0)2

)
(3.101)

Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K
(
1− (1 + ω0t) e

−ω0t
)
∀t ≥ 0 (3.102)

The step response present no overshoot in that case.

3.9.5 Frequency response

Let's consider the following second order model where the static gain K has
been set to 1:

H(s) =
ω2

0

s2+2mω0s+ω2
0

⇒ H(jω) =
ω2

0

ω2
0−ω2+2jmω0ω

= 1

1−
(
ω
ω0

)2
+2jm ω

ω0

(3.103)

Denoting by r the ratio ω
ω0

the log magnitude of the frequency response
reads:

r =
ω

ω0
⇒ 20 log10 ‖H(jr)‖ = −10 log10

((
1− r2

)2
+ (2mr)2

)
(3.104)

Thus when r → 0 the log magnitude of H(jω) tends towards 0 whereas
when r → ∞ the log magnitude of H(jω) is approximated by −10 log10

(
r4
)

that is −40 log10 (r). The two asymptotes cross each other when the frequency
ω is equal to the corner frequency ωc . Corner frequency ωc is de�ned by the
following equation:

0 = −40 log10 (r)⇔ r = 1⇔ ωc = ω0 (3.105)
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Figure 3.15: Bode plot and asymptotic Bode plot of a second order model where
m = 0.1, ω0 = 1 and K = 1

Furthermore it is worth noticing that second order model exhibits a resonant
peak as soon as 0 < m < 1√

2
. The frequency of the resonant peak can be

computed by setting to zero the �rst derivative of the magnitude of H(jr):

d
dr |H(jr)|r=rm = 0⇔ d

dr

((
1− r2

)2
+ (2mr)2

)
r=rm

= 0

⇒

{
rm =

√
1− 2m2 ∀m < 1√

2
≈ 0.707

20 log10 |H(jrm)| = 20 log10

(
1

2m
√

1−m2

) (3.106)

Thus the resonant frequency is lower than the natural undamped frequency
ω0 and is given by the relation:

ωr = ω0 rm = ω0

√
1− 2m2 < ω0 ∀ 0 < m <

1√
2
≈ 0.707 (3.107)

The phase of the frequency response reads:

Φ(ω) = arg (H(jω)) = − arctan

(
2mr

1− r2

)
(3.108)

Thus when r → 0 the phase of H(jω) tends towards 0 whereas when r →∞
the phase of H(jω) is approximated by −180 deg. At the corner frequency
ωc = ω0 (i.e. r = 1) the phase is equal to −90 deg.

Figure 3.15 presents the Bode plot as well as the asymptotic Bode plot for
a second order model where m = 0.1, ω0 = 1 and K = 1.
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Chapter 4

Linear time invariant systems

analysis

4.1 Open-loop versus closed-loop

Usually a plant alone do not �t with the industrial constraints within which it
will be used. Typically a plant without controller will not be neither enough
precise nor fast. Thus a controller shall be added to the plant (equipped with
sensors and actuators) to satisfy industrial speci�cations. We will denote:

− F (s) the transfer function of the plant;

− C(s) the transfer function of the controller;

− u(t) the plant input (actuator signal) and y(t) the plant output (sen-
sor signal) whose Laplace transform are respectively L (y(t)) = Y (s) and
L (u(t)) = U(s);

− r(t) the reference input whose Laplace transform is L (r(t)) = R(s). Ref-
erence input r(t) represents what we would like y(t) to be;

− ε(t) = r(t)− y(t) the tracking error as depicted in Figure 4.2. Its Laplace
transform is L (ε(t)) = ε(s).

In that section we will compare open-loop control versus closed-loop control.
In open-loop control the output signal y(t) of the plant to be controlled has no
e�ect upon the input of the plant to be controlled as depicted in Figure 4.1. It
is not the case for closed-loop control.

Denoting by Co(s) the open-loop controller, simple algebra shows that the
input output relationship Go(s) of the open-loop control depicted in Figure 4.1
reads:

Y (s) = Co(s)F (s)R(s)⇒ Go(s) =
Y (s)

R(s)
= Co(s)F (s) (4.1)

On the other hand closed-loop control, or feedback control loop, is a control
pattern within which the output signal y(t) of the plant to be controlled is
returned back and compared to the reference input to form the system control
as depicted in Figure 4.2.
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Figure 4.1: Open-loop control

Figure 4.2: Closed-loop control with controller in the direct path

Denoting by C(s) the closed-loop controller, simple algebra shows that the
input output relationship G(s) of the closed-loop control depicted in Figure 4.2
reads:

Y (s) = C(s)F (s) (R(s)− Y (s))⇒ G(s) =
Y (s)

R(s)
=

C(s)F (s)

1 + C(s)F (s)
(4.2)

It is worth noticing that other feedback loop con�gurations exist. For exam-
ple the closed-loop controller C(s) may be put is the feedback path as depicted
in Figure 4.3.

The input output relationship of Figure 4.3 reads:

Y (s) = F (s) (R(s)− C(s)Y (s))⇒ Y (s)

R(s)
=

F (s)

1 + C(s)F (s)
(4.3)

That is:

Y (s) =
C(s)F (s)

1 + C(s)F (s)

R(s)

C(s)
(4.4)

Figure 4.3: Closed-loop control with controller in the feedback path
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The preceding relationship indicates that Figure 4.3 is equivalent to Figure
4.2 when the reference input R(s) is replaced by R(s)

C(s) .
In the following we will focus on the feedback loop where the controller is

situated in the direct path as depicted in Figure 4.2.
When comparing (4.1) and (4.2) it is clear that the open-loop controller

Co(s) can be obtained from the closed-loop controller C(s) by choosing:

Co(s)F (s) =
C(s)F (s)

1 + C(s)F (s)
⇒ Co(s) =

C(s)

1 + C(s)F (s)
(4.5)

Consequently it seems that open-loop control and closed-loop control are
equivalent control. Nevertheless we shall have in mind that the plant model
F (s) often comes from linearization and simpli�cation, and thus is uncertain.
Thus we will study the sensitivity of both open-loop scheme and closed-loop
scheme with respect to the plant model uncertainty thanks to the sensitivity
function SHα de�ned by:

SHα =
∂H/H

∂α/α
=
α

H

∂H

∂α
(4.6)

Basically SHα relates the relative change of quantity H with respects to the
relative change of quantity α.

Specializing the sensitivity function de�nition to the case where H is the
open-loop transfer function Go(s) and α the uncertain transfer function F (s) of
the plant we get:

SGoF =
F

Go

∂Go
∂F

=
F

CoF

∂

∂F
(CoF ) =

F

CoF
Co = 1 (4.7)

The preceding relationship indicates that any change in the plant transfer
function F (s) is totally transferred into the open-loop control scheme whatever
controller C0(s) is.

On the other hand we will now specialize the sensitivity function de�nition
to the case whereH is the closed-loop transfer function G(s) and α the uncertain
transfer function F (s) of the plant:

SGF =
F

G

∂G

∂F
=

F
CF

1+CF

∂

∂F

(
CF

1 + CF

)
=

1 + CF

C

∂

∂F

(
CF

1 + CF

)
(4.8)

Let's compute the following expression:

∂

∂F

(
CF

1 + CF

)
=
C (1 + CF )− CFC

(1 + CF )2 =
C

(1 + CF )2 (4.9)

We �nally get:

SGF =
1

1 + CF
(4.10)

Thus the sensitivity function S(s) of the closed-loop system reads:

SGF ≡ S(s) =
1

1 + C(s)F (s)
(4.11)
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The preceding relationship clearly indicates that as soon as the product
C(s)F (s) is high within the frequency range of the uncertain plant F (s) then
the closed-loop control scheme allows a great reduction of the sensitivity of the
controlled system with respects to uncertainties. Same result can be achieved
when comparing the sensitivity of open-loop control scheme and closed-loop
control scheme with respect to external disturbances.

As a consequence the central idea to control a plant is the feedback loop
where the output signal y(t) of the plant to be controlled is returned back and
compared to the reference input to form the system control as depicted in Figure
4.2.

4.2 Stability

A causal signal y(t) is bounded if there is a �nite value B > 0 such that the
signal magnitude never exceeds B, that is ‖y(t)‖ ≤ B ∀t ≥ 0. A system is said
to be Bounded-Input Bounded-Output (BIBO) stable if the output is bounded
for every bounded input.

Assuming that 0 is not a pole of the transfer function H(s) and that all of
the poles of H(s) are unique the transfer function H(s) reads:

H(s) =
b0 + b1s+ · · ·+ bm−1sm− 1 + bms

m

a0 + a1s+ · · ·+ an−1sn−1 + sn
=
K(s+ z1) · · · (s+ zm)

(s+ λ1) · · · (s+ λn)
(4.12)

We recall that zi are the zeros of the transfer function H(s) whereas λi are
the poles of H(s): the magnitude of transfer function H(s) will go to zero at
the zeros and to in�nity at the poles.

Let's compute the unit step response of a linear time invariant system. We
recall that the Laplace transform of the unit step function is 1/s. Thus the
Laplace transform of the unit step response reads:

Y (s) =
H(s)

s
=

1

s

K(s+ z1) · · · (s+ zm)

(s+ λ1) · · · (s+ λn)
(4.13)

Under the condition that m ≤ n the Laplace transform Y (s) of the unit step
response y(t) can be decomposed into partial fraction expansion where each
coe�cient αi, i 6= 0 is the residue around the pole λi of H(s):

Y (s) =
α0

s
+

α1

s+ λ1
+ · · ·+ αn

s+ λn
(4.14)

The inverse Laplace transform of α0
s is α0Γ(t) (we recall that Γ(t) denotes the

unit step function) and the inverse Laplace transform of αi
s+λi

is αie
−λit ∀t ≥ 0.

As a consequence the unit step response y(t) is composed of:

− one constant and bounded term, α0Γ(t),

− and of a sum of terms of the form αie
−λit. Those terms decay within an

exponential envelope as soon as each pole λi has a negative real part.
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If one of the pole λi of H(s) is zero then the term αie
−λit never decays or

grows in amplitude; this is called marginal stability. If at least one pole λi has
a positive real part then at least one element of the response grows without
bound and the system is said to be unstable. It is worth noticing that the same
conclusion appears when the multiplicity of a pole is greater than one; indeed
we have seen that the inverse Laplace transform of 1

(s+λi)
n is tn−1

(n−1)!e
−λit ∀t ≥ 0:

as a consequence this term tends towards 0 when t → ∞ as soon as the real
part of the pole λi is negative.

As a consequence a linear time invariant system is stable if and only if all
the poles of its transfer function, that are also the roots of the characteristic
polynomial, occur in the left half of the complex plane. Marginal stability occurs
when some poles have a null real part whereas instability occurs when at least
one pole occurs in the right half of the complex plane.

Notice that the equivalent condition for BIBO stability of linear time invari-
ant (LTI) system is that its impulse response h(t) be absolutely integrable:∫ ∞

0
|h(t)| dt <∞ (4.15)

For linear time invariant (LTI) systems Bounded-Input Bounded-Output
(BIBO) stability is also equivalent to exponential stability, meaning that after a
certain amount of time the impulse response of the system is such that its norm
is lower than αe−γt for �nite α and γ > 0.

4.3 Routh criterion

A simple means of determining the stability of a system can be obtained by
the Routh stability criterion; this criterion indicates whether any of the roots
of a polynomial have positive real parts, without actually solving for the roots.
Consider the following polynomial equation:

ans
n + an−1s

n−1 + · · ·+ a1s+ a0 = 0 (4.16)

Necessary but not su�cient conditions so that no roots of Equation (4.16)
have positive real parts are that:

− All the coe�cients must exist

− All the coe�cients of the equation must have the same sign

The �rst stage to apply the Routh criterion is to build the Routh array, which
contains n+ 1 rows; the two �rst rows contain coe�cients ai of the polynomial
arranged alternatively as indicated in (4.17).

sn an ≡ rn,1 an−2 ≡ rn,2 an−4 ≡ rn,3 · · ·
sn−1 an−1 ≡ rn−1,1 an−3 ≡ rn−1,2 an−5 ≡ rn−1,3 · · ·

sn−2 rn−2,1 rn−2,2
...

...
...

...
...

s1 r1,1 r1,2 0

s0 r0,1 0 0

(4.17)
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Coe�cients ri,j are computed as follows:

ri,j =
ri+1,1ri+2,j+1 − ri+2,1ri+1,j+1

ri+1,1
(4.18)

For example:{
rn−2,1 =

rn−1,1rn,2−rn,1rn−1,2

rn−1,1
= an−1an−2−anan−3

an−1

rn−2,2 =
rn−1,1rn,3−rn,1rn−1,3

rn−1,1
= an−1an−4−anan−5

an−1

(4.19)

Then the Routh array is continued horizontally and vertical until the last row
is completed.

The last step consists in investigating the signs of the numbers in the �rst
column of the Routh array. Routh stability criterion states:

− if all the number of the �rst column have the same sign then all the roots
of the polynomial have negative real parts; when the polynomial is the
denominator of the transfer function the system is therefore stable;

− if the numbers in the �rst column change sign then the number of sign
changes indicates the number of roots of the polynomial having positive
real parts; when the polynomial is the denominator of the transfer function
the system is therefore unstable;

An Hurwitz polynomial, named after Adolf Hurwitz (1859 - 1919, German
mathematician), is a polynomial with positive coe�cients and for which the real
part of every root is zero or negative.

Example 4.1. Consider the following polynomial:

D(s) = s3 + 14s2 + 41s− 56 (4.20)

All the coe�cients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
satis�ed. The Routh array reads:

s3 1 41

s2 14 −56

s1 14×41−1×(−56)
14 = 45

s0 −56

(4.21)

There is one change in sign in the �rst column; consequently D(s) has one
root in the right half (complex) plane (RHP). �

Example 4.2. Consider the following polynomial:

D(s) = s4 + 5s3 + s2 + 10s+ 1 (4.22)

All the coe�cients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
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satis�ed. The Routh array reads:

s4 1 1 1

s3 5 10

s2 −1 1

s1 15

s0 1

(4.23)

There are two changes in sign in the �rst column; consequently D(s) has two
roots in the right half (complex) plane (RHP). �

It is worth noticing that:

− Applying the Routh criterion on the polynomial D(s+a) enables to com-
pute the number of roots of D(s) with a real part greater than a (indeed
s = s+ a− a and Re (s) < 0⇔ Re (s+ a) < a).

Example 4.3. Let's check how many roots with real part greater than
a = −2 has the following polynomial:

D(s) = s+ 1 (4.24)

First we form the polynomial D(s+ a) = D(s− 2) = (s− 2) + 1 = s− 1
and then we apply the Routh criterion on the following Routh array:

s1 1

s0 −1
(4.25)

There is one change in sign in the �rst column; consequently D(s) has one
root with a real part greater than a = −2 (it is obviously −1)

�

Example 4.4. Let's check how many roots with real part greater than
a = 2 has the following polynomial:

D(s) = (s− 1)(s− 4) (4.26)

First we form the polynomial D(s+a) = D(s+2) = (s+2−1)(s+2−4) =
s2 − s − 2 and then we apply the Routh criterion on the following Routh
array:

s2 1 −2

s1 −1

s0 −2

(4.27)

There is one change in sign in the �rst column; consequently D(s) has one
root with a real part greater than a = 2 (it is obviously 4)

�

− To multiply all the numbers in a row by a strictly positive number do not
change the conclusion of the Routh criterion.
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− As far as the sign of the real part of a complex number is the same than the
sign of the real part of its inverse, it is equivalent to test either polynomial
D(s) or polynomial D(1/s) where s has been replaced by 1/s.

Obviously if 0 appears in the �rst position of a row, then the elements in the
following row will be in�nite and the Routh criterion breaks down. Similarly
the Routh criterion breaks down when all the numbers in a row are 0.

If a �rst column term in any row is 0, but the remaining terms are not 0 or
there is no remaining term, then the 0 term is replaced by a very small number
ε with the same sign than the coe�cient above the 0 and the rest of the array
is evaluated.

− If the sign of the coe�cient above the 0→ ε is the same that below it, it
indicates that there are a pair of imaginary roots.

− If however the sign of the coe�cient above the 0 → ε is opposite that
below it, it indicates that there is one sign change.

Alternatively, when a zero occurs in the �rst column, it is possible to create
the Routh table using the polynomial D(1/s) that has the reciprocal roots of
the original polynomial D(s).

Example 4.5. Consider the following polynomial:

D(s) = s3 − 3s+ 2 (4.28)

The Routh array reads:

s3 1 −3

s2 0→ ε+ 2

s1 −3ε+−2
ε+

= −3− 2
ε+

s0 2

(4.29)

As soon as ε+ → 0, there is one sign change between ε+ (which has the same
sign than the coe�cient above, that is 1, which is positive) and −3− 2

ε+
(which

is negative as soon as ε+ → 0) and another sign change between −3− 2
ε+

(which
is negative as soon as ε+ → 0) and 2. Consequently, we conclude that D(s) has
two roots with positive real part. Actually polynomial D(s) reads:

D(s) = (s− 1)2(s+ 2) (4.30)

Routh table coming from D(1/s) reads as follows:

D(1/s) = (1/s)3 − 3(1/s) + 2 =
1− 3s2 + 2s3

s3
(4.31)

The Routh array of the numerator of D(1/s), that is polynomial 1− 3s2 + 2s3,
reads:

s3 2 0

s2 −3 1

s1 −2
−3 = 2

3

s0 1

(4.32)
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We get the same conclusion than previously: as far as there are two changes
in sign in the �rst column, we conclude that D(1/s), and also D(s) has two
roots with a real part greater than zero.

�

Example 4.6. Consider the following polynomial:

D(s) = s3 + 2s2 + s+ 2 (4.33)

All the coe�cients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
satis�ed. The Routh array reads:

s3 1 1

s2 2 2

s1 0→ ε+

s0 2

(4.34)

As far as the sign of the coe�cient above ε+ is the same that below it, it
indicates that there are a pair of imaginary roots. Actually D(s) has two roots
at ±j.

Routh table coming from D(1/s) reads as follows:

D(1/s) = (1/s)3 + 2(1/s)2 + (1/s) + 2 =
1 + 2s+ s2 + 2s3

s3
(4.35)

The Routh array of the numerator of D(1/s), that is polynomial 1+2s+s2+2s3,
reads:

s3 2 2

s2 1 1

s1 0→ ε+

s0 1

(4.36)

We get the same conclusion than previously: as far as the sign of the coef-
�cient above ε+ is the same that below it, it indicates that there are a pair of
imaginary roots. Actually D(s) has two roots at ±j.

�

If all the coe�cients in any derived row are zeros it indicates that polynomial
D(s) has roots of equal magnitude lying radially opposite in the s-plane, that
is two real roots with equal magnitude and opposite sign and/or two conjugate
imaginary roots. In such a case the evaluation of the rest of the array can be
continued by forming an auxiliary polynomial Q(s) with the coe�cients of the
last non-zero's row and by replacing the zero's row by the coe�cients of the
derivative of this polynomial. It is worth noticing that in this situation the
roots of the auxiliary polynomial Q(s) are also roots of the polynomial D(s)
under consideration.
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Example 4.7. The previous example where D(s) = s3 + 2s2 + s + 2 can be
tackled with this rule. Indeed all the coe�cients (in fact just one) in the row s1

are zeros:
s3 1 1

s2 2 2

s1 0

(4.37)

Then we form an auxiliary polynomial with the coe�cients of the last non-
zero row:

Q(s) = 2s2 + 2 (4.38)

It can be checked that the roots of Q(s), which are (+j,−j), are also roots
of D(s).

The derivative of Q(s) reads:

d

ds
Q(s) = 4s (4.39)

The Routh array can be continued by replacing the zero's row by the coe�-
cients of the derivative of Q(s), here 4:

s3 1 1

s2 2 2

s1 4 ← coe�cients of d
dsQ(s)

(4.40)

The complete Routh array �nally reads:

s3 1 1

s2 2 2

s1 4

s0 2

(4.41)

As far as there is no sign change in the coe�cients of the �rst column we
conclude that D(s) has no root with strictly positive real part. Actually the third
root of D(s) is −2, which obviously has a negative real part and explains why
there is no sign change in the Routh array.

�

Example 4.8. Consider the following polynomial:

D(s) = s5 + 2s4 + 24s3 + 48s2 + 25s+ 50 (4.42)

All the coe�cients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
satis�ed. The �rst rows of the Routh array reads:

s5 1 24 25

s4 2 48 50

s3 0 0

(4.43)



4.4. Nyquist stability criterion 75

All the coe�cients of the s3'row are zeros. Then we form an auxiliary poly-
nomial with the coe�cients of the last non-zero row:

Q(s) = 2s4 + 48s2 + 50 (4.44)

It can be checked that the roots of Q(s), which are denoted (λ1, λ2, λ3, λ4),
are also roots of D(s): λ2

1,2 = −48+
√

482−4×2×50
4 ⇒ λ1,2 = ±j

√
48−
√

1904
4

λ2
3,4 = −48−

√
482−4×2×50

4 ⇒ λ3,4 = ±j
√

48+
√

1904
4

(4.45)

The derivative of Q(s) reads:

d

ds
Q(s) = 8s3 + 96s (4.46)

The Routh array can be continued by replacing the zero's row by the coe�-
cients of the derivative of Q(s), here 8 and 96:

s5 1 24 25

s4 2 48 50

s3 8 96 ← coe�cients of d
dsQ(s)

(4.47)

The complete Routh array �nally reads:

s5 1 24 25

s4 2 48 50

s3 8 96

s2 24 50

s1 238/3

s0 50

(4.48)

As far as there is no sign change in the coe�cients of the �rst column we
conclude that D(s) has no root with strictly positive real part. Actually the �fth
root of D(s) is −2, which obviously has a negative real part and explains why
there is no sign change in the Routh array.

�

4.4 Nyquist stability criterion

Consider Figure 4.4 where the loop transfer function F (s) is assumed to be
strictly proper (i.e. lims→∞ F (s) = 0).

The transfer function of the closed-loop system is:

G(s) =
Y (s)

R(s)
=

1

1 + F (s)
(4.49)

The Nyquist stability criterion determines the stability of a closed-loop from
the open-loop poles and its open-loop frequency response. More speci�cally the
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Figure 4.4: Unity feedback loop

Nyquist stability criterion determines the stability of G(s) from poles of F (s)
and the Nyquist plot of F (jω).

Denoting by Re the real part and by Im the imaginary part, the Nyquist
plot of F (jω) is the locus of vector (ImF (jω) , ReF (jω)) when frequency ω
varies from −∞ to +∞. As far as F (s) is a fraction where the numerator and
the denominator are real coe�cients polynomial the Nyquist plot of F (jω) is
symmetrical with respect to the real axis. In addition as soon as F (s) is assumed
to be a strictly proper transfer function the Nyquist plot of F (jω) moves toward
zero as ω tends to in�nity:

lim
s→∞

F (s) = 0⇒ lim
ω→±∞

F (jω) = 0 (4.50)

In examining the stability of the unity feedback loop of Figure 4.4 the
Nyquist stability criterion states that:

Z = P +N (4.51)

Where:

− Z is the number of zeros of 1 + F (s) in the right half s-plane, that is the
number of unstable poles of the closed-loop system whose transfer function
is G(s)

− P is number of poles of F (s) in the right half s-plane

− N is the number of clockwise encirclements of the −1 + j0 point by the
Nyquist plot of F (jω); point −1 + j0 is called the critical point

The Nyquist stability criterion states that the number of unstable closed-
loop poles is equal to the number of unstable open-loop poles plus the number
of encirclements of the critical point −1 + j0 by the Nyquist plot of F (jω).
The encirclement is counted positive in the clockwise direction and negative
otherwise.

In others words:

− If there are one or more counterclockwise encirclements of the −1 + j0
critical point by the Nyquist plot then the closed-loop system is stable if
the number of counterclockwise encirclements is the same as the number
of poles of F (s) in the right half s-plane; otherwise the closed-loop system
is unstable.
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Figure 4.5: Feedback loop with constant gain K in the direct path

− If there are one or more clockwise encirclements of the −1 + j0 critical
point this implies that the closed-loop system is unstable.

In current situations F (s) has no pole in the right half s-plane; consequently
if the Nyquist plot of F (jω) has no encirclement of the −1+j0 critical point this
implies that the closed-loop system is stable; otherwise the closed-loop system
is unstable.

An easy way to determine the number of encirclements of the −1 + j0 crit-
ical point is to draw a line out from the critical point, in any directions. Then
by counting the number of times that the Nyquist plot crosses the line in the
clockwise direction (i.e. left to right) and by subtracting the number of times
it crosses in the counterclockwise direction then the number of clockwise encir-
clements of the −1 + j0 critical point is obtained. A negative number indicates
counterclockwise encirclements.

It is worth noticing that when a positive gainK (K > 0) is added in the loop,
either in the direct path as shown in Figure 4.5 or in the feedback path as shown
in Figure 4.6, the denominator of the closed-loop transfer function becomes
1 +KF (s). As a consequence the critical point −1 + j0 changes to be − 1

K + j0.
The Nyquist stability criterion can then still be applied in both cases by assessing
the encirclements of the − 1

K + j0 critical point where K > 0. Consequently
the Nyquist stability criterion do not change when positive gain K is added
either in the direct path or in the feedback path because the denominator of the
closed-loop transfer function G(s) = Y (s)

R(s) remains the same.

More generally we have seen that the denominator of the closed-loop transfer
function of feedback loop systems in Figures 4.3 and 4.2 reads 1 + C(s)F (s).
Thus comparing this denominator with the denominator of G(s) obtained with
the feedback loop in Figure 4.4 we conclude that the Nyquist stability criterion
still applies on closed-loop transfer function of feedback loop systems in Figures
4.3 and 4.2 as soon as F (s) is replaced by C(s)F (s). In is worth noticing that
C(s)F (s) represents the loop transfer function, which is sometimes denoted
L(s).

Example 4.9. Let's consider the following transfer function:

F (s) =
1

(2s+ 1)(3s+ 1)(4s+ 1)
(4.52)
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Figure 4.6: Feedback loop with constant gain K in the feedback path

Figure 4.7: Nyquist plot of F (s) = 1
(2s+1)(3s+1)(4s+1)
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Figure 4.8: Zoom of the Nyquist plot of F (jω)

The Nyquist plot of F (jω) is shown in Figure 4.7. It is clear that the Nyquist
plot of F (jω) is symmetrical with respect to the real axis and limω→±∞ F (jω) =
0. We can also check that F (0) = 1.

Figure 4.8 is a zoom of Figure 4.7 near the loop of the Nyquist plot.

First we will assume an unit feedback gain (i.e. K = 1) in the closed-loop as
in Figure 4.4. Then applying the Nyquist stability criterion on the Nyquist plot
we conclude that the closed-loop is stable because the number P of poles of F (s)
in the right half s-plane is zero and the number N of clockwise encirclements of
the −1 + j0 critical point by the Nyquist plot is also zero. As a consequence the
number Z of zeros of 1 + F (s) in the right half s-plane is N + P = 0, meaning
that there is no unstable pole in the closed-loop system transfer function G(s).

Now we will assume that a constant gain K is inserted in the feedback loop
as depicted either in Figure 4.5 or Figure 4.6. Then the critical point becomes
− 1
K + j0. As shown in Figure 4.8 the number of encirclements of the critical

point remains to be zero as soon as the positive feedback loop gain K, (K > 0)
satis�es:

− 1

K
< −0.1143⇔ K <

1

0.1143
≈ 8.75 (4.53)

Consequently the closed-loop is stable as soon as 0 < K < 8.75. As soon
as K > 8.75 the number of clockwise encirclements of the critical point is 2,
meaning that the closed-loop system is unstable because it has 2 poles in the
right half s-plane (RHP).

In order to check this conclusion we can use the Routh criterion. The de-
nominator D(s) of the closed-loop transfer function with constant gain K reads:

F (s) = 1
(2s+1)(3s+1)(4s+1) = 1

24s3+26s2+9s+1

⇒ D(s) = 24s3 + 26s2 + 9s+ 1 +K
(4.54)
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The Routh array of D(s) is the following:

s3 24 9

s2 26 1 +K

s1 26×9−24×(1+K)
26 = 210−24K

26

s0 1 +K

(4.55)

Consequently there is no sign change in the �rst column as soon as :{
210− 24K > 0⇔ K < 210

24 ≈ 8.75
1 +K > 0⇔ K > −1

(4.56)

When the feedback gain K becomes greater than 210
24 ≈ 8.75 then two sign

changes appear in the �rst column of the Routh array and the closed-loop system
is then unstable with 2 unstable poles. This is the same conclusion than the one
obtained thanks to the Nyquist stability criterion.

�

4.5 Phase and gain margins

In that section we refer to Figure 4.4 and we will assume that the loop transfer
function F (s) is stable as weel as its inverse 1/F (s), meaning that F (s) has both
all its poles and zeros in the left half s-plane. In other words transfer function
F (s) is minimum phase.

In general the closer the Nyquist plot of the loop transfer function F (s)
comes to encircling the −1 + j0 critical point, the more oscillatory is the closed-
loop system response. Phase and gain margins measures how close is the closed-
loop system from the verge of instability. For stable loop transfer function the
Nyquist stability criterion states that the closed-loop system is stable as soon
as there is no encirclement of the critical point. This can be readily visualized
on the Bode plot.

The gain crossover frequency is the frequency ωc at which the magnitude
‖F (jω)‖ of the loop transfer function F (s) is unity.

At the gain crossover frequency ωc the phase angle Φ(ωc) = arg (F (jωc))
of the loop transfer function reads as follows where MΦ represents the phase
margin of the closed-loop system:

‖F (jωc)‖ = 1⇒MΦ = 180◦ + arg (F (jωc)) (modulo 360◦)
⇔ Φ(ωc) = arg (F (jωc)) = −180◦ +MΦ (modulo 360◦)

(4.57)

For closed-loop system to be stable the phase margin MΦ must be positive;
it indicates the amount of phase lag which is required to bring the closed-loop
system unstable.

The phase crossover frequency is the frequency ωπ at which the phase angle
of the loop transfer function F (s) is equal to −180◦. At the phase crossover fre-
quency ωπ the magnitude ‖F (jω)‖ of the loop transfer function is the reciprocal
of the gain margin Gm:

arg (F (jωπ)) = −180◦ (modulo 360◦)⇒ Gm =
1

‖F (jωπ)‖
(4.58)
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Or in terms of decibels:

GmdB = 20 log10 (Gm) = −20 log10 ‖F (jωπ)‖ (4.59)

For a closed-loop system to be stable the gain margin in decibels GmdB
must be positive; it indicates how much the gain must be increased before the
closed-loop system becomes unstable.

It is worth noticing that the gain margin as well as the phase crossover
frequency ωπ at which the gain margin is measured can be obtained through
the Routh array. To obtain those values �rst compute the denominator of the
closed-loop transfer function KcrF (s)

1+KcrF (s) where a �ctitious gain Kcr is used. Then
build the corresponding Routh array and compute the value of Kcr such that
the coe�cient in the row s1 is equal to zero. The gain margin is then obtained
as Gm = Kcr. The phase crossover frequency ωπ is obtained by setting to zero
the polynomial extracted from the row s2 and by replacing s by jωπ.

Similarly, the phase margin as well as the gain crossover frequency ωc at
which the phase margin is measured can be obtained through the Routh ar-
ray1. To obtain those values �rst compute the denominator of the closed-
loop transfer function G(s)

Kcr+G(s) where a �ctitious gain Kcr is used and where

G(s) = 1
2

(
F (s) + 1

F (s)

)
. Then build the corresponding Routh array and com-

pute the value of Kcr such that the coe�cient in the row s1 is equal to zero.
Among all the possible values of Kcr such that |Kcr| < 1 choose the closest
value to −1. The phase margin is then obtained as Mφ = arccos(Kcr). The
gain crossover frequency ωc is obtained by setting to zero the polynomial ex-
tracted from the row s2 and by replacing s by jωc.

Figure 4.9 represents the Bode plot of an open-loop stable transfer function
F (s) as well as the phase and gain margins of both stable and unstable closed-
loop systems.

It is noted that the gain margin of a �rst or second order system is in�nite
since the phase for such systems do not cross the −180◦ phase axis.

For system having two or more gain or phase crossover frequencies the phase
or gain margin is measured at the closest point of the critical point which is
usually the point at the highest crossover frequency.

Example 4.10. Figure 4.10 is the Bode plot of the transfer function F (s) which
has been studied in the previous example.

Using the function g_margin provided by Scilab, it can be stated that the
phase crossover frequency is the frequency ωπ = 2π × 0.0974621 rad/sec (on
the very right in Figure 4.10) whereas the gain margin in decibels is GmdB =
18.84 dB. The maximum gain K = 8.75 which let stable the closed-loop system
is retrieved through the following computation:

20 log10 (K) = 18.84⇒ K = 10
18.84

20 = 8.75 (4.60)

1Yung C.F., Tsai Y.W., Shyu K.K., Applications of Routh-Hurwitz criterion to evaluation
of phase margin and phase lead compensation, Electronics Letters, Volume: 27, Issue: 11, 23
May 1991
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Figure 4.9: Phase and gain margins of stable and unstable systems

Figure 4.10: Bode plot of F (s) = 1
(2s+1)(3s+1)(4s+1)
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To obtain those values thanks to the Routh array we will �rst �rst compute
the denominator of the closed-loop system where a gain Kcr is inserted:

KcrF (s)

1 +KcrF (s)
=

Kcr

24s3 + 26s2 + 9s+ 1 +Kcr
(4.61)

The Routh array has been obtained in (4.55). The value of Kcr such that the
coe�cient in the row s1 is equal to zero is obtained by solving:

210− 24Kcr

26
= 0⇒ Kcr =

210

24
= 8.75 (4.62)

The gain margin is then obtained as Gm = Kcr = 8.75.
The phase crossover frequency ωπ is obtained by setting to zero the polyno-

mial extracted from the row s2 and by replacing s by jωπ. We get:

26s2 + (1 +Kcr)
∣∣
s=jωπ

= −26ω2
π + 1 +Kcr = 0

⇒ ωπ =
√

1+Kcr
26 =

√
9.75
26 rad/sec

(4.63)

�

4.6 Root locus

The root locus technique2 has been developed in 1948 by Walter R. Evans (1920-
1999). This is a graphical method for sketching in the s-plane the locus of roots
of the following polynomial when parameter K varies to 0 to in�nity:

D(s) +KN(s) (4.64)

Usually polynomial D(s)+KN(s) represents the denominator of the closed-
loop transfer function. The root locus technique enables to sketch in the s-plane
the poles of the closed-loop transfer function shown in Figure 4.5 or in Figure
4.6. Indeed in both con�gurations the denominator of the closed-loop transfer
function is the same.

It is worth noticing that the roots of D(s) + KN(s) are also the roots of

1 +KN(s)
D(s) :

D(s) +KN(s) = 0⇔ 1 +K
N(s)

D(s)
= 0⇔ G(s) = −1 (4.65)

Without loss of generality let's de�ne transfer function F (s) as follows:

F (s) =
N(s)

D(s)
= a

∏m
j=1(s− zj)∏n
i=1(s− pi)

(4.66)

Transfer function G(s) = KF (s) is called the loop transfer function. In the
SISO case the numerator of the loop transfer function G(s) is scalar as well as
its denominator.

2Walter R. Evans , Graphical Analysis of Control Systems, Transactions of the American
Institute of Electrical Engineers, vol. 67, pp. 547 - 551, 1948
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Equation G(s) = −1 can be equivalently split into two equations:{
|G(s)| = 1
arg (G(s)) = (2k + 1)π, k = 0,±1, · · · (4.67)

The magnitude condition can always be satis�ed by a suitable choice of K.
On the other hand the phase condition does not depend on the value of K but
only on the sign of K. Thus we have to �nd all the points in the s-plane that
satisfy the phase condition. When scalar gain K varies from zero to in�nity (i.e.
K is positive), the root locus technique is based on the following rules:

− The root locus is symmetrical with respect to the horizontal real axis
(because roots are either real or complex conjugate);

− The number of branches is equal to the number of poles of the loop transfer
function. Thus the root locus has n branches;

− The root locus starts at the n poles of the loop transfer function;

− The root locus ends at the zeros of the loop transfer function. Thus m
branches of the root locus end on them zeros of F (s) and there are (n−m)
asymptotic branches;

− Assuming that coe�cient a in F (s) is positive, a point s∗ on the real
axis belongs to the root locus as soon as there is an odd number of poles
and zeros on its right. Conversely assuming that coe�cient a in F (s) is
negative, a point s∗ on the real axis belongs to the root locus as soon as
there is an even number of poles and zeros on its right. Be careful to take
into account the multiplicity of poles and zeros in the counting process;

− The (n −m) asymptotic branches of the root locus which diverge to ∞
are asymptotes.

� The angle δk of each asymptote with the real axis is de�ned by:

δk =
π + arg(a) + 2kπ

n−m
∀ k = 0, . . . , n−m− 1 (4.68)

� Denoting by pi the n poles of the loop transfer function (that are the
roots of D(s)) and by zj the m zeros of the loop transfer function
(that are the roots of N(s)), the asymptotes intersect the real axis
at a point (called pivot or centroid) given by:

σ =

∑n
i=1 pi −

∑m
j=1 zj

n−m
(4.69)

− The breakaway / break-in points are located on the real axis and always
have a vertical tangent. They are located at the roots sb of the following
equation as soon as there is an odd (if coe�cient a in F (s) is positive) or
even (if coe�cient a in F (s) is negative) number of poles and zeros on its
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right (Be careful to take into account the multiplicity of poles and zeros
in the counting process):

d
ds

(
1

F (s)

)
s=sb

= d
ds

(
D(s)
N(s)

)
s=sb

= 0

⇔ D′(sb)N(sb)−D(sb)N
′(sb) = 0

(4.70)

Indeed from the fact that breakaway / break-in points have always a ver-
tical tangent we can write:

1 +K F (s) = 1 +K
N(s)

D(s)
= 0⇒ dK

dp
= −D

′(s)N(s)−D(s)N ′(s)

N2(s)
= 0

(4.71)
From this relationship we get (4.70).

− On the imaginary axis we have s = jω. Thus the value of the (positive)
critical gain beyond which the closed-loop system becomes unstable is the
value of K (K ≥ 0) such that the root locus of F (s) crosses the imaginary
axis. In that situation at least one pole of the closed-loop system is purely
imaginary. As far as D(s) + KN(s) represents the denominator of the
closed-loop transfer function the critical gain can be obtained by replacing
s by jω and by solving:

1 +K F (jω) = 0⇔ D(jω) +KN(jω) = 0 (4.72)

The previous equation is then split into its real and imaginary part and
provides a system of 2 equations which lead to the value of the critical
gain and the oscillation frequency at the critical gain. It is worth noticing
that the Routh criterion can be used for the same purpose.

Example 4.11. Let's consider the following transfer function:

F (s) =
s+ 4

s(s+ 2)(s+ 3)
(4.73)

We wish to investigate where are located the poles of the closed-loop system
represented either in Figure 4.5 or in Figure 4.6 when static gain K varies from
0 to ∞.

Let's apply the previous rules to sketch the root locus:

− The loop transfer function F (s) has n = 3 poles and m = 1 zero;

− The number of branches is equal to the number of poles of the loop transfer
function. Thus the root locus has n = 3 branches;

− The root locus starts at the n = 3 poles of the loop transfer function, which
are (0,−2,−3). This leads to sketch 1 in Figure 4.1.

− The root locus ends at the zeros of the loop transfer function. Thus m = 1
branch of the root locus end on the m = 1 zero of F (s), which is (−4).
This leads to sketch 2 in Figure 4.1.
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Sketch 1 Sketch 2

Sketch 3 Sketch 4

Sketch 5 Actual root locus (Python)

Table 4.1: Sketches of the root locus of F (s)
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− Transfer function F (s) reads:

F (s) =
s+ 4

s(s+ 2)(s+ 3)
= 1× s+ 4

s(s+ 2)(s+ 3)
(4.74)

Thus coe�cient a = 1 of F (s) is positive. Then a point s∗ on the real axis
belongs to the root locus as soon as there is an odd number of poles and
zeros on its right (be careful to take into account the multiplicity of poles
and zeros). This leads to sketch 3 in Figure 4.1.

− There are (n−m) = 2 asymptotic branches. The (n−m) = 2 asymptotic
branches of the root locus which diverge to ∞ are asymptotes.

� The angle δk of each asymptote with the real axis is de�ned by:

δk =
π + 2kπ

n−m
=
π + 2kπ

2
∀ k = 0, 1 (4.75)

� Denoting by pi the n poles of the loop transfer function (that are the
roots of D(s)) and by zj the m zeros of the loop transfer function
(that are the roots of N(s)), the asymptotes intersect the real axis at
a point (called pivot or centroid) given by:

σ =

∑n
i=1 pi −

∑m
j=1 zj

n−m
=

0 + (−2) + (−3)− (−4)

2
= −0.5 (4.76)

This leads to sketch 4 in Figure 4.1.

− The breakaway / break-in points are located at the roots sb of the following
equation as soon as there is an odd (because coe�cient a = 1 of F (s) is
positive) number of poles and zeros on its right (be careful to take into
account the multiplicity of poles and zeros);

d

ds

(
1

F (s)

)
s=sb

= 0 (4.77)

We get:

d
ds

(
s(s+2)(s+3)

s+4

)
= d

ds

(
s3+5s2+6s

s+4

)
= (3s2+10s+6)(s+4)−(s3+5s2+6s)

(s+4)2

= 2s3+17s2+40s+24
(s+4)2

⇒ d
ds

(
1

F (s)

)
s=sb

= 0 ⇒ 2s3 + 17s2 + 40s+ 24 = 0

⇒


sb1 ≈ −0.92
sb2 ≈ −2.63
sb3 ≈ −4.95

(4.78)

Among the three potential breakaway / break-in points sbi only sb1 ≈ −0.92
is such that there is an odd (because coe�cient a = 1 of F (s) is positive)
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number of poles and zeros on its right. This leads to sketch 5 in Figure
4.1 where the arrows indicate how move the roots as gain K increases.

The actual root locus is represented in Figure 4.1. It has been obtained
thanks to the following commands on Python:

#!/usr/bin/python

import control

import matplotlib.pyplot as plt

import numpy as np

F = control.tf([1, 4], np.polymul(np.polymul([1, 0], [1, 2]), [1, 3]))

control.rlocus(F)

plt.grid()

plt.show()

�

Example 4.12. Let's consider the following transfer function:

F (s) =
1

(s− 1)(s+ 2)(s+ 4)
(4.79)

The breakaway / break-in points are located at the roots sb of the following
equation as soon as there is an odd (because coe�cient a = 1 of F (s) is posi-
tive) number of poles and zeros on its right (be careful to take into account the
multiplicity of poles and zeros);

d
ds

(
1

F (s)

)
s=sb

= 0

⇒ d
ds ((s− 1)(s+ 2)(s+ 4)) = 0

⇒ d
ds

(
s3 + 5s2 + 2s− 8

)
= 0

⇒ 3s2 + 10s+ 2 = 0

⇒
{
sb1 ≈ −0.21
sb2 ≈ −3.12

(4.80)

Among the two potential breakaway / break-in points sbi only sb1 ≈ −0.21 is
such that there is an odd (because coe�cient a = 1 of F (s) is positive) number
of poles and zeros on its right.

The root locus is represented in Figure 4.11.

It is worth noticing that the values of K such that the root locus of F (s)
intercepts the imaginary axis can be computed thanks to the Routh criterion.
Indeed the denominator of the closed loop reads:

1 +K F (s) = 1 +K 1
(s−1)(s+2)(s+4)

= 1 + K
s3+5s2+2s−8

= s3+5s2+2s−8+K
s3+5s2+2s−8

(4.81)

Applying the Routh criterion on polynomial D(s) = s3 + 5s2 + 2s − 8 + K
leads to the following Routh array:
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Figure 4.11: Root locus of F (s)

s3 1 2

s2 5 K − 8

s1 18−K
5

s0 K − 8

(4.82)

There id no sign change in the �rst column of the Routh array as soon as
the following inequality holds:{

18−K > 0
K − 8 > 0

⇔ 8 < K < 18 (4.83)

As a consequence the values of K such that the root locus of F (s) intercepts
the imaginary axis are K = 8 (for which it can be checked that the roots of D(s)
are 0, −0.44 and −4.56) and k = 18 (for which it can be checked that the roots
of D(s) are −5 and ±1.414j).

�
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Chapter 5

Basic feedback control design

5.1 Chapter overview

In this chapter we will see how to tune two types of well known controllers:

− Lead-lag controllers, which can be tuned in order the comply with speci-
�cations in terms of precision and phase margin;

− PID controller, which can be tuned in order the comply with speci�cations
in terms transient response speci�cations or dominant poles placement.

Furthermore pre�ltering as well as algebraic controller design and anti-
windup will also be developed.

5.2 Strong stabilizability and parity interlacing prop-

erty

A plant, de�ned by a transfer matrix F(s), is said strongly stabilizable if there
exists a stable stabilizing controller C(s) of F(s) or, in other words, if C(s)
internally stabilizes F(s).

A necessary and su�cient condition for the existence of a strongly stabilizing
controller is the parity interlacing property. The parity interlacing property
states that a dynamical plant F(s) is strongly stabilizable if and only if between
any pair of zeros with positive real part (taking into account also the zeros at
in�nity) there is an even number of poles, the latter counted according to their
multiplicities1.

5.3 Lead-lag controller

5.3.1 Steady state error

In Figure 5.1 we have specialized the corrector C(s) of Figure 4.2 to be a constant
value K. This kind of feedback control is called proportional control.

1Youla D. C., J. J. Bongiorno, Jr., and C. N. Lu, Single-loop feedback stabilization of
linear multivariable plants, Automatica, 10 (1974), pp. 159-173.
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Figure 5.1: Proportional control loop

Usually reference input r(t) is the signal we would want to obtain at the
output and consequently such a control loop is currently designed such that
the output y(t) follows the reference input r(t). In the case of perfect feedback
control the error signal ε(t) is then zero at every instant. But in the case of real
feedback control this di�erence is not zero at every instant mainly because of
time constants. The steady-state error ε(∞) represents the tracking error for a
particular input command when time t tends to in�nity:

ε(∞) = lim
t→∞

ε(t) (5.1)

This section presents some results on the value of the steady-state error ε(∞)
for di�erent shape of the signal input r(t).

Rather than computing the inverse Laplace transform of ε(s) back into the
time domain and evaluating it as time t approaches in�nity we will use the �nal
value theorem:

ε(∞) = lim
s→0

sε(s) (5.2)

It is worth noticing that the computation of the steady-state error thanks to
the �nal value theorem is only meaningful for stable closed-loop system. Conse-
quently the stability of the closed-loop system shall be checked when performing
steady-state error analysis.

From Figure 5.1 the Laplace transform of the error ε(s) reads:

ε(s) = R(s)−KF (s)ε(s)⇔ ε(s) =
1

1 +KF (s)
R(s) (5.3)

The steady-state error will depend on the input command R(s) and on the
loop transfer function KF (s). In the following we will consider without loss of
generality that the plant transfer function F (s) is of the form:

F (s) =
A

sα
· 1 + b1s+ · · ·+ bms

m

1 + a1s+ · · ·+ ansn
(5.4)

It is worth noticing that the coe�cients which are in factor to s0 = 1 at the
numerator and denominator of transfer function F (s) are equal to 1.

Integer α represents the number of integrations in F (s), but also in the
open-loop transfer function KF (s). By de�nition the type number of a system
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is the number of integrations in its open-loop transfer function. Thus if α = 0
then the system is said to be of type 0, if α = 1 then type 1 and so on.

We �rst examine the steady-state error to a unit step input:

r(t) = Γ(t)⇒ R(s) =
1

s
(5.5)

When the input reference signal is a step the steady-state error is called the
position error and is found to be:

εp = lims→0 sε(s) = lims→0 s
1

1+KF (s)
1
s

= lims→0
1

1+KA
sα

1+b1s+···+bmsm
1+a1s+···+ansn

(5.6)

The value of the preceding limit depends on the system type:

− If α = 0 (system of type 0) then

εp =
1

1 +KA
(5.7)

− If α > 0 then
εp = 0 (5.8)

Now we examine the steady-state error to a unit-ramp input:

r(t) = t ∀t ≥ 0⇒ R(s) =
1

s2
(5.9)

When the input reference signal is a unit-ramp the steady-state error is
called the velocity error and is found to be:

εv = lims→0 sε(s) = lims→0
1
s

1

1+ A
sα

1+b1s+···+bmsm
1+a1s+···+ansn

= lims→0
1

s+ KA
sα−1

1+b1s+···+bmsm
1+a1s+···+ansn

(5.10)

The value of the preceding limit depends on the system type:

− If α = 0 (system of type 0) then

εv =∞ (5.11)

− If α = 1 (system of type 1) then

εv =
1

KA
(5.12)

− If α > 1 then
εv = 0 (5.13)

Similarly when the input reference signal is a parabola the steady-state error
is called the acceleration error and is found to be:

r(t) = t2 ∀t ≥ 0⇒ R(s) = 2
s3
⇒ εa = lims→0

2

s2+ KA
sα−2

1+b1s+···+bmsm
1+a1s+···+ansn

(5.14)

As in the previous cases the value of the steady-state error depends on the
system type:
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System's type r(t) = Γ(t) r(t) = t r(t) = t2

0 (α = 0)
1

1 +KA
∞ ∞

1 (α = 1) 0
1

KA
∞

2 (α = 2) 0 0
2

KA

Table 5.1: Steady state errors

− If α < 2 then

εa =∞ (5.15)

− If α = 2 (system of type 2) then

εa =
2

KA
(5.16)

− If α > 2 then

εa = 0 (5.17)

A summary of the steady-state error according to the system type and the
input reference command r(t) is provided in Table 5.1.

The steady state errors are classi�ed in accordance with the number of inte-
gration in the open-loop transfer function. As s→ 0 the term which dominates
in determining the steady-state error of the stable closed-loop system is sα−N .
For a system of type α the steady-state error of the closed-loop system is con-
stant when the input command is of the form tα; if the input command is of
the form tN where N < α then the steady-state error is 0 whereas when N > α
the steady-state error tends to in�nity.

It is worth noticing that to make the steady-state error small, that is to
increase the precision of the closed-loop system, the term KA (which is the
static gain for a type 0 system) in the open-loop transfer function shall be chosen
su�ciently high. But on the other hand the higher the value of proportional
controlK is, the closer the closed-loop system will be from instability. Indeed we
can see in Figure 4.8 that increasing the value of K will displace the −1/K+ j0
critical point to the right; hence the closed-loop system is approaching to the
verge of instability. This problem is usually known as the stability-precision
dilemma.

Example 5.1. Consider a plant with the following transfer function:

F (s) =
1

(2s+ 1)(3s+ 1)(4s+ 1)
(5.18)
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Figure 5.2: Lead-lag control

We wish to control this system thanks to a proportional control as in Figure 5.1.
As far as this system is of class 0 the proportional gain K will only be used to set
the position error. Assume that system speci�cation requires the position error
to be 1%. This leads to the following value of proportional gain K:

1% =
1

100
=

1

1 +KA
(5.19)

Here the transfer function F (s) is such that A = 1 (cf. (5.4)) and con-
sequently K = 99. Unfortunately we have seen in the previous section that
the closed-loop system is stable when K < 8.75. As a consequence the system
is unstable with such a value of proportional gain K. This is an example of
stability-precision dilemma.

�

When system speci�cations cannot be satis�ed with the proportional control
loop in Figure 5.1, other control loop schemes shall be envisioned. This is the
purpose of the next chapter.

5.3.2 Controller presentation

Let consider Figure 5.2 where C(s) is a lead-lag controller and K a proportional
gain.

A lead-lag controller has the following transfer function:

C(s) =
1 + τs

1 + ατs
(5.20)

Where α and τ are positive constants. Parameter α enables to de�ne the
controller type:

− Lead controller if 0 < α < 1

− Lag controller if α > 1

For a lead controller the pole −1
ατ is situated on the left of the zero −1

τ and
vice versa for a lag controller.

Let ε(∞) be a speci�ed steady-state error. We have seen in the previous
chapter that the Laplace transform of the system error ε(s) reads:

ε(s) = R(s)−KC(s)F (s)ε(s)⇔ ε(s) =
1

1 +KC(s)F (s)
R(s) (5.21)
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Therefore applying the �nal value theorem the steady-state error ε(∞) reads:

ε(∞) = lim
t→∞

ε(t) = lim
s→0

sε(s) = lim
s→0

s

1 +KC(s)F (s)
R(s) (5.22)

As far C(0) = 1 ∀α, τ we get:

C(0) = 1 ∀α, τ ⇒ ε(∞) = lim
s→0

s

1 +KF (s)
R(s) (5.23)

Consequently a lead-lag controller allows to modify the steady-state error of
the closed-loop system by selecting appropriately the static gain K, indepen-
dently of parameters α and τ . In other words, steady state error is improved
by increasing static gain K (assuming that the closed-loop remains stable).

Phase contribution Φ(ω) and gain contribution |C(ω)| of lead-lag controller
C(s) at frequency ω are obtained as follows:

C(jω) = 1+jτω
1+jατω

= (1+jτω)(1−jατω)
1+(ατω)2

= 1+α(ωτ)2+jωτ(1−α)
1+(ατω)2

= |C(ω)| ejΦ(ω)

(5.24)

Thus:

− Phase contribution Φ(ω) at frequency ω reads: cos(Φ(ω)) = 1+α(ωτ)2√
(1+α(ωτ)2)2+(ωτ(1−α))2

sin(Φ(ω)) = ωτ(1−α)√
(1+α(ωτ)2)2+(ωτ(1−α))2

⇒ tan(Φ(ω)) =
ωτ(1− α)

1 + α(ωτ)2

(5.25)

− Gain contribution |C(ω)| at frequency ω reads:

|C(ω)| =

√
1 + (τω)2

1 + (ατω)2
(5.26)

A lead compensator adds positive phase to the system over the frequency
range 1

τ to 1
ατ whereas a lag compensator adds negative phase to the system

over the frequency range 1
ατ to 1

τ . The extremal phase shift Φm is achieved at
frequency ωm:

C(jωm) = |C(ωm)| ejΦm where


ωm = 1

τ
√
α

|C(ωm)| = 1√
α

sin(Φm) = 1−α
1+α

(5.27)

Let g = |C(ω)|2. From the preceding relationships we get:

g = |C(ω)|2 =
1 + (τω)2

1 + (ατω)2
⇒ (τω)2 =

1− g
gα2 − 1

(5.28)
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Let p = tan(Φ(ω)). From the preceding relationships it is clear that p and c
are related as follows:

p = tan(Φ(ω))⇒ p2 = (ωτ)2(1−α)2

(1+α(ωτ)2)2 =
1−g
gα2−1

(1−α)2(
1+α 1−g

gα2−1

)2

⇔ p2
(

1 + α 1−g
gα2−1

)2
− 1−g

gα2−1
(1− α)2 = 0

⇔ p2
(
gα2−1+α(1−g)

gα2−1

)2
− 1−g

gα2−1
(1− α)2 = 0

⇔ p2
(
gα(α−1)+α−1

gα2−1

)2
− (1−g)(gα2−1)

(gα2−1)2 (1− α)2 = 0

⇔ p2
(
gα+1
gα2−1

)2
(α− 1)2 − (1−g)(gα2−1)

(gα2−1)2 (1− α)2 = 0

(5.29)

Assuming that α 6= 1 and gα2 − 1 6= 0 we �nally get:

p2 (gα+ 1)2 − (1− g)(gα2 − 1) = 0
⇔ α2g(gp2 + g − 1) + 2αgp2 + p2 + 1− g = 0

(5.30)

Thus the values of parameters α and τ of a lead-lag controller which produce
a gain g and a phase p at frequency ω are de�ned as follows:

τ = 1
ω

√
1−g
gα2−1

α2g(gp2 + g − 1) + 2αgp2 + p2 + 1− g = 0

where

{
p = tan(Φ(ω))

g = |C(ω)|2

(5.31)

− For a lag controller where p < 0 and 0 < g < 1 it is easily veri�ed that a
su�cient condition for the solution of the quadratic equation in α to be
positive is:

gp2 + g − 1 < 0 (5.32)

− Similarly for a lead controller where p > 0 and g > 1 it is easily veri�ed
that a su�cient condition for the solution of the quadratic equation in α
to be positive is:

p2 + 1− g < 0 (5.33)

5.3.3 Lag controller tuning: graphical method

Compensator design using a lag controller is based on the controller's attenua-
tion at high frequencies as shown in Figure 5.3.

Assuming that steady state error and phase margin requirements are given,
lag controller tuning can be done graphically as follows:

1. Using the �nal value theorem, determine gain K > 0 which satis�es the
steady state error requirement;

2. Draw the Bode plot of K F (jω);

3. Find on the Bode phase plot of K F (jω) the frequency ω1 corresponding
to the required phase margin MΦ increased by 5◦. The extra 5◦ is an
overestimate (forfait moustachu in French) of the phase lag induced by
the lag controller at high frequency ;
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Figure 5.3: Lag controller Bode plot (α = 2 > 1 and τ = 1)

4. Read on the Bode magnitude plot the value 20 log10 |K F (jω1)| at fre-
quency ω1. This value will be shifted to 0 dB thanks to the attenuation
of the lag controller at high frequencies:

−20 log10 |K F (jω1)| = −20 log10 (α)⇔ α = K F (jω1) (5.34)

5. Place the controller zero 1/τ such that 1/τ � ω1, for example one decade
to the left of the new gain crossover frequency ω1:

1

τ
≈ ω1

10
⇔ τ ≈ 10

ω1
(5.35)

Finally draw the Bode plot ofK C(jω)F (jω) where C(s) = 1+τs
1+ατs and check

the value of the phase margin. If the achieved phase margin is not satisfactory
increase the overestimate of the phase lag induced by the lag controller (try with
8◦ rather than 5◦ for example) and repeat the design process.

5.3.4 Lead controller tuning: graphical method

Compensator design using a lead controller is based on the controller's phase
lead as shown in Figure 5.4.

Assuming that steady state error and phase margin requirements are given,
lead controller tuning can be done graphically as follows:

1. Using the �nal value theorem, determine gain K > 0 which satis�es the
steady state error requirement;

2. Draw the Bode plot of K F (jω);
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Figure 5.4: Lead controller Bode plot (α = 0.5 < 1 and τ = 1)

3. Find on the Bode phase plot of K F (jω) the gain crossover frequency ω2

such that 20 log10 (K F (jω2)) = 0 dB and compute the phase di�erence
∆φ between the actual and the required phase margin Mφ:

∆φ = Mφ − (arg(K F (jω2) + 180◦) (5.36)

4. Compute the maximum phase lead Φm of the lead controller as follows:

Φm = ∆φ+ 5◦ (5.37)

The increase of 5◦ is an overestimate (forfait moustachu in French) of the
consequence of the ampli�cation e�ect of the phase lead controller on the
actual phase margin. Indeed, due to the ampli�cation e�ect, the actual
gain crossover frequency will be higher (that is shifted to the right on the
Bode plot);

5. Compute parameter α of the lead controller as follows:

α =
1− sin(Φm)

1 + sin(Φm)
(5.38)

6. Compute the lead controller ampli�cation 1/
√
α and read on the Bode

magnitude plot the value of the frequency ω3 such that:

20 log10 (K F (jω3)) = +10 log10 (α) (5.39)

Frequency ω3 > ω2 will be the actual gain crossover frequency. Then
compute parameter τ of the lead controller such that ω3 corresponds to
the frequency at which the maximum phase lead is achieved:

ω3 =
1

τ
√
α
⇔ τ =

1

ω3
√
α

(5.40)
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Finally draw the Bode plot ofK C(jω)F (jω) where C(s) = 1+τs
1+ατs and check

the value of the phase margin. If the achieved phase margin is not satisfactory
increase the overestimate of the e�ect of the lead controller on the phase margin
(try with 8◦ rather than 5◦ for example) and repeat the design process.

5.3.5 Example

We consider a plant with the following transfer function:

F (s) =
4

s(s+ 2)
(5.41)

We wish to control this plant such that the closed-loop match with the
following speci�cations:

− Steady-state error of the closed-loop when the input is a unit-ramp input,
that is the velocity error: εv = 0.05

− Phase margin: Mφ = 50◦

Error ε(t) between the reference signal r(t) and the output y(t) reads:

ε(t) = r(t)− y(t) (5.42)

The use of the �nal value theorem leads to the expression of velocity error:

εv = lim
t→∞

ε(t) = lim
s→0+

s ε(s) (5.43)

Reading Figure 5.2 we get Y (s) = KC(s)F (s)
1+KC(s)F (s) . Furthermore as far as we

focus on velocity error we have r(t) = t ∀t ≥ 0. Thus R(s) = L[t] = 1
s2

and:

ε(s) = R(s)− Y (s)
= 1

1+KC(s)F (s)R(s)

= 1
1+KC(s) 4

s(s+2)

1
s2

(5.44)

Using the fact that C(0) = 1 we �nally get:

εv = lims→0+ s ε(s)
= lims→0+ s 1

1+KC(s) 4
s(s+2)

1
s2

= lims→0+
1

1+KC(s) 4
s(s+2)

1
s

= lims→0+
1

s+KC(s) 4
s+2

= 1
2K

(5.45)

Consequently we shall choose K = 10 to set εv to 0.05:

εv = 0.05 =
1

2K
⇒ K = 10 (5.46)

In order to apply the graphical method the Bode plot of K F (jω) is sketched
in Figure 5.5.
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Figure 5.5: Bode plot of K F (jω)

− For the lag controller we get:
ω1 ≈ 1.4 rad/sec
20 log10 |K F (jω1)| ≈ 21 dB

α = 1021/20 ≈ 11.2
τ ≈ 10

ω1
≈ 7.1

(5.47)

− For the lead controller we get:

ω2 ≈ 6 rad/sec
arg(K F (jω2) + 180◦ ≈ 17◦

Φm = 50− 17 + 5 = 38◦

α = 1−sin(Φm)
1+sin(Φm) ≈ 0.24

10 log10(α) ≈ −6.2 dB
ω3 ≈ 9 rad/sec
τ = 1

ω3
√
α
≈ 0.23

(5.48)

We recall that the design process does not ensure the actual location of the
dominant pole.

5.3.6 Lead-lag controller tuning: computational method

The method proposed by Phillips and Harbor2 has the following steps:
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− First get the required phase margin MΦ as well as the settling time ts
from the design speci�cations;

− Find gain K such that the requirement on the steady-state error ε(∞) of
the closed-loop system is satis�ed;

− Then choose the gain crossover frequency ωc corresponding to the required
phase marginMΦ and the settling time ts. Frequency ωc is chosen by trial
and error but shall satisfy:

ωc ≥
8

ts tan(MΦ)
(5.49)

− Compute the phase angle ϕ of the controller C(s) at frequency ωc as:

ϕ := arg (C (jωc)) = −180◦ +MΦ − arg (KF (jωc)) (5.50)

It is worth noticing that angle ϕ shall be between −90◦ and +90◦: this
corresponds to the minimum and maximum phase shift achievable by the
controller.

− Set parameters α and τ of the lead-lag controller as follows:

C(s) =
1 + τs

1 + ατs
where

{
τ = 1−K|F (jωc)| cos(ϕ)

ωcK|F (jωc)| sin(ϕ)

ατ = cos(ϕ)−K|F (jωc)|
ωc sin(ϕ)

(5.51)

As in the PID tuning method, the preceding results may be obtained by
equating the real part and the imaginary part of K C(jωc) to

cos(ϕ)
|F (jωc)| and

cos(ϕ)
|F (jωc)| respectively:

K C(jωc) = K 1+α(ωcτ)2+jωcτ(1−α)
1+(ατωc)2 = cos(ϕ)

|F (jωc)| + j sin(ϕ)
|F (jωc)|

⇒

{
K 1+α(ωcτ)2

1+(ατωc)2 = cos(ϕ)
|F (jωc)|

K ωcτ(1−α)
1+(ατωc)2 = sin(ϕ)

|F (jωc)|

(5.52)

If the achieved performances are not satisfactory then frequency ωc has to
be tuned by trial and error. However we recall that even then the closed-loop
system may not achieved the required performance or can be unstable as far as
the design process does not ensure the actual location of the dominant poles.

5.4 PID controller

5.4.1 Transient response speci�cations

This section provides the links between time domain and frequency domain spec-
i�cations. Indeed in one hand we may have time domain speci�cations, which
are usually provided by the end-user of the system, whereas engineers rather
prefer frequency domain speci�cations because they are more tractable in terms
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Figure 5.6: Unity feedback loop for transient response speci�cations

of transfer functions. Frequency domain speci�cations can be provided either
in terms of dominant poles or in terms of phase margin MΦ and corresponding
gain crossover frequency ωc.

Transient response speci�cations are usually based on second order under-
damped model where the damping ratiom is in between 0 and 0.7 (0 < m < 0.7)
and where the static gain K has been set to 1 reads:

G(s) =
Y (s)

R(s)
=

ω2
0

s2 + 2mω0s+ ω2
0

(5.53)

It is worth noticing that model G(s) should not be interpreted as the actual
transfer function of the closed-loop system but as the speci�ed reduced model
of the actual closed-loop system.

Moreover transfer function G(s) can be viewed as the closed-loop transfer
function of the loop depicted in Figure 5.6 where the open-loop transfer function
F (s) is put within a unity feedback loop.

Open-loop transfer function F (s) could be obtained thanks to the following
identi�cation:

Y (s)
R(s) =

ω2
0

s2+2mω0s+ω2
0

= 1
s2+2mω0s

ω2
0

+1

Y (s)
R(s) = F (s)

1+F (s) = 1
1

F (s)
+1

⇒ F (s) =
ω2

0

s (s+ 2mω0)
(5.54)

In the frequency domain we get:

F (jω) =
ω2

0

−ω2 + j2mω0ω
(5.55)

The phase margin occurs at the gain crossover frequency ωc which is the
frequency such that |F (jωc)| = 1. Thus frequency ωc reads:

|F (jωc)| = 1⇒ ω4
0

ω4
c + 4m2ω2

0ω
2
c

= 1⇔
(
ωc
ω0

)4

+ 4m2

(
ωc
ω0

)2

− 1 = 0 (5.56)

The roots of this quadratic equation are given by:(
ωc
ω0

)2

= −2m2 ±
√

4m4 + 1 (5.57)
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Since the root corresponding to the phase margin must be real positive we
�nally get:

ωc = ω0

√√
4m4 + 1− 2m2 (5.58)

The phase margin MΦ of the system is then de�ned as:

MΦ = 180◦ + arg (F (jωc)) (modulo 360◦) (5.59)

According to the expression of F (jω) we get:

arg (F (jωc)) = −180◦ + arctan

(
2mω0ωc
ω2
c

)
(5.60)

It is worth noticing that we add −180◦ (modulo 360◦) because the real part of
the denominator of F (jω) is negative.

Thus:
MΦ = 180◦ + arg (F (jωc)) (modulo 360◦)

= 180◦ − 180◦ + arctan
(

2mω0ωc
ω2
c

)
= arctan

(
2mω0

ωc

)
= arctan

(
2m√√

4m4+1−2m2

) (5.61)

Assuming 0 < m < 0.7 the damping ratio m and the phase margin MΦ are
related through the following approximate relationship:

MΦ(in degrees) ≈ 100m (5.62)

Thus the phase margin MΦ is related to the damping ratio m, that is to the
overshoot of the closed-loop system response.

In addition under the same assumption on m the 95% settling time ts of
second order underdamped closed-loop model can be approximated by:

ts ≈
4

mω0
(5.63)

Then we get the following relationship between the phase margin MΦ and
the settling time ts:{

tan (MΦ) = 2mω0
ωc

ts ≈ 4
mω0

⇒ tan (MΦ) ≈ 8

tsωc
(5.64)

Thus for a given phase margin MΦ, increasing the gain crossover frequency
ωc reduces the settling time ts.

From the preceding results it is clear that there exists a close relationship
between time domain speci�cations, typically settling time ts and relative over-
shoot D, and frequency domain speci�cations, typically the phase margin MΦ

and the corresponding gain crossover frequency ωc:
D = e

− πm√
1−m2

ts ≈ 4
mω0

tan (MΦ) = 2mω0
ωc

⇔


m = − ln(D)√

π2+ln2(D)

MΦ(in degrees) ≈ 100m
ωc ≈ 8

ts tan(MΦ)

(5.65)
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Roughly speaking, the damping ratio is closely related to the phase mar-
gin MΦ whereas the settling time ts decreases when gain crossover frequency
ωc increases. In other words system stability is improved and overshoot D is
reduced by increasing the phase margin Mφ whereas settling time ts is reduced
by increasing system's bandwidth ωc.

The preceding relationships also lead to the expected location of the domi-
nant poles λdp and λ̄dp of the closed-loop system:{

λdp = −mω0 + jω0

√
1−m2

λ̄dp = −mω0 − jω0

√
1−m2

(5.66)

5.4.2 Controller presentation

The PID control is the most popular feedback controller used within the pro-
cess industries. It was an essential element of early governors and has been
successfully used for several years.

PID control consists of a controller based on three basic modes:

− the Proportional (P) mode,

− the Integral (I) mode and

− the Derivative (D) mode

The transfer function C(s) of a PID controller is the following:

C(s) = Kp +
Ki

s
+Kd s (5.67)

Note that if only the Proportional mode appears in the transfer function
C(s) of the controller, the controller is called a proportional controller:

CP (s) = Kp (5.68)

Similarly if only Proportional and Integral modes appears in the transfer
function C(s) of the controller, the controller is called a proportional and integral
controller (PI controller):

CPI(s) = Kp +
Ki

s
(5.69)

Finally if only Proportional and Derivative modes appears in the transfer
function C(s) of the controller, the controller is called a proportional and deriva-
tive controller (PD controller):

CPD(s) = Kp +Kd s (5.70)

Figure 5.7 shows a PID controlled system. Note that the derivative term
Kd s is not a proper transfer function; as a consequence the derivative term is
either measured by a dedicated sensor or is changed to be Kd s

1+τd s
where τd is a

very small time constant (i.e. close to zero):

Kd s→
Kd s

1 + τd s
where τd ≈ 0 (5.71)
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Figure 5.7: PID controlled system

PID gain Overshoot Settling time Steady-state error

Increasing Kp (Kp ↗) Increases ↗ Decreases ↘ Decreases ↘
Increasing Ki (Ki ↗) Increases ↗ Increases ↗ Eliminates

Increasing Kd (Kd ↗) Decreases ↘ Decreases ↘ Increases ↗

Table 5.2: Usual e�ect when increasing Kp, Ki and Kd gains

The previous approximation of the derivative term can be interpreted as
the ideal derivative term Kd s �ltered by a �rst-order system 1

1+τd s
with time

constant τd. A typical expression of τd is the following where N is chosen
between 10 and 20:

τd =
Kd

KpN
(5.72)

As seen in the previous chapter the steady state error in proportional control
will decrease with increasing gain Kp (assuming no integral action). As far as
integral action is concerned the term Ki

s usually decreases the overall bandwidth
of the system thus increasing the overshoot and the settling time of the closed-
loop system. On the other hand the derivative action Kd s usually increases the
overall bandwidth of the system, thus increasing the overshoot and the settling
time of the closed-loop system.

The e�ect which is usually observed when increasing the PID gains Kp, Ki

and Kd on the step response of the closed-loop system is summarized on Table
5.2.

One disadvantage of this ideal PID controller is that a sudden change in set
point r(t) (and hence in the error ε(t)) will cause the derivative term to become
very large and thus provide a derivative kick to the plant F (s) which is not de-
sirable. An alternative implementation consists in putting the derivative action
on the measurement Y (s) and not the error ε(s). This leads to an alternative
PID control scheme, known as PI-D control. Figure 5.8 shows a PI-D controlled
system.

Finally it is worth noticing that whatever the location of the PID controller
C(s) in the loop, either after the comparator as in Figure 5.9, in the feedback
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Figure 5.8: PI-D controlled system

Figure 5.9: Unity feedback loop

Figure 5.10: Feedback loop with C(s)
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loop as in Figure 5.10 or split in the PI-D con�guration as in Figure 5.8, the
denominator Dcl(s) of the closed-loop transfer function remains the same:

Dcl(s) = 1 + F (s)C(s) = 1 + F (s)

(
Kp +

Ki

s
+Kd s

)
(5.73)

Indeed:

− The closed-loop transfer function of the unity feedback loop in Figure 5.9
reads:

Y (s)

R(s)
=

F (s)C(s)

1 + F (s)C(s)
=
F (s)C(s)

Dcl(s)
(5.74)

− The closed-loop transfer function of the feedback loop in Figure 5.8 where
the PID controller is split reads:

Y (s) = F (s)
(
−Kd sY (s) +

(
Kp + Ki

s

)
(R(s)− Y (s))

)
⇔ Y (s)

(
1 + F (s)

(
Kp + Ki

s +Kd s
))

= F (s)
(
Kp + Ki

s

)
R(s)

⇔ Y (s)
R(s) =

F (s)
(
Kp+

Ki
s

)
1+F (s)

(
Kp+

Ki
s

+Kd s
) =

F (s)
(
Kp+

Ki
s

)
Dcl(s)

(5.75)

− The closed-loop transfer function of the feedback loop with C(s) in Figure
5.10 reads:

Y (s)

R(s)
=

F (s)

1 + F (s)C(s)
=

F (s)

Dcl(s)
(5.76)

As a conclusion the transfer function of the closed-loop has the same de-
nominator whatever the PID location in the loop.

5.4.3 Ziegler and Nichols tuning method

In 1942 Ziegler and Nichols published a gain tuning method to achieve fast
closed-loop step response without excessive oscillations with PID controller in
the loop. The method they have developed is based on the minimization on
the following criteria which is called the Integral of the Absolute Error (IAE)
criteria:

JIAE =

∫ ∞
0
|r(t)− y(t)| dt (5.77)

The Ziegler and Nichols method �rst consider that gains Ki and Kd are
set to zero whereas the proportional gain Kp is increased until the closed-loop
system reaches the boundary of instability. The gain on the border of instability
is called the critical gain and is denoted Kcr whereas the period of sustained
oscillations is called the ultimate period of oscillation and is denoted Tcr.

At a gain just below the ultimate gain, the closed-loop oscillates with de-
caying amplitude while at a gain just above the ultimate gain the amplitude of
oscillations increases with time. Critical gain Kcr and ultimate frequency ωcr
can be obtained by noticing that at the verge of instability (where the system
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Controller type Kp Ki Kd

Proportional (P) 0.5Kcr 0 0

Proportional-Integral (PI) 0.45Kcr
0.54Kcr
Tcr

0

Proportional-Integral-Derivative (PID) 0.6Kcr
1.2Kcr
Tcr

0.075KcrTcr

Table 5.3: Ziegler-Nichols PID controller gains

is said to be marginally stable) the characteristic equation must have at least
an imaginary root which is noticed jωcr. Thus by substituting s by jωcr in the
characteristic equation of the closed-loop system (i.e. the denominator of the
closed-loop system which is set to zero) we get a complex equation that can be
converted into two simultaneous equations by noticing that the real part and
the imaginary part shall be equal to zero. From these we can solve for the two
unknowns: one is the ultimate frequency ωcr and the other is the ultimate gain
Kcr. The ultimate period of oscillation Tcr is related to the ultimate frequency
ωcr by:

Tcr =
2π

ωcr
(5.78)

Notice that the ultimate gain Kcr and the ultimate frequency ωcr can be
computed thanks to the Routh array in the same fashion the gain margin is
computed.

Table 5.3 provides the Ziegler-Nichols PID controller gains. It was obtained
by Ziegler and Nichols who aimed to achieve an underdamped response to a
unit step input for the following plant model:

F (s) =
K0

1 + τs
e−Ts where τ, T > 0 (5.79)

It is worth noticing that if the critical gain Kcr cannot be computed then
there is no way to set the PID controller gains following the Ziegler-Nichols
method.

5.4.4 Phillips and Harbor tuning method

Setting Kp and Kd parameters

Others methods exist to set PID controllers. We present hereafter the method
proposed by Phillips and Harbor 2.

Assume that the controller is a PID controller. Its transfer function C(s)
reads:

C(s) = Kp +
Ki

s
+Kd s (5.80)

As far as it is assumed that the open-loop transfer function C(s)F (s) passes
through the point 1× ej(−180◦+MΦ) for the gain crossover frequency ωc and the

2Charles L. Phillips and Royce D. Harbor. Feedback Control System. Prentice-Hall, 1991
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phase margin MΦ we get:

C(jωc)F (jωc) = 1× ej(−180◦+MΦ)

⇔
{
|C(jωc)| = 1

|F (jωc)|
arg (C (jωc)) + arg (F (jωc)) = −180◦ +MΦ

(5.81)

Denoting by ϕ the angle of C(jωc) we get:

ϕ := arg (C (jωc)) = −180◦ +MΦ − arg (F (jωc)) (5.82)

Furthermore:

C(jωc) = Kp + j
(
Kdωc − Ki

ωc

)
= |C(jωc)| ej arg(C(jωc))

= |C(jωc)| (cos(ϕ) + j sin(ϕ))

(5.83)

Equating the real part and the imaginary part yields:{
Kp = |C(jωc)| cos(ϕ) = cos(ϕ)

|F (jωc)|
Kdωc − Ki

ωc
= |C(jωc)| sin(ϕ) = sin(ϕ)

|F (jωc)|
(5.84)

Consequently the method proposed by Phillips and Harbor2 has the following
steps:

− First get the required phase margin MΦ as well as the settling time ts
from the design speci�cations;

− Then choose the gain crossover frequency ωc corresponding to the required
phase marginMΦ and the settling time ts. Frequency ωc is chosen by trial
and error but shall satisfy:

ωc ≥
8

ts tan(MΦ)
(5.85)

− Compute the phase angle ϕ of the controller C(s) at frequency ωc as:

ϕ := arg (C (jωc)) = −180◦ +MΦ − arg (F (jωc)) (5.86)

It is worth noticing that angle ϕ shall be between −90◦ and +90◦: this
corresponds to the minimum and maximum phase shift achievable by the
controller.

− Finally choose the integral gain |Ki| (for example |Ki| = 0.01 but it could
be Ki = 0 when integral action is not required); the proportional gain Kp

and derivative gain Kd are then given by:{
Kp = cos(ϕ)

|F (jωc)|
Kd = sin(ϕ)

ωc|F (jωc)| + Ki
ω2
c

(5.87)
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If the achieved performances are not satisfactory then frequency ωc has to
be tuned by trial and error. Usually ωc is increased until the real part of some
closed-loop poles is equal to the real part of the required dominant poles.

However remember that even then the closed-loop system may not achieved
the required performance or can be unstable as far as the design process does
not ensure the actual location of the dominant poles. Indeed the design process
come from the assumption that the closed-loop system can be modelled by a
second order model (which is obviously a reduced order model).

Tuning Ki through root locus technique

The in�uence of parameter Ki can be investigated thanks to the root locus
technique. Indeed let's write transfer function F (s) as follows where N(s) and
D(s) are polynomials:

F (s) =
N(s)

D(s)
(5.88)

Transfer function F (s) is assumed to be a proper and co-prime rational
fraction.

A PID controller is used to control the plant. The transfer function C(s) of
the PID controller is:

C(s) = Kp +
Ki

s
+Kd s (5.89)

The controller C(s) is put either in front the plant in a unity feedback loop
as depicted in Figure 5.9 or in the feedback path as depicted in Figure 5.10
or in a PI-D con�guration as depicted in Figure 5.8. In all con�gurations the
denominator Dcl(s) of the closed-loop transfer function H(s) = Y (s)

R(s) reads:

Dcl(s) = sD(s) +N(s)
(
Kd s

2 +Kps+Ki

)
(5.90)

Using the expression of parameters Kp and Kd provided in (5.87) the closed-
loop characteristic polynomial reads:

Dcl(s) = sD(s) +N(s)
(
Kd s

2 +Kps+Ki

)
= sD(s) +N(s)

((
sin(ϕ)

ωc|F (jωc)| + Ki
ω2
c

)
s2 + cos(ϕ)

|F (jωc)|s+Ki

)
= sD(s) +N(s)

(
sin(ϕ)

ωc|F (jωc)|s
2 + cos(ϕ)

|F (jωc)|s
)

+KiN(s)
(
s2

ω2
c

+ 1
)
(5.91)

Dividing both side of the closed-loop characteristic equation by the terms
without Ki reads:

Dcl(s) = 0

⇔ sD(s) +N(s)
(

sin(ϕ)
ωc|F (jωc)|s

2 + cos(ϕ)
|F (jωc)|s

)
+KiN(s)

(
s2

ω2
c

+ 1
)

= 0

⇔ 1 +KiL(s) = 0

(5.92)

Where:

L(s) =
N(s)

(
s2

ω2
c

+ 1
)

sD(s) +N(s)
(

sin(ϕ)
ωc|F (jωc)|s

2 + cos(ϕ)
|F (jωc)|s

) (5.93)
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The division by the terms without Ki doesn't change the roots of the closed-
loop transfer function. L(s) is a proper transfer function since the degrees of its
numerator and denominator equal those of the closed-loop transfer function's
numerator and denominator respectively.

The design procedure is the following:

− Draw the root locus of L(s) as Ki varies;

− Choose the value of Ki to satisfy the speci�cations from the root locus;

− Once Ki is chosen set Kp and Kd according to (5.87).

5.4.5 Dominant pole placement

We present hereafter the method proposed by Wang & all 3.
Consider a plant described by its transfer function F (s) where N(s) and

D(s) are polynomials:

F (s) =
N(s)

D(s)
(5.94)

Transfer function F (s) is assumed to be a proper and co-prime rational
fraction.

A PID controller is used to control the plant. The transfer function C(s) of
the PID controller is:

C(s) = Kp +
Ki

s
+Kd s (5.95)

The controller C(s) is put either in front the plant in a unity feedback loop
as depicted in Figure 5.9 or in the feedback path as depicted in Figure 5.10
or in a PI-D con�guration as depicted in Figure 5.8. In all con�gurations the
closed-loop characteristic equation is:

1 + C(s)F (s) = 0⇔ C(s) =
−1

F (s)
(5.96)

Furthermore the denominator Dcl(s) of the closed-loop transfer function

H(s) = Y (s)
R(s) reads as follows irrespective the chosen feedback loop con�guration:

Dcl(s) = sD(s) +N(s)
(
Kd s

2 +Kps+Ki

)
(5.97)

Suppose that the requirements of the closed-loop control performance in
frequency or time domain are converted into a pair of conjugate poles {λdp, λ̄dp}:{

λdp = a+ jb
λ̄dp = a− jb ⇔

{
a = Re (λdp)
b = Im (λdp)

(5.98)

The dominance of poles λdp and λ̄dp requires that the ratio of the real part
of any of other poles to a exceeds r where r is usually greater than 3. Thus, we
want all other poles to be located at the left of the line s = r a. The problem

3Guaranteed dominant pole placement with PID controllers, Qing-Guo Wang, Zhiping
Zhang, Karl Johan Astrom, Lee See Chek, Journal of Process Control 19 (2009) 349�35
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of the guaranteed dominant pole placement is to �nd the PID parameters such
that all the closed-loop poles lie in the required region except the dominant
poles λdp and λ̄dp.

Substitute λdp by a+ jb into (5.96) yields:

Kp +
Ki

a+ jb
+Kd (a+ jb) =

−1

F (λdp)
(5.99)

This complex equations can be decomposed into two sub-equations, one from
the real part and the other from the imaginary part. Solving the two equations
for Ki and Kd in terms of Kp yields:{

Ki = −
(
a2 + b2

) (Kp
2a +X1

)
Kd = −Kp

2a +X2

(5.100)

Where:  X1 = 1
2bIm

(
−1

F (λdp)

)
− 1

2aRe
(
−1

F (λdp)

)
X2 = 1

2bIm
(
−1

F (λdp)

)
+ 1

2aRe
(
−1

F (λdp)

) (5.101)

This simpli�es the original problem to a one-parameter problem in Kp for
which the root locus method will be applied. We plot the roots of the closed-loop
characteristic equation for all positive values of Kp and determine the range of
Kp such that the roots except the chosen dominant pair are the required region.
Substituting (5.100) into (5.96) yields:

1 + sX2
N(s)

D(s)
− (a2 + b2)

X1

s

N(s)

D(s)
−Kp

s2 − 2as+ (a2 + b2)

2as

N(s)

D(s)
= 0 (5.102)

Dividing both side by the terms without Kp gives after some manipulations:

1 +KpL(s) = 0 (5.103)

Where the �ctitious transfer function L(s) is de�ned by:

L(s) =
−N(s)

(
s2 − 2as+ (a2 + b2)

)
2asD(s) +N(s) (2aX2s2 − 2a(a2 + b2)X1)

(5.104)

The division by the terms without Kp doesn't change the roots of the closed-
loop transfer function. Fictitious transfer function L(s) is proper since the
degrees of its numerator and denominator equal those of the closed-loop transfer
function's numerator and denominator respectively.

The design procedure is the following:

− Set the value of the dominant poles λdp and λ̄dp according to the speci�-
cations;

− Draw the root locus of �ctitious transfer function L(s) given by (5.104)
as Kp ≥ 0 varies. The location of the poles λdp and λ̄dp will not move
despite the change of Kp. Note that negative values of Kp can be achieved
by plotting the root locus of −L(s);
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Figure 5.11: Root locus of L(s) as Kp varies

− From the root locus of L(s) choose the value of Kp which guarantee that
λdp and λ̄dp are the dominant poles of the closed-loop;

− Once Kp is chosen set Ki and Kd according to (5.100).

Example 5.2. Consider a plant with the following transfer function:

F (s) =
1

(2s+ 1)2
(5.105)

We wish to design a PID controller such that the closed-loop system exhibits
a time response ts of 3 seconds and an overshoot of 5%.

Using the results of section 5.4.1, dominant poles λdp and λ̄dp of the closed-
loop system are the following:

a = −mω0 ≈ − 4
ts

m = − ln(D)√
si2+ln2(D)

ω0 =≈ 4
mts

b = ω0

√
1−m2

⇒
{
λdp = a+ j b = −1.33 + j1.4
λ̄dp = a− j b = −1.33− j1.4 (5.106)

Root locus of transfer function L(s) given by (5.104) is shown in Figure 5.11.

It is clear that whatever the value of Kp the required poles at −1.33 ± j1.4
are invariant. The third pole of the closed-loop transfer function is located on
the horizontal branch. The square around the value −4 corresponds to a value of
Kp set to 56; it is indeed a fast pole comparatively to the two required dominant
poles. The values of Ki and Kd obtained thanks to (5.100) are the following:

Kp = 56⇒
{
Ki = 58.88
Kd = 22.44

(5.107)

The step response of the closed-loop system obtained thanks to the designed
PID is shown in Figure 5.12.
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Figure 5.12: Closed loop unit step response with PID controller

Once the PID controller C(s) is placed in the direct path, the closed-loop
transfer function reads:

Y (s)

R(s)
=

F (s)C(s)

1 + F (s)C(s)
=

22.44s2 + 56s+ 58.89

4s3 + 26.44s2 + 57s+ 58.89
(5.108)

We can check that the poles of the closed-loop transfer function are those
drawn on Figure 5.11, that are the two expected dominant poles −1.33 ± j1.4
and the fast pole −4.

�

5.5 Pre-�ltering

5.5.1 Purpose

Let's come back to the unit step response shown in Figure 5.12. It is clear that
the achieved overshoot is greater than the speci�cation at 5%. Why ? Basically
because the speci�cations based on dominant pole placement assume that the
numerator of the closed-loop system is a constant, which is usually not the case
because the numerator of the closed-loop system is simply a consequence of the
designed controller C(s). In order to change into a constant the numerator of
the closed-loop system, a pre�lter Cpf (s) may be used.

As shown in Figure 5.13, the pre�lter Cpf (s) is a controller which is situated
outside the feedback loop.

What is the purpose of the pre�lter ? Once the controller C(s) is designed

the poles of the feedback loop transfer function Y (s)
Rpf (s) are set, but not its zeros.

These zeros may cause undesirable overshoots in the transient response of
the closed-loop system. The purpose of the pre�lter Cpf (s) is to reduce or
eliminate such overshoots in the closed-loop system. Additionally the pre�lter
may annihilate slow stable poles which sometimes cannot be shifted by the
controller. Moreover in the case where the zeros are positive, the system without
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Figure 5.13: Feedback loop with pre�lter

pre�lter may exhibit undesirable non-minimum phase behaviour (see section
5.7).

5.5.2 Transfer function with negative real-parts zeros

We focus in Figure 5.13. Let Ncl(s) be the numerator of transfer function Y (s)
Rpf (s)

and Dcl(s) its denominator:

Y (s)

Rpf (s)
=

F (s)C(s)

1 + F (s)C(s)
=
Ncl(s)

Dcl(s)
(5.109)

In this section we will assume that transfer function Y (s)
Rpf (s) has all its zeros

with negative real-parts, or equivalently that all the roots of Ncl(s) are located
in the left half plane.

Pre�lter Cpf (s) is designed such that its poles cancel the zeros of the closed-
loop system (i.e. the roots of Ncl(s)). If there is no pole of the closed-loop
system to cancel, the numerator of the pre�lter is set to be a constant Kpf . In
such a case the transfer function of the full system reads:

Y (s)

R(s)
=

Kpf

Dcl(s)
(5.110)

As a consequence the transfer function of the pre�lter reads:

Cpf (s) =
Kpf

Ncl(s)
(5.111)

Note that is this is only possible because the roots of Ncl(s) have negative
real-parts, meaning Cpf (s) is stable.

Usually constant Kpf is set such that the static gain of Y (s)
R(s) is unitary,

meaning that the position error is zero:

Y (s)

R(s)

∣∣∣∣
s=0

= 1⇒ Kpf = Dcl(0) (5.112)

Additionally the numerator of the pre�lter may also cancel some slow stable
poles (poles in the left plane) of the closed-loop system when they cannot be
shifted by the controller C(s), but this may increase the sensitivity of the closed-
loop to unmodelled dynamics. In this case, the numerator of the pre�lter Cpf (s)
is no more a constant.
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Figure 5.14: Feedback loop with feedforward compensation and pre�lter

5.5.3 Transfer function with positive zeros

When feedback loop transfer function Y (s)
Rpf (s) = Ncl(s)

Dcl(s)
has zeros with positive

real parts the design technique presented in section 5.5.2 to design the pre�lter
Cpf (s) is not applicable. Indeed in that situation Ncl(s) has roots with positive

real parts and thus pre�lter Cpf (s) =
Kpf
Ncl(s)

is unstable.

One way to tackle this problem is to use a feedforward compensator Cff (s)
as shown in Figure 5.14.

Thanks to the feedforward compensator Cff (s), transfer function Y (s)
Rpf (s)

reads as follows:
Y (s)

Rpf (s)
=
F (s) (C(s) + Cff (s))

1 + F (s)C(s)
(5.113)

LetNF (s) andDF (s) be the numerator and the denominator of F (s), respec-
tively. Similarly let NC(s) and DC(s) be the numerator and the denominator of
C(s) and Nff (s) and Dff (s) be the numerator and the denominator of Cff (s).

Thus transfer function Y (s)
Rpf (s) reads:

F (s) = NF (s)
DF (s)

C(s) = NC(s)
DC(s)

Cff (s) =
Nff (s)
Dff (s)

⇒ Y (s)

Rpf (s)
=
NF (s) (NC(s)Dff (s) +DC(s)Nff (s))

Dff (s) (NF (s)NC(s) +DF (s)DC(s))

(5.114)

Choosing the feedforward compensator Cff (s) to be a constant gain Kff

leads to the following expression for the transfer function Y (s)
Rpf (s) :

Cff (s) = Kff ⇒
Y (s)

Rpf (s)
=
NF (s) (NC(s) +Kff DC(s))

NF (s)NC(s) +DF (s)DC(s)
(5.115)

We recognize in polynomialNF (s)NC(s)+DF (s)DC(s) the polynomialDcl(s)
obtained when Cff (s) = 0. Consequently the denominator of feedback loop

transfer function Y (s)
Rpf (s) remains the same when Cff (s) = Kff while its numer-

ator becomes NF (s) (NC(s) +Kff DC(s)) when feedforward is used. Assuming
that NF (s) has no root in the right half plane, constant Kff shall be chosen
such that all the roots of NC(s)+Kff DC(s) have negative real parts to be able
to compute a stable pre�lter Cpf (s). This can be achieved through the root
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locus of the �ctitious transfer function DC(s)
NC(s) . Take care that here DC(s) is the

numerator of the �ctitious transfer function whereas NC(s) is its denominator.
Once Kff has been chosen such that all the roots of NC(s) + Kff DC(s)

have negative real parts then the design technique presented in section 5.5.2
can be applied.

If the plant with transfer function F (s) is non-minimum phase, meaning that
NF (s) has roots with positive real part, then the situation is more complicated.
Internal Model Control and Fractional Order Controller may then be used to
handle this situation, but this is out of the scope of this lecture.

5.5.4 Design steps

The general scheme for the controlled system is provided in Figure 5.14 where
C(s) is the transfer function of the controller, Cpf (s) the transfer function of
the pre�lter and Cff (s) the transfer function of the potential feedforward com-
pensator.

The design philosophy is to set the transfer functions C(s), Cpf (s) and
possibly Cff (s) in order to force the transfer function of the full system to have
the following expression where Kpf is a constant gain and Dcl(s) a polynomial
formed with the required closed-loop poles:

Y (s)

R(s)
=

Kpf

Dcl(s)
(5.116)

The design steps of the control loop are then the following:

− Design the controller C(s) such that transfer function of feedback loop
without pre�ltering (Cpf (s) = 1) and without feedforward compensator
(Cff (s) = 0) has the required denominator Dcl(s). In other words con-
troller C(s) is used to set the poles of the controlled system.

− In the case where the feedback loop transfer function Y (s)
Rpf (s) = Ncl(s)

Dcl(s)
has

zeros with positive real parts, and assuming that NF (s) has no root in the
right half plane, then design the feedforward compensator Cff (s) = Kff

such that polynomial NC(s) + Kff DC(s) has all its roots with negative
real parts.

− Design the pre�lter Cpf (s) such that transfer function of the full system
does not have any zero:

Y (s)

R(s)
=

Kpf

Dcl(s)
(5.117)

In other words pre�lter Cpf (s) is used to annihilate the zeros of the transfer
function of the controlled system.

Example 5.3. Consider a plant with the following transfer function:

F (s) =
1

s (s− 2)
(5.118)
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Obviously the plant is not stable, indeed there is one pole at +2. In order to
stabilize the plant we decide to use the following PD controller (we do not use
an integral action because the plant F (s) has already an integral term):

C(s) = Kp +Kd s (5.119)

Furthermore we set the targeted transfer function of the controlled system as
follows (see Figure 5.13):

Y (s)

R(s)
=

2

s2 + 5 s+ 2
(5.120)

The �rst step of the design is to set the values Kp and Kd of the PD controller
such that the denominator of the targeted transfer function is achieved. Transfer
function Y (s)

Rpf (s) (without pre�lter) reads:

Y (s)
Rpf (s) = C(s)F (s)

1+C(s)F (s)

=
Kp+Kd s

Kp+Kd s+s (s−2)

=
Kp+Kd s

s2+s (Kd−2)+Kp

(5.121)

The actual denominator will be equal to the targeted denominator as soon as
Kp and Kd are set as follows:

s2 + s (Kd − 2) +Kp = s2 + 5 s+ 2⇒
{
Kd = 7
Kp = 2

(5.122)

Thus transfer function Y (s)
Rpf (s) (without pre�lter) reads:

Y (s)

Rpf (s)
=

Kp +Kd s

s2 + s (Kd − 2) +Kp
=

2 + 7 s

s2 + 5 s+ 2
(5.123)

As soon as the zeros −2/7 of Y (s)
Rpf (s) (without pre�lter) have negative real

parts there is no need of feedforward compensator Cff (s):

Cff (s) = 0 (5.124)

Taking now into account pre�lter Cpf (s) transfer function Y (s)
R(s) reads:

Y (s)

R(s)
=
Rpf (s)

R(s)

Y (s)

Rpf (s)
= Cpf (s)

2 + 7 s

s2 + 5 s+ 2
(5.125)

Thus transfer function of the controlled system will read Y (s)
R(s) = 2

s2+5 s+2
as

soon as pre�lter Cpf (s) is set as follows:

Y (s)

R(s)
=

2

s2 + 5 s+ 2
⇒ Cpf (s) =

2

2 + 7 s
(5.126)

�
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m = 1 s+ ω0

m = 2 a1 = 1.505 JITAE = 1.93556

m = 3 a2 = 1.783, a1 = 2.172 JITAE = 3.11623

m = 4 a3 = 1.953, a2 = 3.347, a1 = 2.648 JITAE = 4.56372

m = 5 a4 = 2.068, a3 = 4.499, a2 = 4.675, a1 = 3.257 JITAE = 6.28854

m = 6 a5 = 2.152, a4 = 5.629, a3 = 6.934, a2 = 6.7920, · · · JITAE = 8.29536
a1 = 3.740

m = 7 a6 = 2.217, a5 = 6.745, a4 = 9.349, a3 = 11.580, · · · JITAE = 10.5852
a2 = 8.680, a1 = 4.323

m = 8 a7 = 2.275, a6 = 7.849, a5 = 11.888, a4 = 17.588, · · · JITAE = 13.1553
a3 = 16.116, a2 = 11.339, a1 = 4.815

Table 5.4: Values of coe�cients ai of q(s) based on the ITAE performance index

5.6 Algebraic controller design

5.6.1 ITAE performance index

A control system is optimum when a selected performance index J is minimized.
In 1953 Graham developed the Integral of Time-weighted Absolute Error (ITAE)
performance index which reads as follows:

JITAE =

∫ ∞
0

t |r(t)− y(t)| dt (5.127)

This performance index used in the ITAE optimization process is a kind of
tradeo� between a short settling time (time t explicitly appears in the integral
to be minimized) and a precise closed-loop system (error |r(t)− y(t)| appears
in the integral to me minimized)

Graham studied the values of the coe�cients of the following transfer func-
tion G(s) to minimize performance index JITAE :

G(s) =
Y (s)

R(s)
=
Ncl(s)

q(s)
(5.128)

Where:{
Ncl(s) = ωm0

q(s) = sm + am−1 ω0 s
m−1 + am−2 ω

2
0 s

m−2 + · · ·+ a1 ω
m−1
0 s+ ωm0

(5.129)
In the preceding equation natural frequency ω0 is a free parameter which has

to be selected by the designer. Table 5.4 provides the values of coe�cients ai of
q(s) based on the ITAE performance index for a step input. Those coe�cients
are actually those which have been recomputed in 1989 by Y. Cao4

In the following sections we consider the problem of designing a controller
that provides asymptotic tracking of a reference input with zero steady state
error.

4Y. Cao, Correcting the minimum ITAE standard forms of zero-displacement-error sys-
tems, Journal of Zhejiang University (Natural Science) Vol. 23, No.4, pp. 550-559, 1989
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Example 5.4. Consider a plant with the following transfer function:

F (s) =
1

(2s+ 1)2
(5.130)

We wish to design a controller which minimize the ITAE performance index
and also which leads to a settling time ts for a step input less than 1 sec.

We choose for example a PID controller. Then the closed-loop transfer func-
tion without pre�ltering (Cpf (s) = 1) reads:

Y (s)
Rpf (s) =

(Kd s2+Kps+Ki)F (s)

s+(Kd s2+Kps+Ki)F (s)

=
Kd s

2+Kps+Ki
s(2s+1)2+Kd s2+Kps+Ki

=
Kd s

2+Kps+Ki
4s3+(4+Kd)s2+(1+Kp)s+Ki

(5.131)

That is:
Y (s)

Rpf (s)
=

Kd
4 s

2 +
Kp
4 s+ Ki

4

s3 + 4+Kd
4 s2 +

1+Kp
4 s+ Ki

4

(5.132)

The coe�cients of the denominator which minimize the ITAE performance
index are obtained from Table 5.4:

s3 + 1.783ω0s
2 + 2.172ω2

0s+ ω3
0 (5.133)

We need to select ω0 in order to meet the settling time requirement. Since
ts ≈ 4

mω0
where m is set in a �rst attempt to 0.8 we get:{

ts = 1
m = 0.8

⇒ ω0 ≈
4

mts
= 5 (5.134)

Then equating the denominator of (5.132) with (5.133) we obtain the three
coe�cients of the PID controller as:

s3 + 4+Kd
4 s2 +

1+Kp
4 s+ Ki

4 = s3 + 8.915s2 + 54.3s+ 125

⇒


Ki = 500
Kp = 216.2
Kd = 31.66

(5.135)

Then the closed-loop transfer function without pre�ltering (5.132) becomes:

Y (s)

Rpf (s)
=

7.915s2 + 54.05s+ 125

s3 + 8.915s2 + 54.3s+ 125
(5.136)

Then we select the pre�lter Cpf (s) in order to achieve the required ITAE
transfer function. We check that all the roots of polynomial 7.915s2+54.05s+125
have negative real parts. Therefore we obtain for the transfer function of the
pre�lter:

Cpf (s) =
125

7.915s2 + 54.05s+ 125
(5.137)
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Figure 5.15: Unit step response of the whole system

We �nally get the transfer function of the whole system:

Y (s)
R(s) = Cpf (s) Y (s)

Rpf (s)

= Cpf (s) 7.915s2+54.05s+125
s3+8.915s2+54.3s+125

= 125
s3+8.915s2+54.3s+125

(5.138)

Figure 5.15 shows the response of the whole system to a unit step input. As
expected the settling time lower than 1 sec. Furthermore the whole system has a
zero steady state error and an overshoot about 1.6%.

�

5.6.2 One degree of freedom controller design

A general form of a one degree of freedom (abbreviated as 1DOF) control system
with pre�ltering is shown in Figure 5.13 where controller C(s) is not a PID
controller but a very general controller with a strictly proper transfer function
whose denominator is a monic polynomial (that is a polynomial whose leading
coe�cient, that is the nonzero coe�cient of highest degree, is equal to 1) of
degree r :

C(s) =
NC(s)

DC(s)
:=

n0 + n1s+ · · ·+ nr−1s
r−1

a0 + a1s+ · · ·+ ar−1sr−1 + 1× sr
(5.139)

In the following the transfer function F (s) of the plant is written in terms
of the ratio between its numerator NF (s) and its denominator DF (s), which
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is also assumed to be a monic polynomial (that is a polynomial whose leading
coe�cient, that is the nonzero coe�cient of highest degree, is equal to 1):

F (s) =
NF (s)

DF (s)
where

{
DF (s) monic polynomial
deg (NF (s)) ≤ deg (DF (s)) = n

(5.140)

Thus the transfer function of the controlled system without pre�ltering
(Cpf (s) = 1) reads:

Y (s)

Rpf (s)
=

C(s)F (s)

1 + C(s)F (s)
=

NC(s)NF (s)

NC(s)NF (s) +DC(s)DF (s)
(5.141)

The coe�cients of polynomials NC(s) and DC(s) are then set in order that

the characteristic polynomial of the transfer function Y (s)
Rpf (s) matches with some

prede�ned polynomial q(s); it could be either the ITAE polynomial de�ned in
Table 5.4 or another polynomial which set the poles of the closed-loop system.

NC(s)NF (s) +DC(s)DF (s) = q(s) (5.142)

This equation is known as Diophantine equation. Denoting by r the degree
of polynomial DC(s) and by n the degree of DF (s), and using the fact that the
degree of NC(s)NF (s) is lower than the degree of DC(s)DF (s) (because C(s)
is a strictly proper transfer function and F (s) a proper transfer function), we
conclude that polynomial NC(s)NF (s)+DC(s)DF (s) is of degree n+r. Because
DC(s) and DF (s) are monic polynomials, we conclude that polynomial q(s) has
n+ r coe�cients . On the other hand controller C(s) is formed with r unknown
coe�cients in its numerator (n0, n1, · · · , nr−1) and r unknown coe�cients in
its denominator (a0, a1, · · · , ar−1), which form a set of 2r unknown coe�cients.
In order to be able to identify all the coe�cients of si in (5.142) the following
equation shall be satis�ed:

n+ r = 2r ⇒ r = n (5.143)

As a consequence, as soon as polynomial NC(s) is of degree n−1, polynomial
DC(s) is a monic polynomial of degree n (that is the same degree than the
denominator of the plant transfer function F (s)) and the prede�ned polynomial
q(s) is a monic polynomial of degree 2n, Diophantine equation (5.142) can be
solved. The denominator q(s) of the closed-loop system as well as the numerator
NC(s) and the denominator DC(s) of the controller C(s) are set as follows:

deg (DF (s)) = n
DC(s) monic polynomial
q(s) monic polynomial

⇒


q(s) = q0 + q1s+ · · ·+ q2n−1s

2n−1 + 1× s2n

NC(s) = n0 + n1s+ · · ·+ nn−1s
n−1

DC(s) = a0 + a1s+ · · ·+ an−1s
n−1 + 1× sn

(5.144)

Alternatively, removing the constraints on polynomials DC(s) and q(s) to
be monic, Diophantine equation (5.142) can be solved by choosing polynomial
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NC(s) and DC(s) which de�ne the controller C(s) to degree n− 1 (that is one
degree lower than the denominator of the plant transfer function F (s)) and by
setting the degree of the prede�ned polynomial q(s) to 2n− 1:

deg (DF (s)) = n⇒


q(s) = q0 + q1s+ · · ·+ q2n−1s

2n−1

NC(s) = n0 + n1s+ ·+ nn−1s
n−1

DC(s) = b0 + b1s+ ·+ bn−1s
n−1

(5.145)

Once the controller C(s) = NC(s)
DC(s) has been set, its stability shall be checked.

If C(s) is not stable then coe�cients of prede�ned polynomial q(s) shall probably
be modi�ed.

Once C(s) is set then the transfer function Cpf (s) of the pre�lter can be
computed. For example it can be computed in order to match with the required
ITAE transfer function:

Y (s)

R(s)
=
Ncl(s)

q(s)
(5.146)

Thus from the following relationships:
Y (s)
R(s) = Ncl(s)

q(s)
Y (s)
R(s) = Cpf (s) Y (s)

Rpf (s)
Y (s)
Rpf (s) = NC(s)NF (s)

NC(s)NF (s)+DC(s)DF (s) = NC(s)NF (s)
q(s)

(5.147)

We get:

Cpf (s) =
Y (s)

R(s)
·
Rpf (s)

Y (s)
=
Ncl(s)

q(s)
· q(s)

NC(s)NF (s)
=

Ncl(s)

NC(s)NF (s)
(5.148)

It is worth noticing that the design is possible only if all the zeros of
F (s)C(s),that are the roots of NC(s)NF (s), have negative real parts so that
the pre�lter Cpf (s) is stable.

Consequently the design strategy to compute the transfer function C(s) of
the controller and the transfer function Cpf (s) of the pre�lter is the following:

− Find the transfer function C(s) to give the characteristic polynomial of
Y (s)
Rpf (s) of the form given in Table 5.4:

Y (s)

Rpf (s)
=

F (s)C(s)

1 + F (s)C(s)
=
NC(s)NF (s)

q(s)
(5.149)

− Design the pre�lter Cpf (s) to cancel the unwanted terms in the numerator

of the transfer function Y (s)
Rpf (s) so that the closed-loop transfer function

Y (s)
R(s) = Ncl(s)

q(s) matches with the ITAE transfer function:

Cpf (s) =
Ncl(s)

NC(s)NF (s)
(5.150)

The transfer function Cpf (s) of pre�lter may be reduced by using for
example the technique presented in Section 3.7.



5.6. Algebraic controller design 125

Figure 5.16: Controller C(s) in the feedback loop and pre�lter Cpf (s)

Example 5.5. Consider an unstable plant with the following transfer function:

F (s) =
NF (s)

DF (s)
=

1

(s− 1)(s+ 2)
(5.151)

We wish to design a controller in order to achieve a zero steady state error
for a commanded step input with speci�ed settling time ts and overshoot D. The
speci�cations are the following:

− Settling time ts about 1 seconds

− Overshoot D of 5%

− The position error shall be zero

An algebraic controller C(s) as well as a pre�lter Cpf (s) will be designed to
achieve those speci�cations. We decide to put controller C(s) in the feedback
loop as shown in Figure 5.16.

From the speci�cations we compute the location of the dominant poles as
follows:

{λdp, λ̄dp} = −mω0 ± jω0

√
1−m2 where

{
m = − ln(D)√

π2+ln2(D)

ts = 4
mω0

⇔ ω0 = 4
mts

(5.152)

We get: {
m ≈ 0.69
ω0 ≈ 5.8

⇒ {λdp, λ̄dp} ≈ −4± j4.2 (5.153)

The degree of denominator of the closed-loop transfer function is 2× n = 4
where n = 2 is the degree of the denominator of F (s). So in addition to the 2
dominant poles {λdp, λ̄dp} we have to choose two non-dominant poles faster that
{λdp, λ̄dp}, for example λf = −20 + j and λ̄f = −20− j. So q(s) reads:

λf = −20⇒ q(s) = (s− λdp)(s− λ̄dp)(s− λf )(s− λ̄f )
= (s2 + 2mω0s+ ω2

0)(s2 + 40s+ 401)
≈ s4 + 48s3 + 754.64s2 + 4553.6s+ 13489.64

(5.154)

Let C(s) = NC(s)
DC(s) where NC(s) is a polynomial of degree n − 1 = 1 and

DC(s) is a monic polynomial of degree n = 2:
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C(s) =
NC(s)

DC(s)
=

n1s+ n0

s2 + a1s+ a0
(5.155)

The denominator NC(s)NF (s) + DC(s)DF (s) of the closed-loop transfer

function Y (s
Rpf (s) reads:

NC(s)NF (s) +DC(s)DF (s) = (n1s+ n0) + (s2 + a1s+ a0)(s2 + s− 2)
= s4 + s3(1 + a1) + s2(a0 + a1 − 2)

+s(a0 − 2a1 + n1)− 2a0 + n0

(5.156)
Identifying NC(s)NF (s) +DC(s)DF (s) with q(s) leads to the values of coef-

�cients ai and ni:
1 + a1 ≈ 48
a0 + a1 − 2 ≈ 754.64
a0 − 2a1 + n1 ≈ 4553.6
−2a0 + n0 ≈ 13489.64

⇒


a1 ≈ 47
a0 ≈ 709.64
n1 ≈ 3937.96
n0 ≈ 14908.92

(5.157)

Thus C(s) has the following expression:

C(s) =
n1s+ n0

s2 + a1s+ a0
≈ 3937.96s+ 14908.92

s2 + 47s+ 709.64
(5.158)

The unit step response of the closed-loop transfer function Y (s)
Rpf (s) is drawn

in Figure 5.17. We notice that the time response comply with the speci�cations
but neither the overshoot nor the position error.

The pre�lter Cpf (s) is designed to overcome those drawbacks. Closed loop
transfer function Y (s)/Rpf (s) reads:

Y (s)
Rpf (s) =

NF (s)

(s− λdp)(s− λ̄dp)(s− λf )(s− λ̄f )

≈ s2 + 47s+ 709.64

s4 + 48s3 + 754.64s2 + 4553.6s+ 13489.64

where {λdp, λ̄dp} are the desired dominant poles and {λf , λ̄f} is the fast poles of
the loop.

As far as the roots of NF (s) lies in the left half plane, and in order to achieve
a null position error, the transfer function of the pre�lter Cpf (s) is designed as
follows:

Cpf (s) =
λdpλ̄dpλf λ̄f
NF (s)

≈ 13489.64

s2 + 47s+ 709.64

The closed-loop transfer function �nally reads:

Y (s)
R(s) = Cpf (s)× Y (s)

Rpf (s)

=
λdpλ̄dpλf barλf

(s−λdp)(s−λ̄dp)(s−λf )

≈ 13489.64
s4+48s3+754.64s2+4553.6s+13489.64

The unit step response of the closed-loop system with the pre�lter Cpf (s) is
drawn in Figure 5.18. We have also drawn on this �gure the step response of
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Figure 5.17: Unit step response without pre�lter

ω2
0

s2+2mω0s+ω2
0
, which is the targeted closed-loop transfer function from which the

speci�cations have been derived. We notice that now the unit step response fully
comply with the speci�cations.

�

Example 5.6. Consider a plant with the following transfer function:

F (s) =
NF (s)

DF (s)
=

1

(2s+ 1)(3s+ 1)(4s+ 1)
=

1

1 + 9s+ 26s2 + 24s3
(5.159)

We wish to design a controller which minimize the ITAE performance index
and also which leads to a settling time ts for a step input less than 0.5 sec. We
decide to put controller C(s) in the direct path as shown in Figure 5.13.

The degree of the denominator of the plant transfer function is n = 3. Con-
sequently we shall choose a prede�ned polynomial q(s) whose degree is 2n−1 = 5.
The coe�cients of the closed-loop denominator are chosen in order to minimize
the ITAE performance index. From Table 5.4 we get the following polynomial
of degree 5:

q(s) = s5 + 2.068ω0s
4 + 4.499ω2

0s
3 + 4.675ω3

0s
2 + 3.257ω4

0s+ ω5
0 (5.160)

We need to select ω0 in order to meet the settling time requirement. Since
ts ≈ 4

mω0
where m is set in a �rst attempt to 0.8 we get:{

ts = 0.5
m = 0.8

⇒ ω0 ≈
4

mts
= 10 (5.161)
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Figure 5.18: Unit step response without and with pre�lter

In addition the numerator and the denominator of the controller C(s) are
polynomial of degree n− 1 = 2:{

NC(s) = a0 + a1s+ a2s
2

DC(s) = n0 + n1s+ n2s
2 (5.162)

Consequently the closed-loop transfer function without pre�ltering (Cpf (s) =
1) reads:

Y (s)
Rpf (s) = NC(s)NF (s)

NC(s)NF (s)+DC(s)DF (s)

= a0+a1s+a2s2

a0+a1s+a2s2+(n0+n1s+n2s2)(1+9s+26s2+24s3)

(5.163)

That is:
Y (s)

Rpf (s)
=

a0 + a1s+ a2s
2

c5s5 + c4s4 + c3s3 + c2s2 + c1s+ c0
(5.164)

Where: 

c5 = 24n2

c4 = 26n2 + 24n1

c3 = 9n2 + 26n1 + 24n0

c2 = n2 + 9n1 + 26n0 + a2

c1 = n1 + 9n0 + a1

c0 = n0 + a0

(5.165)

Equating those coe�cients with the required coe�cients of polynomial q(s)
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given in (5.160) result in the following matrix equation:

0 0 0 0 0 24
0 0 0 0 24 26
0 0 0 24 26 9
0 0 1 26 9 1
0 1 0 9 1 0
1 0 0 1 0 0





a0

a1

a2

n0

n1

n2

 =



1
2.068ω0

4.499ω2
0

4.675ω3
0

3.257ω4
0

ω5
0

 (5.166)

Solving this matrix equation for ω0 = 10 leads to the following values:

a0

a1

a2

n0

n1

n2

 =



99982.154
32408.573
4203.623
17.845637
0.8165278
0.0416667

 (5.167)

Thus the controller C(s) has the following transfer function:

C(s) =
99982.154 + 32408.573s+ 4203.623s2

17.845637 + 0.8165278s+ 0.0416667s2
(5.168)

And the closed-loop transfer function without pre�ltering (5.164) becomes:

Y (s)

Rpf (s)
=

99982.154 + 32408.573s+ 4203.623s2

100000 + 32570s+ 4675s2 + 449.9s3 + 20.68s4 + s5
(5.169)

Then we select the pre�lter Cpf (s) in order to achieve the required ITAE
transfer function. We check that all the roots of polynomial 99982.154+32408.573s+
4203.623s2 have negative real parts. Therefore we obtain for the transfer func-
tion of the pre�lter:

Cpf (s) =
100000

99982.154 + 32408.573s+ 4203.623s2
(5.170)

We �nally get the transfer function of the whole system:

Y (s)
R(s) = Cpf (s) Y (s)

Rpf (s)

= Cpf (s) 99982.154+32408.573s+4203.623s2

100000+32570s+4675s2+449.9s3+20.68s4+s5

= 100000
100000+32570s+4675s2+449.9s3+20.68s4+s5

(5.171)

Figure 5.19 shows the response of the whole system to a unit step input.

As expected the settling time lower than 0.5 sec. Furthermore the whole
system has a zero steady state error and an overshoot about 1.7%. We can
observed that the pre�lter Cpf (s) greatly decreases the overshoot.

�
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Figure 5.19: Unit step response of the whole system

Figure 5.20: Feedback loop with two degrees of freedom
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5.6.3 Two degrees of freedom controller design

A general form of a two degrees of freedom (abbreviated as 2DOF) control

system is shown in Figure 5.20. Let F (s) = NF (s)
DF (s) be the transfer function of

the plant where deg (DF (s)) = n. We will assume that the closed-loop transfer

function G(s) = Y (s)
R(s) = Ncl(s)

Dp(s) , where deg (Dp(s)) := r ≤ 2n − 1, as well as

Hurwitz polynomial D̄p(s) of degree 2n− 1− r, are given :
F (s) = Y (s)

U(s) = NF (s)
DF (s) where deg (DF (s)) = n

G(s) = Y (s)
R(s) = Ncl(s)

Dp(s) where deg (Dp(s)) := r ≤ 2n− 1

deg
(
D̄p(s)

)
:= 2n− 1− r

(5.172)

The product Dp(s)D̄p(s) := q(s) is a polynomial of degree 2n− 1:

Dp(s)D̄p(s) := q(s) where deg (q(s)) = 2n− 1 (5.173)

Controllers C1(s) and C2(s) are chosen as follows:{
C1(s) = N1(s)

D1(s)

C2(s) = N2(s)
N1(s)

⇒ C1(s)C2(s) =
N2(s)

D1(s)
(5.174)

It is worth noticing that the numerator of C1(s), that is N1(s), is the same
than the denominator of C2(s).

The key of the design procedure5 is to identify the closed-loop transfer func-

tion G(s) = Ncl(s)
q(s) to the rational fraction

NF (s)Np(s)
Dp(s) where Ncl(s) and q(s) are

the desired numerator and denominator of the closed-loop transfer function, re-
spectively, NF (s) is the numerator of the plant transfer function F (s) and Np(s)

and Dp(s) are two polynomials obtained through the identi�cation of G(s)
NF (s) with

Np(s)
Dp(s) :

G(s)

NF (s)
:=

Np(s)

Dp(s)
(5.175)

The closed-loop transfer function G(s) = Y (s)
R(s) reads:

G(s) =
Y (s)

R(s)
=

F (s)C1(s)

1 + F (s)C1(s)C2(s)
=

NF (s)N1(s)

DF (s)D1(s) +NF (s)N2(s)
(5.176)

On the other hand the rational fraction
NF (s)Np(s)

Dp(s) reads:

G(s) :=
NF (s)Np(s)

Dp(s)
=
NF (s)Np(s)D̄p(s)

Dp(s)D̄p(s)
=
NF (s)Np(s)D̄p(s)

q(s)
(5.177)

By identifying the denominator and the numerator of the preceding transfer
functions we get:{
DF (s)D1(s) +NF (s)N2(s) = q(s)
NF (s)N1(s) = NF (s)Np(s)D̄p(s)

⇒
{
DF (s)D1(s) +NF (s)N2(s) = q(s)
N1(s) = Np(s)D̄p(s)

(5.178)

5Pradin B., Garcia G., Modélisation, analyse et commande des systèmes linéaires, Presses
Universitaires du Mirail, 2010
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The Diophantine equation DF (s)D1(s) +NF (s)N2(s) = q(s) is then solved
where unknown polynomials D1(s) and N2(s) are of degree n − 1. In ad-
dition, polynomials Np(s) and Dp(s) are obtained through the identi�cation
G(s)
NF (s) :=

Np(s)
Dp(s) . From Dp(s) and q(s), polynomial D̄p(s) is obtained through

the identi�cation q(s) := Dp(s)D̄p(s). Finally N1(s) is obtained through the
relationship N1(s) = Np(s)D̄p(s). The knowledge of polynomials D1(s), N2(s)
and N1(s) enable to compute the transfer function of controllers C1(s) and
C2(s).

This design procedure is applicable as soon as the ratio G(s)
F (s) is proper and

stable.

Example 5.7. Consider a plant with the following transfer function:

F (s) =
NF (s)

DF (s)
=

1

(2s+ 1)(3s+ 1)(4s+ 1)
=

1

1 + 9s+ 26s2 + 24s3
(5.179)

We wish to design a controller which minimize the ITAE performance index
and also which leads to a settling time ts for a step input less than 0.5 sec.

The degree of the denominator of the plant transfer function is n = 3. The
ratio G(s)

F (s) will be proper and stable if G(s) is chosen for example as follows, where
the coe�cients of the closed-loop denominator polynomial of degree 3 have been
obtained from Table 5.4:

G(s) =
ω3

0

s3 + 1.783ω0s2 + 2.172ω2
0s+ ω3

0

(5.180)

We need to select ω0 in order to meet the settling time requirement. Since
ts ≈ 4

mω0
where m is set in a �rst attempt to 0.8 we get:{

ts = 0.5
m = 0.8

⇒ ω0 ≈
4

mts
= 10 (5.181)

Then we shall choose a prede�ned polynomial q(s) whose degree is 2n−1 = 5.
As far as the denominator G(s) is of degree 3, we choose the 2 remaining poles
faster that the roots of the denominator G(s) when ω0 = 10, for example −15
twice:

q(s) = Dp(s)D̄p(s)

=
(
s3 + 1.783ω0s

2 + 2.172ω2
0s+ ω3

0

)∣∣
ω0=10

(s+ 15)2

=
(
s3 + 17.83s2 + 217.2s+ 103

)
(s+ 15)2

= s5 + 47.83s4 + 977.1s3 + 11.5277× 103s2 + 78.87× 103s+ 225× 103

(5.182)
Once q(s) is completely set, Diophantine equation DF (s)D1(s)+NF (s)N2(s) =

q(s) is solved where unknown polynomials D1(s) and N2(s) are of degree n−1 =
2: {

N2(s) = a0 + a1s+ a2s
2

D1(s) = n0 + n1s+ n2s
2

⇒ DF (s)D1(s) +NF (s)N2(s) =
(1 + 9s+ 26s2 + 24s3)(n0 + n1s+ n2s

2) + a0 + a1s+ a2s
2

(5.183)
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On the other hand, q(s) reads as follows:

q(s) := c5s
5 + c4s

4 + c3s
3 + c2s

2 + c1s+ c0 (5.184)

By identi�cation of DF (s)D1(s) +NF (s)N2(s) with q(s) we get:

c5 = 24n2

c4 = 26n2 + 24n1

c3 = 9n2 + 26n1 + 24n0

c2 = n2 + 9n1 + 26n0 + a2

c1 = n1 + 9n0 + a1

c0 = n0 + a0

(5.185)

Equating those coe�cients with the required coe�cients of polynomial q(s)
given in (5.182) result in the following matrix equation:

0 0 0 0 0 24
0 0 0 0 24 26
0 0 0 24 26 9
0 0 1 26 9 1
0 1 0 9 1 0
1 0 0 1 0 0





a0

a1

a2

n0

n1

n2

 =



1
47.83
977.1

11.5277× 103

78.87× 103

225× 103

 (5.186)

Solving this matrix equation leads to the following values:

a0

a1

a2

n0

n1

n2

 =



224.9614× 103

78.5208× 103

10.5069× 103

38.5868
1.9478

41.6667× 10−3

 (5.187)

Now polynomial N1(s) will be computed. First, polynomials Np(s) and Dp(s)
are obtained through the following identi�cation:

G(s)

NF (s)
:=

Np(s)

Dp(s)
⇒
{
ω3

0 = Np(s) = 103

q(s) = Dp(s) = s3 + 17.83s2 + 217.2s+ 103 (5.188)

From Dp(s) and q(s), polynomial D̄p(s) is obtained through the identi�cation
q(s) := Dp(s)D̄p(s):

D̄p(s) = (s+ 15)2 (5.189)

Finally N1(s) is obtained through the relationship N1(s) = Np(s)D̄p(s):

N1(s) = Np(s)D̄p(s) = 103 (s+ 15)2 (5.190)

The knowledge of polynomials D1(s), N2(s) and N1(s) enable to form the
controllers C1(s) and C2(s): C1(s) = N1(s)

D1(s) = 103 (s+15)2

n2s2+n1s+n0
= 103 (s+15)2

41.6667×10−3s2+1.9478s+38.5868

C2(s) = N2(s)
N1(s) = a2s2+a1s+a0

103 (s+15)2 = 10.5069×103s2+78.5208×103s+224.9614×103

103 (s+15)2

(5.191)
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Figure 5.21: Unit step response of the closed-loop

Figure 5.21 shows the response of the closed-loop with controllers C1(s) and
C2(s) to a unit step input. The targeted step response is the response of the

system with ITAE transfer function G(s) =
ω3

0

s3+1.783ω0s2+2.172ω2
0s+ω

3
0
where ω0 =

10. As expected the settling time lower than 0.5 sec. Furthermore the whole
system has a zero steady state error and an overshoot about 1.6%.

�

5.6.4 Sylvester's Theorem

Consider the two polynomials:{
D(s) = ans

n + · · ·+ a1s+ a0

N(s) = nms
m + ·+ n1s+ n0

(5.192)

Then D(s) and N(s) are coprime (i.e. they have no common roots) if and
only if:

det(MS) = 0 (5.193)

Where MS is a (n+m)× (n+m) square matrix known as the Sylvester (or
eliminant) matrix:

MS =



an an−1 · · · a1 a0 0 · · ·
0 an an−1 · · · a1 a0 0 · · ·

0
. . .

. . .

nm nm−1 · · · n1 n0 0 · · ·
0 nm nm−1 · · · n1 n0 0 · · ·

0
. . .

. . .


(5.194)
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Example 5.8. Let D(s) and N(s) be the following polynomials:{
D(s) = s(s− 1) = s2 − s
N(s) = s− 2

(5.195)

It is straightforward that D(s) and N(s) are coprime. Sylvester matrix MS

is a 3× 3 matrix whose determinant reads:

det(MS) = det

 1 −1 0
0 1 −1
1 −2 0

 = −1 6= 0 (5.196)

�

5.7 Step response of non-minimum phase transfer func-

tions

Let's consider a stable linear time invariant single-input single-output system
whose transfer function F (s) is proper (meaning F (∞) <∞) with �nite static
gain (meaning F (0) < ∞). If F (s) has at least one real strictly positive zero,
then F (s) is a non-minimum phase transfer function and its step response ex-
hibits zero crossings. Indeed the Laplace transform Ys(s) of the unit step re-
sponse ys(t) reads:

Ys(s) = F (s)
1

s
(5.197)

Let z be a real strictly positive zero of F (s). Setting s = z yields Ys(s)|s=z =
F (z) 1

z . Since F (z) = 0 it follows that Ys(s)|s=z = 0. Coming back in the time
domain we get: ∫ ∞

0
ys(t)e

−st dt

∣∣∣∣
s=z

=

∫ ∞
0

ys(t)e
−zt dt = 0 (5.198)

Since z is a real strictly positive zero, e−zt is positive on [0,∞). It follows
that ys(t) must cross zero on [0,∞) in order to achieve a null value for the
integral. Note that (5.198) depends on z but does not depend on either the
poles or the remaining zeros of F (s).

Furthermore the following properties hold for stable non-minimum phase
transfer functions6:

− If F (s) − F (0) has at least one strictly positive real zero, then the step
response of F (s) exhibits overshoot.

− If the transfer function F (s)−F (∞) has an odd number of strictly positive
real zeros, then the step response exhibits initial undershoot.

6Nonminimum-phase zeros - much to do about nothing - classical control - revisited part
ii, J.B. Hoagg and D.S. Bernstein, IEEE Control Systems, vol. 27, no. 3, pp. 45�57, June
2007
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Figure 5.22: Step response of F1(s) and F2(s)

Example 5.9. Let's consider the following stable transfer functions F1(s) and
F2(s): {

F1(s) = 1−s
(s+1)2

F2(s) = (0.5−s)∗(2−s)
(s+1)3

(5.199)

− It is clear that F1(s) has one strictly positive real zero, z1 = 1, whereas
F2(s) has two strictly positive real zeros, z1 = 0.5 and z2 = 2. Thus step
response of F1(s) and F2(s) exhibits zero crossings.

− F1(s) − F1(0) and F2(s) − F2(0) do not have strictly positive real zero.
Thus both step responses does not exhibit overshoot.

− The zero of F1(s)− F1(∞) is 1, that is an odd number of strictly positive
real zeros. Thus the step response of F1(s) exhibits initial undershoot.

− The zeros of F2(s)−F2(∞) are 2 and 0.5, that is an even number of strictly
positive real zeros. Thus the step response of F1(s) does not exhibit initial
undershoot.

Those facts can be seen on the step response of F1(s) and F2(s) shown in
Figure 5.22.

�
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Figure 5.23: Boucle de contrôle autour d'un point d'équilibre (ue, ye) 6= (0, 0)

5.8 Usefulness of integral action

Usually controllers are designed on the basis on a linearized model of the non-
linear plant to be controlled around an equilibrium point whose value is not the
origin: (ue, ye) 6= (0, 0). More precisely we have seen that the linearization of
a nonlinear plant around the equilibrium point (ue, ye) leads to the following
input-output relationship where N(s) and D(s) are polynomials in s and s is
the variable corresponding to the derivation in the time domain (s := d

dt):

D(s) (y(t)− ye) = N(s) (u(t)− ue) (5.200)

By taking the Laplace transform of the preceding equation (with initial
conditions set to zero), and taking into account that because ue and ye are
constants their Laplace transform is ue/s and ye/s respectively, we get:

D(s)
(
Y (s)− ye

s

)
= N(s)

(
U(s)− ue

s

)
⇔ Y (s) = N(s)

D(s)

(
U(s)− ue

s

)
+ ye

s

(5.201)

Fraction N(s)
D(s) = F (s) represents the transfer function of the linearized plant

around the equilibrium point (ue, ye). In order to correctly control F (s) we
shall add to the control δu provided by the controller C(s) the value ue of the
control at equilibrium. Similarly we shall subtract to the output y of the actual
plant the value ye at equilibrium. This is shown in Figure 5.23 where the grey
box represents the plant to be controlled. Notice that the commanded value δr
which feeds the comparator is given with respect to the output at equilibrium:
δr(t) = r(t)− ye.

In order to avoid to add in the loop the values (ue, ye) of the equilibrium
point, we will see that is is often interesting to put within the controller C(s)
an integral e�ect. To see that we �rst compute the expression of output Y (s)
as a function of inputs ue and δR(s) when the plant is controlled by the loop
shown in Figure 5.23:

Y (s) = F (s)
(
ue
s + C(s)

(
δR(s)−

(
Y (s)− ye

s

)))
⇒ Y (s) = F (s)

1+F (s)C(s)
ue
s + F (s)C(s)

1+F (s)C(s)

(
δR(s)− ye

s

) (5.202)

Using the fact that δr(t) = r(t) − ye, and taking the Laplace transform of
this expression, we get δR(s) = R(s) − ye

s . Thus we can substitute δR(s) − ye
s
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Figure 5.24: Boucle de contrôle autour d'un point d'équilibre (ue, ye) 6= (0, 0)
avec un correcteur C(s) à e�et intégral

by R(s). We get:

Y (s) =
F (s)

1 + F (s)C(s)

ue
s

+
F (s)C(s)

1 + F (s)C(s)
R(s) (5.203)

For high values of time, the value of output y(t) is obtained thanks to the
�nal value theorem, assuming that the loop is stable:

limt→∞ y(t) = lims→0 sY (s)

= lims→0

(
F (s)

1+F (s)C(s)ue + F (s)C(s)
1+F (s)C(s)sR(s)

) (5.204)

Assuming that F (0) <∞ and that controller C(s) exhibits an integral term

(i.e. C(s) = NC(s)
sDC1(s) where

NC(0)
DC1(0) <∞), we realize that the term which depends

on ue in y(t) cancels for high values of time:
F (0) <∞
C(s) = NC(s)

sDC1(0)
NC(0)
DC1(0) <∞

⇒ lim
s→0

F (0)

1 + F (0) NC(0)
sDC1(0)

ue = 0 (5.205)

Consequently, the integral term within the controller C(s) enables to forget
the value ue of the control at equilibrium. Notice that a similar reasoning can
be applied to check that the same e�ect is obtained when ue represents an
exogenous disturbance. Thus the control loop simpli�es as shown in Figure 5.24
where the integrator within C(s) shall be initialized with the value ue of the
control at equilibrium.

5.9 Anti-windup

Usually amplitude of input of actual plants is limited. When the controller ex-
hibits an integral e�ect, saturation on the input signal of the plant may generate
high overshot or render the closed-loop unstable. This phenomenon is known
as windup e�ect. The anti-windup controller design for saturated control con-
sists in taking into account the saturated control in order to minimize windup
e�ect and to enhance the domain where stability and performance of the closed-
loop system are retained comparatively to the case where a saturation is simply
placed after the controller to limit the input signal of the plant.
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Figure 5.25: Current anti-windup structure dealing with integral term

Figure 5.26: Anti-windup structure

A usual anti-windup structure is to replace the integral term Ki
s of a PID

(or a PI-D) controller by the structure shown in Figure 5.25 where the gain Kaw

is usually chosen between Ki
Kp

and 10KiKp .

Alternatively we present in Figure 5.26 an anti-windup structure proposed by
R.H. Middleton7. The stability analysis of such a structure needs mathematical
tool such as LMI (Linear Matrix Inequalities) which are out of the scope of this
lecture.

Controller C(s) is written as C(s) = NC(s)/DC(s), where polynomials
NC(s) and DC(s) are respectively the numerator and the denominator of C(s).
In the following, we will denote Daw(s) the polynomial with the same degree
than DC(s). E�ectiveness of the anti-windup structure depends on the choice of
polynomial Daw(s). Usually acceptable results are obtained by building Daw(s)
from the nf fastest poles of the closed-loop system obtained through the use of

7Dealing With Actuator Saturation, R.H. Middleton, The Control Handbook, A CRC
Handbook Published in Cooperation with IEEE Press, 1996
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controller C(s) and assuming no saturation:


C(s) = NC(s)

DC(s)

deg(DC(s)) = nf
F (s)C(s)

1+F (s)C(s) = Ncl(s)
(s−λ1)···(s−λnf )···(s−λn)

Re(λ1) ≤ · · · ≤ Re(λnf ) ≤ · · · ≤ Re(λn)

⇒ Daw(s) = (s− λ1) · · · (s− λnf )

(5.206)

Then the anti-windup structure is composed of three parts as shown in
Figure 5.26:

− A controller C1(s) whose transfer function reads:

C1(s) =
NC(s)

Daw(s)
(5.207)

− A controller C2(s) whose transfer function reads:

C2(s) =
DC(s)−Daw(s)

Daw(s)
(5.208)

− A nonlinear bloc which reproduces the saturation on the input signal u(t)
of the plant.

It is worth noticing that assuming a non-saturated input signal, the anti-
windup structure produces the same e�ect controller C(s). Indeed:

U(s) = C1(s)ε(s)− C2(s)U(s)

C1(s) = NC(s)
Daw(s)

C2(s) = DC(s)−Daw(s)
Daw(s)

⇒ U(s)

ε(s)
=

C1(s)

1 + C2(s)
=
NC(s)

DC(s)
(5.209)

Example 5.10. Consider a plant with the following transfer function:

F (s) =
1

(2s+ 1)2
(5.210)

The following PID controller is supposed to be used to control the plant.
Notice that the transfer function of the PID controller has been rendered causal
thanks to the denominator 1 + 0.01s which appear within the derivative term
Kd s:

C(s) = 340 +
1000

s
+

60s

1 + 0.01s
=

6340s2 + 35000s+ 100000

s2 + 100s
(5.211)

Without any saturation the closed-loop transfer function reads:

Y (s)

R(s)
=

F (s)C(s)

1 + F (s)C(s)
=

6340s2 + 35000s+ 100000

4s4 + 404s3 + 6741s2 + 35100s+ 100000
(5.212)
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Figure 5.27: Comparison of di�erent control strategies

The 4 poles of the closed-loop transfer function are −81.6, −13.3 and −3±
j3.7.

As far as the degree of the denominator of the controller C(s) is 2, polynomial
Daw(s) is chosen to be of degree 2. It is built from the 2 fastest poles of the
closed-loop system obtained through the use of controller C(s) and assuming no
saturation, that is from −81.6 and −13.3:

Daw(s) = (s+ 81.6)(s+ 13.3)

⇒

{
C1(s) = NC(s)

Daw(s) = 6340s2+35000s+100000
s2+95s+1085

C2(s) = DC(s)−Daw(s)
Daw(s) = 5s−1085

s2+95s+1085

(5.213)

Figure 5.27 compares the results which are achieved with and without an
antiwindup structure in the situation where the amplitude of control u(t) is lim-
ited to ±10 and where reference signal r(t) is obtained through the pre�lter
Cpf (s) = 100000

6340s2+35000s+100000
feeds by the unit step function. Obviously with-

out any antiwindup structure the closed-loop system becomes oscillatory whereas
with the antiwindup structure acceptable result is achieved despite a small delay
in the time response.

�
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Figure 5.28: Anti-windup structure with two controllers

The same kind of structure may be extended when two controllers are used,
as shown in Figure 5.28.

Assuming no saturation we have:

U(s) = C(s)ε(s)− Cd(s)Y (s) (5.214)

and:

U(s) = −C2(s)U(s)− C3(s)Y (s) + C1(s)ε(s)

⇔ U(s) = C1(s)
1+C2(s)ε(s)−

C3(s)
1+C2(s)Y (s)

(5.215)

Thus the two structures are equivalent assuming no saturation as soon as
the following relationships hold:{

C(s) = C1(s)
1+C2(s)

Cd(s) = C3(s)
1+C2(s)

(5.216)

Let Ni(s) be the numerator of Ci(s) and Di(s) be the denominator of Ci(s)
where i = 1, 2, 3. Similarly Let NC(s) be the numerator of C(s) and DC(s) be
the denominator of C(s) and Nd(s) be the numerator of Cd(s) and Dd(s) be
the denominator of Cd(s). From the preceding relationships, we can make the
following choices in order to get the transfer functions of the controllers in the
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anti-windup structure with two controllers:
D1(s) = D2(s) := Daw(s)
N1(s) = NC(s)
N2(s) = DC(s)−D1(s)
N3(s) = Nd(s) (N2(s) +D2(s))
D3(s) = Dd(s)D2(s)

(5.217)

Hurwitz polynomial Daw(s) is computed as shown in (5.206).
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Chapter 6

Discrete time systems

6.1 Chapter overview

Thanks to the �exibility and the processing power of computers digital con-
trollers are nowadays widely developed to control continuous time plants. When
a digital controller is used the output of the digital controller is converted into
an analog signal to control the actuator of the continuous time plant whereas
the sensed output of the plant are converted into a digital sequence to be pro-
cessed by the controller. Figure 6.1 illustrates how a digital controller control a
continuous time plant.

Actually a digital controller is an algorithm running on a computer. It
generates a digital control u(k) at every time step tk. The digital control u(k)
is then converted to an analog control signal u(t) thanks to a Digital-to-Analog
Converter (DAC). The analog signal u(t) is applied to the continuous time
plant whose transfer function is denoted F (s). The behavior of the plant is
known thanks to the sensed output signal y(t). This signal is then sampled by a
Analog-to-Digital Converter (ADC) to produce the digital sequence y(k) which
is compared to the digital reference sequence r(k). The error sequence ε(k) is
then used to feed the digital controller C(z).

Discrete time controllers for continuous time plants can be designed through
designing �rst a continuous time controller for the plant and then deriving a
discrete time equivalent controller that closely approximates the behavior of the
original continuous time controller. This approach is especially useful when an
existing continuous time controller or a part of the controller is to be replaced
with a discrete time controller.

In that chapter we will introduce the Z transform which is the dedicated
tool to study discrete time system. Then we provide some tools to represent a
continuous time plant with sampled input and output and to derive a discrete
time controller that closely approximates the behavior of the original continuous
time controller. Performance analysis and stability of the digital control loop
will also be tackled.
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Figure 6.1: Digital control for continuous time plant

6.2 Nyquist�Shannon sampling theorem

Let X(f) be the Fourier transform of a continuous time signal x(t):

X(f) =

∫ +∞

−∞
x(t)e−j2πftdt (6.1)

Let T be the sampling period. Its reciprocal is the sampling frequency Fs:

T =
1

Fs
(6.2)

The Poisson summation formula indicates that the Fourier transform Xs(f)
of the samples x(kT ) is a periodic summation of X(f) shifted by multiples of
the sampling frequency Fs = 1

T and combined by addition:

Xs(f) =

∞∑
k=−∞

X

(
f − k

T

)
=

∞∑
n=−∞

T · x(nT ) e−i2πnTf (6.3)

The preceding relationship indicates thatXs(f) is a periodic spectrum which
is also known as the discrete time Fourier transform (DTFT) of the sequence
T · x(nT ).

Frequency Fs
2 is called the Nyquist frequency.

The Nyquist�Shannon sampling theorem states that if a continuous time
signal has a band limited spectrum within [−B,+B] then its spectrum recon-
struction from the spectrum Xs(f) of the sampled signal is not altered as soon
as the sampling rate Fs is larger than 2B.

Fs ≥ 2B (6.4)

The Nyquist�Shannon sampling theorem which is illustrated in Figure 6.2.
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Figure 6.2: Nyquist�Shannon sampling theorem

When the spectrum of the continuous time signal is too wide (or when there
is no bandlimit) the reconstruction from discrete to continuous time exhibits
imperfections known as aliasing. To overcome the aliasing phenomenon a low
pass anti-aliasing continuous time �lter is introduced just before the sampler
(Analog-to-Digital Converter) in order to reduce the higher frequency compo-
nents in the analog signal.

6.3 Reference sequences

The aim of this section is to present important sequences which are currently
use to study discrete time systems: more speci�cally we will focus on the unit
impulse, the sampled unit step and the sampled exponential.

Discrete-time signals xs are represented mathematically as sequences of num-
bers. Denoting by x(k) the kth number in the causal sequence xs we get:

xs = {x(0), x(1), · · · , x(k), · · · } (6.5)

A sequence x(k) is said to be causal when the values of the sequence are null
∀k < 0.

In a practical setting, such sequences arise from periodic sampling of a con-
tinuous time (or analog) signal x(t). In that case, the numeric value of the kth

number in the sequence is equal to the value of the continuous time signal x(t)
at time kT :

x(k) := x(kT ) (6.6)

6.3.1 Unit impulse

The unit impulse is denoted δ(k); this sequence is zero everywhere except at
k = 0 where the value of the sequence is 1.

δ(k) =

{
1, k = 0
0, k 6= 0

(6.7)

The schematic representation of the unit impulse is depicted on �gure 6.3.
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Figure 6.3: Unit impulse

The following properties of the unit impulse are very close from the proper-
ties of the Dirac delta function in the continuous time domain:

− Multiplication between a sequence x(k) and the unit impulse translated
by k0 ∈ N:

x(k)δ(k − k0) = x(k0)δ(k − k0) (6.8)

− Convolution: the discrete time convolution ∗ between two causal sequences
x(k) and y(k) is de�ned by:

x(k) ∗ y(k) =

∞∑
m=0

x(m)y(k −m) (6.9)

Using the fact that y(k) is causal we get:

y(k) = 0 ∀k < 0⇔ y(k −m) = 0 ∀(k −m) < 0⇔ m > k (6.10)

Thus the discrete time convolution reduces to:

x(k) ∗ y(k) =
k∑

m=0

x(m)y(k −m) (6.11)

The discrete time convolution is a commutative product:

x(k) ∗ y(k) = y(k) ∗ x(k) (6.12)

Indeed: {
x(k) ∗ y(k) =

∑∞
m=0 x(m)y(k −m)

l = k −m
⇒ x(k) ∗ y(k) =

∑0
l=k x(k − l)y(l)

⇔ x(k) ∗ y(k) =
∑k

l=0 x(k − l)y(l) = y(k) ∗ x(k)

(6.13)

As far as the discrete time convolution is concerned, the unit impulse
satis�es the following property:

x(k) ∗ δ(k − k0) = x(k − k0) ∀k0 ∈ N (6.14)
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Figure 6.4: Sampled unit step

Taking k0 = 0 we get:
x(k) ∗ δ(k) = x(k) (6.15)

From the preceding equation, it is clear that the unit impulse is the neutral
element for discrete time convolution. The preceding equation can also be
stated as follows:

x(k) =

∞∑
m=0

x(m)δ(k −m) =

k∑
m=0

x(m)δ(k −m) (6.16)

6.3.2 Sampled unit step

The sampled unit step which will be denoted by Γ(k) is a causal sequence whose
value is zero for negative values of k and one for positive values of k:

Γ(k) =

{
1 ∀k ≥ 0
0 ∀k < 0

(6.17)

The sampled unit step is depicted on �gure 6.4.
The sampled unit step is linked to the unit impulse by the following rela-

tionship:

Γ(k) =

∞∑
m=0

δ(k −m) (6.18)

6.3.3 Sampled exponential

The sampling of the complex exponential function ejωt reads:

ejωt
∣∣
t=kT

= ejαk where α := ωT (6.19)

Setting ω = 2πf where f is the ordinary frequency (units of Hz or equiva-
lently cycles per second) and using the fact that −π ≤ α ≤ +π we get:

−π ≤ 2πfT ≤ +π (6.20)

In the following we will denote α the reduced frequency. This is linked to the
ordinary frequency f and the natural frequency ω by the following relationships
where T is the sampling period:

α = 2πfT = ωT (6.21)
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Thus the sampled exponential sequence is de�ned by:

x(k) = ejαk where − π ≤ α ≤ +π (6.22)

The preceding relationship reads−π ≤ α ≤ +π and comes from the Nyquist�Shannon
sampling theorem. Indeed setting f = B and having in mind that the sampling
period T represents the interval between samples and is the reciprocal of the
sampling frequency Fs yields:{

2πBT ≤ π
T = 1

Fs

⇒ Fs ≥ 2B (6.23)

We recognize in the preceding equation the Nyquist�Shannon sampling the-
orem illustrated in Figure 6.1.

6.4 Z transform

6.4.1 De�nition

Given the causal sequence {x(0), x(1), · · · , x(k), · · · } we de�ne its Z transform
by:

Z [x(k)] =
∞∑
k=0

x(k)z−k (6.24)

The region of convergence is the set of values of z in the complex plane for
which the Z transform summation converges. Similarly to the Laplace transform
the region of convergence of a Z transform is never computed from a practical
point of view.

Example 6.1. Compute the Z transform of the sequence x(k) = ak ∀k ≥ 0.
We get:

Z
[
ak
]

=

∞∑
k=0

akz−k =

∞∑
k=0

(a
z

)k
(6.25)

We recall that the sum of the �rst n terms of a geometric series where a0 is
the �rst term of the series, and q is the common ratio is:

a0 + a0q + a0q
2 + a0q

3 + · · ·+ a0q
n−1 =

n−1∑
k=0

a0q
k = a0

1− qn

1− q
(6.26)

As n goes to in�nity, the modulus of the common ratio q must be less than
one for the series to converge. Then the sum then becomes:

∞∑
k=0

a0q
k = a0

1

1− q
if ‖q‖ < 1 (6.27)

Applying the preceding result to the computation of the Z transform of the
sequence x(k) = ak ∀k ≥ 0 reads:

Z
[
ak
]

=
1

1− a
z

=
z

z − a
(6.28)
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Note that the region of convergence is de�ned by
∥∥a
z

∥∥ < 1.

Taking a = 1 leads to the Z transform of the sampled unit step Γ(k):

Z [Γ(k)] =
z

z − 1
(6.29)

�

6.4.2 Properties

This section presents the main properties of the Z transform without demon-
stration. In the following x(k) is a causal sequence and X(z) is its Z transform.

Linearity

For any sequences x1(k) and x2(k) and any constants a1 and a2 in R or C:

Z [a1x1(k) + a2x2(k)] = a1X1(z) + a2X2(z) (6.30)

Time delay

As soon as x(k) is a causal sequence we get:

Z [x(k − 1)] = z−1X(z) s.t. x(k) = 0 ∀k < 0 (6.31)

Consequently z−1 is interpreted as the one sampling period delay operator.

More generally we have:

Z [x(k − n)] = z−nX(z) ∀n ∈ N+ s.t. x(k) = 0 ∀k < 0 (6.32)

Time advance

Z [x(k + 1)] = z1X(z)− zx(0) (6.33)

More generally we have:

Z [x(k + n)] = znX(z)− znx(0)− zn−1x(1)− · · · − zx(n− 1) ∀n ∈ N+ (6.34)

Initial value theorem

x(0) = lim
z→∞

X(z) (6.35)

Example 6.2. Knowing the Z transform of x(k) = ak is z
z−a check that x(0) =

1. We check that:

x(0) = lim
z→∞

X(z) = lim
z→∞

z

z − a
= 1 (6.36)

�
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Final value theorem

Assuming that the value of x(k) exists when k →∞ then

lim
k→∞

x(k) = lim
z→1

(
1− z−1

)
X(z) (6.37)

Example 6.3. Knowing that the Z transform of the sampled unit step Γ(k) is
z
z−1 compute limk→∞ Γ(k).

We check that:

lim
k→∞

Γ(k) = lim
z→1

(
1− z−1

) z

z − 1
= lim

z→1

z − 1

z

z

z − 1
= 1 (6.38)

�

It is worth noticing that the �nal value theorem gives the correct limit as
soon as the value of sequence x(k) exists when k →∞.

Example 6.4. If we apply the �nal value theorem on the sequence ak we get:

lim
z→1

(
1− z−1

) z

z − a
= lim

z→1

z − 1

z

z

z − a
=

{
0 ∀a 6= 1

1 if a = 1
(6.39)

As far as ak has no limit as soon as ‖a‖ > 1 it is clear that result provided
by the �nal value theorem is not correct when ‖a‖ > 1.

�

Multiplication by exponential

Z
[
a−kx(k)

]
= Z [x(k)]|z→az = X(az) (6.40)

Example 6.5. From the Z transform of the sampled unit step Γ(k) �nd the Z
transform of the exponential sequence x(k) = e−akT ∀k ∈ N+

x(k) =
(
eaT
)−k

Γ(k)

⇒ X(z) = Z [Γ(k)]|z→zeaT = z
z−1

∣∣∣
z→zeaT

= zeaT

zeaT−1
== z

z−e−aT
(6.41)

�

Multiplication by k

Z [kx(k)] = −z d
dz
Z [x(k)] = −z d

dz
X(z) (6.42)

Example 6.6. Find the Z transform of the sequence x(k) = kT ∀k ∈ N+

x(k) = TkΓ(k)⇒ X(z) = −Tz d
dzZ [Γ(k)] = −Tz d

dz

(
z
z−1

)
= −Tz z−1−z

(z−1)2 = Tz
(z−1)2

(6.43)

�
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x(k) ∀k ∈ N+ X(z)

δ(k) 1

Γ(k) (step function) z
z−1

kT Tz
(z−1)2

(kT )2 T 2z(z+1)

(z−1)3

ak z
z−a

e−akT z
z−e−aT

sin(ω0kT ) z sin(ω0T )
z2−2z cos(ω0T )+1

cos(ω0kT ) z(z−cos(ω0T ))
z2−2z cos(ω0T )+1

Table 6.1: Usual Z transform pairs

Example 6.7. From the preceding example �nd the Z transform of the sequence
x(k) = (kT )2 ∀k ∈ N+

x(k) = Tk · kT ⇒ X(z) = −Tz d
dzZ [kT ] = −Tz d

dz

(
Tz

(z−1)2

)
= −T 2z (z−1)2−2z(z−1)

(z−1)4 = −T 2z (z−1)−2z

(z−1)3

= T 2z(z+1)

(z−1)3

(6.44)

�

Convolution

We have seen that the discrete time convolution ∗ between two causal sequences
x(k) and y(k) is de�ned by:

x(k) ∗ y(k) =
∞∑
m=0

x(m)y(k −m) (6.45)

Then the Z transform of the convolution between two causal sequences x(k)
and y(k) is the product of the Z transforms of x(k) and y(k):

Z [x(k) ∗ y(k)] = X(z)Y (z) (6.46)

6.4.3 Usual Z transform pairs

Usual Z transform pairs are provided in Table 6.1.

6.4.4 Inverse Z transform

Basically there exists three methods to compute inverse Z transform:

− Method based on Cauchy's residue theorem;

− Method based on partial fraction expansion;

− Method based on long division.



154 Chapter 6. Discrete time systems

Cauchy's residue theorem

From the residue theorem coming from complex analysis it can be demonstrated
that as soon as X(z) is a proper rational fraction (the degree of its denominator
is greater or equal to the degree of its numerator) its inverse Z transform reads:

x(k) = Z−1 [X(z)] =
∑
i

Resz=λi

[
zk−1X(z)

]
∀k ∈ N+ (6.47)

The residue Resz=λi
[
zk−1X(z)

]
shall be computed around each pole λi of

X(z). Assuming that λi is a pole of multiplicity ni then the residue of z
k−1X(z)

around pole λi is given by:

Resz=λi

[
zk−1X(z)

]
=

1

(ni − 1)!

dni−1

dzni−1

(
(z − λi)ni zk−1X(z)

)∣∣∣∣
z=λi

(6.48)

Let n0(k) be the multiplicity of the root 0 of the polynomial corresponding
to the numerator of zk−1X(z). Then x(k) is de�ned ∀n0(k) ≥ 0.

Example 6.8. Find the inverse Z transform of X(z) = z
z−α

X(z) has a unique pole at λ1 = α with multiplicity n1 = 1. The residue of
zk−1X(z) around pole λ1 of multiplicity n1 = 1 reads:

x(k) = Resz=α
[
zk−1X(z)

]
= 1

(1−1)!
d1−1

dz1−1

(
(z − α)1 zk−1X(z)

)∣∣∣
z=α

= (z − α) zk−1X(z)
∣∣
z=α

= zk
∣∣
z=α

⇔ x(k) = αk ∀k ∈ N+

(6.49)

The numerator of zk−1X(z) is zk, which has root 0 with multiplicity n0(k) =
k. Thus x(k) is de�ned ∀n0(k) = k ≥ 0.

�

Example 6.9. Find the inverse Z transform of X(z) = Tz
(z−1)2

X(z) has a unique pole at λ1 = 1 with multiplicity n1 = 2. The residue of
zk−1X(z) around pole λ1 of multiplicity n1 = 2 reads:

x(k) = Resz=α
[
zk−1X(z)

]
= 1

(2−1)!
d2−1

dz2−1

(
(z − 1)2 zk−1X(z)

)∣∣∣
z=1

= d
dzTz

k
∣∣
z=1

= Tkzk−1
∣∣
z=1

⇔ x(k) = kT ∀k ∈ N+

(6.50)

The numerator of zk−1X(z) is zk, which has root 0 with multiplicity n0(k) =
k. Thus x(k) is de�ned ∀n0(k) = k ≥ 0.

�
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Partial fraction expansion

The computation of the partial fraction expansion of X(z)
z . Then by multiply-

ing by z each term of the partial fraction expansion we should recognize by
inspection of Table 6.1 the associated pairs. It is worth noticing that factor z
systemically appears on the numerator of the pairs in Table 6.1 (except for the
Z transform of the unit impulse). By making the partial fraction expansion

of X(z)
z (and not X(z)) and then multiplying each term of the partial fraction

expansion by z we get a sum of factors where z systemically appears on the
numerator and Table 6.1 can be used. You may also use the residue theorem to
compute the inverse Z transform of each term of the partial fraction expansion.

Long division

The polynomial long division of X(z) written on the following form:

X(z) =
bn + bn−1z

−1 + · · ·+ b0z
−n

an + an−1z−1 + · · ·+ a0z−n
(6.51)

Indeed the division according to the increasing power of z−1 allows to identify
x(k) with the quotient of the long division which reads

∑∞
k=0 x(k)z−k. It is

worth noticing that as far as the Z transform involves z−k the long division has
to be done according to the increasing power of z−1 and not of z. In addition
the long-division approach does not yield a closed-form solution because the
steps to compute each coe�cient of the quotients shall be done inde�nitely to
get the complete sequence x(k).

Example 6.10. Find the 3 �rst values of the sequence whose Z transform is
X(z) = Tz

(z−1)2

We get:

X(z) =
Tz

z2 − 2z + 1
=

Tz−1

1− 2z−1 + z−2
(6.52)

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of z−1) of X(z):

Tz−1 1− 2z−1 + z−2

−
(
Tz−1 − 2Tz−2 + Tz−3

)
Tz−1 + 2Tz−2 + · · ·

2Tz−2 − Tz−3
(6.53)

Then we identify the quotient Tz−1 + 2Tz−2 + · · · of the polynomial long
division with

∑∞
k=0 x(k)z−k. In that example this leads to the �rst 3 values of

x(k):

Tz−1 + 2Tz−2 + · · · =
∞∑
k=0

x(k)z−k ⇒


x(0) = 0
x(1) = T
x(2) = 2T

...

(6.54)

It is clear that the long-division approach does not yield a closed-form solu-
tion because the steps to compute each coe�cient of the quotients shall be done
inde�nitely to get the complete sequence x(k).

�



156 Chapter 6. Discrete time systems

6.4.5 Relationship with Laplace transform

Laplace transform of a sampled continuous time signal

The Z transform can be seen as the Laplace transform of a sampled causal con-
tinuous time signal where z = esT . Indeed the sampling of a causal continuous
time signal x(t) to a discrete time sequence xs(k) is mathematically modeled
thanks to the following product which involves the Dirac delta function δ(t) and
the sampling interval T :

xs(k) := x(t)|t=kT =
∞∑
k=0

x(t)δ(t− kT ) =
∞∑
k=0

x(kT )δ(t− kT ) (6.55)

By taking the Laplace transform of this equation we get:

L [xs(k)] = L [
∑∞

k=0 x(kT )δ(t− kT )]
=
∑∞

k=0 L [x(kT )δ(t− kT )]
=
∑∞

k=0 x(kT )L [δ(t− kT )]
=
∑∞

k=0 x(kT )e−skT

=
∑∞

k=0 x(kT )
(
esT
)−k

(6.56)

Let's de�ne:

z = esT (6.57)

Consequently setting z = esT in Laplace transform of a sampled causal
continuous time signal x(t) leads to the Z transform of the causal sequence
{x(0), x(1), · · · , x(k), · · · }

L [xs(k)]z=esT =

∞∑
k=0

x(kT )z−k := Z [x(k)] (6.58)

Conversely let's consider a continuous time signal x(t) whose Laplace trans-
form exhibits distinct poles only. The partial fraction expansion of X(s) reads:

X(s) =
N(s)∏n

i=1 (s− λi)
=

n∑
i=1

ai
s− λi

(6.59)

Taking the inverse Laplace transform of X(s) yields the expression of x(t)
as a sum of exponential functions:

L−1 [X(s)] = x(t) =

n∑
i=1

aie
λit ∀t ≥ 0 (6.60)

Then the sampling of the continuous time signal x(t) to the discrete time
sequence xs(k) leads to the following expression:

xs(k) := x(t)|t=kT =
n∑
i=1

aie
λikT ∀k ∈ N+ (6.61)
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Knowing that Z
[
ak
]

= z
z−a and using the fact that the Z transform is a

linear operator the Z transform of xs(k) reads:

xs(k) =
∑n

i=1 ai
(
eλiT

)k
⇒ X(z) = Z [xs(k)] =

∑n
i=1 aiZ

[(
eλiT

)k]
=
∑n

i=1 ai
z

z−eλiT
(6.62)

As a consequence each simple fraction 1
s−λi in the Laplace transform domain

is associated in the Z transform domain to the term z
z−eλiT :

1

s− λi
Z−→ z

z − eλiT
(6.63)

In others words each pole λi in the Laplace transform domain is associated
in the Z transform domain to the pole eλiT :

λi
Z−→ eλiT (6.64)

This relationship can also be read as z = esT .

From Laplace transform to Z transform

The purpose of this section is to provide the relationship which enables to get
the Z transform of the discrete time sequence x(k) from the Laplace transform
of the related continuous time signal x(t). Thus starting from X(s), which is
assumed to be a strictly proper rational fraction, we have to apply the inverse
Laplace transform to get the continuous time signal x(t). Then x(t) is sampled
at every time step kT to obtain the discrete time sequence x(k) and the Z
transform is applied to get X(z). This is denoted as follows:

X(z) = Z [X(s)] (6.65)

The residue theorem applied on this speci�c inversion problem leads to the
following result:

Z [X(s)] =
∑
i

Resz=λi

[
X(s)

1− z−1esT

]
(6.66)

Where the residue Resz=λi

[
X(s)

1−z−1esT

]
shall be computed around each pole

λi of X(s). Assuming that λi is a pole of multiplicity ni then the residue of
X(s)

1−z−1esT
around pole λi is given by:

Ress=λi

[
X(s)

1− z−1esT

]
=

1

(ni − 1)!

dni−1

dsni−1

(
(s− λi)ni

X(s)

1− z−1esT

)∣∣∣∣
s=λi

(6.67)

Example 6.11. Let's compute the Z transform of X(s) = 1
s2
.
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It is clear that X(s) has a singe pole, λ1 = 0, with multiplicity n1 = 2. The

residue of of X(s)
1−z−1esT

around pole λ1 = 0 is given by:

x(k) = Ress=0

[
X(s)

1−z−1esT

]
= 1

(n1−1)!
dn1−1

dsn1−1

(
sn1 X(s)

1−z−1esT

)∣∣∣
s=0

= d
ds

1
1−z−1esT

∣∣∣
s=0

= z−1TesT

(1−z−1esT )2

∣∣∣
s=0

= z−1T
(1−z−1)2

(6.68)

By multiplying the numerator and the denominator by z2 we �nally get:

x(k) =
Tz

(z − 1)2 ∀k ≥ 0 (6.69)

In order to check this result let's take the inverse Laplace transform of X(s).
We get:

x(t) = L−1 [X(s)] = t (6.70)

Then the sequence x(k) is obtained by sampling the continuous time signal
x(t) at each time step t = kT . We get:

x(k) = x(t)|t=kT = kT (6.71)

Sequence x(k) can be written as follows where Γ(k) is the unit step sequence:

x(k) = kT = TkΓ(k) (6.72)

The property of the Z transform with respect to the multiplication by k can
be applied to get the Z transform of sequence x(k):

Z [x(k)] = Z [TkΓ(k)]
= TZ [kΓ(k)]

= −Tz d
dzΓ(z)

(6.73)

Where:

Γ(z) = Z [Γ(k)] =
z

z − 1
(6.74)

We �nally get:

Z [x(k)] = −Tz d
dz

z

z − 1
=

Tz

(z − 1)2
(6.75)

We obviously get the same result than the result obtained thanks to the residue
theorem.

�



6.5. Discrete linear time invariant systems 159

6.5 Discrete linear time invariant systems

6.5.1 Discrete time transfer function

For systems that have only one input and one output it is frequently convenient
to work with an input-output description of the system. For discrete linear time
systems this consists of a single nth order linear di�erence equation relating the
sampled output y(k) to the sampled input u(k) of the system:

a0y(k) + a1y(k − 1) + · · ·+ any(k − n)

= b0u(k) + b1u(k − 1) + · · ·+ bmu(k −m) (6.76)

The constant coe�cients ai and bi are de�ned by the system parameters.
For causal systems we have:

m ≤ n (6.77)

When the di�erence equation re�ects the input output relationship of a
digital controller, the algorithm implemented on the computer (sometimes a
DSP: digital signal processor) computes at each time step the output y(k) as a
function of the previous values of the output and also current and past values
of the input:

y(k) =
1

a0
(b0u(k) + b1u(k − 1) + · · ·+ bmu(k −m))

− 1

a0
(a1y(k − 1) + · · ·+ any(k − n)) (6.78)

Assuming that sequences y(k) and u(k) are causal (so that the time response
of the discrete time system is invariant) and applying the time delay property
of the Z transform, the Z transform of di�erence equation (6.76) reads:

a0Y (z) + a1z
−1Y (z) + · · ·+ anz

−nY (z)

= b0U(z) + b1z
−1U(z) + · · ·+ bmz

−mU(z) (6.79)

Analogously to the continuous time domain, the discrete time transfer func-
tion H(z) of a discrete linear time invariant system is de�ned to be the ratio of
the Z transform of the output sequence y(k) to the Z transform of the input
sequence u(k):

H(z) =
Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bm

a0 + a1z−1 + · · ·+ anz−n
(6.80)

This transfer function is usually rationalized by multiplying top and bottom
by zn:

H(z) =
Y (z)

U(z)
=
b0z

n + b1z
n−1 + · · ·+ bmz

n−m

a0zn + a1zn−1 + · · ·+ an
(6.81)

As far as the Z transform of the unit impulse δ(k) is 1, it is worth noticing
that the Z transform of the impulse response of a discrete linear time invariant
system is its transfer function (as in the continuous time case):{

Y (z) = H(z)U(z)
u(k) = δ(k)⇒ U(z) = 1

⇒ Y (z) = H(z) (6.82)
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6.5.2 Stability analysis

Routh�Hurwitz based stability criterion

Analysis tools based on the Laplace domain also apply to Z domain thanks to
speci�c adjustments. As far as stability is concerned the symbolic relationship
z = esT is quite useful to analyze discrete time systems. Indeed we know that
a continuous time system is stable if and only if all the poles of its transfer
function have negative real part. Applying relationship z = esT shows that a
discrete time system is stable if and only if all the poles of its transfer function
have a magnitude less than 1.

As an example consider a �rst order discrete time system de�ned by the
following di�erence equation where a and b are real parameters:

y(k) + ay(k − 1) = bu(k − 1) (6.83)

The transfer function H(z) of this system is obtained by taking the Z trans-
form of the di�erence equation. Assuming that y(k) and u(k) are causal se-
quences this yields:

Y (z) + az−1Y (z) = bz−1U(z)

⇒ H(z) = Y (z)
U(z) = bz−1

1+az−1 = b
z+a

(6.84)

It is clear that all the poles of its transfer function have a magnitude less
than 1 as soon as ‖a‖ < 1; as far as parameter a is a real this simply reads:

−1 < a < +1 (6.85)

Analogously to the continuous time domain we may apply Routh criterion
to analyze discrete time stability. Nevertheless some adjustment shall be made
in order that the criterion shall indicates the number of poles outside the unity
circle rather than the number of poles with positive real part. This adjustment
is achieved thanks to the following homographic transformation which matches
the imaginary axis of the complex w-plan to the unit circle of the complex z-plan
as illustrated in Figure 6.5.

w =
z − 1

z + 1
⇔ z =

1 + w

1− w
(6.86)

The following relationship indicates that the unit circle in the z-plane is
changed into the vertical imaginary line in the w-plane:

z = ejθ ⇒ w = ejθ−1
ejθ+1

= e
jθ
2

e
jθ
2

(
e
jθ
2 −e−

jθ
2

e
jθ
2 +e−

jθ
2

)
⇔ w =

2j sin( θ2)
2 cos( θ2)

= j tan
(
θ
2

) (6.87)

More generally every point within the unit circle in the z-plane is changed into
a point with negative real part in the w-plane.

From a practical point of view the stability of a discrete time system de-
scribed by its transfer function H(z) = N(z)

D(z) can be assessed:
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Figure 6.5: Homographic transformation

− either by computing the roots of the characteristic polynomial D(z) and
by checking that there are all encompassed in the unit circle,

− or by replacing z by 1+w
1−w in the characteristic polynomial D(z) and by

computing the Routh array of the polynomial in w which appears at the
numerator of the fraction.

An alternative of the Routh�Hurwitz based stability criterion which has been
presented is the Jury stability criterion1 which will not be developed here.

Stability analysis of a second order discrete time system

Consider a second order discrete time system de�ned by the following di�erence
equation where a1, a0 and b0 are real parameters:

y(k) + a1y(k − 1) + a0y(k − 2) = b0u(k − 2) (6.88)

The transfer function H(z) of this system is obtained by taking the Z trans-
form of the di�erence equation. Assuming that y(k) and u(k) are causal se-
quences this yields:

Y (z) + a1z
−1Y (z) + a0z

−2Y (z) = b0z
−2U(z)

⇒ H(z) = Y (z)
U(z) = b0z−2

1+a1z−1+a0z−2 = b0
z2+a1z+a0

(6.89)

In order to assess the stability of such a second order discrete time system we
shall localize the roots of D(z) = z2 +a1z

1 +a0. The roots of D(z) are complex
if a2

1 − 4a0 < 0 and real otherwise. Rather than computing explicitly those
roots and assess if they are inside the unit circle we will use the homographic
transformation z = 1+w

1−w . We get:

D (z)|z= 1+w
1−w

=

(
1 + w

1− w

)2

+ a1

(
1 + w

1− w

)
+ a0 (6.90)

1https://en.wikipedia.org/wiki/Jury_stability_criterion
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Figure 6.6: Region of coe�cient values for second-order discrete time system
stability

And D(z) = 0 yields:

D(z) = 0⇒ (1 + w)2 + a1 (1 + w) (1− w) + a0 (1− w)2 = 0 (6.91)

Expanding leads to a polynomial of degree 2:

(1− a1 + a0)w2 + 2 (1− a0)w + 1 + a1 + a0 = 0 (6.92)

All the coe�cients the polynomial exist and have the same sign; so the
necessary condition for the polynomial in w to have all its roots in the left half
(complex) plane (LHP) are satis�ed. The Routh array reads:

s2 1− a1 + a0 1 + a1 + a0

s1 2 (1− a0)

s0 1 + a1 + a0

(6.93)

All the roots in w have negative real part meaning that all the roots in z are
situated in the unit circle, if there is no sign change in the �rst column. Thus
the following inequalities shall be satis�ed:

1− a1 + a0 > 0
1− a0 > 0

1 + a1 + a0 > 0
⇔


a0 > a1 − 1
a0 < 1

a0 > −a1 − 1
(6.94)

We have arbitrary chosen a positive sign; we can also do the test assuming
negative sign and check that there is no solution.

Conditions (6.94) are illustrated in Figure 6.6. This shows the resulting
stability triangle in the {a0, a1} plane. We conclude that a second order discrete
time system is stable if, and only if, coe�cients {a0, a1} de�ne a point that
lies inside this triangle. As previously noted the poles of the characteristic

polynomial D(z) are complex if a0 >
a2

1
4 and real otherwise.
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6.5.3 Frequency response

In this section we will focus on stable discrete time linear invariant systems.
The frequency response of a discrete time system is the response of the

system to the sampled exponential sequence u(k) = ejαk where α is the reduced
frequency. More speci�cally the frequency response consists in the magnitude
and phase relationship between the input and the output sequence when the
input sequence u(k) is the causal sampled exponential ejαk.

We have previously seen that the Z transform of the output sequence y(k)
of a discrete linear time invariant system is obtained thanks to the product
between if transfer function H(z) and the Z transform of the input sequence
u(k). Coming back to the discrete time domain, and having in mind that the
inverse Z transform of a product is the discrete time convolution we get:

Y (z) = H(z)U(z)⇒ y(k) = h(k) ∗ u(k) (6.95)

As a consequence a discrete linear time invariant system is a convolutor.
Specializing relationship (6.95) to the case where u(k) is the causal sampled
exponential reads:

u(k) = ejαk ⇒ y(k) =

∞∑
m=0

h(m)ejα(k−m) (6.96)

Using the fact that the summation is a linear operation we get:

u(k) = ejαk
∞∑
m=0

h(m)e−mjα (6.97)

We recognize in the term
∑∞

m=0 h(m)e−mjα the Z transform of the impulse
response h(k) where the Z transform variable z is specialized to be ejα:

∞∑
m=0

h(m)e−jαm =
∞∑
m=0

h(m)z−m

∣∣∣∣∣
z=ejα

= H(z)|z=ejα (6.98)

Note that H(z)|z=ejα = H(ejα) is called the frequency response of the dis-
crete time system.

As a consequence the frequency response of a discrete linear time invariant
system to the sampled exponential reads:

ejαk ⇒ y(k) = ejαk H(z)|z=ejα = H(ejα)ejαk (6.99)

The preceding relationship shows that the frequency response of a discrete
linear time invariant system is closely linked to its transfer function. The fre-
quency of the output sequence is the same than the frequency of the input
sequence; only the amplitude and the phase of the input sequence are changed
by the linear system. In addition the phase of the output sequence is indepen-
dent of the amplitude of the input sequence. Denoting by

∥∥H(ejα)
∥∥ the norm

of H(ejα) and by Φ(α) the phase of H(ejα) the preceding relationship reads:{
u(k) = ejαk

H(ejα) =
∥∥H(ejα)

∥∥ ejΦ(α)

⇒ y(k) =
∥∥H(ejα)

∥∥ eejαkejΦ(α) =
∥∥H(ejα)

∥∥ ej(αk+Φ(α))

(6.100)
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Where Re stands for real part and Im stands for imaginary part:
∥∥H(ejα)

∥∥ =

√
(Re (H(ejα)))2 + (Im (H(ejα)))2

Φ(α) = ∠H(ejα) = arctan

(
Im(H(ejα))
Re(H(ejα))

) (6.101)

Thus the frequency response of LTI systems is essentially the same for con-
tinuous time and discrete time systems. However, an important distinction
arises because the frequency response of discrete time LTI systems is always a
periodic function of the reduced frequency α with period 2π.

Since H(ejα) is periodic with period 2π and since the frequencies α and
α + 2π are indistinguishable, it follows that H(ejα) is only studied over the
interval −π < α ≤ +π. With respect to this interval, the low frequencies are
frequencies close to zero, whereas the high frequencies are frequencies close to
±π. In addition as soon as the polynomials which appear on the numerator and
denominator of H(ejα) have real coe�cients we have:{

Re
(
H(ejα)

)
= Re

(
H(e−jα)

)
Im
(
H(ejα)

)
= −Im

(
H(e−jα)

) ⇒ { ∥∥H(ejα)
∥∥ =

∥∥H(e−jα)
∥∥

∠H(ejα) = −∠H(e−jα)
(6.102)

Thus
∥∥H(ejα)

∥∥ is an even function of α whereas ∠H(ejα) is an odd function
of α. Consequently

∥∥H(ejα)
∥∥ and ∠H(ejα) are only studied for positive values

of α, which corresponds to physically achievable frequencies:

0 ≤ α < π (6.103)

It is worth noticing that when input u(k) is not the sampled exponential se-
quence but a real sinusoidal sequence then the output sequence y(k) is obtained
thanks to the real (or imaginary) part of the complex output sequence:

u(k) = cos (αk) = Re
(
ejαk

)
⇒ y(k) = Re

(∥∥H(ejα)
∥∥ ej(αk+Φ(α))

)
=
∥∥H(ejα)

∥∥ cos (αk + Φ(α))
(6.104)

And similarly:

u(k) = sin (αk) = Im
(
ejαk

)
⇒ y(k) = Im

(∥∥H(ejα)
∥∥ ej(αk+Φ(α))

)
=
∥∥H(ejα)

∥∥ sin (αk + Φ(α))
(6.105)

The static gain Gs of a discrete time system is the limit as k → ∞ of the
ratio between the output sequence y(k) and the input sequence u(k). Assuming
that the limit exists and applying the �nal value theorem leads to the following
expression of the static gain:

Gs = lim
k→∞

y(k)

u(k)
= lim

z→1

(
1− z−1

)
Y (z)

(1− z−1)U(z)
= lim

z→1

Y (z)

U(z)
= lim

z→1
H(z) (6.106)

As an example consider again a �rst order discrete time system de�ned by
the following di�erence equation where a and b are real parameters:

y(k) + ay(k − 1) = bu(k − 1) (6.107)
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The transfer function H(z) of this system is obtained by taking the Z trans-
form of the di�erence equation. Assuming that y(k) and u(k) are causal se-
quences this yields:

Y (z) + az−1Y (z) = bz−1U(z)

⇒ H(z) = Y (z)
U(z) = bz−1

1+az−1 = b
z+a

(6.108)

In order to assess the frequency response of the �rst order discrete time
system we replace z by ejα in the transfer function H(z):

H
(
ejα
)

=
b

ejα + a
=

b

cos (α) + a+ j sin (α)
(6.109)

That is:

H
(
ejα
)

=
∥∥H(ejα)

∥∥ ejΦ(α) (6.110)

Where 
∥∥H(ejα)

∥∥ = |b|√
1+2a cos(α)+a2

Φ(α) = − arctan
(

sin(α)
cos(α)+a

)
(+π if b < 0)

(6.111)

It can then be shown that a �rst order discrete time system is a low pass
�lter as soon as −1 < a < 0 and a high pass �lter as soon as 0 < a < 1.
Figure 6.7 presents the frequency response of a low pass �rst order �lter where
a = −0.1 and b = 1, whereas Figure 6.8 presents the frequency response of a
high pass �rst order �lter where a = +0.1 and b = 1. It is worth noticing that
the graduation on the abscissa is the product fT (which shall be lower than 0.5
so that α ≤ π) where f is the ordinary frequency of the input sequence and T
the sampling period whereas the ordinate is graduated in dB. We can check
that:

a = −0.1⇒
{

20 log10

∥∥H(ejα)
∥∥
α=0

= +0.91 dB

20 log10

∥∥H(ejα)
∥∥
α=π

= −0.83 dB
(6.112)

And:

a = +0.1⇒
{

20 log10

∥∥H(ejα)
∥∥
α=0

= −0.83 dB

20 log10

∥∥H(ejα)
∥∥
α=π

= 0.91 dB
(6.113)

6.6 Continuous time plant with sampled output and

input

The purpose of this section is to derive the transfer function of a continuous
time plant with sampled output and input. More speci�cally consider the gen-
eral con�guration shown in Figure 6.9 where it is desired to �nd the equivalent
discrete time transfer function F (z) of the continuous time plant F (s) with
Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter (ADC).
The equivalent discrete time transfer function F (z) will be obtained by com-
puting the impulse response of the block composed by the DAC, the plant F (s)
and the ADC.
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Figure 6.7: Frequency response of a low pass �rst order �lter: a = −0.1 and
b = 1

Figure 6.8: Frequency response of a high pass �rst order �lter: a = +0.1 and
b = 1
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Figure 6.9: Continuous time plant F (s) with Digital-to-Analog and Analog-to-
Digital Converters

Figure 6.10: Zero order hold (ZOH) device
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Figure 6.11: Model of analog-to-Digital Converter (ADC)

The Digital-to-Analog Converter (DAC) converts the digital control u(k) to
the analog control signal u(t). It is modeled by a zero order hold device as
illustrated in Figure 6.10.

The zero order hold (ZOH) device generates the continuous time input signal
u(t) by holding each sample value u(k) constant over one sample period T . Thus
the impulse response of the zero order hold (ZOH) device is a rectangular pulse
of duration T as illustrated in Figure 6.10. Therefore denoting by Γ(t) the unit
step function the transfer function of the ZOH device is given by:

u(k) = δ(k)⇒ g0(t) = Γ(t)− Γ(t− T )⇒ G0(s) =
1− e−sT

s
(6.114)

Let u0(t) be the response of the plant with transfer function F (s) to the
unit step function Γ(t). Assuming that F (s) is a linear and invariant plant, its
response to a rectangular pulse of duration T reads:

u(t) = g0(t) = Γ(t)− Γ(t− T )⇒ y(t) = u0(t)− u0(t− T ) (6.115)

Finally the Analog-to-Digital Converter (ADC) is modeled by a sampler as
illustrated in Figure 6.11.

Thus the impulse response of the block composed by the DAC, the plant
F (s) and the ADC is signal de�ned by (6.115) sampled at the sampling period
T :

t = kT ⇒ y(k) = u0(kT )− u0(kT − T ) = u0(kT )− u0 ((k − 1)T ) (6.116)

Having in mind that z−1 is the one sampling period delay operator, the Z
transform of the preceding equation yields:

F (z) = Z [u0(kT )− u0 ((k − 1)T )]
= Z [u0(kT )]− z−1Z [u0(kT )]
=
(
1− z−1

)
Z [u0(kT )]

(6.117)
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Here u0(kT ) represents the sequence obtained by sampling continuous time
signal u0(t) which is the unit step response of the continuous time system. As

far as the Laplace transform of u0(t) is F (s)
s the preceding relationship is usually

written as follows:

F (z) =
(
1− z−1

)
Z
[
F (s)

s

]
(6.118)

In the preceding relationship the term Z
[
F (s)
s

]
shall be interpreted as the

Z transform of the sampled unit step response of the continuous time plant.

Thus the computation of Z
[
F (s)
s

]
involves three steps: �rst to compute the

inverse Laplace transform of F (s)
s , then to sample the obtained continuous time

signal to obtain a sequence and �nally to take its Z transform. This is quite a
long process but hopefully the residue theorem applied on this speci�c inversion
problem leads to a straightforward result:

Z
[
F (s)

s

]
=
∑
i

Resz=λi

[
1

1− z−1esT
· F (s)

s

]
(6.119)

Where the residue Resz=λi

[
1

1−z−1esT
· F (s)

s

]
shall be computed around each

pole λi of
F (s)
s . Assuming that λi is a pole of multiplicity ni then the residue of

1
1−z−1esT

· F (s)
s around pole λi is given by:

Ress=λi

[
1

1− z−1esT
· F (s)

s

]
=

1

(ni − 1)!

dni−1

dsni−1

(
(s− λi)ni

1

1− z−1esT
· F (s)

s

)∣∣∣∣
s=λi

(6.120)

Example 6.12. Consider the following continuous time plant whose transfer
function is:

F (s) =
1

1 + τs
(6.121)

This plant is inserted in a discrete time environment as illustrated in Figure
6.9. We wish to �nd the equivalent discrete time transfer function F (z) of
the continuous time plant F (s) with Digital-to-Analog Converter (DAC) and
Analog-to-Digital Converter (ADC).

Applying (6.118) leads to the following expression of F (s):

F (z) =
(
1− z−1

)
Z
[

1

s (1 + τs)

]
(6.122)

Where:

Z
[

1

s (1 + τs)

]
=
∑
i

Resz=λi

[
1

1− z−1esT
· 1

s (1 + τs)

]
(6.123)

Transfer function 1
s(1+τs) has two poles:
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− λ1 = 0, with multiplicity n1 = 1; applying (6.120) the residue around that
pole reads:

Ress=0

[
1

1−z−1esT
· 1
s(1+τs)

]
= 1

(1−1)!
d1−1

ds1−1

(
s 1

1−z−1esT
· F (s)

s

)∣∣∣
s=0

= 1
1−z−1esT

· 1
1+τs

∣∣∣
s=0

= 1
1−z−1

(6.124)

− λ2 = − 1
τ , with multiplicity n2 = 1; applying (6.120) the residue around

that pole reads:

Ress=− 1
τ

[
1

1−z−1esT
· 1
s(1+τs)

]
= 1

(1−1)!
d1−1

ds1−1

((
s+ 1

τ

)
1

1−z−1esT
· F (s)

s

)∣∣∣
s=− 1

τ

= 1
1−z−1esT

· 1
τs

∣∣∣
s=− 1

τ

= −1

1−z−1e−
T
τ

(6.125)

Consequently F (z) reads:

F (z) =
(
1− z−1

)(
1

1−z−1 − 1

1−z−1e−
T
τ

)
= 1− 1−z−1

1−z−1e−
T
τ

= 1−z−1e−
T
τ −1+z−1

1−z−1e−
T
τ

= z−1−z−1e−
T
τ

1−z−1e−
T
τ

(6.126)

That is:

F (z) =
1− e−

T
τ

z − e−
T
τ

(6.127)

�

6.7 Derivation of discrete time controller from con-

tinuous time controller

6.7.1 Tustin's approximation

Tustin's approximation (or bilinear transformation) is frequently used to derive
a discrete time controller that closely approximates the behavior of the original
continuous time controller.

Tustin's approximation comes from the �rst order approximation of e
sT
2 .

Indeed:

z = esT =
e
sT
2

e−
sT
2

≈
1 + sT

2

1− sT
2

↔ s =
2

T

z − 1

z + 1
(6.128)

Consequently the discrete time controller Cd(z) approximated from contin-
uous time controller C(s) is obtained by replacing s by 2

T
z−1
z+1 :

Cd(z) = C(s)|s= 2
T
z−1
z+1

(6.129)
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Tustin's approximation has the advantage that the left half s-plane is trans-
formed into the unit disc in the z-plane; indeed Tustin's approximation is an
homographic transformation as illustrated in Figure 6.5.

Example 6.13. Consider the following PI continuous time controller whose
transfer function is:

CPI(s) = Kp +
Ki

s
(6.130)

Applying the Tustin's approximation leads to the following discrete time con-
troller:

Cd(z) = C(s)|s= 2
T
z−1
z+1

= Kp +Ki
T

2

z + 1

z − 1
(6.131)

�

One of the problems with the Tustin's approximation method is that the
frequency scale is distorted during the approximation. Recall that to evaluate
the frequency response the transfer function is evaluated along the imaginary
axis s = jω for continuous time systems whereas for discrete time systems the
transfer function is evaluated along the unit circle z = ejα = ejωT . When the
discrete time transfer function is obtained by using the Tustin's approximation
on a continuous transfer function, the continuous frequency ωc is mapped to the
discrete frequency ωd according to the following relationship:

s = jωc ⇒ 2
T
z−1
z+1 = 2

T
ejωcT−1
ejωcT+1

= 2
T
e
jωcT

2 −e−
jωcT

2

e
jωcT

2 +e−
jωcT

2

= j 2
T tan

(
ωcT

2

)
(6.132)

That is:

ωc → ωd =
2

T
tan

(
ωcT

2

)
(6.133)

Consequently the frequency scale is distorted. This will create mismatch
in the system's response if the controller design is based on precise frequency
requirements. At low frequency the distortion is small. However close to the
Nyquist frequency the distortion becomes signi�cant. In order to match the
continuous-time design at a speci�c frequency ωc the Tustin's approximation
can me modi�ed by using a pre-warping frequency:

s→ ωc

tan
(
ωcT

2

) z − 1

z + 1
(6.134)

There are, however, still distortions at other frequencies.

Example 6.14. Consider the following continuous time controller whose trans-
fer function is:

C(s) =
1

1 + τs
(6.135)
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Applying the Tustin's approximation with ωc as the pre-warping frequency
leads to the following discrete time controller:

Cd(z) = C(s)|s= ωc

tan(ωcT2 )
z−1
z+1

= 1
1+τ ωc

tan(ωcT2 )
z−1
z+1

= z+1
z+1+(z−1) τωc

tan(ωcT2 )
= 1

1+ τωc

tan(ωcT2 )

z+1
z+a

(6.136)

Where:

a =
1− τωc

tan(ωcT2 )

1 + τωc
tan(ωcT2 )

(6.137)

Setting ωc to
1
τ leads to the following discrete time controller:

ωc =
1

τ
⇒ Cd(z) =

1

1 + 1
tan( T2τ )

z + 1

z + a
(6.138)

Where:

a =
1− τωc

tan(ωcT2 )

1 + τωc
tan(ωcT2 )

=
1− 1

tan( T2τ )

1 + 1
tan( T2τ )

(6.139)

�

6.7.2 Matched Pole-Zero (MPZ) mapping method

The purpose of this method is to map the poles and the zeros of the continu-
ous time controller with the poles and the zeros of the discrete time controller
according to the relationship z = epT where p is either a pole or a zero of the
continuous time controller and to preserve the static gain of the continuous time
controller in the discrete time domain.

The steps of the Matched Pole-Zero (MPZ) mapping method are the follow-
ing:

− Map the poles and the zeros of the continuous time controller with the
poles and the zeros of the discrete time controller according to the following
relationship where s is either a pole or a zero of the continuous time
controller:

z = esT (6.140)

− If the degree of the numerator of the discrete time controller is lower than
the degree of its denominator then multiply by z + 1 the numerator until
that the degree of the numerator of the discrete time controller becomes
equal to the degree of its numerator.

The purpose of this step is to map the high frequency behaviours of the
discrete time and continuous time and controllers.
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− Multiply the transfer function of the discrete time controller by a gain Kn

and set it to identify the static gain of the discrete time controller with
the static gain of the continuous time controller:

lim
s→0

C(s) = lim
z→1

Cd(z) (6.141)

Example 6.15. Consider the following continuous time controller whose trans-
fer function is:

C(s) =
1

1 + τs
(6.142)

It is clear that the pole of C(s) is − 1
τ whereas C(s) has no zero.

− Map the poles and the zeros of the continuous time controller with the
poles and the zeros of the discrete time controller according to the follow-
ing relationship where s is either a pole or a zero of the continuous time
controller:

Cd1(z) =
1

z − e−
T
τ

(6.143)

− If the degree of the numerator of the discrete time controller is lower than
the degree of its denominator then multiply by z + 1 the numerator until
that the degree of the numerator of the discrete time controller becomes
equal to the degree of its numerator. We get:

Cd2(z) =
z + 1

z − e−
T
τ

(6.144)

− Multiply the transfer function of the discrete time controller by a gain Kn

and set it to identify the static gain of the discrete time controller with the
static gain of the continuous time controller.We get:

Cd(z) = Kn
z + 1

z − e−
T
τ

(6.145)

Gain Kn is set such that:

lim
s→0

C(s) = lim
z→1

Cd(z)⇔ 1 = Kn
2

1− e−
T
τ

⇒ Kn =
1− e−

T
τ

2
(6.146)

Thus the Matched Pole-Zero (MPZ) mapping method leads to the following
discrete time controller:

Cd(z) =
1− e−

T
τ

2

z + 1

z − e−
T
τ

(6.147)

�


