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Course overview

Following Wikipedia a system is a set of interacting or interdependent components forming an integrated whole.

System control exists for more than 2000 years. Water clocks control was one of the rst application of system control. Nevertheless the scientic approach appears after the mid of the 19th century. In 1868 James Clerk Maxwell (1831-1879) published a paper entitled "On Governors" within which he described how to derive the linear dierential equations for various governor mechanisms. In 1798 James Watt (1736-1819) developed the automatic control of the speed of a steam motor.

The theory of control has been developed during the rst half of the 20th century both in the western countries and in the ex-URSS but the motivations were dierent. Indeed they were based on mathematical interests in the East. For example Nicholas Minorsky presented in 1922 a clear analysis of the control involved in position control systems and formulated a control law that we now refer to PID control. On the other side engineering issues were the main drivers in the West. In 1914 Lawrence Burst Sperry (1892-1923) invented the rst autopilot which he demonstrated with success in France. In the US telephone repeaters based on electronic amplication of the signal were used around 1920 but the distortion they introduced limited the number that could be used in series. Harold Stephen Black developed the electronic amplier with negative feedback in 1927 to overcome the issue.

The so called classical control period extends approximatively from 1935 to 1960. By the end of this period the classical control techniques had been established. The design methodologies were for linear SISO (Single Input and Single Output) systems; those systems can be described by linear dierential equations with constant coecients.

Starting in the late 50's beginning of the 60's, the modern control period tackles problems involving the analysis and control of linear MIMO (Multiple Input and Multiple Output) systems and nonlinear systems (e.g. Sputnik in 1957). An important step was accomplished with Rudolf (Rudi) Emil Kalman's (born in Budapest in 1930) treatment of the linear multivariable optimal control problem with a quadratic performance index.

You may read the paper entitled A Brief History of Automatic Control, EEE Control Systems, June 1996 by Stuart Bennett for further details. This course will focus on classical control. More specically, the objectives are the following:

to learn how to model dynamic systems and to present mathematical representation of theses models;

to learn how to analyse dynamic properties of open loop (and also closed loop) systems;

to learn how to design basic feedback control loop to achieve stability and precision goals.

This lecture is organized as follows: the rst chapter introduces dynamical systems and the way to linearize a nonlinear dierential equation. Then we present the Laplace transform, which is the dedicated mathematical tool to study systems driven by linear dierential equations. The third chapter introduces Linear Time Invariant (LTI) systems and focuses on their time and frequency responses. The fourth chapter is dedicated to the stability analysis of LTI systems. Then basic control designs based on steady state analysis or transient response specications are provided in chapter ve. The last chapter focuses on discrete time systems and more specically on the Z transform and the modeling of continuous time system with sampled input and output.

Chapter 1

Introduction to dynamical systems 1.1 Chapter overview

Usually an appropriate mathematical model of the system to be controlled is needed before controlling it. The mathematical model may be obtained either from physical laws or experimental data. In this chapter we recall what are dierential equations. As far as most physical systems are described by nonlinear dierential equations we present how to get a linearized model around an equilibrium point in order to be in position to apply all the mathematical tools dedicated to linear time invariant systems.

Refresher on derivatives

Let's consider the curve in Figure 1.1 which represents a function y = f (t).

At any value of t the slope of the curve between two points is dened as the The derivative of function f at t is dened as the limit of the slope when ∆t tends towards 0:

f ′ (t) = lim ∆t→0 f (t + ∆t) -f (t) ∆t (1.2)
The following notations are equivalent to denote the rst derivative of y = f (t) with respect to time t: -Lagrange's notation: f ′ (t) -Leibniz's notation: dy dt or d dt f (t) -Newton's notation: ẏ(t) -Euler's notation uses a dierential operator D which is applied to a function f (t) to give the rst derivative Df (t)

We recall on Tables 1.1 and 1.2 some basic dierentiation formulas and basic dierentiation rules for combined functions 1 . 

d dt t n = nt n-1 d dt e f (t) = e f (t) × d dt f (t)
(a × f (t)) = a × d dt f (t) Derivative of sum d dt (a 1 f 1 (t) + a 2 f 2 (t)) = a 1 d dt f 1 (t) + a 2 d dt f 2 (t) Product Rule d dt (f 1 (t) × f 2 (t)) = d dt f 1 (t) × f 2 (t) + f 1 (t) × d dt f 2 (t) Quotient Rule d dt f 1 (t) f 2 (t) = d dt f 1 (t)×f 2 (t)-f 1 (t)× d dt f 2 (t) (f 2 (t)) 2 Chain Rule d dt f 1 (f 2 (t)) = d dt f 1 (t) t=f 2 (t) × d dt f 2 (t) Table 1.

2: Basic dierentiation rules for combined functions

The derivative of order n of f (t) is equivalently denoted by f (n) (t), d n y dt n ,

d n
dt n f (t) or D n f (t).

1 https://www.math.wustl.edu/ freiwald/Math131/derivativetable.pdf

Dierential equations

The derivative of order n of f (t) is the derivative of the n -1 th derivative of f (t) :

d n dt n f (t) = d dt d n-1 dt n-1 f (t) (1.3)

Dierential equations

Dierential equations rst appears with Gottfried Wilhelm von Leibniz (1646-1716) and Isaac Newton (1642-1727) 2A dierential equation is a mathematical equation that relates some function with its derivatives.

Dierential equations can be divided into several types:

-Ordinary dierential equation: an ordinary dierential equation (ODE) is a dierential equation that contains unknown one-variable or multivariable functions and their derivatives.

An example of ordinary dierential equation with respect to the unknown one-variable-variable function y(t) is the following:

d 2 dt 2 y(t) -5y(t) = cos(t) (1.4) 
-Partial dierential equation: a partial dierential equation (PDE) is a dierential equation that contains unknown multi-variable functions and their partial derivatives. The partial derivative of a function of several variables is its derivative with respect to one of those variables with the others held constant.

An example of partial dierential equation with respect to the unknown multi-variable function u(x, y) is the following: ∂u(x, y) ∂x y + ∂u(x, y) ∂y x = 0 (1.5)

-Linear dierential equation: linear dierential equations are dierential equations (either ODE or PDE) having solutions whose linear combination form further solutions 3 . We recall that a linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results 4 .

For example the general form of rst-order linear dierential equations with respect to the unknown one-variable-variable function y(t) reads:

d dt y(t) + a 0 (t)y(t) = f (t) (1.6)
Then if y 1 (t) is a solution of (1.6) and y 2 (t) is another solution of (1.6) then α 1 y 1 (t) + α 2 y 2 (t), where α 1 and α 2 are constants, is also a solution of (1.6).

More generally a linear ordinary dierential equation can be written as follows where a n-1 (t), • • • , a 1 (t), a 0 (t) and f (t) are known functions and where function y(t) has to be found:

d n dt n y(t) + a n-1 (t) d n-1 dt n-1 y(t) + • • • + a 1 (t) d dt y(t) + a 0 (t)y(t) = f (t) (1.7)
-The order of a dierential equation is the order of the highest derivative that appears in the equation. For example the following dierential equation is a dierential equation of order 2:

d 2 dt 2 y(t) + 3 d dt y(t) + 2y(t) = t 2 (1.8)
1.4 From nonlinear to linear systems Applying fundamental physical rules (i.e. Euler-Lagrange or Newton dynamic principles for mechanical systems, Kirchho's rules for electrical systems, Maxwell rules for electro-magnetic systems, ...) the modeling of a system always leads to an input-output relation between inputs u(t) and outputs y(t) and their derivatives:

h (y(t), ẏ(t), ÿ(t), • • • , u(t), u(t), • • • ) = 0 (1.9) Function h is called the input-output relation. The model dened by the relation h can be:

-Either a discrete time or a continuous time model. For discrete time models the values of the time variable t are dened at distinct points in time. This is not the case for continuous time models;

-Either a time invariant or a time variant model. For time variant model time t appears explicitly in the input-output relation h.

-Either a nonlinear or a linear model. The model is linear if h is a linear combination of y(t), ẏ(t), ÿ(t), • • • , u(t), u(t), • • • ;

-Either a SISO (Single Input and Single Output) or a MIMO (Multiple Input and Multiple Output) model.

When the input-output relation h is nonlinear there exists quite few mathematical tools which enable to catch the intrinsic behavior of the system. Nevertheless this situation radically changes when h is linear and the good news is that it is quite simple to approximate a nonlinear model with a linear model around an equilibrium point. We will rst dene what we mean by equilibrium point and then we will see how to get a linear model from a nonlinear model.

An equilibrium point is a constant value of the pair (y, u), which will be denoted (y e , u e ), such that: h (y e , u e ) = 0 (1.10)

It is worth noticing that as soon as (y e , u e ) is a constant value then we have ẏe = ÿe = • • • = 0 and ue = üe = • • • = 0.

Then the linearization process consists in computing the Taylor series expansion of h around the equilibrium point (y e , u e ) and to stop it at the order 1. The linearization of a multivariable function h(x) around the equilibrium point x e reads: h(x) ≈ h(x e ) + ∇h(x)| x=x e (x -x e ) (1.11)

Where ∇ is the Jacobian of h that is the vector (or matrix) composed with all rst-order partial derivatives of h: (1.12) Applying this relation to the implicit dierential equation (1.9) reads: Using the fact that h (y e , u e ) = 0 the preceding relation can be rewritten as follows: Usually the δ sign which indicates that the system approximation is made around an equilibrium point is omitted and the system model (1.15) simply reads:

∇ T = ∂ ∂x 1 • • • ∂ ∂xn
0 = h(y(t), ẏ(t), ÿ(t), • • • , u(t), u(t), • • • ) ≈ h (
a 0 δy + a 1 d dt δy + • • • + a n-1 d n-1 dt n-1 δy + a n d n dt n δy ≈ b 0 δu + b 1 d dt δu + • • • + b m-1 d m-1 dt m-1 δu + b m d m dt m δu (1.15) Where:                          a 0 = ∂h
a 0 y(t) + a 1 dy(t) dt + • • • + a n-1 d n-1 y(t) dt n-1 + a n d n y(t) dt n = b 0 u(t) + b 1 du(t) dt + • • • + b m-1 d m-1 u(t) dt m-1 + b m d m u(t) dt m (1.17)
Consequently the nonlinear input-output relation h can be approximated around an equilibrium point by a linear dierential equation of the form (1.17). Nevertheless is worth noticing that the linearization process is an approximation that is only valid around a region close to the equilibrium point.

Example 1.1. Again let's consider Figure 1.2 where a robotic arm is depicted: u(t) is the torque applied by a motor drive and y(t) is the angular position of the arm. In addition we denote m the mass of the arm, l the distance between the axis of the motor and the centre of mass of the arm, b the viscous friction coecient, J its inertia and g the acceleration of gravity. The dynamics of the robotic arm is the following: J ÿ(t) + b ẏ(t) + mlg sin (y(t)) = u(t) (1.18) This system model is :

a continuous time model; h (y(t), ẏ(t), ÿ(t), u(t)) = J ÿ(t) + b ẏ(t) + mlg sin (y(t)) -u(t) (1.19) As far as equilibrium points are concerned, every couples (y e , u e ) which satisfy the following relation are possible: mlg sin (y e ) = u e (1.20) Imposing u e = 0 (no torque applied on the arm at the equilibrium point) the preceding relation reduces to: mlg sin (y e ) = 0

(1.21)

Consequently (y e = 0, u e = 0) and (y e = π, u e = 0) are two equilibrium points. Let's linearize the nonlinear model around those two equilibrium points:

-Around (y e = 0, u e = 0) where the arm is vertical and downward oriented we get: So the linearized model of the robotic arm around (y e = 0, u e = 0) reads:

               a 0 = ∂h
Jδ ÿ(t) + bδ ẏ(t) + mlgδy(t) = δu(t) (1.23) 
-Around (y e = π, u e = 0) where the arm is vertical and upward oriented we get: So the linearized model of the robotic arm around (y e = π, u e = 0) reads:

               a 0 = ∂h
Jδ ÿ(t) + bδ ẏ(t) -mlgδy(t) = δu(t) (1.25)

In both situation we get a linear dierential equation with constant coecients. ■ Example 1.2. Let's consider the following nonlinear dierential equation: sin(ÿ(t)) + u 2 (t) -2 + e y(t) = 0

(1.26)

The equilibrium points satisfy the following relation: We arbitrarily choose the following equilibrium point:

u e = 1 y e = 0 (1.28)

Let's linearize the nonlinear model around those the equilibrium point (y e = 0, u e = 1). We get: h (y(t), ẏ(t), ÿ(t), u(t)) = sin(ÿ(t)) + u 2 (t) -2 + e y(t) So the linearized model around (y e = 0, u e = 1) reads: ÿ(t) + δy(t) = -2 δu(t) ⇔ ÿ(t) = -δy(t) -2 δu(t) (1.30)

⇒                a 0 = ∂h
Figure 1.3 represents the response of the linear and the nonlinear model for u(t) = 1 + 0.01sin(t) over 30 seconds. We can see that both responses are quite similar.

To simulate the response of the system we create the following state vector:

x 1 (t) = y(t) x 2 (t) = ẏ(t) (1.31) Consequently the nonlinear dierential equation reads:

sin(ÿ(t)) + u 2 (t) -2 + e y(t) = 0 ⇔ ẏ(t) = ẋ1 (t) = x 2 (t) ÿ(t) = ẋ2 (t) = asin 2 -e x 1 (t) -u 2 (t) (1.32) For asin () to exist the inequality 2 -e x 1 (t) -u 2 (t) ≤ 1 shall be checked. The Scilab code to simulate both the nonlinear and the linear responses is the following: 

Laplace transform 2.1 Chapter overview

This chapter introduces the Laplace transform for continuous time functions. This is a powerful tool to solve linear dierential equations with constants coecients.

Indeed linear operators like derivation or integration are transformed thanks to the Laplace transform into algebraic operations involving a complex variable which will be denoted s. Consequently the Laplace transform changes a constant coecients linear dierential equation into and algebraic (i.e. polynomial) equation. Assuming that this algebraic equation can be solved for the Laplace transform of the function to be nd then the function itself which solves the linear dierential equation is obtained by the inverse Laplace transform; this is accomplished either by partial fraction expansion and the use of a table of Laplace transform pairs or by the use of the Mellin-Fourier (or Bromwich) integral. The purpose of this chapter is to present the Laplace transform and to overview its main properties as well as Laplace transform inversion methods.

Reference signals

A causal signal is a signal which is zero for negative values of time:

g(t) = 0 ∀t < 0 (2.1)
In the following we will assume that all the signals are causal. The aim of this section is to present important signals which are currently used to study continuous time systems: more specically we will focus on the Dirac delta function, the unit step function and the complex exponential function.

Dirac delta function

The Dirac delta function or δ(t) function is a generalized function (or distribution) which is zero everywhere except at t = 0 with an integral of one Dirac delta function can bee seen as the limit as T → 0 of function rect T (t) which is equal to 1/T ∀ t ∈]0, T [ and 0 elsewhere. The schematic representation of the Dirac delta function is a vertical arrow at t = 0 as depicted on gure 2.1.

The following properties of the Dirac delta function are often used:

-Multiplication between a signal x(t) and the Dirac delta function translated by t 0 ∈ R:

x(t)δ(t -t 0 ) = x(t 0 )δ(t -t 0 ) (2.3) 
-Convolution: the convolution product * between two causal signals f (t) and g(t) is dened by:

f (t) * g(t) = ∞ 0 f (τ )g(t -τ )dτ (2.4)
Using the fact that g(t) is causal we get:

g(t) = 0 ∀t < 0 ⇔ g(t -τ ) = 0 ∀(t -τ ) < 0 ⇔ τ > t (2.5)
Thus the convolution integral reduces to:

f (t) * g(t) = t 0 f (τ )g(t -τ )dτ (2.6)
The convolution product is commutative:

f (t) * g(t) = g(t) * f (t) (2.7) 
Indeed: As far as the convolution product is concerned, the Dirac delta function satises the following property:

f (t) * g(t) = t 0 f (τ )g(t -τ )dτ = ∞ -∞ f (τ )g(t -τ )dτ u = t -τ ⇒ f (t) * g(t) = - -∞ ∞ f (t -u)g(u)du ⇔ f (t) * g(t) = ∞ -∞ f (t -u)g(u)du = t 0 f (t -u)g(u)du = g(t) * f (t) (2.8)
f (t) * δ(t -t 0 ) = f (t -t 0 ) ∀t 0 ∈ R (2.9)
Taking t 0 = 0 we get:

f (t) * δ(t) = f (t) (2.10) 
From the preceding equation it is clear that the Dirac delta function is the neutral element of the convolution product.

Unit step function

The unit step function (or Heaviside step function) which will be denoted Γ(t) is a discontinuous function whose value is zero for negative values of t and one for positive values of t.

Γ(t) = 0 ∀t < 0 1 ∀t > 1 (2.11)
The schematic representation of the unit step function is depicted on gure 2.2.

The derivative of the Unit step function involves the Dirac delta function:

d dt Γ(t) = δ(t) (2.12)

Complex exponential function

The complex exponential function with natural frequency ω 0 is a signal x(t) where t ∈ R and x(t) ∈ C dened by:

x(t) = e jω 0 t (2.13)

The complex exponential function veries the law of exponents:

e j(ω 1 +ω 2 )t = e jω 1 t e jω 2 t (2.14)

The Euler's formula gives the relation between the complex exponential function and cos() and sin() functions: e jω 0 t = cos (ω 0 t) + j sin (ω 0 t)

(2.15)

The complex exponential function is used to compute the frequency response of linear and time invariant systems which will be discussed in the next chapter.

Denition

The Laplace transform enables to solve linear dierential equations with initial conditions. More specically it transforms a constant coecients linear dierential equation into and algebraic (i.e. polynomial) equation.

The Laplace transform of a continuous time function x(t) which is causal (i.e. x(t) = 0 ∀t < 0) is a function of the complex variable s and reads:

L [x(t)] ≡ X(s) = ∞ 0 x(t)e -st dt
(2.16)

As far as the integral involved in the Laplace transform is limited to positive values of t (indeed x(t) is assumed to be causal) the integral converges as soon as x(t) has an exponential order when t → +∞. This means that there exists three positive constants T , M and σ 0 such that: |x(t)| < M e σ 0 t ∀t > T (2.17)

Consequently integral involved in the Laplace transform converges as soon as the complex variable s which is used in the Laplace transform is chosen such that its real part is greater than the abscissa of convergence σ 0 :

Re (s) > σ 0 ⇒ ∞ 0 x(t)e -st dt < ∞ (2.18)
From a mathematical point of view the Laplace transform is limited to positive values of t because the integral of e -σt where σ > σ 0 is divergent when t → -∞. As a consequence the Laplace transform is limited to causal signals, i.e. signals which are null for t < 0. It is worth noticing that the abscissa of convergence σ 0 is never computed from a practical point of view.

In addition it is worth noticing that the Laplace transform is a linear operator, meaning that if x 1 (t) and x 2 (t) are two causal signals and a 1 and a 2 two constants then the Laplace transform of the linear combination between x 1 (t) and x 2 (t) is the linear combination of the Laplace transform of x 1 (t) and x 2 (t):

L [a 1 x 1 (t) + a 2 x 2 (t)] = a 1 L [x 1 (t)] + a 2 L [x 2 (t)] = a 1 X 1 (s) + a 2 X 2 (s) (2.19)
Example 2.1. Compute the Laplace transform of the causal exponential function x(t) = e -at ∀t ≥ 0.

The Laplace transform of e -at is given by: L e -at = ∞ 0 e -at e -st dt = -e -(s+a)t s + a ∞ t=0

(2.20)

As far as the real part of the complex variable s is assumed to be greater than the abscissa of convergence σ 0 (which is never computed from a practical point of view), the value of e -(s+a)t converges to 0 when t → ∞. Consequently the Laplace transform of e -at reduces to:

L e -at = 1 s + a (2.21)
Notice that when a = 0 this reduces to the Laplace transform of the unit step function Γ(t):

Γ(t) = e -at a=0 ⇒ L [Γ(t)] = 1 s + a a=0 = 1 s (2.22) ■ 2.

Properties

This section presents the main properties of the Laplace transform without demonstration. In the following x(t) is a causal signal and X(s) its Laplace transform.

Linearity

For any signals x 1 (t) and x 2 (t) and any constants a 1 and a 2 in R or C:

L [a 1 x 1 (t) + a 2 x 2 (t)] = a 1 X 1 (s) + a 2 X 2 (s) (2.23) 
This property comes from the linearity of integration.

Example 2.2. Compute the Laplace transform of the causal signal

x(t) = cos(ω 0 t) ∀t ≥ 0.

Using the Euler's formula we get:

cos(ω 0 t) = e jω 0 t + e -jω 0 t 2 (2.24)

Using the linearity property, the Laplace transform of cos(ω 0 t) is given by: As far as the real part of the complex variable s is assumed to be greater than the abscissa of convergence σ 0 (which is never computed from a practical point of view), the values of e (jω 0 -s)t and e -(jω 0 +s)t converge to 0 when t → ∞. Consequently the Laplace transform of cos(ω 0 t) reduces to:

L [cos(ω 0 t)] = X(s) =
L [cos(ω 0 t)] = 1 2 -1 jω 0 -s + 1 jω 0 +s = 1 2 -jω 0 -s -ω 2 0 -s 2 + jω 0 -s -ω 2 0 -s 2 (2.26)
We nally get:

L [cos(ω 0 t)] = s s 2 + ω 2 0 (2.27) ■ 2.4.2 Derivation L d dt x(t) = sX(s) -x(0 + ) (2.28)
For the second time derivative we have:

L d 2 dt 2 x(t) = sL d dt x(t) -ẋ(0 + ) = s 2 X(s) -sx(0 + ) -ẋ(0 + ) (2.29)
And so on:

L d n dt n x(t) = s n X(s) -s n-1 x(0 + ) -s n-2 ẋ(0 + ) -• • • -ẋ(n-1) (0 + ) (2.30)
Example 2.3. Use the expression of the Laplace transform of cos(ω 0 t) to compute the Laplace transform of sin(ω 0 t) ∀t ≥ 0.

We have:

d dt cos(ω 0 t) = -ω 0 sin(ω 0 t) (2.31)
Then using the property of the Laplace transform with respect to the derivative we get:

L [sin(ω 0 t)] = -1 ω 0 L d dt cos(ω 0 t) = -1 ω 0 (sL [cos(ω 0 t)] -cos(ω 0 t)| t=0 + ) = -1 ω 0 s 2 s 2 +ω 2 0 -1 = -1 ω 0 s 2 s 2 +ω 2 0 - s 2 +ω 2 0 s 2 +ω 2 0 (2.32)
We nally get:

L [sin(ω 0 t)] = ω 0 s 2 + ω 2 0 (2.33) ■ 2.4.3 Integration L x(τ )dτ = X(s) s + 1 s x(τ )dτ τ =0
(2.34)

Note that the integral shall be computed without taking into account the integration constant.

Example 2.4. Use the expression of the Laplace transform of sin(ω 0 t) to compute the Laplace transform of cos(ω 0 t) ∀t ≥ 0.

Without taking into account the integration constant we have:

sin(ω 0 τ )dτ = - cos(ω 0 τ ) ω 0 (2.35)
Then using the property of the Laplace transform with respect to the integration we get:

L [cos(ω 0 t)] = -ω 0 L sin(ω 0 τ )dτ = -ω 0 L[sin(ω 0 t)] s + 1 s sin(ω 0 τ )dτ τ =0 = -ω 0 ω 0 s(s 2 +ω 2 0 ) -1 s cos(ω 0 τ ) ω 0 τ =0 = -ω 0 ω 0 s(s 2 +ω 2 0 ) -1 ω 0 s = - ω 2 0 s(s 2 +ω 2 0 ) + 1 s = - ω 2 0 s(s 2 +ω 2 0 ) + s 2 +ω 2 0 s(s 2 +ω 2 0 ) (2.36)
We nally get:

L [cos(ω 0 t)] = s s 2 + ω 2 0 (2.37) ■

Multiplication by t

Assuming that n is a positive integer then:

L [t n x(t)] = (-1) n d n ds n X(s) (2.38)

Time domain translation (delay)

It can be shown that:

L [x(t -T )] = e -sT X(s) (2.39)
It is worth noticing time delay does not yield to rational function in the Laplace domain. In order to get a rational function in the Laplace domain the usual approximations of e -sT are the following:

-One method is to write e -sT = e -sT 2 e sT 2
and to use the Taylor series expansion of e -sT 2 and e -sT 2 . We recall that:

e x = 1 + x + x 2 2! + x 3 3! + • • • = ∞ k=0 x k k! (2.40)
Consequently e -sT can be approximated by the following rational function where the polynomials at the numerator and the denominator have the same degree. This is set to an arbitrary integer denoted n hereafter:

e -sT = e -sT 2 e sT 2 ≈ n k=0 1 k! -sT 2 k n k=0 1 k! sT 2 k (2.41)
Usually n = 1 and we get:

e -sT ≈ 1 -sT 2 1 + sT 2 (2.42)
-An other method is to approximate e -sT by the following rational function:

e -sT ≈ 1 -sT 2n 1 + sT 2n n n = 1, 2, . . . ( 2 

.43)

-Padé approximation consists in identifying the 2n + 1 rst terms of the Taylor series expansion of e -sT with the 2n + 1 rst terms of the Taylor series expansion of the following rational function N (sT ) D(sT ) around sT = 0:

N (sT ) D(sT ) = b n (sT ) n + b n-1 (sT ) n-1 + • • • + b 1 sT + b 0 a n (sT ) n + a n-1 (sT ) n-1 + • • • + a 1 sT + 1 (2.44)
It is worth noticing that the coecient a 0 has been set to 1 without loss of generality.

From a practical point of view the Taylor series expansion of N (sT ) D(sT ) around sT = 0 can be obtained as the quotient of the polynomial long division, that is the division according to the increasing power of s (this is very close to the Euclidean division, but on the other way):

b 0 + b 1 sT + • • • + b n (sT ) n 1 + a 1 sT + • • • + a n (sT ) n -(b 0 + b 0 a 1 sT + • • • + b 0 a n (sT ) n ) b 0 + (b 1 -b 0 a 1 ) sT + • • • (b 1 -b 0 a 1 ) sT + • • • (2.45) The 2n + 1 coecients (b n , • • • , b 1 , b 0 , a n , • • • , a 1 ) are obtained by identifying each coecient of (sT ) k , k = 0, • • • , 2n in the following equality: b 0 + (b 1 -b 0 a 1 ) sT + • • • = 1 -sT + 1 2! (sT ) 2 + • • • ≈ e -sT (2.46)
It can be shown that Padé approximation of e -sT reads:

e -sT ≈ n i=0 q i (-sT ) i n i=0 q i (sT ) i where q i = (2n -i)!n! 2n!i!(n -i)! (2.47)
Padé approximation of e -sT for degree n = 1, 2 and 3 is given on We get:

L [Γ(t)] = X(s) = 1 s ⇒ L e -at = L e -at Γ(t) = X(s + a) = 1 s + a (2.49) ■ 2.

Initial value theorem

Assuming that the value of x(t) exists when t → 0 + then: We check that:

lim t→0 + x(t) = lim s→∞ sX(s) (2.
lim t→0 + cos(ω 0 t) = lim s→∞ s s s 2 + ω 2 0 = lim s→∞ s 2 s 2 + ω 2 0 = 1 (2.51)
Obviously we rediscover the fact that lim t→0 + cos(ω 0 t) = cos(0) = 1.

■

Example 2.7. Knowing that the Laplace transform of sin(ω 0 t) is ω 0

s 2 +ω 2 0 compute lim t→0 + d dt sin(ω 0 t).
Using the derivative property we check that:

lim t→0 + d dt sin(ω 0 t) = lim s→∞ s s ω 0 s 2 +ω 2 0 -sin(ω 0 t)| t=0 + = lim s→∞ s 2 ω 0 s 2 +ω 2 0 = ω 0 (2.52)
Obviously we rediscover the fact that

lim t→0 + d dt sin(ω 0 t) = ω 0 cos(ω 0 t)| t=0 + = ω 0 . ■ 2.

Final value theorem

Assuming that the value of x(t) exists when t → ∞ then:

lim t→∞ x(t) = lim s→0 sX(s) (2.53)
Example 2.8. Knowing that the Laplace transform of the unit step function Γ(t) is1 s compute lim t→∞ Γ(t). We check that:

lim t→∞ Γ(t) = lim s→0 s 1 s = lim s→0 1 = 1 (2.54) ■
It is worth noticing that the nal value theorem gives the correct answer as soon as the value of x(t) exists when t → ∞. For example if we apply the nal value theorem on cos(ω 0 t) which has no limit when t → ∞ then result is not correct.

Convolution

We have seen that the convolution product * between two causal signals x(t) and y(t) is dened by:

x(t) * y(t) = t 0 x(τ )y(t -τ )dτ (2.55)
Then the Laplace transform of the convolution product between two causal signals x(t) and y(t) is the product of the Laplace transforms of x(t) and y(t):

L [x(t) * y(t)] = X(s)Y (s) (2.56)

Evaluating improper integrals

It can be shown 1 that the following property holds to evaluate improper integrals thanks to Laplace transform:

∞ 0 y(t) t dt = ∞ 0 Y (s)ds (2.57)

Link with Fourier transform

The Fourier transform is widely used in communication theory to assess spectral properties of a signal. The Fourier transform X(ω) of a signal x(t) is dened as follows:

X(ω) = F [x(t)] = +∞ -∞ x(t)e -jωt dt (2.58)
Compared with the Laplace transform the integral involved in the Fourier transform starts at -∞ and the complex variable s in the exponential which

x(t) ∀t ≥ 0 X(s) δ(t) 1 Γ(t) (step function) 1 s t 1 s 2 t n n! s n+1 e -at 1 s+a t n-1 (n-1)! e -at 1 (s+a) n a t T 1 s- ln(a) T sin(ω 0 t) ω 0 s 2 +ω 2 0 e -at sin(ω 0 t) ω 0 (s+a) 2 +ω 2 0 cos(ω 0 t) s s 2 +ω 2 0 e -at cos(ω 0 t) s+a (s+a) 2 +ω 2 0 Table 2.2:
Usual Laplace transform pairs appears in the Laplace transform is replaced by a pure imaginary number jω in the Fourier transform. From those properties dening the integral of the two transforms we obtain formulas for getting from one to the other:

-If x(t) is even then:

F [x(t)] = L [x(t)] s=jω + F [x(t)] s=-jω (2.59) -If x(t) is odd then: F [x(t)] = L [x(t)] s=jω -F [x(t)] s=-jω (2.60)

Usual Laplace transform pairs

Usual Laplace transform pairs are provided in Table 2.2.

Inverse Laplace transform

In the following G(s) is a rational expression involving polynomials in its numerator and denominator which are respectively denoted N (s) and D(s):

G(s) = N (s) D(s) (2.61)
We will assume in the following that the degree of D(s) is strictly greater than the degree of N (s); then G(s) is said strictly proper.

Partial fraction expansion

The roots of N (s) are called the zeros of G(s) whereas the roots of D(s) are called the poles of G(s). Without loss of generality we will assume that G(s) can be written as follows where λ 1 , ..., λ n are the poles of G(s) with multiplicity n 1 , • • • , n n respectively:

G(s) = N (s) (s -λ 1 ) n 1 • • • (s -λ n ) nn (2.62)
Then the partial fraction expansion of G(s) is:

G(s) = G 1 (s) + • • • + G k (s) + • • • + G n (s) (2.63)
Where G k (s) is the partial fraction expansion of G(s) associated to the pole

λ k of multiplicity n k (k = 1, • • • , n): G k (s) = n k j k =1 b j k (s -λ k ) j k (2.64)
Constant coecient which multiplies the rational expression

1 s-λ k (the power of s -λ k is 1) is called the residue of G(s) around pole s = λ k .
Coecients b jk are computed thanks to the following formula:

b jk = 1 (n k -j k )! d n k -j k ds n k -j k (s -λ k ) n k G(s) s=λ k k = 1, • • • , n k (2.65)
It is worth noticing that when the multiplicity of pole λ k is 1 this formula reduces to:

n k = j k = 1 ⇒ b jk = (s -λ k ) G(s)| s=λ k (2.66)
Notice that the residues can be computed using the function residue with Matlab TM and pfss with Scilab. Once G(s) has been broken up into components:

G(s) = G 1 (s) + • • • + G n (s) (2.67)
Then the inverse Laplace transform of G(s) is the causal signal g(t) given by:

g(t) = L -1 [G(s)] = L -1 [G 1 (s)] + • • • + L -1 [G n (s)] = g 1 (t) + • • • + g n (t) (2.68)
The advantage of the partial fraction expansion is that the individual terms of G(s) resulting from the expansion into the partial fraction form are very simple functions of s and their inverse Laplace transform are readily available. We can use for example Table 2.2 of usual Laplace transform pairs. Example 2.9. Compute the inverse Laplace transform of G(s) = s 2 +2s+3 (s+1) 3 . Laplace transform G(s) has a single pole λ 1 = -1 with multiplicity n 1 = 3.

The partial fraction expansion of G(s) reads: 3 (2.69)

G(s) = b 1 s + 1 + b 2 (s + 1) 2 + b 3 (s + 1)
Where:

b 3 = 1 (3-3)! d 3-3 ds 3-3 (s + 1) 3 G(s) s=-1 = s 2 + 2s + 3 s=-1 = 2 (2.70) b 2 = 1 (3-2)! d 3-2 ds 3-2 (s + 1) 3 G(s) s=-1 = 1 1! d ds s 2 + 2s + 3 s=-1 = 2s + 2| s=-1 = 0 (2.71) b 1 = 1 (3-1)! d 3-1 ds 3-1 (s + 1) 3 G(s) s=-1 = 1 2! d 2 ds 2 s 2 + 2s + 3 s=-1 = 1 2 d ds (2s + 2) s=-1 = 1 2 2| s=-1 = 1 (2.72)
Thus the partial fraction expansion of G(s) is:

G(s) = b 1 s + 1 + b 2 (s + 1) 2 + b 3 (s + 1) 3 = 1 s + 1 + 2 (s + 1) 3 (2.73)
With the use of Table 2.2 of usual Laplace transform pairs we are able to compute the inverse Laplace transform of G(s) as:

L -1 [G(s)] = L -1 1 s + 1 + L -1 2 (s + 1) 3 = e -t + 2 t 3-1 (3 -1)! e -t (2.74)
That is:

g(t) = L -1 [G(s)] = e -t + t 2 e -t = 1 + t 2 e -t ∀t ≥ 0 (2.75) ■

Mellin-Fourier integral

The Mellin-Fourier integral originates from complex analysis, traditionally known as the theory of functions of a complex variable, and more specically from he computation of the Mellin-Fourier (or Bromwich) integral which can be evaluated by means of the Cauchy's residue theorem. Those notions are out of the scope of this lecture and we will just use some results to compute the inverse Laplace transform of G(s), assuming that G(s) is a rational expression of polynomial strictly proper (i.e. the degree of the denominator is strictly greater than the degree of the denominator). The Mellin-Fourier integral reads:

G(s) = N (s) D(s) where deg(N (s)) < deg(D(s)) ⇒ g(t) = L -1 [G(s)] = k Res s=λ k G(s)e st ∀t ≥ 0 (2.76)
Where the residue Res s=λ k G(s)e st shall be computed around each pole λ k of G(s). Assuming that λ k is a pole of multiplicity n k then the residue of G(s) around pole λ k is given by: Using Mellin-Fourier integral we get:

Res s=λ k G(s)e st = 1 (n k -1)! d n k -1 ds n k -1 (s -λ k ) n k G(s)e st
g(t) = L -1 [G(s)] = Res s=λ 1 G(s)e st ∀t ≥ 0 (2.78)
Where:

Res s=-1 G(s)e st = 1 (3-1)! d 3-1 ds 3-1 (s + 1) 3 G(s)e st s=-1 = 1 2! d 2 ds 2 s 2 + 2s + 3 e st s=-1
(2.79)

We will rst compute the rst and second derivative of s 2 + 2s + 3 e st before evaluating them at s = -1:

d ds s 2 + 2s + 3 e st = (2s + 2) e st + s 2 + 2s + 3 te st ⇒ d 2 ds 2 s 2 + 2s + 3 e st = 2e st + (2s + 2) te st + (2s + 2) te st + s 2 + 2s + 3 t 2 e st = 2 + 2 (2s + 2) te st + s 2 + 2s + 3 t 2 e st ⇒ d 2 ds 2 s 2 + 2s + 3 e st s=-1 = 2 + 2t 2 e -t
(2.80)

We nally get: -λ 1 = -3 with multiplicity n 1 = 1. We get for the residue:

g(t) = Res s=-1 G(s)e st =
Res s=-3 G(s)e st = 1 (1-1)! d 1-1 ds 1-1 (s + 3) 1 G(s)e st s=-3 = s+2 (s+4) 2 e st s=-3 = -e -3t
(2.82)

-λ 2 = -4 with multiplicity n 2 = 2.
We get for the residue:

Res s=-4 G(s)e st = 1 (2-1)! d 2-1 ds 2-1 (s + 4) 2 G(s)e st s=-4 = d ds s+2 s+3 e st s=-4 = (e st +(s+2)te st )(s+3)-(s+2)e st (s+3) 2 s=-4 = -e -4t + 2te -4t + 2e -4t = (1 + 2t)e -4t
(2.83)

Using Mellin-Fourier integral the inverse Laplace transform of G(s) is obtained bu summing the two residues:

g(t) = L -1 [G(s)] = Res s=-3 G(s)e st + Res s=-4 G(s)e st ∀t ≥ 0 (2.84)
We nally get:

g(t) = -e -3t + (1 + 2t)e -4t ∀t ≥ 0 (2.85) ■ Example 2.
12. Use Laplace transform to nd the solution to the following dierential equation:

2 ẏ(t) -y(t) = 2e 2t y(0) = 3 (2.86)
Taking the Laplace transform of the dierential equation yields:

2 (sY (s) -y(0)) -Y (s) = 2 s-2 ⇔ Y (s) (2s -1) = 2 s-2 + 6 = 6s-10 s-2 ⇔ Y (s) = 6s-10 (2s-1)(s-2) = 3s-5 (s-0.5)(s-2) (2.87)
Then we will compute the inverse Laplace transform of Y (s) thanks to the Mellin-Fourier integral:

y(t) = L -1 [Y (s)] = k Res s=λ k Y (s)e st ∀t ≥ 0 (2.88)
Laplace transform Y (s) has two poles:

-λ 1 = 0.5 with multiplicity n 1 = 1. We get for the residue:

Res s=0.5 Y (s)e st = 1 (1-1)! d 1-1 ds 1-1 (s -0.5) 1 Y (s)e st s=0.5 = 3s-5 s-2 e st s=0.5 = 7 3 e 0.5t
(2.89)

-λ 1 = 2 with multiplicity n 2 = 1. We get for the residue:

Res s=2 Y (s)e st = 1 (1-1)! d 1-1 ds 1-1 (s -2) 1 Y (s)e st s=2 = 3s-5 s-0.5 e st s=2 = 2 3 e 2t
(2.90)

We nally get:

y(t) = 7 3 e 0.5t + 2 3 e 2t (2.91)
We check that y(0) = 3.

■ 2.7 Norm of vector signal Let x(t) =   x 1 (t) • x n (t)   ∈ R n be a vector depending of time t ≥ 0. Vector x(t)
is called a vector signal. Assuming that the following integral is dened its represents the L 2 norm of vector signal x(t):

∥x(t)∥ 2 = ∞ 0 x T (t)x(t)dt < ∞ (2.92)
The L 2 norm of a vector signal is also called its energy. Vector signal x(t) is said of nite energy, or equivalently x(t) ∈ L 2 [0, ∞) where L 2 [0, ∞) is the Hilbert space of nite energy signal dened ∀t ≥ 0, as soon as the integral in Equation (2.92) exists.

Let X(s) be the Laplace transform of vector signal x(t). As soon as the vector signal x(t) ∈ L 2 its Laplace transform X(s) is strictly proper and all its poles have negative real part (or equivalently

x(t) ∈ L 2 [0, ∞) ⇔ X(s) ∈ H 2
where notation H is used after the mathematician G.H. Hardy). By Parseval's theorem we have:

∥x(t)∥ 2 = 1 2πj C - X T (-s)X(s)ds (2.93)
where C -is a contour following the imaginary axis of the complex plane and then around an innite semicircle in the left half plane.

The use of the residue theorem nally leads to the following expression:

∥x(t)∥ 2 =
poles with negative real part Res X T (-s)X(s) (2.94)

Let λ i be a pole (with negative real part) of X(s) with multiplicity n i . Residue Res X T (-s)X(s) on pole λ i is dened as follows:

Res s=λ i X T (-s)X(s) = 1 (n i -1)! d n i -1 ds n i -1 (s -λ i ) n i X T (-s)X(s) s=λ i (2.95)
The L ∞ norm of vector signal x(t) is dened by:

∥x(t)∥ ∞ = sup t∈R + max i |x i (t)| (2.96)
Example 2.13. Let x(t) be dened as follows where τ is a positive time constant:

x(t) = e -t τ ∀t ≥ 0 (2.97)
The square of the L 2 norm of signal x(t) is:

∥x(t)∥ 2 2 = ∞ 0 x T (t)x(t)dt = ∞ 0 e -2t τ dt = τ 2 e -2t τ ∞ 0 = τ 2 (2.98)
And consequently:

∥x(t)∥ 2 = τ 2 (2.99)
The square of the L 2 norm of signal x(t) can equivalently be computed using the Laplace transform X(s) of x(t):

X(s) = 1 s+ 1 τ = τ 1+sτ ⇒ X(-s)X(s) = τ 2 (1+sτ )(1-sτ ) (2.100) Assuming τ > 0 the unique pole λ 1 = -1
τ of X(s) has a negative real part and its multiplicity n 1 is equal to 1. Then residue of X T (-s)X(s) on pole

λ 1 = -1
τ is computed as follows:

Res s=-1 τ X T (-s)X(s) = 1 (1-1)! d 1-1 ds 1-1 (s -λ i ) n i X T (-s)X(s) s=-1 τ = (s + 1 τ ) τ 2 (1+sτ )(1-sτ ) s=-1 τ = τ 1-sτ s=-1 τ = τ 2 (2.101)
We nally get:

∥x(t)∥ 2 = poles with negative real part Res X T (-s)X(s) = τ 2 (2.102)
The L ∞ norm of signal x(t) is dened by:

∥x(t)∥ ∞ = sup t∈R + |e -t τ | = 1 (2.103) ■ 2.

Mellin transform

The mellin transform of a continuous time function x(τ ) which is causal (i.e.

x(τ ) = 0 ∀τ < 0) is a function of the complex variable s and reads:

M [x(τ )] = ∞ 0 x(τ ) τ s-1 dτ (2.104)
Mellin's transform is closely related to an extended form of Laplace's. Indeed let's consider the following change of variables:

τ = e -t ⇔ t = -ln(τ ) (2.105)
This change of variables transforms the integral (2.104) into:

dτ = -e -t dt ⇒ M x(e -t ) = - -∞ +∞ x(e -t ) e -t s-1 e -t dt = +∞ -∞ x(e -t )e -st dt (2.106)
The previous relation denes the two-sided Laplace transform of y(t) =

x(e -t ) dened by:

L 2s [y(t)] = +∞ -∞ y(t)e -st dt (2.107)
This can be written symbolically as:

M [x(τ )] = L 2s x(e -t ) (2.108) Chapter 3
Linear Time Invariant systems

Chapter overview

This chapter introduces linear time invariant (LTI) systems. First the properties of linear time invariant (LTI) systems are presented. Then concept of transfer function is presented and the time response as well as the frequency response of linear time invariant systems are discussed. The last part of this chapter is dedicated to model reduction where we will see that rst and second order models constitute the ultimate approximation of a system.

Properties

Linear and Time Invariant (LTI) systems satisfy the two following properties:

-Linearity: this means that the relation between the input and the output of the system is a linear: if input u 1 (t) produces response y 1 (t) and input u 2 (t) produces response y 2 (t) then the linear combination of the inputs a 1 u 1 (t) + a 2 u 2 (t) produces the linear combination of the outputs a 1 y 1 (t) + a 2 y 2 (t) where a 1 and a 2 are real scalars. Denoting by S the system operator we get:

S [u 1 (t)] = y 1 (t) S [u 2 (t)] = y 2 (t) ⇒ S [a 1 u 1 (t) + a 2 u 2 (t)] = a 1 S [u 1 (t)] + a 2 S [u 2 (t)] ⇔ S [a 1 u 1 (t) + a 2 u 2 (t)] = a 1 y 1 (t) + a 2 y 2 (t) (3.1)
Linearity leads to the superposition principle.

The superposition principle states that, for all linear systems, the net response caused by two or more inputs is the sum of the responses which are caused by each input individually.

-Time invariance: this means that if the output due to input u(t) is y(t) at time t then the output due to input u(t -T ) after a delay of T will be y(t -T ):

S [u(t)] = y(t) ⇒ S [u(t -T )] = y(t -T ) ∀T ≥ 0 (3.2)
We will see that a linear system is time invariant as soon as initial conditions are null.

Convolution integral

The time response of a linear system to a causal input u(t) (u(t) = 0 ∀t < 0) can be computed as follows:

-First use the fact that the delta Dirac function is the neutral element for the convolution product:

u(t) = u(t) * δ(t) = ∞ 0 u(τ )δ(t -τ )dτ (3.3)
-Then apply the system operator S on the input u(t):

S [u(t)] = S ∞ 0 u(τ )δ(t -τ )dτ (3.4)
-Using the fact that the system is linear we can reverse ∞ 0 and S operators:

S ∞ 0 u(τ )δ(t -τ )dτ = ∞ 0 S [u(τ )δ(t -τ )] dτ (3.5) 
-In the expression S [u(τ )δ(t -τ )] the only term with depends on time t is δ(t -τ ). Indeed term u(τ ) is viewed as an independent term of time t because the integral is envisioned as an innite sum for dierent values of τ . Thus as far as the system is linear we get:

S [u(τ )δ(t -τ )] = u(τ )S [δ(t -τ )] (3.6) 
-Let's us dene h(t) as the time response of the system to the delta Dirac function; this is the impulse response of the system:

h(t) = S [δ(t)] (3.7) 
As soon as the system is time invariant we get:

S [δ(t -τ )] = h(t -τ ) (3.8)
-Consequently the system time response can be written as:

S [u(t)] = ∞ 0 u(τ )S [δ(t -τ )] dτ = ∞ 0 u(τ )h(t -τ )dτ (3.9)
Thus we have showed that a Linear and Time Invariant (LTI) system is basically a convolutor, meaning that the relation between the input u(t) and the output y(t) of the system is obtained thanks to a convolution product. Denoting by h(t) the impulse response of the system we get:

h(t) = S [δ(t)] ⇒ y(t) = S [u(t)] = u(t) * h(t) = ∞ 0 u(τ )h(t -τ )dτ (3.10)
Using the fact that the convolution product is commutative the preceding relation can also be written as follows:

y(t) = h(t) * u(t) = ∞ 0 h(τ )u(t -τ )dτ (3.11)
The convolution product is usually quite cumbersome to compute. Hopefully the Laplace transform changes the convolution product into a simple product, meaning that the Laplace transform of the system output is obtained thanks to the simple product between the Laplace transform of the system impulse response and the Laplace transform of the input signal:

   L [u(t)] := U (s) L [h(t)] := F (s) L [y(t)] := Y (s) ⇒ Y (s) = F (s)U (s) (3.12)
The Laplace transform of the impulse response h(t) of the system, which is denoted F (s), is called the transfer function of the system. Figure 3.1 provides the block diagram representation of a linear time invariant (LTI) system.

System dened by a linear dierential equation

We have seen that a nonlinear and time invariant system can be approximated by a linear dierential equation with constant coecients. Taking the Laplace transform of (1.17) and assuming zero initial conditions we get:

a 0 Y (s) + a 1 sY (s) + • • • + a n-1 s n-1 Y (s) + a n s n Y (s) = b 0 U (s) + b 1 sU (s) + • • • + b m-1 s m-1 U (s) + b m s m U (s) (3.13)
Thus the transfer function of the system is dened by:

F (s) = Y (s) U (s) = b 0 + b 1 s + • • • + b m-1 s m-1 + b m s m a 0 + a 1 s + • • • + a n-1 s n-1 + a n s n (3.14)
Notice that the coecient a n is equal to 1 without loss of generality.

The denominator of the transfer function is called the characteristic polynomial and the order of the model is the degree of the characteristic polynomial (which is n for the transfer function (3.14)). In addition the transfer function F (s) is said to be strictly proper if the degree of its denominator is strictly greater than the degree of its numerator, i.e. n > m.

Coming back to the time domain and having in mind that the Laplace transform of the convolution product between two causal signals h(t) and u(t) is the simple multiplication between the Laplace transform of h(t) and u(t) we get:

Y (s) = F (s)U (s) ⇔ y(t) = h(t) * u(t) (3.15)
As a consequence a system dened by a linear dierential equation is a

Linear and Time Invariant system (LTI) as soon as initial conditions are equal to zero.

If u(t) is a causal signal then lim s→∞ U (s) < ∞. Similarly if F (s) is a fraction involving polynomials in its numerator and denominator then the corresponding system is said to be causal when lim s→∞ F (s) < ∞. This means that the degree of the denominator is greater than or equal to the degree of the numerator. From a practical point of view a system is said to be causal when the output depends on past and current inputs but not on future inputs (non-anticipative system).

Settling time t s is the time required by the system response to reach and stay within a range about the nal value. The range is specied by absolute percentage of the nal value which is usually 5%.

The static gain G s of a continuous time system is the limit as t → ∞ of the rational expression between the output signal y(t) and the input signal u(t). Assuming that the limit exists and applying the nal value theorem leads to the following expression of the static gain:

G s = lim t→∞ y(t) u(t) = lim s→0 sY (s) sU (s) = lim s→0 Y (s) U (s) = F (0) (3.16)

Frequency response

In this section we will focus on stable linear time invariant systems, meaning that all the poles of the transfer function have negative real part. Stability analysis will be tackled in the next chapter.

Relation with transfer function

The frequency response of a system is the response of the system to the causal input u(t) = e jωt where ω is the frequency of the complex exponential function. More specically the frequency response consists in the magnitude and phase relation between the input and the output signal when the input signal u(t) is the causal complex exponential function e jωt . We recall that a linear system is a convolutor. Specializing relation (3.11) to the case where u(t) is the complex exponential function reads:

u(t) = e jωt ⇒ y(t) = ∞ 0 h(τ )e jω(t-τ ) dτ (3.17)
Using the fact that the integration is a linear operation we get:

y(t) = e jωt ∞ 0 h(τ )e -jωτ dτ (3.18)
We recognize in the term ∞ 0 h(τ )e -jωτ dτ the Laplace transform of the impulse response h(t) where the Laplace variable s is specialized to be jω:

∞ 0 h(τ )e -jωτ dτ = ∞ 0 h(τ )e -sτ dτ s=e jω = F (s)| s=jω (3.19)
Note that F (s)| s=jω = F (jω) is called the frequency response of the system. As a consequence the frequency response of a linear system to the complex exponential function reads:

u(t) = e jωt ⇒ y(t) = e jωt F (s)| s=jω = F (jω)e jωt (3.20)
The preceding relation shows that frequency response of a linear system is closely linked to its transfer function. The frequency of the output signal is the same than the frequency of the input signal; only the amplitude and the phase of the input signal are changed by the linear system. In addition the phase of the output signal is independent of the amplitude of the input signal. Denoting by ∥F (jω)∥ the norm of F (jω) and by Φ(ω) the phase of F (jω) the preceding relation reads:

u(t) = e jωt F (jω) = ∥F (jω)∥ e jΦ(ω) ⇒ y(t) = ∥F (jω)∥ e jωt e jΦ(ω) = ∥F (jω)∥ e j(ωt+Φ(ω)) (3.21)
Where Re stands for real part and Im stands for imaginary part:

   ∥F (jω)∥ = (ReF (jω)) 2 + (ImF (jω)) 2 Φ(ω) = arg (F (jω)) = arctan ImF (jω) ReF (jω) (3.22)
As far as numerator and denominator of rational transfer function F (jω) have real coecients we have:

Re (F (jω)) = Re (F (-jω)) Im (F (jω)) = -Im (F (-jω)) ⇒ ∥F (jω)∥ = ∥F (-jω)∥ arg (F (jω)) = -arg (F (-jω))
(3.23) Thus ∥F (jω)∥ is an even function of ω whereas arg (F (jω)) is an odd function of ω. Consequently ∥F (jω)∥ and arg (F (jω)) are only studied for positive values of ω, which consistently corresponds to physically achievable frequencies:

ω ≥ 0 (3.24)
It is worth noticing that when the input signal u(t) is not the complex exponential function but a real sinusoidal signal then the output signal y(t) is obtained thanks to the real (or imaginary) part of the complex output signal:

u(t) = cos (ωt) = Re e jωt ⇒ y(t) = Re ∥F (jω)∥ e j(ωt+Φ(ω)) = ∥F (jω)∥ cos (ωt + Φ(ω)) (3.25)
And similarly:

u(t) = sin (ωt) = Im e jωt ⇒ y(t) = Im ∥F (jω)∥ e j(ωt+Φ(ω)) = ∥F (jω)∥ sin (ωt + Φ(ω))
(3.26)

Bode plot

Bode plot consists in drawing the log magnitude 20 log 10 ∥F (jω)∥ (this is the Bode magnitude plot) and the phase arg (F (jω)) (this is the Bode phase plot) of the frequency response F (jω) over the frequency range from ω = 0 to innity.

The plot is usually presented on a semi-log graph where the ω axis is plotted on a logarithmic scale. Two units are used to express frequency ratios: there are octave and decade. An octave is a frequency band from ω to 2ω whereas a decade is a frequency band from ω to 10ω.

As far as the magnitude of the frequency response is concerned the unit used for the logarithm of the magnitude is the decibel (dB). The dB value of 2 is 6 dB and the dB value of 1 2 is -6 dB. In addition as a number increases by a factor 10 the decibel values increases by 20 dB. More generally as a number increases by a factor 10 n the decibel values increases by 20n dB.

The Bode plot of the frequency response is easily obtained when considering the factorized form of the transfer function. Let's us suppose that the transfer function F (s) can be factorized into the following rst and second order terms where k is a real (either positive or negative) and α, a i , b j are integers either positive or negative:

F (s) = k s α i (1 + τ i s) a i j 1 + 2m j ω j s + s 2 ω 2 j b j (3.27)
Integer α is the number of integrations in the transfer function F (s). First order terms are of the form 1 + τ i s, τ i > 0 and are related to the real poles (a i < 0) and zeros (a i > 0) of the transfer function whereas second order terms are of the form 1 +

2m j ω j s + s 2 Ω 2 i
, m j , ω j > 0 are related to the complex poles (b j < 0) and zeros (b j > 0) of the transfer function.

Replacing the Laplace variable s by jω and rewriting the transfer function in polar form yields:

F (jω) = ∥k∥ ∥ω∥ α i ∥1 + τ i s∥ a i j 1 + 2m j ω j s + s 2 ω 2 j b j × e jΦ(ω) (3.28)
Taking the log magnitude of the frequency response reads: 20 log 10 ∥F (jω)∥ = 20 log 10 ∥k∥ -20α log 10 (ω)

+ i 20a i log 10 ∥1 + jωτ i ∥ + j 20b j log 10 1 - ω ω j 2 + 2m j ω ω j j (3.29)
Thus when considering the factorized form of the transfer function the log magnitude of the frequency response is readily obtained by summing the log magnitude of the individual factors.

Similarly the phase of the frequency response is obtained by summing the phase of the individual factors of the factorized form of the transfer function:

Φ(w) = arg(k) -arg((jω) α ) + i arg (1 + jωτ i ) a i + j arg 1 - ω ω j 2 + 2m j ω ω j j b j (3.30)
That is:

Φ(w) = arg(k) -α π 2 + i a i arctan (ωτ i ) + j b j arctan 2m j ω j ω ω 2 j -ω 2 (3.31) Notice that arg(k) = 0 if k > 0 and arg(k) = π if k < 0.
Asymptotic Bode plot is obtained when drawing the shape of the individual factors of F (jω) for the limit values of ω that are ω → 0 and ω → ∞.

For the log magnitude we get: Table 3.1 summarizes the main characteristics of the asymptotic Bode plot of rst order and second order individual factors where ω c stands for the corner frequency and n is a positive or negative integer: slope in dB/decade phase in deg

ω < ω c ω > ω c ω < ω c ω > ω c s α 20α 90α (1 + τ i s) a i , ω c = 1/τ i 0 20a i 0 90a i sgn(a i ) s 2 + 2m j ω j s + ω 2 j /ω 2 j b j
, ω c = ω j 0 40b j 0 180b j sgn(b j ) Table 3.1: Main characteristics of asymptotic Bode plot

Model reduction

Model reduction consists in computing an approximate model of lower order of a system in order to facilitate the control design. Several methods exist. We will present in that section only the Padé (or dominant pole) approximation which is one of the simplest method. We will assume in the following that the transfer function F (s) of the model to be reduced is strictly proper and that all the roots of its polynomial characteristics have strictly negative real parts (i.e. all the poles of F (s) are situated in the left half part of the complex plane):

F (s) = b 0 +b 1 s+•••+b n-1 s n-1 a 0 +a 1 s+•••+a n-1 s n-1 +s n = N (s) D(s) D(λ i ) = 0 ⇒ Re (λ i ) < 0 (3.34)
Notice that without loss of generality coecient a n has been set to 1.

The Padé approximation or order (q, r) of F (s) is the transfer function Fq,r (s) whose Taylor series expansion around s = 0 has the same rst q + r coecients than those of F (s).

Fq,r (s) = b0 + b1 s + • • • + bq s q ã0 + ã1 s + • • • + ãr-1 s r-1 + s r (3.35)
From a practical point of view Taylor series expansion around s = 0 can be obtained through the quotient of the polynomial long division, that is the division according to the increasing power of s. It is worth noticing that contrary to the Euclidean division where the polynomials are written according to the decreasing powers of s, in the polynomial long division the polynomials are written according to the increasing powers of s.

As far as Taylor series expansion is obtained around s = 0 the Padé approximation keeps the low frequency shape of the frequency response of F (s).

In the following we will set q = 0 and we will denote F0,r (s) ≡ F (s):

F0,r (s) ≡ F (s) = b0 ã0 + ã1 s + • • • + ãr-1 s r-1 + s r = b0 D(s) (3.36)
The denominator D(s) of the reduced model F (s) is built thanks to the r poles of F (s) whose real part are the closest to the imaginary axis. Those poles are called the dominant poles of F (s). If the values obtained when dividing the real part of the others poles of F (s) by the real part of the dominant poles of F (s) are greater than 3 (or 2) then the low frequency model obtained through the Padé approximation is quite representative of the long term response of the system.

Once D(s) is known, the coecient b0 could be obtained thanks to the identication of the Taylor development of F (s) and F (s) around s = 0. In order to avoid the computation of the rst terms of the Taylor series expansion it is worth noticing that coecient b0 can also be obtained by identifying the static gain of the actual transfer function F (s) and the static gain of the reduced model F (s).

It is worth noticing that rst and second order models are widely studied because they can be viewed as reduced order models of actual transfer functions. Indeed:

-When the dominant pole is real then r = 1: this leads a rst order reduced model.

-When the dominant poles are complex conjugate then r = 2: this leads to a second order reduced model.

Example 3.1. Let's consider the following transfer function:

F (s) = 15 s 2 + 6s + 5 = N (s) D(s) (3.37)
The poles of F (s) are the following (you may use function roots with Scilab):

D(s) = s 2 + 6s + 5 = (s + 1)(s + 5) = 0 ⇒ λ 1 = -1 λ 2 = -5 (3.38)
All the poles of F (s) have negative real part and D(0) ̸ = 0. The dominant poles of F (s) is -1 and the values obtained when dividing the real part of the others poles of F (s) by the real part of the dominant poles are greater than 3 (or 2). As a consequence the system is subject to Padé approximation. First we kept the dominant poles of F (s) to build the denominator D(s) of the approximated transfer function F (s):

F (s) = b0 s + 1 (3.39)
Then we compute the quotient of the polynomial long division (i.e. division according to the increasing power of s) of F (s): We also compute the quotient of the polynomial long division (i.e. division according to the increasing power of s) of F (s): The identication of the two quotients leads to the expression of coecients b0 and b1 :

b0 = 3 (3.42)
Thus the Padé approximation of F (s) reads:

F (s) = 3 s + 1 (3.43)
Figures 3.2 and 3.3 show the unit step responses as well as Bode plots of the model F (s) and its Padé approximation F (s); it is clear that F (s) exhibits the same low frequency shape than F (s). ■ Example 3.2. Let's consider the following transfer function:

F (s) = 1 (2s + 1)(3s + 1)(4s + 1) = 1 1 + 9s + 26s 2 + 24s 3 (3.44)
It is clear that the poles of F (s) are the following: Then we compute the quotient of the polynomial long division (i.e. division according to the increasing power of s) of F (s): b0 0.25 + s

   λ 1 = -1 2 λ 2 = -1 3 λ 3 = -1 4 = -0.25 (3.45)
-b0 + 4 b0 s 4 b0 + • • • -4 b0 s (3.47)
We also compute the quotient of the polynomial long division (i.e. division according to the increasing power of s) of F (s):

1 1 + 9s + 26s 2 + 24s 3 -(1 + 9s + • • • ) 1 + • • • -9s + • • • (3.48)
The identication of the two quotients leads to the expression of coecients b0 and b1 : We can see in that example that the unit step response of the Padé approximation is not close from the unit step response of the full model; nevertheless the two responses move towards the same nal values. Indeed both transfer functions have the same static gain:

F (0) = F (0). ■ Example 3.3.
Let's consider the following transfer function:

F (s) = 156 + s + 2s 3 + s 4 156 + 268s + 216s 2 + 84s 3 + 15s 4 + s 5 = N (s) D(s) (3.51)
The poles of F (s) are the following (you may use function roots with Scilab):

D(s) = 156 + 268s + 216s 2 + 84s 3 + 15s 4 + s 5 = 0 ⇒            λ 1 = -5 + j λ 2 = -5 -j λ 3 = -3 λ 4 = -1 + j λ 5 = -1 -j (3.52)
All the poles of F (s) have negative real part and D(0) ̸ = 0. The dominant poles of F (s) are -1 ± j and the values obtained when dividing the real part of the others poles of F (s) by the real part of the dominant poles are greater than 3 (or 2). As a consequence the system is subject to Padé approximation. First we kept the dominant poles of F (s) to build the denominator D(s) of the approximated transfer function F (s):

F (s) = b0 + b1 s (s + 1 -j)(s + 1 + j) (3.53)
Then we compute the quotient of the polynomial long division (i.e. division according to the increasing power of s) of F (s):

b0 + b1 s 2 + 2s + s 2 -( b0 + b0 s + b0 2 s 2 ) b0 2 + b1 -b0 2 s + • • • ( b1 -b0 )s -b0 2 s 2 (3.54)
We also compute the quotient of the polynomial long division (i.e. division according to the increasing power of s) of F (s):

156 + s + 2s 3 + s 4 156 + 268s + 216s 2 + 84s 3 + 15s 4 + s 5 -(156 + 268s + 216s 2 + 84s 3 + 15s 4 + s 5 ) 1 -267 156 s + • • • -267s -216s 2 -82s 3 -14s 4 -s 5 (3.55)
The identication of the two quotients leads to the expression of coecients b0 and b1 : Nevertheless the Padé approximation of F (s) is a non-minimum phase transfer function, meaning that some of its zeros have positive real part. As a consequence the response starts in the opposite direction of the nal value. The derivative at the starting time can be computed thanks to the initial value theorem:

lim t→0 ẏ(t) = lim s→∞ sL [ ẏ(t)] = lim s→∞ s 2 Y (s) = lim s→∞ s 2 F (s)U (s) (3.58)
As far as u(t) is the unit step function whose Laplace transform is 1/s we nally obtain: We will assume in the following that:

U (s) = 1 s ⇒ lim t→0 ẏ(t) = lim s→∞ sF (s) (3.59) 
y(0) = 0 (3.61)
The transfer function of such system reads:

F (s) = K 1 + τ s (3.62)
The unit step response of a rst order systems will be computed thanks to the Laplace transform. Since the Laplace transform of the unit step function is 1/s and substituting U (s) = 1/s we obtain:

Y (s) = F (s)U (s) = K s(1 + τ s) (3.63)
Expanding Y (s) into partial fractions gives:

Y (s) = K s - Kτ 1 + τ s = K s - K 1/τ + s (3.64)
Taking the inverse Laplace transform of the preceding equation yields: This equation states that the output is initially zero (that is y(0)) and that it nally moves towards K when t → ∞ as soon as τ > 0. Note that the smaller the time constant τ is the faster the system response is.

y(t) = K -Ke -t τ ∀t ≥ 0 (3.65)
We can check that y(t) = h(t) * u(t) = ∞ 0 h(τ )u(t -τ )dτ . Indeed:

h(t) = L -1 [F (s)] = L -1 K τ 1 ( 1 τ + s) = K τ e -t τ (3.66)
And:

y(t) = h(t) * u(t) = ∞ 0 h(x)u(t -x)dx = t 0 h(x)dx ⇔ y(t) = K τ t 0 e -x τ dx = -K e -x τ t 0 = K -Ke -t τ ∀t ≥ 0 (3.67)
The step response of a rst order model has no overshoot. In addition the slope of the tangent at t = 0 is K τ since:

dy dt t=0 = K τ e -t τ t=0 = K τ (3.68)
The unit step response of a rst order system is sketched in Figure 3.8. For a rst order system the 5% settling time is: Example 3.4. Let's consider Figure 3.9 where an RC lter is depicted: u(t) is the voltage applied to the circuit, y(t) is the voltage across the capacitor and i(t) the current through the capacitor.

t s = 3τ ( 
The relation between the input u(t) and the output y(t) is the following:

u(t) = Ri(t) + y(t) i(t) = C ẏ(t) ⇒ ẏ(t) -i(t) C = 0 ⇔ RC ẏ(t) + y(t) = u(t) (3.71)
Comparing the dierential equation which drives the dynamic of RC lter with equation (3.60) we conclude that this system is a model for a rst order system with time constant τ = RC and static gain K = 1. ■

Frequency response

Let's consider the following rst order model where the static gain K has been set to 1:

F (s) = 1 1 + τ s ⇒ F (jω) = 1 1 + jωτ (3.72)
The log magnitude of the frequency response reads:

20 log 10 ∥F (jω)∥ = 20 log 10   1 1 + (ωτ ) 2   = -10 log 10 1 + (ωτ ) 2 (3.73)
Thus when ωτ → 0 the log magnitude of F (jω) tends towards 0 whereas when ωτ → ∞ the log magnitude of F (jω) is approximated by -10 log 10 (ωτ ) 2 that is -20 log 10 (ωτ ). The two asymptotes cross each other The phase of the frequency response reads:

Φ(ω) = arg (F (jω)) = -arctan (ωτ ) (3.75)
Thus when ωτ → 0 the phase of F (jω) tends towards 0 whereas when ωτ → ∞ the phase of F (jω) is approximated by -90 deg. At the corner frequency ω c the phase is equal to -arctan (1) = -45 deg.

Figure 3.10 presents the Bode plot as well as the asymptotic Bode plot for a rst order model where K = 1 and τ = 2.

Second order model

Dierential equation and unit step response

A second order model is described by a linear dierential equation of the second order with constant coecients. Denoting by ω 0 (ω 0 > 0) the undamped natural frequency of the model, by m (m > 0) the damping ratio and by K the static gain, second order model reads:

1 ω 2 0 d 2 y dt 2 + 2m ω 0 dy dt + y(t) = Ku(t) (3.76)
The term mω 0 is referred as the damping factor.

We will assume in the following that:

y(0) = ẏ(0) = 0 (3.77)
The transfer function of such system reads:

F (s) = K ω 2 0 s 2 + 2mω 0 s + ω 2 0 (3.78)
The unit step response of a second order model will be computed thanks to the Laplace transform. Since the Laplace transform of the unit step function is 1/s and substituting U (s) = 1/s we obtain:

Y (s) = F (s)U (s) = K ω 2 0 s(s 2 + 2mω 0 s + ω 2 0 ) (3.79)
Denoting by λ 1 and λ 2 the two roots of the characteristic polynomial s 2 + 2mω 0 s + ω 2 0 and assuming that those two values are distinct the preceding relation reads:

Y (s) = F (s)U (s) = K ω 2 0 s(s -λ 1 )(s -λ 2 ) (3.80) 
Expanding Y (s) into partial fractions and using the fact that λ 1 λ 2 = ω 2 0 (we also have

λ 1 +λ 2 = -2mω 0 when identifying s 2 +2mω 0 s+ω 2 0 with (s-λ 1 )(s-λ 2 )) gives Y (s) = K λ 1 λ 2 s(s-λ 1 )(s-λ 2 ) = K 1 s + 1 λ 1 -λ 2 λ 2 s-λ 1 -λ 1 s-λ 2 (3.81)
Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K 1 + 1 λ 1 -λ 2 λ 2 e λ 1 t -λ 1 e λ 2 t ∀t ≥ 0 (3.82)
This equation states that the output is initially zero (that is y(0)) and that it nally moves towards K when t → ∞ as soon as Re (λ 1 ) < 0 and Re (λ 2 ) < 0. In addition as far as we have imposed ẏ(0) = 0 we can check that the slope of the tangent at t = 0 is 0 since:

dy dt t=0 = K 1 λ 1 -λ 2 λ 2 λ 1 e λ 1 t -λ 1 λ 2 e λ 2 t t=0 = 0 (3.83)
The shape of y(t) depends on the roots of the characteristic polynomial s 2 + 2mω 0 s + ω 2 0 :

-The rst case deals with the case where m > 1

-The second case deals with the case where m < 1 -The second case deals with the case where m = 1 is the voltage applied to the circuit, y(t) is the voltage across the capacitor and i(t) the current through the capacitor.

The relation between the input u(t) and the output y(t) is the following:

u(t) = Ri(t) + L di dt + y(t) i(t) = C ẏ(t) ⇒ u(t) = RC ẏ(t) + LC ÿ(t) + y(t) ⇔ LC ÿ(t) + RC ẏ(t) + y(t) = u(t) (3.84)
Comparing the dierential equation which drives the dynamic of RLC lter with equation (3.76) we conclude that this system is a model for a second order system with undamped natural frequency ω 0 = 1 √ LC and damping ratio m dened by 2m

ω 0 = RC that is m = R 2 C L .
The damping factor is equal to mω 0 = R 2L .

■

Overdamped model

Overdamped second order model corresponds to the case where m > 1. In that situation the roots λ 1 and λ 2 are real and distinct:

m > 1 ⇒ λ 1 = -mω 0 + ω 0 √ m 2 -1 ∈ R λ 2 = -mω 0 -ω 0 √ m 2 -1 ∈ R (3.85)
The unit step response of a second order system where m = 1.2, ω 0 = 1 and K = 1 is sketched in Figure 3.12. It is worth noticing that there is no overshoot on the step response.

Time t i at which the sign of the second derivative of y(t) changes is given by:

ÿ(t) = 0 ⇒ λ 1 e λ 1 t i = λ 2 e λ 2 t i ⇒ t i = 1 λ 1 -λ 2 ln λ 2 λ 1 (3.86)
After time t i the step response of a second order model where m > 1 is very close to the step response of a rst order model. Indeed exponential e λ 1 t involves much greater values than the other exponential. In addition the case where m > 1 is not representative of a second order system as far as this kind of system is equivalent to two cascaded rst order systems.

Underdamped model

Underdamped second order model corresponds to the case where m < 1. In that situation the roots λ 1 and λ 2 are complex and conjugate:

m < 1 ⇒ λ 1 = -mω 0 + jω 0 √ 1 -m 2 ∈ C λ 2 = -mω 0 -jω 0 √ 1 -m 2 ∈ C (3.87)
As soon as λ 1 and λ 2 are complex and conjugate we can write them using the Euler's formula :

λ 1,2 = ω 0 -m ± j √ 1 -m 2 = ω 0 e ±jΦ where cos (Φ) = -m sin (Φ) = √ 1 -m 2 (3.88)
Denoting a = Re (λ 1 ) = -ω 0 m the real part of λ 1 and b = Im (λ 1 ) = ω 0 √ 1 -m 2 the imaginary part of λ 1 the unit step response (3.82) can be rewritten as follows:

y(t) = K 1 + 1 2j √ 1-m 2 e
-jΦ e at+jbt -e jΦ e at-jbt = K 1 + 

e at 2j √ 1-m 2 e j(bt-Φ) -e -j(bt-Φ) = K 1 + e at
y(t) = K 1 + e -mω 0 t √ 1 -m 2 sin ω 0 t 1 -m 2 -Φ ∀t ≥ 0 (3.90)
The unit step response of a second order system where m = 0.1, ω 0 = 1, and K = 1 is sketched in Figure 3.13.

Unlike the case where m > 1 the step response when m < 1 is oscillating and overshoots appear. The envelope of the sinusoid function is the an exponential function involving the real part of the roots of the characteristic polynomial whereas the frequency of the sinusoid is given by the positive imaginary part of the roots of the characteristic polynomial:

Re (λ 1 ) = -ω 0 m gives the exponential rate of decay/growth Im (λ 1 ) = ω 0 √ 1 -m 2 gives the oscillation frequency (3.91)

The oscillation frequency ω 0 √ 1 -m 2 is also called the damped natural frequency.

Local maximums are obtained when the rst derivative of the step response is null. This happen at time t k , where k is an integer, dened by:

t k = kπ w n √ 1 -m 2 (3.92)
When k = 1 the rst relative overshoot D with respect to the nal value is given by:

D = y(t 1 ) -K K = e -πm √ 1-m 2 (3.93)
Consequently relative overshoot decreases when the damping ratio m increases but is independent of the undamped natural frequency ω 0 .

Furthermore the rst relative overshoot will be lower then 10% as soon as m > 0.6:

D < 0.1 ⇒ m > 0.6 (3.94)
Conversely we can nd the damping ratio m to obtain a specic relative overshoot D from the above:

D = e -πm √ 1-m 2 ⇔ m = -ln (D) π 2 + ln 2 (D) (3.95)
Finally there is no simple expression which gives the settling time of a second order system. Indeed the settling time is not a monotonic function of m: when m = 0.4 the settling time is t s = 7.5 ω 0 whereas when m = 0.7 the settling time is t s = 2.85 ω 0 . Nevertheless when the damping ratio is lower than 0.9 the settling time can be approximated through the following relation:

t s ≈ 4 mω 0 (3.96)
The preceding relation indicated that the settling time is closely linked to the damping factor mω 0 , that is to the opposite of the real part of the roots of the characteristic polynomial: the faster the system is the higher the damping factor mω 0 is.

Critically damped model

Critically damped second order model corresponds to the case where the damping ratio m is equal to 1. In that case the roots λ 1 and λ 2 are real and equal:

m = 1 ⇒ λ 1 = λ 2 = -ω 0 ∈ R (3.97)
In that situation the roots of the characteristic polynomial are no more distinct. Thus the Laplace transform of the output signal y(t) reads:

Y (s) = F (s)U (s) = K ω 2 0 s(s + ω 0 ) 2 (3.98) Expanding Y (s) into partial fractions gives Y (s) = K 1 s - 1 s + ω 0 - ω 0 (s + ω 0 ) 2 (3.99)
Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K 1 -(1 + ω 0 t) e -ω 0 t ∀t ≥ 0 (3.100)
The step response present no overshoot in that case.

Frequency response

Let's consider the following second order model where the static gain K has been set to 1:

F (s) = ω 2 0 s 2 +2mω 0 s+ω 2 0 ⇒ F (jω) = ω 2 0 ω 2 0 -ω 2 +2jmω 0 ω = 1 1-ω ω 0 2 +2jm ω ω 0 (3.101)
Denoting by r the ratio ω ω 0 the log magnitude of the frequency response reads:

r = ω ω 0 ⇒ 20 log 10 ∥F (jr)∥ = -10 log 10 1 -r 2 2 + (2mr) 2 (3.102)
Thus when r → 0 the log magnitude of F (jω) tends towards 0 whereas when r → ∞ the log magnitude of F (jω) is approximated by -10 log 10 r 4 that is -40 log 10 (r). The two asymptotes cross each other when the frequency ω is equal to the corner frequency ω c . Corner frequency ω c is dened by the following equation:

0 = -40 log 10 (r) ⇔ r = 1 ⇔ ω c = ω 0 (3.103)
Furthermore it is worth noticing that second order model exhibits a resonant peak as soon as 0 < m < 1 √ 2 . The frequency of the resonant peak can be computed by setting to zero the rst derivative of the magnitude of F (jr):

d dr |F (jr)| r=rm = 0 ⇔ d dr 1 -r 2 2 + (2mr) 2 r=rm = 0 ⇒ r m = √ 1 -2m 2 ∀m < 1 √ 2 ≈ 0.707 20 log 10 |F (jr m )| = 20 log 10 1 2m √ 1-m 2 (3.104)
Thus the resonant frequency is lower than the natural undamped frequency ω 0 and is given by the relation:

ω r = ω 0 r m = ω 0 1 -2m 2 < ω 0 ∀ 0 < m < 1 √ 2 ≈ 0.707 (3.105)
The phase of the frequency response reads:

Φ(ω) = arg (F (jω)) = -arctan 2mr 1 -r 2 (3.106)
Thus when r → 0 the phase of F (jω) tends towards 0 whereas when r → ∞ the phase of F (jω) is approximated by -180 deg. At the corner frequency ω c = ω 0 (i.e. r = 1) the phase is equal to -90 deg. Analysis of Linear Time Invariant systems

Open-loop versus closed-loop

Usually a plant alone do not t with the industrial constraints within which it will be used. Typically a plant without controller will not be neither enough precise nor fast. Thus a controller shall be added to the plant (equipped with sensors and actuators) to satisfy industrial specications. We will denote: In that section we will compare open-loop control versus closed-loop control. In open-loop control the output signal y(t) of the plant to be controlled has no eect upon the input of the plant to be controlled as depicted in 

-F (s)
Y (s) = C o (s)F (s)R(s) ⇒ G o (s) = Y (s) R(s) = C o (s)F (s) (4.1)
On the other hand closed-loop control, or feedback control loop, is a control pattern within which the output signal y(t) of the plant to be controlled is returned back and compared to the reference input to form the system control as depicted in 

Y (s) = C(s)F (s) (R(s) -Y (s)) ⇒ G(s) = Y (s) R(s) = C(s)F (s) 1 + C(s)F (s) (4.2)
It is worth noticing that other feedback loop congurations exist. For example the closed-loop controller C(s) may be put is the feedback path as depicted in Figure 4.3.

The input output relation of Figure 4.3 reads:

Y (s) = F (s) (R(s) -C(s)Y (s)) ⇒ Y (s) R(s) = F (s) 1 + C(s)F (s) (4.3)
That is:

Y (s) = C(s)F (s) 1 + C(s)F (s) R(s) C(s) (4.4)
The preceding relation indicates that In the following we will focus on the feedback loop where the controller is situated in the direct path as depicted in Figure 4.2.

When comparing (4.1) and (4.2) it is clear that the open-loop controller C o (s) can be obtained from the closed-loop controller C(s) by choosing:

C o (s)F (s) = C(s)F (s) 1 + C(s)F (s) ⇒ C o (s) = C(s) 1 + C(s)F (s) (4.5)
Consequently it seems that open-loop control and closed-loop control are equivalent control. Nevertheless we shall have in mind that the plant model F (s) often comes from linearization and simplication, and thus is uncertain. Thus we will study the sensitivity of both open-loop scheme and closed-loop scheme with respect to the plant model uncertainty thanks to the sensitivity function S H α dened by:

S H α = ∂H/H ∂α/α = α H ∂H ∂α (4.6)
Basically S H α relates the relative change of quantity H with respects to the relative change of quantity α.

Specializing the sensitivity function denition to the case where H is the open-loop transfer function G o (s) and α the uncertain transfer function F (s) of the plant we get:

S Go F = F G o ∂G o ∂F = F C o F ∂ ∂F (C o F ) = F C o F C o = 1 (4.7) 
The preceding relation indicates that any change in the plant transfer function F (s) is totally transferred into the open-loop control scheme whatever controller C 0 (s) is.

On the other hand we will now specialize the sensitivity function denition to the case where H is the closed-loop transfer function G(s) and α the uncertain transfer function F (s) of the plant:

S G F = F G ∂G ∂F = F CF 1+CF ∂ ∂F CF 1 + CF = 1 + CF C ∂ ∂F CF 1 + CF (4.8)
Let's compute the following expression:

∂ ∂F CF 1 + CF = C (1 + CF ) -CF C (1 + CF ) 2 = C (1 + CF ) 2 (4.9)
We nally get:

S G F = 1 1 + CF (4.10)
Thus the sensitivity function S(s) of the closed-loop system reads:

S G F ≡ S(s) = 1 1 + C(s)F (s) (4.11)
The preceding relation clearly indicates that as soon as the product C(s)F (s) is high within the frequency range of the uncertain plant F (s) then the closed-loop control scheme allows a great reduction of the sensitivity of the controlled system with respects to uncertainties. Same result can be achieved when comparing the sensitivity of open-loop control scheme and closed-loop control scheme with respect to external disturbances.

As a consequence the central idea to control a plant is the feedback loop where the output signal y(t) of the plant to be controlled is returned back and compared to the reference input to form the system control as depicted in Figure 4.2.

Stability

A causal signal y(t) is bounded if there is a nite value B > 0 such that the signal magnitude never exceeds B, that is ∥y(t)∥ ≤ B ∀t ≥ 0. A system is said to be Bounded-Input Bounded-Output (BIBO) stable if the output is bounded for every bounded input.

Assuming that 0 is not a pole of the transfer function H(s) and that all of the poles of H(s) are unique the transfer function H(s) reads:

H(s) = b 0 + b 1 s + • • • + b m-1 sm -1 + b m s m a 0 + a 1 s + • • • + a n-1 s n-1 + s n = K(s + z 1 ) • • • (s + z m ) (s + λ 1 ) • • • (s + λ n ) (4.12)
We recall that z i are the zeros of the transfer function H(s) whereas λ i are the poles of H(s): the magnitude of transfer function H(s) will go to zero at the zeros and to innity at the poles.

Let's compute the unit step response of a linear time invariant system. We recall that the Laplace transform of the unit step function is 1/s. Thus the Laplace transform of the unit step response reads:

Y (s) = H(s) s = 1 s K(s + z 1 ) • • • (s + z m ) (s + λ 1 ) • • • (s + λ n ) (4.13)
Under the condition that m ≤ n the Laplace transform Y (s) of the unit step response y(t) can be decomposed into partial fraction expansion where each coecient α i , i ̸ = 0 is the residue around the pole λ i of H(s):

Y (s) = α 0 s + α 1 s + λ 1 + • • • + α n s + λ n (4.14)
The inverse Laplace transform of α 0 s is α 0 Γ(t) (we recall that Γ(t) denotes the unit step function) and the inverse Laplace transform of α i s+λ i is α i e -λ i t ∀t ≥ 0. As a consequence the unit step response y(t) is composed of:

one constant and bounded term, α 0 Γ(t), -and of a sum of terms of the form α i e -λ i t . Those terms decay within an exponential envelope as soon as each pole λ i has a negative real part.

If one of the pole λ i of H(s) is zero then the term α i e -λ i t never decays or grows in amplitude; this is called marginal stability. If at least one pole λ i has a positive real part then at least one element of the response grows without bound and the system is said to be unstable. It is worth noticing that the same conclusion appears when the multiplicity of a pole is greater than one; indeed we have seen that the inverse Laplace transform of

1 (s+λ i ) n is t n-1
(n-1)! e -λ i t ∀t ≥ 0: as a consequence this term tends towards 0 when t → ∞ as soon as the real part of the pole λ i is negative.

As a consequence a linear time invariant system is stable if and only if all the poles of its transfer function, that are also the roots of the characteristic polynomial, occur in the left half of the complex plane. Marginal stability occurs when some poles have a null real part whereas instability occurs when at least one pole occurs in the right half of the complex plane.

Notice that the equivalent condition for BIBO stability of linear time invariant (LTI) system is that its impulse response h(t) be absolutely integrable:

∞ 0 |h(t)| dt < ∞ (4.15)
For linear time invariant (LTI) systems Bounded-Input Bounded-Output (BIBO) stability is also equivalent to exponential stability, meaning that after a certain amount of time the impulse response of the system is such that its norm is lower than αe -γt for nite α and γ > 0.

Routh-Hurwitz criterion

A simple means of determining the stability of a system can be obtained by the Routh stability criterion; this criterion indicates whether any of the roots of a polynomial have positive real parts, without actually solving for the roots. Consider the following polynomial equation:

a n s n + a n-1 s n-1 + • • • + a 1 s + a 0 = 0 (4.16)
Necessary but not sucient conditions so that no roots of Equation (4.49) have positive real parts are that:

-All the coecients must exist -All the coecients of the equation must have the same sign

The rst stage to apply the Routh criterion is to build the Routh array, which contains n + 1 rows; the two rst rows contain coecients a i of the polynomial arranged alternatively as indicated in (4.17).

s n a n ≡ r n,1 a n-2 ≡ r n,2 a n-4 ≡ r n,3 • • • s n-1 a n-1 ≡ r n-1,1 a n-3 ≡ r n-1,2 a n-5 ≡ r n-1,3 • • • s n-2 r n-2,1 r n-2,2 . . . . . . . . . . . . . . . s 1 r 1,1 r 1,2 0 s 0 r 0,1 0 0 (4.17)
Coecients r i,j are computed as follows:

r i,j = r i+1,1 r i+2,j+1 -r i+2,1 r i+1,j+1 r i+1,1 (4.18) 
For example:

r n-2,1 = r n-1,1 r n,2 -r n,1 r n-1,2 r n-1,1 = a n-1 a n-2 -ana n-3 a n-1 r n-2,2 = r n-1,1 r n,3 -r n,1 r n-1,3 r n-1,1 = a n-1 a n-4 -ana n-5 a n-1 (4.19)
Then the Routh array is continued horizontally and vertical until the last row is completed. The last step consists in investigating the signs of the numbers in the rst column of the Routh array. Routh stability criterion states:

if all the number of the rst column have the same sign then all the roots of the polynomial have negative real parts; when the polynomial is the denominator of the transfer function the system is therefore stable;

if the numbers in the rst column change sign then the number of sign changes indicates the number of roots of the polynomial having positive real parts; when the polynomial is the denominator of the transfer function the system is therefore unstable;

An Hurwitz polynomial, named after Adolf Hurwitz (1859 -1919, German mathematician), is a polynomial with positive coecients and for which the real part of every root is zero or negative.

Example 4.1. Consider the following polynomial:

D(s) = s 3 + 14s 2 + 41s -56 (4.20)
All the coecients of D(s) exist and have the same sign; so the necessary condition for D(s) to have all its roots in the let half (complex) plane (LHP) are satised. The Routh array reads:

s 3 1 41 s 2 14 -56 s 1 14×41-1×(-56) 14 = 45 s 0 -56 (4.21)
There is one change in sign in the rst column; consequently D(s) has one root in the right half (complex) plane (RHP). ■ Example 4.2. Consider the following polynomial:

D(s) = s 4 + 5s 3 + s 2 + 10s + 1 (4.22)
All the coecients of D(s) exist and have the same sign; so the necessary condition for D(s) to have all its roots in the let half (complex) plane (LHP) are satised. The Routh array reads:

s 4 1 1 1 s 3 5 10 s 2 -1 1 s 1 15 s 0 1 (4.23)
There are two changes in sign in the rst column; consequently D(s) has two roots in the right half (complex) plane (RHP).

■

It is worth noticing that:

-Applying the Routh criterion on the polynomial D(a + s) enables to compute the number of roots of D(s) with a real part greater than a (indeed s = a + s -a and Re (s) < 0 ⇔ Re (a + s) < a).

Example 4.3. Let's check how many roots with real part greater than a = -2 has the following polynomial:

D(s) = s + 1 (4.24)
First we form the polynomial

D(a + s) = D(s -2) = (s -2) + 1 = s -1
and then we apply the Routh criterion on the following Routh array:

s 1 1 s 0 -1 (4.25)
There is one change in sign in the rst column; consequently D(s) has one root with a real part greater than a = -2 (it is obviously -1)

■ Example 4.4.
Let's check how many roots with real part greater than a = 2 has the following polynomial:

D(s) = (s -1)(s -4) (4.26)
First we form the polynomial D(a+s) = D(s+2) = (s+2-1)(s+2-4) = s 2 -s -2 and then we apply the Routh criterion on the following Routh array:

s 2 1 -2 s 1 -1 s 0 -2 (4.27)
There is one change in sign in the rst column; consequently D(s) has one root with a real part greater than a = 2 (it is obviously 4) ■ -To multiply all the numbers in a row by a strictly positive number do not change the conclusion of the Routh criterion.

-As far as the sign of the real part of a complex number is the same than the sign of the real part of its inverse, it is equivalent to test either polynomial D(s) or polynomial D(1/s) where s has been replaced by 1/s.

Obviously if 0 appears in the rst position of a row, then the elements in the following row will be innite and the Routh criterion breaks down. Similarly the Routh criterion breaks down when all the numbers in a row are 0.

If a rst column term in any row is 0, but the remaining terms are not 0 or there is no remaining term, then the 0 term is replaced by a very small number ϵ with the same sign than the coecient above the 0 and the rest of the array is evaluated.

-If the sign of the coecient above the 0 → ϵ is the same that below it, it indicates that there are a pair of imaginary roots.

-If however the sign of the coecient above the 0 → ϵ is opposite that below it, it indicates that there is one sign change.

Alternatively, when a zero occurs in the rst column, it is possible to create the Routh table using the polynomial D(1/s) that has the reciprocal roots of the original polynomial D(s). Tsu-Shuan Chang and Chi-Tsong Chen1 suggest to nd the greatest common divisor d(s) of D 1 (s) and D 2 (s), where D 1 (s) and D 2 (s) are the odd and the even part of D(s), and then to apply the Routh criterion to D(s)/d(s).

Example 4.5. Consider the following polynomial:

D(s) = s 3 -3s + 2 (4.28)
The Routh array reads:

s 3 1 -3 s 2 0 → ϵ + 2 s 1 -3ϵ + -2 ϵ + = -3 -2 ϵ + s 0 2 (4.29)
As soon as ϵ + → 0, there is one sign change between ϵ + (which has the same sign than the coecient above, that is 1, which is positive) and -3 -2 ϵ + (which is negative as soon as ϵ + → 0) and another sign change between -3 -2 ϵ + (which is negative as soon as ϵ + → 0) and 2. Consequently, we conclude that D(s) has two roots with positive real part. Actually polynomial D(s) reads:

D(s) = (s -1) 2 (s + 2) (4.30)
Routh table coming from D(1/s) reads as follows:

D(1/s) = (1/s) 3 -3(1/s) + 2 = 1 -3s 2 + 2s 3 s 3 (4.31)
The Routh array of the numerator of D(1/s), that is polynomial 1 -3s 2 + 2s 3 , reads:

s 3 2 0 s 2 -3 1 
s 1 -2 -3 = 2 3 s 0 1 (4.32)
We get the same conclusion than previously: as far as there are two changes in sign in the rst column, we conclude that D(1/s), and also D(s) has two roots with a real part greater than zero. ■ Example 4.6. Consider the following polynomial:

D(s) = s 3 + 2s 2 + s + 2 (4.33)
All the coecients of D(s) exist and have the same sign; so the necessary condition for D(s) to have all its roots in the let half (complex) plane (LHP) are satised. The Routh array reads:

s 3 1 1 s 2 2 2 s 1 0 → ϵ + s 0 2 (4.34)
As far as the sign of the coecient above ϵ + is the same that below it, it indicates that there are a pair of imaginary roots. Actually D(s) has two roots at ±j.

Routh table coming from D(1/s) reads as follows:

D(1/s) = (1/s) 3 + 2(1/s) 2 + (1/s) + 2 = 1 + 2s + s 2 + 2s 3 s 3 (4.35)
The Routh array of the numerator of D(1/s), that is polynomial 1+2s+s 2 +2s 3 , reads:

s 3 2 2 s 2 1 1 s 1 0 → ϵ + s 0 1 (4.36)
We get the same conclusion than previously: as far as the sign of the coecient above ϵ + is the same that below it, it indicates that there are a pair of imaginary roots. Actually D(s) has two roots at ±j.

■

If all the coecients in any derived row are zeros it indicates that polynomial D(s) has roots of equal magnitude lying radially opposite in the s-plane, that is two real roots with equal magnitude and opposite sign and/or two conjugate imaginary roots. In such a case the evaluation of the rest of the array can be continued by forming an auxiliary polynomial Q(s) with the coecients of the last non-zero's row and by replacing the zero's row by the coecients of the derivative of this polynomial. It is worth noticing that in this situation the roots of the auxiliary polynomial Q(s) are also roots of the polynomial D(s) under consideration.

Example 4.7. The previous example where D(s) = s 3 + 2s 2 + s + 2 can be tackled with this rule. Indeed all the coecients (in fact just one) in the row s 1 are zeros:

s 3 1 1 s 2 2 2 s 1 0 (4.37)
Then we form an auxiliary polynomial with the coecients of the last nonzero row:

Q(s) = 2s 2 + 2 (4.38)
It can be checked that the roots of Q(s), which are (+j, -j), are also roots of D(s).

The derivative of Q(s) reads:

d ds Q(s) = 4s (4.39)
The Routh array can be continued by replacing the zero's row by the coecients of the derivative of Q(s), here 4:

s 3 1 1 s 2 2 2 s 1 4 ← coecients of d ds Q(s) (4.40) 
The complete Routh array nally reads:

s 3 1 1 s 2 2 2 s 1 4 s 0 2 (4.41)
As far as there is no sign change in the coecients of the rst column we conclude that D(s) has no root with strictly positive real part. Actually the third root of D(s) is -2, which obviously has a negative real part and explains why there is no sign change in the Routh array. All the coecients of D(s) exist and have the same sign; so the necessary condition for D(s) to have all its roots in the let half (complex) plane (LHP) are satised. The rst rows of the Routh array reads:

s 5 1 24 25 s 4 2 48 50 s 3 0 0 (4.43)
All the coecients of the s 3 'row are zeros. Then we form an auxiliary polynomial with the coecients of the last non-zero row:

Q(s) = 2s 4 + 48s 2 + 50 (4.44)
It can be checked that the roots of Q(s), which are denoted (λ 1 , λ 2 , λ 3 , λ 4 ), are also roots of D(s):

   λ 2 1,2 = -48+ √ 48 2 -4×2×50 4 ⇒ λ 1,2 = ±j 48- √ 1904 4 λ 2 3,4 = -48- √ 48 2 -4×2×50 4 ⇒ λ 3,4 = ±j 48+ √ 1904 4 (4.45)
The derivative of Q(s) reads:

d ds Q(s) = 8s 3 + 96s (4.46)
The Routh array can be continued by replacing the zero's row by the coecients of the derivative of Q(s), here 8 and 96:

s 5 1 24 25 s 4 2 48 50 s 3 8 96 ← coecients of d ds Q(s) (4.47) 
The complete Routh array nally reads: As far as there is no sign change in the coecients of the rst column we conclude that D(s) has no root with strictly positive real part. Actually the fth root of D(s) is -2, which obviously has a negative real part and explains why there is no sign change in the Routh array. 

s 5 1
D(s) = a n s n + a n-1 s n-1 + • • • + a 1 s + a 0 (4.49)
Let s be the complex conjugate of s and dene the following mapping polynomials: This result can be extended to the case where we add the constraint that all the roots of D(s) shall have a real part greater than α 2 . This will be the case if and only all the roots of D θ (w), D α 1 (w) and D α 2 (w) are situated in the left half of the w-plane, where:

D θ (w) := D(s)D(s)| s=w e jθ = D(w e jθ )D(w e -jθ ) D α 1 (w) := D(s)| s=α 1 +w = D(α 1 + w) (4.50)
D α 2 (w) := D(s)| s=α 2 -w = D(α 2 -w) (4.51)

Hermite's criterion

Let D(s) be the following real polynomial:

D(s) = a n s n + a n-1 s n-1 + • • • + a 1 s + a 0 (4.52)
Let polynomials u(s) and v(s) be dened as follows where j 2 = -1: 

D(j s) := u(s) + j v(s) ⇔ u(s) = Re (D(j s)) v(s) = Im (D(j s)) (4 
n-1 i=0 n-1 j=0 b ij x i y j = 1 x • • • x n-1 B      1 y . . . y n-1      = v(x) u(x) v(y) u(y) x-y = v(x) u(y)-v(y) u(x)
x-y (4.54) By treating 1

x-y as the formal power series ∞ k=0 x -k y k-1 , we can write4 the quotient as a polynomial of degree n -1 in x:

1 x -y = ∞ k=0 x -k y k-1 = x -1 + y x -2 + y 2 x -3 + • • • ⇒ v(x) u(y) -v(y) u(x) x -y = n-1 i=0   n j=i+1 c j (y) y j-i-1   x i (4.55)
Alternatively, write u(s) and v(s) as polynomials with the same degree n:

v(s) = v 0 + v 1 s + • • • + v n s n u(s) = u 0 + u 1 s + • • • + u n s n (4.56) Let L i = v i u i and R i = -u i v i
. Then it can be shown 4 that the n × n symmetric matrix B can be computed as the product of a lower triangular matrix [L i ] of size n × 2n and an upper triangular matrix [R j ] of size n × 2n:

   L i = v i u i R i = -u i v i ⇒ B =    b 0,0 • • • b 0,n-1 . . . . . . . . . b n-1,0 • • • b n-1,n-1    =    L 0 0 . . . . . . L n-1 • • • L 0       R 1 • • • R n . . . . . . R n 0    (4.57)
Finally, we remind that a real n × n symmetric matrix B = B T is positive denite if and only if we have either:

-x T Bx > 0 for all x ̸ = 0;
-All eigenvalues of B are strictly positive; -All of the leading principal minors are strictly positive (the leading principal minor of order k is the minor of order k obtained by deleting the last n -k rows and columns).

Example 4.9. We consider the following polynomial where K is a design parameter:

D(s) = 24s 3 + 26s 2 + 9s -1 + K (4.58)
Then we have:

u(s) = Re (D(j s)) = -26s 2 + K -1 v(s) = Im (D(j s)) = -24s 3 + 9s (4.59)
To get coecients [b ij ] of the 3 × 3 Bezoutian matrix B we can write:

v(x) u(y)-v(y) u(x) x-y = 1 x • • • x 3-1 B      1 y . . . y 3-1      = 1 x x 2   b 0,0 b 0,1 b 0,2 b 1,0 b 1,1 b 1,2 b 2,0 b 2,1 b 2,2     1 y y 2   (4.60)
where:

  b 0,0 b 0,1 b 0,2 b 1,0 b 1,1 b 1,2 b 2,0 b 2,1 b 2,2   =   L 0 0 0 L 1 L 0 0 L 2 L 1 L 0     R 1 R 2 R 3 R 2 R 3 0 R 3 0 0   =   0 K -1 0 0 0 0 9 0 0 K -1 0 0 0 -26 9 0 0 K -1           0 26 0 9 0 -24 26 0 0 0 -24 0 0 0 0 -24 0 0         =   9K -9 0 24 -24K 0 258 -24K 0 24 -24K 0 624   (4.61)
We conclude that D(s) has all its roots with negative real part if and only if symmetric matrix B = B T is positive denite, that is if and only if all of the leading principal minors of B are strictly positive.

Let's compute the principal minors of B:

       m 1 = 9K -9 m 2 = det 9K -9 0 0 258 -24K = -54 (4 K -43) (K -1) m 3 = det (B) = 13824 K 3 -311040 K 2 + 1894752 K -1597536 (4.62)
Thus: 

   m 1 > 0 m 2 > 0 m 3 > 0 ⇒ 1 < K < 43 4 (4.63) ■
G(s) = Y (s) R(s) = 1 1 + F (s) (4.64)
The Nyquist stability criterion determines the stability of a closed-loop from the open-loop poles and its open-loop frequency response. More specically the Nyquist stability criterion determines the stability of G(s) from poles of F (s) and the Nyquist plot of F (jω).

Denoting by Re the real part and by Im the imaginary part, the Nyquist plot of F (jω) is the locus of vector (ImF (jω) , ReF (jω)) when frequency ω varies from -∞ to +∞. As far as F (s) is a fraction where the numerator and the denominator are real coecients polynomial the Nyquist plot of F (jω) is symmetrical with respect to the real axis. In addition as soon as F (s) is assumed to be a strictly proper transfer function the Nyquist plot of F (jω) moves toward zero as ω tends to innity:

lim s→∞ F (s) = 0 ⇒ lim ω→±∞ F (jω) = 0 (4.65)
In examining the stability of the unity feedback loop of Figure 4.5 the Nyquist stability criterion states that:

Z = P + N (4.66)
Where:

-Z is the number of zeros of 1 + F (s) in the right half s-plane, that is the number of unstable poles of the closed-loop system whose transfer function is G(s)

-P is number of poles of F (s) in the right half s-plane -N is the number of clockwise encirclements of the -1 + j0 point by the Nyquist plot of F (jω); point -1 + j0 is called the critical point

The Nyquist stability criterion states that the number of unstable closedloop poles is equal to the number of unstable open-loop poles plus the number of encirclements of the critical point -1 + j0 by the Nyquist plot of F (jω).

The encirclement is counted positive in the clockwise direction and negative otherwise.

In others words:

-If there are one or more counterclockwise encirclements of the -1 + j0 critical point by the Nyquist plot then the closed-loop system is stable if the number of counterclockwise encirclements is the same as the number of poles of F (s) in the right half s-plane; otherwise the closed-loop system is unstable.

-If there are one or more clockwise encirclements of the -1 + j0 critical point this implies that the closed-loop system is unstable.

In current situations F (s) has no pole in the right half s-plane; consequently if the Nyquist plot of F (jω) has no encirclement of the -1+j0 critical point this implies that the closed-loop system is stable; otherwise the closed-loop system is unstable.

An easy way to determine the number of encirclements of the -1 + j0 critical point is to draw a line out from the critical point, in any directions. Then by counting the number of times that the Nyquist plot crosses the line in the clockwise direction (i.e. left to right) and by subtracting the number of times it crosses in the counterclockwise direction then the number of clockwise encirclements of the -1 + j0 critical point is obtained. A negative number indicates counterclockwise encirclements.

It is worth noticing that when a positive gain K (K > 0) is added in the loop, either in the direct path as shown in Figure 4.6 or in the feedback path as shown in Figure 4.7, the denominator of the closed-loop transfer function becomes 1 + KF (s). As a consequence the critical point -1 + j0 changes to be -1 K + j0. The Nyquist stability criterion can then still be applied in both cases by assessing the encirclements of the -1 K + j0 critical point where K > 0. Consequently the Nyquist stability criterion do not change when positive gain K is added either in the direct path or in the feedback path because the denominator of the closed-loop transfer function G(s) = Y (s) R(s) remains the same. More generally we have seen that the denominator of the closed-loop transfer function of feedback loop systems in Figures 4. [START_REF]Modern Control Systems[END_REF] The Nyquist plot of F (jω) is shown in Figure 4.8. It is clear that the Nyquist plot of F (jω) is symmetrical with respect to the real axis and lim ω→±∞ F (jω) = 0. We can also check that F (0) = 1.

Figure 4.9 is a zoom of Figure 4.8 near the loop of the Nyquist plot. First we will assume an unit feedback gain (i.e. K = 1) in the closed-loop as in Figure 4.5. Then applying the Nyquist stability criterion on the Nyquist plot we conclude that the closed-loop is stable because the number P of poles of F (s) in the right half s-plane is zero and the number N of clockwise encirclements of the -1 + j0 critical point by the Nyquist plot is also zero. As a consequence the number Z of zeros of 1 + F (s) in the right half s-plane is N + P = 0, meaning that there is no unstable pole in the closed-loop system transfer function G(s). Now we will assume that a constant gain K is inserted in the feedback loop as depicted either in Figure 4.6 or Figure 4.7. Then the critical point becomes

-1 K + j0.
As shown in Figure 4.9 the number of encirclements of the critical point remains to be zero as soon as the positive feedback loop gain K, (K > 0) satises:

- 1 K < -0.1143 ⇔ K < 1 0.1143 ≈ 8.75 (4.68)
Consequently the closed-loop is stable as soon as 0 < K < 8.75. As soon as K > 8.75 the number of clockwise encirclements of the critical point is 2, meaning that the closed-loop system is unstable because it has 2 poles in the right half s-plane (RHP).

In order to check this conclusion we can use the Routh criterion. The denominator D(s) of the closed-loop transfer function with constant gain K reads:

F (s) = 1 (2s+1)(3s+1)(4s+1) = 1 24s 3 +26s 2 +9s+1 ⇒ D(s) = 24s 3 + 26s 2 + 9s + 1 + K (4.69)
The Routh array of D(s) is the following:

s 3 24 9 s 2 26 1 + K s 1 26×9-24×(1+K) 26 = 210-24K 26 s 0 1 + K (4.70)
Consequently there is no sign change in the rst column as soon as :

210 -24K > 0 ⇔ K < 210 24 ≈ 8.75 1 + K > 0 ⇔ K > -1 (4.71)
When the feedback gain K becomes greater than 210 24 ≈ 8.75 then two sign changes appear in the rst column of the Routh array and the closed-loop system is then unstable with 2 unstable poles. This is the same conclusion than the one obtained thanks to the Nyquist stability criterion. 

Phase and gain margins

In that section we refer to Figure 4.5 and we will assume that the loop transfer function F (s) is stable as well as its inverse 1/F (s), meaning that F (s) has both all its poles and zeros in the left half s-plane. In other words transfer function F (s) is minimum phase.

In general the closer the Nyquist plot of the loop transfer function F (s) comes to encircling the -1 + j0 critical point, the more oscillatory is the closedloop system response. Phase and gain margins measures how close is the closedloop system from the verge of instability. For stable loop transfer function the Nyquist stability criterion states that the closed-loop system is stable as soon as there is no encirclement of the critical point. This can be readily visualized on the Bode plot.

The gain crossover frequency is the frequency ω c at which the magnitude ∥F (jω)∥ of the loop transfer function F (s) is unity.

At the gain crossover frequency ω c the phase angle Φ(ω c ) = arg (F (jω c )) of the loop transfer function reads as follows where M Φ represents the phase margin of the closed-loop system:

∥F (jω c )∥ = 1 ⇒ M Φ = 180 • + arg (F (jω c )) (modulo 360 • ) ⇔ Φ(ω c ) = arg (F (jω c )) = -180 • + M Φ (modulo 360 • ) (4.72)
For closed-loop system to be stable the phase margin M Φ must be positive; it indicates the amount of phase lag which is required to bring the closed-loop system unstable.

The phase crossover frequency is the frequency ω π at which the phase angle of the loop transfer function F (s) is equal to -180 • . At the phase crossover frequency ω π the magnitude ∥F (jω)∥ of the loop transfer function is the reciprocal of the gain margin Gm:

arg (F (jω π )) = -180 • (modulo 360 • ) ⇒ Gm = 1 ∥F (jω π )∥ (4.73)
Or in terms of decibels:

GmdB = 20 log 10 (Gm) = -20 log 10 ∥F (jω π )∥ (4.74)
For a closed-loop system to be stable the gain margin in decibels GmdB must be positive; it indicates how much the gain must be increased before the closed-loop system becomes unstable.

It is worth noticing that the gain margin as well as the phase crossover frequency ω π at which the gain margin is measured can be obtained through the Routh array. To obtain those values rst compute the denominator of the closed-loop transfer function KcrF (s) 1+KcrF (s) where a ctitious gain K cr is used. Then build the corresponding Routh array and compute the value of K cr such that the coecient in the row s 1 is equal to zero. The gain margin is then obtained as Gm = K cr . The phase crossover frequency ω π is obtained by setting to zero the polynomial extracted from the row s 2 and by replacing s by jω π .

Similarly, the phase margin as well as the gain crossover frequency ω c at which the phase margin is measured can be obtained through the Routh array 5 .

To obtain those values rst compute the denominator of the closed-loop transfer function G(s) Kcr+G(s) where a ctitious gain K cr is used and where G(s) = 1 2 F (s) + 1 F (s) . Then build the corresponding Routh array and compute the value of K cr such that the coecient in the row s 1 is equal to zero. Among all the possible values of K cr such that |K cr | < 1 choose the closest value to -1. The phase margin is then obtained as M ϕ = arccos(K cr ). The gain crossover frequency ω c is obtained by setting to zero the polynomial extracted from the row s 2 and by replacing s by jω c . Figure 4.10 represents the Bode plot of an open-loop stable transfer function F (s) as well as the phase and gain margins of both stable and unstable closedloop systems.

It is noted that the gain margin of a rst or second order system is innite since the phase for such systems do not cross the -180 • phase axis.

For system having two or more gain or phase crossover frequencies the phase or gain margin is measured at the closest point of the critical point which is usually the point at the highest crossover frequency.

Example 4.11. Figure 4.11 is the Bode plot of the transfer function F (s) which has been studied in the previous example.

Using the function g_margin provided by Scilab, it can be stated that the phase crossover frequency is the frequency ω π = 2π × 0.0974621 rad/sec (on the very right in Figure 4.11) whereas the gain margin in decibels is GmdB = 18.84 dB. The maximum gain K = 8.75 which let stable the closed-loop system is retrieved through the following computation: To obtain those values thanks to the Routh array we will rst rst compute the denominator of the closed-loop system where a gain K cr is inserted:

K cr F (s) 1 + K cr F (s) = K cr 24s 3 + 26s 2 + 9s + 1 + K cr (4.76)
The Routh array has been obtained in (4.70). The value of K cr such that the coecient in the row s 1 is equal to zero is obtained by solving:

210 -24K cr 26 = 0 ⇒ K cr = 210 24 = 8.75 (4.77)
The gain margin is then obtained as Gm = K cr = 8.75.

The phase crossover frequency ω π is obtained by setting to zero the polynomial extracted from the row s 2 and by replacing s by jω π . We get:

26s 2 + (1 + K cr ) s=jωπ = -26ω 2 π + 1 + K cr = 0 ⇒ ω π = 1+Kcr 26 = 9.75 26 rad/sec (4.78) ■ 4.

Root locus

The root locus technique 6 has been developed in 1948 by Walter R. Evans . This is a graphical method for sketching in the s-plane the locus of roots of the following polynomial when parameter K varies to 0 to innity: It is worth noticing that the roots of D(s) + KN (s) are also the roots of

D(s) + KN (s) (4 
1 + K N (s) D(s) : D(s) + KN (s) = 0 ⇔ 1 + K N (s) D(s) = 0 ⇔ L(s) := KF (s) = -1 (4.80)
Without loss of generality let's dene transfer function F (s) as follows:

F (s) = N (s) D(s) = a m≤n j=1 (s -z j ) n i=1 (s -p i ) (4.81)
Transfer function L(s) = KF (s) is called the loop transfer function. In the SISO case the numerator of the loop transfer function L(s) is scalar as well as its denominator. Equation L(s) = -1 can be equivalently split into two equations:

|L(s)| = 1 arg (L(s)) = (2k + 1) π, k = 0, ±1, • • • (4.82)
The magnitude condition can always be satised by a suitable choice of K. On the other hand the phase condition does not depend on the value of K but only on the sign of K. Thus we have to nd all the points in the s-plane that satisfy the phase condition. When scalar gain K varies from zero to innity (i.e. K is positive), the root locus technique is based on the following rules:

-The root locus is symmetrical with respect to the horizontal real axis (because roots are either real or complex conjugate);

-The number of branches is equal to the number of poles of the loop transfer function. Thus the root locus has n branches;

-The root locus starts at the n poles of the loop transfer function;

-The root locus ends at the zeros of the loop transfer function. Thus m branches of the root locus end on the m zeros of F (s) and there are (n-m) asymptotic branches;

-Assuming that coecient a in F (s) is positive, a point s * on the real axis belongs to the root locus as soon as there is an odd number of poles and zeros on its right. Conversely assuming that coecient a in F (s) is negative, a point s * on the real axis belongs to the root locus as soon as there is an even number of poles and zeros on its right. Be careful to take into account the multiplicity of poles and zeros in the counting process;

-The (n -m) asymptotic branches of the root locus which diverge to ∞ are asymptotes.

The angle δ k of each asymptote with the real axis is dened by:

δ k = π + arg(a) + 2kπ n -m ∀ k = 0, . . . , n -m -1 (4.83)
Denoting by p i the n poles of the loop transfer function (that are the roots of D(s)) and by z j the m zeros of the loop transfer function (that are the roots of N (s)), the asymptotes intersect the real axis at a point (called pivot or centroid) given by:

σ = n i=1 p i -m≤n j=1 z j n -m (4.84)
-The breakaway / break-in points are located on the real axis and always have a vertical tangent. They are located at the roots s b of the following equation as soon as there is an odd (if coecient a in F (s) is positive) or even (if coecient a in F (s) is negative) number of poles and zeros on its right (Be careful to take into account the multiplicity of poles and zeros in the counting process):

d ds 1 F (s) s=s b = d ds D(s) N (s) s=s b = 0 ⇔ D ′ (s b )N (s b ) -D(s b )N ′ (s b ) = 0 (4.85)
Indeed from the fact that breakaway / break-in points have always a vertical tangent we can write:

1 + K F (s) = 1 + K N (s) D(s) = 0 ⇒ dK dp = - D ′ (s)N (s) -D(s)N ′ (s) N 2 (s) = 0
(4.86) From this relation we get (4.85).

-On the imaginary axis we have s = jω. Thus the value of the (positive) critical gain beyond which the closed-loop system becomes unstable is the value of K (K ≥ 0) such that the root locus of F (s) crosses the imaginary axis. In that situation at least one pole of the closed-loop system is purely imaginary. As far as D(s) + KN (s) represents the denominator of the closed-loop transfer function the critical gain can be obtained by replacing s by jω and by solving:

1 + K F (jω) = 0 ⇔ D(jω) + KN (jω) = 0 (4.87)
The previous equation is then split into its real and imaginary part and provides a system of 2 equations which lead to the value of the critical gain and the oscillation frequency at the critical gain. It is worth noticing that the Routh criterion can be used for the same purpose.

-Note that if the degree of polynomial D(s) is greater than or equal to the degree of polynomial N (s) plus 2, meaning that the relative degree of transfer function F (s) is greater than or equal to 2 (n -m ≥ 2), then the sum of the poles of the feedback system is independent of the value of parameter K, and therefore is equal to the sum of the poles of the open loop system when K = 0. This property is known as the centroid theorem.

To get this result, we have simply to expand D(s) + KN (s) taking into account n -m ≥ 2:

F (s) = N (s) D(s) = a m≤n-2 j=1 (s-z j ) n i=1 (s-p i ) ⇒ D(s) + KN (s) = n i=1 (s -p i ) + K a m≤n-2 j=1 (s -z j ) = s n -(r 1 + r 2 + • • • + r n ) s n-1 + • • • (4.88)
Assuming that n -m ≥ 2, the coecient of the term s n-1 in polynomial D(s) + KN (s) does not depend on parameter K. Because this coecient is obtained has the opposite of the sum r 1 + r 2 + • • • + r n of the roots of polynomial D(s) + KN (s), we conclude the sum of the poles of the feedback system is independent of the value of parameter K.

Example 4.12. Let's consider the following transfer function:

F (s) = s + 4 s(s + 2)(s + 3) (4.89)
We wish to investigate where are located the poles of the closed-loop system represented either in Figure 4.6 or in Figure 4.7 when static gain K varies from 0 to ∞.

Let's apply the previous rules to sketch the root locus:

-The loop transfer function F (s) has n = 3 poles and m = 1 zero;

-The number of branches is equal to the number of poles of the loop transfer function. Thus the root locus has n = 3 branches;

-The root locus starts at the n = 3 poles of the loop transfer function, which are (0, -2, -3). This leads to sketch 1 in Figure 4.1.

-The root locus ends at the zeros of the loop transfer function. Thus m = 1 branch of the root locus end on the m = 1 zero of F (s), which is (-4). This leads to sketch 2 in Figure 4.1.

-Transfer function F (s) reads:

F (s) = s + 4 s(s + 2)(s + 3) = 1 × s + 4 s(s + 2)(s + 3) (4.90) 
Thus coecient a = 1 of F (s) is positive. Then a point s * on the real axis belongs to the root locus as soon as there is an odd number of poles and zeros on its right (be careful to take into account the multiplicity of poles and zeros). This leads to sketch 3 in Figure 4.1.

-There are (n -m) = 2 asymptotic branches. The (n -m) = 2 asymptotic branches of the root locus which diverge to ∞ are asymptotes.

The angle δ k of each asymptote with the real axis is dened by:

δ k = π + 2kπ n -m = π + 2kπ 2 ∀ k = 0, 1 (4.91) 
Denoting by p i the n poles of the loop transfer function (that are the roots of D(s)) and by z j the m zeros of the loop transfer function (that are the roots of N (s)), the asymptotes intersect the real axis at a point (called pivot or centroid) given by:

σ = n i=1 p i -m≤n j=1 z j n -m = 0 + (-2) + (-3) -(-4) 2 = -0.5 (4.92)
This leads to sketch 4 in Figure 4.1. -The breakaway / break-in points are located at the roots s b of the following equation as soon as there is an odd (because coecient a = 1 of F (s) is positive) number of poles and zeros on its right (be careful to take into account the multiplicity of poles and zeros);

d ds 1 F (s) s=s b = 0 (4.93)
We get:

d ds s(s+2)(s+3) s+4 = d ds s 3 +5s 2 +6s s+4 = (3s 2 +10s+6)(s+4)-(s 3 +5s 2 +6s) (s+4) 2 = 2s 3 +17s 2 +40s+24 (s+4) 2 ⇒ d ds 1 F (s) s=s b = 0 ⇒ 2s 3 + 17s 2 + 40s + 24 = 0 ⇒    s b1 ≈ -0.92 s b2 ≈ -2.63 s b3 ≈ -4.95 (4.94)
Among the three potential breakaway / break-in points s bi only s b1 ≈ -0.92 is such that there is an odd (because coecient a = 1 of F (s) is positive) number of poles and zeros on its right. This leads to sketch 5 in Figure 4.1 where the arrows indicate how move the roots as gain K increases. The actual root locus is represented in Figure 4.1. It has been obtained thanks to the following commands on Python: #!/usr/bin/python import control import matplotlib.pyplot as plt import numpy as np F = control.tf( [START_REF]Introduction au contrôle des mini-drones : de la conception à la mise en ÷uvre[END_REF][START_REF]Feedback Control of Dynamic Systems[END_REF], np.polymul(np.polymul([1, 0], [START_REF]Introduction au contrôle des mini-drones : de la conception à la mise en ÷uvre[END_REF][START_REF] Qiu | [END_REF]), [START_REF]Introduction au contrôle des mini-drones : de la conception à la mise en ÷uvre[END_REF][START_REF]Modern Control Systems[END_REF])) control.rlocus(F) plt.grid() plt.show() -Because n -m ≥ 2, the centroid theorem is applicable and indicates that the sum of the poles of the feedback system is equal to the sum of the poles of the open loop system, that is -5.

■

Example 4.13. Let's consider the following transfer function:

F (s) = 1 (s -1)(s + 2)(s + 4) (4.95)
The breakaway / break-in points are located at the roots s b of the following equation as soon as there is an odd (because coecient a = 1 of F (s) is positive) number of poles and zeros on its right (be careful to take into account the multiplicity of poles and zeros);

d ds 1 F (s) s=s b = 0 ⇒ d ds ((s -1)(s + 2)(s + 4)) = 0 ⇒ d ds s 3 + 5s 2 + 2s -8 = 0 ⇒ 3s 2 + 10s + 2 = 0 ⇒ s b1 ≈ -0.21 s b2 ≈ -3.12 (4.96)
Among the two potential breakaway / break-in points s bi only s b1 ≈ -0.21 is such that there is an odd (because coecient a = 1 of F (s) is positive) number of poles and zeros on its right.

The root locus is represented in Figure 4.12.

It is worth noticing that the values of K such that the root locus of F (s) intercepts the imaginary axis can be computed thanks to the Routh criterion. Indeed the denominator of the closed loop reads:

1 + K F (s) = 1 + K 1 (s-1)(s+2)(s+4) = 1 + K s 3 +5s 2 +2s-8 = s 3 +5s 2 +2s-8+K s 3 +5s 2 +2s-8 (4.97)
Applying the Routh criterion on polynomial D(s) = s 3 + 5s 2 + 2s -8 + K leads to the following Routh array: 

s 3 1 2 s 2 5 K -8 s 1 18-K 5 s 0 K -8 (4.98)
There id no sign change in the rst column of the Routh array as soon as the following inequality holds:

18 -K > 0 K -8 > 0 ⇔ 8 < K < 18 (4.99)
As a consequence the values of K such that the root locus of F (s) intercepts the imaginary axis are K = 8 (for which it can be checked that the roots of D(s) are 0, -0.44 and -4.56) and k = 18 (for which it can be checked that the roots of D(s) are -5 and ±1.414j). ■ 4.9 Eect of zeros on the system response Consider a system with the following transfer function:

F (s) = K N (s) D(s) = K s m + b m-1 s m-1 + • • • + b 1 s + b 0 s n + a n-1 s n-1 + • • • a 1 s + a 0 (4.100)
Numerator N (s) does not aect the homogeneous response of the system. Now consider Figure 4.13 where the all-pole system 1/D(s) is excited by signal x(t):

x(t) = K m k=0 b k d k dt k u(t) (4.101)
As far as x(t) is the superposition of the derivatives of u(t) we conclude that the zeros of the system shape the manner on how the poles of the system are excited.

Step response of non-minimum phase transfer functions

We consider a stable linear time invariant single-input single-output system whose transfer function F (s) is proper (meaning F (∞) < ∞) with nite static gain (meaning F (0) < ∞). If F (s) has at least one real strictly positive zero, then F (s) is a non-minimum phase transfer function and its step response exhibits zero crossings. Indeed the Laplace transform Y s (s) of the unit step response y s (t) reads:

Y s (s) = F (s) 1 s (4.102)
Let z be a real strictly positive zero of F (s).

Setting s = z yields Y s (s)| s=z = F (z) 1 z . Since F (z) = 0 it follows that Y s (s)| s=z = 0.
Coming back in the time domain we get:

∞ 0 y s (t)e -st dt s=z = ∞ 0 y s (t)e -zt dt = 0 (4.103)
Since z is a real strictly positive zero, e -zt is positive on [0, ∞). It follows that y s (t) must cross zero on [0, ∞) in order to achieve a null value for the integral. Note that (4.103) depends on z but does not depend on either the poles or the remaining zeros of F (s).

It can be shown that undershoot in the step response of a strictly proper stable transfer function F (s) occurs if and only if the plant has an odd number of real right-half plane zeros 7 . To get this result, the key relations are the following, where a denotes a constant, z i the zeros of F (s) and λ j its poles :

           F (s) = a m i=1 1 -s z i n j=1 1 -s λ j d r y(t) dt r t=0 = lim s→∞ s r F (s) (4.104)
More generally, the following properties hold for stable non-minimum phase transfer functions 8 :

-If F (s) -F (0) has at least one strictly positive real zero, then the step response of F (s) exhibits overshoot.

-If the transfer function F (s)-F (∞) has an odd number of strictly positive real zeros, then the step response exhibits initial undershoot. Example 4.14. We consider the following stable transfer functions F 1 (s) and -F 1 (s) -F 1 (0) and F 2 (s) -F 2 (0) do not have strictly positive real zero. Thus both step responses does not exhibit overshoot.

F 2 (s): F 1 (s) = 1-s (s+1) 2 F 2 (s) = (0.5-s)(2-s) (s+1) 3
-The zero of F 1 (s) -F 1 (∞) is 1, that is an odd number of strictly positive real zeros. Thus the step response of F 1 (s) exhibits initial undershoot.

-The zeros of F 2 (s)-F 2 (∞) are 2 and 0.5, that is an even number of strictly positive real zeros. Thus the step response of F 1 (s) does not exhibit initial undershoot.

Those facts can be seen on the step response of F 1 (s) and F 2 (s) shown in Figure 4.14. 

Strong stabilizability and parity interlacing property

A plant, dened by a transfer matrix F(s), is said strongly stabilizable if there exists a stable stabilizing controller C(s) of F(s) or, in other words, if C(s) internally stabilizes F(s).

A necessary and sucient condition for the existence of a strongly stabilizing controller is the parity interlacing property. The parity interlacing property states that a dynamical plant F(s) is strongly stabilizable if and only if between any pair of zeros with positive real part (taking into account also the zeros at innity) there is an even number of poles, the latter counted according to their multiplicities9 . Chapter 5 Basic feedback control design

Chapter overview

In this chapter we will see how to tune two types of well known controllers:

-Lead-lag controllers, which can be tuned in order the comply with specications in terms of precision and phase margin;

-PID controller, which can be tuned in order the comply with specications in terms transient response specications or dominant poles placement.

Furthermore preltering as well as algebraic controller design and anti-windup will also be developed.

Lead-lag controller

Steady state error

In Figure 5.1 we have specialized the corrector C(s) of Figure 4.2 to be a constant value K. This kind of feedback control is called proportional control.

Usually reference input r(t) is the signal we would want to obtain at the output and consequently such a control loop is currently designed such that the output y(t) follows the reference input r(t). In the case of perfect feedback control the error signal ϵ(t) is then zero at every instant. But in the case of real Figure 5.1: Proportional control loop feedback control this dierence is not zero at every instant mainly because of time constants. The steady-state error ϵ(∞) represents the tracking error for a particular input command when time t tends to innity:

ϵ(∞) = lim t→∞ ϵ(t) (5.1)
This section presents some results on the value of the steady-state error ϵ(∞) for dierent shape of the signal input r(t).

Rather than computing the inverse Laplace transform of ϵ(s) back into the time domain and evaluating it as time t approaches innity we will use the nal value theorem:

ϵ(∞) = lim s→0 sϵ(s) (5.2)
It is worth noticing that the computation of the steady-state error thanks to the nal value theorem is only meaningful for stable closed-loop system. Consequently the stability of the closed-loop system shall be checked when performing steady-state error analysis.

From Figure 5.1 the Laplace transform of the error ϵ(s) reads:

ϵ(s) = R(s) -KF (s)ϵ(s) ⇔ ϵ(s) = 1 1 + KF (s) R(s) (5.3) 
The steady-state error will depend on the input command R(s) and on the loop transfer function KF (s). In the following we will consider without loss of generality that the plant transfer function F (s) is of the form:

F (s) = A s α • 1 + b 1 s + • • • + b m s m 1 + a 1 s + • • • + a n s n (5.4)
It is worth noticing that the coecients which are in factor to s 0 = 1 at the numerator and denominator of transfer function F (s) are equal to 1.

Integer α represents the number of integrations in F (s), but also in the open-loop transfer function KF (s). By denition the type number of a system is the number of integrations in its open-loop transfer function. Thus if α = 0 then the system is said to be of type 0, if α = 1 then type 1 and so on.

We rst examine the steady-state error to a unit step input:

r(t) = Γ(t) ⇒ R(s) = 1 s (5.5)
When the input reference signal is a step the steady-state error is called the position error and is found to be:

ϵ p = lim s→0 sϵ(s) = lim s→0 s 1 1+KF (s) 1 s = lim s→0 1 1+ KA s α 1+b 1 s+•••+bms m 1+a 1 s+•••+ans n (5.6)
The value of the preceding limit depends on the system type:

-If α = 0 (system of type 0) then

ϵ p = 1 1 + KA (5.7) -If α > 0 then ϵ p = 0 (5.8)
Now we examine the steady-state error to a unit-ramp input:

r(t) = t ∀t ≥ 0 ⇒ R(s) = 1 s 2 (5.9)
When the input reference signal is a unit-ramp the steady-state error is called the velocity error and is found to be:

ϵ v = lim s→0 sϵ(s) = lim s→0 1 s 1 1+ A s α 1+b 1 s+•••+bms m 1+a 1 s+•••+ans n = lim s→0 1 s+ KA s α-1 1+b 1 s+•••+bms m 1+a 1 s+•••+ans n (5.10)
The value of the preceding limit depends on the system type:

-If α = 0 (system of type 0) then

ϵ v = ∞ (5.11) 
-If α = 1 (system of type 1) then

ϵ v = 1 KA (5.12) -If α > 1 then ϵ v = 0 (5.13)
Similarly when the input reference signal is a parabola the steady-state error is called the acceleration error and is found to be:

r(t) = t 2 ∀t ≥ 0 ⇒ R(s) = 2 s 3 ⇒ ϵ a = lim s→0 2 s 2 + KA s α-2 1+b 1 s+•••+bms m 1+a 1 s+•••+ans n (5.14)
As in the previous cases the value of the steady-state error depends on the system type:

-If α < 2 then ϵ a = ∞ (5.15) -If α = 2 (system of type 2) then ϵ a = 2 KA (5.16) -If α > 2 then ϵ a = 0 (5.17) System's type r(t) = Γ(t) r(t) = t r(t) = t 2 0 (α = 0) 1 1 + KA ∞ ∞ 1 (α = 1) 0 1 KA ∞ 2 (α = 2) 0 0 2 KA Table 5.

1: Steady state errors

A summary of the steady-state error according to the system type and the input reference command r(t) is provided in Table 5.1.

The steady state errors are classied in accordance with the number of integration in the open-loop transfer function. As s → 0 the term which dominates in determining the steady-state error of the stable closed-loop system is s α-N . For a system of type α the steady-state error of the closed-loop system is constant when the input command is of the form t α ; if the input command is of the form t N where N < α then the steady-state error is 0 whereas when N > α the steady-state error tends to innity.

It is worth noticing that to make the steady-state error small, that is to increase the precision of the closed-loop system, the term KA (which is the static gain for a type 0 system) in the open-loop transfer function shall be chosen suciently high. But on the other hand the higher the value of proportional control K is, the closer the closed-loop system will be from instability. Indeed we can see in Figure 4.9 that increasing the value of K will displace the -1/K + j0 critical point to the right; hence the closed-loop system is approaching to the verge of instability. This problem is usually known as the stability-precision dilemma.

Example 5.1. Consider a plant with the following transfer function:

F (s) = 1 (2s + 1)(3s + 1)(4s + 1) (5.18)
We wish to control this system thanks to a proportional control as in Figure 5.1.

As far as this system is of class 0 the proportional gain K will only be used to set the position error. Assume that system specication requires the position error to be 1%. This leads to the following value of proportional gain K:

1% = 1 100 = 1 1 + KA (5.19)
Here the transfer function F (s) is such that A = 1 (cf. (5.4)) and consequently K = 99. Unfortunately we have seen in the previous section that the closed-loop system is stable when K < 8.75. As a consequence the system is unstable with such a value of proportional gain K. This is an example of stability-precision dilemma.

■

When system specications cannot be satised with the proportional control loop in Figure 5.1, other control loop schemes shall be envisioned. This is the purpose of the next chapter.

Controller presentation

Let consider Figure 5.2 where C(s) is a lead-lag controller and K a proportional gain.

A lead-lag controller has the following transfer function:

C(s) = 1 + τ s 1 + ατ s (5.20) 
Where α and τ are positive constants. Parameter α enables to dene the controller type:

-Lead controller if 0 < α < 1 -Lag controller if α > 1
For a lead controller the pole -1 ατ is situated on the left of the zero -1 τ and vice versa for a lag controller.

Let ϵ(∞) be a specied steady-state error. We have seen in the previous chapter that the Laplace transform of the system error ϵ(s) reads:

ϵ(s) = R(s) -KC(s)F (s)ϵ(s) ⇔ ϵ(s) = 1 1 + KC(s)F (s) R(s) (5.21)
Therefore applying the nal value theorem the steady-state error ϵ(∞) reads:

ϵ(∞) = lim t→∞ ϵ(t) = lim s→0 sϵ(s) = lim s→0 s 1 + KC(s)F (s) R(s) (5.22)
As far C(0) = 1 ∀ α, τ we get:

C(0) = 1 ∀ α, τ ⇒ ϵ(∞) = lim s→0 s 1 + KF (s) R(s) (5.23)
Consequently a lead-lag controller allows to modify the steady-state error of the closed-loop system by selecting appropriately the static gain K, independently of parameters α and τ . In other words, steady state error is improved by increasing static gain K (assuming that the closed-loop remains stable).

Phase contribution Φ(ω) and gain contribution |C(ω)| of lead-lag controller C(s) at frequency ω are obtained as follows:

C(jω) = 1+jτ ω 1+jατ ω = (1+jτ ω)(1-jατ ω) 1+(ατ ω) 2 = 1+α(ωτ ) 2 +jωτ (1-α) 1+(ατ ω) 2 = |C(ω)| e jΦ(ω)
(5.24) Thus:

-Phase contribution Φ(ω) at frequency ω reads:

   cos(Φ(ω)) = 1+α(ωτ ) 2 √ (1+α(ωτ ) 2 ) 2 +(ωτ (1-α)) 2 sin(Φ(ω)) = ωτ (1-α) √ (1+α(ωτ ) 2 ) 2 +(ωτ (1-α)) 2 ⇒ tan(Φ(ω)) = ωτ (1 -α) 1 + α(ωτ ) 2
(5.25)

-Gain contribution |C(ω)| at frequency ω reads:

|C(ω)| = 1 + (τ ω) 2 1 + (ατ ω) 2 (5.26) 
A lead compensator adds positive phase to the system over the frequency range 1 τ to 1 ατ whereas a lag compensator adds negative phase to the system over the frequency range 1 ατ to 1 τ . The extremal phase shift Φ m is achieved at frequency ω m :

C(jω m ) = |C(ω m )| e jΦm where      ω m = 1 τ √ α |C(ω m )| = 1 √ α sin(Φ m ) = 1-α 1+α (5.27) Let g = |C(ω)| 2 .
From the preceding relations we get:

g = |C(ω)| 2 = 1 + (τ ω) 2 1 + (ατ ω) 2 ⇒ (τ ω) 2 = 1 -g gα 2 -1 (5.28) Let p = tan(Φ(ω)).
From the preceding relations it is clear that p and c are related as follows: Assuming that α ̸ = 1 and gα 2 -1 ̸ = 0 we nally get:

p = tan(Φ(ω)) ⇒ p 2 = (ωτ ) 2 (1-α) 2 (1+α(ωτ ) 2 ) 2 = 1-g gα 2 -1 (1-α) 2 1+α 1-g gα 2 -1 2 ⇔ p 2 1 + α 1-g gα 2 -1 2 -1-g gα 2 -1 (1 -α) 2 = 0 ⇔ p 2 gα 2 -1+α(1-g) gα 2 -1 2 -1-g gα 2 -1 (1 -α) 2 = 0 ⇔ p 2 gα(α-1)+α-1 gα 2 -1 2 -(1-g)(gα 2 -1) (gα 2 -1) 2 (1 -α) 2 = 0 ⇔ p 2 gα+1 gα 2 -1 2 (α -1) 2 -(1-g)(gα 2 -1) (gα 2 -1) 2 (1 -α) 2 = 0
p 2 (gα + 1) 2 -(1 -g)(gα 2 -1) = 0 ⇔ α 2 g(gp 2 + g -1) + 2αgp 2 + p 2 + 1 -g = 0 (5.30)
Thus the values of parameters α and τ of a lead-lag controller which produce a gain g and a phase p at frequency ω are dened as follows:

     τ = 1 ω 1-g gα 2 -1 α 2 g(gp 2 + g -1) + 2αgp 2 + p 2 + 1 -g = 0 where p = tan(Φ(ω)) g = |C(ω)| 2
(5.31)

-For a lag controller where p < 0 and 0 < g < 1 it is easily veried that a sucient condition for the solution of the quadratic equation in α to be positive is:

gp 2 + g -1 < 0 (5.32)
-Similarly for a lead controller where p > 0 and g > 1 it is easily veried that a sucient condition for the solution of the quadratic equation in α to be positive is:

p 2 + 1 -g < 0 (5.33)

Lag controller tuning: graphical method

Compensator design using a lag controller is based on the controller's attenuation at high frequencies as shown in Figure 5.3.

Assuming that steady state error and phase margin requirements are given, lag controller tuning can be done graphically as follows:

1. Using the nal value theorem, determine gain K > 0 which satises the steady state error requirement; This value will be shifted to 0 dB thanks to the attenuation of the lag controller at high frequencies:

-20 log 10 |K F (jω 1 )| = -20 log 10 (α) ⇔ α = K F (jω 1 ) (5.34)

5. Place the controller zero 1/τ such that 1/τ ≪ ω 1 , for example one decade to the left of the new gain crossover frequency ω 1 :

1 τ ≈ ω 1 10 ⇔ τ ≈ 10 ω 1 (5.35)
Finally draw the Bode plot of K C(jω) F (jω) where C(s) = 1+τ s 1+ατ s and check the value of the phase margin. If the achieved phase margin is not satisfactory increase the overestimate of the phase lag induced by the lag controller (try with 8 • rather than 5 • for example) and repeat the design process.

Lead controller tuning: graphical method

Compensator design using a lead controller is based on the controller's phase lead as shown in Figure 5.4.

Assuming that steady state error and phase margin requirements are given, lead controller tuning can be done graphically as follows:

1. Using the nal value theorem, determine gain K > 0 which satises the steady state error requirement;

2. Draw the Bode plot of K F (jω);

3. Find on the Bode phase plot of K F (jω) the gain crossover frequency ω 2 such that 20 log 10 (K F (jω 2 )) = 0 dB and compute the phase dierence ∆ϕ between the actual and the required phase margin M ϕ :

∆ϕ = M ϕ -(arg(K F (jω 2 ) + 180 • ) (5.36) 4.
Compute the maximum phase lead Φ m of the lead controller as follows:

Φ m = ∆ϕ + 5 • (5.37)
The increase of 5 • is an overestimate (forfait moustachu in French) of the consequence of the amplication eect of the phase lead controller on the actual phase margin. Indeed, due to the amplication eect, the actual gain crossover frequency will be higher (that is shifted to the right on the Bode plot);

5. Compute parameter α of the lead controller as follows:

α = 1 -sin(Φ m ) 1 + sin(Φ m ) (5.38) 
6. Compute the lead controller amplication 1/ √ α and read on the Bode magnitude plot the value of the frequency ω 3 such that: 20 log 10 (K F (jω 3 )) = +10 log 10 (α)

(5.39)

Frequency ω 3 > ω 2 will be the actual gain crossover frequency. Then compute parameter τ of the lead controller such that ω 3 corresponds to the frequency at which the maximum phase lead is achieved:

ω 3 = 1 τ √ α ⇔ τ = 1 ω 3 √ α (5.40)
Finally draw the Bode plot of K C(jω) F (jω) where C(s) = 1+τ s 1+ατ s and check the value of the phase margin. If the achieved phase margin is not satisfactory increase the overestimate of the eect of the lead controller on the phase margin (try with 8 • rather than 5 • for example) and repeat the design process.

Example

We consider a plant with the following transfer function:

F (s) = 4 s(s + 2)
(5.41)

We wish to control this plant such that the closed-loop match with the following specications:

-Steady-state error of the closed-loop when the input is a unit-ramp input, that is the velocity error: ϵ v = 0.05

-Phase margin: M ϕ = 50 •
Error ϵ(t) between the reference signal r(t) and the output y(t) reads:

ϵ(t) = r(t) -y(t) (5.42)
The use of the nal value theorem leads to the expression of velocity error:

ϵ v = lim t→∞ ϵ(t) = lim s→0 + s ϵ(s) (5.43)
Reading Figure 5.2 we get Y (s) = KC(s)F (s) 1+KC(s)F (s) . Furthermore as far as we focus on velocity error we have r(t

) = t ∀t ≥ 0. Thus R(s) = L[t] = 1 s 2 and: ϵ(s) = R(s) -Y (s) = 1 1+KC(s)F (s) R(s) = 1 1+KC(s) 4 s(s+2) 1 s 2 (5.44)
Using the fact that C(0) = 1 we nally get:

ϵ v = lim s→0 + s ϵ(s) = lim s→0 + s 1 1+KC(s) 4 s(s+2) 1 s 2 = lim s→0 + 1 1+KC(s) 4 s(s+2) 1 s = lim s→0 + 1 s+KC(s) 4 s+2 = 1 2 K (5.45)
Consequently we shall choose K = 10 to set ϵ v to 0.05:

ϵ v = 0.05 = 1 2 K ⇒ K = 10 (5.46)
In order to apply the graphical method the Bode plot of K F (jω) is sketched in Figure 5.5.

-For the lag controller we get:

       ω 1 ≈ 1.4 rad/sec 20 log 10 |K F (jω 1 )| ≈ 21 dB α = 10 21/20 ≈ 11.2 τ ≈ 10 ω 1 ≈ 7.1
(5.47)

-For the lead controller we get: We recall that the design process does not ensure the actual location of the dominant pole.

                     ω 2 ≈ 6 rad/sec arg(K F (jω 2 ) + 180 • ≈ 17 • Φ m = 50 -17 + 5 = 38 • α = 1-sin(Φm) 1+sin ( 

Lead-lag controller tuning: computational method

The method proposed by Phillips and Harbor 2 has the following steps:

-First get the required phase margin M Φ as well as the settling time t s from the design specications;

-Find gain K such that the requirement on the steady-state error ϵ(∞) of the closed-loop system is satised;

-Then choose the gain crossover frequency ω c corresponding to the required phase margin M Φ and the settling time t s . Frequency ω c is chosen by trial and error but shall satisfy:

ω c ≥ 8 t s tan(M Φ )
(5.49)

-Compute the phase angle φ of the controller C(s) at frequency ω c as:

φ := arg (C (jω c )) = -180 • + M Φ -arg (KF (jω c )) (5.50)
It is worth noticing that angle φ shall be between -90 • and +90 • : this corresponds to the minimum and maximum phase shift achievable by the controller.

-Set parameters α and τ of the lead-lag controller as follows:

C(s) = 1 + τ s 1 + ατ s where τ = 1-K|F (jωc)| cos(φ) ωcK|F (jωc)| sin(φ) ατ = cos(φ)-K|F (jωc)| ωc sin(φ) (5.51)
As in the PID tuning method, the preceding results may be obtained by equating the real part and the imaginary part of K C(jω c ) to cos(φ) |F (jωc)| and cos(φ)

|F (jωc)| respectively:

K C(jω c ) = K 1+α(ωcτ ) 2 +jωcτ (1-α) 1+(ατ ωc) 2 = cos(φ) |F (jωc)| + j sin(φ) |F (jωc)| ⇒ K 1+α(ωcτ ) 2 1+(ατ ωc) 2 = cos(φ) |F (jωc)| K ωcτ (1-α) 1+(ατ ωc) 2 = sin(φ) |F (jωc)|
(5.52)

If the achieved performances are not satisfactory then frequency ω c has to be tuned by trial and error. However we recall that even then the closed-loop system may not achieved the required performance or can be unstable as far as the design process does not ensure the actual location of the dominant poles.

Transient response specications

This section provides the links between time domain and frequency domain specications. Indeed in one hand we may have time domain specications, which are usually provided by the end-user of the system, whereas engineers rather prefer frequency domain specications because they are more tractable in terms of transfer functions. Frequency domain specications can be provided either in terms of dominant poles or in terms of phase margin M Φ and corresponding gain crossover frequency ω c .

Transient response specications are usually based on second order underdamped model where the damping ratio m is in between 0 and 0.7 (0 < m < 0.7) and where the static gain K has been set to 1 reads:

G(s) = Y (s) R(s) = ω 2 0 s 2 + 2mω 0 s + ω 2 0 (5.53)
It is worth noticing that model G(s) should not be interpreted as the actual transfer function of the closed-loop system but as the specied reduced model of the actual closed-loop system.

Moreover transfer function G(s) can be viewed as the closed-loop transfer function of the loop depicted in Figure 5. [START_REF] Paraskevopoulos | [END_REF] where the open-loop transfer function F (s) is put within a unity feedback loop.

Open-loop transfer function F (s) could be obtained thanks to the following identication: In the frequency domain we get:

     Y (s) R(s) = ω 2 0 s 2 +2mω 0 s+ω 2 0 = 1 s 2 +2mω 0 s ω 2 0 +1 Y (s) R(s) = F (s) 1+F (s) = 1 1 F (s) +1 ⇒ F (s) = ω 2 0 s (s + 2mω 0 ) (5.54)
F (jω) = ω 2 0 -ω 2 + j2mω 0 ω (5.55)
The phase margin occurs at the gain crossover frequency ω c which is the frequency such that |F (jω c )| = 1. Thus frequency ω c reads:

|F (jω c )| = 1 ⇒ ω 4 0 ω 4 c + 4m 2 ω 2 0 ω 2 c = 1 ⇔ ω c ω 0 4 + 4m 2 ω c ω 0 2 -1 = 0 (5.56)
The roots of this quadratic equation are given by:

ω c ω 0 2 = -2m 2 ± 4m 4 + 1 (5.57)
Since the root corresponding to the phase margin must be real positive we nally get:

ω c = ω 0 4m 4 + 1 -2m 2 (5.58)
The phase margin M Φ of the system is then dened as:

M Φ = 180 • + arg (F (jω c )) (modulo 360 • ) (5.59)
According to the expression of F (jω) we get:

arg (F (jω c )) = -180 • + arctan 2mω 0 ω c ω 2 c (5.60)
It is worth noticing that we add -180 • (modulo 360 • ) because the real part of the denominator of F (jω) is negative. Thus:

M Φ = 180 • + arg (F (jω c )) (modulo 360 • ) = 180 • -180 • + arctan 2m ω 0 ωc ω 2 c = arctan 2m ω 0 ωc = arctan 2m √ √ 4m 4 +1-2m 2
(5.61)

Assuming 0 < m < 0.7 the damping ratio m and the phase margin M Φ are related through the following approximate relation:

M Φ (in degrees) ≈ 100m
(5.62)

Thus the phase margin M Φ is related to the damping ratio m, that is to the overshoot of the closed-loop system response.

In addition under the same assumption on m the 95% settling time t s of second order underdamped closed-loop model can be approximated by:

t s ≈ 4 mω 0 (5.63)
Then we get the following relation between the phase margin M Φ and the settling time t s :

tan (M Φ ) = 2m ω 0 ωc t s ≈ 4 mω 0 ⇒ tan (M Φ ) ≈ 8 t s ω c (5.64)
Thus for a given phase margin M Φ , increasing the gain crossover frequency ω c reduces the settling time t s .

From the preceding results it is clear that there exists a close relation between time domain specications, typically settling time t s and relative overshoot D, and frequency domain specications, typically the phase margin M Φ and the corresponding gain crossover frequency ω c :

     D = e -πm √ 1-m 2 t s ≈ 4 mω 0 tan (M Φ ) = 2m ω 0 ωc ⇔      m = -ln(D) √ π 2 +ln 2 (D) M Φ (in degrees) ≈ 100m ω c ≈ 8 ts tan(M Φ ) (5.65)
Roughly speaking, the damping ratio is closely related to the phase margin M Φ whereas the settling time t s decreases when gain crossover frequency ω c increases. In other words system stability is improved and overshoot D is reduced by increasing the phase margin M ϕ whereas settling time t s is reduced by increasing system's bandwidth ω c .

The preceding relations also lead to the expected location of the dominant poles λ dp and λdp of the closed-loop system:

λ dp = -m ω 0 + jω 0 √ 1 -m 2 λdp = -m ω 0 -jω 0 √ 1 -m 2
(5.66)

ITAE performance index

A control system is optimum when a selected performance index J is minimized.

In 1953 Graham developed the Integral of Time-weighted Absolute Error (ITAE) performance index which reads as follows:

J IT AE = ∞ 0 t |r(t) -y(t)| dt (5.67)
This performance index used in the ITAE optimization process is a kind of tradeo between a short settling time (time t explicitly appears in the integral to be minimized) and a precise closed-loop system (error |r(t) -y(t)| appears in the integral to me minimized) 

m = 1 s + ω 0 m = 2 a 1 = 1.505 J IT AE = 1.93556 m = 3 a 2 = 1.783, a 1 = 2.
G(s) = Y (s) R(s) = N cl (s) q(s) (5.68) 
Where:

N cl (s) = ω m 0 q(s) = s m + a m-1 ω 0 s m-1 + a m-2 ω 2 0 s m-2 + • • • + a 1 ω m-1 0 s + ω m 0 (5.69)
In the preceding equation natural frequency ω 0 is a free parameter which has to be selected by the designer. Table 5.2 provides the values of coecients a i of q(s) based on the ITAE performance index for a step input. Those coecients are actually those which have been recomputed in 1989 by Y. Cao 1 In the following sections we consider the problem of designing a controller that provides asymptotic tracking of a reference input with zero steady state error.

Example 5.2. Consider a plant with the following transfer function:

F (s) = 1 (2s + 1) 2
(5.70)

We wish to design a controller which minimize the ITAE performance index and also which leads to a settling time t s for a step input less than 1 sec.

We choose for example a PID controller. Then the closed-loop transfer function without preltering (C pf (s) = 1) reads: That is:

Y (s) R pf (s) = (Kd s 2 +Kps+K i) F (s) s+(K d s 2 +Kps+K i )F (s) = K d s 2 +Kps+K i s(2s+1) 2 +K d s 2 +Kps+K i = K d s 2 +Kps+K i 4s 3 +(4+K d )s 2 +(1+Kp)s+K i
Y (s) R pf (s) = K d 4 s 2 + Kp 4 s + K i 4 s 3 + 4+K d 4 s 2 + 1+Kp 4 s + K i 4
(5.72)

The coecients of the denominator which minimize the ITAE performance index are obtained from Table 5.2:

s 3 + 1.783ω 0 s 2 + 2.172ω 2 0 s + ω 3 0 (5.73)
We need to select ω 0 in order to meet the settling time requirement. Since

t s ≈ 4
m ω 0 where m is set in a rst attempt to 0.8 we get:

t s = 1 m = 0.8 ⇒ ω 0 ≈ 4 m t s = 5 (5.74)
Then equating the denominator of (5.72) with (5.73) we obtain the three coecients of the PID controller as: Then we select the prelter C pf (s) in order to achieve the required ITAE transfer function. We check that all the roots of polynomial 7.915s 2 +54.05s+125 have negative real parts. Therefore we obtain for the transfer function of the prelter:

s 3 + 4+K d 4 s 2 + 1+Kp 4 s + K i 4 = s 3 + 8.915s 2 + 54.3s + 125 ⇒    K i = 500 K p = 216.2 K d =
C pf (s) = 125 7.915s 2 + 54.05s + 125
(5.77)

We nally get the transfer function of the whole system:

Y (s) R(s) = C pf (s) Y (s) R pf (s) = C pf (s) 7.915s 2 +54.05s+125 s 3 +8.915s 2 +54.3s+125 = 125 s 3 +8.915s 2 +54.3s+125
(5.78) Figure 5.7 shows the response of the whole system to a unit step input. As expected the settling time lower than 1 sec. Furthermore the whole system has a zero steady state error and an overshoot about 1.6%. The transfer function C(s) of a PID controller is the following:

C(s) = K p + K i s + K d s (5.79)
Note that if only the Proportional mode appears in the transfer function C(s) of the controller, the controller is called a proportional controller:

C P (s) = K p (5.80)
Similarly if only Proportional and Integral modes appears in the transfer function C(s) of the controller, the controller is called a proportional and integral controller (PI controller): 

C P I (s) = K p + K i s (5.81)
C P D (s) = K p + K d s
(5.82) Figure 5.8 shows a PID controlled system. Note that the derivative term K d s is not a proper transfer function; as a consequence the derivative term is either measured by a dedicated sensor or is changed to be K d s 1+τ d s where τ d is a very small time constant (i.e. close to zero):

K d s → K d s 1 + τ d s
where τ d ≈ 0 (5.83)

The previous approximation of the derivative term can be interpreted as the ideal derivative term K d s ltered by a rst-order system 1 1+τ d s with time constant τ d . A typical expression of τ d is the following where N is chosen between 10 and 20:

τ d = K d K p N (5.84)
As seen in the previous chapter the steady state error in proportional control will decrease with increasing gain K p (assuming no integral action). As far as integral action is concerned the term K i s usually decreases the overall bandwidth of the system thus increasing the overshoot and the settling time of the closedloop system. On the other hand the derivative action K d s usually increases the overall bandwidth of the system, thus increasing the overshoot and the settling time of the closed-loop system.

The eect which is usually observed when increasing the PID gains K p , K i and K d on the step response of the closed-loop system is summarized on Table 5.3.

One disadvantage of this ideal PID controller is that a sudden change in set point r(t) (and hence in the error ϵ(t)) will cause the derivative term to become very large and thus provide a derivative kick to the plant F (s) which

PID gain

Overshoot Settling time Steady-state error

Increasing K p (K p ↗) Increases ↗ Decreases ↘ Decreases ↘ Increasing K i (K i ↗) Increases ↗ Increases ↗ Eliminates Increasing K d (K d ↗) Decreases ↘ Decreases ↘
Increases ↗ Table 5.3: Usual eect when increasing K p , K i and K d gains Figure 5.9: PI-D controlled system is not desirable. An alternative implementation consists in putting the derivative action on the measurement Y (s) and not the error ϵ(s). This leads to an alternative PID control scheme, known as PI-D control. Figure 5.9 shows a PI-D controlled system. Finally it is worth noticing that whatever the location of the PID controller C(s) in the loop, either after the comparator as in Figure 5.10, in the feedback loop as in Figure 5.11 or split in the PI-D conguration as in Figure 5.9, the denominator q(s) of the closed-loop transfer function remains the same:

q(s) = 1 + F (s)C(s) = 1 + F (s) K p + K i s + K d s (5.85)
Indeed:

-The closed-loop transfer function of the unity feedback loop in Figure 5.10 reads:

Y (s) R(s) = F (s)C(s) 1 + F (s)C(s) = F (s)C(s) q(s) (5.86)
-The closed-loop transfer function of the feedback loop in Figure 5.9 where the PID controller is split reads:

Y (s) = F (s) -K d sY (s) + K p + K i s (R(s) -Y (s)) ⇔ Y (s) 1 + F (s) K p + K i s + K d s = F (s) K p + K i s R(s) ⇔ Y (s) R(s) = F (s) Kp+ K i s 1+F (s) Kp+ K i s +K d s = F (s) Kp+ K i s q(s)
(5.87)

-The closed-loop transfer function of the feedback loop with C(s) in Figure 5.11 reads:

Y (s) R(s) = F (s) 1 + F (s)C(s) = F (s) q(s) (5.88)
As a conclusion the transfer function of the closed-loop has the same denominator whatever the PID location in the loop.

Ziegler and Nichols tuning method

In 1942 Ziegler and Nichols published a gain tuning method to achieve fast closed-loop step response without excessive oscillations with PID controller in the loop. The method they have developed is based on the minimization on the following criteria which is called the Integral of the Absolute Error (IAE) criteria:

J IAE = ∞ 0 |r(t) -y(t)| dt (5.89)
The Ziegler and Nichols method rst consider that gains K i and K d are set to zero whereas the proportional gain K p is increased until the closed-loop system reaches the boundary of instability. The gain on the border of instability is called the critical gain and is denoted K cr whereas the period of sustained oscillations is called the ultimate period of oscillation and is denoted T cr .

At a gain just below the ultimate gain, the closed-loop oscillates with decaying amplitude while at a gain just above the ultimate gain the amplitude of oscillations increases with time. Critical ω cr can be obtained by noticing that at the verge of instability (where the system is said to be marginally stable) the characteristic equation must have at least an imaginary root which is noticed jω cr . Thus by substituting s by jω cr in the characteristic equation of the closed-loop system (i.e. the denominator of the closed-loop system which is set to zero) we get a complex equation that can be converted into two simultaneous equations by noticing that the real part and the imaginary part shall be equal to zero. From these we can solve for the two unknowns: one is the ultimate frequency ω cr and the other is the ultimate gain K cr . The ultimate period of oscillation T cr is related to the ultimate frequency ω cr by:

T cr = 2π ω cr (5.90)
Notice that the ultimate gain K cr and the ultimate frequency ω cr can be computed thanks to the Routh array in the same fashion the gain margin is computed.

Table 5.4 provides the Ziegler-Nichols PID controller gains. It was obtained by Ziegler and Nichols who aimed to achieve an underdamped response to a unit step input for the following plant model:

F (s) = K 0 1 + τ s e -T s
where τ, T > 0 (5.91)

It is worth noticing that if the critical gain K cr cannot be computed then there is no way to set the PID controller gains following the Ziegler-Nichols method.

Phillips and Harbor tuning method

Setting K p and K d parameters Others methods exist to set PID controllers. We present hereafter the method proposed by Phillips and Harbor2 .

Assume that the controller is a PID controller. Its transfer function C(s) reads:

C(s) = K p + K i s + K d s (5.92)
As far as it is assumed that the open-loop transfer function C(s)F (s) passes through the point 1 × e j(-180 • +M Φ ) for the gain crossover frequency ω c and the phase margin M Φ we get:

C(jω c )F (jω c ) = 1 × e j(-180 • +M Φ ) ⇔ |C(jω c )| = 1 |F (jωc)| arg (C (jω c )) + arg (F (jω c )) = -180 • + M Φ (5.93)
Denoting by φ the angle of C(jω c ) we get:

φ := arg (C (jω c )) = -180 • + M Φ -arg (F (jω c ))
(5.94) Furthermore:

C(jω c ) = K p + j K d ω c -K i ωc = |C(jω c )| e j arg(C(jωc)) = |C(jω c )| (cos(φ) + j sin(φ))
(5.95)

Equating the real part and the imaginary part yields:

K p = |C(jω c )| cos(φ) = cos(φ) |F (jωc)| K d ω c -K i ωc = |C(jω c )| sin(φ) = sin(φ) |F (jωc)|
(5.96)

Consequently the method proposed by Phillips and Harbor 2 has the following steps:

-First get the required phase margin M Φ as well as the settling time t s from the design specications;

-Then choose the gain crossover frequency ω c corresponding to the required phase margin M Φ and the settling time t s . Frequency ω c is chosen by trial and error but shall satisfy:

ω c ≥ 8 t s tan(M Φ )
(5.97)

-Compute the phase angle φ of the controller C(s) at frequency ω c as:

φ := arg (C (jω c )) = -180 • + M Φ -arg (F (jω c )) (5.98)
It is worth noticing that angle φ shall be between -90 • and +90 • : this corresponds to the minimum and maximum phase shift achievable by the controller.

-Finally choose the integral gain |K i | (for example |K i | = 0.01 but it could be K i = 0 when integral action is not required); the proportional gain K p and derivative gain K d are then given by:

K p = cos(φ) |F (jωc)| K d = sin(φ) ωc|F (jωc)| + K i ω 2 c
(5.99)

If the achieved performances are not satisfactory then frequency ω c has to be tuned by trial and error. Usually ω c is increased until the real part of some closed-loop poles is equal to the real part of the required dominant poles.

However remember that even then the closed-loop system may not achieved the required performance or can be unstable as far as the design process does not ensure the actual location of the dominant poles. Indeed the design process come from the assumption that the closed-loop system can be modelled by a second order model (which is obviously a reduced order model).

Tuning K i through root locus technique

The inuence of parameter K i can be investigated thanks to the root locus technique. Indeed let's write transfer function F (s) as follows where N (s) and D(s) are polynomials:

F (s) = N (s) D(s) (5.100)
Transfer function F (s) is assumed to be a proper and co-prime rational fraction.

A PID controller is used to control the plant. The transfer function C(s) of the PID controller is:

C(s) = K p + K i s + K d s (5.101) 
The controller C(s) is put either in front the plant in a unity feedback loop as depicted in Figure 5.10 or in the feedback path as depicted in Figure 5.11 or in a PI-D conguration as depicted in Figure 5.9. For all congurations the denominator q(s) of the closed-loop transfer function H(s) = Y (s) R(s) reads:

q(s) = sD(s) + N (s) K d s 2 + K p s + K i (5.102)
Using the expression of parameters K p and K d provided in (5.99) the closedloop characteristic polynomial reads:

q(s) = sD(s) + N (s) K d s 2 + K p s + K i = sD(s) + N (s) sin(φ) ωc|F (jωc)| + K i ω 2 c s 2 + cos(φ) |F (jωc)| s + K i = sD(s) + N (s) sin(φ) ωc|F (jωc)| s 2 + cos(φ) |F (jωc)| s + K i N (s) s 2 ω 2 c + 1 (5.103)
Dividing both side of the closed-loop characteristic equation by the terms without K i reads:

q(s) = 0 ⇔ sD(s) + N (s) sin(φ) ωc|F (jωc)| s 2 + cos(φ) |F (jωc)| s + K i N (s) s 2 ω 2 c + 1 = 0 ⇔ 1 + K i L(s) = 0
(5.104)

Where:

L(s) = N (s) s 2 ω 2 c + 1 sD(s) + N (s) sin(φ) ωc|F (jωc)| s 2 + cos(φ) |F (jωc)| s (5.105)
The division by the terms without K i doesn't change the roots of the closedloop transfer function. L(s) is a proper transfer function since the degrees of its numerator and denominator equal those of the closed-loop transfer function's numerator and denominator respectively.

The design procedure is the following:

-Draw the root locus of L(s) as K i varies;

-Choose the value of K i to satisfy the specications from the root locus;

-Once K i is chosen set K p and K d according to (5.99).

Real dominant pole placement with PI or PD controller

Consider a plant described by its transfer function F (s) where N (s) and D(s) are polynomials:

F (s) = N (s) D(s) (5.106)
Transfer function F (s) is assumed to be a proper and co-prime rational fraction.

A Proportional-Integral (PI) controller is used to control the plant. The transfer function C(s) of the PI controller is:

C(s) = K p + K i s (5.107)
The controller C(s) is put either in front the plant in a unity feedback loop as depicted in Figure 5.10 or in the feedback path as depicted in Figure 5.11. Nevertheless, the integral action is usually put in the forward path in order to achieve an unity closed-loop static gain. For all congurations the closed-loop characteristic equation is:

1 + C(s)F (s) = 0 ⇔ C(s) = -1 F (s) (5.108)
Furthermore the denominator q(s) of the closed-loop transfer function

H(s) = Y (s)
R(s) reads as follows irrespective the chosen feedback loop conguration:

q(s) = sD(s) + N (s) (K p s + K i ) (5.109)
Suppose that the requirements of the closed-loop control performance in frequency or time domain are converted into a real dominant pole λ dp ∈ R -. Substitute λ dp into (5.108) yields:

K p + K i λ dp = -1 F (λ dp ) ⇔ K i = -λ dp 1 F (λ dp ) + K p (5.110)
Substituting (5.110) into (5.108) yields:

K p + K i s = -1 F (s) := -D(s) N (s) ⇔ 0 = sD(s) + N (s) (K p s + K i ) = sD(s) + N (s) K p s -λ dp 1 F (λ dp ) + K p = sD(s) -λ dp N (s) F (λ dp ) + K p N (s) (s -λ dp ) = sD(s) -λ dp N (s) F (λ dp ) 1 + K p N (s)(s-λ dp) sD(s)-λ dp N (s) F (λ dp ) (5.111)
Simplifying by sD(s) -λ dp N (s) F (λ dp ) yields:

1 + K p L(s) = 0 (5.112)
Where the ctitious transfer function L(s) is dened by:

L(s) = N (s) (s -λ dp ) sD(s) -λ dp N (s) F (λ dp )
(5.113)

Fictitious transfer function L(s) is proper since the degrees of its numerator and denominator equal those of the closed-loop transfer function's numerator and denominator respectively.

The design procedure for the PI controller is then the following:

-Set the value of the dominant pole λ dp according to the specications;

-Draw the root locus of ctitious transfer function L(s) given by (5.113) as K p ≥ 0 varies. The location of the pole λ dp will not move despite the change of K p . Note that negative values of K p can be achieved by plotting the root locus of -L(s);

-From the root locus of L(s) choose the value of K p which guarantee that λ dp is the dominant pole of the closed-loop;

-Once K p is chosen set K i according to (5.110).

Note that the same kind of result can be obtained by a Proportional-Derivative (PD) controller: 

C(s) = K p + K d s (5.114) Then:        K d = -1 λ dp 1 F (λ dp ) + K p L(s) = N (s) 1-s λ dp D(s)- s N (s) λ dp F (λ dp )

Complex conjugate dominant pole placement with PID controller

We present hereafter the method proposed by Wang & all 3 . This is an extension of the methods presented in section 5.5.4. Consider a plant described by its transfer function F (s) where N (s) and D(s) are polynomials:

F (s) = N (s) D(s) (5.116)
Transfer function F (s) is assumed to be a proper and co-prime rational fraction.

A PID controller is used to control the plant. The transfer function C(s) of the PID controller is:

C(s) = K p + K i s + K d s (5.117)
The controller C(s) is put either in front the plant in a unity feedback loop as depicted in Figure 5.10 or in the feedback path as depicted in Figure 5.11 or in a PI-D conguration as depicted in Figure 5.9. Nevertheless, the integral action is usually put in the forward path in order to achieve an unity closed-loop static gain. For all congurations the closed-loop characteristic equation is:

1 + C(s)F (s) = 0 ⇔ C(s) = -1 F (s) (5.118) 
Furthermore the denominator q(s) of the closed-loop transfer function

H(s) = Y (s)
R(s) reads as follows irrespective the chosen feedback loop conguration:

q(s) = sD(s) + N (s) K d s 2 + K p s + K i (5.119)
Suppose that the requirements of the closed-loop control performance in frequency or time domain are converted into a pair of complex conjugate dominant poles {λ dp , λdp }:

λ dp = a + jb λdp = a -jb ⇔ a = Re (λ dp ) b = Im (λ dp ) (5.120)
The dominance of poles λ dp and λdp requires that the ratio of the real part of any of other poles to a exceeds r where r is usually greater than 3. Thus, we want all other poles to be located at the left of the line s = r a. The problem of the guaranteed dominant pole placement is to nd the PID parameters such that all the closed-loop poles lie in the required region except the dominant poles λ dp and λdp .

Substitute λ dp by a + jb into (5.118) yields:

K p + K i a + jb + K d (a + jb) = -1 F (λ dp ) (5.121)
This complex equations can be decomposed into two sub-equations, one from the real part and the other from the imaginary part. Solving the two equations for K i and K d in terms of K p yields:

K i = -a 2 + b 2 Kp 2a + X 1 K d = - Kp 2a + X 2 (5.122) Where:    X 1 = 1 2b Im -1 F (λ dp ) -1 2a Re -1 F (λ dp ) X 2 = 1 2b Im - 1 
F (λ dp ) + 1 2a Re -1 F (λ dp ) (5.123)
This simplies the original problem to a one-parameter problem in K p for which the root locus method will be applied. We plot the roots of the closed-loop characteristic equation for all positive values of K p and determine the range of K p such that the roots except the chosen dominant pair are the required region. Substituting (5.122) into (5.118) yields:

1 + sX 2 N (s) D(s) -(a 2 + b 2 ) X 1 s N (s) D(s) -K p s 2 -2as + (a 2 + b 2 ) 2as N (s) D(s) = 0 (5.124)
Dividing both side by the terms independent of K p gives after some manipulations:

1 + K p L(s) = 0 (5.125)
Where the ctitious transfer function L(s) is dened by:

L(s) = -N (s) s 2 -2as + (a 2 + b 2 ) 2asD(s) + N (s) (2aX 2 s 2 -2a(a 2 + b 2 )X 1 )
(5.126)

The division by the terms independent of K p doesn't change the roots of the closed-loop transfer function. Fictitious transfer function L(s) is proper since the degrees of its numerator and denominator equal those of the closed-loop transfer function's numerator and denominator respectively.

The design procedure for the PID controller is then the following:

-Set the value of the dominant poles λ dp and λdp according to the specications;

-Draw the root locus of ctitious transfer function L(s) given by (5.126) as K p ≥ 0 varies. The location of the poles λ dp and λdp will not move despite the change of K p . Note that negative values of K p can be achieved by plotting the root locus of -L(s);

-From the root locus of L(s) choose the value of K p which guarantee that λ dp and λdp are the dominant poles of the closed-loop;

-Once K p is chosen set K i and K d according to (5.122). 

F (s) = 1 (2s + 1) 2
(5.127)

We wish to design a PID controller such that the closed-loop system exhibits a time response t s of 3 seconds and an overshoot of 5%.

Using the results of section 5.3, dominant poles λ dp and λdp of the closed-loop system are the following:

         a = -m ω 0 ≈ -4 ts m = -ln(D) √ si 2 +ln 2 (D) ω 0 ≈ 4 m ts b = ω 0 √ 1 -m 2 ⇒ λ dp = a + j b = -1.33 + j1.4 λdp = a -j b = -1.33 -j1.4 (5.128)
Root locus of transfer function L(s) given by (5.126) is shown in Figure 5.12.

It is clear that whatever the value of K p the required poles at -1.33 ± j1.4 are invariant. The third pole of the closed-loop transfer function is located on the horizontal branch. The square around the value -4 corresponds to a value of K p set to 56; it is indeed a fast pole comparatively to the two required dominant poles. The values of K i and K d obtained thanks to (5.122) are the following:

Kp = 56 ⇒ Ki = 58.88 Kd = 22.44 (5.129)
The step response of the closed-loop system obtained thanks to the designed PID is shown in Figure 5.13.

Once the PID controller C(s) is placed in the direct path, the closed-loop transfer function reads:

Y (s) R(s) = F (s)C(s) 1 + F (s)C(s)
= 22.44s 2 + 56s + 58.89 4s 3 + 26.44s 2 + 57s + 58.89

(5.130) We can check that the poles of the closed-loop transfer function are those drawn on Figure 5.12, that are the two expected dominant poles -1.33 ± j1.4 and the fast pole -4. 

Purpose

Let's come back to the unit step response shown in Figure 5.13. It is clear that the achieved overshoot is greater than the specication at 5%. Why ? Basically because the specications based on dominant pole placement assume that the numerator of the closed-loop system is a constant, which is usually not the case because the numerator of the closed-loop system is simply a consequence of the designed controller C(s). In order to change into a constant the numerator of the closed-loop system, a prelter C pf (s) may be used.

As shown in Figure 5.14, the prelter C pf (s) is a controller which is situated outside the feedback loop.

What is the purpose of the prelter ? Once the controller C(s) is designed, the poles of the feedback loop transfer function Y (s) R pf (s) are set, but not its zeros. These zeros may cause undesirable overshoots in the transient response of the closed-loop system. The purpose of the prelter C pf (s) is to reduce or eliminate such overshoots in the closed-loop system. Additionally the prelter may annihilate slow stable poles which sometimes cannot be shifted by the controller. Moreover in the case where the zeros are positive, the system without prelter may exhibit undesirable non-minimum phase behaviour (see section 4.10).

The transfer function of a basic prelter reads as follows where constant K pf is set such that the static gain of Y (s) R(s) is unitary, meaning that the position error is zero, and where time constant λ pf is set through a trial and error process until that the transient response becomes satisfactory:

   C pf (s) = K pf s+λ pf Y (s) R(s) s=0 = K pf s+λ pf F (s)C(s) 1+F (s)C(s) s=0 := 1 ⇒ K pf = λ pf 1+F (0)C(0) F (0)C(0)
(5.131)

We will see in the following sections how to enhance the design of the prelter.

Transfer function with negative real-parts zeros

We focus in Figure 5.14. Let N cl (s) be the numerator of transfer function Y (s) R pf (s) and q(s) its denominator:

Y (s) R pf (s) = F (s)C(s) 1 + F (s)C(s) = N cl (s) q(s) (5.132)
In this section we will assume that transfer function Y (s) R pf (s) has all its zeros with negative real-parts, or equivalently that all the roots of N cl (s) are located in the left half plane.

Prelter C pf (s) is designed such that its poles cancel the zeros of the closedloop system (i.e. the roots of N cl (s)). If there is no pole of the closed-loop system to cancel, the numerator of the prelter is set to be a constant K pf . In such a case the transfer function of the full system reads:

Y (s) R(s) = K pf q(s) (5.133)
As a consequence the transfer function of the prelter reads:

C pf (s) = K pf N cl (s) (5.134)
Note that this is only possible because the roots of N cl (s) have negative real-parts, meaning C pf (s) is stable.

Usually constant K pf is set such that the static gain of Y (s) R(s) is unitary, meaning that the position error is zero:

Y (s) R(s) s=0 = 1 ⇒ K pf = D cl (0) (5.135)
Additionally the numerator of the prelter may also cancel some slow stable poles (poles in the left plane) of the closed-loop system when they cannot be shifted by the controller C(s). In this case, the numerator of the prelter C pf (s) is no more a constant. When feedback loop transfer function Y (s) R pf (s) = N cl (s) q(s) has zeros with positive real parts the design technique presented in section 5.6.2 to design the prelter C pf (s) is not applicable. Indeed in that situation N cl (s) has roots with positive real parts and thus prelter C pf (s) =

K pf N cl (s) is unstable.
One way to tackle this problem is to use a feedforward compensator C f f (s) as shown in Figure 5.15.

Thanks to the feedforward compensator

C f f (s), transfer function Y (s) R pf (s)
reads as follows:

Y (s) R pf (s) = F (s) (C(s) + C f f (s)) 1 + F (s)C(s) (5.136)
Let N F (s) and D F (s) be the numerator and the denominator of F (s), respectively. Similarly let N C (s) and D C (s) be the numerator and the denominator of C(s) and N f f (s) and D f f (s) be the numerator and the denominator of C f f (s). Thus transfer function Y (s) R pf (s) reads:

       F (s) = N F (s) D F (s) C(s) = N C (s) D C (s) C f f (s) = N f f (s) D f f (s) ⇒ Y (s) R pf (s) = N F (s) (N C (s)D f f (s) + D C (s)N f f (s)) D f f (s) (N F (s)N C (s) + D F (s)D C (s))
(5.137) Choosing the feedforward compensator C f f (s) to be a constant gain K f f leads to the following expression for the transfer function Y (s) R pf (s) :

C f f (s) = K f f ⇒ Y (s) R pf (s) = N F (s) (N C (s) + K f f D C (s)) N F (s)N C (s) + D F (s)D C (s) (5.138)
We recognize in polynomial N F (s)N C (s) + D F (s)D C (s) the polynomial q(s) obtained when C f f (s) = 0. Consequently the denominator of feedback loop transfer function Y (s) R pf (s) remains the same when C f f (s) = K f f while its numerator becomes N F (s) (N C (s) + K f f D C (s)) when feedforward is used. Assuming that N F (s) has no root in the right half plane, constant K f f shall be chosen such that all the roots of N C (s) + K f f D C (s) have negative real parts to be able to compute a stable prelter C pf (s). This can be achieved through the root locus of the ctitious transfer function D C (s) N C (s) . Take care that Once K f f has been chosen such that all the roots of N C (s) + K f f D C (s) have negative real parts then the design technique presented in section 5.6.2 can be applied.

If the plant with transfer function F (s) is non-minimum phase, meaning that N F (s) has roots with positive real part, then the situation is more complicated. N F (s) can then be split into two parts as follows, where polynomial N s (s) contains the roots of N F (s) with negative real part (stable zeros) and N u (s) contains the roots of N F (s) with positive real part (unstable zeros):

N F (s) = N s (s) N u (s) (5.139)
Following Xing & al. 4 , the prelter C pf (s) can be built as a function of either Nu(-s) Ns(s) or Nu(-s) D 1 (s) , where the roots of D 1 (s) are chosen quite far from the desired dominant poles. Polynomial N u (-s) is the polynomial whose roots are the opposite of the roots of polynomial N u (s). Those techniques are called Zero Phase Error Compensator (ZPEC) and Modied Zero Phase Error Compensator (MZPEC), respectively.

Alternatively, consider the feedback loop shown in Figure 5.16. The transfer function Y (s) R pf (s) reads:

Y (s) R pf (s) = F (s) 1 + C 1 (s)F (s) -C 2 (s)
(5.140)

In the following, C 1 (s) and C 2 (s) have the following expressions, where Q(s) is a transfer function to be designed 5 :

C 1 (s) = F -1 n (s)Q(s) C 2 (s) = Q(s) (5.141)
Transfer function F n (s) has the following expression, where polynomial N u (-s) is the polynomial whose roots are the opposite of the roots of polynomial N u (s):

F (s) = N s (s) N u (s) D(s) ⇒ F n (s) = N s (s) N u (-s) D(s) := F (s)A -1 (s) (5.142)
All-pass lter A(s) is stable and has the following expression:

A -1 (s) = N u (-s) N u (s) ⇒ A(s) = N u (s) N u (-s) (5.143)
Then the transfer function Y (s) R pf (s) reads:

Y (s) R pf (s) = F (s) 1 + F -1 n (s)Q(s)F (s) -Q(s) := N s (s) N u (-s) D(s) T (s) (5.144)
where transfer function T (s) reads as follows

T (s) := Q(s) + A -1 (s) (1 -Q(s)) (5.145)
It is clear that if T (s) is stable then all zeros of Y (s) R pf (s) will have negative real part. Consequently Q(s) shall be designed such that F -1 n (s)Q(s) is proper and T (s) stable. Let's assume that Q(s) reads as follows, where N Q (s) and D Q (s) are polynomials:

Q(s) = N Q (s) D Q (s) (5.146)
Then transfer function T (s) reads as follows:

Q(s) = N Q (s) D Q (s) ⇒ T (s) = N Q (s) N u (s) + N u (-s) (D Q (s) -N Q (s)) D Q (s) N u (s) (5.147) Thus, if we choose N Q (s) and D Q (s) such that D Q (s)-N Q (s) = α(s) N u (s)
, there is a simplication by N u (s) in T (s) which becomes:

D Q (s) -N Q (s) = α(s) N u (s) ⇒ T (s) = N Q (s) + α(s) N u (-s) D Q (s) (5.148)
Moreover, if D Q (s) has all its roots with negative real part then T (s) is stable.

Finally, Internal Model Control and/or Fractional Order Controller may also be used to handle this situation, but this is out of the scope of this lecture.

Example 5.4. We consider the following non-minimum phase transfer function:

F (s) = 10s -1 s 2 + 1.4s + 1 = 10 (s -0.1) s 2 + 1.4s + 1 (5.149)
By identication we get:

   N s (s) = 10 N u (s) = s -0.1 D(s) = s 2 + 1.4s + 1 ⇒ A -1 (s) = Nu(-s) Nu(s) = s+0.1 s-0.1 F n (s) = F (s)A -1 (s) = -10(s+0.1)
s 2 +1.4s+1 (5.150) Then Q(s) is designed such that F -1 n (s)Q(s)
is proper and T (s) stable. In order to render F -1 n (s)Q(s) proper we choose Q(s) for example as follows where a is a design parameter:

Q(s) = 1 s + a ⇒ N Q (s) = 1 D Q (s) = s + a (5.151) Then we choose N Q (s) and D Q (s) such that D Q (s) -N Q (s) = α(s) N u (s): D Q (s) -N Q (s) = α(s) N u (s) ⇒ s + a -1 = α(s) (s -0.1) (5.152)
We nally get: 5.153) and:

α(s) = 1 a = 0.9 ⇒ T (s) = N Q (s) + α(s) N u (-s) D Q (s) = 1 + (s + 0.1) s + 0.9 ( 
Y (s) R pf (s) = N s (s) N u (-s) D(s) T (s) = 10(s + 0.1)(s + 0.9) (s 2 + 1.4s + 1)(s + 1.1) (5.154)
We can see that Y (s) R pf (s) has all its zeros with negative real part, which was the primary objective of the design. Furthermore, Y (s) R pf (s) is also stable. ■

Design steps

The general scheme for the controlled system is provided in Figure 5.15 where C(s) is the transfer function of the controller, C pf (s) the transfer function of the prelter and C f f (s) the transfer function of the potential feedforward compensator.

The design philosophy is to set the transfer functions C(s), C pf (s) and possibly C f f (s) in order to force the transfer function of the full system to have the following expression where K pf is a constant gain and q(s) a polynomial formed with the required closed-loop poles:

Y (s) R(s) = K pf q(s) (5.155)
The design steps of the control loop are then the following:

-Design the controller C(s) such that transfer function of feedback loop without preltering (C pf (s) = 1) and without feedforward compensator (C f f (s) = 0) has the required denominator q(s). In other words controller C(s) is used to set the poles of the controlled system.

-In the case where the feedback loop transfer function Y (s) R pf (s) = N cl (s) q(s) has zeros with positive real parts, and assuming that N F (s) has no root in the right half plane, then design the feedforward compensator

C f f (s) = K f f such that polynomial N C (s) + K f f D C (s)
has all its roots with negative real parts.

-Design the prelter C pf (s) such that transfer function of the full system does not have any zero:

Y (s) R(s) = K pf q(s) (5.156)
In other words prelter C pf (s) is used to annihilate the zeros of the transfer function of the controlled system.

Example 5.5. Consider a plant with the following transfer function:

F (s) = 1 s (s -2) (5.157)
Obviously the plant is not stable, indeed there is one pole at +2. In order to stabilize the plant we decide to use the following PD controller (we do not use an integral action because the plant F (s) has already an integral term):

C(s) = K p + K d s (5.158)
Furthermore we set the targeted transfer function of the controlled system as follows (see Figure 5.14):

Y (s) R(s) = 2 s 2 + 5 s + 2 (5.159)
The rst step of the design is to set the values K p and K d of the PD controller such that the denominator of the targeted transfer function is achieved. Transfer function Y (s) R pf (s) (without prelter) reads:

Y (s) R pf (s) = C(s)F (s) 1+C(s)F (s) = Kp+K d s Kp+K d s+s (s-2) = Kp+K d s s 2 +s (K d -2)+Kp (5.160)
The actual denominator will be equal to the targeted denominator as soon as K p and K d are set as follows:

s 2 + s (K d -2) + K p = s 2 + 5 s + 2 ⇒ K d = 7 K p = 2 (5.161)
Thus transfer function Y (s) R pf (s) (without prelter) reads:

Y (s) R pf (s) = K p + K d s s 2 + s (K d -2) + K p = 2 + 7 s s 2 + 5 s + 2 (5.162)
As soon as the zeros -2/7 of Y (s) R pf (s) (without prelter) have negative real parts there is no need of feedforward compensator C f f (s):

C f f (s) = 0 (5.163)
Taking now into account prelter C pf (s) transfer function Y (s) R(s) reads:

Y (s) R(s) = R pf (s) R(s) Y (s) R pf (s) = C pf (s) 2 + 7 s s 2 + 5 s + 2 (5.164)
Thus transfer function of the controlled system will read Y (s) R(s) = 2 s 2 +5 s+2 as soon as prelter C pf (s) is set as follows:

Y (s) R(s) = 2 s 2 + 5 s + 2 ⇒ C pf (s) = 2 2 + 7 s
(5.165) ■ 5.7 Algebraic controller design

Polynomial product

Let A(s) be a polynomial of degree n and B(s) be a polynomial of degree m:

A(s) = a 0 + a 1 s + • • • + a n s n B(s) = b 0 + b 1 s + • • • + b m s m (5.166) Then the product A(s)B(s) is a polynomial C(s) of degree n + m: C(s) = A(s)B(s) := c 0 + c 1 s + • • • + c n+m s n+m (5.167)
Coecients c 0 , c 1 , • • • , c n+m of polynomial C(s) can be obtained as follows:

     c 0 c 1 . . . c n+m      = T B      a 0 a 1 . . . a n      (5.168)
where Toeplitz matrix T B is the following (n + m + 1) × (n + 1) matrix which is obtained by repeatedly shifting to the bottom its rst column:

T B =                   b 0 0 • • • 0 0 b 1 b 0 . . . . . . . . . . . . . . . b m b m-1 0 b m . . . . . . 0 . . . . . . . . . . . . b m b m-1 0 0 • • • 0 b m                   (5.169)
This result can be achieved by matching the coecients of like power of s in the development of A(s)B(s).

Alternatively, coecients c 0 , c 1 , • • • , c n+m of polynomial C(s) can be obtained as follows:

     c 0 c 1 . . . c n+m      = T A      b 0 b 1 . . . b m      (5.170)
where Toeplitz matrix T A is the following (n + m + 1) × (m + 1) matrix which is obtained by repeatedly shifting to the bottom its rst column:

T A =                   a 0 0 • • • 0 0 a 1 a 0 . . . . . . . . . . . . . . . a n a n-1 0 a n . . . . . . 0 . . . . . . . . . . . . a n a n-1 0 0 • • • 0 a n                   (5.171)
Moreover, let A(s) and X(s) be polynomials of degree n 1 and m 1 , respectively, and B(s) and Y (s) be polynomials of degree n 2 and m 2 , respectively:

       A(s) = a 0 + a 1 s + • • • + a n 1 s n 1 X(s) = x 0 + x 1 s + • • • + x m 1 s m 1 B(s) = b 0 + b 1 s + • • • + b n 2 s n 2 Y (s) = y 0 + y 1 s + • • • + y m 2 s m 2 (5.172) Furthermore assume that n 1 + m 1 ≥ n 2 + m 2 . Then the product A(s)X(s) + B(s)Y (s) is a polynomial C(s) of degree n 1 + m 1 : n 1 + m 1 ≥ n 2 + m 2 ⇒ C(s) = A(s)X(s) + B(s)Y (s) := q 0 + q 1 s + • • • + q n 1 +m 1 s n 1 +m 1 (5.173) Coecients q 0 , q 1 , • • • , q n 1 +m 1 of polynomial C(s) can be obtained as follows:      q 0 q 1 . . . q n 1 +m 1      = S XY               a 0 a 1 . . . a n 1 b 0 b 1 . . . b n 2               (5.174)
where Sylvester matrix S XY is the following (n 1 + m 1 + 1) × (n 1 + 1 + n 2 + 1) matrix which is obtained by shifting successively to the bottom coecients x i and then coecients y j : 

S XY =                       x 0 0 • • • 0 y 0 0 • • • 0 x 1 x 0 . . .
0 0 • • • 0 0 • • • 0 y m 2 n 1 +1 columns n 2 +1 columns                                                                  n 1 +m 1 +1 rows (5.175)
Alternatively, coecients q 0 , q 1 , • • • , q n 1 +m 1 of polynomial C(s) can be obtained as follows:

     q 0 q 1 . . . q n 1 +m 1      = S AB               x 0 x 1 . . . x m 1 y 0 y 1 . . . y m 2               (5.176)
where Sylvester matrix S AB is the following

(n 1 + m 1 + 1) × (m 1 + 1 + m 2 + 1)
matrix which is obtained by shifting successively to the bottom coecients a i and then coecients x j :

S AB =                       a 0 0 • • • 0 b 0 0 • • • 0 a 1 a 0 . . . b 1 b 0 . . . . . . . . . . . . . . . . . . . . . a n 1 a n 1 -1 a 0 b n 2 0 a n 1 . . . 0 b n 2 . . . . . . 0 . . . . . . 0 . . . . . . . . . . . . . . . b n 2 b n 2 -1 0 0 • • • 0 0 • • • 0 b n 2 m 1 +1 columns m 2 +1 columns                                                                  n 1 + m 1 + 1 rows
(5.177)

Sylvester's Theorem

Consider the two polynomials:

A(s) = a 0 + a 1 s + • • • + a n-1 s n-1 + a n s n B(s) = b 0 + b 1 s + • • • + b m-1 s m-1 + b m s m (5.178)
Polynomials A(s) and B(s) are said to be coprime is they have no common root. In other words, there in no polynomial R(s) ̸ = 1 such that:

A(s) = Y (s) R(s) s.t. deg (Y (s)) < n B(s) = X(s) R(s) s.t. deg (X(s)) < m (5.179)
The preceding equation can be rewritten as follows:

A(s) B(s) = Y (s) X(s) s.t. deg (Y (s)) < deg (A(s)) deg (X(s)) < deg (B(s)) (5.180)
or, equivalently:

A(s) X(s) + B(s) (-Y (s)) = 0 s.t. deg (Y (s)) < deg (A(s)) = n deg (X(s)) < deg (B(s)) = m (5.181)
Let S AB be the following square matrix, also called Sylvester resultant matrix: 

S AB =                    a 0 0 • • • b 0 0 • • • a 1 a 0 . . .
m columns n columns                                                         n + m rows (5.182)
Then it can be shown that A(s) and B(s) are coprime (i.e. they have no common roots) if and only if:

det(S AB ) ̸ = 0 (5.183)
This property indicates that polynomial equation A(s) X(s) -B(s) Y (s) = 0, or equivalently A(s) X(s) + B(s) Y 1 (s) = 0 with Y 1 (s) := -Y (s), has no polynomial solution X(s) and Y (s) as soon as A(s) and B(s) are coprime.

Furthermore if A(s) and B(s) are coprime, then there exists unique polynomials X(s) and Y (s) with deg (X(s)) < deg (B(s)) = m and deg (Y (s)) < deg (A(s)) = n such that the following Bézout equation holds:

A(s) X(s) + B(s) Y (s) = 1 s.t. deg (Y (s)) < deg (A(s)) = n deg (X(s)) < deg (B(s)) = m (5.184)
On way to solve a Bézout equation is to turn it into a set of n + m linear equations with n + m unknowns. Let:

X(s) = x 0 + x 1 s + • • • + x m-1 s m-1 Y (s) = y 0 + y 1 s + • • • + y n-1 s n-1
(5.185)

Then the set of linear equation reads:

S AB           x 0 . . . x m-1 y 0 . . . y n-1           =      1 0 . . . 0      (5.186)
Alternatively, given a polynomial q(s) of degree n + m -1, assume that we are looking for polynomials X(s) and Y (s) such that:

A(s)X(s) + B(s)Y (s) = q(s) (5.187)
Assuming that A(s) and B(s) are coprime, the set of linear equation to be solved reads as follows:

q(s) = q 0 + q 1 s + • • • + q n+m-1 s n+m-1 ⇒ S AB           x 0 . . . x m-1 y 0 . . . y n-1           =      q 0 q 1 . . . q n+m-1      (5.188)
Furthermore, it is worth noticing that the following relation also holds 6 :

A(s)X(s) + B(s)Y (s) = a 0 a 1 • • • a n b 0 b 1 • • • b m               X(s) sX(s) . . . s n X(s) Y (s) sY (s) . . . s m Y (s)              
(5.189)

Example 5.6. Let A(s) and B(s) be the following polynomials:

A(s) = s(s -1) = s 2 -s B(s) = s -2 (5.190)
It is straightforward that A(s) and B(s) are coprime polynomials because they have no common root.

To check this result, we compute the Sylvester resultant matrix S AB , which is here a square 3 × 3 matrix:

S AB =       a 0 b 0 0 a 1 b 1 b 0 a 2 0 b 1 1 column 2 columns                  2 + 1 rows =   0 -2 0 -1 1 -2 1 0 1   (5.191)
It can be seen that det(S AB ) ̸ = 0, thus A(s) and B(s) are coprime polynomials:

det(S AB ) = det     0 -2 0 -1 1 -2 1 0 1     = 2 ̸ = 0 (5.192)
As far as A(s) and B(s) are coprime, then there exists unique polynomials X(s) and Y (s) with deg (X(s)) < m and deg (Y (s)) < n such that the following Bézout equation holds:

A(s)X(s) + B(s)Y (s) = 1 (5.193)
On way to solve a Bézout equation is to turn it into a set of n + m = 3 linear equations with n + m = 3 unknowns. Let:

X(s) = x 0 Y (s) = y 0 + y 1 s (5.194)
Then the set of linear equation reads:

S AB   x 0 y 0 y 1   =   1 0 0   ⇔   0 -2 0 -1 1 -2 1 0 1     x 0 y 0 y 1   =   1 0 0   (5.195)
We nally get:

  x 0 y 0 y 1   =   0.5 -0.5 -0.5   ⇒ X(s) = x 0 = 0.5 Y (s) = y 0 + y 1 s = -0.5 -0.5s (5.196) ■

One degree of freedom controller design

A general form of a one degree of freedom (abbreviated as 1DOF) control system with preltering is shown in Figure 5.14 where controller C(s) is not a PID controller but a very general controller with a proper transfer function of relative degree r ≥ 07 whose denominator D C (s) is a monic polynomial8 of degree m :

C(s) = N C (s) D C (s) := y 0 + y 1 s + • • • + y m-r s m-r x 0 + x 1 s + • • • + x m-1 s m-1 + 1 × s m (5.197)
In the following the transfer function F (s) of the plant is written in terms of the ratio between its numerator N F (s) and its denominator D F (s), which is also assumed to be a monic polynomial:

F (s) = N F (s) D F (s) where D F (s) monic polynomial deg (N F (s)) ≤ deg (D F (s)) = n (5.198)
Thus the transfer function of the controlled system without preltering (C pf (s) = 1) reads:

Y (s) R pf (s) = C(s)F (s) 1 + C(s)F (s) = N C (s)N F (s) N C (s)N F (s) + D C (s)D F (s) (5.199)
The coecients of polynomials N C (s) and D C (s) are then set in order that the characteristic polynomial of the transfer function Y (s) R pf (s) matches with some predened polynomial q(s): it could be either the ITAE polynomial dened in Table 5.2 or another polynomial which set the poles of the closed-loop system. N C (s)N F (s) + D C (s)D F (s) := q(s) (5.200) This equation is known as a Diophantine equation. Denoting by m the degree of D C (s) and by n the degree of D F (s), and using the fact that the degree of N C (s)N F (s) is lower or equal than the degree of D C (s)D F (s) (because F (s) and C(s) are both proper transfer functions), we conclude that polynomial q(s) := N C (s)N F (s) + D C (s)D F (s) is of degree n + m. Because D C (s) and D F (s) are monic polynomials, we conclude that polynomial q(s) is also a monic polynomial with n + m coecients.

On the other hand controller C(s) is formed with m -r + 1 unknown coecients in its numerator (y 0 , y 1 , • • • , y m-r ) and m unknown coecients in its denominator (x 0 , x 1 , • • • , x m-1 ), which forms a set of 2 m -r + 1 unknown coecients.

In order to be able to identify all the coecients of s i in (5.200) the following equation shall be satised:

n + m = 2 m -r + 1 ⇒ m = n + r -1 (5.201)
Consequently as soon as the predened monic polynomial q(s) is a of degree n + m = 2 n + r -1, Diophantine equation (5.200) can be solved.

To summarize, the denominator q(s) of the closed-loop system as well as the numerator N C (s) and the denominator D C (s) of the controller C(s), whose relative degree is set to r, shall be set as follows:

D F (s) monic polynomial of degree n C(s) controller of relative degree r ⇒    q(s) = 1 × s 2 n+r-1 + q 2 n+r-2 s 2 n+r-2 + • • • + q 1 s + q 0 N C (s) = y n-1 s n-1 + • • • + y 1 s + y 0 D C (s) = 1 × s n+r-1 + x n+r-2 s n+r-2 + • • • + x 1 s + x 0 (5.202)
In addition coecients x i of D C (s) and and y j of N C (s) can be obtained by:

S AB             x 0 . . . x n+r-2 1 y 0 . . . y n-1             =        q 0 q 1 . . . q 2 n+r-2 1        (5.203) Let: N F (s) = b 0 + b 1 s + • • • + b m s m D F (s) = a 0 + a 1 s + • • • + a n-1 s n-1 + 1 × s n (5.204)
Then S AB is the following Sylvester resultant (square) matrix:

S AB =                     a 0 0 • • • b 0 0 • • • a 1 a 0 . . . b 1 b 0 . . . . . . a 1 . . . . . . b 1 . . . a n-1 . . . b m-1 . . . 1 a n-1 b m b m-1 0 1 . . . 0 b m . . . . . . . . . . . . . . . . . . . . . n+r columns n columns                                                            2 n + r rows (5.205)
Example 5.7. Consider the case where the numerator N F (s) and the denominator D F (s) of transfer function F (s) read as follows:

N F (s) = b 2 s 2 + b 1 s + b 0 D F (s) = s 3 + a 2 s 2 + a 1 s + a 0 (5.206)
We seek a controller C(s) of relative degree r = 0. Because D F (s) is of degree n = 3, the algebraic controller C(s) is composed of the ratio of 2 polynomials N C (s) and D C (s) of degree n -1 = 2 and n + r -1 = 2, respectively:

C(s) = N C (s) D C (s)
where

N C (s) = y 2 s 2 + y 1 s + y 0 D C (s) = s 2 + x 1 s + x 0 (5.207)
The denominator N F (s)N C (s) + D F (s)D C (s) of the closed-loop transfer function is a polynomial of degree 2 n + r -1 = 5. Using the results on the product of polynomials presented in 5.7.1 we get:

N F (s)N C (s) + D F (s)D C (s) = q 0 + q 1 s
+ q 2 s 2 + q 3 s 3 + q 4 s 4 + q 5 s 5 (5.208) where:

        q 0 q 1 q 2 q 3 q 4 q 5         =         a 0 0 0 b 0 0 0 a 1 a 0 0 b 1 b 0 0 a 2 a 1 a 0 b 2 b 1 b 0 1 a 2 a 1 0 b 2 b 1 0 1 a 2 0 0 b 2 0 0 1 0 0 0                 x 0 x 1 1 y 0 y 1 y 2         (5.209)
We nally get:

N F (s)N C (s) + D F (s)D C (s) = (b 2 s 2 + b 1 s + b 0 )(y 2 s 2 + y 1 s + y 0 ) +(s 3 + a 2 s 2 + a 1 s + a 0 )(s 2 + x 1 s + x 0 ) = 1 × s 5 + (x 1 + a 2 + b 2 y 2 ) s 4 +(x 0 + a 2 x 1 + a 1 + b 2 y 1 + b 1 y 2 ) s 3 +(a 2 x 0 + a 1 x 1 + a 0 + b 2 y 0 + b 1 y 1 + b 0 y 2 ) s 2 +(a 1 x 0 + a 0 x 1 + b 1 y 0 + b 0 y 1 ) s + a 0 x 0 + b 0 y 0 (5.210)
On the other hand, let λ i , i = 1, • • • , 2n + r -1 = 5 be the desired closed-loop poles. We can write:

q(s) = 2n+r-1=5 i=1 (s -λ i ) = (s -λ 1 )(s -λ 2 )(s -λ 3 )(s -λ 4 )(s -λ 5 ) = s 5 + 4 p=0 q p s p (5.211) 
where:

q 5-k = (-1) k 1≤i 1 <•••<i k ≤5 λ i 1 • • • λ i k where k = 1, • • • , 5 (5.212) 
Once the coecients of s k of q(s) are identied, we get in a matrix form:

        q 0 q 1 q 2 q 3 q 4 1         =         a 0 0 0 b 0 0 0 a 1 a 0 0 b 1 b 0 0 a 2 a 1 a 0 b 2 b 1 b 0 1 a 2 a 1 0 b 2 b 1 0 1 a 2 0 0 b 2 0 0 1 0 0 0                 x 0 x 1 1 y 0 y 1 y 2        
(5.213)

Once this system inverted we get:

        x 0 x 1 1 y 0 y 1 y 2         =         a 0 0 0 b 0 0 0 a 1 a 0 0 b 1 b 0 0 a 2 a 1 a 0 b 2 b 1 b 0 1 a 2 a 1 0 b 2 b 1 0 1 a 2 0 0 b 2 0 0 1 0 0 0         -1         q 0 q 1 q 2 q 3 q 4 1        
(5.214) ■

Prelter design

Once C(s) is set then the transfer function C pf (s) of the prelter can be computed. For example it can be computed in order to match with the required ITAE transfer function:

Y (s) R(s) = N cl (s) q(s) (5.215) 
Thus from the following relations:

       Y (s) R(s) = N cl (s) q(s) Y (s) R(s) = C pf (s) Y (s) R pf (s) Y (s) R pf (s) = N C (s)N F (s) N C (s)N F (s)+D C (s)D F (s) = N C (s)N F (s) q(s) (5.216)
We get:

C pf (s) = Y (s) R(s) • R pf (s) Y (s) = N cl (s) q(s) • q(s) N C (s)N F (s) = N cl (s) N C (s)N F (s) (5.217)
It is worth noticing that the design is possible only if all the zeros of F (s)C(s), that are the roots of N C (s)N F (s), have negative real parts so that the prelter C pf (s) is stable.

Consequently the design strategy to compute the transfer function C(s) of the controller and the transfer function C pf (s) of the prelter is the following:

-Find the transfer function C(s) to give the characteristic polynomial of (s) of the form given in Table 5.2:

Y (s) R pf
Y (s) R pf (s) = F (s)C(s) 1 + F (s)C(s) = N C (s)N F (s) q(s) (5.218) 
-Design the prelter C pf (s) to cancel the unwanted terms in the numerator of the transfer function Y (s) R pf (s) so that the closed-loop transfer function

Y (s) R(s) = N cl (s)
q(s) matches with the ITAE transfer function:

C pf (s) = N cl (s) N C (s)N F (s) (5.219) 
The transfer function C pf (s) of prelter may be reduced by using for example the technique presented in Section 3.6. Example 5.8. Consider an unstable plant with the following transfer function:

F (s) = N F (s) D F (s) = 1 (s -1)(s + 2)
(5.220)

The specications are the following:

-Settling time t s about 1 seconds

-Overshoot D of 5%
-The position error shall be zero An algebraic controller C(s) with relative degree r = 1 as well as a prelter C pf (s) will be designed to achieve those specications. We decide to put controller C(s) in the feedback loop as shown in Figure 5.17.

From the specications we compute the location of the dominant poles as follows:

{λ dp , λdp } = -mω 0 ± jω 0 1 -m 2 where m = -ln(D) √ π 2 +ln 2 (D) ts = 4 m ω 0 ⇔ ω 0 = 4 m ts (5.221) 
We get:

m ≈ 0.69 ω 0 ≈ 5.8 ⇒ {λ dp , λdp } ≈ -4 ± j4.2 (5.222) 
The degree of the denominator of F (s) is n = 2 and we impose the relative degree of controller C(s), r = 1. Thus the degree of denominator of the closedloop transfer function is 2 n + r -1 = 4. So in addition to the 2 dominant poles {λ dp , λdp } we have to choose two non-dominant poles faster that {λ dp , λdp }, for example λ f = -20 + j and λf = -20 -j. So q(s) reads: s) where N C (s) is a polynomial of degree n -1 = 1 and D C (s) is a monic polynomial of degree n + r -1 = 2:

λ f = -20 ⇒ q(s) = (s -λ dp )(s -λdp )(s -λ f )(s -λf ) = (s 2 + 2mω 0 s + ω 2 0 )(s 2 + 40s + 401) ≈ s 4 + 48s 3 + 754.64s 2 + 4553.6s + 13489.64 (5.223) Let C(s) = N C (s) D C (
C(s) = N C (s) D C (s) = y 1 s + y 0 s 2 + x 1 s + x 0 (5.224)
The denominator N C (s)N F (s) + D C (s)D F (s) of the closed-loop transfer function Y (s R pf (s) reads:

N C (s)N F (s) + D C (s)D F (s) = q 0 + q 1 s + q 2 s 2 + q 3 s 3 + s 4 (5.225) 
where:

      q 0 q 1 q 2 q 3 1       =       -2 0 0 1 0 1 -2 0 0 1 1 1 -2 0 0 0 1 1 0 0 0 0 1 0 0             x 0 x 1 1 y 0 y 1       (5.226) 
We get:

N C (s)N F (s) + D C (s)D F (s) = (y 1 s + y 0 ) + (s 2 + x 1 s + x 0 )(s 2 + s -2) = s 4 + s 3 (1 + x 1 ) + s 2 (x 0 + x 1 -2) +s(x 0 -2x 1 + y 1 ) -2x 0 + y 0 (5.227) 
Identifying N C (s)N F (s) + D C (s)D F (s) with q(s) leads to the values of coecients x i and y i : The unit step response of the closed-loop transfer function Y (s) R pf (s) is drawn in Figure 5.18. We notice that the time response comply with the specications but neither the overshoot nor the position error.

       1 + x 1 ≈ 48 x 0 + x 1 -2 ≈ 754.64 x 0 -2x 1 + y 1 ≈ 4553.6 -2x 0 + y 0 ≈ 13489.64 ⇒        x 1 ≈ 47 x 0 ≈ 709.
The prelter C pf (s) is designed to overcome those drawbacks. Closed loop transfer function Y (s)/R pf (s) reads: where {λ dp , λdp } are the desired dominant poles and {λ f , λf } is the fast poles of the loop.

Y (s) R pf (s) = N F (s) (s -λ dp )(s -λdp )(s -λ f )(s -λf ) ≈ s 2 +
As far as the roots of N F (s) lies in the left half plane, and in order to achieve a null position error, the transfer function of the prelter C pf (s) is designed as follows:

C pf (s) = λ dp λdp λ f λf N F (s) ≈ 13489.64 s 2 + 47s + 709.64
(5.231) The closed-loop transfer function nally reads:

Y (s) R(s) = C pf (s) × Y (s) R pf (s) = λ dp λdp λ f barλ f (s-λ dp )(s-λdp )(s-λ f )
≈ 13489.64 s 4 +48s 3 +754.64s 2 +4553.6s+13489.64 (5.232) The unit step response of the closed-loop system with the prelter C pf (s) is drawn in Figure 5.19. We have also drawn on this gure the step response of

ω 2 0 s 2 +2mω 0 s+ω 2 0
, which is the targeted closed-loop transfer function from which the specications have been derived. We notice that now the unit step response fully comply with the specications. ■ Example 5.9. Consider a plant with the following transfer function:

F (s) = N F (s) D F (s) = 1 (2s+1)(3s+1)(4s+1)
= 1/24 s 3 +26/24 s 2 +9/24 s+1/24 (5.233) We wish to design a controller with relative degree r = 0 which minimize the ITAE performance index and also which leads to a settling time t s for a step input less than 0.5 sec. We decide to put controller C(s) in the direct path as shown in Figure 5.14.

The degree of the denominator of the plant transfer function is n = 3. Consequently we shall choose a predened polynomial q(s) whose degree is 2 n + r -1 = 5. The coecients of the closed-loop denominator are chosen in We need to select ω 0 in order to meet the settling time requirement. Since

t s ≈ 4
mω 0 where m is set in a rst attempt to 0.8 we get:

t s = 0.5 m = 0.8 ⇒ ω 0 ≈ 4 m t s = 10 (5.235) 
In addition the numerator and the denominator of the controller C(s) are polynomial of degree n + r -1 = 2:

N C (s) = y 2 s 2 + y 1 s + y 0 D C (s) = s 2 + x 1 s + x 0 (5.236)
Consequently the closed-loop transfer function without preltering (C pf (s) = 1) reads:

Y (s) R pf (s) = N C (s)N F (s) N C (s)N F (s)+D C (s)D F (s)

=

(y2s 2 +y 1 s+y 0) /24 (y 2 s 2 +y 1 s+y 0 )/24+(s 2 +x 1 s+x 0 )(s 3 +26/24 s 2 +9/24 s+1/24)

(5.237)

That is:

Y (s) R pf (s) =
y 2 s 2 + y 1 s + y 0 /24 s 5 + q 4 s 4 + q 3 s 3 + q 2 s 2 + q 1 s + q 0 (5.238)

Where:

        q 0 q 1 q 2 q 3 q 4 1         =        
1/24 0 0 1/24 0 0 9/24 1/24 0 0 1/24 0 26/24 9/24 1/24 0 0 1/24 1 26/24 9/24 0 0 0 0 1 26/24 0 0 0 0 0 1 0 0 0

                x 0 x 1 1 y 0 y 1 y 2         (5.239) 
Equating those coecients with the required coecients of polynomial q(s) given in (5.234) result in the following matrix equation:

        ω 5 0 3.257ω 4 0 4.675ω 3 0 4.499ω 2 0 2.068ω 0 1         =        
1/24 0 0 1/24 0 0 9/24 1/24 0 0 1/24 0 26/24 9/24 1/24 0 0 1/24 1 26/24 9/24 0 0 0 0 1 26/24 0 0 0 0 0 1 0 0 0

                x x 1 y y y         (5.240) 
Solving this matrix equation for ω 0 = 10 leads to the following values:

        x 0 x 1 1 y 0 y 1 y 2         =         428.3 19.597 1 2.3996 • 10 6 7.7781 • 10 5 1.0089 • 10 5         (5.241)
Thus the controller C(s) has the following transfer function: (5.244)

C(s) = 2.
Then we select the prelter C pf (s) in order to achieve the required ITAE transfer function.

We check that all the roots of polynomial 99982.154 + 32408.573s + 4203.623s 2 have negative real parts. Therefore we obtain for the transfer function of the prelter: C pf (s) = 100000 99982.154 + 32408.573s + 4203.623s 2 (5.245) Figure 5.20: Unit step response of the whole system

We nally get the transfer function of the whole system:

Y (s) R(s) = C pf (s) Y (s) R pf (s) = C pf (s)
99982.154+32408.573s+4203.623s 2 100000+32570s+4675s 2 +449.9s 3 +20.68s 4 +s 5 = 100000 100000+32570s+4675s 2 +449.9s 3 +20.68s 4 +s 5

(5.246) Figure 5.20 shows the response of the whole system to a unit step input. As expected the settling time lower than 0.5 sec. Furthermore the whole system has a zero steady state error and an overshoot about 1.7%. We can observed that the prelter C pf (s) greatly decreases the overshoot. ■

Youla parameterization of all stabilizing controllers

We consider the feedback control loop with unity feedback shown in Figure 5.21 where F (s) and C(s) are the plant model and the controller transfer function, respectively.

We have seen that in a standard negative feedback conguration, the denominator of the closed-loop transfer function satises the following pole placement Diophantine equation where q(s) is Hurwitz :

N C (s)N F (s) + D C (s)D F (s) = q(s) (5.247)
Let split the stable right hand-side polynomial q(s) as a factor of two Hurwitz polynomials q C (s) and q F (s): 

q(s) = q C (s)q F (s) (5.248) 
N C (s) q C (s) N F (s) q F (s) + D C (s) q C (s) D F (s) q F (s) = 1 (5.249)
Thus transfer function F (s) can be divided into two coprime transfer functions N (s) and D(s) as follows:

F (s) = N F (s) q F (s) q F (s) D F (s) := N (s) D(s) where N (s) = N F (s) q F (s) D(s) = D F (s) q F (s) (5.250) 
Because they are coprime, Bezout theorem indicates that stable transfer functions N (s) and D(s) are such that there exists two stable transfer functions X(s) and Y (s) such that the following relation holds:

Y (s)D(s) + X(s)N (s) = 1 ∀ s (5.251)
Then Youla & al. 9 have shown in 1976 that the class of controllers that make the closed-loop system internally stable is given as follows where Q(s) is an arbitrary real stable rational transfer function:

C(s) = X(s) + Q(s)D(s) Y (s) -Q(s)N (s) (5.252) 
It is worth noticing that if F (s) is a stable transfer function, then we can make the following choice in the Bezout identity (5.251):

       Y (s) := 1 D(s) := 1 X(s) := 0 N (s) := F (s) (5.253) 
With this choice, (5.252) becomes as follows where Q(s) is still an arbitrary real stable rational transfer function:

C(s) = X(s) + Q(s)D(s) Y (s) -Q(s)N (s) := Q(s) 1 -Q(s)F (s)
(5.254) 

G(s) = F (s)C(s) 1 + F (s)C(s) = F (s) Q(s) 1-Q(s)F (s) 1 + F (s) Q(s) 1-Q(s)F (s) = Q(s)F (s) (5.255) 
Because G(s) := Y (s) R(s) and F (s) := Y (s) U (s) , we get that Q(s) is the transfer function between U (s) and R(s)

G(s) = Y (s) R(s) = U (s) R(s) Y (s) U (s) = U (s) R(s) F (s) := Q(s)F (s) ⇒ Q(s) = U (s) R(s) (5.256) 
More generally, for SISO plants, a necessary and sucient condition for a factorization to be coprime is that N (s) and D(s) have no common zero neither nite nor innite 10 . Example 5.10. We consider the following transfer function:

F (s) = s + 1 (s -2)(s + 3) (5.257)
Then, assuming any parameter a > 0 (indeed N (s) and D(s) shall be stable transfer functions), we can choose for example: The degree of polynomial s + a is chosen to be 2 in order that N (s) and D(s) have no common zero when s is innite. Furthermore, a / ∈ {-1, 2, -3} in order that N (s) and D(s) are coprime.

N (s) = s+1 (s+a) 2 D(s) = (s-2)(s+3) (s+a) 2
Then stable transfer functions X(s) and Y (s) can be computed such that the following relation holds:

Y (s)D(s) + X(s)N (s) = 1 ∀ s (5.259)
where, assuming any parameter b > 0:

X(s) = s+c s+b Y (s) = s+d s+b (5.260) ■

Two degrees of freedom controller design

Consider the conguration shown in Figure 5.23 where F(s) is the plant transfer function, C pf (s) a prelter and C 2 (s) a controller in the feedback loop. This feedback loop is called a two-degree-of-freedom control loop. From Figure 5.23 control u(s) reads:

u(s) = C pf (s)r(s) -C 2 (s)y(s) (5.261) 
Now we select controllers C pf (s) and C 2 (s) with the same polynomial denominator D C (s) and polynomial numerator N 1 (s) and N 2 (s), respectively 11 :

C pf (s) = D -1 C (s)N 1 (s) C 2 (s) = D -1 C (s)N 2 (s)
(5.262) 11 Chi-Tsong Chen, Linear System Theory and Design, Oxford University Press, New York, 1999, 334pages, ISBN 0-19-511777-8.

Thus control u(s) can now be written as follows:

u(s) = D -1 C (s)N 1 (s)r(s) -D -1 C (s)N 2 (s)y(s) = D -1 C (s) N 1 (s)r(s) -N 2 (s)y(s) (5.263) 
This leads to the polynomial realization of the two-degree-of-freedom control loop shown in Figure 5.24. Now, assume that the plant transfer function F(s) reads as follows:

F(s) = N F (s)D -1 F (s) (5.264) 
Then from Figure 5.24 the relation between control u(s) and reference input r(s) reads as follows:

u(s) = D -1 C (s) N 1 (s)r(s) -N 2 (s)N F (s)D -1 F (s)u(s) ⇔ I + D -1 C (s)N 2 (s)N F (s)D -1 F (s) u(s) = D -1 C (s)N 1 (s)r(s) (5.265) 
We nally get:

u(s) = I + D -1 C (s)N 2 (s)N F (s)D -1 F (s) -1 D -1 C (s)N 1 (s)r(s) = D C (s) I + D -1 C (s)N 2 (s)N F (s)D -1 F (s) -1 N 1 (s)r(s) = D C (s) + N 2 (s)N F (s)D -1 F (s) -1 N 1 (s)r(s) = (D C (s)D F (s) + N 2 (s)N F (s)) D -1 F (s) -1 N 1 (s)r(s) = D F (s) (D C (s)D F (s) + N 2 (s)N F (s)) -1 N 1 (s)r(s) (5.266) 
This leads to the following relation between output y(s) and reference r(s):

y(s) = F(s)u(s) = N F (s)D -1 F (s)D F (s) (D C (s)D F (s) + N 2 (s)N F (s)) -1 N 1 (s)r(s) = N F (s) (D C (s)D F (s) + N 2 (s)N F (s)) -1 N 1 (s)r(s)
(5.267) Thus the closed-loop transfer function reads:

y(s) = G(s)r(s) (5.268) 
where:

G(s) = N F (s) (D C (s)D F (s) + N 2 (s)N F (s)) -1 N 1 (s) (5.269) 
In the SISO case, this simplies as follows:

G(s) = N 1 (s)N F (s) D C (s)D F (s) + N 2 (s)N F (s) (5.270) 
Then the model matching problem becomes solving D C (s), N 1 (s) and N 2 (s) from (5.270). More specically, let F (s) = N F (s) D F (s) be a proper transfer function, where N F (s) and D F (s) are coprime. The problem statement for the two degrees of freedom controller design, or model matching, is the following: given any targeted closed-loop transfer function T (s), nd proper controllers 5.23 to implement T (s). Following Chi-Tsong Chen 12 , this problem is solved as follows:

C pf (s) = N 1 (s) D C (s) and C 2 (s) = N 2 (s) D C (s) in Figure
12 Shou-Yuan Zhang and Chi-Tsong Chen, Design of unity feedback systems to achieve arbitrary denominator matrix, in IEEE Transactions on Automatic Control, vol. 28, no. 4, pp. 518-521, April 1983, doi: 10.1109/TAC.1983.1103255 1. First check that the targeted closed-loop transfer function T (s) is implementable, that is that T (s) F (s) is proper and BIBO stable; 2. Compute polynomials E(s) and H(s), where E(s) and H(s) are coprime, such that:

T (s) N F (s) = E(s) H(s) (5.271) 
3. Let n be the degree of D F (s) and r ≥ 0 be the chosen relative degree of C 2 (s). Introduce a Hurwitz polynomial P (s) (polynomial whose roots have negative real part) such that P (s) H(s) is a polynomial of degree 2 n + r -1, :

T (s) = P (s) E(s) N F (s) P (s) H(s) (5.272) 
4. Make the identication:

T (s) = G(s) ⇔ P (s) E(s) N F (s) P (s) H(s) = N 1 (s)N F (s) D C (s)D F (s) + N 2 (s)N F (s) (5.273)
It is clear the achievement of the targeted transfer function T (s) is based on the pole / zero cancellation of the roots of P (s). This justies why polynomial P (s) shall be Hurwitz.

5. From the numerator of (5.273), we get the expression of N 1 (s):

N 1 (s) = P (s) E(s) (5.274) 
6. Let m be the degree of monic polynomial D C (s) and m-r be the degree of polynomial N 2 (s), such that C 2 (s) = N 2 (s) D C (s) has a relative degree r. Using the fact that the degree of N 2 (s)N F (s) is lower or equal than the degree of D C (s)D F (s) (because F (s) and C 2 (s) are both proper transfer functions), we conclude that polynomial q(s) := N 2 (s)N F (s) + D C (s)D F (s) is of degree n + m. Because D C (s) and D F (s) are monic polynomials, we conclude that polynomial q(s) is also a monic polynomial with n + m coecients.

On the other hand controller C 2 (s) is formed with m -r + 1 unknown coecients in its numerator (y 0 , y 1 , • • • , y m-r ) and m unknown coecients in its denominator (x 0 , x 1 , • • • , x m-1 ), which forms a set of 2 m -r + 1 unknown coecients.

In order to be able to identify all the coecients of s i in the polynomial which forms the denominator of (5.273) the following equation shall be satised: s) where: 

n + m = 2 m -r + 1 ⇒ m = n + r -1 (5.275) Thus we get C 2 (s) = N 2 (s) D C (
D C (s) = 1 × s n+r-1 + x n+r-2 s n+r-2 + • • • + x 1 s + x 0 N 2 (s) = y n-1 s n-1 + • • • + y 1 s + y 0 (5.276)
S AB             x 0 . . . x n+r-2 1 y 0 . . . y n-1             =        q 0 q 1 . . . q 2 n+r-2 1        (5.277) Let: N F (s) = b 0 + b 1 s + • • • + b m s m D F (s) = a 0 + a 1 s + • • • + a n-1 s n-1 + 1 × s n (5.278)
Then S AB is the following Sylvester resultant (square) matrix: s) in Figure 5.23 are obtained to achieve model matching G(s) = T (s).

S AB =                     a 0 0 • • • b 0 0 • • • a 1 a 0 . . . b 1 b 0 . . . . . . a 1 . . . . . . b 1 . . . a n-1 . . . b m-1 . . . 1 a n-1 b m b m-1 0 1 . . . 0 b m . . . . . . . . . . . . . . . . . . . . . n+r columns n columns                                                            2 n + r rows (5.279) Then prelter controller C pf (s) = N 1 (s) D C (s) and feedback loop controller C 2 (s) = N 2 (s) D C (
On the basis of the polynomial realization of the two-degree-of-freedom control loop in Figure 5.24, an equivalent two-degree-of-freedom control loop is shown in Figure 5.25 where13 :

   C 1e (s) = N 1 (s) D C (s) C 2e (s) = N 2 (s) N 1 (s) (5.280)
Then we get: Example 5.11. Consider a plant with the following transfer function:

G(s) = N 1 (s)N F (s) D C (s)D F (s)+N 2 (s)N F (s) = N 1 (s)N F (s) D C (s)D F (s) 1+ N 2 (s)N F (s) D C (s)D F (s) = C 1e (s)F (s) 1+C 1e (s)C 2e (s)F (s)
F (s) = N F (s) D F (s) = 1 (2s+1)(3s+1)(4s+1) = 1 1+9s+26s 2 +24s 3 = 1/24 s 3 +26/24 s 2 +9/24 s+1/24 (5.282)
We wish to design a two degrees of freedom controller design which minimizes an ITAE performance index with a settling time t s for a step input less than 0.5 sec.

1. Let T (s) be the targeted closed-loop transfer function. The degree of the denominator of the plant transfer function is n = 3. The ratio T (s) F (s) will be proper and BIBO stable if T (s) is chosen for example as follows, see Table 5.2:

T (s) = ω 3 0 s 3 + 1.783ω 0 s 2 + 2.172ω 2 0 s + ω 3 0 (5.283)
We need to select ω 0 in order to meet the settling time requirement. Since

t s ≈ 4
mω 0 where m is set in a rst attempt to 0.8 we get:

t s = 0.5 m = 0.8 ⇒ ω 0 ≈ 4 m t s = 10 (5.284)
2. Polynomials E(s) and H(s), where E(s) and H(s) are coprime, are such that:

T (s) N F (s) = 24 ω 3 0 s 3 + 1.783ω 0 s 2 + 2.172ω 2 0 s + ω 3 0 := E(s) H(s) (5.285)
3. The degree of H(s) is n = 3. We choose the relative degree of C 2 (s) to be r = 0. Then Hurwitz polynomial P (s) (polynomial whose roots have negative real part) shall be chosen such that such that P (s) H(s) is a polynomial of degree 2 n + r -1 = 5. Consequently P (s) is a polynomial of degree 5 -3 = 2 and we choose the 2 roots of P (s) faster that the roots of the denominator T (s) when ω 0 = 10, for example -15 twice:

P (s) = (s + 15) 2 (5.286)
4. Then we make the identication:

T (s) = G(s) ⇔ P (s) E(s) N F (s) P (s) H(s) = N 1 (s)N F (s) D C (s)D F (s)+N 2 (s)N F (s) (s+15) 2 24 ω 3 0 | ω 0 =10 (1/24) (s 3 +1.783ω 0 s 2 +2.172ω 2 0 s+ω 3 0 )| ω 0 =10 (s+15) 2 = N 1 (s)N F (s) D C (s)D F (s)+N 2 (s)N F (s) ⇔ (s+15) 2 ω 3 0 | ω 0 =10 q(s) = N 1 (s)N F (s) D C (s)D F (s)+N 2 (s)N F (s)
(5.287) [START_REF] Houpis | Linear Control System Analysis and Design[END_REF]. From the numerator of T (s), we get the expression of N 1 (s): N 1 (s) = P (s) E(s) = (s + 15) 2 24 ω 3 0 ω 0 =10 = 24 • 10 3 (s + 15) 2 (5.288) [START_REF] Paraskevopoulos | [END_REF]. Let q(s) be the denominator of T (s). We have seen that:

q(s) = s 3 + 1.783ω 0 s 2 + 2.172ω 2 0 s + ω 3 0 ω 0 =10 (s + 15) 2 = s 3 + 17.83 s 2 + 217.2 s + 10 3 (s + 15) 2 = s 5 + 47.83 s 4 + 977.1 s 3 + 11.5277 • 10 3 s 2 + 78.87 • 10 3 s + 225 • 10 3 := s 5 + q 4 s 4 + q 3 s 3 + q 2 s 2 + q 1 s + q 0 (5.289)

Diophantine equation D C (s)D F (s) + N 2 (s)N F (s) = q(s) is then solved where monic polynomial D C (s) is of degree n + r -1 = 2 and polynomial N 2 (s) is of degree and n -1 = 2:

D C (s) = s 2 + x 1 s + x 0 N 2 (s) = y 2 s 2 + y 1 s + y 0 (5.290)
As seen in section 5.7.3, coecients x i of D C (s) and and y j of N 2 (s) can be obtained by:

S AB         x 0 x 1 1 y 0 y 1 y 2         =         q 0 q 1 q 2 q 3 q 4 1         (5.291)
where S AB is the following Sylvester resultant (square) matrix:

S AB =        
1/24 0 0 1/24 0 0 9/24 1/24 0 0 1/24 0 26/24 9/24 1/24 0 0 1/24 1 26/24 9/24 0 0 0 0 1 26/24 0 0 0 0 0 1 0 0 0

        (5.292)
Solving this matrix equation leads to the following values: The knowledge of polynomials D C (s), N 2 (s) and N 1 (s) enable to form the controllers C 1e (s) and C 2e (s):

        x 0 x 1 1 y 0 y 1 y 2         = S -1 AB         q 0 q 1 q 2 q 3 q 4 1         =        
         C 1e (s) = N 1 (s) D C (s) = 24•10 3 (s+15) 2 s 2 +x 1 s+x 0 = 24•10 3 (s+15) 2 s 2 +46.747s+926.08
C 2e (s) = N 2 (s) N 1 (s) = y 2 s 2 +y 1 s+y 0 10 3 (s+15) 2 = 0.2521•10 6 s 2 +1.8845•10 6 s+5.3991•10 6 10 3 (s+15) 2

(5.294)

   C 1 (s) = N 1 (s) D 1 (s) = 10 3 (s+15) 2 y 2 s 2 +y 1 s+y 0 = 10 3 (s+15) 2 41.6667×10 -3 s 2 +1.9478s+38.5868 C 2 (s) = N 2 (s)
N 1 (s) = a 2 s 2 +a 1 s+a 0 10 3 (s+15) 2 = 10.5069×10 3 s 2 +78.5208×10 3 s+224.9614×10 3 10 3 (s+15) 2

(5.295) Figure 5.26 shows the response of the closed-loop with controllers C 1 (s) and C 2 (s) to a unit step input. The targeted step response is the response of the system with ITAE transfer function T (s) = where ω 0 = 10. As expected the settling time lower than 0.5 sec. Furthermore the whole system has a zero steady state error and an overshoot about 1.6%. 

Y (s) R(s) = F (s) (C 1 (s) + C f f (s)) 1 + F (s)C 1 (s) (5.297)
-Finally, the transfer function of the feedback two-degree of freedom control loop shown in Figure 5.29 reads:

Y (s) R(s) = F (s)C 2 (s) 1 + F (s) (C 2 (s) + C f b (s))
(5.298)

By identifying the numerator and the denominator of each transfer function, shall add to the control δu provided by the controller C(s) the value u e of the control at equilibrium. Similarly we shall subtract to the output y of the actual plant the value y e at equilibrium. This is shown in Figure 5.30 where the grey box represents the plant to be controlled. Notice that the commanded value δr which feeds the comparator is given with respect to the output at equilibrium: δr(t) = r(t) -y e .

In order to avoid to add in the loop the values (u e , y e ) of the equilibrium point, we will see that is is often interesting to put within the controller C(s) an integral eect. To see that we rst compute the expression of output Y (s) as a function of inputs u e and δR(s) when the plant is controlled by the loop shown in Figure 5.30:

Y (s) = F (s) ue s + C(s) δR(s) -Y (s) -ye s ⇒ Y (s) = F (s) 1+F (s)C(s) ue s + F (s)C(s) 1+F (s)C(s) δR(s) -ye s (5.302)
Using the fact that δr(t) = r(t) -y e , and taking the Laplace transform of this expression, we get δR(s) = R(s) -ye s . Thus we can substitute δR(s) -ye s by R(s). We get:

Y (s) = F (s) 1 + F (s)C(s) u e s + F (s)C(s) 1 + F (s)C(s) R(s) (5.303)
For high values of time, the value of output y(t) is obtained thanks to the nal value theorem, assuming that the loop is stable:

lim t→∞ y(t) = lim s→0 sY (s) = lim s→0 F (s) 1+F (s)C(s) u e + F (s)C(s) 1+F (s)C(s) s R(s) (5.304)
Assuming that F (0) < ∞ and that controller C(s) exhibits an integral term (i.e. C(s) = N C (s) s D C1 (s) where N C (0) D C1 (0) < ∞), we realize that the term which depends on u e in y(t) cancels for high values of time:

     F (0) < ∞ C(s) = N C (s) s D C1 (0) N C (0) D C1 (0) < ∞ ⇒ lim s→0 F (0) 1 + F (0) N C (0) s D C1 (0) u e = 0
(5.305)

Consequently, the integral term within the controller C(s) enables to forget the value u e of the control at equilibrium. Notice that a similar reasoning can be applied to check that the same eect is obtained when u e represents an exogenous disturbance. Thus the control loop simplies as shown in Figure 5.31 where the integrator within C(s) shall be initialized with the value u e of the control at equilibrium.

Anti-windup

Usually amplitude of input of actual plants is limited. When the controller exhibits an integral eect, saturation on the input signal of the plant may generate high overshot or render the closed-loop unstable. This phenomenon is known as windup eect. The anti-windup controller design for saturated control consists in taking into account the saturated control in order to minimize windup eect and to enhance the domain where stability and performance of the closed-loop system are retained comparatively to the case where a saturation is simply placed after the controller to limit the input signal of the plant. A usual anti-windup structure is to replace the integral term K i s of a PID (or a PI-D) controller by the structure shown in Figure 5.32 where the gain K aw is usually chosen between K i Kp and 10 K i Kp . Alternatively we present in Figure 5.33 an anti-windup structure proposed by R.H. Middleton17 . The stability analysis of such a structure needs mathematical 

           C(s) = N C (s) D C (s) deg(D C (s)) = n f F (s) C(s) 1+F (s) C(s) = N cl (s) (s-λ 1 )•••(s-λn f )•••(s-λn) Re(λ 1 ) ≤ • • • ≤ Re(λ n f ) ≤ • • • ≤ Re(λ n ) ⇒ D aw (s) = (s -λ 1 ) • • • (s -λ n f )
(5.306) Then the anti-windup structure is composed of three parts as shown in Figure 5.33:

-A controller C 1 (s) whose transfer function reads: It is worth noticing that assuming a non-saturated input signal, the antiwindup structure produces the same eect controller C(s). Indeed:

C 1 (s) = N C (s) D aw (s) (5.
     U (s) = C 1 (s)ϵ(s) -C 2 (s)U (s) C 1 (s) = N C (s) Daw(s) C 2 (s) = D C (s)-Daw(s) Daw(s) ⇒ U (s) ϵ(s) = C 1 (s) 1 + C 2 (s) = N C (s) D C (s) (5.309)
Example 5.12. Consider a plant with the following transfer function: 2 (5.310)

F (s) = 1 (2s + 1)
The following PID controller is supposed to be used to control the plant. Notice that the transfer function of the PID controller has been rendered causal thanks to the denominator 1 + 0.01s which appear within the derivative term As far as the degree of the denominator of the controller C(s) is 2, polynomial D aw (s) is chosen to be of degree 2. It is built from the 2 fastest poles of the closed-loop system obtained through the use of controller C(s) and assuming no saturation, that is from -81.6 and -13.3:

D aw (s) = (s + 81.6)(s + 13.3) ⇒ C 1 (s) = N C (s) Daw(s) = 6340s 2 +35000s+100000 s 2 +95s+1085 C 2 (s) = D C (s)-Daw(s) Daw(s) = 5s-1085 s 2 +95s+1085
(5.313) Figure 5.34 compares the results which are achieved with and without an antiwindup structure in the situation where the amplitude of control u(t) is limited to ±10 and where reference signal r(t) is obtained through the prelter C pf (s) = 100000 6340s 2 +35000s+100000 feeds by the unit step function. Obviously without any antiwindup structure the closed-loop system becomes oscillatory whereas with the antiwindup structure acceptable result is achieved despite a small delay in the time response. The same kind of structure may be extended when two controllers are used, as shown in Figure 5.35.

Assuming no saturation we have:

U (s) = C(s)ϵ(s) -C d (s)Y (s) (5.314) 
and:

U (s) = -C 2 (s)U (s) -C 3 (s)Y (s) + C 1 (s)ϵ(s) ⇔ U (s) = C 1 (s) 1+C 2 (s) ϵ(s) -C 3 (s) 1+C 2 (s) Y (s) (5.315)
Thus the two structures are equivalent assuming no saturation as soon as the following relations hold:

C(s) = C 1 (s) 1+C 2 (s) C d (s) = C 3 (s) 1+C 2 (s) (5.316)
Let N i (s) be the numerator of C i (s) and D i (s) be the denominator of C i (s) where i = 1, 2, 3. Similarly Let N C (s) be the numerator of C(s) and D C (s) be the denominator of C(s) and N d (s) be the numerator of C d (s) and D d (s) be the denominator of C d (s). From the preceding relations, we can make the following choices in order to get the transfer functions of the controllers in the anti-windup structure with two controllers:

           D 1 (s) = D 2 (s) := D aw (s) N 1 (s) = N C (s) N 2 (s) = D C (s) -D 1 (s) N 3 (s) = N d (s) (N 2 (s) + D 2 (s)) D 3 (s) = D d (s)D 2 (s)
(5.317) Hurwitz polynomial D aw (s) is computed as shown in (5.306). Chapter 6 Discrete time systems 6.1 Chapter overview Thanks to the exibility and the processing power of computers digital controllers are nowadays widely developed to control continuous time plants. When a digital controller is used the output of the digital controller is converted into an analog signal to control the actuator of the continuous time plant whereas the sensed output of the plant are converted into a digital sequence to be processed by the controller. Figure 6.1 illustrates how a digital controller control a continuous time plant.

Actually a digital controller is an algorithm running on a computer. It generates a digital control u(k) at every time step t k . The digital control u(k) is then converted to an analog control signal u(t) thanks to a Digital-to-Analog Converter (DAC). The analog signal u(t) is applied to the continuous time plant whose transfer function is denoted F (s). The behaviour of the plant is known thanks to the sensed output signal y(t). This signal is then sampled by a Analog-to-Digital Converter (ADC) to produce the digital sequence y(k) which is compared to the digital reference sequence r(k). The error sequence ϵ(k) is then used to feed the digital controller C(z). As shown in Figure 6.1, the Digital-to-Analog Converter (DAC), the Analog-to-Digital Converter (ADC) as Discrete time controllers for continuous time plants can be designed through designing rst a continuous time controller for the plant and then deriving a discrete time equivalent controller that closely approximates the behaviour of the original continuous time controller. This approach is especially useful when an existing continuous time controller or a part of the controller is to be replaced with a discrete time controller.

From a practical point of view, the sampling frequency F s := 1/T is usually chosen to be between 5 and 25 greater than the expected closed loop bandwidth.

In that chapter we will introduce the Z transform which is the dedicated tool to study discrete time system. Then we provide some tools to represent a continuous time plant with sampled input and output and to derive a discrete time controller that closely approximates the behaviour of the original continuous time controller. Performance analysis and stability of the digital control loop will also be tackled.

NyquistShannon sampling theorem

Let X(f ) be the Fourier transform of a continuous time signal x(t):

X(f ) = +∞ -∞ x(t)e -j2πf t dt (6.1) 
Let T be the sampling period. Its reciprocal is the sampling frequency F s :

T = 1 F s (6.
2)

The Poisson summation formula indicates that the Fourier transform X s (f ) of the samples x(kT ) is a periodic summation of X(f ) shifted by multiples of the sampling frequency F s = 1

T and combined by addition:

X s (f ) = ∞ k=-∞ X f - k T = ∞ n=-∞ T • x(nT ) e -i2πnT f (6.3)
The preceding relation indicates that X s (f ) is a periodic spectrum which is also known as the discrete time Fourier transform (DTFT) of the sequence T • x(nT ).

Frequency Fs 2 is called the Nyquist frequency. The NyquistShannon sampling theorem states that if a continuous time signal has a band limited spectrum within [-B, +B] then its spectrum reconstruction from the spectrum X s (f ) of the sampled signal is not altered as soon as the sampling rate F s is larger than 2B.

F s ≥ 2B (6.4)
The NyquistShannon sampling theorem is illustrated in Figure 6.2. Usually the sampling rate F s is chosen between 6B and 24B1 :

6B ≤ F s ≤ 24B (6.5)
When the spectrum of the continuous time signal is too wide (or when there is no bandlimit) the reconstruction from discrete to continuous time exhibits imperfections known as aliasing.

To overcome the aliasing phenomenon a low pass anti-aliasing continuous time lter is introduced just before the sampler (Analog-to-Digital Converter) in order to reduce the higher frequency components in the analog signal.

Reference sequences

The aim of this section is to present important sequences which are currently use to study discrete time systems: more specically we will focus on the unit impulse, the sampled unit step and the sampled exponential.

Discrete-time signals x s are represented mathematically as sequences of numbers. Denoting by x(k) the k th number in the causal sequence x s we get:

x s = {x(0), x(1), • • • , x(k), • • • } (6.6)
A sequence x(k) is said to be causal when the values of the sequence are null ∀ k < 0.

In a practical setting, such sequences arise from periodic sampling of a continuous time (or analog) signal x(t). In that case, the numeric value of the k th number in the sequence is equal to the value of the continuous time signal x(t) at time kT :

x(k) := x(kT ) (6.7) Figure 6.3: Unit impulse

Unit impulse

The unit impulse is denoted δ(k); this sequence is zero everywhere except at k = 0 where the value of the sequence is 1.

δ(k) = 1, k = 0 0, k ̸ = 0 (6.8)
The schematic representation of the unit impulse is depicted on gure 6.3.

The following properties of the unit impulse are very close from the properties of the Dirac delta function in the continuous time domain:

-Multiplication between a sequence x(k) and the unit impulse translated by k 0 ∈ N:

x(k)δ(k -k 0 ) = x(k 0 )δ(k -k 0 ) (6.9) 
-Convolution: the discrete time convolution * between two sequences x(k) and y(k) is dened by:

x(k) * y(k) = ∞ m=-∞
x(m)y(k -m) (6.10)

The discrete time convolution is a commutative product:

x(k) * y(k) = y(k) * x(k) (6.11)
Indeed, changing m by l := k -m and using the fact that a summation can be done either from the last term to the rst term or vice-versa, i.e.

-∞ l=+∞ a l = +∞ l=-∞ a l , we get:

x(k) * y(k) = ∞ m=-∞ x(m)y(k -m) l := k -m ⇒ x(k) * y(k) = -∞ l=+∞ x(k -l)y(l) ⇔ x(k) * y(k) = +∞ l=-∞ x(k -l)y(l) = y(k) * x(k) (6.12)
When the sequences x(k) and y(k) are causal, we get: As far as the discrete time convolution is concerned, the unit impulse satises the following property:

x(k) = 0 ∀ k < 0 y(k) = 0 ∀ k < 0 ⇔ y(k -m) = 0 ∀ (k -m) < 0 ⇔ m > k (6.13)
x(k) * δ(k -k 0 ) = x(k -k 0 ) ∀ k 0 ∈ N (6.15) 
Taking k 0 = 0 we get:

x(k) * δ(k) = x(k) (6.16)
From the preceding equation, it is clear that the unit impulse is the neutral element for discrete time convolution. The preceding equation can also be stated as follows for causal sequences:

x(k) = k m=0
x(m)δ(k -m) (6.17)

Sampled unit step

The sampled unit step which will be denoted by Γ(k) is a causal sequence whose value is zero for negative values of k and one for positive values of k:

Γ(k) = 1 ∀ k ≥ 0 0 ∀ k < 0 (6.18)
The sampled unit step is depicted on gure 6.4.

The sampled unit step is linked to the unit impulse by the following relation:

Γ(k) = ∞ m=0 δ(k -m) (6.19)

Sampled exponential

The sampling of the complex exponential function e jωt reads:

e jωt t=kT = e jαk where α := ωT (6.20)

Setting ω = 2πf where f is the ordinary frequency (units of Hz or equivalently cycles per second) and using the fact that -π ≤ α ≤ +π we get:

-π ≤ 2πf T ≤ +π (6.21)

In the following we will denote α the reduced frequency. This is linked to the ordinary frequency f and the natural frequency ω by the following relations where T is the sampling period:

α = 2πf T = ωT (6.22)
Thus the sampled exponential sequence is dened by:

x(k) = e jαk where -π ≤ α ≤ +π (6.23)

The preceding relation reads -π ≤ α ≤ +π and comes from the NyquistShannon sampling theorem. Indeed setting f = B and having in mind that the sampling period T represents the interval between samples and is the reciprocal of the sampling frequency F s yields:

2πBT ≤ π T = 1 Fs ⇒ F s ≥ 2B (6.24)
We recognize in the preceding equation the NyquistShannon sampling theorem illustrated in Figure 6.1.

6.4 Z transform

Denition

Given the causal sequence {x(0), x(1), • • • , x(k), • • • } we dene its Z transform by:

Z [x(k)] = ∞ k=0 x(k)z -k (6.25)
The region of convergence is the set of values of z in the complex plane for which the Z transform summation converges. Similarly to the Laplace transform the region of convergence of a Z transform is never computed from a practical point of view. Example 6.1. Compute the Z transform of the sequence x(k) = a k ∀ k ≥ 0.

We get:

Z a k = ∞ k=0 a k z -k = ∞ k=0 a z k (6.26)
We recall that the sum of the rst n terms of a geometric series where a 0 is the rst term of the series, and q is the common ratio is:

a 0 + a 0 q + a 0 q 2 + a 0 q 3 + • • • + a 0 q n-1 = n-1 k=0 a 0 q k = a 0 1 -q n 1 -q (6.27)
As n goes to innity, the modulus of the common ratio q must be less than one for the series to converge. Then the sum then becomes:

∞ k=0 a 0 q k = a 0 1 1 -q if ∥q∥ < 1 (6.28)
Applying the preceding result to the computation of the Z transform of the sequence x(k) = a k ∀ k ≥ 0 reads:

Z a k = 1 1 -a z = z z -a (6.29)
Note that the region of convergence is dened by a z < 1.

Taking a = 1 leads to the Z transform of the sampled unit step Γ(k):

Z [Γ(k)] = z z -1 (6.30) ■

Properties

This section presents the main properties of the Z transform without demonstration. In the following x(k) is a causal sequence and X(z) is its Z transform.

Linearity

For any sequences x 1 (k) and x 2 (k) and any constants a 1 and a 2 in R or C:

Z [a 1 x 1 (k) + a 2 x 2 (k)] = a 1 X 1 (z) + a 2 X 2 (z) (6.31)

Time delay

As soon as x(k) is a causal sequence we get:

Z [x(k -1)] = z -1 X(z) s.t. x(k) = 0 ∀ k < 0 (6.32)
Consequently z -1 is interpreted as the one sampling period delay operator. More generally we have:

Z [x(k -n)] = z -n X(z) ∀ n ∈ N + s.t. x(k) = 0 ∀ k < 0 (6.33) Multiplication by k Z [kx(k)] = -z d dz Z [x(k)] = -z d dz X(z) (6.43)
Example 6.6. Find the Z transform of the sequence

x(k) = kT ∀ k ∈ N + x(k) = T kΓ(k) ⇒ X(z) = -T z d dz Z [Γ(k)] = -T z d dz z z-1 = -T z z-1-z (z-1) 2 = T z (z-1) 2 (6.44) ■ Example 6.7.
From the preceding example nd the Z transform of the sequence

x(k) = (kT ) 2 ∀ k ∈ N + x(k) = T k • kT ⇒ X(z) = -T z d dz Z [kT ] = -T z d dz T z (z-1) 2 = -T 2 z (z-1) 2 -2z(z-1) (z-1) 4 = -T 2 z (z-1)-2z (z-1) 3 = T 2 z(z+1) (z-1) 3 (6.45) ■

Convolution

We have seen that the discrete time convolution * between two causal sequences x(k) and y(k) is dened by:

x(k) * y(k) = k m=0 x(m)y(k -m) (6.46)
Then the Z transform of the convolution between two causal sequences x(k) and y(k) is the product of the Z transforms of x(k) and y(k):

Z [x(k) * y(k)] = X(z)Y (z) (6.47)
When y(k) is the unit impulse, y(k) = δ(k), and using the fact that the unit impulse is the neutral element for discrete time convolution, we can write:

Z [x(k) * δ(k)] = Z [x(k)] ⇔ X(z)Z [δ(k)] = X(z) (6.48)
Simplifying by X(z), we get the Z transform of the unit impulse δ(k):

Z [δ(k)] = 1 (6.49)

Usual Z transform pairs

Usual Z transform pairs are provided in Table 6.1. 

x(k) ∀ k ∈ N + X(z) δ(k) 1 Γ(k) (step function) z z-1 kT T z (z-1) 2 (kT ) 2 T 2 z(z+1) (z-1) 3 a k z z-a e -akT z z-e -aT sin(ω 0 kT ) z sin(ω 0 T ) z 2 -2z cos(ω 0 T )+1 cos(ω 0 kT ) z(z-cos(ω 0 T )) z 2 -2z cos(ω 0 T )+1

Cauchy's residue theorem

From the residue theorem coming from complex analysis it can be demonstrated that as soon as X(z) is a proper rational fraction (the degree of its denominator is greater or equal to the degree of its numerator) its inverse Z transform reads:

x(k) = Z -1 [X(z)] = i Res z=λ i z k-1 X(z) ∀ k ∈ N + (6.50)
The residue Res z=λ i z k-1 X(z) shall be computed around each pole λ i of X(z). Assuming that λ i is a pole of multiplicity n i then the residue of z k-1 X(z) around pole λ i is given by:

Res z=λ i z k-1 X(z) = 1 (n i -1)! d n i -1 dz n i -1 (z -λ i ) n i z k-1 X(z) z=λ i (6.51)
Let n 0 (k) be the multiplicity of the root 0 of the polynomial corresponding to the numerator of z k-1 X(z). Then x(k) is dened ∀ n 0 (k) ≥ 0. Example 6.8. Find the inverse Z transform of X(z) = z z-α X(z) has a unique pole at λ 1 = α with multiplicity n 1 = 1. The residue of z k-1 X(z) around pole λ 1 of multiplicity n 1 = 1 reads:

x(k) = Res z=α z k-1 X(z) = 1 (1-1)! d 1-1 dz 1-1 (z -α) 1 z k-1 X(z) z=α = (z -α) z k-1 X(z) z=α = z k z=α ⇔ x(k) = α k ∀ k ∈ N + (6.52)
We get:

X(z) = T z z 2 -2z + 1 = T z -1 1 -2z -1 + z -2 (6.55)
Then we compute the quotient of the polynomial long division (i.e. division according to the increasing power of z -1 ) of X(z):

T z -1 1 -2z -1 + z -2 -T z -1 -2T z -2 + T z -3 T z -1 + 2T z -2 + • • • 2T z -2 -T z -3 (6.56)
Then we identify the quotient T z

-1 + 2T z -2 + • • • of the polynomial long division with ∞ k=0 x(k)z -k .
In that example this leads to the rst 3 values of

x(k): T z -1 + 2T z -2 + • • • = ∞ k=0 x(k)z -k ⇒          x(0) = 0 x(1) = T x(2) = 2T . . . (6.57)
It is clear that the long-division approach does not yield a closed-form solution because the steps to compute each coecient of the quotients shall be done indenitely to get the complete sequence x(k). The Z transform can be seen as the Laplace transform of a sampled causal continuous time signal where z = e sT . Indeed the sampling of a causal continuous time signal x(t) to a discrete time sequence x s (k) is mathematically modelled thanks to the following product which involves the Dirac delta function δ(t) and the sampling interval T :

x s (k) := x(t)| t=kT = ∞ k=0 x(t)δ(t -kT ) = ∞ k=0 x(kT )δ(t -kT ) (6.58)
By taking the Laplace transform of this equation we get:

L [x s (k)] = L [ ∞ k=0 x(kT )δ(t -kT )] = ∞ k=0 L [x(kT )δ(t -kT )] = ∞ k=0 x(kT )L [δ(t -kT )] = ∞ k=0 x(kT )e -skT = ∞ k=0 x(kT ) e sT -k (6.59)
Let's dene: z = e sT (6.60)

Consequently setting z = e sT in Laplace transform of a sampled causal continuous time signal x(t) leads to the Z transform of the causal sequence {x(0), x(1),

• • • , x(k), • • • } L [x s (k)] z=e sT = ∞ k=0 x(kT )z -k := Z [x(k)] (6.61) 
Conversely let's consider a continuous time signal x(t) whose Laplace transform exhibits distinct poles only. The partial fraction expansion of X(s) reads:

X(s) = N (s) n i=1 (s -λ i ) = n i=1 a i s -λ i (6.62)
Taking the inverse Laplace transform of X(s) yields the expression of x(t) as a sum of exponential functions:

L -1 [X(s)] = x(t) = n i=1 a i e λ i t ∀ t ≥ 0 (6.63)
Then the sampling of the continuous time signal x(t) to the discrete time sequence x s (k) leads to the following expression:

x s (k) := x(t)| t=kT = n i=1 a i e λ i kT ∀ k ∈ N + (6.64)
Knowing that Z a k = z z-a and using the fact that the Z transform is a linear operator the Z transform of x s (k) reads:

x s (k) = n i=1 a i e λ i T k ⇒ X(z) = Z [x s (k)] = n i=1 a i Z e λ i T k = n i=1 a i z z-e λ i T (6.65)
As a consequence each simple fraction 1 s-λ i in the Laplace transform domain is associated in the Z transform domain to the term z z-e λ i T :

1 s -λ i Z -→ z z -e λ i T (6.66)
In others words each pole λ i in the Laplace transform domain is associated in the Z transform domain to the pole e λ i T :

λ i Z -→ e λ i T (6.67)
This relation can also be read as z = e sT .

From Laplace transform to Z transform

The purpose of this section is to provide the relation which enables to get the Z transform of the discrete time sequence x(k) from the Laplace transform of the related continuous time signal x(t). Thus starting from X(s), which is assumed to be a strictly proper rational fraction, we have to apply the inverse Laplace transform to get the continuous time signal x(t). Then x(t) is sampled at every time step kT to obtain the discrete time sequence x(k) and the Z transform is applied to get X(z). This is denoted as follows:

X(z) = Z [X(s)] (6.68) 
The residue theorem applied on this specic inversion problem leads to the following result:

Z [X(s)] = i Res z=λ i X(s) 1 -z -1 e sT (6.69)
Where the residue Res z=λ i X(s)

1-z -1 e sT shall be computed around each pole λ i of X(s). Assuming that λ i is a pole of multiplicity n i then the residue of X(s) 1-z -1 e sT around pole λ i is given by:

Res s=λ i X(s) 1 -z -1 e sT = 1 (n i -1)! d n i -1 ds n i -1 (s -λ i ) n i X(s) 1 -z -1 e sT s=λ i (6.70)
Example 6.11. Let's compute the Z transform of X(s) = 1 s 2 . It is clear that X(s) has a singe pole, λ 1 = 0, with multiplicity n 1 = 2. The residue of of X(s)

1-z -1 e sT around pole λ 1 = 0 is given by:

x(k) = Res s=0 X(s) 1-z -1 e sT = 1 (n 1 -1)! d n 1 -1 ds n 1 -1 s n 1 X(s) 1-z -1 e sT s=0 = d ds 1 1-z -1 e sT s=0 = z -1 T e sT (1-z -1 e sT ) 2 s=0 = z -1 T (1-z -1 ) 2 (6.71)
By multiplying the numerator and the denominator by z 2 we nally get:

x(k) = T z (z -1) 2 ∀ k ≥ 0 (6.72)
In order to check this result let's take the inverse Laplace transform of X(s). We get:

x(t) = L -1 [X(s)] = t (6.73)
Then the sequence x(k) is obtained by sampling the continuous time signal x(t) at each time step t = kT . We get:

x(k) = x(t)| t=kT = kT (6.74)
Sequence x(k) can be written as follows where Γ(k) is the unit step sequence:

x(k) = kT = T kΓ(k) (6.75)
The property of the Z transform with respect to the multiplication by k can be applied to get the Z transform of sequence x(k):

Z [x(k)] = Z [T kΓ(k)] = T Z [kΓ(k)] = -T z d dz Γ(z) (6.76) 
Where:

Γ(z) = Z [Γ(k)] = z z -1 (6.77)
We nally get:

Z [x(k)] = -T z d dz z z -1 = T z (z -1) 2 (6.78)
We obviously get the same result than the result obtained thanks to the residue theorem. For systems that have only one input and one output it is frequently convenient to work with an input-output description of the system. For discrete linear time systems this consists of a single n th order linear dierence equation relating the sampled output y(k) to the sampled input u(k) of the system:

a 0 y(k) + a 1 y(k -1) + • • • + a n y(k -n) = b 0 u(k) + b 1 u(k -1) + • • • + b m u(k -m) (6.79)
The constant coecients a i and b i are dened by the system parameters. For causal systems we have: m ≤ n (6.80)

When the dierence equation reects the input output relation of a digital controller, the algorithm implemented on the computer (sometimes a DSP: digital signal processor) computes at each time step the output y(k) as a function of the previous values of the output and also current and past values of the input:

y(k) = 1 a 0 (b 0 u(k) + b 1 u(k -1) + • • • + b m u(k -m)) - 1 a 0 (a 1 y(k -1) + • • • + a n y(k -n)) (6.81)
Assuming that sequences y(k) and u(k) are causal (so that the time response of the discrete time system is invariant) and applying the time delay property of the Z transform, the Z transform of dierence equation (6.79) reads:

a 0 Y (z) + a 1 z -1 Y (z) + • • • + a n z -n Y (z) = b 0 U (z) + b 1 z -1 U (z) + • • • + b m z -m U (z) (6.82)
Analogously to the continuous time domain, the discrete time transfer function H(z) of a discrete linear time invariant system is dened to be the ratio of the Z transform of the output sequence y(k) to the Z transform of the input sequence u(k):

H(z) = Y (z) U (z) = b 0 + b 1 z -1 + • • • + b m a 0 + a 1 z -1 + • • • + a n z -n (6.83)
This transfer function is usually rationalized by multiplying top and bottom by z n :

H(z) = Y (z) U (z) = b 0 z n + b 1 z n-1 + • • • + b m z n-m a 0 z n + a 1 z n-1 + • • • + a n (6.84)
As far as the Z transform of the unit impulse δ(k) is 1, it is worth noticing that the Z transform of the impulse response of a discrete linear time invariant system is its transfer function (as in the continuous time case):

Y (z) = H(z)U (z) u(k) = δ(k) ⇒ U (z) = 1 ⇒ Y (z) = H(z) (6 
.85)

Stability analysis

RouthHurwitz based stability criterion

Analysis tools based on the Laplace domain also apply to Z domain thanks to specic adjustments. As far as stability is concerned the symbolic relation z = e sT is quite useful to analyze discrete time systems. Indeed we know that a continuous time system is stable if and only if all the poles of its transfer function have negative real part. Applying relation z = e sT shows that a discrete time system is stable if and only if all the poles of its transfer function have a magnitude less than 1.

As an example consider a rst order discrete time system dened by the following dierence equation where a and b are real parameters:

y(k) + ay(k -1) = bu(k -1) (6.86)
The transfer function H(z) of this system is obtained by taking the Z transform of the dierence equation. Assuming that y(k) and u(k) are causal sequences this yields: It is clear that all the poles of its transfer function have a magnitude less than 1 as soon as ∥a∥ < 1; as far as parameter a is a real this simply reads:

Y (z) + az -1 Y (z) = bz -1 U (z) ⇒ H(z) = Y (z) U (z) = bz -1 1+az -1 = b z+a (6.87)
-1 < a < +1 (6.88)

Analogously to the continuous time domain we may apply Routh criterion to analyze discrete time stability. Nevertheless some adjustment shall be made in order that the criterion shall indicates the number of poles outside the unity circle rather than the number of poles with positive real part. This adjustment is achieved thanks to the following homographic transformation which matches the imaginary axis of the complex w-plan to the unit circle of the complex z-plan as illustrated in Figure 6.5. More generally every point within the unit circle in the z-plane is changed into a point with negative real part in the w-plane.

w = z -1 z + 1 ⇔ z = 1 + w 1 -w ( 
From a practical point of view the stability of a discrete time system described by its transfer function H(z) = N (z) D(z) can be assessed:

either by computing the roots of the characteristic polynomial D(z) and by checking that there are all encompassed in the unit circle, -or by replacing z by 1+w 1-w in the characteristic polynomial D(z) and by computing the Routh array of the polynomial in w which appears at the numerator of the fraction.

An alternative of the RouthHurwitz based stability criterion which has been presented is the Jury stability criterion2 which will not be developed here.

Stability analysis of a second order discrete time system Consider a second order discrete time system dened by the following dierence equation where a 1 , a 0 and b 0 are real parameters:

y(k) + a 1 y(k -1) + a 0 y(k -2) = b 0 u(k -2) (6.91)
The transfer function H(z) of this system is obtained by taking the Z transform of the dierence equation. Assuming that y(k) and u(k) are causal sequences this yields:

Y (z) + a 1 z -1 Y (z) + a 0 z -2 Y (z) = b 0 z -2 U (z) ⇒ H(z) = Y (z) U (z) = b 0 z -2 1+a 1 z -1 +a 0 z -2 = b 0 z 2 +a 1 z+a 0 (6.92)
In order to assess the stability of such a second order discrete time system we shall localize the roots of D(z) = z 2 + a 1 z 1 + a 0 . The roots of D(z) are complex if a 2 1 -4a 0 < 0 and real otherwise. Rather than computing explicitly those roots and assess if they are inside the unit circle we will use the homographic transformation z = 1+w 1-w . We get:

D (z)| z= 1+w 1-w = 1 + w 1 -w 2 + a 1 1 + w 1 -w + a 0 (6.93) 
And D(z) = 0 yields:

D(z) = 0 ⇒ (1 + w) 2 + a 1 (1 + w) (1 -w) + a 0 (1 -w) 2 = 0 (6.94)
Expanding leads to a polynomial of degree 2:

(1 -a 1 + a 0 ) w 2 + 2 (1 -a 0 ) w + 1 + a 1 + a 0 = 0 (6.95)

All the coecients the polynomial exist and have the same sign; so the necessary condition for the polynomial in w to have all its roots in the left half (complex) plane (LHP) are satised. The Routh array reads:

s 2 1 -a 1 + a 0 1 + a 1 + a 0 s 1 2 (1 -a 0 ) s 0 1 + a 1 + a 0 (6.96)
All the roots in w have negative real part meaning that all the roots in z are situated in the unit circle, if there is no sign change in the rst column. Thus the following inequalities shall be satised: We have arbitrary chosen a positive sign; we can also do the test assuming negative sign and check that there is no solution.

   1 -a 1 + a 0 > 0 1 -a 0 > 0 1 + a 1 + a 0 > 0 ⇔    a 0 > a 1 -1 a 0 < 1 a 0 > -a 1 -1 (6.97)
Conditions (6.97) are illustrated in Figure 6.6. This shows the resulting stability triangle in the {a 0 , a 1 } plane. We conclude that a second order discrete time system is stable if, and only if, coecients {a 0 , a 1 } dene a point that lies inside this triangle. As previously noted the poles of the characteristic polynomial D(z) are complex if a 0 > a 2 1 4 and real otherwise. f

Frequency response

In this section we will focus on stable discrete time linear invariant systems.

The frequency response of a discrete time system is the response of the system to the sampled exponential sequence u(k) = e jαk where α is the reduced frequency. More specically the frequency response consists in the magnitude and phase relation between the input and the output sequence when the input sequence u(k) is the causal sampled exponential e jαk .

We have previously seen that the Z transform of the output sequence y(k) of a discrete linear time invariant system is obtained thanks to the product between if transfer function H(z) and the Z transform of the input sequence u(k). Coming back to the discrete time domain, and having in mind that the inverse Z transform of a product is the discrete time convolution we get:

Y (z) = H(z)U (z) ⇒ y(k) = h(k) * u(k) (6.98)
As a consequence a discrete linear time invariant system is a convolutor. Specializing relation (6.98) to the case where u(k) is the causal sampled exponential reads:

u(k) = e jαk ⇒ y(k) = ∞ m=0 h(m)e jα(k-m) (6.99)
Using the fact that the summation is a linear operation we get:

u(k) = e jαk ∞ m=0
h(m)e -mjα (6.100)

We recognize in the term ∞ m=0 h(m)e -mjα the Z transform of the impulse response h(k) where the Z transform variable z is specialized to be e jα :

∞ m=0 h(m)e -jαm = ∞ m=0 h(m)z -m z=e jα = H(z)| z=e jα (6.101)
Note that H(z)| z=e jα = H(e jα ) is called the frequency response of the discrete time system.

As a consequence the frequency response of a discrete linear time invariant system to the sampled exponential reads: e jαk ⇒ y(k) = e jαk H(z)| z=e jα = H(e jα )e jαk (6.102)

The preceding relation shows that the frequency response of a discrete linear time invariant system is closely linked to its transfer function. The frequency of the output sequence is the same than the frequency of the input sequence; only the amplitude and the phase of the input sequence are changed by the linear system. In addition the phase of the output sequence is independent of the amplitude of the input sequence. Denoting by H(e jα ) the norm of H(e jα ) and by Φ(α) the phase of H(e jα ) the preceding relation reads: Thus the frequency response of LTI systems is essentially the same for continuous time and discrete time systems. However, an important distinction arises because the frequency response of discrete time LTI systems is always a periodic function of the reduced frequency α with period 2π.

Since H(e jα ) is periodic with period 2π and since the frequencies α and α + 2π are indistinguishable, it follows that H(e jα ) is only studied over the interval -π < α ≤ +π. With respect to this interval, the low frequencies are frequencies close to zero, whereas the high frequencies are frequencies close to ±π. In addition as soon as the polynomials which appear on the numerator and denominator of H(e jα ) have real coecients we have:

Re H(e jα ) = Re H(e -jα ) Im H(e jα ) = -Im H(e -jα ) ⇒ H(e jα ) = H(e -jα ) ∠H(e jα ) = -∠H(e -jα ) (6.105)

Thus H(e jα ) is an even function of α whereas ∠H(e jα ) is an odd function of α. Consequently H(e jα ) and ∠H(e jα ) are only studied for positive values of α, which corresponds to physically achievable frequencies:

0 ≤ α < π (6.106)
It is worth noticing that when input u(k) is not the sampled exponential sequence but a real sinusoidal sequence then the output sequence y(k) is obtained thanks to the real (or imaginary) part of the complex output sequence: u(k) = cos (αk) = Re e jαk ⇒ y(k) = Re H(e jα ) e j(αk+Φ(α)) = H(e jα ) cos (αk + Φ(α)) (6.107)

And similarly:

u(k) = sin (αk) = Im e jαk ⇒ y(k) = Im H(e jα ) e j(αk+Φ(α)) = H(e jα ) sin (αk + Φ(α)) (6.108)
The static gain G s of a discrete time system is the limit as k → ∞ of the ratio between the output sequence y(k) and the input sequence u(k). Assuming that the limit exists and applying the nal value theorem leads to the following expression of the static gain:

G s = lim k→∞ y(k) u(k) = lim z→1 1 -z -1 Y (z) (1 -z -1 ) U (z) = lim z→1 Y (z) U (z) = lim z→1 H(z) (6.109) 
As an example consider again a rst order discrete time system dened by the following dierence equation where a and b are real parameters:

y(k) + ay(k -1) = bu(k -1) (6.110)
The transfer function H(z) of this system is obtained by taking the Z transform of the dierence equation. Assuming that y(k) and u(k) are causal sequences this yields:

Y (z) + az -1 Y (z) = bz -1 U (z) ⇒ H(z) = Y (z) U (z) = bz -1 1+az -1 = b z+a (6.111)
In order to assess the frequency response of the rst order discrete time system we replace z by e jα in the transfer function H(z): It can then be shown that a rst order discrete time system is a low pass lter as soon as -1 < a < 0 and a high pass lter as soon as 0 < a < 1. Figure 6.7 presents the frequency response of a low pass rst order lter where a = -0.1 and b = 1, whereas Figure 6.8 presents the frequency response of a high pass rst order lter where a = +0.1 and b = 1. It is worth noticing that the graduation on the abscissa is the product f T (which shall be lower than 0.5 so that α ≤ π) where f is the ordinary frequency of the input sequence and T the sampling period whereas the ordinate is graduated in dB. We can check that: a = -0. The purpose of this section is to derive the transfer function of a continuous time plant with sampled output and input. More specically consider the general conguration shown in Figure 6.9 where it is desired to nd the equivalent discrete time transfer function F (z) of the continuous time plant F (s) with Digital-to-Analog Converter (DAC) and Analog-to-Digital The Zero-Order Hold (ZOH) device generates the continuous time input signal u(t) by holding each sample value u(k) constant over one sample period T . Thus the impulse response of the Zero-Order Hold (ZOH) device is a rectangular pulse of duration T as illustrated in Figure 6.10. Therefore denoting by Γ(t) the unit step function the transfer function of the ZOH device is given by:

u(k) = δ(k) ⇒ g 0 (t) = Γ(t) -Γ(t -T ) ⇒ B 0 (s) =
1 -e -sT s (6.117) Let u 0 (t) be the response of the plant with transfer function F (s) to the unit step function Γ(t). Assuming that F (s) is a linear and invariant plant, its response to a rectangular pulse of duration T reads:

u(t) = g 0 (t) = Γ(t) -Γ(t -T ) ⇒ y(t) = u 0 (t) -u 0 (t -T ) (6.118)
Finally the Analog-to-Digital Converter (ADC) is modelled by a sampler as illustrated in Figure 6.11.

Thus the impulse response of the block composed by the DAC, the plant F (s) and the ADC is signal dened by (6.118) sampled at the sampling period 

T : t = kT ⇒ y(k) = u 0 (kT ) -u 0 (kT -T ) = u 0 (kT ) -u 0 ((k -1) T ) (6.119)
Having in mind that z -1 is the one sampling period delay operator, the Z transform of the preceding equation yields:

F (z) = Z [u 0 (kT ) -u 0 ((k -1) T )] = Z [u 0 (kT )] -z -1 Z [u 0 (kT )] = 1 -z -1 Z [u 0 (kT )] (6.120) 
Here u 0 (kT ) represents the sequence obtained by sampling continuous time signal u 0 (t) which is the unit step response of the continuous time system. As far as the Laplace transform of u 0 (t) is F (s) s the preceding relation is usually written as follows:

F (z) = Z [B 0 (s)F (s)] = 1 -z -1 Z F (s) s (6.121)
In the preceding relation the term Z F (s) s shall be interpreted as the Z transform of the sampled unit step response of the continuous time plant. Thus the computation of Z F (s) s involves three steps: rst to compute the inverse Laplace transform of F (s) s , then to sample the obtained continuous time signal to obtain a sequence and nally to take its Z transform. This is quite a long process but hopefully the residue theorem applied on this specic inversion problem leads to a straightforward result:

Z F (s) s = i Res z=λ i 1 1 -z -1 e sT • F (s) s (6.122) The residue Res z=λ i 1 1-z -1 e sT • F (s)
s shall be computed around each pole λ i of F (s) s . Assuming that λ i is a pole of multiplicity n i then the residue of 1 1-z -1 e sT • F (s) s around pole λ i is given by:

Res s=λ i 1 1 -z -1 e sT • F (s) s = 1 (n i -1)! d n i -1 ds n i -1 (s -λ i ) n i 1 1 -z -1 e sT • F (s) s s=λ i (6.123)
Example 6.12. Consider the following continuous time plant whose transfer function is:

F (s) = 1 1 + τ s (6.124)
This plant is inserted in a discrete time environment as illustrated in Figure 6.9. We wish to nd the equivalent discrete time transfer function F (z) of the continuous time plant F (s) with Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter (ADC).

Applying (6.121) leads to the following expression of F (s):

F (z) = 1 -z -1 Z 1 s (1 + τ s) (6.125) 
Where:

Z 1 s (1 + τ s) = i Res z=λ i 1 1 -z -1 e sT • 1 s (1 + τ s) (6.126)
Transfer function 1 s(1+τ s) has two poles: -λ 1 = 0, with multiplicity n 1 = 1; applying (6.123) the residue around that pole reads: Consequently F (z) reads:

F (z) = 1 -z -1 1 1-z -1 - 1 1-z -1 e -T τ = 1 -1-z -1
1-z -1 e -T τ = 1-z -1 e -T τ -1+z -1 1-z -1 e -T τ = z -1 -z -1 e -T τ 1-z -1 e -T τ (6.129) That is: The corresponding transfer function is obtained by taking the Laplace transform of the preceding relations and assuming x(0) = 0 : F(s) = C (sI -A) -1 B + D (6.132)

F (z) = 1 -e -
The solution of the linear dierential equation ẋ(t) = Ax(t) + Bu(t) where x(0) = x 0 reads as follows:

x(t) = e At x 0 + t 0 e A(t-τ ) Bu(τ )dτ (6.133)

Assuming that the state vector x(t) is sampled with a Zero-Order Hold (ZOH) device with a sampling period T , we get at t = kT :

x(kT ) = e AkT x 0 + kT 0 e A(kT -τ ) Bu(τ )dτ (6.134)

We seek the expression of x((k + 1)T ) as a function of x(kT ). To do that, let's express x(t) at t = (k + 1)T :

x((k + 1)T ) = e A(k+1)T x 0 + Assuming that the term u(τ ) which appears in the integral is constant during each time step (this is the case when a Zero-Order Hold (ZOH) device is used), we can replace it by u(kT ) and put it out of the integral, as well as matrix B. We get:

x((k + 1)T ) = e AT x(kT ) + Assuming that A -1 exists and using the fact that e AT A -1 = A -1 e AT , we can compute the integral term which is needed to get B d :

T 0 e At dt = A -1 e At T t=0 = A -1 e AT -I (6.142) Thus, assuming that A -1 exists, we get:

x k+1 = e AT x k + A -1 e AT -I Bu k (6.143)

As far as the output equation is concerned, it remains unchanged:

y(t) = Cx(t) + Du(t) ⇒ y k = Cx k + Du k (6.144)
Consequently, the state space representation of a discrete time system is the following where A d and B d are provided by (6.139): Then the corresponding discrete time system is the following 3 :

x k+1 = A d x k + B d u k y k = Cx k +
x k+1 = A d x k + B d u k + w k y k = Cx k + Du k + v k where w k ∼ N (0, Q d = T 0 e Aτ Qe A T τ dτ ) v k ∼ N (0, R d = R
T ) (6.147) A trick to get Q d is to use the following property 3 : The purpose of this section is to show that (6.145) corresponds to the state space realization of (6.121). Indeed, from relation (6.121) we have:

exp -A Q 0 A T T = * A -1 d Q d 0 A T d ⇒ Q d = A T d T A -1 d Q d (
F (z) = 1 -z -1 Z F (s) s (6.149) 
The expression Z F (s) s represents the Z transform of the unit step response of a plant with transfer function F (s). Let y s (t) be the unit step response of the plant. The unit step response y s (t) can be computed as the inverse Laplace transform of F (s) s : y s (t) = L -1 F (s) s (6.150)

Consider a SISO plant with the following state-space realization: ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) (6.151)

Transfer function F (s) is obtained assuming no initial condition (x(0) = 0). By taking the Laplace transform of the state-space realization we get:

F (s) = L [y(t)] L [u(t)] = Y (s) U (s) = C (sI -A) -1 B (6.152)
We have seen in (6.133) that, assuming to initial condition, the trajectory of the state vector of a linear system reads as follows:

x(0) = 0 ⇒ x(t) = t 0 e A(t-τ ) Bu(τ )dτ (6.153)

When u(t) = 1 ∀ t ≥ 0, the expression of the state vector x s (t) corresponding an unit step input reads: Assuming that A -1 exists, and because A -1 and e At commute, the unit step response x s (t) can be computed as follows:

u(t) = 1 ∀ t ≥ 0 ⇒ x s (t) =
x s (t) = Furthermore we can check that for any invertible matrices E and F we have:

E -1 -F -1 = E -1 (E -F) F -1 (6.160)
Setting E = I -z -1 e AT and F = 1 -z -1 I we get:

E -1 -F -1 = I -z -1 e AT -1 ¡ I -z -1 e AT -¡ 1 -z -1 I 1 -z -1 -1 I = 1 1-z -1 I -z -1 e AT -1 z -1 I -z -1 e AT = 1
1-z -1 I -z -1 e AT -1 z -1 I -e AT = 1 1-z -1 zI -e AT -1 I -e AT (6.161) Thus:

Z F (s) s := Z [y s (kT )] = C E -1 -F -1 A -1 B = 1 1-z -1 C zI -e AT -1
I -e AT A -1 B = 1 1-z -1 C zI -e AT -1 A -1 I -e AT B (6.162)

We nally get:

1 -z -1 Z F (s) s = C zI -e AT -1 A -1 I -e AT B (6.163)

The preceding equation indicates that the state space realization of

1 -z -1 Z F (s)
s is the following: Those approximations can also be obtained by discretizing the derivative of ẋ(t) using the Euler's method: Furthermore, it is worth noticing that if z k = a k + jb k is an eigenvalue of the state matrix A d of the discrete time system, the corresponding eigenvalue s k of the state matrix A of the continuous time system can be obtained as follows:

1 -z -1 Z F ( 
s k = 1 T ln a 2 k + b 2 k + j 1 T atan b k a k ⇔ z k = a k + jb k = e s k T (6.169)
6.8 Discretization using Adomian series

Dierential equations

First we recall the main principles of Adomian's method 4 . We consider the following dierential equation where x is an unknown (vector) function, L a linear dierential operator, N (x(t)) a nonlinear operator acting upon x and h(t) a known (vector) function independent of x: L(x) = N (x) + h (6.170)

After integration, and using the linearity of L, we get:

x(t) = x(0) + L -1 (N (x) + h) = x(0) + L -1 (h) + L -1 (N (x)) (6.171) Then x(t) and the nonlinear operator N (x), which is assumed to be analytic (meaning innitely dierentiable), are represented by the following series:

x(t) = ∞ i=0 x i (t) N (x) = ∞ i=0 A i (x 0 , • • • , x i ) (6.172)
The so-called Adomian polynomials A m (x 0 , • • • , x m ) are computed as follows:

A m (x 0 , • • • , x m ) = 1 m! d m dλ m N m k=0 λ k x k λ=0 m = 0, 1, 2, • • • (6.173)
Adomian polynomials A m (x 0 , • • • , x m ) can equivalently be computed as follows 5 :

A m (x 0 , • • • , x m ) = 1 2π +π -π N m k=0
x k e jkλ e -jmλ dλ m = 0, 1, 2, • • • (6.174)

Using series expansion (6.172) within (6.171) yields: Equating terms with the same order on both sides leads to the approximation of order n of x(t):

x(t) ≈ n i=0

x i (t) where

            
x 0 (t) = x(0) + L -1 (h) x 1 (t) = L -1 (A 0 (x 0 )) x 2 (t) = L -1 (A 1 (x 0 , x 1 ))

. . . Here the linear dierential operator L is the double integration d 2 /dt 2 . Consequently L -1 is the twofold denite integration t 0 τ 1 0 dτ 2 dτ 1 . Furthermore, for this example h does not exist and N (x) = sin(x). Using (6.173), the Adomian series expansion of sin(x) reads:

              
A 0 (x 0 ) = sin(x 0 ) A 1 (x 0 , x 1 ) = x 1 cos(x 0 ) A 2 (x 0 , x 1 , x 2 ) = x 2 cos(x 0 ) -x 2 1 2 sin(x 0 ) A 3 (x 0 , x 1 , x 2 , x 3 ) = x 3 cos(x 0 ) -1 6 x 3 1 cos(x 0 ) -x 1 x 2 sin(x 0 ) . . . (6.178) Thus, using (6.176), we get the following approximation of x(t):

x(t) ≈ n i=0

x i (t) (6.179) where:

x 0 (t) = x(0) + L -1 (h) = θ 0

x 1 (t) = L -1 (A 0 (x 0 )) = t 0 τ 1 0 sin(x 0 )dτ 2 dτ 1 = t 0 τ 1 0 sin(θ 0 )dτ 2 dτ 1 = t 2 2 sin(θ 0 ) x 2 (t) = L -1 (A 1 (x 0 , x 1 )) = Now we consider the following nonlinear state space representation where f (x(t), u(t)) is an analytic (meaning innitely dierentiable) vector eld on R n : ẋ(t) = f (x(t), u(t)) (6.181)

The solution x(t) of this dierential equation reads as follows where L -1 is the onefold denite integration t 0 dτ : x(t) = x(0) + L -1 (f (x(t), u(t)))

= x(0) + t 0 (f (x(τ ), u(τ ))) dτ (6.182)

Assuming a Zero-Order Hold (ZOH) digital-to-analog converter (DAC), the control vector u(t) is a known constant over the sampling interval T : u(t) = u(kT ) := u k = constant ∀ t ∈ [t k , t k+1 ) = [kT, (k + 1)T ) (6.183) Thus, when discretization the nonlinear dynamical system (6.182), u(τ ) is replaced by u k = constant ∀ t ∈ [kT, (k + 1)T ). We get: Following the Adomian decomposition method, x(t) and f (x(t), u k ) are presented by the following series:

x(t) = ∞ i=0 x i (t) f (x(t), u k ) = ∞ i=0 A i (x 0 , • • • , x i ) (6.186)
The so-called Adomian polynomials A i (x 0 , • • • , x i ) are computed as in (6.173):

A i (x 0 , • • • , x i ) = 1 i!   d i dλ i f   i j=0 λ j x j , u k     λ=0 i = 0, 1, 2, • • • (6.187)
Then equating terms with the same order on both sides of (6.184) leads to the approximation of order n of x(t). Denoting now L -1 the onefold denite integration t kT dτ , we get:

x(t) ≈ n i=0
x i (t) where

              
x 0 (t) = x k x 1 (t) = L -1 (A 0 (x 0 )) := t kT A 0 (x 0 ) dτ x 2 (t) = t kT A 1 (x 0 , x 1 ) dτ . . .

x n (t) = t kT A n-1 (x 0 , • • • , x n-1 ) dτ (6.188) Finally, setting t to (k + 1)T in x(t), we get the approximation of order n of the dynamics of the discretized plant:

x((k + 1)T ) ≈ n i=0

x i ((k + 1)T ) (6.189)

When n = 1, this corresponds to the Euler's method.

Example 6.14. We consider the following linear time invariant plant:

ẋ = Ax + Bu (6.190)
It is clear that we get from identication with (6.181):

f (x, u) = Ax + Bu (6.191) Following Adomian's procedure we get:

               A 0 (x 0 ) = Ax 0 + Bu k A 1 (x 0 , x 1 ) = d dλ (A (x 0 + λ x 1 ) + Bu k ) λ=0 = Ax 1 A 2 (x 0 , x 1 , x 2 ) = 1 2! d 2 dλ 2 A x 0 + λ x 1 + λ 2 x 2 + Bu k λ=0 = Ax 2 . . . A n (x 0 , • • • , x n ) = Ax n (6.192)
Thus the approximation of order n of x(t) reads x(t) ≈ n i=0 x i (t) where: (6.193) Finally, setting t to (k + 1)T in x(t), we get the approximation of order n of the dynamics of the discretized plant:

               x 0 (t) = x k x 1 (t) = t kT A 0 (x 0 ) dτ = (Ax k + Bu k ) (t -kT ) x 2 (t) = t kT A 1 (x 0 , x 1 ) dτ = A (Ax k + Bu k ) (t-kT ) 2 2 . . . x n (t) = t kT A n-1 (x 0 , • • • , x n-1 ) dτ = A n-1 (Ax k + Bu k ) (t-kT ) n n!
x((k + 1)T ) ≈ n i=0

x i ((k + 1)T ) (6.194) where:

            
x 0 ((k + 1)T ) = When n → ∞, and assuming that A -1 exists, we get the following series: Or, in vectorial form: Following Adomian's procedure we get: Thus the approximation of order n of x(t) reads x(t) ≈ n i=0 x i (t) where:

x((k + 1)T ) = ∞ i=0 x i ((k + 1)T ) = ∞ i=0 (AT ) i i! x k + A -1 ∞ i=1 (AT ) i i! Bu k = ∞ i=0 (AT ) i i! x k + A -1 ∞ i=0 ( 
x = x 1 x 2 ⇒ ẋ =
                                                 A 0 (x 0 ) = f (x 0 , u k ) = x 0,2 1 
                                      
x 0 (t) = x k := x 0,1 x 0,2 x 1 (t) = Finally, setting t to (k + 1)T in x(t), we get the approximation of order n of the dynamics of the discretized plant:

x((k + 1)T ) ≈ n i=0

x i ((k + 1)T ) (6.202) 6.9. Derivation of discrete time controller from continuous time controller 203 where:

                    
x 0 ((k + 1)T ) = x k := x 0,1 x 0,2

x 1 ((k + 1)T ) = x 0,2 Tustin's approximation has the advantage that the left half s-plane is transformed into the unit disc in the z-plane; indeed Tustin's approximation is an homographic transformation as illustrated in Figure 6.5. Example 6.16. Consider the following PI continuous time controller whose transfer function is:

C P I (s) = K p + K i s (6.206)
Applying the Tustin's approximation leads to the following discrete time controller:

C d (z) = C(s)| s= 2 T z-1 z+1 = K p + K i T 2
z + 1 z -1 (6.207)

■

One of the problems with the Tustin's approximation method is that the frequency scale is distorted during the approximation. Recall that to evaluate the frequency response the transfer function is evaluated along the imaginary axis s = jω for continuous time systems whereas for discrete time systems the transfer function is evaluated along the unit circle z = e jα = e jωT . When the discrete time transfer function is obtained by using the Tustin's approximation on a continuous transfer function, the continuous frequency ω c is mapped to the discrete frequency ω d according to the following relation: That is:

s = jω c ⇒ 2
ω c → ω d = 2 T tan ω c T 2 (6.209)
Consequently the frequency scale is distorted. This will create mismatch in the system's response if the controller design is based on precise frequency requirements. At low frequency the distortion is small. However close to the Nyquist frequency the distortion becomes signicant. In order to match the continuous-time design at a specic frequency ω c the Tustin's approximation can me modied by using a pre-warping frequency:

s → ω c tan ωcT 2 z -1 z + 1 (6.210)
There are, however, still distortions at other frequencies.

Example 6.17. Consider the following continuous time controller whose transfer function is:

C(s) = 1 1 + τ s (6.211)
Applying the Tustin's approximation with ω c as the pre-warping frequency leads to the following discrete time controller: Setting ω c to 1 τ leads to the following discrete time controller:

ω c = 1 τ ⇒ C d (z) = 1 1 + 1 tan( T 2τ ) z + 1 z + a (6.214)
Where: The proof of the preceding property follows by inspection: we check that the following property holds: Furthermore, if ω 0 is not an eigenvalue of A, then the Tustin's map s → z = ω 0 +s ω 0 -s changes transfer function F (s) as follows 8 : -If the degree of the numerator of the discrete time controller is lower than the degree of its denominator then multiply by z + 1 the numerator until that the degree of the numerator of the discrete time controller becomes equal to the degree of its numerator.

a = 1 -τ ωc
F (z)
F (z) = F ( 
The purpose of this step is to map the high frequency behaviours of the discrete time and continuous time and controllers.

-Multiply the transfer function of the discrete time controller by a gain K n and set it to identify the static gain of the discrete time controller with the static gain of the continuous time controller: It is clear that the pole of C(s) is -1 τ whereas C(s) has no zero.

6.9. Derivation of discrete time controller from continuous time controller 207 -Map the poles and the zeros of the continuous time controller with the poles and the zeros of the discrete time controller according to the following relation where s is either a pole or a zero of the continuous time controller:

C d1 (z) = 1 
z -e -T τ (6.228)

-If the degree of the numerator of the discrete time controller is lower than the degree of its denominator then multiply by z + 1 the numerator until that the degree of the numerator of the discrete time controller becomes equal to the degree of its numerator. We get:

C d2 (z) = z + 1
z -e -T τ (6.229)

-Multiply the transfer function of the discrete time controller by a gain K n and set it to identify the static gain of the discrete time controller with the static gain of the continuous time controller.We get:

C d (z) = K n z + 1
z -e -T τ (6.230) Gain K n is set such that: 
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 12 Figure 1.2: Robot arm
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  a time invariant model; -a nonlinear model; -a SISO (Single Input and Single Output) model. The input-output relation h is dened as follows:

∂y y=0, u=0 =

 u=0 mlg cos(y)| y=0 = mlg a 1 = ∂h ∂ ẏ y=0,u=0 = b a 2 = ∂h ∂ ÿ y=0,u=0 = J b 0 = -∂h ∂u y=0,u=0 = 1 (1.22)

∂y y=π, u=0 =

 u=0 mlg cos(y)| y=π = -mlga 1 = ∂h ∂ ẏ y=π,u=0 = b a 2 = ∂h ∂ ÿ y=π,u=0 = J b 0 = -∂h ∂u y=π,u=0 = 1(1.24)

u 2 e - 2 +

 2 e ye = 0(1.27) 

∂y y=0, u=1 = e y | y=0 = 1 a 1 2 ( 1

 u=11121 = ∂h ∂ ẏ y=0,u=1 = 0 a 2 = ∂h ∂ ÿ y=0,u=1 = cos(ÿ)| y=0 = 1 b 0 = -∂h ∂u y=0,u=1 = -2u| u=1 = -

  function xdot = nonLinearModel(t,x,A) xdot = zeros(2,1); xdot(1) = x(2); ue = 1; //equilibrium point du = A*sin(t); u = ue + du; siny2dot = 2 -exp(x(1))-u^2; xdot(2) = asin(siny2dot); endfunction function xdot = linearModel(t,x,A) xdot = zeros(2,1);
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 13 Figure 1.3: Time response of nonlinear and linearized system
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 21 Figure 2.1: Dirac delta function δ(t)
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 22 Figure 2.2: Unit step function Γ(t)
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  10. Compute the inverse Laplace transform of G(s) = s 2 +2s+3 (s+1) 3 . Laplace transform G(s) has a single pole λ 1 = -1 with multiplicity n 1 = 3.
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 31 Figure 3.1: Block diagram representation of a LTI system
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 32 Figure 3.2: Unit step responses of F (s) and F (s)
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 33 Figure 3.3: Bode plots of F (s) and F (s)
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 35 Figure 3.5: Bode plots of F (s) and F (s)
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 21363 Figure 3.6: Unit step responses of F (s) and F (s)

■ 3 . 7 First order model 3 . 7 . 1

 37371 Time responseAn rst order system is described by a linear dierential equation of the rst order with constant coecients. Denoting by τ (τ > 0) the time constant and
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 37 Figure 3.7: Bode plots of F (s) and F (s)
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 38 Figure 3.8: First order system unit step response where K = 1 and τ = 2

  Figure 3.9: RC Filter
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 3 Figure 3.10: Bode plot and asymptotic Bode plot of a rst order model where K = 1 and τ = 2
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 3 Figure 3.11: RLC Filter
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 3 Figure 3.12: Second order system unit step response where m = 1.2, ω 0 = 1 and K = 1
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 1 Figure 3.13: Second order system unit step response where m = 0.1, ω 0 = 1 and K = 1 Using the expression a = -ω 0 m and b = ω 0 √ 1 -m 2 we nally get:

Figure 3 .

 3 14 presents the Bode plot as well as the asymptotic Bode plot for a second order model where m = 0.1, ω 0 = 1 and K = 1.

Figure 3 .

 3 Figure 3.14: Bode plot and asymptotic Bode plot of a second order model where m = 0.1, ω 0 = 1 and K = 1

  the transfer function of the plant; -C(s) the transfer function of the controller; -u(t) the plant input (actuator signal) and y(t) the plant output (sensor signal) whose Laplace transform are respectively L (y(t)) = Y (s) and L (u(t)) = U (s); -r(t) the reference input whose Laplace transform is L (r(t)) = R(s). Reference input r(t) represents what we would like y(t) to be; -ϵ(t) = r(t) -y(t) the tracking error as depicted in Figure 4.2. Its Laplace transform is L (ϵ(t)) = ϵ(s).
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 41 It is not the case for closed-loop control. Denoting by C o (s) the open-loop controller, simple algebra shows that the input output relation G o (s) of the open-loop control depicted in Figure 4.1 reads:

  Figure 4.2.
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 41 Figure 4.1: Open-loop control
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 42 Figure 4.2: Closed-loop control with controller in the direct path

Figure 4 .

 4 3 is equivalent to Figure 4.2 when the reference input R(s) is replaced by R(s) C(s) .
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 43 Figure 4.3: Closed-loop control with controller in the feedback path

■ Example 4 . 8 .

 48 Consider the following polynomial: D(s) = s 5 + 2s 4 + 24s 3 + 48s 2 + 25s + 50 (4.42)

■ 4 . 4

 44 Roots in a specied trapezoidal region Let D(s) be the following real polynomial:
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 44 Figure 4.4: Trapezoidal region T (α 1 , θ)

  .53) Hermite's criterion 3 states that real polynomial D(s) has all its roots with negative real part if and only if the n × n Bezoutian matrix B := [b ij ] is positive 2 . C. Kuo and Y. J. Huang, Pole placement in a specied trapezoidal region for uncertain linear control systems, 7th Asian Control Conference, 2009, pp. 1286-1289. 3 Akin Delibasi and Didier Henrion, Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities, 2010 International Journal of Control, Vol. 83, pp. 2494 -2505 denite. The entries [b ij ] of symmetric matrix B are dened by:

Figure 4 . 5 :

 45 Figure 4.5: Unity feedback loop

  and 4.2 reads 1 + C(s)F (s). Thus comparing this denominator with the denominator of G(s) obtained with the feedback loop in Figure 4.5 we conclude that the Nyquist stability criterion still applies on closed-loop transfer function of feedback loop systems in Figures 4.3

  and 4.2 as soon as F (s) is replaced by C(s)F (s). In is worth noticing that C(s)F (s) represents the loop transfer function, which is sometimes denoted L(s).

Example 4 .Figure 4 . 6 :Figure 4 . 7 :

 44647 Figure 4.6: Feedback loop with constant gain K in the direct path

Figure 4 .

 4 Figure 4.9: Zoom of the Nyquist plot of F (jω)

  ■

Figure 4 .

 4 Figure 4.10: Phase and gain margins of stable and unstable systems

Figure 4 .

 4 Figure 4.11: Bode plot of F (s) = 1 (2s+1)(3s+1)(4s+1)

  .79) Usually polynomial D(s) + KN (s) represents the denominator of the closedloop transfer function. The root locus technique enables to sketch in the s-plane the poles of the closed-loop transfer function shown in Figure 4.6 or in Figure 4.7. Indeed in both congurations the denominator of the closed-loop transfer function is the same.

1 :

 1 Sketches of the root locus of F (s)

Figure 4 .

 4 Figure 4.12: Root locus of F (s)

Figure 4 .

 4 Figure 4.13: Eect of zeros of the system response

  and Nonminimum Phase Zeros, M. Vidyasagar, IEEE Transactions on Automatic Control, vol. 31, pp. 440 -440, Issue: 5, May 1986 8 Nonminimum-phase zeros -much to do about nothing -classical control -revisited part ii, J.B. Hoagg and D.S. Bernstein, IEEE Control Systems, vol. 27, no. 3, pp. 4557, June 2007

Figure 4 .

 4 Figure 4.14: Step response of F 1 (s) and F 2 (s)

■

  

Figure 5 . 2 :

 52 Figure 5.2: Lead-lag control

Figure 5 . 3 :

 53 Figure 5.3: Lag controller Bode plot (α = 2 > 1 and τ = 1)

Figure 5 . 4 :

 54 Figure 5.4: Lead controller Bode plot (α = 0.5 < 1 and τ = 1)

Figure 5 . 5 :

 55 Figure 5.5: Bode plot of K F (jω)

Figure 5 . 6 :

 56 Figure 5.6: Unity feedback loop for transient response specications

  172 J IT AE = 3.11623 m = 4 a 3 = 1.953, a 2 = 3.347, a 1 = 2.648 J IT AE = 4.56372 m = 5 a 4 = 2.068, a 3 = 4.499, a 2 = 4.675, a 1 = 3.257 J IT AE = 6.28854 m = 6 a 5 = 2.152, a 4 = 5.629, a 3 = 6.934, a 2 = 6.7920, • • • J IT AE = 8.29536 a 1 = 3.740 m = 7 a 6 = 2.217, a 5 = 6.745, a 4 = 9.349, a 3 = 11.580, • • • J IT AE = 10.5852 a 2 = 8.680, a 1 = 4.323 m = 8 a 7 = 2.275, a 6 = 7.849, a 5 = 11.888, a 4 = 17.588, • • • J IT AE = 13.1553 a 3 = 16.116, a 2 = 11.339, a 1 = 4.815

  Cao, Correcting the minimum ITAE standard forms of zero-displacement-error systems, Journal of Zhejiang University (Natural Science) Vol. 23, No.4, pp. 550-559, 1989

■

  

Figure 5 . 7 :

 57 Figure 5.7: Unit step response of the whole system

Figure 5 . 8 :

 58 Figure 5.8: PID controlled system

Figure 5 .

 5 Figure 5.10: Unity feedback loop

  by n the degree of D(s), n := deg(D(s)), it is worth noticing that the closed-loop transfer function has n+1 poles with a PI controller (the PI controller adds a pole) whereas the closed-loop transfer function still has n poles with a PD controller as soon as F (s) is strictly proper, i.e. deg(N (s)) < deg(D(s)).

Figure 5 .

 5 Figure 5.12: Root locus of L(s) as K p varies

Figure 5 .

 5 Figure 5.13: Closed loop unit step response with PID controller

Figure 5 .

 5 Figure 5.15: Feedback loop with feedforward compensation and prelter

Figure 5 .

 5 Figure 5.16: Feedback loop non-minimum phase plant

Figure 5 .

 5 Figure 5.17: Controller C(s) in the feedback loop and prelter C pf (s)

Figure 5 .

 5 Figure 5.18: Unit step response without prelter

Figure 5 . 5 0( 5

 555 Figure 5.19: Unit step response without and with prelter

Figure 5 .

 5 Figure 5.21: Feedback control loop with unity feedback

Figure 5 .

 5 Figure 5.22: Feedback control loop with unity feedback and Youla parameterization

Figure 5 .

 5 Figure 5.23: Two-degree-of-freedom control loop

Figure 5 .

 5 Figure 5.25: Equivalent two-degree-of-freedom control loop

( 5 .

 5 281)Other design methods are presented by Wolovich 14 and Febina Beevi & al.15 .

ω 3 0s 3

 33 +1.783ω 0 s 2 +2.172ω 2 0 s+ω 3 0

■ 5 . 7 . 7 Figure 5 .

 5775 Figure 5.27 is equivalent to either the feedforward two-degree of freedom control loop shown in Figure 5.28 or to the feedback two-degree of freedom control loop shown in Figure 5.29. Indeed: 16 Hidefumi Taguchi, Mituhiko Araki, Two-Degree-of-Freedom PID Controllers -Their Functions and Optimal Tuning, IFAC Proceedings Volumes, Volume 33, Issue 4, 2000, Pages 91-96, ISSN 1474-6670, https://doi.org/10.1016/S1474-6670(17)38226-5.

Figure 5 .-

 5 Figure 5.26: Unit step response of the closed-loop

Figure 5 .

 5 Figure 5.28: Feedforward two-degree of freedom control loop

Figure 5 .

 5 Figure 5.30: Boucle de contrôle autour d'un point d'équilibre (u e , y e ) ̸ = (0, 0)

Figure 5 .

 5 Figure 5.31: Boucle de contrôle autour d'un point d'équilibre (u e , y e ) ̸ = (0, 0) avec un correcteur C(s) à eet intégral

Figure 5 .

 5 Figure 5.33: Anti-windup structure

  307)-A controller C 2 (s) whose transfer function reads:C 2 (s) = D C (s) -D aw (s) D aw (s) (5.308)-A nonlinear bloc which reproduces the saturation on the input signal u(t) of the plant.

  the closed-loop transfer function reads:Y (s) R(s) = F (s) C(s) 1 + F (s) C(s)= 6340s 2 + 35000s + 100000 4s 4 + 404s 3 + 6741s 2 + 35100s + 100000(5.312)The 4 poles of the closed-loop transfer function are -81.6, -13.3 and -3 ± j3.7.

■

  

Figure 5 .

 5 Figure 5.34: Comparison of dierent control strategies

Figure 6 . 1 :

 61 Figure 6.1: Digital control loop for continuous time plant

Figure 6 . 2 :

 62 Figure 6.2: NyquistShannon sampling theorem

Figure 6 . 4 :

 64 Figure 6.4: Sampled unit step

■ 6 . 4 . 5

 645 Relation with Laplace transformLaplace transform of a sampled continuous time signal

■ 6 . 5

 65 Discrete linear time invariant systems 6.5.1 Discrete time transfer function

Figure 6 . 5 :

 65 Figure 6.5: Homographic transformation

  6.89)The following relation indicates that the unit circle in the z-plane is changed into the vertical imaginary line in the w-plane: z = e jθ ⇒ w = e jθ -1 e jθ +1 = e

Figure 6 . 6 :

 66 Figure 6.6: Region of coecient values for second-order discrete time system stability

  u(k) = e jαk H(e jα ) = H(e jα ) e jΦ(α) ⇒ y(k) = H(e jα ) e e jα k e jΦ(α) = H(e jα ) e j(αk+Φ(α)) (6.103) Where Re stands for real part and Im stands for imaginary part: jα ) = (Re (H(e jα ))) 2 + (Im (H(e jα ))) 2 Φ(α) = ∠H(e jα ) = arctan Im(H(e jα ))Re(H(e jα ))(6.104) 

HFigure 6 . 7 :

 67 Figure 6.7: Frequency response of a low pass rst order lter: a = -0.1 and b = 1

Figure 6 . 8 :

 68 Figure 6.8: Frequency response of a high pass rst order lter: a = +0.1 and b = 1

Figure 6 .Figure 6 .

 66 Figure 6.9: Continuous time plant F (s) with Digital-to-Analog and Analog-to-Digital Converters

-λ 2 = - 1 τ , with multiplicity n 2 = 1 ;

 121 -1 e sT • F (s) applying (6.123) the residue around that pole reads:

(k+1)T 0 e

 0 A((k+1)T -τ ) Bu(τ )dτ = e A(k+1)T x 0 + kT 0 e A((k+1)T -τ ) Bu(τ )dτ + (k+1)T kT e A((k+1)T -τ ) Bu(τ )dτ = e AT e AkT x 0 + kT 0 e A(kT -τ ) Bu(τ )dτ + (k+1)T kT e A((k+1)T -τ ) Bu(τ )dτ

( 6 .

 6 135)We recognize in the term into parentheses the expression of x(kT ). Thus we can write:x((k + 1)T ) = e AT x(kT ) + (k+1)T kT e A((k+1)T -τ ) Bu(τ )dτ(6.136) 

(T 0 e

 0 k+1)T kT e A((k+1)T -τ ) Bu(kT )dτ = e AT x(kT ) + (k+1)T kT e A((k+1)T -τ ) dτ Bu(kT ) = e AT x(kT ) + T 0 e A(T -τ ) dτ Bu(kT ) = e AT x(kT ) + T 0 e At dt Bu(kT ) (6.137) We nally get: x((k + 1)T ) = A d x(kT ) + B d u(kT ) (6.138) where: A d = e AT B d = At dt B (6.139) A trick to get A d and B d in one shot is to use the following property 3 : x k+1 := x((k + 1)T ) and u k := u(kT ), we can write: x k+1 := x((k + 1)T ) u k := u(kT ) ⇒ x k+1 = A d x k + B d u k (6.141)

t 0 e

 0 A(t-τ ) Bdτ = e At t 0 e -Aτ Bdτ = -A -1 e At e -Aτ τ =t τ =0 B = A -1 e At -I B = e At -I A -1 B (6.155)Thus the unit step response y s (t) of the plant reads:y s (t) = Cx s (t) = C e At -I A -1 B (6.156)Now we have to compute the Z transform of the sampled unit step response y s (kT ):y s (kT ) = C e AkT -I A -1 B (6.157)The Z transform of e AkT and I are the following:Z e AkT = I -z -1 e AT -1 Z [I] = Z e AkT A=0 = 1 -z -1 -1 I (6.158)From the facts that the Z transform is linear we get:Z [y s (kT )] = C Z e AkT -Z [I] A -1 B= C I -z -1 e AT -1 -1 -z -1 -1 I A -1 B (6.159)

T 0 e

 0 (zI -A d ) -1 B d(6.164) We retrieve for A d and B d the expression given in (6.139):A d = e AT B d = A -1 I -e AT B = At dt B (6.165)6.7.4 First order approximationWhen the sampling period T is small enough, the following approximations hold:e AT ≈ I + AT ⇒ A d ≈ I + AT B d ≈ BT (6.166)

  ẋ(kT ) = Ax(kT ) + Bu(kT ) ẋ(kT ) ≈ x((k+1)T )-x(kT ) T ⇒ x((k + 1)T ) ≈ (I + AT ) x(kT ) + BT u(kT ) (6.167)Another approximation of e AT is the following: e AT = e AT /2 e A-T /2 -1

∞x

  i=0 i (t) = x(0) + L -1 (h) + L -1 ∞ i=0 A i (x 0 , • • • , x i ) (6.175)

x

  n (t) = L -1 A n-1 (x 0 , • • • , x n-1 ) (6.176)Example 6.13. Let's consider the following dierential equation 6 :

t 0 τ 1 0 x 1 22

 11 cos(x 0 )dτ 2 dτ 1 = sin(θ 0 ) cos(θ 0 )dτ 2 dτ 1 = t 4 4! sin(θ 0 ) cos(θ 0 ) x 3 (t) = L -1 (A 2 (x 0 , x 1 , x 2 )) sin(x 0 ) dτ 2 dτ 1 = t 66! sin(θ 0 ) cos 2 (θ 0 ) -3 sin 3 (θ 0 ) . . .

x

  k+1 = x(0) + (k+1)T 0 (f (x(τ ), u(τ ))) dτ = x k + (k+1)T kT (f (x(τ ), u(τ ))) dτ = x k + (k+1)T kT (f (x(τ ), u k )) dτ (6.184)More generally, ∀ t ∈ [kT, (k + 1)T ), we can write:x(t) = x k + t kT (f (x(τ ), u k )) dτ ∀ t ∈ [kT, (k + 1)T ) (6.185)

x k x 1 (

 1 (k + 1)T ) = (Ax k + Bu k ) T x 2 ((k + 1)T ) = A (Ax k + Bu k ) T 2 2 . . . x n ((k + 1)T ) = A n-1 (Ax k + Bu k ) T n

  AT ) i i! -I Bu k = e AT x k + A -1 e AT -I Bu k (6.196)We clearly retrieve result (6.143). ■ Example 6.15. We consider the following dierential equation where a ̸ = 0, b and c are constant:   a θ(t) + b θ(t) + c sin(θ(t)) = u(t) θ(0) = θ 0 θ(0) = θ0 (6.197)Let x 1 := θ and x 2 := θ. Thus the state space representation of this dierential equation reads:

1 a

 1 (u -b x 2 -c sin(x 1 ))(6.198) 

x 2 1 a

 1 (u -b x 2 -c sin(x 1 )) := f (x, u) (6.199)

a 1 a 1 ,2 1 a 1 2! d 2 dλ 2 a

 111122 (u k -b x 0,2 -c sin(x 0,1 )) A 1 (x 0 , x 1 ) = d dλ (f (x 0 + λ x 1 , u k )) λ=0 = d dλ x 0,2 + λ x 1,2 (u k -b (x 0,2 + λ x 1,2 ) -c sin(x 0,1 + λ x 1,1 )) λ=0 = x (-b x 1,2 -c x 1,1 cos(x 0,1 )) A 2 (x 0 , x 1 , x 2 ) = f x 0 + λ x 1 + λ 2 x 2 , u k λ=0 -b x 2,2-c x 2,1 cos(x 0,1 ) -

1 aa 1 a

 11 t kT A 0 (x 0 ) dτ = x 0,2 (u k -b x 0,2 -c sin(x 0,1 )) (t -kT ) x 2 (t) = t kT A 1 (x 0 , x 1 ) dτ = (-b x 1,2 -c x 1,1 cos(x 0,1 )) dτ = (u k -b x 0,2 -c sin(x 0,1 )) -b a 2 (u k -b x 0,2 -c sin(x 0,1)) -c a x 0,2 cos(x 0,1 )

1 a 1 a 2 T

 112 (u k -b x 0,2 -c sin(x 0,1 ))T x 2 ((k + 1)T ) = (u k -b x 0,2 -c sin(x 0,1 )) -b a 2 (u k -b x 0,2 -c sin(x 0,1)) -c a x 0,2 cos(x 0,1 ) Derivation of discrete time controller from continuous time controller 6.9.1 Tustin's approximation Tustin's approximation (or bilinear transformation) is frequently used to derive a discrete time controller that closely approximates the behaviour of the original continuous time controller.Tustin's approximation comes from the rst order approximation of e time controller C d (z) approximated from continuous time controller C(s) is obtained by replacing s by

C

  d (z) = C(s)| s= ωc tan ( ωcT 2 )

2 , 0 1 BA

 201 Derivation of discrete time controller from continuous time controller 205 6.9.2 State-space realization of bilinear conformal mapping We consider the following bilinear map on the Laplace transform variable s where a and b ̸ = -1 a are real numbers:s → z = s + a 1 + b s ⇔ z → s = z -a 1 -b z (6.216)The function s → z maps the circle in the complex s-plane centred on -a-1/b and having diameter |-a + 1/b| onto the jω-axis in the s-plane and it maps the jω-axis into a similar circle in the Right-Half-Plane RHP7 . Furthermore assume that transfer function F(s) as the following realization:F(s) = C (sI -A) -1 B + D := A B C D (6.217)Then the conformal map s → z yields7 :F (z) = F (s)| s= z-a 1-b z = C zI -A -= (A + aI) (I + bA) -1 B = (1 -a b) (I + bA) -1 B C = C (I + bA) -1 D = D -bC (I + bA) -1 B (6.219)

1 B

 1 + D = C (sI -A) -1 B + D = F (s) (6.220)Similarly, the inverse transformation s = z-a 1-b z produces the same eect on the state-space matrices, except that a and b are replaced by -a and -b, respectively.

s)| s=ω 0 z- 1 z+1= C zI -A - 1 BA 3 -

 113 = (A + ω 0 I) (ω 0 I -A) -1 B = √ 2ω 0 (ω 0 I -A) -1 B C = √ 2ω 0 C (ω 0 I -A) -1 D = F (ω 0 ) = D + C (ω 0 I -A) -1 B (6.222) 7 M. G.Safonov, Imaginary-axis zeros in multivariable H-optimal control, Modelling, Robustness and Sensitivity Reduction in Control Systems, pp. 71-81, 1987 8 Jarmo Malinen, The Cayley Transform as a Time Discretization Scheme, Numerical Functional Analysis and Optimization 28(7):825-851, August 2007, DOI: 10.1080/01630560701493321Similarly, if -1 is not an eigenvalue of A, then the inverse transformation z → s = ω 0 z-1 z+1 produces the following eect on the state-space realization of F (z)8 :F (z) z= ω 0 +s ω 0 -s = C (sI -A) -1 B + D := Matched Pole-Zero (MPZ) mapping methodThe purpose of this method is to map the poles and the zeros of the continuous time controller with the poles and the zeros of the discrete time controller according to the relation z = e pT where p is either a pole or a zero of the continuous time controller and to preserve the static gain of the continuous time controller in the discrete time domain.The steps of the Matched Pole-Zero (MPZ) mapping method are the following: Map the poles and the zeros of the continuous time controller with the poles and the zeros of the discrete time controller according to the following relation where s is either a pole or a zero of the continuous time controller:z = e sT (6.225)

  18. Consider the following continuous time controller whose transfer function is:C(s) = 1 1 + τ s(6.227) 

  Pole-Zero (MPZ) mapping method leads to the following discrete time controller:C d (z) = 1 -e -

  

  

  

  

  

  

  

  

  

Table 1 .

 1 

	1: Basic dierentiation formulas
	Derivative of constant multiple

2 (t) d dt

Table 2 .

 2 

	1.

It can be shown that:

L e -ω 0 t x(t) = X(s + ω 0 ) (2.48)

Example 2.5. Use the expression of the Laplace transform of Γ(t) to compute the Laplace transform of e -at ∀t ≥ 0.

Table 5 .

 5 2: Values of coecients a i of q(s) based on the ITAE performance index Graham studied the values of the coecients of the following transfer function G(s) to minimize performance index J IT AE :

  gain K cr and ultimate frequency

	Controller type	K p	K i	K d
	Proportional (P)	0.5K cr	0	0
	Proportional-Integral (PI) Proportional-Integral-Derivative (PID) 0.6K cr 0.45K cr	0.54Kcr Tcr 1.2Kcr Tcr	0 0.075K cr T cr
	Table 5.4: Ziegler-Nichols PID controller gains	

  3996 • 10 6 + 7.7781 • 10 5 s + 1.0089 • 10 5 s 2

				428.3 + 19.597 s + 1 × s 2	(5.242)
	This is, dividing the numerator and the denominator by 24:
			C(s) =	99982.154 + 32408.573s + 4203.623s 2 17.845637 + 0.8165278s + 0.0416667s 2	(5.243)
	And the closed-loop transfer function without preltering (5.238) becomes:
	Y (s) R pf (s)	=	99982.154 + 32408.573s + 4203.623s 2 100000 + 32570s + 4675s 2 + 449.9s 3 + 20.68s 4 + s 5

Table 6 .

 6 1: Usual Z transform pairs 6.4.4 Inverse Z transform Basically there exists three methods to compute inverse Z transform:

	-Method based on Cauchy's residue theorem;
	-Method based on partial fraction expansion;
	-Method based on long division.

  Du k (6.145) 6.7.2 Linear system perturbed by white Gaussian noises When the continuous time system is perturbed by white Gaussian noises, the state space representation reads:

	ẋ(t) = Ax(t) + Bu(t) + w(t) y(t) = Cx(t) + Du(t) + v(t)	where	w(t) ∼ N (0, Q) v(t) ∼ N (0, R)	(6.146)

  6.148) 6.7.3 State space realization of (1 -z -1 ) Z F (s)

	s
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Time advance

Z [x(k + 1)] = z 1 X(z) -zx(0) (6.34)

More generally we have:

Initial value theorem

x(0) = lim z→∞ X(z) (6.36) Example 6.2. Knowing the Z transform of x(k) = a k is z z-a check that x(0) = 1. We check that:

Final value theorem

Assuming that the value of x(k) exists when k → ∞ then

We check that:

It is worth noticing that the nal value theorem gives the correct limit as soon as the value of sequence x(k) exists when k → ∞.

Example 6.4. If we apply the nal value theorem on the sequence a k we get:

As far as a k has no limit as soon as ∥a∥ > 1 it is clear that result provided by the nal value theorem is not correct when ∥a∥ > 1.

■

Multiplication by exponential

Example 6.5. From the Z transform of the sampled unit step Γ(k) nd the Z transform of the exponential sequence

X(z) has a unique pole at λ 1 = 1 with multiplicity n 1 = 2. The residue of z k-1 X(z) around pole λ 1 of multiplicity n 1 = 2 reads:

The numerator of z k-1 X(z) is z k , which has root 0 with multiplicity

■

Partial fraction expansion

The computation of the partial fraction expansion of X(z) z .

Then by multiplying by z each term of the partial fraction expansion we should recognize by inspection of Table 6.1 the associated pairs. It is worth noticing that factor z systemically appears on the numerator of the pairs in Table 6.1 (except for the Z transform of the unit impulse). By making the partial fraction expansion of X(z) z (and not X(z)) and then multiplying each term of the partial fraction expansion by z we get a sum of factors where z systemically appears on the numerator and Table 6.1 can be used. You may also use the residue theorem to compute the inverse Z transform of each term of the partial fraction expansion.

Long division

The polynomial long division of X(z) written on the following form:

Indeed the division according to the increasing power of z -1 allows to identify x(k) with the quotient of the long division which reads ∞ k=0 x(k)z -k . It is worth noticing that as far as the Z transform involves z -k the long division has to be done according to the increasing power of z -1 and not of z. In addition the long-division approach does not yield a closed-form solution because the steps to compute each coecient of the quotients shall be done indenitely to get the complete sequence x(k).

Example 6.10. Find the 3 rst values of the sequence whose Z transform is