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Course overview

Following Wikipedia a system is a set of interacting or interdependent
components forming an integrated whole.

System control exists for more than 2000 years. Water clocks control was one
of the first application of system control. Nevertheless the scientific approach
appears after the mid of the 19th century. In 1868 James Clerk Maxwell (1831-
1879) published a paper entitled "On Governors" within which he described
how to derive the linear differential equations for various governor mechanisms.
In 1798 James Watt (1736-1819) developed the automatic control of the speed
of a steam motor.

The theory of control has been developed during the first half of the 20th
century both in the western countries and in the ex-URSS but the motivations
were different. Indeed they were based on mathematical interests in the East.
For example Nicholas Minorsky (1885-1970) presented in 1922 a clear analysis
of the control involved in position control systems and formulated a control law
that we now refer to PID control. On the other side engineering issues were the
main drivers in the West. In 1914 Lawrence Burst Sperry (1892-1923) invented
the first autopilot which he demonstrated with success in France. In the US
telephone repeaters based on electronic amplification of the signal were used
around 1920 but the distortion they introduced limited the number that could
be used in series. Harold Stephen Black (1898-1983) developed the electronic
amplifier with negative feedback in 1927 to overcome the issue.

The so called classical control period extends approximatively from 1935
to 1960. By the end of this period the classical control techniques had been
established. The design methodologies were for linear SISO (Single Input and
Single Output) systems; those systems can be described by linear differential
equations with constant coeflicients.

Starting in the late 50’s — beginning of the 60’s, the modern control period
tackles problems involving the analysis and control of linear MIMO (Multiple
Input and Multiple Output) systems and nonlinear systems (e.g. Sputnik in
1957). An important step was accomplished with Rudolf (Rudi) Emil Kalman’s
(born in Budapest in 1930) treatment of the linear multivariable optimal control
problem with a quadratic performance index.

You may read the paper entitled A Brief History of Automatic Control, EEE
Control Systems, June 1996 by Stuart Bennett for further details.

This course will focus on classical control. More specifically, the objectives
are the following:



— to learn how to model dynamic systems and to present mathematical
representation of theses models;

— to learn how to analyse dynamic properties of open loop (and also closed
loop) systems;

— to learn how to design basic feedback control loop to achieve stability and
precision goals.

This lecture is organized as follows: the first chapter introduces dynamical
systems and the way to linearize a nonlinear differential equation. Then we
present the Laplace transform, which is the dedicated mathematical tool to
study systems driven by linear differential equations. The third chapter
introduces Linear Time Invariant (LTI) systems and focuses on their time and
frequency responses. The fourth chapter is dedicated to the stability analysis
of LTI systems. Then basic control designs based on steady state analysis or
transient response specifications are provided in chapter five. The last chapter
focuses on discrete time systems and more specifically on the Z transform and
the modeling of continuous time system with sampled input and output.
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Chapter 1

Introduction to dynamical
systems

1.1 Chapter overview

Usually an appropriate mathematical model of the system to be controlled is
needed before controlling it. The mathematical model may be obtained either
from physical laws or experimental data. In this chapter we recall what are
differential equations. As far as most physical systems are described by
nonlinear differential equations we present how to get a linearized model
around an equilibrium point in order to be in position to apply all the
mathematical tools dedicated to linear time invariant systems.

1.2 Refresher on derivatives

Let’s consider the curve in Figure 1.1 which represents a function y = f(¢).
At any value of ¢ the slope of the curve between two points is defined as the

v=f(t) A

| r A7

Figure 1.1: Curve y = f(t)
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change in y divided by the change in ¢:

change iny  f(t + At) — f(t)

= 1.1
change in ¢ At (1.1)

slope =

The derivative of function f at t is defined as the limit of the slope when At

tends towards 0: A A - £
t+ At) — f(t
/ — 1
S = fim =

(1.2)

The following notations are equivalent to denote the first derivative of y =
f(t) with respect to time ¢:
— Lagrange’s notation: f’(t)

o . d d
— Leibniz’s notation: ¥ or % f(t)

— Newton’s notation: ()

— Euler’s notation uses a differential operator D which is applied to a
function f(t) to give the first derivative D f(t)

We recall on Tables 1.1 and 1.2 some basic differentiation formulas and basic

differentiation rules for combined functions?!.

Ltn = nt" !
] diefc(lt) — /) % %f(t)
£ (a') = & (e“n(a)) = (In(a)) x a'
Ee =€

g —
In(f(t %f(t)
o8, (/1) = G e = wlar “Fm

G () = 1
4 sin(t) = cos(t)
% cos(t) = —sin(t)

4 tan(t) = 1 + tan’(?)

Table 1.1: Basic differentiation formulas

Derivative of constant multiple % (ax f(t)) =ax %f(t)
Derivative of sum % (a1 fi(t) + a2 fo(l)) = al%fl (t) + a2%f2(t)
Product Rule % (fi(t) x fa(t)) = %fl(t) X fa(t) + fi(t) x %fQ(t)
d d
Quotient Rule %28 = Efl(t)xfz((za{)lz(t)xEh(t)
Chain Rule %fl(fz(t)) = %fl(t)}t:ffz(t) X %fQ(t)

Table 1.2: Basic differentiation rules for combined functions

The derivative of order n of f(t) is equivalently denoted by f(™(¢), ‘f;—,}{,
C%f(t) or D™ f(t).

"https://www.math.wustl.edu/ freiwald/Math131/derivativetable.pdf
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The derivative of order n of f(t) is the derivative of the n — 1** derivative

of f(1) : 1
d"” d (d"
G0 = 5 (G ) (13)

1.3 Differential equations

Differential equations first appears with Gottfried Wilhelm von Leibniz (1646-
1716) and Isaac Newton (1642-1727)2

A differential equation is a mathematical equation that relates some function
with its derivatives.

Differential equations can be divided into several types:

— Ordinary differential equation: an ordinary differential equation (ODE)
is a differential equation that contains unknown one-variable or multi-
variable functions and their derivatives.

An example of ordinary differential equation with respect to the unknown
one-variable-variable function y(t) is the following:

d2
g2 Y(t) — 5y(t) = cos(t) (1.4)

— Partial differential equation: a partial differential equation (PDE) is a
differential equation that contains unknown multi-variable functions and
their partial derivatives. The partial derivative of a function of several
variables is its derivative with respect to one of those variables with the
others held constant.

An example of partial differential equation with respect to the unknown

multi-variable function u(zx,y) is the following:

Ou(z,y)  Ou(w,y)
ox y+ dy v

=0 (1.5)

— Linear differential equation: linear differential equations are differential
equations (either ODE or PDE) having solutions whose linear
combination form further solutions®. We recall that a linear combination
is an expression constructed from a set of terms by multiplying each
term by a constant and adding the results?.

For example the general form of first-order linear differential equations
with respect to the unknown one-variable-variable function y(t) reads:

L(t) + aolt)y(t) = 71 (1.6

*History of Ordinary Differential Equations: the First Hundred Years, John E. Sasser
®https://en.wikipedia.org/wiki/Linear _differential _equation
“https://en.wikipedia.org/wiki/Linear combination
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Then if y;(¢) is a solution of (1.6) and y»(¢) is another solution of (1.6)
then a1y (t) + aoya(t), where oy and ay are constants, is also a solution

of (1.6).
More generally a linear ordinary differential equation can be written as
follows where an—_1(t),---,a1(t),ap(t) and f(t) are known functions and

where function y(t) has to be found:

ar a1 d
—y(t) + an—1(t) S =7 y(t) + -+ a1 ()~ y(t) +ao(y(t) = f(1) (1.7)

dt dt dt
— The order of a differential equation is the order of the highest derivative
that appears in the equation. For example the following differential

equation is a differential equation of order 2:

d2

Yt + 3iy(t) +2y(t) = t* (1.8)

dt

1.4 From nonlinear to linear systems

Applying fundamental physical rules (i.e. Euler-Lagrange or Newton dynamic
principles for mechanical systems, Kirchhoff’s rules for electrical systems,
Maxwell rules for electro-magnetic systems, ...) the modeling of a system
always leads to an input-output relation between inputs w(t) and outputs y(t)
and their derivatives:

h(y(t),y(@), §(t), - - ult),u(t),---) =0 (1.9)

Function A is called the input-output relation. The model defined by the
relation h can be:

— Either a discrete time or a continuous time model. For discrete time
models the values of the time variable t are defined at distinct points in
time. This is not the case for continuous time models;

— Either a time invariant or a time variant model. For time variant model
time t appears explicitly in the input-output relation h.

— Either a nonlinear or a linear model. The model is linear if h is a linear
combination of y(t),y(t), §(t),--- ,u(t),u(t), - -;

— FEither a SISO (Single Input and Single Output) or a MIMO (Multiple
Input and Multiple Output) model.

When the input-output relation h is nonlinear there exists quite few
mathematical tools which enable to catch the intrinsic behavior of the system.
Nevertheless this situation radically changes when h is linear and the good
news is that it is quite simple to approximate a nonlinear model with a linear
model around an equilibrium point. We will first define what we mean by
equiltbrium point and then we will see how to get a linear model from a
nonlinear model.
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An equilibrium point is a constant value of the pair (y,w), which will be
denoted (e, ue), such that:

h (Ye, ue) =0 (1.10)
It is worth noticing that as soon as (ye,u) is a constant value then we have
Ye =Y =---=0and e = ile = --- = 0.

Then the linearization process consists in computing the Taylor series
expansion of h around the equilibrium point (y., ue) and to stop it at the order
1. The linearization of a multivariable function h(x) around the equilibrium
point z, reads:

h(z) =~ h(z,) + Vh(z)|p—y, (z— z) (1.11)

Where V is the Jacobian of h that is the vector (or matrix) composed with
all first-order partial derivatives of h:

vT:[% %] (1.12)

Applying this relation to the implicit differential equation (1.9) reads:

0= h(@/(ﬂ??/(ﬂ?@(ﬂa T ,U(t),’ll(t), o ) ~h (yeaue) +
oh

Oh + o 5+
ay Y=Ye,U=Ue ay Y=Ye ,U=Ue
+ % Su+ ? 6+ (1.13)
U Y=Ye,U=Ue u Y=Ye,U=Ue
Where:
0y =y — Ye
5y = y —Ye =Y
(1.14)

Using the fact that A (ye, ue) = 0 the preceding relation can be rewritten as
follows:

d n—1 m
apo0y +a1$5y+ SRR /A LT 70y + andtnéy ~
d dm— 1 dm
b06u+bld ou~+ -+ + by LT 70U + by g —ou (1.15)
Where:
( __ Oh

0= 87?/ Y=Ye,U=Ue

M=oy Y=Ye,u=1Ue

: (1.16)

by = oh

0 T u Y=Ye,U=Ue

b _ Oh

1 g
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it

mg
Figure 1.2: Robot arm
Usually the ¢ sign which indicates that the system approximation is made

around an equilibrium point is omitted and the system model (1.15) simply
reads:

aot) o G+ by Gt T =
du(t dm 1y (t dmult
bou(t) + by di)+._.+bm_1 dtm_E)erm dtng) 17

Consequently the nonlinear input-output relation h can be approximated
around an equilibrium point by a linear differential equation of the form (1.17).
Nevertheless is worth noticing that the linearization process is an approximation
that is only valid around a region close to the equilibrium point.

Example 1.1. Again let’s consider Figure 1.2 where a robotic arm is depicted:
u(t) is the torque applied by a motor drive and y(t) is the angular position of
the arm. In addition we denote m the mass of the arm, | the distance between
the axis of the motor and the cenire of mass of the arm, b the viscous friction
coefficient, J its inertia and g the acceleration of gravity. The dynamics of the
robotic arm is the following:

Jij(t) + by(t) + migsin (y(t)) = u(t) (1.18)
This system model s :
— a continuous time model;
— a time tnvariant model;
— a nonlinear model;
— a SISO (Single Input and Single Output) model.

The input-output relation h is defined as follows:

h(y(t),y(t), §(t), u(t)) = Jij(t) + by (t) + mlgsin (y(t)) — u(t) (1.19)
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As far as equilibrium points are concerned, every couples (ye,ue) which
satisfy the following relation are possible:

mlgsin (ye) = Ue (1.20)

Imposing ue = 0 (no torque applied on the arm at the equilibrium point) the
preceding relation reduces to:

mlgsin (y.) = 0 (1.21)

Consequently (ye = 0,ue = 0) and (ye = m,ue = 0) are two equilibrium
points. Let’s linearize the nonlinear model around those two equilibrium points:

— Around (ye = 0,u. = 0) where the arm is vertical and downward oriented

we get:
(40 = Oh — S _
ap = 3, et mlg cos(y)|y:0 = mlg
oh
ap = 7‘ = b
99 ly=0,u=0 (1.22)
_ Oh _
] B /
bo = — aiy =1
\ 70 ou ly=0,u=0

So the linearized model of the robotic arm around (y. = 0,ue = 0) reads:

JOg(t) + bdy(t) + mlgdy(t) = ou(t) (1.23)

— Around (y. = m,ue = 0) where the arm is vertical and upward oriented we

get:
_ Oh _ - _
ap = gy peru mlg cos(y)\y:7r = —mlg
oh
a)p = 7’ = b
9y y=m,u=0 (1.24)
_ Oh _
@2 = ng‘ =m,u=0 =
b = — aj\ =1
0 — ou y:ﬂ-,u:(] -

So the linearized model of the robotic arm around (y. = m,ue = 0) reads:
Joy(t) + boy(t) — mlgdy(t) = du(t) (1.25)

In both situation we gelt a linear differential equation with constant
coefficients.
Example 1.2. Let’s consider the following nonlinear differential equation:
sin(jj(t)) + u?(t) — 2+ e¥® =0 (1.26)
The equilibrium points satisfy the following relation:

u? —24¢e¥% =0 (1.27)
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We arbitrarily choose the following equilibrium point:

{ Z :é (1.28)

Let’s linearize the nonlinear model around those the equilibrium point (y. =
0,ue =1). We get:

h(y(t), §(t), (1), u(t)) = sin(§(t)) + u(t) — 2 + e¥®
oh

__ oh _ LY _
ap = 3y Ol e |y:0 =1
oh
ar = 5+ =0
Jw 8y‘yzo,u:1 (1.29)
_ Oh _ - _
2= B, gy = 5lyno =1
_ 0 _ _
bo = — Ouly=0u=1 — 2u‘u:1 =2

So the linearized model around (ye = 0,u. = 1) reads:
j(t) + oy(t) = —20u(t) < 4(t) = —dy(t) — 2 du(t) (1.30)

Figure 1.8 represents the response of the linear and the nonlinear model for
u(t) =1+ 0.01sin(t) over 30 seconds. We can see that both responses are quite
similar.

To simulate the response of the system we create the following state vector:

() = y(t)
{xxw:yw (1.31)

Consequently the nonlinear differential equation reads:

sin(§i(t)) + u?(t) — 24+ e¥® =0

y(t) = @1(t) = a(?) (1.32)
< { j(t) = da(t) = asin (2 — em1®) — 2(1))

For asin () to ewist the inequality |2 — en1(t) — u?(t)| < 1 shall be checked.
The Scilab code to simulate both the nonlinear and the linear responses is the
following:

function xdot = nonLinearModel(t,x,A)
xdot = zeros(2,1);
xdot (1) = x(2);
ue = 1; //equilibrium point
du = Axsin(t);
u = ue + du;
siny2dot = 2 - exp(x(1))-u~2;
xdot(2) = asin(siny2dot);
endfunction

function xdot = linearModel(t,x,A)
xdot = zeros(2,1);
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0.01)

Medel response (A

Menlinear model

Lineal medel

—=-Aa---T---r---F---

B e S ST

e

—m—d_ -1

—--a---1---r

0.3

0.25-f---

0.15-f---

0.05-f---

-0.05----

01t ---

“plas e

Figure 1.3: Time response of nonlinear and linearized system

xdot (1) = x(2);

Axsin(t);
xdot(2) = -x(1) - 2xdu;

endfunction

du

ye = 0; //equilibrium point

ydotO = 0;

yO

A =0.01;

t=0:0.1:30;

ode([y0;ydot0],0,t,list(nonLinearModel,A));

ode([y0;ydot0],0,t,list(linearModel,A));

yNonLinear
dyLinear

figure();

; ye + dyLinear(1,:)]1);

)

plot(t, [yNonLinear(1,

xgridQ;

D

legend([’Nonlinear model’; ’Lineal model’

0.01)")

title(’Model response (A
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Chapter 2

Laplace transform

2.1 Chapter overview

This chapter introduces the Laplace transform for continuous time functions.
This is a powerful tool to solve linear differential equations with constants
coefficients. Indeed linear operators like derivation or integration are
transformed thanks to the Laplace transform into algebraic operations
involving a complex variable which will be denoted s. Consequently the
Laplace transform changes a constant coefficients linear differential equation
into and algebraic (i.e. polynomial) equation. Assuming that this algebraic
equation can be solved for the Laplace transform of the function to be find
then the function itself which solves the linear differential equation is obtained
by the inverse Laplace transform; this is accomplished either by partial
fraction expansion and the use of a table of Laplace transform pairs or by the
use of the Mellin-Fourier (or Bromwich) integral. The purpose of this chapter
is to present the Laplace transform and to overview its main properties as well
as Laplace transform inversion methods.

2.2 Reference signals
A causal signal is a signal which is zero for negative values of time:
gt) =0Vt <0 (2.1)

In the following we will assume that all the signals are causal.

The aim of this section is to present important signals which are currently
used to study continuous time systems: more specifically we will focus on the
Dirac delta function, the unit step function and the complex exponential
function.

2.2.1 Dirac delta function

The Dirac delta function or 4(¢) function is a generalized function (or
distribution) which is zero everywhere except at t = 0 with an integral of one
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rect (t) o(t)
1/T

Figure 2.1: Dirac delta function 6(¢)

over the entire values of ¢:
_JOVt#0 o0 _
o(t) = { 0 when £ — 0 s.t. /0 d(t)dt =1 (2.2)

Dirac delta function can bee seen as the limit as 7' — 0 of function rectr(t)
which is equal to 1/T'Vt €]0,T] and 0 elsewhere. The schematic representation
of the Dirac delta function is a vertical arrow at ¢ = 0 as depicted on figure 2.1.

The following properties of the Dirac delta function are often used:

— Multiplication between a signal z(¢) and the Dirac delta function
translated by tp € R:

x(t)d(t — to) = x(to)d(t — to) (2.3)

— Convolution: the convolution product % between two causal signals f(t)
and g(t) is defined by:
/ f(m)g(t—r1) (2.4)

Using the fact that g(¢) is causal we get:
gt)=0Vt< 0 gt—7)=0Vt—T)<0=T1>t (2.5)

Thus the convolution integral reduces to:

/f g(t —7)d (2.6)

The convolution product is commutative:

f(@)*g(t) =g(t) = f(¢) (2.7)
Indeed:
f(t)=g(t) —fo t—T dT—f f(r)g(t —1)dr
u=t—7 = f(t)xg(t)=— [ 7 f(t—uwg(u)du

e f(t)xg(t) = [, ft—U)g()du
= Jo f(t = w)g(u)du = g(t) * f(t)
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Iy

0 t

Figure 2.2: Unit step function I'(¢)

As far as the convolution product is concerned, the Dirac delta function
satisfies the following property:

f(t) * (5(t — to) = f(t - to) Vip € R (29)
Taking tp = 0 we get:

f@)=o(t) = f(t) (2.10)

From the preceding equation it is clear that the Dirac delta function is
the neutral element of the convolution product.

2.2.2 Unit step function

The unit step function (or Heaviside step function) which will be denoted I'(¢)
is a discontinuous function whose value is zero for negative values of ¢t and one

0 Vt<O
['(t) { 1 Vs 1 (2.11)

for positive values of ¢.

The schematic representation of the unit step function is depicted on figure
2.2.
The derivative of the Unit step function involves the Dirac delta function:

d
ZT(t) = (1) (2.12)

2.2.3 Complex exponential function

The complex exponential function with natural frequency wy is a signal z(t)
where ¢ € R and z(t) € C defined by:

x(t) = elwo! (2.13)
The complex exponential function verifies the law of exponents:

ej(w1+w2)t — ejwltejw2t (214)
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The Euler’s formula gives the relation between the complex exponential
function and cos() and sin() functions:

7%t = cos (wot) + j sin (wot) (2.15)

The complex exponential function is used to compute the frequency response
of linear and time invariant systems which will be discussed in the next chapter.

2.3 Definition

The Laplace transform enables to solve linear differential equations with initial
conditions.  More specifically it transforms a constant coefficients linear
differential equation into and algebraic (i.e. polynomial) equation.

The Laplace transform of a continuous time function x(¢) which is causal
(i.e. z(t) =0Vt < 0) is a function of the complex variable s and reads:

Llz(t)] = X(s) = /OOO z(t)e stdt (2.16)

As far as the integral involved in the Laplace transform is limited to positive
values of ¢ (indeed z(t) is assumed to be causal) the integral converges as soon
as z(t) has an exponential order when ¢t — 4o00. This means that there exists
three positive constants T, M and og such that:

lz(t)] < Me®®t Vt > T (2.17)

Consequently integral involved in the Laplace transform converges as soon
as the complex variable s which is used in the Laplace transform is chosen such
that its real part is greater than the abscissa of convergence op:

Re(s) > 09 = / z(t)e stdt < oo (2.18)
0

From a mathematical point of view the Laplace transform is limited to
positive values of t because the integral of e=7! where o > 0 is divergent when
t — —o0. As a consequence the Laplace transform is limited to causal signals,
i.e. signals which are null for ¢ < 0. It is worth noticing that the abscissa of
convergence oq is never computed from a practical point of view.

In addition it is worth noticing that the Laplace transform is a linear
operator, meaning that if z1(¢) and x2(t) are two causal signals and a; and as
two constants then the Laplace transform of the linear combination between
x1(t) and x2(t) is the linear combination of the Laplace transform of x4 (¢) and

xo(t):
L [alxl(t) + a2$2(t)] =a1 L [:El(t)] + as L [$2(t>] = ale(s) + GQXQ(S) (2.19)

Example 2.1. Compute the Laplace transform of the causal exponential
function x(t) = e~ Vt > 0.
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at

The Laplace transform of e~ is given by:

—(s+a)t &

L e "] —/ R S — (2.20)
0 s+a 0

As far as the real part of the complex variable s is assumed to be greater than
the abscissa of convergence og (which is never computed from a practical point
of view), the value of e~ TDt converges to 0 when t — co. Consequently the

Laplace transform of e~ reduces to:

1
s+ a

Lle ] = (2.21)

Notice that when a = 0 this reduces to the Laplace transform of the unit step
function T'(t):

L(t)=e | _,= LIO®)] = =- (2.22)

2.4 Properties

This section presents the main properties of the Laplace transform without
demonstration. In the following z(t) is a causal signal and X (s) its Laplace
transform.

2.4.1 Linearity

For any signals z1(t) and z2(t) and any constants a; and a2 in R or C:
Llar1x1(t) + agwe(t)] = a1 X1(s) + asXa(s) (2.23)
This property comes from the linearity of integration.

Example 2.2. Compute the Laplace transform of the causal signal
x(t) = cos(wpt) Vt > 0.
Using the Euler’s formula we get:

eJwot + e Jwot

cos(wopt) = 5

(2.24)

Using the linearity property, the Laplace transform of cos(wot) is given by:

L [COS(th)] = X(S) = fooo ejwot"‘ifﬂwotefstdt
- % fooo elwote—st gy 4 % fooo e Iwote=stqp

— %fooo 6(jwofs)tdt + %f()oo ef(jwo+s)tdt (225)
_1 e(jwp—s)t o0 oo
2 Jwo—s =0
As far as the real part of the complex variable s is assumed to be greater
than the abscissa of convergence oy (which is never computed from a practical

e—(Gwots)t
t=0 ij +s
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point of view), the values of elw0=9)t gnd e=(wots)t comperge to 0 when t — oo.
Consequently the Laplace transform of cos(wot) reduces to:

—1(__1 !
Llcos(wot)] =5 (—75= + jw0+5) (2.26)

_ 1 ( =jwo—s + Jjwo—

2 \ —wi—s? 5 52
We finally get:
s
L [cos(wot)] T2 (2.27)
]
2.4.2 Derivation
d

c [dﬁ(“] — 5X(s) - a(0F) (2.28)

For the second time derivative we have:

L [CF x(t )] =sL [d x(t )} —#(0%) = s?X(s) — sz(0") — &(0T) (2.29)

a2’ dt
And so on:
L [jm(t)} = 5" X(s) = 8" 'w(0%) = 8" ZH(0T) — - — 27D (07)  (2.30)

Example 2.3. Use the expression of the Laplace transform of cos(wot) to
compute the Laplace transform of sin(wot) Vt > 0.
We have:

%cos(wot) = —wy sin(wot) (2.31)

Then wusing the property of the Laplace transform with respect to the
derivative we get:

L [sin(wot)] = wioﬁ [di s(wot)]
* (5L [eos(wot)] — cos(wot),_q+) (2.32)
1 ( ) 1 (L _ ﬂ)
wo \ s24+wi wo \ $24w?  s2+w?
We finally get: "
L [bln(wot)] m (233)
]

2.4.3 Integration

L [/w(f)dT] = X‘ES) + % /:c(T)dT

Note that the integral shall be computed without taking into account the
integration constant.

(2.34)

=0
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Example 2.4. Use the expression of the Laplace transform of sin(wot) to
compute the Laplace transform of cos(wot) Vt > 0.
Without taking into account the integration constant we have:

/sin(on)dT = —

Then wusing the property of the Laplace transform with respect to the
integration we get:
L [cos(wpt)] = —woL [ sin(woT)d7]

— —wo M +3 fsjn(wOT)dT‘T:())

cos(woT) (2.35)
wo

o W 1 cos(woT)
=—wolsmae?) — 5w B
_ ) N T‘O) (2.36)
= 7w Zm  wos
=% 4 %
} s(sijgwg) @
T s(s24wd) + s(s2+w?2)
We finally get:
s
L [cos(wot)] 7o (2.37)
]
2.4.4 Multiplication by ¢
Assuming that n is a positive integer then:
d’fL
Lt"z(t)] = (—1)"@X(s) (2.38)
2.4.5 Time domain translation (delay)
It can be shown that:
Lzt —T)] =eTX(s) (2.39)

It is worth noticing time delay does not yield to rational function in the
Laplace domain. In order to get a rational function in the Laplace domain the

usual approximations of e*T are the following:
sT
— One method is to write e =57 = €_2- and to use the Taylor series expansion
e 2
of e~ and e~ 7. We recall that:
2
—1+x+—+—+ ZM (2.40)

Consequently e~*T can be approximated by the following rational function

where the polynomials at the numerator and the denominator have the
same degree. This is set to an arbitrary integer denoted n hereafter:

_sT n 1 sT\k
€ Yhom (&)
el =~ k! 2 - (2.41)

T ok ()
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Usually n =1 and we get:

T
e T ?T (2.42)
1+ L

An other method is to approximate e =7 by the following rational function:

_sT\"
e_ST%< 2n> n=1,2,... (2.43)

T
1+ 5

Padé approximation consists in identifying the 2n 4 1 first terms of the
Taylor series expansion of e™*7 with the 2n 4 1 first terms of the Taylor

series expansion of the following rational function ggzg around s7T' = 0:

D(sT)  an(sT)" + ap_1(sT)" 1 + -+ a1 sT + 1 '

It is worth noticing that the coefficient ag has been set to 1 without loss
of generality.

From a practical point of view the Taylor series expansion of ggig

sT = 0 can be obtained as the quotient of the polynomial long division,
that is the division according to the increasing power of s (this is very
close to the Euclidean division, but on the other way):

around

bo+b1sT+ -+ +by(sT)" 1+aysT+ -+ ap(sT)
—(bo + boay ST + -+ + boan(sT)") | bo + (b1 — boay) sT +---  (2.45)
(bl — boal) sT + ---

The 2n + 1 coefficients (by,- - ,b1,bo,an, - ,a1) are obtained by
identifying each coefficient of (sT)*, k = 0,---,2n in the following
equality:

1
bo + (by —boay) sT + - =1—sT + 5(5T)2 +ome T (246)
It can be shown that Padé approximation of e 57 reads:
" qi (—sT)" on — i)ln!
e T~ iz 6 (=sT)" ) where ¢; = (2n—d)int " ) " (2.47)
S8 o qi (sT) 2nlil(n —i)!

Padé approximation of e~*7 for degree n = 1,2 and 3 is given on Table
2.1.
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Degree n | Padé approximation of e=5T
T
! e
sT)2
5 1— 4 1T2)2
14L 4 T
3 S 2 S 3
) R Co
s sT sT
Table 2.1: Padé approximation of e=T
2.4.6 Frequency domain translation
It can be shown that:
L e "2(t)] = X(s+ wo) (2.48)

Example 2.5. Use the expression of the Laplace transform of T'(t) to compute
the Laplace transform of e~ Vt > 0.

We get:
1 1
LEW]=X(s)==-=L[e "] =L][e¥T({t)]) =X(s+a)=—— (249)
s s+a
]
2.4.7 Initial value theorem
Assuming that the value of x(t) exists when ¢ — 0" then:
li t) = li X 2.50
Jim z(f) = lim sX(s) (2.50)

Example 2.6. Knowing that the Laplace transform of cos(wot) is ﬁ compute
0
lirntﬁ(yr COS(Wot).
We check that:
S 52
lim cos(wpt) = lim s 5—— = lim ——5 =1 (2.51)

t—0+ s—o0 g2 + wg s—00 g2 + w%

Obviously we rediscover the fact that lim,_,q+ cos(wot) = cos(0) = 1.

"
Example 2.7. Knowing that the Laplace transform of sin(wot) is sz‘jrowz, compute
0
lim, o+ & sin(wot).
Using the derivative property we check that:
lim, o+ % sin(wot) = limg_ye0 s 2<882i0w8 — sin(wot)|t:0+)

= limg_, 00 7524:233 (2.52)
= wo

Obviously we rediscover the fact that lim,_,o+ % sin(wot) = wo cos(wot)|;_g+ =
wo -
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2.4.8 Final value theorem

Assuming that the value of x(t) exists when ¢ — oo then:

tlggo z(t) = llg(l) sX(s) (2.53)
Example 2.8. Knowing that the Laplace transform of the unit step function
L(t) is 1 compute limy_,oo T'(t).
We check that: 1
lim I'(t) = lims— =lim1 =1 (2.54)

t—00 s—0 S s—0
|

It is worth noticing that the final value theorem gives the correct answer as
soon as the value of x(t) exists when ¢ — oo. For example if we apply the final
value theorem on cos(wgt) which has no limit when ¢ — oo then result is not
correct.

2.4.9 Convolution

We have seen that the convolution product * between two causal signals x(t)
and y(t) is defined by:

x(t) xy(t) = /0 x(T)y(t — 7)dr (2.55)

Then the Laplace transform of the convolution product between two causal
signals x(t) and y(t) is the product of the Laplace transforms of x(t) and y(t):

£ [2(t) * y(H)] = X ()Y (s) (2.56)

2.4.10 Evaluating improper integrals

It can be shown! that the following property holds to evaluate improper integrals
thanks to Laplace transform:

YO s [T visvds
/0 tdt_/o Y(s)d (2.57)

2.4.11 Link with Fourier transform

The Fourier transform is widely used in communication theory to assess spectral
properties of a signal. The Fourier transform X (w) of a signal z(t) is defined as
follows:

+o00 .
X(w)=Flzt) = / z(t)e It dt (2.58)

Compared with the Laplace transform the integral involved in the Fourier
transform starts at —oo and the complex variable s in the exponential which

'https://en.wikipedia.org/wiki/Laplace _transform
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[ V=0 | X(s) |
4(t) 1
['(t) (step function) %
f !
tm %
- T
e at L
ﬁ —at 1
(n—l)!e (SJra)n
atT 1
Sln(th) s2+0w(2)
— t . w
e @ Sln(th) m
cos(wot) ﬁwg
—at __sta
e~ cos(wot) Tt

Table 2.2: Usual Laplace transform pairs

appears in the Laplace transform is replaced by a pure imaginary number jw
in the Fourier transform. From those properties defining the integral of the two
transforms we obtain formulas for getting from one to the other:

— If x(t) is even then:

Fla@®)] = L[z(t)]szj + F l2O)]i= 0, (2.59)

Fla@)] = L[z(t)]szj — F @)=, (2.60)

2.5 Usual Laplace transform pairs

Usual Laplace transform pairs are provided in Table 2.2.

2.6 Inverse Laplace transform

In the following G(s) is a rational expression involving polynomials in its
numerator and denominator which are respectively denoted N(s) and D(s):

N(s)

5G) (2.61)

G(s) =

We will assume in the following that the degree of D(s) is strictly greater
than the degree of N(s); then G(s) is said strictly proper.
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2.6.1 Partial fraction expansion

The roots of N(s) are called the zeros of G(s) whereas the roots of D(s) are
called the poles of G(s). Without loss of generality we will assume that G(s)
can be written as follows where Aq, ..., A, are the poles of G(s) with multiplicity
ni,--- , Ny, respectively:

_ N(s)
G(S) - (S o )\1)”1 . (S _ )\n)nn (262>
Then the partial fraction expansion of G(s) is:
G(s) =Gi(s) + -+ Gi(s) + -+ Gn(s) (2.63)

Where G (s) is the partial fraction expansion of G(s) associated to the pole
A of multiplicity ng (k=1,---,n):

ng

GK@—E:(bj (2.64)

Jr=1 5 /\k)jk

Constant coefficient which multiplies the rational expression ﬁ (the power
of s — A\ is 1) is called the residue of G(s) around pole s = Ag.
Coefficients bj;, are computed thanks to the following formula:

1 A"~ Ik

ng — ji)! ds™ Ik (5 = A)™ G(s)

k=1, ,n (2.65)

b =
’ ( S=Ak
It is worth noticing that when the multiplicity of pole Ag is 1 this formula
reduces to:
ng = jk =1= bjk = (3 — )\k) G(S)‘ (2.66)

S=Ap

Notice that the residues can be computed using the function residue with
Matlab™ and pfss with Scilab.
Once G(s) has been broken up into components:

G(s) = Gi(s) + -+ Gpn(s) (2.67)

Then the inverse Laplace transform of G(s) is the causal signal g(t) given

g(t) = L7HG(s)] = L7HG1(8)] 4+ -+ L7 [Gn(8)] = g1(t) + - -+ gn(t) (2.68)

The advantage of the partial fraction expansion is that the individual terms
of G(s) resulting from the expansion into the partial fraction form are very
simple functions of s and their inverse Laplace transform are readily available.
We can use for example Table 2.2 of usual Laplace transform pairs.

5242543
(s+1)3 -
Laplace transform G(s) has a single pole A\ = —1 with multiplicity n; = 3.

Example 2.9. Compute the inverse Laplace transform of G(s) =
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The partial fraction expansion of G(s) reads:

b1 bo b3
G(s) = 2.69
(s) s—|—1+(s+1)2+(s—|—1)3 (2.69)
Where: s
_ 1 3= 3
b3 = W ds3—3 (S + 1) G(S) — (270)
= +2s+3| _ =2
3—2
by = lay g (5 +1)°Gs)|
i d (s, 271
=25s+2,_ ,=0
3—1
bl = i s (s +1)° Gls) L
d2
=2 g (8 +2543)] (2.72)
= % % (28 + 2)‘5:—1
2 2’5:71 =1
Thus the partial fraction expansion of G(s) is:
b b b 1 2
Gs)= —— 4 —— 4+ —> = + (2.73)

s+1 (s+1)2 (s+1)3 s+1 (s+1)3

With the use of Table 2.2 of usual Laplace transform pairs we are able to
compute the inverse Laplace transform of G(s) as:

LG(s)] = £ LiJ - [(sfl)g] ety Ut o

2.6.2 Mellin-Fourier integral

The Mellin-Fourier integral originates from complex analysis, traditionally
known as the theory of functions of a complex variable, and more specifically
from he computation of the Mellin-Fourier (or Bromwich) integral which can
be evaluated by means of the Cauchy’s residue theorem. Those notions are out
of the scope of this lecture and we will just use some results to compute the
inverse Laplace transform of G(s), assuming that G(s) is a rational expression
of polynomial strictly proper (i.e. the degree of the denominator is strictly
greater than the degree of the denominator).
The Mellin-Fourier integral reads:

h—

G(s) = ggz) where deg(N(s)) < deg(D(s)

1 () (2.76)
= g(t) = L7 [G(s)] = X Ress—y, [G(s)e] VE>0
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Where the residue Resg—y, [G(s)e] shall be computed around each pole
Ar of G(s). Assuming that Ay is a pole of multiplicity nj then the residue of
G(s) around pole Ay is given by:

1 dnk—l
(ng — 1)! dsm—1

Resg—y, [G(s)e™] = (5 — )™ G(s)e™ (2.77)
S=Ag

5242543

(s+1)% -

Laplace transform G(s) has a single pole A\ = —1 with multiplicity n1 = 3.

Using Mellin-Fourier integral we get:

Example 2.10. Compute the inverse Laplace transform of G(s) =

g(t) = L71[G(s)] = Ress—y, [G(s)e™] vt >0 (2.78)
Where:
Resg—_1 [G(s)e“] = 1 i! % (s + 1)3 G(s)est . 279

B-1
= % j? (52+2S+3)65t
S

=1

We will first compute the first and second deriwative of (82+28—|—3) est
before evaluating them at s = —1:

4 (s24+2s+3) e’ = (2s+2) e + (s + 25 + 3) te*!
= % (s 425+ 3) e =2e + (25 + 2) te!
+ (25 + 2) te*! + (s* 4 25 4 3) t2e
= (2+2(25+2) te™ + (s* + 25 + 3) t?) e

= (%22(32—1—23—1—3)6“ B :(2—|—2t2)e*t
- (2.80)
We finally get:
2
o) = Resmr [Gl)e] = 4 (24 2s 48|
=(1+t})etVt>0
]

Example 2.11. Compute the inverse Laplace transform of G(s) = %.

Laplace transform G(s) has two poles:

— A = —3 with multiplicity ny = 1. We get for the residue:

Ress—_3 [G(s)e“] = (1,11); 75151:1 (s + 3)1 G(s)e* .
_ (Ssj42)2€st L (2.82)
o3t

— Ao = —4 with multiplicity no = 2. We get for the residue:
Ress——4 [G(s)e™!] = (2_11)! 52—__11 (s 4 4)*G(s)e

— 4 st2 st
ds s+3 s—=—4
. (65t+(s+2)t65t)(S+3)—(S+2)6St
- (s+3)2
—e 4 4 2te™ 4 4 2e=H
= (1+2t)e ¥

s=—4

(2.83)




2.6. Inverse Laplace transform 35

Using Mellin-Fourier integral the inverse Laplace transform of G(s) is
obtained bu summing the two residues:

g(t) = L71[G(s)] = Ress=—3 [G(s)e™] + Ress—_q [G(s)e™] ¥t >0 (2.84)
We finally get:
g(t) = —e 34 (14 2t)e ™ vt >0 (2.85)

Example 2.12. Use Laplace transform to find the solution to the following

differential equation:
29(t) — y(t) = 22
{ u( )y(g)( ) 3 (2.86)

Taking the Laplace transform of the differential equation yields:

( Y(s) —y(0)) = Y(s) = 225
Y(s)(2s — 1) = ;25 + 6= =30 (2.87)
© Y( V= =

Then we will compute the inverse Laplace transform of Y (s) thanks to the
Mellin-Fourier integral:

y(t) = L7V (s)] =D Rese—y, [Y(s)e™] vt >0 (2.88)

Laplace transform Y (s) has two poles:

— A1 = 0.5 with multiplicity ny = 1. We get for the residue:

Ress—o5 [Y(s)e®!] = (== 11) —jsl:l (s —0.5)' V(s)e .
S=u.
— 8s=5st (2.89)
5— _
_ Z 0.5t s=0.5
3¢
— A1 = 2 with multiplicity no = 1. We get for the residue:
Resy—o [Y(s)eSt] = (1_11)! ;Sl__ll (s — 2)1 Y (s)est ,
s=
i s=2
= 2%
We finally get:
7 2
y(t) = -l St (2.91)

We check that y(0) = 3. "
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2.7 Norm of vector signal

z1(t)
Let z(t) = : € R™ be a vector depending of time ¢ > 0. Vector z(t)
xn(t)
is called a vector signal. Assuming that the following integral is defined its
represents the Lo norm of vector signal z(t):

(@)l = \/ /0 T (B)(t)dt < oo (2.92)

The Lo norm of a vector signal is also called its energy. Vector signal z(t)
is said of finite energy, or equivalently z(t) € L3[0,00) where L2[0,00) is the
Hilbert space of finite energy signal defined V¢ > 0, as soon as the integral in
Equation (2.92) exists.

Let X(s) be the Laplace transform of vector signal z(¢). As soon as the
vector signal z(t) € Lo its Laplace transform X (s) is strictly proper and all its
poles have negative real part (or equivalently z(t) € L2[0,00) & X(s) € H,
where notation H is used after the mathematician G.H. Hardy). By Parseval’s
theorem we have:

1
lz(®)ll2 = \/QWJ - XT(—s)X(s)ds (2.93)

where C™ is a contour following the imaginary axis of the complex plane and
then around an infinite semicircle in the left half plane.
The use of the residue theorem finally leads to the following expression:

le®)lz = \/ 3 Res (X7 (—5)X(s)) (2.94)

oles with negative real part

Let A; be a pole (with negative real part) of X(s) with multiplicity n;.
Residue Res (X”(—s)X(s)) on pole ; is defined as follows:
1 dni—l

Ress:)\i (XT(_S)X(S)) = (nz _ 1)[ dSni_l <S - )\I)HZXT(_S)X(S) iy (295)

The Lo, norm of vector signal x(t) is defined by:

[2()]|oc = sup max |z;(¢)| (2.96)
teR+

Example 2.13. Let x(t) be defined as follows where T is a positive time
constant:

zt)=e 7 Vt>0 (2.97)
The square of the Lo norm of signal x(t) is:
03 = Ji= " (o)t
= e rdt
Jo LS (2.98)

= e T
0

NN o
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()]l = \@ (2.00)

The square of the Lo norm of signal x(t) can equivalently be computed using
the Laplace transform X (s) of x(t):

And consequently:

ety MR (2.100)
= X(—s)X(s) = -

(1+s7)(1—s7)
Assuming 7 > 0 the unique pole \y = —% of X(s) has a negative real part
and its multiplicity ny is equal to 1. Then residue of XT(—s)X(s) on pole
AL = —% is computed as follows:

Ressz_% (XT(_S)X(S)) _ (1711)! dcillill (S — Az)anT(_S>X(S) s=_1
72 '
= s+ Do 1
= IIST s=_1
-3
(2.101)

We finally get:

z(t)]|2 :\/ > Res (X" (—s5)X(s)) = % (2.102)

oles with negative real part
The Lo norm of signal x(t) is defined by:

[z()]loc = sup le" 7| =1 (2.103)
teRT

2.8 Mellin transform

The mellin transform of a continuous time function x(7) which is causal (i.e.
x(7) =0 Vr < 0) is a function of the complex variable s and reads:

Mz(1)] = /000 z(t) T tdr (2.104)

Mellin’s transform is closely related to an extended form of Laplace’s. Indeed
let’s consider the following change of variables:

r=elet=—In(1) (2.105)
This change of variables transforms the integral (2.104) into:

dr = —e7tdt = M [z(e™")] = - [[Zx(e™) (e*t)sfl e tdt

= fj;o z(e e stdt (2.106)
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The previous relation defines the two-sided Laplace transform of y(t) =
x(e™?) defined by:

“+oo
Con ly(t)] = / y(t)estdt (2.107)

—0o0

This can be written symbolically as:

M [z(7)] = Lo [z(e™")] (2.108)



Chapter 3

Linear Time Invariant systems

3.1 Chapter overview

This chapter introduces linear time invariant (LTT) systems. First the properties
of linear time invariant (LTI) systems are presented. Then concept of transfer
function is presented and the time response as well as the frequency response
of linear time invariant systems are discussed. The last part of this chapter
is dedicated to model reduction where we will see that first and second order
models constitute the ultimate approximation of a system.

3.2 Properties

Linear and Time Invariant (LTI) systems satisfy the two following properties:

— Linearity: this means that the relation between the input and the output
of the system is a linear: if input wu;(¢) produces response y;(t) and input
uz(t) produces response yo(t) then the linear combination of the inputs
aru1(t) + agua(t) produces the linear combination of the outputs
a1y1(t) + a2y2(t) where a1 and ag are real scalars. Denoting by S the
system operator we get:

{ Slu(t)] =y
S [ua(t)] = ya(t)
| = a8

3.1
= Slarun(t) + a2un(t)] = S s (8) + xS o) Y
< Slaru(t) + agua(t)] = a1y1(t) + azya(t)
Linearity leads to the superposition principle.  The superposition

principle states that, for all linear systems, the net response caused by
two or more inputs is the sum of the responses which are caused by each
input individually.

— Time invariance: this means that if the output due to input u(t) is y(t)
at time ¢ then the output due to input u(t — T') after a delay of T" will be

y(t =T):

Su(t)] = y(t) = S[ult — T)] = y(t — T) VT > 0 (3.2)
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We will see that a linear system is time invariant as soon as initial
conditions are null.

3.3 Convolution integral

The time response of a linear system to a causal input u(t) (u(t) = 0 V¢t < 0)
can be computed as follows:

First use the fact that the delta Dirac function is the neutral element for
the convolution product:

u(t) = u(t) *d(t) = /OOO u(T)d(t — 7)dr (3.3)

Then apply the system operator S on the input u(t):
Shu(t)] = 8 { /0 ()t — T)dT] (3.4)
Using the fact that the system is linear we can reverse fooo and S operators:

s [ /0 T ulr)(t — T)dT] - /0 S u(r)o(t — )] dr (3.5)

In the expression S[u(7)d(t —7)] the only term with depends on time ¢
is 6(t — 7). Indeed term u(7) is viewed as an independent term of time ¢
because the integral is envisioned as an infinite sum for different values of
7. Thus as far as the system is linear we get:

Slu(r)o(t —7)] =u(r)S[0(t — 7)] (3.6)

Let’s us define h(t) as the time response of the system to the delta Dirac
function; this is the impulse response of the system:

h(t) = S [3(0) (3.7)
As soon as the system is time invariant we get:
S[o(t—71)]=h(t—r1) (3.8)

Consequently the system time response can be written as:

S [ut)] = /O T ur)S [t — )] dr = /0 Tuh(t—ndr  (3.9)

Thus we have showed that a Linear and Time Invariant (LTI) system is
basically a convolutor, meaning that the relation between the input w(¢) and
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— Fis) ——

Figure 3.1: Block diagram representation of a LTI system

the output y(t) of the system is obtained thanks to a convolution product.
Denoting by h(t) the impulse response of the system we get:

h(t) = S [5(t)] = y(t) = S [u(®)] = ult) * h(t) = /0 T uDh(t— )dr (3.10)

Using the fact that the convolution product is commutative the preceding
relation can also be written as follows:

y(t) = h(t) *u(t) = /OOO h(T)u(t — )dr (3.11)

The convolution product is usually quite cumbersome to compute. Hopefully
the Laplace transform changes the convolution product into a simple product,
meaning that the Laplace transform of the system output is obtained thanks
to the simple product between the Laplace transform of the system impulse
response and the Laplace transform of the input signal:

Llu(t)] :==U(s)
L[h(t)] == F(s) = Y(s) = F(s)U(s) (3.12)
LIy(t)] =Y (s)

The Laplace transform of the impulse response h(t) of the system, which is
denoted F'(s), is called the transfer function of the system. Figure 3.1 provides
the block diagram representation of a linear time invariant (LTT) system.

3.4 System defined by a linear differential equation

We have seen that a nonlinear and time invariant system can be approximated
by a linear differential equation with constant coefficients. Taking the Laplace
transform of (1.17) and assuming zero initial conditions we get:
aoY (8) + a18Y (s) + - + an_15" 1Y (s) + a,5"Y (s) =
boU(s) + b1sU(s) + - 4+ bpp_18™ LU () + byus™U(s) (3.13)

Thus the transfer function of the system is defined by:

Y(s) bo+bis+---+ b—18™ 1 + by, s™
U(s) ag+ais+---+ap_15""1 4 a,s"

F(s) = (3.14)

Notice that the coefficient a, is equal to 1 without loss of generality.
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The denominator of the transfer function is called the characteristic
polynomial and the order of the model is the degree of the characteristic
polynomial (which is n for the transfer function (3.14)). In addition the
transfer function F(s) is said to be strictly proper if the degree of its
denominator is strictly greater than the degree of its numerator, i.e. n > m.

Coming back to the time domain and having in mind that the Laplace
transform of the convolution product between two causal signals h(t) and u(t)
is the simple multiplication between the Laplace transform of h(t) and u(t) we
get:

Y (s) = F(s)U(s) < y(t) = h(t) = u(t) (3.15)

As a consequence a system defined by a linear differential equation is a
Linear and Time Invariant system (LTI) as soon as initial conditions are equal
to zero.

If u(t) is a causal signal then limg oo U(s) < oo. Similarly if F(s) is a
fraction involving polynomials in its numerator and denominator then the
corresponding system is said to be causal when limg_, o F(s) < oo. This means
that the degree of the denominator is greater than or equal to the degree of
the numerator. From a practical point of view a system is said to be causal
when the output depends on past and current inputs but not on future inputs
(non-anticipative system).

Settling time t¢ is the time required by the system response to reach and
stay within a range about the final value. The range is specified by absolute
percentage of the final value which is usually 5%.

The static gain G4 of a continuous time system is the limit as ¢ — oo of
the rational expression between the output signal y(t) and the input signal wu(t).
Assuming that the limit exists and applying the final value theorem leads to the
following expression of the static gain:

6=l U5 =i = FO 619

3.5 Frequency response

In this section we will focus on stable linear time invariant systems, meaning
that all the poles of the transfer function have negative real part. Stability
analysis will be tackled in the next chapter.

3.5.1 Relation with transfer function

The frequency response of a system is the response of the system to the causal
input u(t) = /! where w is the frequency of the complex exponential function.
More specifically the frequency response consists in the magnitude and phase
relation between the input and the output signal when the input signal u(¢) is
the causal complex exponential function e/“.

We recall that a linear system is a convolutor. Specializing relation (3.11)
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to the case where u(t) is the complex exponential function reads:
u(t) = e = y(t) = / h(r)e? =" dr (3.17)
0
Using the fact that the integration is a linear operation we get:
y(t) = et / h(r)e=1 dr (3.18)
0

We recognize in the term fooo h(T)e~7“Tdr the Laplace transform of the
impulse response h(t) where the Laplace variable s is specialized to be jw:

= F(s)|

s=elw

/0 " h(r)e Ty — /O () Tdr (3.19)

s=jw

Note that F(s)|s:jw = F(jw) is called the frequency response of the system.
As a consequence the frequency response of a linear system to the complex
exponential function reads:

u(t) = 7 = y(t) = ¥ F(s)| = F(jw)el*t (3.20)

s=jw

The preceding relation shows that frequency response of a linear system is
closely linked to its transfer function. The frequency of the output signal is the
same than the frequency of the input signal; only the amplitude and the phase
of the input signal are changed by the linear system. In addition the phase of
the output signal is independent of the amplitude of the input signal. Denoting
by [|F(jw)|| the norm of F(jw) and by ®(w) the phase of F'(jw) the preceding
relation reads:

u(t) = e/t
F(jw) = || F(jw)| e?®«) (3.21)
= y(t) = | F(jw)| e/*te @) = || F(jw)]| el @+ )

Where Re stands for real part and I'm stands for imaginary part:

IFG)ll = \/(ReF (jw))? + (ImF (ju))?

®(w) = arg (F(jw)) = arctan (%72585)))

(3.22)

As far as numerator and denominator of rational transfer function F(jw)
have real coefficients we have:

{ Re(F(jw)) = Re (F(—jw))  _ { [1E(jw)ll = [[F(—jw)
I'm (F(jw)) = —=Im (F(—jw)) arg (F(jw)) = —arg (F(—jw))
(3.23)
Thus ||F(jw)| is an even function of w whereas arg (F(jw)) is an odd
function of w. Consequently [|F(jw)| and arg (F(jw)) are only studied for
positive values of w, which consistently corresponds to physically achievable
frequencies:
w>0 (3.24)
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It is worth noticing that when the input signal w(¢) is not the complex
exponential function but a real sinusoidal signal then the output signal y(t) is
obtained thanks to the real (or imaginary) part of the complex output signal:

u(t) = cos (wt) = Re (/")
= y(t) = Re (|F(jw)|| €2 = |[F(ju) | cos (wt + dw)) 2

And similarly:

u(t) = sin (wt) = Im (/%)

s y(t) = Im (| F(jw)| F@H26D) = |F(jo) | sin (wt + dw)) 20

3.5.2 Bode plot

Bode plot consists in drawing the log magnitude 20log;, || F'(jw)|| (this is the
Bode magnitude plot) and the phase arg (F'(jw)) (this is the Bode phase plot)
of the frequency response F'(jw) over the frequency range from w = 0 to infinity.
The plot is usually presented on a semi-log graph where the w axis is plotted
on a logarithmic scale.

Two units are used to express frequency ratios: there are octave and decade.
An octave is a frequency band from w to 2w whereas a decade is a frequency
band from w to 10w.

As far as the magnitude of the frequency response is concerned the unit used
for the logarithm of the magnitude is the decibel (dB). The dB value of 2 is 6 dB
and the dB value of % is —6 dB. In addition as a number increases by a factor
10 the decibel values increases by 20 dB. More generally as a number increases
by a factor 10™ the decibel values increases by 20n dB.

The Bode plot of the frequency response is easily obtained when considering
the factorized form of the transfer function. Let’s us suppose that the transfer
function F'(s) can be factorized into the following first and second order terms
where k is a real (either positive or negative) and «,a;,b; are integers either
positive or negative:

? J

b;
k . 2m, 2\"”
F(s) = — [T +ms) ] <1 + %s + ;) (3.27)
' .

J

Integer «v is the number of integrations in the transfer function F(s). First
order terms are of the form 1+ 7;s, 7; > 0 and are related to the real poles
(a; < 0) and zeros (a; > 0) of the transfer function whereas second order terms

are of the form 1 + %s + 5—2?, mj,w; > 0 are related to the complex poles

(bj < 0) and zeros (b; > 0) of the transfer function.
Replacing the Laplace variable s by jw and rewriting the transfer function
in polar form yields:

bj
2m; x el ®() (3.28)

F(jw) = 1+

+ 82
S

,2

J

1] i
o L1 sl T
7

J

wj
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Taking the log magnitude of the frequency response reads:

201ogyo || F(jw)| = 201logq || k|| — 20alog;q (w)
+ Z 20a; logyg ||1 + jwTi]|

K3
w 2 w
1-— () + Qmj—j
wj Wy

J
Thus when considering the factorized form of the transfer function the log
magnitude of the frequency response is readily obtained by summing the log
magnitude of the individual factors.

(3.29)

Similarly the phase of the frequency response is obtained by summing the
phase of the individual factors of the factorized form of the transfer function:

®(w) = arg(k) — arg((jw)®) + Z arg (1 + jwr;)®

T
bj

+Y g (1 - (;")2 +2mj:;j> (3.30)

J
That is:

2 ()
O(w) = arg(k) — ag + Z a; arctan (wr;) + Z b; arctan (W) (3.31)
i J

Notice that arg(k) =0 if £ > 0 and arg(k) = 7 if k < 0.
Asymptotic Bode plot is obtained when drawing the shape of the individual
factors of F'(jw) for the limit values of w that are w — 0 and w — oo.

For the log magnitude we get:

01}1}% 20logyq ”F(JW)H = 20log; HkH — 20 logy (w) (3.32)
And:

lim 20logy, || F(jw)| = 20logq [|k]] — 20alog;q (w)
w—00

w
+ Z 20a; logyg (W) + Z4Obj log;, <w]> (3.33)
(2

J

Table 3.1 summarizes the main characteristics of the asymptotic Bode plot
of first order and second order individual factors where w. stands for the corner
frequency and n is a positive or negative integer:
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slope in dB/decade phase in deg
w<we | w>we w<we | w>we
s* 20 90
(14+78)", we=1/7 0 |20qa; 0 ‘ 90a; sgn(a;)
b.
(<52 + 2mjwjs + wJQ) /wJQ) T we = wj 0 | 400; 0 | 180b; sgn(b;)

Table 3.1: Main characteristics of asymptotic Bode plot

3.6 Model reduction

Model reduction consists in computing an approximate model of lower order of
a system in order to facilitate the control design. Several methods exist. We will
present in that section only the Padé (or dominant pole) approximation which
is one of the simplest method.

We will assume in the following that the transfer function F'(s) of the
model to be reduced is strictly proper and that all the roots of its polynomial
characteristics have strictly negative real parts (i.e. all the poles of F(s) are
situated in the left half part of the complex plane):

{F(s): botbistotby_1s"1  _ N(s)

ap+ays+-tap_1s"14+sm D(s) (334)
D()\Z) =0= Re ()\1) <0

Notice that without loss of generality coefficient a, has been set to 1.

The Padé approximation or order (g,r) of F(s) is the transfer function
F,,(s) whose Taylor series expansion around s = 0 has the same first ¢ +
coefficients than those of F(s).

F () 80+818+"'+Bq8q
S pr
or o+ a1+ -+ ap_18T L+ 5"

(3.35)

From a practical point of view Taylor series expansion around s = 0 can
be obtained through the quotient of the polynomial long division, that is the
division according to the increasing power of s. It is worth noticing that contrary
to the Euclidean division where the polynomials are written according to the
decreasing powers of s, in the polynomial long division the polynomials are
written according to the increasing powers of s.

As far as Taylor series expansion is obtained around s = 0 the Padé
approximation keeps the low frequency shape of the frequency response of
F(s). . .

In the following we will set ¢ = 0 and we will denote Fp,(s) = F(s):

- - b b
Fo(s) = F(s) = 0 = (3.36)

o+ ars+ -+ ar1s" 8" D(s)

The denominator D(s) of the reduced model F(s) is built thanks to the r
poles of F(s) whose real part are the closest to the imaginary axis. Those poles
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are called the dominant poles of F(s). If the values obtained when dividing the
real part of the others poles of F(s) by the real part of the dominant poles of
F(s) are greater than 3 (or 2) then the low frequency model obtained through
the Padé approximation is quite representative of the long term response of the
systermn.

Once D(s) is known, the coefficient by could be obtained thanks to the
identification of the Taylor development of F(s) and F(s) around s = 0. In
order to avoid the computation of the first terms of the Taylor series expansion
it is worth noticing that coefficient by can also be obtained by identifying the
static gain of the actual transfer function F'(s) and the static gain of the reduced
model F(s).

It is worth noticing that first and second order models are widely studied
because they can be viewed as reduced order models of actual transfer functions.
Indeed:

— When the dominant pole is real then r = 1: this leads a first order reduced
model.

— When the dominant poles are complex conjugate then r = 2: this leads
to a second order reduced model.

Example 3.1. Let’s consider the following transfer function:

15 ~ N(s)
s2+6s+5  D(s)

F(s) = (3.37)

The poles of F(s) are the following (you may use function roots with Scilab):

D(s)=8>+6s+5=(s+1)(s+5)=0

A o=-1 (3.38)
~ { Ao =5

All the poles of F(s) have negative real part and D(0) # 0. The dominant
poles of F(s) is —1 and the values obtained when dividing the real part of the
others poles of F(s) by the real part of the dominant poles are greater than 3 (or
2). As a consequence the system is subject to Padé approzimation. First we kept
the dominant poles of F(s) to build the denominator D(s) of the approzimated
transfer function F(s):

F(s) = (3.39)

s+1

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of F(s):

50 1+s

—”;0—}—605' i)o-l— (340)

—ng
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Unit step response

Figure 3.2: Unit step responses of F(s) and F(s)

We also compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of F(s):

15 5+ 65 + 52
—(15+ 185+ 3s*) | 34 --- (3.41)
—18s

_ The identification of the two quotients leads to the expression of coefficients
bo and b1 N

bp =3 (3.42)
Thus the Padé approzimation of F(s) reads:
- 3
F(s) = 3.43
(5) = o (3.43)

Figures 3.2 and 3.3 show the unit step responses as well as Bode plots of the
model F(s) and its Padé approzimation F(s); it is clear that F(s) exhibits the
same low frequency shape than F(s).

]
Example 3.2. Let’s consider the following transfer function:
1 1
) = sy )Bs + s+ 1) ~ 14951 2652 + 2457 (344)
It is clear that the poles of F(s) are the following:
M=}
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Bode plot
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Figure 3.3: Bode plots of F(s) and F(s)

All the poles of F(s) have negative real part and D(0) # 0. The dominant
poles of F(s) is —0.25. Despite the fact that all the values obtained when dividing
the real part of the others poles of F(s) by the real part of the dominant poles
are not greater than 3 (or 2) we will test Padé approximation. First we kept
the dominant poles of F(s) to build the denominator D(s) of the approzimated
transfer function F(s):

. bo
Fls) = s+ 0.25

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of F(s):

(3.46)

bo 0.25+ s
- (50 + 4605) by + - - (3.47)
—4b08

We also compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of F(s):

1 1+ 9s + 2652 + 2453
—(14+9s+---) [ 1+--- (3.48)
_98+"'

_ The identification of the two quotients leads to the expression of coefficients
bo and b1 N
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Unit step response

Figure 3.4: Unit step responses of F(s) and F(s)

Thus the Padé approzimation of F(s) reads:

~ 0.25 1
F = =
(5= 7095 " s 11

Figures 3.4 and 3.5 show the unit step responses as well as Bode plots of
the model F(s) and its Padé approzimation F(s). We can see in that example
that the unit step response of the Padé approzimation is not close from the unit
step response of the full model; nevertheless the two responses move towards
the same final values. Indeed both transfer functions have the same static gain:
F(0) = F(0).

(3.50)

Example 3.3. Let’s consider the following transfer function:

B 156 + s + 25° + _ N(s) (3.51)
156 + 268s + 21652 + 8453 + 155 + 55 D(s) '

F(s)
The poles of F(s) are the following (you may use function roots with Scilab):
D(s) = 156 + 268s + 21652 + 8453 + 155 + 5% =0

Mo=-5+]
Ao=—-5—7j
N BV (3.52)
)\4:—1+j
As=—-1—3

All the poles of F(s) have negative real part and D(0) # 0. The dominant
poles of F(s) are —1 &+ j and the values obtained when dividing the real part
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Bode plot
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Figure 3.5: Bode plots of F(s) and F(s)

of the others poles of F(s) by the real part of the dominant poles are greater
than 3 (or 2). As a consequence the system is subject to Padé approzimation.
First we kept the dominant poles of F(s) to build the denominator D(s) of the
approzimated transfer function F(s):

~ B l~)0—|—l~)18
O = i e+ 1+ 9)

(3.53)

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of F(s):

Eo—i—i)ls ) 2+ 2s + 82
—(bo + bos + 2s?) | B 4 bishog ... (3.54)
(51 - 60)5 - %’82

We also compute the quotient of the polynomial long division (i.e. division
according to the increasing power of s) of F(s):

156 + s + 2% 4+ s* 156 + 268s + 21652 + 8453 4+ 155* + °
—(156 + 2685 + 2165 + 84s® + 15s* + &°) | 1 — s+ - -
—267s — 21652 — 82s% — 14sT — &°

(3.55)
The identification of the two quotients leads to the expression of coefficients

l~)0 and l~)1 N

267\ ~

~—0: ~:
{2 L=bo=2 (3.56)
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Unit step response
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Figure 3.6: Unit step responses of F(s) and F(s)

Thus the Padé approzimation of F(s) reads:

~ 1—-0.711s
Fls) = 22+23+32

Figures 3.6 and 3.7 show the unit step responses as well as Bode plots of the
model F(s) and its Padé approzimation F(s); it is clear that F(s) exhibits the
same low frequency shape than F(s).

Nevertheless the Padé approzimation of F(s) is a non-minimum phase
transfer function, meaning that some of its zeros have positive real part. As a
consequence the response starts in the opposite direction of the final value. The
derivative at the starting time can be computed thanks to the initial value
theorem:

limg(t) = lim sL[y(t)] = lim s*Y(s) = lim s*F(s)U(s) (3.58)

t—0 $—00 5—00 5—00

(3.57)

As far as u(t) is the unit step function whose Laplace transform is 1/s we
finally obtain:

Us) = X = lim g(t) = lim sF(s) (3.59)

S t—0 §—00
|

3.7 First order model

3.7.1 Time response

An first order system is described by a linear differential equation of the first
order with constant coefficients. Denoting by 7 (7 > 0) the time constant and
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Figure 3.7: Bode plots of F(s) and F(s)

by K the static gain, first order model reads:

’7’% +y(t) = Ku(t)

We will assume in the following that:
y(0) =0

The transfer function of such system reads:

B K
C147s

F(s)

3
10

(3.60)

(3.61)

(3.62)

The unit step response of a first order systems will be computed thanks to
the Laplace transform. Since the Laplace transform of the unit step function is

1/s and substituting U(s) = 1/s we obtain:

K

Y(s)=F(s)U(s) = S0 t7s)

Expanding Y'(s) into partial fractions gives:

K KTt K K

Y = — — - _
() s l4+7s s 1/7+s

(3.63)

(3.64)

Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K — Ke 7 Yt >0

(3.65)
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Figure 3.8: First order system unit step response where K =1 and 7 = 2

This equation states that the output is initially zero (that is y(0)) and that
it finally moves towards K when t — oo as soon as 7 > 0. Note that the smaller
the time constant 7 is the faster the system response is.

We can check that y(t) = h(t = [o° h(T)u(t — 7)dr. Indeed:
K 1 K _:
=L =L = = e 7
ht) = £ [F(s)] = £ [ | (3.66)
And:
y(t) = h(t) = Jo" h@)ult — x)dz = [y h(

t 3.67
<:>y(t):%foe_?dm:—Ke_?‘ozK—Ke_? VtZO (367)

The step response of a first order model has no overshoot. In addition the
slope of the tangent at ¢t = 0 is % since:

dy

dy K
dt T

(3.68)

t=0

t=0 T

The unit step response of a first order system is sketched in Figure 3.8.
For a first order system the 5% settling time is:

ts = 37 (3.69)
Indeed:

_ts _ts 1
0.95K:K<1—e r):>0.05—e : :ts—rln<m>~3r (3.70)
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it

Figure 3.9: RC Filter

Notice that time responses of linear time invariant systems can be
computed thanks to functions syslin and csim (and the use of symbol %s to
define polynomials) with Scilab.

Example 3.4. Let’s consider Figure 8.9 where an RC filter is depicted: u(t) is
the voltage applied to the circuit, y(t) is the voltage across the capacitor and i(t)
the current through the capacitor.

The relation between the input u(t) and the output y(t) is the following:

{ u(t) = Ri(t) + y(t)
i(t) = Cy(t)

= g(t) - W =9

< RCy(t) +y(t) = u(t)

(3.71)

Comparing the differential equation which drives the dynamic of RC filter
with equation (3.60) we conclude that this system is a model for a first order
system with time constant T = RC' and static gain K = 1.

3.7.2 Frequency response

Let’s consider the following first order model where the static gain K has been
set to 1:

() 1+7s = Fljw) 1+ jwr ( )
The log magnitude of the frequency response reads:
1
20log ;o || F'(jw)|| = 201logg | —=—=—=—=—=| = —10log;, (1 + (w7)2> (3.73)
1+ (wr)?

Thus when w7 — 0 the log magnitude of F(jw) tends towards 0 whereas
when wr — oo the log magnitude of F(jw) is approximated by

—101log;q ((w7)2> that is —201log; (wT). The two asymptotes cross each other
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Lifferance bebween exact

: -.___L_,.‘-f"f’;uw and asymptots at W : -3 df

i
*

o
= H i,

; Asgympiniic Bode plot
i H wlope » -20 dBidecade

L a1

. -43 deg

Figure 3.10: Bode plot and asymptotic Bode plot of a first order model where
K=1land17=2

when the frequency w is equal to the corner frequency w, . Corner frequency
w, is defined by the following equation:

1
0= —20log g (weT) © we = — (3.74)
T
The phase of the frequency response reads:
®(w) = arg (F(jw)) = —arctan (wr) (3.75)

Thus when wr — 0 the phase of F(jw) tends towards 0 whereas when
wT — oo the phase of F(jw) is approximated by —90 deg. At the corner
frequency w, the phase is equal to — arctan (1) = —45 deg.

Figure 3.10 presents the Bode plot as well as the asymptotic Bode plot for
a first order model where K =1 and 7 = 2.

3.8 Second order model

3.8.1 Differential equation and unit step response

A second order model is described by a linear differential equation of the second
order with constant coefficients. Denoting by wg (wp > 0) the undamped natural
frequency of the model, by m (m > 0) the damping ratio and by K the static
gain, second order model reads:

1 d’>y  2mdy
——= Kul(t .
dt2 + 7 +y(t) = Ku(t) (3.76)

The term muwy is referred as the damping factor.
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We will assume in the following that:
y(0) =5(0) =0 (3.77)

The transfer function of such system reads:

2
“o

F(s)=K

3.78
52 + 2mwos + wg ( )

The unit step response of a second order model will be computed thanks to
the Laplace transform. Since the Laplace transform of the unit step function is
1/s and substituting U(s) = 1/s we obtain:

2
“o

s(s% + 2mwps + w3)

Y(s)=F(s)U(s) = K (3.79)

Denoting by A; and Ay the two roots of the characteristic polynomial s2 +
2mwps + w2 and assuming that those two values are distinct the preceding
relation reads:
wg

(s = A1)(s — A2)

Expanding Y (s) into partial fractions and using the fact that Aj Ay = w3 (we
also have A1 +Xg = —2mwg when identifying s?+2mwos-+w3 with (s—A1)(s—A2))
gives

Y(s)=F(s)U(s) = Ks (3.80)

A
Y(S) = Ks sf)\ll)(if)\z)
—Kél—i- 1 ( N )) (3.81)
S )\1—>\2 S—)\l S—)\2

Taking the inverse Laplace transform of the preceding equation yields:

yt) =K <1 + <>\2€)\1t - )\16’\2t)> vt >0 (3.82)

AL — Ao

This equation states that the output is initially zero (that is y(0)) and that
it finally moves towards K when ¢ — 0o as soon as Re (A1) < 0 and Re (A\2) < 0.
In addition as far as we have imposed y(0) = 0 we can check that the slope of
the tangent at ¢ = 0 is 0 since:

1
=K AoAreMt — A\ hge?!
o <)\1_)\2 ( 2A1€ 1/2€ )

The shape of y(t) depends on the roots of the characteristic polynomial
s% 4 2mwgs + w%:

dy
dt

=0 (3.83)
t=0

— The first case deals with the case where m > 1

— The second case deals with the case where m < 1

— The second case deals with the case where m =1
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Figure 3.11: RLC Filter

Example 3.5. Let’s consider Figure 3.11 where an RLC filter is depicted: u(t)
is the voltage applied to the circuit, y(t) is the voltage across the capacitor and
i(t) the current through the capacitor.

The relation between the input u(t) and the output y(t) is the following:

{ ) = B+ L& + y(t)

i(t) = Cy(t

= u(t) = RCy(t) + LCH(t) + y(t) (3.84)
& LOG(t) + RCOY(t) + y(t) = u(t)

Comparing the differential equation which drives the dynamic of RLC filter
with equation (3.76) we conclude that this system is a model for a second order
system with undamped natural frequency wg = \/% and damping ratio m defined

by %T? = RC that is m = g\/g The damping factor is equal to mwy = %,

3.8.2 Overdamped model

Overdamped second order model corresponds to the case where m > 1. In that
situation the roots A\; and A9 are real and distinct:

A = —mwg +wpvVm? —1 R
Ao = —mmwg —wgvVm? —1€R

The unit step response of a second order system where m = 1.2, wg = 1 and
K =1 is sketched in Figure 3.12. It is worth noticing that there is no overshoot
on the step response.

Time ¢; at which the sign of the second derivative of y(¢) changes is given
by:

m>1:{ (3.85)

. . 1 A
() = 0= AeMt = et =ty = ——In [ 22 (3.86)
A1 — A2 A1
After time t; the step response of a second order model where m > 1 is
very close to the step response of a first order model. Indeed exponential e
involves much greater values than the other exponential.
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Figure 3.12: Second order system unit step response where m = 1.2, wg = 1
and K =1

In addition the case where m > 1 is not representative of a second order
system as far as this kind of system is equivalent to two cascaded first order
Systems.

3.8.3 Underdamped model

Underdamped second order model corresponds to the case where m < 1. In
that situation the roots A\; and Ay are complex and conjugate:

m< 1o A = —muwg + jwovV1l —m2 e C
Ao = —mwgy — jwoV1l —m2 e C

As soon as A; and A9 are complex and conjugate we can write them using
the Euler’s formula :

A2 = wp (—m + V1 — mz) = wopetI®

(3.87)

n cos (@) = —m (3.88)
where sin (®) = V1 —m?
Denoting a = Re(A\;) = —wom the real part of A and

b = Im(\) = wogV1—m? the imaginary part of A\; the unit step response
(3.82) can be rewritten as follows:

y(t) —K(1+ T 117m2 (e—jéeat—i-jbt _ ejéeat—jbt)
= K (14 i (IO — im0 ) (3.89)

K 1+\/%sin(bt—<b))
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Figure 3.13: Second order system unit step response where m = 0.1, wg = 1
and K =1

Using the expression a = —wom and b = wgv' 1 — m? we finally get:

—muwot

yit) =K <1 + \;ﬁ sin (wot\/ 1—m?— ‘I>)> YVt >0 (3.90)

The unit step response of a second order system where m = 0.1, wg = 1,
and K =1 is sketched in Figure 3.13.

Unlike the case where m > 1 the step response when m < 1 is oscillating and
overshoots appear. The envelope of the sinusoid function is the an exponential
function involving the real part of the roots of the characteristic polynomial
whereas the frequency of the sinusoid is given by the positive imaginary part of
the roots of the characteristic polynomial:

{ Re (A1) = —wom gives the exponential rate of decay/growth (3.91)

Im(\) =wovV1l—m? gives the oscillation frequency

The oscillation frequency wgv'1 —m?2 is also called the damped natural
frequency.
Local maximums are obtained when the first derivative of the step response
is null. This happen at time ¢, where k is an integer, defined by:
km
ty = —— 3.92
wpV'1 —m?2 (392)
When k& = 1 the first relative overshoot D with respect to the final value is
given by:

t1) = K __mm
D = & —e V1-m?2 (393)
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Consequently relative overshoot decreases when the damping ratio m
increases but is independent of the wundamped natural frequency wo.
Furthermore the first relative overshoot will be lower then 10% as soon as
m > 0.6:

D <01=m>0.6 (3.94)

Conversely we can find the damping ratio m to obtain a specific relative
overshoot D from the above:
_ T _ l D
Dee Vit eome——0D) (3.95)
72 +1n? (D)

Finally there is no simple expression which gives the settling time of a second
order system. Indeed the settling time is not a monotonic function of m: when

m = 0.4 the settling time is t; = ZTS whereas when m = 0.7 the settling time

ists = QT?. Nevertheless when the damping ratio is lower than 0.9 the settling

time can be approximated through the following relation:

4
te ~ —— (3.96)
mwo
The preceding relation indicated that the settling time is closely linked to
the damping factor mwyq, that is to the opposite of the real part of the roots of
the characteristic polynomial: the faster the system is the higher the damping
factor muwy is.

3.8.4 Critically damped model

Critically damped second order model corresponds to the case where the
damping ratio m is equal to 1. In that case the roots A\; and A9 are real and
equal:

m=1=>XA=X=—-w)€R (3.97)

In that situation the roots of the characteristic polynomial are no more
distinct. Thus the Laplace transform of the output signal y(¢) reads:
wg

Y(5) = FOU(s) = Kl (3.98)

Expanding Y'(s) into partial fractions gives

1 1 wo

Y(s)=K ( - - ) (3.99)

s s+wy  (s+wp)?

Taking the inverse Laplace transform of the preceding equation yields:

y(t) = K (1 — (14 wot) e ") Vt >0 (3.100)

The step response present no overshoot in that case.
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3.8.5 Frequency response

Let’s consider the following second order model where the static gain K has
been set to 1:

2

F(s) = e

52+2mwos+wg

wg 1 (3.101)

= F(jw) = - =
(‘] ) w3 —w?+2jmuwow 1—(i)2+2jmi
«o wo

Denoting by r the ratio w% the log magnitude of the frequency response
reads:

r= d = 20log;, || F(jr)|| = —10log; ((1 — 7"2)2 + (2m7‘)2> (3.102)
wo

Thus when » — 0 the log magnitude of F(jw) tends towards 0 whereas
when r — oo the log magnitude of F'(jw) is approximated by —10log;, (r4)
that is —40log;, (). The two asymptotes cross each other when the frequency
w is equal to the corner frequency w. . Corner frequency w, is defined by the
following equation:

0=—-40logn(r) & r=1< w. = wy (3.103)

Furthermore it is worth noticing that second order model exhibits a resonant

peak as soon as 0 < m < --. The frequency of the resonant peak can be

V2
computed by setting to zero the first derivative of the magnitude of F(jr):

. 2
EIFG) ey, =05 & (1= @mr)?) =0
rm=VI=2m? ¥m < B~ 0707 (3.104)
20 10g10 |F(]Tm)’ = 20 lOglO (m)

Thus the resonant frequency is lower than the natural undamped frequency
wo and is given by the relation:

Wr =wWoTm =woV1—2m2<wy YVO<m<

~ 0.707 (3.105)

Sl

The phase of the frequency response reads:

®(w) = arg (F(jw)) = — arctan (12m:2> (3.106)
Thus when r — 0 the phase of F'(jw) tends towards 0 whereas when r — oo
the phase of F(jw) is approximated by —180 deg. At the corner frequency
we = wy (i.e. = 1) the phase is equal to —90 deg.
Figure 3.14 presents the Bode plot as well as the asymptotic Bode plot for
a second order model where m = 0.1, wg =1 and K = 1.
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Figure 3.14: Bode plot and asymptotic Bode plot of a second order model where
m=01,wg=1land K =1
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Chapter 4

Analysis of Linear Time
Invariant systems

4.1 Open-loop versus closed-loop

Usually a plant alone do not fit with the industrial constraints within which it
will be used. Typically a plant without controller will not be neither enough
precise nor fast. Thus a controller shall be added to the plant (equipped with
sensors and actuators) to satisfy industrial specifications. We will denote:

— F(s) the transfer function of the plant;
— C(s) the transfer function of the controller;

— wu(t) the plant input (actuator signal) and y(t) the plant output (sensor
signal) whose Laplace transform are respectively £ (y(t)) = Y (s) and
L(u(t)) = U(s);

— r(t) the reference input whose Laplace transform is L (r(t)) = R(s).
Reference input r(t) represents what we would like y(¢) to be;

— €(t) =r(t) —y(t) the tracking error as depicted in Figure 4.2. Its Laplace
transform is £ (e(t)) = €(s).

In that section we will compare open-loop control versus closed-loop control.
In open-loop control the output signal y(t) of the plant to be controlled has no
effect upon the input of the plant to be controlled as depicted in Figure 4.1. It
is not the case for closed-loop control.

Denoting by C,(s) the open-loop controller, simple algebra shows that the
input output relation G,(s) of the open-loop control depicted in Figure 4.1
reads:

Y(s) = Co(s)F(s)R(s) = Go(s) = N = Co(s)F(s) (4.1)

On the other hand closed-loop control, or feedback control loop, is a control
pattern within which the output signal y(¢) of the plant to be controlled is
returned back and compared to the reference input to form the system control
as depicted in Figure 4.2.
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Figure 4.1: Open-loop control

R(s5) (s) Ufs) Y(s)

—> Cs) —> F5 -

Figure 4.2: Closed-loop control with controller in the direct path

Denoting by C(s) the closed-loop controller, simple algebra shows that the
input output relation G(s) of the closed-loop control depicted in Figure 4.2
reads:

Y(s) _ C)F(s)
R(s) 1+ C(s)F(s)

Y(s) = C(s)F(s) (R(s) =Y (s)) = G(s) = (4.2)
It is worth noticing that other feedback loop configurations exist. For
example the closed-loop controller C'(s) may be put is the feedback path as
depicted in Figure 4.3.
The input output relation of Figure 4.3 reads:

That is:
C(s)F(s) R(s)

) =T o PG OGs)
The preceding relation indicates that Figure 4.3 is equivalent to Figure 4.2

when the reference input R(s) is replaced by ggg

(4.4)

S |r- S .JI = Ez““l“-j‘_" } ’Ir.S .JI
P’ F lrl -S‘ _-'I

A

Cis)

Figure 4.3: Closed-loop control with controller in the feedback path
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In the following we will focus on the feedback loop where the controller is
situated in the direct path as depicted in Figure 4.2.

When comparing (4.1) and (4.2) it is clear that the open-loop controller
C,(s) can be obtained from the closed-loop controller C(s) by choosing:

Co(s)F(s) = —COFE) o C0)

1L C6)F(s) = TE (o) F(s) (4:5)

Consequently it seems that open-loop control and closed-loop control are
equivalent control. Nevertheless we shall have in mind that the plant model
F(s) often comes from linearization and simplification, and thus is uncertain.
Thus we will study the sensitivity of both open-loop scheme and closed-loop
scheme with respect to the plant model uncertainty thanks to the sensitivity
function S defined by:

g _ H/H _ o oi
“ da/a  H da

(4.6)

Basically S relates the relative change of quantity H with respects to the
relative change of quantity a.

Specializing the sensitivity function definition to the case where H is the
open-loop transfer function G,(s) and « the uncertain transfer function F(s) of
the plant we get:

F oG, F 0 F

(CoF) = & Co=1 (4.7)

Sgo - — _—
G, OF  C,FOF
The preceding relation indicates that any change in the plant transfer
function F(s) is totally transferred into the open-loop control scheme whatever
controller Cp(s) is.
On the other hand we will now specialize the sensitivity function definition
to the case where H is the closed-loop transfer function G(s) and o the uncertain
transfer function F'(s) of the plant:

SG_F@G_ F 8< CF )_1+CF8< CF ) (4.8)
F= A~A3am— OF an = o\ T .
G OF 1+gF8F 14+ CF C OF \1+4+CF
Let’s compute the following expression:
8< CF >_C(1+CF)—C’FC_ C (4.9)
OF \1+CF (1+CF)? (1+CF)? '
We finally get:
[ (4.10)
Fo1+CF '
Thus the sensitivity function S(s) of the closed-loop system reads:
1
St = 5(s) (4.11)

T 1+ C(s)F(s)

The preceding relation clearly indicates that as soon as the product
C(s)F(s) is high within the frequency range of the uncertain plant F'(s) then
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the closed-loop control scheme allows a great reduction of the sensitivity of the
controlled system with respects to uncertainties. Same result can be achieved
when comparing the sensitivity of open-loop control scheme and closed-loop
control scheme with respect to external disturbances.

As a consequence the central idea to control a plant is the feedback loop
where the output signal y(t) of the plant to be controlled is returned back and
compared to the reference input to form the system control as depicted in Figure
4.2.

4.2 Stability

A causal signal y(t) is bounded if there is a finite value B > 0 such that the
signal magnitude never exceeds B, that is ||y(¢)|| < B ¥t > 0. A system is said
to be Bounded-Input Bounded-Output (BIBO) stable if the output is bounded
for every bounded input.

Assuming that 0 is not a pole of the transfer function H(s) and that all of
the poles of H(s) are unique the transfer function H(s) reads:
Cbgt+bist o bpo1sm — 14 bys™ K(s421) -0 (5 + 2m)

- (4.12)

H
(5) ap+ais+ -+ a1 4 5" (s+ A1) (s+ M)

We recall that z; are the zeros of the transfer function H(s) whereas \; are
the poles of H(s): the magnitude of transfer function H(s) will go to zero at
the zeros and to infinity at the poles.

Let’s compute the unit step response of a linear time invariant system. We
recall that the Laplace transform of the unit step function is 1/s. Thus the
Laplace transform of the unit step response reads:

H(s) :lK(s+zl)--~(s+zm)

Y(S): 3 3 (5+)\1)(5+)\n)

(4.13)

Under the condition that m < n the Laplace transform Y (s) of the unit step
response y(t) can be decomposed into partial fraction expansion where each
coefficient «;, ¢ # 0 is the residue around the pole \; of H(s):

Qo o O

s +3+)\1+'”+s+/\n

(4.14)

The inverse Laplace transform of 2 is apI'(¢) (we recall that I'(¢) denotes the

unit step function) and the inverse Laplace transform of - is ae Nt YE > 0.

As a consequence the unit step response y(t) is composed of:

— one constant and bounded term, apl'(¢),

— and of a sum of terms of the form a;e™**. Those terms decay within an
exponential envelope as soon as each pole \; has a negative real part.

If one of the pole \; of H(s) is zero then the term a;e™* never decays or
grows in amplitude; this is called marginal stability. If at least one pole A\; has

a positive real part then at least one element of the response grows without
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bound and the system is said to be unstable. It is worth noticing that the same
conclusion appears when the multiplicity of a pole is greater than one; indeed

we have seen that the inverse Laplace transform of —— is Ll)!e_)‘it vVt > 0:

as a consequence this term tends towards 0 when (§+i;)oo aénséon as the real
part of the pole )\; is negative.

As a consequence a linear time invariant system is stable if and only if all
the poles of its transfer function, that are also the roots of the characteristic
polynomial, occur in the left half of the complex plane. Marginal stability occurs
when some poles have a null real part whereas instability occurs when at least
one pole occurs in the right half of the complex plane.

Notice that the equivalent condition for BIBO stability of linear time
invariant (LTI) system is that its impulse response h(t) be absolutely
integrable:

oo
/ Ih(8)] dt < oo (4.15)
0
For linear time invariant (LTI) systems Bounded-Input Bounded-Output
(BIBO) stability is also equivalent to ezponential stability, meaning that after a
certain amount of time the impulse response of the system is such that its norm
is lower than ae™" for finite o and v > 0.

4.3 Routh-Hurwitz criterion

A simple means of determining the stability of a system can be obtained by
the Routh stability criterion; this criterion indicates whether any of the roots
of a polynomial have positive real parts, without actually solving for the roots.
Consider the following polynomial equation:

1

+--+ais+ay=0 (4.16)

ans" + ap—_18""

Necessary but not sufficient conditions so that no roots of Equation (4.49)
have positive real parts are that:

— All the coefficients must exist
— All the coefficients of the equation must have the same sign

The first stage to apply the Routh criterion is to build the Routh array, which
contains n + 1 rows; the two first rows contain coefficients a; of the polynomial
arranged alternatively as indicated in (4.17).

S Ap = Tn,1 Gp—2 =Tn?2 Gp—4 = Tn3
T — = —
s" Ap—1 =Tn-11 | On-3 =Tp-12 | Gn-5 = Tph—13
—2
s" Tn-2,1 Trn—2.2 (4.17)
! 0
S 71,1 71,2
80 70,1 0 0
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Coefficients r; ; are computed as follows:

Ti+1,17i42,541 — Ti4+2,175+41,5+1
rij = — (4.18)
Ti+1,1
For example:
r — Tn—1,1T"Tn,2—Tn,1T"Tn—1,2 — On—-10n-270andn-3
TL—2,1 Tn—1,1 an—1 (4 19)
r _  ™—11"™n,3—Tn,1"n—-1,3 __ An—1An—4—0anAan—5 :
n—2,2 — Tn—1,1 - an—1

Then the Routh array is continued horizontally and vertical until the last row
is completed.

The last step consists in investigating the signs of the numbers in the first
column of the Routh array. Routh stability criterion states:

— if all the number of the first column have the same sign then all the roots
of the polynomial have negative real parts; when the polynomial is the
denominator of the transfer function the system is therefore stable;

— if the numbers in the first column change sign then the number of sign
changes indicates the number of roots of the polynomial having positive
real parts; when the polynomial is the denominator of the transfer function
the system is therefore unstable;

An Hurwitz polynomial, named after Adolf Hurwitz (1859 - 1919, German
mathematician), is a polynomial with positive coefficients and for which the real
part of every root is zero or negative.

Example 4.1. Consider the following polynomial:
D(s) = s® + 14s° + 415 — 56 (4.20)

All the coefficients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
satisfied. The Routh array reads:

s° 1 41

52 14 —56

sl 14><41—111><(—56) — 45 (4.21)
sY —56

There is one change in sign in the first column; consequently D(s) has one
root in the right half (complex) plane (RHP). "

Example 4.2. Consider the following polynomsial:
D(s) = s* 4+ 553 + 5% +10s + 1 (4.22)

All the coefficients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
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satisfied. The Routh array reads:

s 1]1]1

3| 5 |10

2l —-1]1 (4.23)
st 15

50 1

There are two changes in sign in the first column; consequently D(s) has two
roots in the right half (complex) plane (RHP). "

It is worth noticing that:

— Applying the Routh criterion on the polynomial D(a + s) enables to
compute the number of roots of D(s) with a real part greater than a
(indeed s =a+s—aand Re(s) <0< Re(a+s)<a).

Example 4.3. Let’s check how many roots with real part greater than
a = —2 has the following polynomial:

D(s)=s+1 (4.24)

First we form the polynomial D(a+s) =D(s—2)=(s—2)+1=5s—-1
and then we apply the Routh criterion on the following Routh array:

st 1
SOl =1

(4.25)

There is one change in sign in the first column; consequently D(s) has one
root with a real part greater than a = —2 (it is obviously —1)

Example 4.4. Let’s check how many roots with real part greater than
a = 2 has the following polynomial:

D(s)=(s—1)(s—4) (4.26)

First we form the polynomial D(a+s) = D(s+2) = (s+2—1)(s+2—4) =

52 — s — 2 and then we apply the Routh criterion on the following Routh

array:
2
S 1 | -2
st —1 (4.27)
O =2

There is one change in sign in the first column; consequently D(s) has one
root with a real part greater than a = 2 (it is obviously 4)

— To multiply all the numbers in a row by a strictly positive number do not
change the conclusion of the Routh criterion.
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— As far as the sign of the real part of a complex number is the same than the
sign of the real part of its inverse, it is equivalent to test either polynomial
D(s) or polynomial D(1/s) where s has been replaced by 1/s.

Obviously if 0 appears in the first position of a row, then the elements in the
following row will be infinite and the Routh criterion breaks down. Similarly
the Routh criterion breaks down when all the numbers in a row are 0.

If a first column term in any row is 0, but the remaining terms are not 0 or
there is no remaining term, then the 0 term is replaced by a very small number
€ with the same sign than the coefficient above the 0 and the rest of the array
is evaluated.

— If the sign of the coefficient above the 0 — € is the same that below it, it
indicates that there are a pair of imaginary roots.

— If however the sign of the coefficient above the 0 — € is opposite that
below it, it indicates that there is one sign change.

Alternatively, when a zero occurs in the first column, it is possible to create
the Routh table using the polynomial D(1/s) that has the reciprocal roots of
the original polynomial D(s). Tsu-Shuan Chang and Chi-Tsong Chen' suggest
to find the greatest common divisor d(s) of Di(s) and Da(s), where D;(s) and
Dy(s) are the odd and the even part of D(s), and then to apply the Routh
criterion to D(s)/d(s).

Example 4.5. Consider the following polynomial:

D(s) =% —3s+2 (4.28)
The Routh array reads:
s 1 -3
s 0— e 2
3t (4.29)
sl 3; 2 _ _3_ e%
Y 2

As soon as €™ — 0, there is one sign change between €t (which has the same
sign than the coefficient above, that is 1, which is positive) and —3 — 6% (which
is negative as soon as €™ — 0) and another sign change between —3 — 6% (which
is negative as soon as €t — 0) and 2. Consequently, we conclude that D(s) has
two roots with positive real part. Actually polynomial D(s) reads:

D(s) = (s —1)*(s 4+ 2) (4.30)
Routh table coming from D(1/s) reads as follows:

1 —3s%2+42s3

D(1/s) = (1/s)* = 3(1/s) +2 = 33

(4.31)

!Tsu-Shuan Chang and Chi-Tsong Chen, On the Routh-Hurwitz criterion, IEEE
Transactions on Automatic Control, vol. 19, no. 3, pp. 250-251, June 1974, doi:
10.1109/TAC.1974.1100537.
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The Routh array of the numerator of D(1/s), that is polynomial 1 — 3s% + 253,
reads:

s° 2

2 -3 |1

g 22 (4.32)
-3 = 3

s0 1

We get the same conclusion than previously: as far as there are two changes
in sign in the first column, we conclude that D(1/s), and also D(s) has two
roots with a real part greater than zero.

Example 4.6. Consider the following polynomial:

D(s) = 8° +2s* + 5 +2 (4.33)

All the coefficients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complez) plane (LHP) are
satisfied. The Routh array reads:

4.34
0— et (4.34)

2

53
s° 2
al
iy

As far as the sign of the coefficient above € is the same that below it, it
indicates that there are a pair of imaginary roots. Actually D(s) has two roots
at +7.

Routh table coming from D(1/s) reads as follows:

1425+ 5% +24°

D(1/s) = (1/5)> +2(1/s)*> 4+ (1/s) + 2 3

(4.35)

The Routh array of the numerator of D(1/s), that is polynomial 1425+ s%+2s3,
reads:

o (4.36)

1

53
2 1 1
51
SO

We get the same conclusion than previously: as far as the sign of the
coefficient above €T is the same that below it, it indicates that there are a pair
of imaginary roots. Actually D(s) has two roots at £j.

"

If all the coefficients in any derived row are zeros it indicates that polynomial
D(s) has roots of equal magnitude lying radially opposite in the s-plane, that
is two real roots with equal magnitude and opposite sign and/or two conjugate
imaginary roots. In such a case the evaluation of the rest of the array can be
continued by forming an auxiliary polynomial Q(s) with the coefficients of the
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last non-zero’s row and by replacing the zero’s row by the coefficients of the
derivative of this polynomial. It is worth noticing that in this situation the
roots of the auxiliary polynomial @Q(s) are also roots of the polynomial D(s)
under consideration.

Example 4.7. The previous ezample where D(s) = 83 + 252 + s+ 2 can be
tackled with this rule. Indeed all the coefficients (in fact just one) in the row s'
are zeros:

sS1]1
222 (4.37)
st]o

Then we form an auxiliary polynomial with the coefficients of the last non-
zero row:

Q(s) = 25> +2 (4.38)
It can be checked that the roots of Q(s), which are (+j,—j), are also roots

of D(s).
The derivative of Q(s) reads:

d
£Q(s) =4s (4.39)

The Routh array can be continued by replacing the zero’s row by the
coefficients of the derivative of Q(s), here 4:

s2 1 1
s* || 2 2 (4.40)
’ st H 4 ‘ +— coefficients of d%Q(s) ‘

The complete Routh array finally reads:

sS1]1
2
S 2
4 .41
T (4.41)
Y2

As far as there is no sign change in the coefficients of the first column we
conclude that D(s) has no root with strictly positive real part. Actually the third
root of D(s) is —2, which obviously has a negative real part and explains why
there is no sign change in the Routh array.

Example 4.8. Consider the following polynomial:
D(s) = s° 4 25" + 2453 + 485% + 255 + 50 (4.42)

All the coefficients of D(s) exist and have the same sign; so the necessary
condition for D(s) to have all its roots in the let half (complex) plane (LHP) are
satisfied. The first rows of the Routh array reads:

so[1]24]25
st ]l 21]48]50 (4.43)
s20]0
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All the coefficients of the s®’row are zeros. Then we form an auziliary
polynomial with the coefficients of the last non-zero row:

Q(s) = 251 +48s% + 50 (4.44)

It can be checked that the roots of Q(s), which are denoted (A1, A2, A3, A1),

are also roots of D(s):

9 _ —484/482—4x2x50 _ 1. [4a8—/1904
AT g = =S = A2 =1 1

’ (4.45)
2, = 8 VASTDXNE0 oy \g = [ 4841000
The derwative of Q(s) reads:
d 3
—Q(s) = 85" + 96 (4.46)

The Routh array can be continued by replacing the zero’s row by the
coefficients of the derivative of Q(s), here 8 and 96:

s> [ 1]24 25
stll2]48 50 (4.47)
’ s3 H 8 ‘ 96 ‘ <+ coefficients of d%Q(s) ‘

The complete Routh array finally reads:

s° 1 24 | 25
st 2 48 | 50
s3 8 96

4.48
52 24 | 50 (448)
st || 238/3
sY 50

As far as there is no sign change in the coefficients of the first column we
conclude that D(s) has no root with strictly positive real part. Actually the fifth
root of D(s) is —2, which obviously has a negative real part and explains why
there is no sign change in the Routh array.

]
4.4 Roots in a specified trapezoidal region
Let D(s) be the following real polynomial:
D(s) = aps" + ap_15""t + -+ a1s + ag (4.49)

Let 5 be the complex conjugate of s and define the following mapping
polynomials:

{ Dy(w) := D(8)D(8)| 4=y a0 = D(we??) D(we™7?) (4.50)

Dg, (w) := D(s)] = D(a1 + w)

s=a1+w
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Im(s)
I(a,,0) I
. >~
-6

Figure 4.4: Trapezoidal region T'(aq,0)

Following Kuo & al.? all the roots of D(s) are situated in the trapezoidal
region T'(a, 6) shown in Figure 4.4 if and only all the roots Dy(w) and D, (w)
are situated in the left half of the w-plane. This can be tested thanks to the
Routh-Hurwitz criterion.

This result can be extended to the case where we add the constraint that all
the roots of D(s) shall have a real part greater than as. This will be the case
if and only all the roots of Dg(w), Dq,(w) and D, (w) are situated in the left
half of the w-plane, where:

Dy (w) = D(8)|4—py—1w = D2 — w) (4.51)
4.5 Hermite’s criterion
Let D(s) be the following real polynomial:
D(s) = aps" + ap_15"" + -+ a1s + ag (4.52)
Let polynomials u(s) and v(s) be defined as follows where j2 = —1:
. . u(s) = Re(D(j s))
D(js):=u(s)+jv(s) & . 4.53
)= )+ o) & { )~ e D0 (4.53)

Hermite’s criterion® states that real polynomial D(s) has all its roots with
negative real part if and only if the n x n Bezoutian matrix B := [b;;] is positive

2, C. Kuo and Y. J. Huang, Pole placement in a specified trapezoidal region for uncertain
linear control systems, 7th Asian Control Conference, 2009, pp. 1286-1289.

3 Akin Delibasi and Didier Henrion, Hermite matrix in Lagrange basis for scaling static
output feedback polynomial matrix inequalities, 2010 International Journal of Control, Vol.
83, pp. 2494 - 2505
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definite. The entries [b;;] of symmetric matrix B are defined by:

1
n—1 n—1 i, n—1 y
ZZ*O Z]*O bijl' Y = [ 1 =z T ]B :
i1 (4.54)
v(z) u(x) ‘
_ ’U(y) u(y) _ v(=) u(y)—v(y) u(z)
T—yY T—yY
By treating x—iy as the formal power series > ;- Ry we can write?
the quotient as a polynomial of degree n — 1 in a:
1 oo
= Zgj_kyk_l = ;C_l —I—yl‘—Q +y2x_3 + -
Y
n—1 n
= U(CL’) u(y) — U(y) u(x) — Z Cj(y) yjfifl 7t (455)
=y i=0 \j=i+1

Alternatively, write u(s) and v(s) as polynomials with the same degree n:

{ v(s)=votuvis+---+u,s"

u(s) =up+ur s+ -+ ups"” (4.56)

Vi
n X n symmetric matrix B can be computed as the product of a lower triangular
matrix [L;] of size n x 2n and an upper triangular matrix [R;] of size n x 2n:

Let L; = [ v; U ] and R; = . Then it can be shown? that the

Li = [ v, U } [ b0,0 T bO,n—l
R; = [ e ] =B = o
v | On—1,0 " On—1n-1
[ Lo 0 Ry R, (4.57)
| L1 Ly R, 0

Finally, we remind that a real n x n symmetric matrix B = B” is positive
definite if and only if we have either:

— 2Bz > 0 for all x #£ 0;
— All eigenvalues of B are strictly positive;

— All of the leading principal minors are strictly positive (the leading
principal minor of order k is the minor of order k obtained by deleting
the last n — k rows and columns).

‘Eng-Wee Chionh, Ming Zhang, Ronald N. Goldman, Fast Computation of the Bezout
and Dixon Resultant Matrices, Journal of Symbolic Computation, Volume 33, Issue 1, 2002,
Pages 13-29, ISSN 0747-7171, https://doi.org/10.1006/jsco.2001.0462.
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Example 4.9. We consider the following polynomial where K is a design
parameter:

D(s) = 248> +265° + 95 — 1 + K (4.58)
Then we have:
u(s) = Re(D(js)) = 265> + K — 1 (4.59)
v(s) = Im (D(js)) = —245 4+ 9s '
To get coefficients [bij] of the 3 x 3 Bezoutian matriz B we can write:
1
M@uv@uE) [ #1]B Y
z—y :
31 (4.60)
boo bo,1 bo2 1
=[1 2 2 || bio big b2 y
bapo ba1 bop y?
where:
boo bo1 bop [ Lo 0 O Ry Ry R3
bio bi1 b2 =| L1 Lo O Ry R3 O
bao ba1 bop L L2 L1 Lo Ry 0 O

0 26 0 ]
9 0 —24 (4.61)
26 0 0
0 —24 0
S0 0 0
24 0 0 |
9K — 9 0 24 — 24K
= 0 258 — 24K 0
24 — 24K 0 624

We conclude that D(s) has all its roots with negative real part if and only if
symmetric matrizc B = BT is positive definite, that is if and only if all of the
leading principal minors of B are strictly positive.

Let’s compute the principal minors of B:

mi = 9K —9
9K — 9 0
mg—det<[ 0 258_24KD_—54(4K—43)(K—1) (4.62)
= det (B) = 13824 K3 — 311040 K2 + 1894752 K — 1597536
Thus:

mi; >0 43
ma >0 :>1<K<Z (4.63)
mg >0
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Figure 4.5: Unity feedback loop

4.6 Nyquist stability criterion

Consider Figure 4.5 where the loop transfer function F(s) is assumed to be
strictly proper (i.e. lims_,o F'(s) = 0).
The transfer function of the closed-loop system is:

Y (s) 1

@) =R T T F)

(4.64)

The Nyquist stability criterion determines the stability of a closed-loop from
the open-loop poles and its open-loop frequency response. More specifically the
Nyquist stability criterion determines the stability of G(s) from poles of F(s)
and the Nyquist plot of F(jw).

Denoting by Re the real part and by Im the imaginary part, the Nyquist
plot of F(jw) is the locus of vector (ImF (jw), ReF (jw)) when frequency w
varies from —oo to +o0o. As far as F(s) is a fraction where the numerator and
the denominator are real coefficients polynomial the Nyquist plot of F(jw) is
symmetrical with respect to the real axis. In addition as soon as F'(s) is assumed
to be a strictly proper transfer function the Nyquist plot of F'(jw) moves toward
zero as w tends to infinity:

lim F(s)=0= lim F(jw)=0 (4.65)

§—00 w—rFoco

In examining the stability of the unity feedback loop of Figure 4.5 the
Nyquist stability criterion states that:

Z =P+ N (4.66)
Where:

— Z is the number of zeros of 1 + F'(s) in the right half s-plane, that is the
number of unstable poles of the closed-loop system whose transfer function

is G(s)
— P is number of poles of F(s) in the right half s-plane

— N is the number of clockwise encirclements of the —1 4+ jO point by the
Nyquist plot of F' (jw); point —1 + 50 is called the critical point
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The Nyquist stability criterion states that the number of unstable closed-
loop poles is equal to the number of unstable open-loop poles plus the number
of encirclements of the critical point —1 + jO by the Nyquist plot of F (jw).
The encirclement is counted positive in the clockwise direction and negative
otherwise.

In others words:

— If there are one or more counterclockwise encirclements of the —1 + 50
critical point by the Nyquist plot then the closed-loop system is stable if
the number of counterclockwise encirclements is the same as the number
of poles of F(s) in the right half s-plane; otherwise the closed-loop system
is unstable.

— If there are one or more clockwise encirclements of the —1 + 5O critical
point this implies that the closed-loop system is unstable.

In current situations F'(s) has no pole in the right half s-plane; consequently
if the Nyquist plot of F'(jw) has no encirclement of the —1+ 50 critical point this
implies that the closed-loop system is stable; otherwise the closed-loop system
is unstable.

An easy way to determine the number of encirclements of the —1 + 50
critical point is to draw a line out from the critical point, in any directions.
Then by counting the number of times that the Nyquist plot crosses the line in
the clockwise direction (i.e. left to right) and by subtracting the number of
times it crosses in the counterclockwise direction then the number of clockwise
encirclements of the —1 + jO critical point is obtained. A negative number
indicates counterclockwise encirclements.

It is worth noticing that when a positive gain K (K > 0) is added in the loop,
either in the direct path as shown in Figure 4.6 or in the feedback path as shown
in Figure 4.7, the denominator of the closed-loop transfer function becomes
1+ KF(s). As a consequence the critical point —1+ j0 changes to be —% +70.
The Nyquist stability criterion can then still be applied in both cases by assessing
the encirclements of the —% + j0 critical point where K > 0. Consequently
the Nyquist stability criterion do not change when positive gain K is added
either in the direct path or in the feedback path because the denominator of the
closed-loop transfer function G(s) = % remains the same.

More generally we have seen that the denominator of the closed-loop transfer
function of feedback loop systems in Figures 4.3 and 4.2 reads 1 + C(s)F(s).
Thus comparing this denominator with the denominator of G(s) obtained with
the feedback loop in Figure 4.5 we conclude that the Nyquist stability criterion
still applies on closed-loop transfer function of feedback loop systems in Figures
4.3 and 4.2 as soon as F(s) is replaced by C(s)F(s). In is worth noticing that
C(s)F(s) represents the loop transfer function, which is sometimes denoted
L(s).

Example 4.10. Let’s consider the following transfer function:

1
(2s4+1)(3s+1)(4s+ 1)

F(s) = (4.67)
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Ris) Yis)

Figure 4.6: Feedback loop with constant gain K in the direct path

Figure 4.7: Feedback loop with constant gain K in the feedback path

0.6 1 = 5
0.4 + \\
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Figure 4.8: Nyquist plot of F(s) = (25+1)(3511)(4S+1)
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[

Figure 4.9: Zoom of the Nyquist plot of F(jw)

The Nyquist plot of F(jw) is shown in Figure 4.8. It is clear that the Nyquist
plot of F(jw) is symmetrical with respect to the real azis and limy,_, 1 F(jw) =
0. We can also check that F(0) = 1.

Figure 4.9 is a zoom of Figure 4.8 near the loop of the Nyquist plot.

First we will assume an unit feedback gain (i.e. K = 1) in the closed-loop as
in Figure 4.5. Then applying the Nyquist stability criterion on the Nyquist plot
we conclude that the closed-loop is stable because the number P of poles of F(s)
in the right half s-plane is zero and the number N of clockwise encirclements of
the —1 + j0 critical point by the Nyquist plot is also zero. As a consequence the
number Z of zeros of 1 + F(s) in the right half s-plane is N + P = 0, meaning
that there is no unstable pole in the closed-loop system transfer function G(s).

Now we will assume that a constant gain K is inserted in the feedback loop
as depicted either in Figure 4.6 or Figure 4.7. Then the critical point becomes
f% + j0. As shown in Figure 4.9 the number of encirclements of the critical
point remains to be zero as soon as the positive feedback loop gain K, (K > 0)
satisfies:

1
—E < 0IBe K< ~ 8.75 (4.68)

0.1143

Consequently the closed-loop is stable as soon as 0 < K < 8.75. As soon
as K > 8.75 the number of clockwise encirclements of the critical point is 2,
meaning that the closed-loop system is unstable because it has 2 poles in the
right half s-plane (RHP).

In order to check this conclusion we can use the Routh criterion. The
denominator D(s) of the closed-loop transfer function with constant gain K
reads:

_ 1 _ 1
F(s) = (25+1)(35+1)(ds+1) ~ 24s3+2652+9s+1 (4.69)
= D(s) =245 + 265>+ 9s + 1+ K
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The Routh array of D(s) is the following:

53 24 9
2
] 26 1+ K
i 26x9—24x (1+K) _ 210—24K (4.70)
26 — 26
sV 1+ K

Consequently there is no sign change in the first column as soon as :

{210—24K>0<:>K<2‘2140z8.75

1+ K>0 K> -1 (4.71)

When the feedback gain K becomes greater than % ~ 8.75 then two sign

changes appear in the first column of the Routh array and the closed-loop system
1s then unstable with 2 unstable poles. This is the same conclusion than the one
obtained thanks to the Nyquist stability criterion.

4.7 Phase and gain margins

In that section we refer to Figure 4.5 and we will assume that the loop transfer
function F'(s) is stable as well as its inverse 1/F(s), meaning that F'(s) has both
all its poles and zeros in the left half s-plane. In other words transfer function
F(s) is minimum phase.

In general the closer the Nyquist plot of the loop transfer function F(s)
comes to encircling the —1+ 50 critical point, the more oscillatory is the closed-
loop system response. Phase and gain margins measures how close is the closed-
loop system from the verge of instability. For stable loop transfer function the
Nyquist stability criterion states that the closed-loop system is stable as soon
as there is no encirclement of the critical point. This can be readily visualized
on the Bode plot.

The gain crossover frequency is the frequency w. at which the magnitude
|F (jw)]| of the loop transfer function F'(s) is unity.

At the gain crossover frequency w. the phase angle ®(w.) = arg (F(jw,))
of the loop transfer function reads as follows where Mg represents the phase
margin of the closed-loop system:

|F (jwe)|| =1 = Mg = 180° + arg (F'(jw.)) (modulo 360°)

& O(w,) = arg (F(jw.)) = —180° + Mg (modulo 360°) (4.72)

For closed-loop system to be stable the phase margin Mg must be positive;
it indicates the amount of phase lag which is required to bring the closed-loop
system unstable.

The phase crossover frequency is the frequency w,; at which the phase
angle of the loop transfer function F'(s) is equal to —180°. At the phase
crossover frequency w, the magnitude ||F (jw)|| of the loop transfer function is
the reciprocal of the gain margin Gm:

1

arg (F(jws)) = —180° (modulo 360°) = Gm = TEGanl

(4.73)
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Or in terms of decibels:
GmdB = 20log,, (Gm) = —201logq || F (jwx)|| (4.74)

For a closed-loop system to be stable the gain margin in decibels GmdB
must be positive; it indicates how much the gain must be increased before the
closed-loop system becomes unstable.

It is worth noticing that the gain margin as well as the phase crossover
frequency w, at which the gain margin is measured can be obtained through
the Routh array. To obtain those values first compute the denominator of the
closed-loop transfer function pi(fépi% where a fictitious gain K., is used. Then
build the corresponding Routh array and compute the value of K. such that
the coefficient in the row s' is equal to zero. The gain margin is then obtained
as Gm = K,.. The phase crossover frequency w;, is obtained by setting to zero
the polynomial extracted from the row s? and by replacing s by jwy.

Similarly, the phase margin as well as the gain crossover frequency w. at
which the phase margin is measured can be obtained through the Routh
array’.  To obtain those values first compute the denominator of the

closed-loop transfer function #80)(3) where a fictitious gain K., is used and
where G(s) = 3 <F (s) + ﬁ) Then build the corresponding Routh array and

compute the value of K, such that the coefficient in the row s' is equal to

zero. Among all the possible values of K. such that |K.| < 1 choose the
closest value to —1. The phase margin is then obtained as My = arccos(K,).
The gain crossover frequency w,. is obtained by setting to zero the polynomial
extracted from the row s? and by replacing s by jwe.

Figure 4.10 represents the Bode plot of an open-loop stable transfer function
F(s) as well as the phase and gain margins of both stable and unstable closed-
loop systems.

It is noted that the gain margin of a first or second order system is infinite
since the phase for such systems do not cross the —180° phase axis.

For system having two or more gain or phase crossover frequencies the phase
or gain margin is measured at the closest point of the critical point which is
usually the point at the highest crossover frequency.

Example 4.11. Figure /.11 is the Bode plot of the transfer function F(s) which
has been studied in the previous example.

Using the function g margin provided by Scilab, it can be stated that the
phase crossover frequency is the frequency wr, = 2w x 0.0974621 rad/sec (on
the very right in Figure 4.11) whereas the gain margin in decibels is GmdB =
18.84 dB. The mazimum gain K = 8.75 which let stable the closed-loop system
is retrieved through the following computation:

18.84
20log; (K)=18.84 = K =102 =8.75 (4.75)

*Yung C.F., Tsai Y.W., Shyu K.K., Applications of Routh-Hurwitz criterion to evaluation
of phase margin and phase lead compensation, Electronics Letters, Volume: 27, Issue: 11, 23
May 1991
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Figure 4.10: Phase and gain margins of stable and unstable systems
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Figure 4.11: Bode plot of F(s) = (25+1)(351+1)(4s+1)
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To obtain those values thanks to the Routh array we will first first compute
the denominator of the closed-loop system where a gain K. is inserted:
K F(s) _ K,
1+ K. F(s) 24s3+26s2+9s+ 1+ K,

(4.76)

The Routh array has been obtained in (4.70). The value of K. such that the
coefficient in the row s' is equal to zero is obtained by solving:
210 — 24K, 210
26 MY (4.77)
The gain margin is then obtained as Gm = K. = 8.75.
The phase crossover frequency wn ts obtained by setting to zero the
polynomial extracted from the row s* and by replacing s by jwr. We get:

2652 + (1 + KCT){s:M = 26wl +1+ K =0 w78)
= Wy = %: % rad/sec '
]

4.8 Root locus

The root locus technique® has been developed in 1948 by Walter R. Evans (1920-
1999). This is a graphical method for sketching in the s-plane the locus of roots
of the following polynomial when parameter K varies to 0 to infinity:

D(s) + KN(s) (4.79)

Usually polynomial D(s)+ K N(s) represents the denominator of the closed-
loop transfer function. The root locus technique enables to sketch in the s-plane
the poles of the closed-loop transfer function shown in Figure 4.6 or in Figure
4.7. Indeed in both configurations the denominator of the closed-loop transfer
function is the same.

It is worth noticing that the roots of D(s) + KN(s) are also the roots of

N(s).
1+ K3

D(s)+ KN(s) =0 1+ Kgég —0e L(s) = KF(s) =1  (4.80)

Without loss of generality let’s define transfer function F(s) as follows:

m<n
N (s =z
F(S) — (3) _ aHJn_1 ( J) (4.81)
D(s) Ii=1(s — ps)
Transfer function L(s) = K F(s) is called the loop transfer function. In the
SISO case the numerator of the loop transfer function L(s) is scalar as well as
its denominator.

SWalter R. Evans , Graphical Analysis of Control Systems, Transactions of the American
Institute of Electrical Engineers, vol. 67, pp. 547 - 551, 1948
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Equation L(s) = —1 can be equivalently split into two equations:

[L(s)| =1
{ arg (L(s)) = (2k+ 1) 7, k= 0,41, (4.82)
The magnitude condition can always be satisfied by a suitable choice of K.
On the other hand the phase condition does not depend on the value of K but
only on the sign of K. Thus we have to find all the points in the s-plane that
satisfy the phase condition. When scalar gain K varies from zero to infinity (i.e.
K is positive), the root locus technique is based on the following rules:

— The root locus is symmetrical with respect to the horizontal real axis
(because roots are either real or complex conjugate);

— The number of branches is equal to the number of poles of the loop transfer
function. Thus the root locus has n branches;

— The root locus starts at the n poles of the loop transfer function;

— The root locus ends at the zeros of the loop transfer function. Thus m
branches of the root locus end on the m zeros of F(s) and there are (n—m)
asymptotic branches;

— Assuming that coefficient a in F(s) is positive, a point s* on the real
axis belongs to the root locus as soon as there is an odd number of poles
and zeros on its right. Conversely assuming that coefficient a in F(s) is
negative, a point s* on the real axis belongs to the root locus as soon as
there is an even number of poles and zeros on its right. Be careful to take
into account the multiplicity of poles and zeros in the counting process;

— The (n — m) asymptotic branches of the root locus which diverge to oo
are asymptotes.

— The angle  of each asymptote with the real axis is defined by:

9
5= THas@ kT o (4.83)

n—m

— Denoting by p; the n poles of the loop transfer function (that are the
roots of D(s)) and by z; the m zeros of the loop transfer function
(that are the roots of N(s)), the asymptotes intersect the real axis
at a point (called pivot or centroid) given by:

n m<n
1 Di — = s
o — > i1 P 2371 J (4.84)

n—m

— The breakaway / break-in points are located on the real axis and always
have a vertical tangent. They are located at the roots s, of the following
equation as soon as there is an odd (if coefficient a in F'(s) is positive) or
even (if coefficient a in F'(s) is negative) number of poles and zeros on its
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right (Be careful to take into account the multiplicity of poles and zeros
in the counting process):

d (1 _ d (D(s) —
ds (F(s))szsb ds (N(s)>szsb 0 (4.85)
< D'(sp)N(sp) — D(sp)N'(sp) =0

Indeed from the fact that breakaway / break-in points have always a
vertical tangent we can write:

N(s) _ o 4K _ D'(s)N(s) - D(s)N'(s) _

1+KF(3):1+KD(S) e NS
(4.86)

From this relation we get (4.85).

On the imaginary axis we have s = jw. Thus the value of the (positive)
critical gain beyond which the closed-loop system becomes unstable is the
value of K (K > 0) such that the root locus of F(s) crosses the imaginary
axis. In that situation at least one pole of the closed-loop system is purely
imaginary. As far as D(s) + K N(s) represents the denominator of the
closed-loop transfer function the critical gain can be obtained by replacing
s by jw and by solving:

1+ K F(jw) =0« D(jw) + KN(jw) =0 (4.87)

The previous equation is then split into its real and imaginary part and
provides a system of 2 equations which lead to the value of the critical
gain and the oscillation frequency at the critical gain. It is worth noticing
that the Routh criterion can be used for the same purpose.

Note that if the degree of polynomial D(s) is greater than or equal to
the degree of polynomial N(s) plus 2, meaning that the relative degree
of transfer function F(s) is greater than or equal to 2 (n —m > 2), then
the sum of the poles of the feedback system is independent of the value of
parameter K, and therefore is equal to the sum of the poles of the open
loop system when K = 0. This property is known as the centroid theorem.
To get this result, we have simply to expand D(s) + K N(s) taking into
account n —m > 2:

= D(s)+ KN(s) =[TLi(s—p)+Kal[[5" *(s—z) @59
=s"—(r oty s

Assuming that n — m > 2, the coefficient of the term s”~! in polynomial

D(s) + KN(s) does not depend on parameter K. Because this coefficient

is obtained has the opposite of the sum ry + ro + --- 4+ 7, of the roots

of polynomial D(s) + KN(s), we conclude the sum of the poles of the
feedback system is independent of the value of parameter K.
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Example 4.12. Let’s consider the following transfer function:

s+4

Fe) = o6+

(4.89)
We wish to investigate where are located the poles of the closed-loop system
represented either in Figure 4.6 or in Figure 4.7 when static gain K varies from
0 to oo.
Let’s apply the previous rules to sketch the root locus:

— The loop transfer function F(s) has n = 3 poles and m =1 zero;

— The number of branches is equal to the number of poles of the loop transfer
function. Thus the root locus has n = 3 branches;

— The root locus starts at the n = 3 poles of the loop transfer function, which
are (0,—2,—3). This leads to sketch 1 in Figure 4.1.

— The root locus ends at the zeros of the loop transfer function. Thus m =1
branch of the root locus end on the m = 1 zero of F(s), which is (—4).
This leads to sketch 2 in Figure 4.1.

— Transfer function F(s) reads:

s+4 s+4
PO = et s 26 19 (4.90)

Thus coefficient a = 1 of F(s) is positive. Then a point s* on the real axis
belongs to the root locus as soon as there is an odd number of poles and
zeros on its right (be careful to take into account the multiplicity of poles
and zeros). This leads to sketch 3 in Figure 4.1.

— There are (n —m) = 2 asymptotic branches. The (n —m) = 2 asymptotic
branches of the root locus which diverge to oo are asymptotes.

— The angle 6 of each asymptote with the real axis is defined by:

2%k 2%k
P e L e LR W (4.91)
n—m 2

— Denoting by p; the n poles of the loop transfer function (that are the
roots of D(s)) and by z; the m zeros of the loop transfer function
(that are the roots of N(s)), the asymptotes intersect the real azis at
a point (called pivot or centroid) given by:

XL Y s 04 (D (3-8 (4.92)

n—m 2

This leads to sketch 4 in Figure 4.1.



90 Chapter 4. Analysis of Linear Time Invariant systems

Im(s)
o A
Y%
B 0 Re(s)
Sketch 1
Im(s)
—0
4 -3 2 0  Re(s)
Sketch 3
Im(s)
i
— - > | -

4 -3 20 05 0 Re(s)

A\

Sketch 5

Imn(s)
4 3 2 0  Re(s)
Sketch 2
Im(s)
ot
4 -3 -2 -05|0  Re(s
Sketch 4

-40 -35 -3.0 -25 -20 -15 -10 -05 00
Real

Actual root locus (Python)

Table 4.1: Sketches of the root locus of F(s)
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— The breakaway / break-in points are located at the roots sy of the following
equation as soon as there is an odd (because coefficient a = 1 of F(s) is
positive) number of poles and zeros on its right (be careful to take into
account the multiplicity of poles and zeros);

() o

We get:

d (w) _ d (s245s°46s
s+4 T ds s+4

_ (35%2+105+6)(s+4)— (534552 +65)

o (s+4)?

_ 253417s%24-40s+24

o (s+4)?

=4 (Fy) =0 =284 1752 4405 + 20 = 0
s=sy
sp1 ~ —0.92

= Spa2 ~ —2.63
Sp3 ~ —4.95

(4.94)

Among the three potential breakaway / break-in points sp; only sp; ~ —0.92
is such that there is an odd (because coefficient a = 1 of F(s) is positive)
number of poles and zeros on its right. This leads to sketch 5 in Figure
4.1 where the arrows indicate how move the roots as gain K increases.

The actual root locus is represented in Figure 4.1. It has been obtained
thanks to the following commands on Python:

#!/usr/bin/python

import control

import matplotlib.pyplot as plt

import numpy as np

F = control.tf([1, 4], np.polymul(np.polymul([1, 0], [1, 21), [1, 31))
control.rlocus(F)

plt.grid()

plt.show()

— Because n —m > 2, the centroid theorem s applicable and indicates that
the sum of the poles of the feedback system is equal to the sum of the poles
of the open loop system, that is —5.

Example 4.13. Let’s consider the following transfer function:

1
(s—=1)(s+2)(s+4)

F(s) = (4.95)

The breakaway / break-in points are located at the roots sy, of the following
equation as soon as there is an odd (because coefficient a = 1 of F(s) is
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Imaginary
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Figure 4.12: Root locus of F(s)

positive) number of poles and zeros on its right (be careful to take into account
the multiplicity of poles and zeros);

), =0
= (8—1)(8—1—2)(8—1—4)):0
:di s+ 55 +25—8) =0 (4.96)
= 3524105 +2=0
sy ~ —0.21
Spo ~ —3.12

d

ds

Cn

=

Among the two potential breakaway / break-in points sp; only sp; ~ —0.21 is
such that there is an odd (because coefficient a =1 of F(s) is positive) number
of poles and zeros on its right.

The root locus is represented in Figure 4.12.

It is worth noticing that the values of K such that the root locus of F(s)
intercepts the imaginary axis can be computed thanks to the Routh criterion.
Indeed the denominator of the closed loop reads:

_ 1
1+KF(s) =14+K VeI

=1+ 534-5524+25—8
_ $94552425—8+K
T 5345524258

(4.97)

Applying the Routh criterion on polynomial D(s) = s> + 5s%> +2s — 8 + K
leads to the following Routh array:
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—» KNis) —» 1/Dis) [—»

Figure 4.13: Effect of zeros of the system response

s3 1 2
p)
s 5 K-8
PR (4.98)
5
SO K-8

There id no sign change in the first column of the Routh array as soon as
the following inequality holds:

K—_850 &8 < K <18 (4.99)

{ 18— K >0

As a consequence the values of K such that the root locus of F(s) intercepts

the imaginary axis are K = 8 (for which it can be checked that the roots of D(s)

are 0, —0.44 and —4.56) and k = 18 (for which it can be checked that the roots
of D(s) are —5 and £1.414j).

]
4.9 Effect of zeros on the system response
Consider a system with the following transfer function:
m m—1 .
F(S) _ KN(S) _ KS + bm_1$ + + bls + b() (4.100)

D(s) S+ Ap_18" L+ - a1s + ag

Numerator N(s) does not affect the homogeneous response of the system.
Now consider Figure 4.13 where the all-pole system 1/D(s) is excited by signal

x(t):

m k
o) =K bk%u(t) (4.101)
k=0

As far as x(t) is the superposition of the derivatives of u(t) we conclude that
the zeros of the system shape the manner on how the poles of the system are
excited.
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4.10 Step response of non-minimum phase transfer
functions

We consider a stable linear time invariant single-input single-output system
whose transfer function F'(s) is proper (meaning F'(co) < oo) with finite static
gain (meaning F'(0) < oo). If F(s) has at least one real strictly positive zero,
then F'(s) is a non-minimum phase transfer function and its step response
exhibits zero crossings. Indeed the Laplace transform Yi(s) of the unit step

response ys(t) reads:
1

Yi(s) = F(s) 5 (4.102)
Let z be a real strictly positive zero of F'(s). Setting s = z yields Yy(s)|,_, =
F(z) 1. Since F(z) = 0 it follows that Y(s) = 0. Coming back in the time
domain we get:
o0
/ ys(t)e st dt
0

Since z is a real strictly positive zero, e ! is positive on [0,00). It follows
that ys(¢t) must cross zero on [0,00) in order to achieve a null value for the
integral. Note that (4.103) depends on z but does not depend on either the
poles or the remaining zeros of F(s).

It can be shown that undershoot in the step response of a strictly proper
stable transfer function F'(s) occurs if and only if the plant has an odd number
of real right-half plane zeros’. To get this result, the key relations are the

following, where a denotes a constant, z; the zeros of F(s) and \; its poles :

e (1-2)

‘ S=Z

:/ ys(t)e * dt =0 (4.103)
0

S=z

z

F(s)=a——£%
[T (1 - g) (4.104)
y(t) = lim s"F(s)
dir f—g ST

More generally, the following properties hold for stable non-minimum phase
transfer functions®:

— If F(s) — F(0) has at least one strictly positive real zero, then the step
response of F'(s) exhibits overshoot.

— If the transfer function F(s)—F(oc0) has an odd number of strictly positive
real zeros, then the step response exhibits initial undershoot.

Example 4.14. We consider the following stable transfer functions Fi(s) and
FQ(S).‘

Fi(s) = e
Fy(s) = SRR (4.105)
(s+1)3

"On Undershoot and Nonminimum Phase Zeros, M. Vidyasagar, IEEE Transactions on
Automatic Control, vol. 31, pp. 440 - 440, Issue: 5, May 1986

8 Nonminimum-phase zeros - much to do about nothing - classical control - revisited part
ii, J.B. Hoagg and D.S. Bernstein, IEEE Control Systems, vol. 27, no. 3, pp. 45-57, June
2007
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Step responses
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Figure 4.14: Step response of Fi(s) and Fs(s)

— It is clear that Fy(s) has one strictly positive real zero, z1 = 1, whereas
F5(s) has two strictly positive real zeros, z1 = 0.5 and zo = 2. Thus step
response of Fy(s) and Fa(s) exhibits zero crossings.

— Fi(s) — F1(0) and Fy(s) — F5(0) do not have strictly positive real zero.
Thus both step responses does not exhibit overshoot.

— The zero of F1(s) — F1(00) is 1, that is an odd number of strictly positive
real zeros. Thus the step response of F1(s) exhibits initial undershoot.

— The zeros of Fo(s)—Fy(00) are 2 and 0.5, that is an even number of strictly
positive real zeros. Thus the step response of F1(s) does not exhibit initial
undershoot.

Those facts can be seen on the step response of Fi(s) and Fy(s) shown in
Figure 4.14.

4.11 Strong stabilizability and parity interlacing
property
A plant, defined by a transfer matrix F(s), is said strongly stabilizable if there

exists a stable stabilizing controller C(s) of F(s) or, in other words, if C(s)
internally stabilizes F(s).
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A necessary and sufficient condition for the existence of a strongly stabilizing
controller is the parity interlacing property. The parity interlacing property
states that a dynamical plant F(s) is strongly stabilizable if and only if between
any pair of zeros with positive real part (taking into account also the zeros at
infinity) there is an even number of poles, the latter counted according to their
multiplicities®.

%Youla D. C., J. J. Bongiorno, Jr., and C. N. Lu, Single-loop feedback stabilization of
linear multivariable plants, Automatica, 10 (1974), pp. 159-173.



Chapter 5

Basic feedback control design

5.1 Chapter overview

In this chapter we will see how to tune two types of well known controllers:

— Lead-lag controllers, which can be tuned in order the comply with
specifications in terms of precision and phase margin;

— PID controller, which can be tuned in order the comply with specifications
in terms transient response specifications or dominant poles placement.

Furthermore prefiltering as well as algebraic controller design and
anti-windup will also be developed.

5.2 Lead-lag controller

5.2.1 Steady state error

In Figure 5.1 we have specialized the corrector C(s) of Figure 4.2 to be a constant
value K. This kind of feedback control is called proportional control.

Usually reference input r(¢) is the signal we would want to obtain at the
output and consequently such a control loop is currently designed such that
the output y(t) follows the reference input r(¢). In the case of perfect feedback
control the error signal €(¢) is then zero at every instant. But in the case of real

r(t) &) | (¥
— — K — F(s) -
R(s) &(s) Y(s)

Figure 5.1: Proportional control loop
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feedback control this difference is not zero at every instant mainly because of
time constants. The steady-state error €(oco) represents the tracking error for a
particular input command when time ¢ tends to infinity:
= i t 5.1
¢(00) = lim €(?) (5.1)

This section presents some results on the value of the steady-state error e(co)
for different shape of the signal input r(t).

Rather than computing the inverse Laplace transform of ¢(s) back into the
time domain and evaluating it as time ¢ approaches infinity we will use the final
value theorem:

€(00) = lim se(s) (5.2)

s—0

It is worth noticing that the computation of the steady-state error thanks
to the final value theorem is only meaningful for stable closed-loop system.
Consequently the stability of the closed-loop system shall be checked when
performing steady-state error analysis.

From Figure 5.1 the Laplace transform of the error e(s) reads:

1

€(s) = Rls) — KF(s)el(s) & e(s) = oy

R(s) (5.3)
The steady-state error will depend on the input command R(s) and on the
loop transfer function K F'(s). In the following we will consider without loss of
generality that the plant transfer function F(s) is of the form:
A 1+bis+---+bys™

F(s)=—" 5.4
(5) s¢ 1+ays+---+aps™ (54)

It is worth noticing that the coefficients which are in factor to s° = 1 at the
numerator and denominator of transfer function F(s) are equal to 1.

Integer « represents the number of integrations in F(s), but also in the
open-loop transfer function K F'(s). By definition the type number of a system
is the number of integrations in its open-loop transfer function. Thus if @« =0
then the system is said to be of type 0, if & = 1 then type 1 and so on.

We first examine the steady-state error to a unit step input:

1
r(t) =T(t) = R(s) = - (5.5)
S
When the input reference signal is a step the steady-state error is called the

position error and is found to be:

€p = limg 0 se(s) = limg_s0 81+I(1F(s)%
= limg_,¢ KA 1+b11s+~»+bmsm (5'6)
s¥ 14ays+---+ans™
The value of the preceding limit depends on the system type:
— If a =0 (system of type 0) then
1
(5.7)

PTIEKA
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— If @ > 0 then
ep=0 (5.8)

Now we examine the steady-state error to a unit-ramp input:

r(t) = £Vt > 0= R(s) = S% (5.9)

When the input reference signal is a unit-ramp the steady-state error is
called the velocity error and is found to be:

N . 1 1
€, = limg 0 s€(s) = lims 0 514 A L¥byst—Fbms™
1 +si(’ 14+ays+-—-+ans™ (5 10)
= lims_0 KA 1+b15tFbms™

sa—1 Ttaist-tans®
The value of the preceding limit depends on the system type:

— If a =0 (system of type 0) then

€y = 00 (5.11)

— If a =1 (system of type 1) then

1
v = — 5.12
€= 7oa (5.12)
— If & > 1 then
€, =0 (5.13)

Similarly when the input reference signal is a parabola the steady-state error
is called the acceleration error and is found to be:

T(t) = t2 Vi > 0= R<3> = S% = €q = 11H19—)0 2, KA 1+315+"'+bm57n (514)
s sa—2 1+aqis+-+ans™

As in the previous cases the value of the steady-state error depends on the
System type:

— If a < 2 then
€q = OO (5.15)

— If a =2 (system of type 2) then

2
-2 1
€= Toq (5.16)

— If a > 2 then
€, =0 (5.17)
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System’s type | 7(t) =T(t) | 7(t) =t | r(t) = t?
0 (a=0) b
= 1+ KA > >
1 (a=1) 0 L 00
B KA
2

Table 5.1: Steady state errors

A summary of the steady-state error according to the system type and the
input reference command r(t) is provided in Table 5.1.

The steady state errors are classified in accordance with the number of
integration in the open-loop transfer function. As s — 0 the term which
dominates in determining the steady-state error of the stable closed-loop
system is s N. For a system of type a the steady-state error of the
closed-loop system is constant when the input command is of the form t¢; if
the input command is of the form ¢ where N < « then the steady-state error
is 0 whereas when N > « the steady-state error tends to infinity.

It is worth noticing that to make the steady-state error small, that is to
increase the precision of the closed-loop system, the term KA (which is the
static gain for a type 0 system) in the open-loop transfer function shall be chosen
sufficiently high. But on the other hand the higher the value of proportional
control K is, the closer the closed-loop system will be from instability. Indeed we
can see in Figure 4.9 that increasing the value of K will displace the —1/K + j0
critical point to the right; hence the closed-loop system is approaching to the
verge of instability. This problem is usually known as the stability-precision
dilemma.

Example 5.1. Consider a plant with the following transfer function:

1

FO) = i s s s 7 1)

(5.18)

We wish to control this system thanks to a proportional control as in Figure 5.1.
As far as this system is of class 0 the proportional gain K will only be used to set
the position error. Assume that system specification requires the position error
to be 1%. This leads to the following value of proportional gain K :

1 1

1% = — — — ~
% 100 1+ KA

(5.19)

Here the transfer function F(s) is such that A = 1 (c¢f. (5.4)) and
consequently K = 99. Unfortunately we have seen in the previous section that
the closed-loop system is stable when K < 8.75. As a consequence the system is
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R(s) /<N e(s) U(s) ¥(s)
b—lﬂ%ﬁl > K [ C(s) > F(s) >

;

Figure 5.2: Lead-lag control

unstable with such a wvalue of proportional gain K. This is an example of

stability-precision dilemma.
]

When system specifications cannot be satisfied with the proportional control
loop in Figure 5.1, other control loop schemes shall be envisioned. This is the
purpose of the next chapter.

5.2.2 Controller presentation

Let consider Figure 5.2 where C(s) is a lead-lag controller and K a proportional
gain.
A lead-lag controller has the following transfer function:
1
Cs) = —+1° (5.20)

1l+ars

Where o and 7 are positive constants. Parameter o enables to define the
controller type:

— Lead controller if 0 < a < 1

— Lag controller if o > 1

For a lead controller the pole ;—i is situated on the left of the zero %1

vice versa for a lag controller.
Let €(c0) be a specified steady-state error. We have seen in the previous
chapter that the Laplace transform of the system error €(s) reads:

1
T 1+ KC(s)F(s)

and

€(s) = R(s) — KC(s)F(s)e(s) < €(s) R(s) (5.21)

Therefore applying the final value theorem the steady-state error €(0o) reads:

S

€(00) = lim e(t) = limy se(s) = i T e ) (522)
As far C(0) =1 Vo, T we get:
C0)=1Va,7 = e(co) = lim ——R(s) (5.23)

s—=01 —|—KF(8)

Consequently a lead-lag controller allows to modify the steady-state error
of the closed-loop system by selecting appropriately the static gain K,
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independently of parameters o and 7. In other words, steady state error is
improved by increasing static gain K (assuming that the closed-loop remains
stable).

Phase contribution ®(w) and gain contribution |C(w)| of lead-lag controller
C(s) at frequency w are obtained as follows:

C(jw) = lﬁgfw

(1+j7'w)(1—j;)<7'w)
_ l+a%:7('312‘r$])w7'(1—a) (5'24)
- 1+(aTw)?
=|C(w)| e/*)

Thus:

— Phase contribution ®(w) at frequency w reads:

cos(P(w)) = Lta(wr)”
( ( )) \/(1+oz(w7' ()1 ()wfr(l a))? = tan(q)(w)) _ WT(l — a)Q
in(® = WL o 1+ alwr
Sln( (OJ)) \/(1+a(w7)2)2+(w7(1—a))2 ( (5) 25)
— Gain contribution |C'(w)| at frequency w reads:
1+ (Tw)?
= 2
C = | T3 (5.26)

A lead compensator adds positive phase to the system over the frequency
range = to E whereas a lag compensator adds negative phase to the system
over the frequency range E to ; The extremal phase shift ®,, is achieved at
frequency wyy,:

1

Wm =

Cjeom) = |C(wm) €/ where { |Clwn)] = L (5.27)
sin(®,,) = h—g
Let g = |C(w)|*. From the preceding relations we get:
1+ (tw)? l1—g
= C(w)f* = —— 2= 5.28
9= 1) = T4y = () = (5:29)

Let p = tan(®(w)). From the preceding relations it is clear that p and ¢ are
related as follows:

wr)(1-a)? _ gy (170)”
N O
o (1t agaty) — grti(1-a)? =0

ga 71+a 1—g) 2 _
ga?—1

p = tan(®(w)) = p* =

e (1-ap2=0 (5:29)

Ega(a 1)+a— 1) (179)(9612*1)(1 a2 =0
=

ga —1 (ga2—1)2
ga+1 ) 12— (1—g)(ga® *1)(1 —a)?=0

a?—1

& p?
< p? (ga?—1)2
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Figure 5.3: Lag controller Bode plot (¢ =2 > 1 and 7 = 1)

Assuming that o # 1 and ga? — 1 # 0 we finally get:

p* (g +1)> — (1 - g)(ga® —1) =0

5.30
s a’g(gp? +g—1)+2agp* +p*+1—-9g=0 (5.30)

Thus the values of parameters o and 7 of a lead-lag controller which produce
a gain g and a phase p at frequency w are defined as follows:

_ 1 1-g
T=0 \ ga?-1 p= tan(@(w))
R g = 1ot
a?g(gp* +9—1)+2agp®* +p*+1—g=0
(5.31)

— For a lag controller where p < 0 and 0 < g < 1 it is eagily verified that a
sufficient condition for the solution of the quadratic equation in « to be
positive is:

g +g—1<0 (5.32)

— Similarly for a lead controller where p > 0 and g > 1 it is easily verified
that a sufficient condition for the solution of the quadratic equation in «
to be positive is:

pPP+1—g<0 (5.33)

5.2.3 Lag controller tuning: graphical method

Compensator design using a lag controller is based on the controller’s
attenuation at high frequencies as shown in Figure 5.3.

Assuming that steady state error and phase margin requirements are given,
lag controller tuning can be done graphically as follows:

1. Using the final value theorem, determine gain K > 0 which satisfies the
steady state error requirement;
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Figure 5.4: Lead controller Bode plot (¢ = 0.5 < 1 and 7 = 1)

2. Draw the Bode plot of K F(jw);

3. Find on the Bode phase plot of K F(jw) the frequency w; corresponding
to the required phase margin Mg increased by 5°. The extra 5° is an
overestimate (forfait moustachu in French) of the phase lag induced by
the lag controller at high frequency;

4. Read on the Bode magnitude plot the value 20log;,|K F(jw1)| at
frequency wj;.  This value will be shifted to 0dB thanks to the
attenuation of the lag controller at high frequencies:

—20logo | K F(jw1)| = —20logo (o) & a = K F(jw) (5.34)

5. Place the controller zero 1/7 such that 1/7 < wy, for example one decade
to the left of the new gain crossover frequency wy:

1
SR eTA (5.35)

Finally draw the Bode plot of K C'(jw) F(jw) where C(s) = 11:017; and check
the value of the phase margin. If the achieved phase margin is not satisfactory
increase the overestimate of the phase lag induced by the lag controller (try with

8° rather than 5° for example) and repeat the design process.

5.2.4 Lead controller tuning: graphical method

Compensator design using a lead controller is based on the controller’s phase
lead as shown in Figure 5.4.

Assuming that steady state error and phase margin requirements are given,
lead controller tuning can be done graphically as follows:
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1. Using the final value theorem, determine gain K > 0 which satisfies the
steady state error requirement;

2. Draw the Bode plot of K F(jw);

3. Find on the Bode phase plot of K F'(jw) the gain crossover frequency ws
such that 20log;, (K F(jwz2)) = 0dB and compute the phase difference
A¢ between the actual and the required phase margin My:

A¢p = My — (arg(K F(jws) + 180°) (5.36)
4. Compute the maximum phase lead ®,, of the lead controller as follows:
D, = Ap +5° (5.37)

The increase of 5° is an overestimate (forfait moustachu in French) of the
consequence of the amplification effect of the phase lead controller on the
actual phase margin. Indeed, due to the amplification effect, the actual
gain crossover frequency will be higher (that is shifted to the right on the
Bode plot);

5. Compute parameter a of the lead controller as follows:

1 — sin(®,,)
=—>7 5.38
Tt sin(®,;,) (5:38)
6. Compute the lead controller amplification 1/y/a and read on the Bode
magnitude plot the value of the frequency ws such that:

201log; (K F(jws)) = +101og;, (@) (5.39)

Frequency ws > wo will be the actual gain crossover frequency. Then
compute parameter 7 of the lead controller such that ws corresponds to
the frequency at which the maximum phase lead is achieved:

1 1
- s T =
TVa ’ w3/

Finally draw the Bode plot of K C'(jw) F(jw) where C(s) = % and check
the value of the phase margin. If the achieved phase margin is not satisfactory
increase the overestimate of the effect of the lead controller on the phase margin

(try with 8° rather than 5° for example) and repeat the design process.

w3z =

(5.40)

5.2.5 Example

We consider a plant with the following transfer function:

4

o=+

(5.41)

We wish to control this plant such that the closed-loop match with the
following specifications:
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— Steady-state error of the closed-loop when the input is a unit-ramp input,
that is the velocity error: ¢, = 0.05

— Phase margin: My = 50°
Error €(t) between the reference signal r(¢) and the output y(t) reads:
e(t) = r(t) — y(t) (5.42)
The use of the final value theorem leads to the expression of velocity error:
€ = tliglo €(t) = sl_l}r(r]1+ se(s) (5.43)
Reading Figure 5.2 we get Y (s) = % Furthermore as far as we
focus on velocity error we have r(t) =t V¢t > 0. Thus R(s) = L[t] = % and:

e(s) =R(s)—=Y(s)

1
~ THRCEIFG) R(ls) (5.44)
pol

= 1+KC(S)7S(S‘:_2)

Using the fact that C'(0) = 1 we finally get:

€, = lim,_,o+ se(s)

= lim §—t——3%

5207 P 1K C(s) s

— T 1 1

= hms_>0+ 1+KC(S)S(S§»2) s (545)

= lim, o+
— 1
2K

s+KC(s) 512

Consequently we shall choose K = 10 to set €, to 0.05:
=0.05 = ! =K =10 (5.46)
€v = 0.05 = o~ = :

In order to apply the graphical method the Bode plot of K F(jw) is sketched
in Figure 5.5.

— For the lag controller we get:

w1 ~ l.4rad/sec

20logyg | K F(jw:)| =~ 21dB
a=102/20 ~11.2

TR i—? ~T7.1

(5.47)

— For the lead controller we get:

wo = 6rad/sec
arg(K F(jws2) + 180° ~ 17°
&, =50—-17+5=38°

~ 1-sin(®)
a= 1+Zin(<19m) ~0.24 (5.48)

10logo(a) =~ —6.2 dB
w3 ~ 9 rad/sec
T = w;\/a ~ 0.23
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Figure 5.5: Bode plot of K F(jw)

We recall that the design process does not ensure the actual location of the
dominant pole.

5.2.6 Lead-lag controller tuning: computational method

The method proposed by Phillips and Harbor? has the following steps:

First get the required phase margin Mg as well as the settling time ¢,
from the design specifications;

Find gain K such that the requirement on the steady-state error e(oo) of
the closed-loop system is satisfied;

Then choose the gain crossover frequency w,. corresponding to the required
phase margin Mg and the settling time t5. Frequency w, is chosen by trial
and error but shall satisfy:

8

> 5.49
We = tstan(Me) (549)

Compute the phase angle ¢ of the controller C(s) at frequency w,. as:
p:=arg (C (jw.)) = —180° + Mg — arg (K'F (jw.)) (5.50)
It is worth noticing that angle ¢ shall be between —90° and +90°: this

corresponds to the minimum and maximum phase shift achievable by the
controller.
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— Set parameters « and 7 of the lead-lag controller as follows:

_ 1-K|F(jwe)| cos(yp)
_ 1+ 7s T= weK|F (jwe)| sin(p
Cl) = T ars Where { ar = C““"isﬁfp()j“c;' (5.51)

As in the PID tuning method, the preceding results may be obtained by

equating the real part and the imaginary part of K C'(jw.) to I;‘EEZ‘;))‘ and
\;(ZEEZ))I respectively:
KO(w.) = K 1; s () = e+ ey
. { K Ffariy = 70y (5.52)
el v

If the achieved performances are not satisfactory then frequency w, has to
be tuned by trial and error. However we recall that even then the closed-loop
system may not achieved the required performance or can be unstable as far as
the design process does not ensure the actual location of the dominant poles.

5.3 Transient response specifications

This section provides the links between time domain and frequency domain
specifications. Indeed in one hand we may have time domain specifications,
which are usually provided by the end-user of the system, whereas engineers
rather prefer frequency domain specifications because they are more tractable
in terms of transfer functions. Frequency domain specifications can be
provided either in terms of dominant poles or in terms of phase margin Mg
and corresponding gain crossover frequency we.

Transient response specifications are usually based on second order
underdamped model where the damping ratio m is in between 0 and 0.7
(0 < m < 0.7) and where the static gain K has been set to 1 reads:

Y(s) wh

Gls) = R(s) T 82 + 2mwos + w? (5:53)

It is worth noticing that model G(s) should not be interpreted as the actual
transfer function of the closed-loop system but as the specified reduced model
of the actual closed-loop system.

Moreover transfer function G(s) can be viewed as the closed-loop transfer
function of the loop depicted in Figure 5.6 where the open-loop transfer function
F(s) is put within a unity feedback loop.

Open-loop transfer function F'(s) could be obtained thanks to the following
identification:

Y (s) wh _ 1

(5.54)




5.3. Transient response specifications 109

R(s) Y(s) I@pfrx\: > F(s) &
v

—> Gy | = ‘

Figure 5.6: Unity feedback loop for transient response specifications

In the frequency domain we get:

2
. W,
F(jw) = .

5.55
—w? + j2mwow (5:55)

The phase margin occurs at the gain crossover frequency w. which is the
frequency such that |F(jw.)| = 1. Thus frequency w, reads:

4 4 2
w w w
F(jw)| =1= —— 2 —— =1&(— 4m* (=5 ) —1=0 (5.56
[P (jece)] wd + 4m2wiw? <w0> am wo (5.56)
The roots of this quadratic equation are given by:
o\ 2
(> = —2m? +4m4 + 1 (5.57)
wo

Since the root corresponding to the phase margin must be real positive we

finally get:
We = wo\/\/ 4m* + 1 — 2m? (5.58)

The phase margin Mg of the system is then defined as:

Mg = 180° + arg (F'(jw.)) (modulo 360°) (5.59)

According to the expression of F(jw) we get:

(5.60)

2
arg (F'(jw.)) = —180° + arctan <mw0wc>

2
We

It is worth noticing that we add —180° (modulo 360°) because the real part of
the denominator of F(jw) is negative.
Thus:
My =180°+ arg (F(jw:)) (modulo 360°)

= 180° — 180° + arctan (2m%)

c

= arctan (2m$—2) (5.61)

= arctan 2m
vV V4AmA4+1—2m?2

Assuming 0 < m < 0.7 the damping ratio m and the phase margin Mg are
related through the following approximate relation:

Mg (in degrees) ~ 100m (5.62)
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Thus the phase margin Mg is related to the damping ratio m, that is to the
overshoot of the closed-loop system response.
In addition under the same assumption on m the 95% settling time ts of
second order underdamped closed-loop model can be approximated by:
4
ty 8 —— (5.63)
mwo
Then we get the following relation between the phase margin Mg and the
settling time t,:

4 We = tan (Mg) ~

mwo

(5.64)

ts =~

{ tan (Mg) = 2m2

tswe

Thus for a given phase margin Mg, increasing the gain crossover frequency
we reduces the settling time tg.

From the preceding results it is clear that there exists a close relation between
time domain specifications, typically settling time ¢; and relative overshoot D,
and frequency domain specifications, typically the phase margin Mg and the
corresponding gain crossover frequency w,:

—— = _ —In(D)
ts ™ miwo < Mag(in degrees) ~ 100m (5.65)
tan (Mg) = 2m g2 We R (e

Roughly speaking, the damping ratio is closely related to the phase margin
Mg whereas the settling time ts decreases when gain crossover frequency we
increases. In other words system stability is improved and overshoot D is
reduced by increasing the phase margin M, whereas settling time ¢, is reduced
by increasing system’s bandwidth w..

The preceding relations also lead to the expected location of the dominant
poles A\g, and S\dp of the closed-loop system:

{ Adp = —mwp + jwoV 1 —m?

Adp = —mwp — jwoV 1 —m? (5.66)

5.4 ITAE performance index

A control system is optimum when a selected performance index J is minimized.
In 1953 Graham developed the Integral of Time-weighted Absolute Error (ITAE)
performance index which reads as follows:

Jirap = /O T () — y(0)] e (5.67)

This performance index used in the ITAE optimization process is a kind of
tradeoff between a short settling time (time ¢ explicitly appears in the integral
to be minimized) and a precise closed-loop system (error |r(t) — y(t)| appears
in the integral to me minimized)
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m=11|s4+wy
m=2 | a; = 1.505 Jrragp = 1.93556
m=3 | ay =1.783, a; = 2.172 Jirap = 3.11623
m=14 | az = 1.953, ay = 3.347, a1 = 2.648 Jrrap = 4.56372
m=>5 | ag = 2.068, a3 = 4.499, ao = 4.675, a1 = 3.257 Jrrap = 6.28854
m==6 | as = 2.152, a4 = 5.629, ag = 6.934, as = 6.7920, - - - Jrrag = 8.29536

a; = 3.740

m="7| ag = 2.217,

a5 = 6.745, a4 = 9.349, a3 = 11.580, - - -
ag = 8.680, al = 4.323

Jrrag = 10.5852

m=38 | ay = 2.275,

ag = 7.849, a5 = 11.888, as = 17.588, - --
a3 = 16.116, as = 11.339, a; = 4.815

Jrrap = 13.1553

Table 5.2: Values of coefficients a; of ¢(s) based on the ITAE performance index

Graham studied the values of the coeflicients of the following transfer
function G(s) to minimize performance index Jrprag:

Where:

{ q(s) = 8"+ am_1wo s+ a2 WS4t ar W) T s Wi

. Y(S) . Ncl(s)
=R~ o

Na(s) = wi?

(5.68)

(5.69)

In the preceding equation natural frequency wy is a free parameter which has
to be selected by the designer. Table 5.2 provides the values of coefficients a; of
q(s) based on the ITAE performance index for a step input. Those coefficients
are actually those which have been recomputed in 1989 by Y. Cao?

In the following sections we consider the problem of designing a controller
that provides asymptotic tracking of a reference input with zero steady state

error.

Example 5.2. Consider a plant with the following transfer function:

1

Fs) = 5o

(5.70)

We wish to design a controller which minimize the ITAE performance index
and also which leads to a settling time ts for a step input less than 1 sec.

We choose for example a PID controller.

function without prefiltering (Cp(s) = 1) reads:

v(s) _  (Kas>+Kps+K;)F(s)
Rpp(s) — st(Kas?+Kps+K;)F(s)
i Kqs?+Kps+K;
T s(254+1)2+Kg s?+ Kps+K;
_ Kgs2+Kps+K;

T 43+ (44 Ky)s?+(1+Kp)s+ K,

Then the closed-loop transfer

(5.71)

'Y. Cao, Correcting the minimum ITAE standard forms of zero-displacement-error
systems, Journal of Zhejiang University (Natural Science) Vol. 23, No.4, pp. 550-559, 1989
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That is:

K. K K;
V) St (5.72)
Rpp(s) o8 4 Mgy ey | 1

The coefficients of the denominator which minimize the ITAE performance
indez are obtained from Table 5.2:

s% 4+ 1.783wps® + 2.172w8s + wjy (5.73)

We need to select wg in order to meet the settling time requirement. Since

ts ~ miwo where m is set in a first attempt to 0.8 we get:

= 4
{ =1 o~ 2 =5 (5.74)

m = 0.8 mtg

Then equating the demominator of (5.72) with (5.73) we obtain the three
coefficients of the PID controller as:

4 HRag2  IHRe g ) B — 63 4 8.91552 + 54.35 + 125

K; =500
5.75
= K,=216.2 (5.75)
K4 = 31.66

Then the closed-loop transfer function without prefiltering (5.72) becomes:

Y(s)  7.915s* 4 54.055 4+ 125
Ryp(s) 8%+ 8.915s2 + 54.35 + 125

(5.76)

Then we select the prefilter Cp¢(s) in order to achieve the required ITAE
transfer function. We check that all the roots of polynomial 7.9155?+54.055+125
have negative real parts. Therefore we obtain for the transfer function of the
prefilter:

125

Cor(8) = 791557 1 54.065 + 125 (5.77)
We finally get the transfer function of the whole system:
Y(s) _ Y(s)
R(s) — Cpf(S)Rpf(s)
7.91552454.055+125 (5.78)

= Pf(s)3313%91552—&—54.35—1-125
= $348.91552+54.35+125

Figure 5.7 shows the response of the whole system to a unit step input. As
expected the settling time lower than 1 sec. Furthermore the whole system has a
zero steady state error and an overshoot about 1.6%.
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Figure 5.7: Unit step response of the whole system

5.5 PID controller

5.5.1 Controller presentation

The PID control is the most popular feedback controller used within the
process industries. It was an essential element of early governors and has been
successfully used for several years.

PID control consists of a controller based on three basic modes:

— the Proportional (P) mode,
— the Integral (I) mode and
— the Derivative (D) mode

The transfer function C(s) of a PID controller is the following:
K;
C(s) :Kp—l—?—i—de (5.79)

Note that if only the Proportional mode appears in the transfer function
C'(s) of the controller, the controller is called a proportional controller:

Cp(s) = K, (5.80)

Similarly if only Proportional and Integral modes appears in the transfer
function C(s) of the controller, the controller is called a proportional and integral

controller (PI controller):
K
Cp[(s) = Kp + ?Z (5.81)
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Figure 5.8: PID controlled system

Finally if only Proportional and Derivative modes appears in the transfer
function C(s) of the controller, the controller is called a proportional and
derivative controller (PD controller):

Cpp(s) =K,+Kgys (5.82)

Figure 5.8 shows a PID controlled system. Note that the derivative term
K s is not a proper transfer function; as a consequence the derivative term is

either measured by a dedicated sensor or is changed to be lfidss where 74 is a
very small time constant (i.e. close to zero):
Kgs— where 14 ~ 0 5.83
d 1+74s d ( )

The previous approximation of the derivative term can be interpreted as
the ideal derivative term Ky s filtered by a first-order system %ms with time
constant 74. A typical expression of 74 is the following where N is chosen

between 10 and 20:
Ky

-~ K,N

As seen in the previous chapter the steady state error in proportional control
will decrease with increasing gain K, (assuming no integral action). As far as
integral action is concerned the term % usually decreases the overall bandwidth
of the system thus increasing the overshoot and the settling time of the closed-
loop system. On the other hand the derivative action Ky s usually increases the
overall bandwidth of the system, thus increasing the overshoot and the settling
time of the closed-loop system.

The effect which is usually observed when increasing the PID gains K, K;
and K on the step response of the closed-loop system is summarized on Table
5.3.

One disadvantage of this ideal PID controller is that a sudden change in
set point r(t) (and hence in the error €(t)) will cause the derivative term to
become very large and thus provide a derivative kick to the plant F(s) which

(5.84)

Td
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PID gain

‘ Overshoot ‘ Settling time ‘ Steady-state error ‘

Increasing K, (K, )

Increases

Decreases \

Decreases \

Increasing K; (K; )

Increases

Increases

Eliminates

Increasing Ky (Kqg )

Decreases \

Decreases

Increases &

Table 5.3: Usual effect when increasing K, K; and K gains

K

Yrs)
Is)

— - - j
Ris) -~ H‘/\\. els e N Uls
—)H"Jr\/ \;» K/s |+ 4
\/ '\,// ' I‘"‘\ -\,//
K s
a

Figure 5.9: PI-D controlled system

is not desirable.

An alternative implementation consists in putting the

derivative action on the measurement Y (s) and not the error €(s). This leads

to an alternative PID control scheme, known as PI-D control.

shows a PI-D controlled system.
Finally it is worth noticing that whatever the location of the PID controller
C(s) in the loop, either after the comparator as in Figure 5.10, in the feedback
loop as in Figure 5.11 or split in the PI-D configuration as in Figure 5.9, the
denominator ¢(s) of the closed-loop transfer function remains the same:

q(s) =14+ F(s)C(s) =1+ F(s) (Kp—i—?—Fde)

Indeed:

Figure 5.9

(5.85)

— The closed-loop transfer function of the unity feedback loop in Figure 5.10

R(s)

—>

&(s)

C(s)

Us)

—»

F(s)

(s)
>

Figure 5.10: Unity feedback loop
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i) = Urs) Yis)
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A

Crs)

Figure 5.11: Feedback loop with C(s)

reads:

Vi) | F)Cs)  FE)CE)
R(s) 14 F(s)C(s) q(s)

(5.86)

— The closed-loop transfer function of the feedback loop in Figure 5.9 where
the PID controller is split reads:

Y(s) = F(s) (~KasY(s) + (K + %) (R(s) - Y (5)))

& Y(s) (14 F(s) (K + 5+ Kas) ) = F(s) (Kp + %) RGs) 587
F(s) (Kp+£) F(s) (Kp+£)
14+F (s) (Kp+ i+ Ka s ) a(s)

Y(s)
R(s)

=4

— The closed-loop transfer function of the feedback loop with C(s) in Figure
5.11 reads:

Yis) _ F(s) _ F(s)

R(s) 1+ F(s)0(s) q(s)

(5.88)

As a conclusion the transfer function of the closed-loop has the same
denominator whatever the PID location in the loop.

5.5.2 Ziegler and Nichols tuning method

In 1942 Ziegler and Nichols published a gain tuning method to achieve fast
closed-loop step response without excessive oscillations with PID controller in
the loop. The method they have developed is based on the minimization on
the following criteria which is called the Integral of the Absolute Error (TAE)
criteria:

T CRCIL (5.89)

The Ziegler and Nichols method first consider that gains K; and K, are
set to zero whereas the proportional gain K, is increased until the closed-loop
system reaches the boundary of instability. The gain on the border of instability
is called the critical gain and is denoted K., whereas the period of sustained
oscillations is called the ultimate period of oscillation and is denoted Tt,.

At a gain just below the ultimate gain, the closed-loop oscillates with
decaying amplitude while at a gain just above the ultimate gain the amplitude
of oscillations increases with time. Critical gain K. and ultimate frequency
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Controller type K, K; Ky

Proportional (P) 0.5K¢ 0 0

Proportional-Integral (PT) 0.45K,, % 0
Proportional-Integral-Derivative (PID) | 0.6K, | 38 | 0.075K, T,

Table 5.4: Ziegler-Nichols PID controller gains

wer can be obtained by noticing that at the verge of instability (where the
system is said to be marginally stable) the characteristic equation must have
at least an imaginary root which is noticed jw... Thus by substituting s by
Jjwer in the characteristic equation of the closed-loop system (i.e.  the
denominator of the closed-loop system which is set to zero) we get a complex
equation that can be converted into two simultaneous equations by noticing
that the real part and the imaginary part shall be equal to zero. From these
we can solve for the two unknowns: one is the ultimate frequency w., and the
other is the ultimate gain K,.. The ultimate period of oscillation T, is related
to the ultimate frequency we, by:

_27T

T,, (5.90)

Wer
Notice that the ultimate gain K, and the ultimate frequency w,,. can be
computed thanks to the Routh array in the same fashion the gain margin is
computed.
Table 5.4 provides the Ziegler-Nichols PID controller gains. It was obtained

by Ziegler and Nichols who aimed to achieve an underdamped response to a
unit step input for the following plant model:

Ky

F(s) = 14+ 7s

e 1% where 7,7 > 0 (5.91)

It is worth noticing that if the critical gain K, cannot be computed then
there is no way to set the PID controller gains following the Ziegler-Nichols
method.

5.5.3 Phillips and Harbor tuning method
Setting K, and K, parameters

Others methods exist to set PID controllers. We present hereafter the method
proposed by Phillips and Harbor 2.

Assume that the controller is a PID controller. Its transfer function C(s)
reads:

K;
C(s) :Ker?Jrde (5.92)

As far as it is assumed that the open-loop transfer function C'(s)F(s) passes
through the point 1 x e/(=180°+Me) for the gain crossover frequency w, and the

2Charles L. Phillips and Royce D. Harbor. Feedback Control System. Prentice-Hall, 1991
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phase margin Mg we get:

Cjwe)F(jwe) = 1 x I(-180°+Ma)
{ C(jwe)|l = 1m0 (5.93)
arg (C (]Wc)) + arg (F (ch)) = —180° + Mg

Denoting by ¢ the angle of C'(jw.) we get:

¢ = arg (C (jw.)) = —180° + Mg — arg (F (jw.)) (5.94)

Furthermore:

Cljwe) = Kp+j (Kawe —

— |C(jwe)| ¢ E(Clwe) (5.95)
= |C(jwe)| (cos() + jsin(p))

Equating the real part and the imaginary part yields:

Kqwe — 5 = |C(jwe) | sin(p) = nlel

Consequently the method proposed by Phillips and Harbor? has the following

First get the required phase margin Mg as well as the settling time ¢
from the design specifications;

Then choose the gain crossover frequency w, corresponding to the required
phase margin Mg and the settling time t5. Frequency w, is chosen by trial
and error but shall satisfy:

8
> 5.97
e = tstan(Me) (5.97)

Compute the phase angle ¢ of the controller C(s) at frequency w,. as:

p:=arg (C (jw)) = —180° + Mg — arg (F (jw.)) (5.98)

It is worth noticing that angle ¢ shall be between —90° and +90°: this
corresponds to the minimum and maximum phase shift achievable by the
controller.

Finally choose the integral gain |K;| (for example |K;| = 0.01 but it could
be K; = 0 when integral action is not required); the proportional gain K,
and derivative gain K, are then given by:

Kp — 005‘(80)
| (we)l (5.99)
_ _ sin(p) K; ‘
{ Ka = orGoar + o
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If the achieved performances are not satisfactory then frequency w. has to
be tuned by trial and error. Usually w, is increased until the real part of some
closed-loop poles is equal to the real part of the required dominant poles.

However remember that even then the closed-loop system may not achieved
the required performance or can be unstable as far as the design process does
not ensure the actual location of the dominant poles. Indeed the design process
come from the assumption that the closed-loop system can be modelled by a
second order model (which is obviously a reduced order model).

Tuning K; through root locus technique

The influence of parameter K; can be investigated thanks to the root locus
technique. Indeed let’s write transfer function F'(s) as follows where N(s) and
D(s) are polynomials:

N(s)
D(s)

Transfer function F(s) is assumed to be a proper and co-prime rational
fraction.

A PID controller is used to control the plant. The transfer function C(s) of
the PID controller is:

F(s) =

(5.100)

K;
C(s) :Kp—i-?—i—de (5.101)

The controller C(s) is put either in front the plant in a unity feedback loop
as depicted in Figure 5.10 or in the feedback path as depicted in Figure 5.11
or in a PI-D configuration as depicted in Figure 5.9. For all configurations the
denominator ¢(s) of the closed-loop transfer function H(s) = }};Eg reads:

q(s) = sD(s) + N(s) (Kqs* + Kps + K;) (5.102)

Using the expression of parameters K, and K, provided in (5.99) the closed-
loop characteristic polynomial reads:

q(s) =sD(s)+ N(s) (Kqs*+ Kps + K;)

= sD(s) + N(s) ((irm + &) * + ooy + 5i) (5.103)
sin 52
= sD(s) + N(s) (o F s + ieys) + KN (s) (5 +1)

Dividing both side of the closed-loop characteristic equation by the terms
without K; reads:

()—0

bln COs 52
& sD(s) + N(s) (i s® + 728s) + KN (s) (5 +1) =0 (5.104)
<14 K L( )=0
Where:

(5.105)
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The division by the terms without K; doesn’t change the roots of the closed-
loop transfer function. L(s) is a proper transfer function since the degrees of its
numerator and denominator equal those of the closed-loop transfer function’s
numerator and denominator respectively.

The design procedure is the following:

— Draw the root locus of L(s) as K; varies;
— Choose the value of K; to satisfy the specifications from the root locus;

— Once Kj is chosen set K, and K, according to (5.99).

5.5.4 Real dominant pole placement with PI or PD controller

Consider a plant described by its transfer function F(s) where N(s) and D(s)
are polynomials:

N(s)
D(s)

F(s) = (5.106)
Transfer function F'(s) is assumed to be a proper and co-prime rational
fraction.
A Proportional-Integral (PI) controller is used to control the plant. The
transfer function C(s) of the PI controller is:

K,

C(s) = K, + ? (5.107)

The controller C(s) is put either in front the plant in a unity feedback loop
as depicted in Figure 5.10 or in the feedback path as depicted in Figure 5.11.
Nevertheless, the integral action is usually put in the forward path in order to
achieve an unity closed-loop static gain. For all configurations the closed-loop
characteristic equation is:

-1
1+ C(s)F(s) =0« C(s) = 5.108
+C(s)F () )= 703 (5.105)
Furthermore the denominator ¢(s) of the closed-loop transfer function
H(s) = ;8 reads as follows irrespective the chosen feedback loop
configuration:
q(s) = sD(s) + N(s) (Kps + K;) (5.109)

Suppose that the requirements of the closed-loop control performance in
frequency or time domain are converted into a real dominant pole \g, € R™.
Substitute \g, into (5.108) yields:

K; -1
K,+—" = o K= -\ <+K> 5.110
P e T ) #\Fong) T (5.110)
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Substituting (5.110) into (5.108) yields:

K, _ -1 ._ D(s
Kp+7f == _NES;
&0 =sD(s)+ N(s) (Kps+ K;)
= sD(s) + N(s) (Kps — iy (005 + K )) st
= 5D(s) = Ay 7ray + KpN (5) (5 = Aap)
— (sD(s) = gy 2L [ 1+ K, N(s) (5= Adp)
(S (S) P F(Aap )> ( + SD(S) Adp F](VA(;;)
R N(s)
Simplifying by <3D( ) — Adp Ty yields:
1+ K,L(s) =0 (5.112)
Where the fictitious transfer function L(s) is defined by:
L(s) = —V5) (5 = Aap) (5.113)

sD(s) — Aap %

Fictitious transfer function L(s) is proper since the degrees of its numerator
and denominator equal those of the closed-loop transfer function’s numerator
and denominator respectively.

The design procedure for the PI controller is then the following:

— Set the value of the dominant pole Ag, according to the specifications;

— Draw the root locus of fictitious transfer function L(s) given by (5.113)
as K, > 0 varies. The location of the pole Ay, will not move despite the
change of K. Note that negative values of K, can be achieved by plotting
the root locus of —L(s);

— From the root locus of L(s) choose the value of K, which guarantee that
Adp is the dominant pole of the closed-loop;

— Once K, is chosen set K; according to (5.110).

Note that the same kind of result can be obtained by a
Proportional-Derivative (PD) controller:

C(s) = K, + Kgs (5.114)
Then:
_ 1
Ko =t (g + )
N(s)( qdp) (5.115)
L(s) = D(s)— 2N
Xap FOap)

Finally, denoting by n the degree of D(s), n := deg(D(s)), it is worth
noticing that the closed-loop transfer function has n+1 poles with a PI controller
(the PI controller adds a pole) whereas the closed-loop transfer function still has
n poles with a PD controller as soon as F'(s) is strictly proper, i.e. deg(N(s)) <

deg(D(s))-
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5.5.5 Complex conjugate dominant pole placement with PID
controller

We present hereafter the method proposed by Wang & all 3. This is an extension
of the methods presented in section 5.5.4.

Consider a plant described by its transfer function F'(s) where N(s) and
D(s) are polynomials:

(5.116)

Transfer function F'(s) is assumed to be a proper and co-prime rational
fraction.

A PID controller is used to control the plant. The transfer function C(s) of
the PID controller is:

K;
C(s) :Kp—l—?—i—de (5.117)

The controller C(s) is put either in front the plant in a unity feedback loop
as depicted in Figure 5.10 or in the feedback path as depicted in Figure 5.11
or in a PI-D configuration as depicted in Figure 5.9. Nevertheless, the integral
action is usually put in the forward path in order to achieve an unity closed-loop
static gain. For all configurations the closed-loop characteristic equation is:

-1
1+C(s)F(s) =0« C(s) = 5.118
+C()F(s) =0 C5) = 175 (5118)
Furthermore the denominator ¢(s) of the closed-loop transfer function
H(s) = }};8 reads as follows irrespective the chosen feedback loop
configuration:
q(s) = sD(s) + N(s) (Kqs* + Kps + K;) (5.119)

Suppose that the requirements of the closed-loop control performance in
frequency or time domain are converted into a pair of complex conjugate
dominant poles {Agp, Agp}:

Adp = a + jb a = Re (\ap)
{ Adp = a — jb { b= Im (A\ap) (5.120)

The dominance of poles Ay, and Xdp requires that the ratio of the real part
of any of other poles to a exceeds r where r is usually greater than 3. Thus, we
want all other poles to be located at the left of the line s = ra. The problem
of the guaranteed dominant pole placement is to find the PID parameters such
that all the closed-loop poles lie in the required region except the dominant
poles A\g, and S\dp.

Substitute Ag, by a + jb into (5.118) yields:

K,+ —— +K b) = —
p+a+jb+ a(a+ jb) FOu)

3Guaranteed dominant pole placement with PID controllers, Qing-Guo Wang, Zhiping
Zhang, Karl Johan Astrom, Lee See Chek, Journal of Process Control 19 (2009) 349-35

(5.121)
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This complex equations can be decomposed into two sub-equations, one from
the real part and the other from the imaginary part. Solving the two equations
for K; and Ky in terms of K, yields:

K
Ki=—(a"+1%) (27’; + Xl) (5.122)
Kg= —% + Xo

Where:
1 i) -4 ¥
X0 = gt (w5iss) = dafte (s (5.12)
_ 1 = ; o |
Xo = gitm () + s e (wiik

This simplifies the original problem to a one-parameter problem in K, for
which the root locus method will be applied. We plot the roots of the closed-loop
characteristic equation for all positive values of K, and determine the range of
K, such that the roots except the chosen dominant pair are the required region.
Substituting (5.122) into (5.118) yields:

1+ SXQJI\;Eg — (a* + %)

X1 N(s)
s D(s)

52 —2as + (a® +b%) N(s)
2as D(s)

— Kp

=0 (5.124)

Dividing both side by the terms independent of K gives after some
manipulations:

1+ K,L(s) =0 (5.125)
Where the fictitious transfer function L(s) is defined by:

—N(s) (s* — 2as + (a® + b?))

L(s) = 2asD(s) + N(s) (2aX25% — 2a(a? + ?)X1)

(5.126)

The division by the terms independent of K, doesn’t change the roots of the
closed-loop transfer function. Fictitious transfer function L(s) is proper since
the degrees of its numerator and denominator equal those of the closed-loop
transfer function’s numerator and denominator respectively.

The design procedure for the PID controller is then the following:

— Set the value of the dominant poles \g, and ;\dp according to the
specifications;

— Draw the root locus of fictitious transfer function L(s) given by (5.126)
as K, > 0 varies. The location of the poles A\g, and Ay, will not move
despite the change of K. Note that negative values of K, can be achieved

by plotting the root locus of —L(s);

— From the root locus of L(s) choose the value of K, which guarantee that
Adp and Mg, are the dominant poles of the closed-loop;

— Once K, is chosen set K; and K, according to (5.122).
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Figure 5.12: Root locus of L(s) as K, varies

Example 5.3. Consider a plant with the following transfer function:

1

B = Gerp

(5.127)
We wish to design a PID controller such that the closed-loop system exhibits
a time response ts of 3 seconds and an overshoot of 5%. B
Using the results of section 5.3, dominant poles \g, and Agy, of the closed-loop
system are the following:

a=—muwy~ —%
__ —mp) o .
M= Jmai (D) { Ap = a+jb=-133+j1.4 (5.128)
wo A m4té Adgp=a—75b=-133—jl4
2

Root locus of transfer function L(s) given by (5.126) is shown in Figure 5.12.

It is clear that whatever the value of K, the required poles at —1.33 £ j1.4
are invariant. The third pole of the closed-loop transfer function is located on
the horizontal branch. The square around the value —4 corresponds to a value of
K, set to 56; it is indeed a fast pole comparatively to the two required dominant
poles. The values of K; and Ky obtained thanks to (5.122) are the following:

Ki = 58.88

Kd=22.44 (5.129)

Kp=56= {
The step response of the closed-loop system obtained thanks to the designed
PID is shown in Figure 5.135.
Once the PID controller C(s) is placed in the direct path, the closed-loop
transfer function reads:

Y (s) F(s)CO(s) 22.44s% 4 565 + 58.89

= = 5.130
R(s) 1+ F(s)C(s) 4s®+26.44s2 + 57s + 58.89 ( )
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Figure 5.13: Closed loop unit step response with PID controller
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Figure 5.14: Unity feedback loop with prefilter

We can check that the poles of the closed-loop transfer function are those
drawn on Figure 5.12, that are the two expected dominant poles —1.33 + j1.4
and the fast pole —4.

5.6 Prefiltering

5.6.1 Purpose

Let’s come back to the unit step response shown in Figure 5.13. It is clear that
the achieved overshoot is greater than the specification at 5%. Why ? Basically
because the specifications based on dominant pole placement assume that the
numerator of the closed-loop system is a constant, which is usually not the case
because the numerator of the closed-loop system is simply a consequence of the
designed controller C(s). In order to change into a constant the numerator of
the closed-loop system, a prefilter Cp,¢(s) may be used.

As shown in Figure 5.14, the prefilter Cp¢(s) is a controller which is situated
outside the feedback loop.

What is the purpose of the prefilter 7 Once the controller C(s) is designed,

the poles of the feedback loop transfer function RYJE‘E)S) are set, but not its zeros.
P

These zeros may cause undesirable overshoots in the transient response of
the closed-loop system. The purpose of the prefilter Cp¢(s) is to reduce or
eliminate such overshoots in the closed-loop system. Additionally the prefilter
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may annihilate slow stable poles which sometimes cannot be shifted by the
controller. Moreover in the case where the zeros are positive, the system without
prefilter may exhibit undesirable non-minimum phase behaviour (see section
4.10).

The transfer function of a basic prefilter reads as follows where constant K,y
is set such that the static gain of % is unitary, meaning that the position error
is zero, and where time constant A,y is set through a trial and error process until

that the transient response becomes satisfactory:

K .
) = (5.131)
Y (s) K F(s)C(s) L o 1+F(0)C(0) .
RO |,y = 7y TGO |,y = L = Kos = Aer Fojo)

We will see in the following sections how to enhance the design of the
prefilter.

5.6.2 Transfer function with negative real-parts zeros

Y (s)
Rys(s)

We focus in Figure 5.14. Let N(s) be the numerator of transfer function

and ¢(s) its denominator:

Y(s) = F(s)C(s)  Nga(s)
Ry(s) 14+ F(s)C(s)  q(s) (5.132)

Y (s)
Rps(s)

with negative real-parts, or equivalently that all the roots of N (s) are located
in the left half plane.

Prefilter C)¢(s) is designed such that its poles cancel the zeros of the closed-
loop system (i.e. the roots of Ng(s)). If there is no pole of the closed-loop
system to cancel, the numerator of the prefilter is set to be a constant K, ;. In
such a case the transfer function of the full system reads:

In this section we will assume that transfer function has all its zeros

Y(s) _ Ky
= 5.133
R()  als) 0159
As a consequence the transfer function of the prefilter reads:
K
Cpp(s) = =2 5.134
pf( ) Nd<8) ( )

Note that this is only possible because the roots of N (s) have negative
real-parts, meaning Cp¢(s) is stable.
Usually constant K, is set such that the static gain of % is unitary,

meaning that the position error is zero:
Y(s)

R(s) |—9

Additionally the numerator of the prefilter may also cancel some slow stable

poles (poles in the left plane) of the closed-loop system when they cannot be

shifted by the controller C(s). In this case, the numerator of the prefilter Cp¢(s)
is no more a constant.

— 1= Kyf = Dy(0) (5.135)
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Figure 5.15: Feedback loop with feedforward compensation and prefilter

5.6.3 Transfer function with positive real-parts zeros

When feedback loop transfer function RYJES()S) = ]\g(s()) has zeros with positive
P

real parts the design technique presented in section 5.6.2 to design the prefilter
Cps(s) is not applicable. Indeed in that situation N (s) has roots with positive
real parts and thus prefilter Cpf(s) = % is unstable.

One way to tackle this problem is to use a feedforward compensator C¢(s)
as shown in Figure 5.15.

Thanks to the feedforward compensator Cpy(s), transfer function Ri,gs()s)

reads as follows:

Y(s) _ F(s)(C(s) + Crs(s))
Bypy(s) 1+ F(s)C(s)

Let Np(s) and Dp(s) be the numerator and the denominator of F(s),
respectively.  Similarly let Ng(s) and Dg(s) be the numerator and the
denominator of C(s) and Ny¢(s) and Dys(s) be the numerator and the

Y (s)

denominator of Cs(s). Thus transfer function 3 ) reads:
P

(5.136)

F(s) = Nels)
C(s) = NEG _ Y(s) _ Nu(s) (Ne(s)Dys(s) + Do(s)Nyy(s))
P Bor(s)  Dypls) (Ne(s)Ne(s) + Dr(s)Dols))

Cff(s) = fo(S)

(5.137)

Choosing the feedforward compensator Cr(s) to be a constant gain Ky
leads to the following expression for the transfer function Riﬁ?l):
Y(s) _ Nr(s)(Nc(s) + Kyp Do(s))
TR Ryg(s) ~ Ne(s)Nes) + Dr(s)Dofs)

We recognize in polynomial Np(s)Nc(s) + Dp(s)Dc(s) the polynomial
q(s) obtained when Cy¢(s) = 0. Consequently the denominator of feedback
Y(s)

loop transfer function (5) remains the same when Cy¢(s) = Ky while its
P

numerator becomes Nz (s) (No(s) + Kypp Dco(s)) when feedforward is used.
Assuming that Np(s) has no root in the right half plane, constant Ky shall
be chosen such that all the roots of N¢(s) + Kyr Dc(s) have negative real
parts to be able to compute a stable prefilter Cp,¢(s). This can be achieved

through the root locus of the fictitious transfer function ﬁgg 3 Take care that
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R (s) /L 1(s)
() Fis :
) /\ ) _/ \ .
Cfs) —wl- <+ |a— Oy
N

Figure 5.16: Feedback loop non-minimum phase plant

here D¢ (s) is the numerator of the fictitious transfer function whereas N¢(s)
is its denominator.

Once K¢ has been chosen such that all the roots of No(s) + Kr¢ Dc(s)
have negative real parts then the design technique presented in section 5.6.2
can be applied.

If the plant with transfer function F'(s) is non-minimum phase, meaning that
Nr(s) has roots with positive real part, then the situation is more complicated.
Np(s) can then be split into two parts as follows, where polynomial Ng(s)
contains the roots of Np(s) with negative real part (stable zeros) and Ny(s)
contains the roots of Np(s) with positive real part (unstable zeros):

NF(S) :NS(S) Nu<3) (5139>

Following Xing & al.%, the prefilter C,f(s) can be built as a function of either

N]{,S((_si) or ]VD“I((_S;), where the roots of D (s) are chosen quite far from the desired

dominant poles. Polynomial N,(—s) is the polynomial whose roots are the
opposite of the roots of polynomial N,(s). Those techniques are called Zero
Phase Error Compensator (ZPEC) and Modified Zero Phase Error Compensator
(MZPEC), respectively.

Alternatively, consider the feedback loop shown in Figure 5.16. The transfer

function R};ﬁs(l) reads:

vis) F(s)
R,¢(s) 14 Ci(s)F(s) — Ca(s)

(5.140)

In the following, C1(s) and Ca(s) have the following expressions, where Q(s)
is a transfer function to be designed®:

Or(s) = F ' (s)Q(s)
{ Ca(s) = Q(s) (5.141)

*Yankai Xing, Mohammad Pourmahmood Aghababa, Bogdan Marinescu, Florent Xavier.
Analysis and Control of Non-Minimum Phase Behavior in Nonlinear AC Grids Equipped with
HVDC Links. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe),
Sep 2019, Bucharest, Romania. pp.1-5, 10.1109/ISGTEurope.2019.8905703. hal-02510793

"Wang L, Su J. Disturbance rejection control for non-minimum phase
systems with  optimal disturbance observer. ISA  Tramsactions (2015),
http://dx.doi.org/10.1016/j.isatra.2014.08.003
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Transfer function F),(s) has the following expression, where polynomial
N,(—s) is the polynomial whose roots are the opposite of the roots of
polynomial N, (s):

Ni(s) Nu(s)

F(s) = Ts) = F(s) =

Ng(s) Ny(—s)

= F(s)A™Y(s .
D) = F(s)A™Y(s)  (5.142)

All-pass filter A(s) is stable and has the following expression:
Nu(=5)

A7) = N, (o) A(s) Ny (s (5.143)
Then the transfer function R};ﬁs(l) reads:
Y(s) _ F(s) _ Ns(s) Nu(—s)
Fors) 1+ B (9Q()F(s) —Q(s) D9 T(H) (5144
where transfer function 7'(s) reads as follows
T(s) :== Q(s) + A7 1(s) (1 — Q(s)) (5.145)

It is clear that if T'(s) is stable then all zeros of RYJES(L) will have negative real
P

part. Consequently Q(s) shall be designed such that F,; !(s)Q(s) is proper and

T(s) stable. Let’s assume that Q(s) reads as follows, where Ng(s) and Dg(s)

are polynomials:

_ No(s)
Dq(s)

Then transfer function T'(s) reads as follows:

No(s) NQ(s) Nu(s) + Nu(=s5) (Dq(s) — No(s))
Dq(s) Dq(s) Nu(s)
Thus, if we choose Ng(s) and Dg(s) such that Dg(s) —Ng(s) = a(s) Ny(s),
there is a simplification by Ny (s) in T'(s) which becomes:

_ No(s) + a(s) Nu(=s)
Dq(s)
Moreover, if Dg(s) has all its roots with negative real part then T'(s) is
stable.

Finally, Internal Model Control and /or Fractional Order Controller may also
be used to handle this situation, but this is out of the scope of this lecture.

Q(s)

(5.146)

Q(s)

Dq(s) = Ng(s) = a(s) Nu(s) = T(s)

(5.148)

Example 5.4. We consider the following non-minimum phase transfer function:

10s — 1 10 (s —0.1)
F(s) = = 5.149
() s2+14s+1 s2+4+14s+1 ( )
By identification we get:
Ns(s) =10 A7 Nu(=5) _ s+0.1
3) = =7 =
Ny(s) =s—0.1 { e T oy (5:150)
D(s) = s+ 14s + 1 Fu(s) = F()A™(s) = iiast
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Then Q(s) is designed such that F,1(s)Q(s) is proper and T(s) stable. In
order to render F,,1(s)Q(s) proper we choose Q(s) for example as follows where
a is a design parameter:

Q(s) = s—lka ~ { ggg z i +a (5.151)

Then we choose Ng(s) and Dg(s) such that Dg(s) — Ng(s) = a(s) Ny(s):
Dg(s) — Ng(s) = a(s) Nu(s) = s+a—1=a(s) (s —0.1) (5.152)

We finally get:

a(s) =1 Ng(s) +a(s) Ny(—s) 1+ (s+0.1)
T(s) = = 5.153
{ a=09 — T Do (s) s+09 (5.153)
and:
Y(s)  Ng(s)Nu(—s)  10(s+0.1)(s+0.9) (5.154)
Ryr(s)  D(s)T(s)  (s2+1ds+1)(s+1.1) '
We can see that R};JE‘E)S) has all its zeros with negative real part, which was

the primary objective of the design. Furthermore, RY]EZ) 1s also stable.
D

5.6.4 Design steps

The general scheme for the controlled system is provided in Figure 5.15 where
C(s) is the transfer function of the controller, Cp¢(s) the transfer function of
the prefilter and Cps(s) the transfer function of the potential feedforward
compensator.

The design philosophy is to set the transfer functions C(s), Cpf(s) and
possibly C¢(s) in order to force the transfer function of the full system to have
the following expression where K, is a constant gain and ¢(s) a polynomial
formed with the required closed-loop poles:

Y(s)  Kpy

) = 19 (5.155)

The design steps of the control loop are then the following:

— Design the controller C(s) such that transfer function of feedback loop
without prefiltering (Cps(s) = 1) and without feedforward compensator
(Ctf(s) = 0) has the required denominator ¢(s). In other words controller
C'(s) is used to set the poles of the controlled system.

— In the case where the feedback loop transfer function RYJE‘Z) = ]\g%s()s) has
4

zeros with positive real parts, and assuming that Ng(s) has no root in the
right half plane, then design the feedforward compensator Cr(s) = Kyy
such that polynomial N¢(s) + Krf Dc(s) has all its roots with negative
real parts.
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— Design the prefilter Cp,¢(s) such that transfer function of the full system
does not have any zero:

Y(s)  Kpf

= — 5.156
R() (s (5:130)
In other words prefilter Cp¢(s) is used to annihilate the zeros of the transfer
function of the controlled system.

Example 5.5. Consider a plant with the following transfer function:

1

=56y

(5.157)

Obuviously the plant is not stable, indeed there is one pole at +2. In order to
stabilize the plant we decide to use the following PD controller (we do not use
an integral action because the plant F(s) has already an integral term):

Cs)=K,+Kgs (5.158)

Furthermore we set the targeted transfer function of the controlled system as
follows (see Figure 5.14):

= 1
R(s) s>4+5s+2 (5:159)

The first step of the design is to set the values K, and K, of the PD controller
such that the denominator of the targeted transfer function is achieved. Transfer

function R’;ﬁl) (without prefilter) reads:

Y(s)  _  C(s)F(s)

Rps(s) 1+C§?)i(§) \
= e (5.160)
_ ptHKas

T s2+s(Kg—2)+ K,

The actual denominator will be equal to the targeted denominator as soon as
K, and K, are set as follows:

Ky=17

82+S(Kd—2)+Kp:sQ+5s+2:>{ (5.161)
K,=2
Thus transfer function RYJE?)S) (without prefilter) reads:
P
K,+ K
Y(s) pt+ Kgs 2+4+7s (5.162)

R, (s) _32+5(Kd—2)+Kp:32+53+2

As soon as the zeros —2/7 of RYJE‘?)S) (without prefilter) have negative real
P

parts there is no need of feedforward compensator Cry(s):

Crp(s) =0 (5.163)
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Y (s)

Taking now into account prefilter Cpr(s) transfer function ) reads:

Y(s) _ Rysls) Y(s) 247s

= = —_— .164

R(s) R(s) Ry¢(s) ps(s) s2+5s5+2 (5.164)

Thus transfer function of the controlled system will read % = ﬁ as

soon as prefilter Cpy(s) is set as follows:

Y (s) 2 2

= =C = 5.165

Rs) ~ 255512 =57, (5.165)

"

5.7 Algebraic controller design

5.7.1 Polynomial product
Let A(s) be a polynomial of degree n and B(s) be a polynomial of degree m:

A(s) =ap+ais+ -+ aps”
{ B(s) =bo +b1s+ -+ bys™ (5.166)
Then the product A(s)B(s) is a polynomial C(s) of degree n + m:
C(s) = A(s)B(s) :==co+ c15+ - + g " (5.167)
Coefficients cp, c1, -+ , Chym of polynomial C(s) can be obtained as follows:
Co aq
C1 al
=Tp| . (5.168)
Cn+m an

where Toeplitz matrix Tp is the following (n +m + 1) x (n + 1) matrix which
is obtained by repeatedly shifting to the bottom its first column:

[0 0 -~ 0 0 ]
b by ) .
bm bmfl
Tp = ) (5.169)
0 b, :

0

bm bmfl

i 0 0 0 bm |

This result can be achieved by matching the coefficients of like power of s
in the development of A(s)B(s).
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Alternatively, coefficients cg,c1,- ,Cptm of polynomial C(s) can be
obtained as follows:
Co bo
C1 bl
T4l . (5.170)
Cn+m bm

where Toeplitz matrix T 4 is the following (n +m + 1) x (m + 1) matrix which
is obtained by repeatedly shifting to the bottom its first column:

a 0 - 0 0
o o
an  Gnp_1
Ta=| (5.171)
0 an, .
0
. . an Ap—1
00 - 0 a4y |

Moreover, let A(s) and X(s) be polynomials of degree n; and my,
respectively, and B(s) and Y(s) be polynomials of degree ma and ma,
respectively:

A(s) =ap+a1s+ -+ ap, s™
X(s)=xo+ 15+ + Ty ™
B(s) =by+bis+ -+ bp,s™
Y(S) =yYo+y1S+ -+ Ymys?

Furthermore assume that ny +mi > ng+ms. Then the product A(s)X(s)+
B(s)Y (s) is a polynomial C(s) of degree nj + m:

(5.172)

ny+myi = ng +mg
= C(s) = A(s)X(s) + B(s)Y(s) :=qo+ @18+ + Gnytmy 8™ (5.173)

Coefficients qo, q1, - - * , ny+m, Of polynomial C'(s) can be obtained as follows:
- ap ]
ai
do
a1
) =Sxy |- Ty (5.174)
bo
Ani4+m b
L bny

where Sylvester matrix Sxy is the following (n; +my + 1) x (n1 +1+mngo+ 1)
matrix which is obtained by shifting successively to the bottom coefficients x;
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and then coefficients y;:

[ o 0 0 ; Yo
I
1 xo !
[
.-
Tmi Tmi—1 Zo : Ymeo
|
Sxy: 0 Tmy I 0
|
0 I
I
. . [
: . Lo
0 0 0 0
L ni1+1 columns

Alternatively, coefficients qo,q1, - -

obtained as follows:

q0
q1

Anq+ma

= SuB

0 0 ]
Yo
Ymay ni1+mi+1 rows
0
Ymas  Ymo—1
0 Ymy
na+1 columns 1

(5.175)

ydni+m, ©of polynomial C(s) can be

Lo
1

Tmy
Yo
a1

(5.176)

L Ymo

where Sylvester matrix S 4p is the following (n; +mj +1) X (my +1+ma+1)
matrix which is obtained by shifting successively to the bottom coefficients a;

and then coefficients x;:

[ ap 0 0i1b O 0 ]
I
a;  ag ' b bo
: : S
Ap,  Gp;—1 ap : bng
|
SAB e O a/TLl | 0 bTLQ ni + ma + 1 TOWS
|
0 : 0
S o by by 1
0 0 010 0 b
mi+1 ::rolumns mao+1 columns i

(5.177)
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5.7.2 Sylvester’s Theorem

Consider the two polynomials:

— .. n—1 n
{ A(s)=ag+ais+ -+ a,_ 15"t +ays (5.178)

B(s) =bo4+bis+ -+ bp_15""1 + by,s™

Polynomials A(s) and B(s) are said to be coprime is they have no common
root. In other words, there in no polynomial R(s) # 1 such that:

{ A(s) =Y (s)R(s) s.t. deg (Y (s)) <n

B(s) = X(s) R(s) s.t. deg (X(s)) <m (5.179)

The preceding equation can be rewritten as follows:

A(s)  Y(s) s deg (Y (s)) < deg (A(s))
B(s)  X(s) ‘t'{ deg (X (s)) < deg (B(s)) (5.180)

or, equivalently:

deg (Y (s)) < deg (A(s)) = n

A(s) X (s) + B(s) (=Y (s)) =0 s.t. { deg (X (s)) < deg (B(s)) = m

(5.181)

Let Sap be the following square matrix, also called Sylvester resultant
matrix:

T ag 0 - b 0 -
a ap - b bo
al . b1
Anp—1 b -1
Sap=| o ., b b n+mrows  (5.182)
L m columns n columns 4

Then it can be shown that A(s) and B(s) are coprime (i.e. they have no
common roots) if and only if:

det(Sap) #0 (5.183)

This property indicates that polynomial equation A(s) X (s) — B(s) Y (s) =
0, or equivalently A(s) X (s) + B(s)Yi(s) = 0 with Yi(s) := —Y(s), has no
polynomial solution X (s) and Y'(s) as soon as A(s) and B(s) are coprime.

Furthermore if A(s) and B(s) are coprime, then there exists unique
polynomials X(s) and Y(s) with deg(X(s)) < deg(B(s)) = m and
deg (Y (s)) < deg (A(s)) = n such that the following Bézout equation holds:

deg (Y (s)) < deg (A(s)) =n

deg (X (s)) < deg(B(s)) =m (5.184)

A(s) X(s)+B(s)Y(s) =1 s.t. {
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On way to solve a Bézout equation is to turn it into a set of n 4+ m linear
equations with n + m unknowns. Let:

X(s) =g+ w18+ + Tp_18™ !
5.185
{ Y(s)=vyo+wps+-+yp15" " ( )
Then the set of linear equation reads:
2
1
0
Sap | "™ =1 . (5.186)
Yo :
: 0
L Yn—1

Alternatively, given a polynomial ¢(s) of degree n +m — 1, assume that we
are looking for polynomials X (s) and Y (s) such that:

A(s)X(s) + B(s)Y(s) = q(s) (5.187)

Assuming that A(s) and B(s) are coprime, the set of linear equation to be
solved reads as follows:

q(s) =qo+ @5+ -+ Guim_1s"tm !
SR
: q0
~ Sup Tm-1 | _ a1 (5.188)
Yo :
: gn+m-—1
L Yn—1 |

Furthermore, it is worth noticing that the following relation also holds®:

- X(s) T
sX(s)

A)X(s)+B(s)Y(s)=[ao a1 -+ an by by -+ by | |- 5207 -

sm}"(s) i
(5.189)

SWilliam A. Wolovich, Automatic Control Systems: Basic Analysis and Design, Saunders
College Publishing, 1995



5.7. Algebraic controller design 137

Example 5.6. Let A(s) and B(s) be the following polynomials:

(g e

It is straightforward that A(s) and B(s) are coprime polynomials because
they have no common root.

To check this result, we compute the Sylvester resultant matriz Sap, which
s here a square 3 X 3 matriz:

ag ; bo 0
ar b b 0 -2 0
Sap = aa 0 by 24 1rows=| -1 1 =2 (5.191)
10 1
—_————AN——

1 column 2 columns

It can be seen that det(Sap) # 0, thus A(s) and B(s) are coprime
polynomaals:

det(Sap) = det -1 1 =2 =240 (5.192)

As far as A(s) and B(s) are coprime, then there exists unique polynomials
X (s) and Y (s) with deg (X (s)) < m and deg (Y (s)) < n such that the following
Bézout equation holds:

A(s)X(s)+ B(s)Y(s) =1 (5.193)

On way to solve a Bézoutl equation is to turn it into a set of n+m = 3 linear
equations with n +m = 3 unknowns. Let:

X(s) =xo
5.194
{ Y(s) =yo+uy1s ( )
Then the set of linear equation reads:
x 1 0 -2 0 x 1
SAB Yo = 0 = -1 1 —2 Yo = 0 (5195)
Y1 0 1 0 1 Y1 0
We finally get:
i) 0.5
B X(s) =20=0.5
Yo | = | ~00 1= { Y (s) =yo+y1s = —0.5—0.5s (5.196)
Y1 —0.5
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5.7.3 One degree of freedom controller design

A general form of a one degree of freedom (abbreviated as 1IDOF) control system
with prefiltering is shown in Figure 5.14 where controller C(s) is not a PID
controller but a very general controller with a proper transfer function of relative
degree v > 07 whose denominator D¢ (s) is a monic polynomial® of degree m :

Ne(s) Yo+ yi1s+ -+ Ymrs" "

C(s) — —
(5) D¢ (s) 2o+ X185+ - F Tpo18™ L+ 1 x 5™

(5.197)

In the following the transfer function F'(s) of the plant is written in terms
of the ratio between its numerator Np(s) and its denominator Dp(s), which is
also assumed to be a monic polynomial:

F(s)

Np(s) where { Dp(s) monic polynomial (5.198)

~ Dr(s) deg (Np(s)) < deg (Dp(s)) =n

Thus the transfer function of the controlled system without prefiltering
(Cps(s) = 1) reads:

Y (s) _ C(s)F(s) _ Nc(s)Ng(s)
R,¢(s)  14+C(s)F(s) Nc¢(s)Np(s)+ Dc(s)Dr(s)

(5.199)

The coefficients of polynomials N¢(s) and D¢ (s) are then set in order that

the characteristic polynomial of the transfer function RYJES()S) matches with some
P

predefined polynomial ¢(s): it could be either the ITAE polynomial defined in
Table 5.2 or another polynomial which set the poles of the closed-loop system.

Nc(s)NF(s) + Do(s)Dr(s) == q(s) (5.200)

This equation is known as a Diophantine equation. Denoting by m the degree
of Dc(s) and by n the degree of Dp(s), and using the fact that the degree of
Nc(s)Np(s) is lower or equal than the degree of Do(s)Dr(s) (because F(s)
and C(s) are both proper transfer functions), we conclude that polynomial
q(s) := Nc(s)Np(s) + Dco(s)Dp(s) is of degree n + m. Because D¢ (s) and
Dp(s) are monic polynomials, we conclude that polynomial ¢(s) is also a monic
polynomial with n + m coefficients.

On the other hand controller C(s) is formed with m — r + 1 unknown

coefficients in its numerator (Yo, 91, ,Ym—r) and m unknown coefficients in
its denominator (g, 1, - ,Zm—1), which forms a set of 2m — r + 1 unknown
coefficients.

In order to be able to identify all the coefficients of s? in (5.200) the following
equation shall be satisfied:

n+m=2m—-r+1l=m=n+r—1 (5.201)

"The relative degree is the difference between the degree of the denominator (number of
poles) and degree of the numerator (number of zeros)

8A monic polynomial is a polynomial whose leading coefficient, that is the nonzero
coefficient of highest degree, is equal to 1
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Consequently as soon as the predefined monic polynomial q(s) is a of degree
n+m = 2n+r — 1, Diophantine equation (5.200) can be solved.

To summarize, the denominator ¢(s) of the closed-loop system as well as
the numerator N¢(s) and the denominator D¢ (s) of the controller C(s), whose
relative degree is set to 7, shall be set as follows:

Dp(s) monic polynomial of degree n
{ C(s) controller of relative degree r
q(s) =1 x 2" L 4 go i, 08?22 4 s+ qo (5.202)
= ¢ No(s) =yna1s" '+ +ys+wo
Do(s) =1 x s pa, 08" 2 4o 25 + 20

In addition coefficients z; of D¢c(s) and and y; of No(s) can be obtained by:

T
Cw
Tntr—2 a
Sap| 1 | = : (5.203)
Yo 42 n+r—2
: I 1 |
L Yn—-1
Let:
NF(S) =by+bis+---+b,s™
{ Dp(s)=ap+a1s+ -+ +ap_15" 1 +1x s" (5.204)
Then S 4p is the following Sylvester resultant (square) matrix:
I ag 0 ; bo 0 1
|
a1 ag b bo
aq : : b1
|
(p—1 : b1 :
Sip = 1 - by bt 2n 4+ r rows (5.205)
|
0 1 L0 b
|
|
n+r columns n col";mns B

Example 5.7. Consider the case where the numerator Np(s) and the
denominator Dp(s) of transfer function F(s) read as follows:

{ NF(:S) = b282 + bls + b()

DF(S) = 83 +a232+a15+a0 (5.206)

We seek a controller C(s) of relative degree r = 0. Because Dp(s) is of degree
n = 3, the algebraic controller C(s) is composed of the ratio of 2 polynomials
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Nc(s) and De(s) of degree n —1 =2 and n+r — 1 = 2, respectively:

O1s) = HE where { L) =087 v (5.207)

~ Dols) M Do(s) = 82+ a1 s + 20
The denominator Np(s)Nc(s) + Dr(s)Dc(s) of the closed-loop transfer
function is a polynomial of degree 2n +r — 1 = 5. Using the results on the

product of polynomials presented in 5.7.1 we get:

Np(s)Ne(s) + Dp(s)Do(s) = qo + q15 + qos® + q35° 4+ qus* + gss°  (5.208)

where:
_QQ- -ao 0 O;bo 0 0--{/60-
q a1 ag O : by by O T
9 az ar ag'by by bo 1
q3 o 1 ag ai : 0 b2 b1 7 ?JO 7 (5209)
qa 0 1 as : 0 0 b2 Y1
| g5 | L0 0 1170 0 0 [y

We finally get:

Np(s)Ne(s) 4+ Dp(s)Da(s) = (bas* 4 by s+ bo)(y2 5° + y15 + yo)
+(s3 +ag s + a1 s+ ag)(s® + 21 5+ x0)
=1 x 8%+ (x1 + ag + baya) s*
+(370 + asx1 + a1 + bay1 + b1y2) s3
+(aszo + ar21 + ag + bayo + biyr + boyz) s>
+(a1wo + apr1 + biyo + boy1) s + aoxo + boyo
(5.210)

On the other hand, let \;, 1 =1, -+ 2n+r—1=1>5 be the desired closed-loop
poles. We can write:

a(s) =TL4" (s =)
= (8 - )\1)(8 — )\2)(8 - )\3)(8 — )\4)(8 - )\5) (5.211)

4
=57+ > p=0dp S*

where:

a5k = (=1)F Z iy - Ny, where k=1,---.,5 (5.212)

1<ip << <5

Once the coefficients of s* of q(s) are identified, we get in a matriz form.:

(0] [a O 0.:bg O O zo
Q1 ar ap 0 by by O 1
q2 az a1 ap'by by b 1
= - - - 5.213
q3 1 as ai : 0 b2 b1 Yo ( )
q4 0 1 as : 0 0 bg Y1
| 1] L 0 0 1170 0 0 ]| v |




5.7. Algebraic controller design 141

Once this system inverted we get:

[z0] [a O 01b 0O 0O Qo
1 ar ag 0 : b1 bo 0 q1
1 az ap ap'by by by q2
- = | 5.214
Yo 1 az a1+ 0 by by q3 ( )
Y1 0 1 a : 0 0 b2 qa
L Y2 | L0 0 110 0 0 ] | 1]
| |

5.7.4 Prefilter design

Once C(s) is set then the transfer function Cp,f(s) of the prefilter can be
computed. For example it can be computed in order to match with the
required ITAE transfer function:

Y(s) _ Nals)

= 5.215
Ris) ~ qls) (5:215)
Thus from the following relations:
Y(s) _ Nas)
Yoy _ A v
7 = Ori(S) w5 (5.216)
Y(s) _ R (s)Ne(s) _ Ne(e)Ne(s)
Ry5(s) Nc(s)NF(s)+Dc(s)Dr(s) q(s)
We get:
Y(s) Rpr(s) _ Na(s) q(s) Na(s)
W =R Y T ) Ne@Ne®) - Ne@Nem 02D

It is worth noticing that the design is possible only if all the zeros of
F(s)C(s), that are the roots of N¢(s)Np(s), have negative real parts so that
the prefilter C)¢(s) is stable.

Consequently the design strategy to compute the transfer function C(s) of
the controller and the transfer function Cp(s) of the prefilter is the following:

— Find the transfer function C(s) to give the characteristic polynomial of

% of the form given in Table 5.2:
Y(s) _  F(s)C(s) _ No(s)Nr(s) (5.218)
Rpp(s) 14 F(s)C(s) q(s)
— Design the prefilter Cp(s) to cancel the unwanted terms in the numerator
of the transfer function RY;S()S) so that the closed-loop transfer function
D
28 = ]\;%S()S) matches with the ITAE transfer function:

Ncl(s)

Cpy(s) = Mol Nelo) (5.219)

The transfer function Cp¢(s) of prefilter may be reduced by using for
example the technique presented in Section 3.6.
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R(s) R (s) oA U(s) Y(s)
— > Cp;-( s) 4>|;\+ > F(s)

- A4

C(s) —

Figure 5.17: Controller C(s) in the feedback loop and prefilter Cp¢(s)

Example 5.8. Consider an unstable plant with the following transfer function:

N (s) B 1
F) = 55 = GoD6 D) (5.220)

The specifications are the following:
— Settling time ts about 1 seconds
— Owvershoot D of 5%

— The position error shall be zero

An algebraic controller C(s) with relative degree r = 1 as well as a prefilter
Cpr(s) will be designed to achieve those specifications. We decide to put
controller C(s) in the feedback loop as shown in Figure 5.17.

From the specifications we compute the location of the dominant poles as
follows:

_ _ —In(D)
_ m=————
{Xdp, Adp} = —mwo £ jwo /1 —m? where Vm2+In?(D) (5.221)
0 mts
We get:
m ~ 0.69 5 )
{ wo ~ 5.8 = {Adp, Aap} = —4+j4.2 (5.222)

The degree of the denominator of F(s) is n = 2 and we impose the relative
degree of controller C(s), r = 1. Thus the degree of denominator of the closed-
loop transfer function is 2n+r—1=4. So in addition to the 2 dominant poles
{Adps Aap} we have to choose two non-dominant poles faster that {Aap, Aap}, for
example Ay = —20 + j and /_\f =—20—j. So q(s) reads:

Ap = =20 = g(s) = (s — Aap)(s — Aap)(s — Ap)(s — Ay)
= (8% + 2mwos + w?)(s% + 40s + 401) (5.223)
~ s + 4853 + 754.645% + 4553.65 + 13489.64

Let C(s) = ggg‘;; where Nc(s) is a polynomial of degree n — 1 = 1 and

D¢ (s) is a monic polynomial of degree n +r —1 = 2:
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Nc(s) Y15 + Yo
= = 224
Cls) Dc(s) 82+ mwis+ a0 (5:224)

The denominator Nc(s)Np(s) + Dc(s)Dp(s) of the closed-loop transfer

» Y ( :
function Rpfis) reads:
Nc(s)Np(s) + Da(s)Dp(s) = qo + 15 + q2s® + q3s° + s* (5.225)
where: ‘
q0 -2 0 0,10 Zo
@ 1 -2 0'0 1 1
e | = 1 1 —=-2:00 1 (5.226)
e 0 1 1,00 Yo
1 0 0 1'00 Y1
We get:

Ne(s)Np(s) + Do(s)Dr(s) = (y1s + yo) + (2 + 215 + x0)(s* + 5 — 2)
=st+ 31+ m3) + s%(wo + 21 — 2)
+s(xg — 2x1 4+ y1) — 220 + Yo
(5.227)
Identifying Nco(s)Np(s) + Do(s)Dp(s) with q(s) leads to the values of
coefficients x; and y;:

1+ 21 ~48 T ~ 47
ro+x1 — 2~ 754.64 xg ~ 709.64
To — 201 +y1 ~4553.6 ) w1 ~ 3937.96 (5.228)
— 20 + yo ~ 13489.64 Yo ~ 14908.92
Thus C(s) has the following expression:
3937.96 14908.92
Cls) = 252000 o i (5.229)

T 24 as+mx9 82+ 47s+ 709.64
Y(s)

The unit step response of the closed-loop transfer function + ) s drawn
P

in Figure 5.18. We notice that the time response comply with the specifications
but neither the overshoot nor the position error.

The prefilter Cpy(s) is designed to overcome those drawbacks. Closed loop
transfer function Y (s)/Ryf(s) reads:

Yis) Ng(s)

Bps(s) (S - )\dp)(s - j‘dp)(s - )\f)(s - j‘f)
2
s2 +47s + 709.64 (5.230)

~ ST ¥ 1853 1 754.6452 + 4553.65 + 13489.64

where {Nap, Aap} are the desired dominant poles and {\, \s} is the fast poles of
the loop.

As far as the roots of Np(s) lies in the left half plane, and in order to achieve
a null position error, the transfer function of the prefilter Cpy(s) is designed as

follows: - -
AdpAdpA s f 13489.64
C = PP ~ 5.231
p19) = =N 2 + 475 + 709.64 (5.231)
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Figure 5.18: Unit step response without prefilter

The closed-loop transfer function finally reads:

Y(s) _ Y(s)
" = Oni(8) X 70
_ )\dp)\dp)\jbar/\f (5232)
(S—Adp)(s—)\dp)(s—)\é‘)
~ 13489.64

~

sT+4853+754.6452+4553.65+13489.64
The unit step response of the closed-loop system with the prefilter Cpr(s) is
drawn in Figure 5.19. We have also drawn on this figure the step response of
2
MJ#M’ which is the targeted closed-loop transfer function from which the
specifications have been derived. We notice that now the unit step response fully

comply with the specifications.

]
Example 5.9. Consider a plant with the following transfer function:
F(s) = D53 = e
Dr(s) (2s+1)(3 -*‘11/2(21 +1) (5.233)

= $3126/2452+9/245+1/24

We wish to design a controller with relative degree r = 0 which minimize the
ITAE performance index and also which leads to a settling time tg for a step
input less than 0.5 sec. We decide to put controller C(s) in the direct path as
shown in Figure 5.14.

The degree of the demominator of the plant transfer function is n = 3.
Consequently we shall choose a predefined polynomial q(s) whose degree is
2n+1r—1=>5. The coefficients of the closed-loop denominator are chosen in
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Figure 5.19: Unit step response without and with prefilter

order to minimize the ITAE performance index. From Table 5.2 we get the
following polynomial of degree 5:
q(s) = 5° 4+ 2.068wps* + 4.499w3s> + 4.675wis* + 3.257wgs +wy  (5.234)

We need to select wg in order to meet the settling time requirement. Since

ts &~ miw() where m is set in a first attempt to 0.8 we get:
ts = 0.5 4
A =1 2
{ m—08 o — 0 (5.235)

In addition the numerator and the denominator of the controller C(s) are
polynomial of degree n +1r —1 = 2:

Nec(s) = y2s® + y1s + Yo
{ Dc(s) = 82 + w15 + 20 (5.236)

Consequently the closed-loop transfer function without prefiltering (Cps(s) =
1) reads:

Ry = VoGNS DeDr 0

r(s cl(s s)+Dc(s s

P F (;252+y15+yo)/24 (5.237)
(y2s2+y15+y0)/24+(s24+x1s+20)(s3+26/24 s249/24 s+1/24)

That is:
Y(s) (y25® +y1s +yo) /24

Ryp(s) 85+ qust + q383 + @252 + q1s + qo

(5.238)
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Where:
g0 ] [ 1/24 0 0 11/24 0 0 77 zo]
q 9/24 1/24 0 | 0 1/24 0 T
@ | _ | 26/24 9/24 1/24 1 0 0 1/24 || 1 (5.239)
q3 1 26/24 9/24 0 0 0 Yo '
Qu 0 1 26/24, 0 0 0 n
L 1] L o 0 1 10 0 0 | L

Fquating those coefficients with the required coefficients of polynomial q(s)
given in (5.234) result in the following matriz equation:

[ oWy ] [ 1/24 0 0 11/24 0 0 o
3.257w3 9/24 1/24 0 | 0 1/24 0 T
4.675w3 | | 26/24 9/24 1/24 | 0 0 1/24 1
449903 | 1 26/24 9/24 1 0 0 0 Yo
2.068wq 0 1 26/24, 0 0 0 Y1

i 1 | | 0 0 1 o0 0 0 || v |

(5.240)
Solving this matriz equation for wg = 10 leads to the following values:
C2o0 1 [ 4283
x1 19.597
1 1
v | T 17 2.3996 105 (5.241)
Y1 7.7781 - 10°
L Y2 | 1.0089 - 10° |
Thus the controller C(s) has the following transfer function:
2.3996 - 10° 4+ 7.7781 - 10° s + 1.0089 - 10° s
C(s) = il il ° (5.242)

428.3 +19.597s + 1 x s2

This is, dividing the numerator and the denominator by 24:

99982.154 -+ 32408.573s + 4203.62352
C(s) = i i i (5.243)
17.845637 + 0.81652785 + 0.041666752

And the closed-loop transfer function without prefiltering (5.238) becomes:

Y(s) 99982.154 + 32408.573s + 4203.623s>
Ryp(s) 100000 + 32570s + 467552 + 449.9s3 + 20.68s* + s°

(5.244)

Then we select the prefilter Cp¢(s) in order to achieve the required ITAE
transfer  function. We check that all the roots of polynomial
99982.154 + 32408.573s + 4203.623s% have negative real parts. Therefore we
obtain for the transfer function of the prefilter:

B 100000
©99982.154 + 32408.573s + 4203.623s2

Cpy(s) (5.245)
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Figure 5.20: Unit step response of the whole system

We finally get the transfer function of the whole system:

Y(s) _ Y(s)
R(s) — pf<3)Rpf(s)
= C,(s) 99982.154+32408.5735+4203.6235> (5.246)
pf 100000+3251%%%J66167532+449.953+20.6834+s5

~ 100000+32570s+467552+449.953+20.68s1+s5

Figure 5.20 shows the response of the whole system to a unit step input.

As expected the settling time lower than 0.5 sec. Furthermore the whole
system has a zero steady state error and an overshoot about 1.7%. We can
observed that the prefilter Cpy(s) greatly decreases the overshoot.

5.7.5 Youla parameterization of all stabilizing controllers

We consider the feedback control loop with unity feedback shown in Figure 5.21
where F(s) and C(s) are the plant model and the controller transfer function,
respectively.

We have seen that in a standard negative feedback configuration, the
denominator of the closed-loop transfer function satisfies the following pole
placement Diophantine equation where ¢(s) is Hurwitz:

Nc(s)Nrp(s) + Do(s)Dr(s) = q(s) (5.247)

Let split the stable right hand-side polynomial ¢(s) as a factor of two Hurwitz
polynomials go(s) and gp(s):

q(s) = qo(s)qr(s) (5.248)



148 Chapter 5. Basic feedback control design

R(s) &(s) Uts) I(s)
-

— Cis)  [—> F5)

Figure 5.21: Feedback control loop with unity feedback

Then the Diophantine equation becomes the following Bézout equation:

Nc(s) Np(s) n D¢ (s) Dp(s)
qc(s) qr(s)  qc(s) qr(s)

=1 (5.249)

Thus transfer function F(s) can be divided into two coprime transfer
functions N(s) and D(s) as follows:

Nr(s S N(s N(s) = ];]F(ss)
F(s) = q;((s)) 1(];((3)) : Dgsi where { Dl e (5.250)

Because they are coprime, Bezout theorem indicates that stable transfer
functions N (s) and D(s) are such that there exists two stable transfer functions
X (s) and Y (s) such that the following relation holds:

Y (s)D(s) + X(s)N(s) =1 Vs (5.251)

Then Youla & al. have shown in 1976 that the class of controllers that
make the closed-loop system internally stable is given as follows where Q(s) is
an arbitrary real stable rational transfer function:

X(s) 1 Q(s)D(s)
) = Yo — Qe NG)

(5.252)

It is worth noticing that if F'(s) is a stable transfer function, then we can
make the following choice in the Bezout identity (5.251):

Y(s):
D(s) :
X(s)
N(s):

(5.253)

1
1
0
F

()

With this choice, (5.252) becomes as follows where Q(s) is still an arbitrary
real stable rational transfer function:

Cls) - X +QWDE) _ Q)
V(5) = QEIN(s) ~ 1-Q()F()

(5.254)
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Crs) |
Ris) / ~els /A Urs) Y(s)
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\ \/\ /.<},"' N < /_‘_& v / ~ 5) : 5)

Frs) J

Figure 5.22:  Feedback control loop with unity feedback and Youla
parameterization

With this parameterization of controller C(s), the feedback control loop with
unity feedback shown in Figure 5.21 can be re-arranged as shown in Figure 5.22.

Furthermore, applying the parameterization of controller C'(s) expressed by
(5.252) we obtain the following closed-loop transfer function for the feedback
control loop with unity feedback shown in Figure 4.2:

o FE)CE) F(s) =gtore SF(s
G(s) = 1+ F(s)C(s) 1+ F(s) =5 QL) 5259

Because G(s) := 5};8 and F(s) := Egg, we get that Q(s) is the transfer

function between U(s) and R(s)

Y (s) _ U(s) Y(s) _ U(s)
R(s) R(s)U(s) R(s)

U(s)

¢e= R(s)

F(s) == Q(s)F(s) = Q(s) =

(5.256)

More generally, for SISO plants, a necessary and sufficient condition for a
factorization to be coprime is that N(s) and D(s) have no common zero neither
finite nor infinite'?.

Example 5.10. We consider the following transfer function:

s+1

o= =96+9)

(5.257)

Then, assuming any parameter a > 0 (indeed N(s) and D(s) shall be stable
transfer functions), we can choose for example:

N(s) = oop
D(s) = 7@@;5;3)

(5.258)

®Youla, D. C., Bongiomo, J. J., Jr., and Jabr, H. A., Modem Wiener-Hopf design of
optimal controllers; Part 1: the single-input-output case, IEEE Transaction on Automatic
Control, vol. AC-21, Feb. 1976, pp.3-13

0Fortuna L., Frasca M., Optimal and Robust Control, CRC Press, 2012
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r(s) | N ufs) v(s)
—» C.05) >+ < F(s) -
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Figure 5.23: Two-degree-of-freedom control loop

(s) ) u(s) v(s)
—> N e e D) > F(s)
\/ _ \/,.'

T— Nis) |

Figure 5.24: Polynomial realization of the two-degree-of-freedom control loop

The degree of polynomial s+ a is chosen to be 2 in order that N(s) and D(s)
have no common zero when s is infinite. Furthermore, a ¢ {—1,2,—3} in order
that N(s) and D(s) are coprime.

Then stable transfer functions X (s) and Y (s) can be computed such that the
following relation holds:

Y (s)D(s)+ X (s)N(s) =1 Vs (5.259)

where, assuming any parameter b > 0:

s) = s+c
{ Xl =55 (5.260)
Y(s) = %

5.7.6 Two degrees of freedom controller design

Consider the configuration shown in Figure 5.23 where F(s) is the plant transfer

function, Cpf(s) a prefilter and Ca(s) a controller in the feedback loop. This

feedback loop is called a two-degree-of-freedom control loop. From Figure 5.23

control u(s) reads:

u(s) = Cpr(s)r(s) — Ca(s)y(s) (5.261)

Now we select controllers C,¢(s) and Cs(s) with the same polynomial

denominator Dg(s) and polynomial numerator Nj(s) and Na(s),
respectively!!: )

Cps(s) = D (s)Ni(s)
{ il Soni s (5202

1 Chi-Tsong Chen, Linear System Theory and Design, Oxford University Press, New York,
1999, 334pages, ISBN 0-19-511777-8.
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Thus control u(s) can now be written as follows:
u(s) = DG (s/N(s)e(s) ~ D& (s)Nafs)y(s) (5.263)
=D (s) (N1(s)r(s) — Na(s)y(s))
This leads to the polynomial realization of the two-degree-of-freedom control

loop shown in Figure 5.24.
Now, assume that the plant transfer function F(s) reads as follows:

F(s) = Np(s)D3'(s) (5.264)

Then from Figure 5.24 the relation between control u(s) and reference input
r(s) reads as follows:

u(s) = D' (s) (N1(s)r(s) — Na(s)Np S)D?(S)@(S))

& (I+ Dz (s)Na(s)Np(s)D5l(s)) u(s) = Dol (s)Ny (s)r(s)  L0-200)
We finally get:
= (I+Dg'(s)Na(s)Np(s)D5l(s)) " Dl(s)Ny(s)r(s)
=(Dc (H+D H(s)Na(s)Np(s)D5(5))) ™ Ni(s)r(s)
= (De(s) +N2 (s)Np(s)DF(s)) " Ny (s)r(s) (5.266)
= ((Dc(s)Dr(s) + Na(s)Np(s) Dil(s) " Ni(s)r(s)
=Dr(s )(DC( )DF( ) + Na(s)Np(s)) " Ny(s)r(s)

This leads to the following relation between output y(s) and reference r(s):

y(s) = F(s)u(s)
= Np(s)D' (5)Dr(s) (De(s)Dr(s) + Na(s)Np(s) ™' Ni(s)r(s)
(Dc(s)Dr(s) + Na(s)Np(s) ™" Ni(s)r(s)

= Np(s)
(5.267)
Thus the closed-loop transfer function reads:
y(s) = G(s)r(s) (5.268)
where:
G(s) = Np(s) (Da(s)Dp(s) + Ny(s)Np(s) " Ni(s) (5.269)
In the SISO case, this simplifies as follows:
G(s) = N1(5) Vi (s) (5.270)

D¢ (s)Dp(s) + Na(s)Np(s)
Then the model matching problem becomes solving D¢ (s), Ni(s) and Na(s)

from (5.270). More specifically, let F(s) = NE( ES; be a proper transfer function,
where Np(s) and Dp(s) are coprime. The problem statement for the two degrees
of freedom controller design, or model matching, is the following: given any
targeted closed-loop transfer function 7°(s), find proper controllers Cp¢(s) =

gé((ss)) and Ca(s) = gé((‘i)) in Figure 5.23 to implement 7'(s). Following Chi-

Tsong Chen'?, this problem is solved as follows:

128hou-Yuan Zhang and Chi-Tsong Chen, Design of unity feedback systems to achieve
arbitrary denominator matrix, in IEEE Transactions on Automatic Control, vol. 28, no. 4,
pp. 518-521, April 1983, doi: 10.1109/TAC.1983.1103255
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. First check that the targeted closed-loop transfer function T'(s) is

implementable, that is that ?8 is proper and BIBO stable;

. Compute polynomials F(s) and H(s), where F(s) and H(s) are coprime,

such that:

= (5.271)

. Let n be the degree of Dp(s) and r > 0 be the chosen relative degree

of Cy(s). Introduce a Hurwitz polynomial P(s) (polynomial whose roots

have negative real part) such that P(s) H(s) is a polynomial of degree

2n4+r—1,:

P(s) E(s) Nr(s)
P(s) H(s)

T(s) = (5.272)

. Make the identification:

P(s)E(s) Np(s) _ Ni(s)Np(s)
P(s) H(s) Dc(s)Drp(s) 4+ Na(s)Nr(s)

T(s) = G(s) & (5.273)

It is clear the achievement of the targeted transfer function 7'(s) is based
on the pole / zero cancellation of the roots of P(s). This justifies why
polynomial P(s) shall be Hurwitz.

. From the numerator of (5.273), we get the expression of Ni(s):

Ni(s) = P(s) E(s) (5.274)

. Let m be the degree of monic polynomial Dc(s) and m—r be the degree of

polynomial Na(s), such that Ca(s) ]DVZ((‘?) has a relative degree r. Using

the fact that the degree of No(s)Np(s) is lower or equal than the degree of
Dc(s)Dr(s) (because F(s) and Ca(s) are both proper transfer functions),
we conclude that polynomial g(s) := Na(s)Nr(s) + Dc(s)Dp(s) is of
degree n + m. Because Dc(s) and Dp(s) are monic polynomials, we
conclude that polynomial ¢(s) is also a monic polynomial with n + m
coefficients.

On the other hand controller Ca(s) is formed with m — r + 1 unknown
coefficients in its numerator (yo, y1, - , Ym—r) and m unknown coefficients
in its denominator (xg,x1,- -+ ,Zm—1), which forms a set of 2m — r + 1
unknown coefficients.

In order to be able to identify all the coefficients of s° in the polynomial
which forms the denominator of (5.273) the following equation shall be
satisfied:

n+m=2m—-r+l=m=n+r—-1 (5.275)

Thus we get Ca(s) = gé((‘?) where:

{ De(s) =1 x 8" g o™ 2 - F a5 + 10 (5.276)

No(s) = yn18" L+ +y1s + yo
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Figure 5.25: Equivalent two-degree-of-freedom control loop

As seen in section 5.7.3, coefficients x; of Dc(s) and and y; of Na(s) can

be obtained by:

SaB

Let:

o

{ NF(S):b()—‘rblS—l—‘--—i-bmSm

Dp(s)=ag+ais+ - +a, 15" 1 +1xs"

Then S4p is the following Sylvester resultant (square) matrix:

bo
b1

-1

bm

|
|
|
|
|
1
b
1
L0
|
|

0
bo
b1

bmfl

bm

q0
q1

a 0
ail agp
a
an—1
Sap = 1 ay
0 1
n+r c‘arlumns

n columns

Then prefilter controller Cp¢(s) =

Na(s)

Co(s) = Dc(s)
s).

G(s)=T(

Ni(s)
Dc(s)

in Figure 5.23 are obtained to achieve model matching

q2n4r—2

(5.277)

(5.278)

2n +r rows (5.279)

and feedback loop controller

On the basis of the polynomial realization of the two-degree-of-freedom
control loop in Figure 5.24, an equivalent two-degree-of-freedom control loop is
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shown in Figure 5.25 where'3:

Cle(s) = gé((s)

S

Coe(s) = 43

~—

(5.280)

h—

Then we get:

_ Ni(s)Nr(s)
G(s) = Dc(s)D;(sS)Jrll\w’z?S)NF(s)
_ H%ﬂﬁ (5.281)
Dc(s)Dp(s)
. Cie(s)F(s)
T 1+C1e(5)C2:(s) F(s)

Other design methods are presented by Wolovich!* and Febina Beevi & al.'?.

Example 5.11. Consider a plant with the following transfer function:

_ Ne(s) _ 1
F(s) = Di(@ ~ BB ED)

= 1795126521243 (5.282)
1724

T $426/245249/24s+1/24

We wish to design a two degrees of freedom controller design which minimizes
an ITAE performance index with a settling time ts for o step input less than 0.5
sec.

1. Let T(s) be the targeted closed-loop transfer function. The degree of the

denominator of the plant transfer function is n = 3. The ratio ?Ezg will

be proper and BIBO stable if T(s) is chosen for example as follows, see

Table 5.2:

3
“o

T %+ L.783wps? + 2.172w2s + wp

T(s) (5.283)

We need to select wy in order to meet the settling time requirement. Since

ts ~ miwo where m 1s set in a first attempt to 0.8 we get:
ts =0.5 4
~—— =10 5.284
{ m = 0.8 w0 mitsg ( )

2. Polynomials E(s) and H(s), where E(s) and H(s) are coprime, are such
that:

T(s) 24 w3  E(s)
Np(s) 83+ 1.783wp s2 + 2.172w¢ s +wi = H(s)

13Pradin B., Garcia G., Modélisation, analyse et commande des systémes linéaires, Presses
Universitaires du Mirail, 2010

MwWilliam A. Wolovich, Automatic Control Systems: Basic Analysis and Design, Saunders
College Publishing, 1995, ISBN-10 : 0030237734

5P Febina Beevi, T. K. Sunil Kumar, Jeevamma Jacob, Novel Design Method for Two
Degree of Freedom Controllers, International Review of Automatic Control (LRE.A.CO.), Vol.
8, N. 4, July 2015, ISSN 1974-6059

(5.285)
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3. The degree of H(s) is n = 3. We choose the relative degree of Ca(s)
to be r = 0. Then Hurwitz polynomial P(s) (polynomial whose roots
have negative real part) shall be chosen such that such that P(s) H(s) is a
polynomial of degree 2n +r — 1 = 5. Consequently P(s) is a polynomial
of degree 5 — 3 = 2 and we choose the 2 roots of P(s) faster that the roots
of the denominator T(s) when wo = 10, for ezample —15 twice:

P(s) = (s + 15)? (5.286)

4. Then we make the identification:

T(s) = G(s)
P(s) E(s) Np(s) _ Ni(s)Nr(s)
o Pl His) Dc(s)Dr(s)+N2(s) Nk (s)
(s+15) 24w0|w():10(1/24) B Ni ()N (s) (5.287)
(s3+1.783wos2+2.172w s+wj ) | (s+15)* — Dc(s)Dp(s)+Na(s)Np(s)

(5415 Wi, 1y Ni(s)Np(s)
q(s) " Dc(s)Dr(s)+N2(s)Nr(s)

=

wp=10

5. From the numerator of T(s), we get the expression of Ni(s):

Ni(s) = P(s) E(s) = (s + 15)* 24w|  _,, = 24-10% (s + 15)* (5.288)

6. Let q(s) be the denominator of T'(s). We have seen that:

q(s) = (5% +1.783wo > + 2172w s + wi) |, o (s + 15)?
= (5% +17.83 5% +217.25 + 10%) (s + 15)*
=57 +47.8351+977.1 5% +11.5277 - 10% s> 4 78.87 - 103 s + 225 - 103
=" +tustt s tesitastq
(5.289)

Diophantine equation Dc(s)Dp(s) + Na(s)Np(s) = q(s) is then solved
where monic polynomial Do (s) is of degree n+r —1 =2 and polynomial
Na(s) is of degree and n — 1 = 2:

{ Dc(s) = 8%+ 215+ 20

5.290
Nao(s) = y2 8% + 41 8+ Yo ( )

As seen in section 5.7.3, coefficients x; of Dc(s) and and y; of Na(s) can
be obtained by:

Zo 40
I q1
Sup |- 2| = | © (5.291)
Yo a3
Y1 q4
L Y2 | L 1]
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where S Ap is the following Sylvester resultant (square) matriz:

[ 1/24 0 0 11/24 0 0
9/24 1/24 0 : 0 1/24 0
B 26/24 9/24 1/24 ' 0 0 1/24
Sap=1 "1 o624 9/24 . 0 0 0 (5.292)
0 1 26/24, 0 0 0
0 0 1 0o 0 0 |
Solving this matriz equation leads to the following values:
[ 2o ] (g0 ] [ 926.08
T Q1 46.747
Il et || _| L
w | =548 | g | = | 53901 108 (5-293)
Y1 qa 1.8845 - 10°
L Y2 . 1 ] [ 0.2521-10° |

The knowledge of polynomials Dc(s), Na(s) and Ni(s) enable to form the
controllers Cie(s) and Cae(s):

Cre(s) = Ni(s) _ 24103 (s+15)% 24103 (s415)°
1e\°) = Dc(s) — 24wy s+mo  52+46.7475+926.08
(5.294)
Coe(s) = Na(s) _ y2s’4y1s+yo _ 0.2521-10%52+1.8845-10%5+5.3991-10°
2e Ni(s) 103 (s+15)? 103 (s+15)?

Ci(s) = Ni(s) _ 10°(s+15)* _ 103 (s+15)2
1 D1Es) y252+y15+y0 41.6667x10735241.94785+38.5868

Ca(s) = Na(s) _ aps’+aistao _ 10.5069x1035%478.5208x 103 5+224.9614x 103
2 Ni(s) ~ 103 (s+15)2 103 (s+15)>

(5.295)
Figure 5.26 shows the response of the closed-loop with controllers C1(s) and
Cy(s) to a unit step input. The targeted step response is the response of the

3
system with ITAE transfer function T(s) = P S;ﬁQ T3 s where wy =
. . 0 0

10. As expected the settling time lower than 0.5 sec. Furthermore the whole
system has a zero steady state error and an overshoot about 1.6%.

5.7.7 Equivalent two-degree of freedom feedback loops

Following Taguchi & Araki'®, the unity feedback loop with prefilter shown in
Figure 5.27 is equivalent to either the feedforward two-degree of freedom control
loop shown in Figure 5.28 or to the feedback two-degree of freedom control loop
shown in Figure 5.29. Indeed:

'5Hidefumi Taguchi, Mituhiko Araki, Two-Degree-of-Freedom PID Controllers - Their
Functions and Optimal Tuning, IFAC Proceedings Volumes, Volume 33, Issue 4, 2000, Pages
91-96, ISSN 1474-6670, https://doi.org/10.1016/S1474-6670(17)38226-5.
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Figure 5.26: Unit step response of the closed-loop
R(s) R (s) < &) U(s) Y(s)
—» Cm( s)  ——(+ ] C(s) > F(s)

;

Figure 5.27: Unity feedback loop with prefilter

— The transfer function of the unity feedback loop with prefilter in Figure
5.27 reads:
Y(s)  Cpy(s)F(s)C(s)

R(s) ~ 1+ F(s)C(s) (5-296)

— The transfer function of the feedforward two-degree of freedom control
loop shown in Figure 5.28 reads:

Y(s) _ F(s)(Ci(s) + Cp(s))

R(s) 1+ F(s)Ci(s) (5:297)

— Finally, the transfer function of the feedback two-degree of freedom control
loop shown in Figure 5.29 reads:

Y _ FEG)
R(s) 14 F(s)(Ca(s) + Cpp(s))

(5.298)

By identifying the numerator and the denominator of each transfer function,
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R |

R(s) S els) _ o Uls) Yis)
—>+/ —  C(s) —-»:,.+ = F(s) -

/
VA

pd g N .

Figure 5.28: Feedforward two-degree of freedom control loop

Ris) [~ efs) \Ufs) Y(s)
—-—‘-‘.__j/ ‘ \/«"—h— C 2." s) _... + /F/ \ [——- F(s) >
C fb(sj
A

Figure 5.29: Feedback two-degree of freedom control loop

we get the following relations:

Cpr(5)C(s) = C1(s) + Cyyp(s) = Ca(s)
{ C(s) = C1(s) = Ca(s) + Cpp(s) (5.299)

5.8 Usefulness of integral action

Usually controllers are designed on the basis on a linearized model of the
nonlinear plant to be controlled around an equilibrium point whose value is
not the origin: (ue,ye) # (0,0). More precisely we have seen that the
linearization of a nonlinear plant around the equilibrium point (ue, y.) leads to
the following input-output relation where N(s) and D(s) are polynomials in s
and s is the variable corresponding to the derivation in the time domain
(s:= %)
D(s) (y(t) — ye) = N(s) (u(t) — uc) (5.300)
By taking the Laplace transform of the preceding equation (with initial

conditions set to zero), and taking into account that because u. and y. are
constants their Laplace transform is ue/s and y./s respectively, we get:

D(s) (Y(s) — %) = N(s) (U(s) — %)

)
@ Y(0) = (U - %) + &

(5.301)

Fraction % = F(s) represents the transfer function of the linearized plant

around the equilibrium point (ue,y.). In order to correctly control F(s) we
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u/s

y

yU/ S ¢
SR, %4 ces) 6U—(5)>t§<‘;L(S) *@—» F(s) —»@LS) i%%»fy(s)

?ue/s ye/s T

Figure 5.30: Boucle de controle autour d’un point d’équilibre (ue, ye) # (0,0)

shall add to the control du provided by the controller C(s) the value u, of the
control at equilibrium. Similarly we shall subtract to the output y of the actual
plant the value y. at equilibrium. This is shown in Figure 5.30 where the grey
box represents the plant to be controlled. Notice that the commanded value ér
which feeds the comparator is given with respect to the output at equilibrium:
or(t) =r(t) — ye.

In order to avoid to add in the loop the values (ue,ye) of the equilibrium
point, we will see that is is often interesting to put within the controller C(s)
an integral effect. To see that we first compute the expression of output Y(s)
as a function of inputs u. and 0R(s) when the plant is controlled by the loop
shown in Figure 5.30:

Y(s) = F(s) (;f +C(s) (5.}%(8)0— (Y(s) = %))) (5.302)
= V() = mpeem ™ + Tty (OR(s) — &) |

Using the fact that dr(t) = r(t) — ye, and taking the Laplace transform of
this expression, we get 0R(s) = R(s) — %. Thus we can substitute dR(s) — %
by R(s). We get:

F(s) Ue F(s)C(s)

V) = T a0 s T 11 F(5)C0)

R(s) (5.303)
For high values of time, the value of output y(¢) is obtained thanks to the
final value theorem, assuming that the loop is stable:

limy oo y(t) = limgosY () (5.30)
. F(s F(s)C(s .
= lim, o <1+F(g))C’(s) Ue + 1+1(7()s)é()s)8 R(5)>

Assuming that F'(0) < oo and that controller C(s) exhibits an integral term

(i.e. C(s) = s%igs()s) where g;((og) < 00), we realize that the term which depends

on U in y(t) cancels for high values of time:

F(0) < o0 700

C(s) %gg()o) - 111% ( )NC(O) Ue = 0 (5.305)
vew S FO)

Dc1(0)

Consequently, the integral term within the controller C'(s) enables to forget
the value u. of the control at equilibrium. Notice that a similar reasoning can
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RGs) U@s) Y(s)
4..‘ _\é—b- C(s) >®—D F(s) —b@ >

?ue/s y/s

A+

Figure 5.31: Boucle de contrdle autour d’un point d’équilibre (ue,ye) # (0,0)
avec un correcteur C(s) a effet intégral

A J

— = [ > — K e+ o o
- -

Figure 5.32: Current anti-windup structure dealing with integral term

be applied to check that the same effect is obtained when w. represents an
exogenous disturbance. Thus the control loop simplifies as shown in Figure 5.31
where the integrator within C(s) shall be initialized with the value u. of the
control at equilibrium.

5.9 Anti-windup

Usually amplitude of input of actual plants is limited. When the controller
exhibits an integral effect, saturation on the input signal of the plant may
generate high overshot or render the closed-loop unstable. This phenomenon is
known as windup effect. The anti-windup controller design for saturated
control consists in taking into account the saturated control in order to
minimize windup effect and to enhance the domain where stability and
performance of the closed-loop system are retained comparatively to the case
where a saturation is simply placed after the controller to limit the input
signal of the plant.

A wusual anti-windup structure is to replace the integral term % of a PID
(or a PI-D) controller by the structure shown in Figure 5.32 where the gain Ky,
is usually chosen between fg and 1OK

Alternatively we present in Figure 5 33 an anti-windup structure proposed by
R.H. Middleton'”. The stability analysis of such a structure needs mathematical

'"Dealing With Actuator Saturation, R.H. Middleton, The Control Handbook, A CRC
Handbook Published in Cooperation with IEEE Press, 1996
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Ri(s) ,./\"_"\/‘\‘ ofs) — Ufs) Yis)
— T > (s > > & -
. /\ Cfs) _ Fis)

R(s) < ~els) AN Uts) Yis)

— >+ f—m C.(5) |—ml+ - > Frs)
-

L, C_, (s)

Figure 5.33: Anti-windup structure

tool such as LMI (Linear Matrix Inequalities) which are out of the scope of this
lecture.

Controller C(s) is written as C(s) = N¢(s)/Dc(s), where polynomials
Nc(s) and Dc(s) are respectively the numerator and the denominator of
C(s). In the following, we will denote Dgy(s) the polynomial with the same
degree than D¢ (s). Effectiveness of the anti-windup structure depends on the
choice of polynomial Dy, (s). Usually acceptable results are obtained by
building Dy (s) from the ny fastest poles of the closed-loop system obtained
through the use of controller C'(s) and assuming no saturation:

&

C(s) = CE

deg(Dc(s))
F(s)C(s)  _ Ney(s) = Daw(s) = (s = A1)+ (s = Any)

1+F(s)C(s) — (sf/\l)---(sf)\nf)---(sf)\n)

Re(A1) < -+ < Re(Ay;) < -+ < Re(An)

II'

(5.306)
Then the anti-windup structure is composed of three parts as shown in
Figure 5.33:

— A controller C(s) whose transfer function reads:

Ci(s) = (5.307)

— A controller Ca(s) whose transfer function reads:

D¢ () — Daw(s)

Cals) = =D

(5.308)
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— A nonlinear bloc which reproduces the saturation on the input signal ()
of the plant.

It is worth noticing that assuming a non-saturated input signal, the anti-
windup structure produces the same effect controller C'(s). Indeed:

gl((si);cfjlvf{%j)(ﬂ — Co(s)U(s) _UG)_ CGis) _ No(s) (5.300)
C(s) = Dl —Rael) ()~ 1+Cals)  Dels)
Example 5.12. Consider a plant with the following transfer function:
Fls)= (5.310)
(2541)2

The following PID controller is supposed to be used to control the plant.
Notice that the transfer function of the PID controller has been rendered causal
thanks to the demominator 1 + 0.01s which appear within the derivative term
Kgs:

1000 60s 634052 + 350005 + 100000
Cls) =340+ ==+ 10 01s 52 4 100s (5.311)
Without any saturation the closed-loop transfer function reads:
Y F 405> 1
(s) (s)C(s) 6340s* + 350005 + 100000 (5.312)

R(s) 1+ F(s)C(s)  4s* + 40453 + 674152 + 35100s + 100000

The 4 poles of the closed-loop transfer function are —81.6, —13.3 and —3 £+
73.7.

As far as the degree of the denominator of the controller C(s) is 2, polynomial
Dgw(8) is chosen to be of degree 2. It is built from the 2 fastest poles of the
closed-loop system obtained through the use of controller C(s) and assuming no
saturation, that is from —81.6 and —13.3:

Dgyw(s) = (s +81.6)(s + 13.3)
Cy(s) = Nc(s) _ 6340s%435000s+100000
{ (

Daw(s) s2+955+1085 (5.313)
s) = Do (s)=Daw(s) _  55—1085
220 = Dauw(s) = 52195511085

Figure 5.34 compares the results which are achieved with and without an
antiwindup structure in the situation where the amplitude of control u(t) is
limited to +10 and where reference signal r(t) is obtained through the prefilter
Cpr(s) = 634052+é28882+100000 feeds by the unit step function. Obviously without
any antiwindup structure the closed-loop system becomes oscillatory whereas
with the antiwindup structure acceptable result is achieved despite a small delay
in the time response.
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Figure 5.34: Comparison of different control strategies
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Figure 5.35: Anti-windup structure with two controllers

The same kind of structure may be extended when two controllers are used,
as shown in Figure 5.35.

Assuming no saturation we have:
U(s) = C(s)e(s) — Ca(s)Y (s) (5.314)

and:

U(s) = —Ca(s %U(S) C3(s)Y (s) + Ci(s)e(s)

=4 U( ) = 1+C;()8)e($) Cs(s) Y(S)

(5.315)

T+Ca(3)

Thus the two structures are equivalent assuming no saturation as soon as
the following relations hold:

C — Cl (S)
{ (s) G (5.316)
Ca(s) = 56509

Let N;(s) be the numerator of C;(s) and D;(s) be the denominator of C;(s)
where ¢ = 1,2,3. Similarly Let N¢(s) be the numerator of C(s) and D¢ (s)
be the denominator of C(s) and Ny(s) be the numerator of Cy(s) and Dy(s)
be the denominator of Cy(s). From the preceding relations, we can make the
following choices in order to get the transfer functions of the controllers in the
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anti-windup structure with two controllers:

Dl(S) = DQ(S) = Daw(S)

Ni(s) = Ne(s)

NQ(S) = Dc(s) — Dl(S) (5.317)
N3(s) = Na(s) (Na(s) + Da(s))

Ds(s) = Dy(s)Da(s)

Hurwitz polynomial Dg,(s) is computed as shown in (5.306).
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Chapter 6

Discrete time systems

6.1 Chapter overview

Thanks to the flexibility and the processing power of computers digital
controllers are nowadays widely developed to control continuous time plants.
When a digital controller is used the output of the digital controller is
converted into an analog signal to control the actuator of the continuous time
plant whereas the sensed output of the plant are converted into a digital
sequence to be processed by the controller. Figure 6.1 illustrates how a digital
controller control a continuous time plant.

Actually a digital controller is an algorithm running on a computer. It
generates a digital control u(k) at every time step t;. The digital control u(k)
is then converted to an analog control signal u(¢) thanks to a Digital-to-Analog
Converter (DAC). The analog signal u(t) is applied to the continuous time
plant whose transfer function is denoted F(s). The behaviour of the plant is
known thanks to the sensed output signal y(¢). This signal is then sampled
by a Analog-to-Digital Converter (ADC) to produce the digital sequence y(k)
which is compared to the digital reference sequence r(k). The error sequence
e(k) is then used to feed the digital controller C'(z). As shown in Figure 6.1, the
Digital-to-Analog Converter (DAC), the Analog-to-Digital Converter (ADC) as

Discrete time Continuous time
4 .............................................................................................................................................. H ............................................................................
Digital controller Dtgtg:rl—to—Analog annnuous
. onverter time plant
r(k) r (k)< k) u(k) u(t) y(®)
» C(2) %w)/ > Cz) »  DAC >  F(s)
&Y
K t
y(k) ADC y()
Micro-controller Analog-to-Digital
Converter

Figure 6.1: Digital control loop for continuous time plant
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well as the digital controller C(z) and the digital prefilter Cp¢(2) are usually
embedded in a micro-controller.

Discrete time controllers for continuous time plants can be designed through
designing first a continuous time controller for the plant and then deriving a
discrete time equivalent controller that closely approximates the behaviour of
the original continuous time controller. This approach is especially useful when
an existing continuous time controller or a part of the controller is to be replaced
with a discrete time controller.

From a practical point of view, the sampling frequency Fy := 1/T is usually
chosen to be between 5 and 25 greater than the expected closed loop bandwidth.

In that chapter we will introduce the Z transform which is the dedicated
tool to study discrete time system. Then we provide some tools to represent a
continuous time plant with sampled input and output and to derive a discrete
time controller that closely approximates the behaviour of the original
continuous time controller. Performance analysis and stability of the digital
control loop will also be tackled.

6.2 Nyquist—Shannon sampling theorem

Let X (f) be the Fourier transform of a continuous time signal x(¢):

X(f) = / T (et (6.1)

—0o0
Let T be the sampling period. Its reciprocal is the sampling frequency Fj:

1
T=— 6.2
N 6:2)
The Poisson summation formula indicates that the Fourier transform X, (f)
of the samples x(kT) is a periodic summation of X (f) shifted by multiples of
the sampling frequency Fg = % and combined by addition:

o0

X(f)= > X(f—;{i) = Y T-x(nT) e ?™7/ (6.3)

k=—o0 n=—oo

The preceding relation indicates that X(f) is a periodic spectrum which
is also known as the discrete time Fourier transform (DTFT) of the sequence
T x(nT).

Frequency % is called the Nyquist frequency.

The Nyquist—-Shannon sampling theorem states that if a continuous time
signal has a band limited spectrum within [—B,+B] then its spectrum
reconstruction from the spectrum X (f) of the sampled signal is not altered as
soon as the sampling rate Fj is larger than 2B5.

F, > 2B (6.4)

The Nyquist—-Shannon sampling theorem is illustrated in Figure 6.2.
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! 1 !
-F -B 0 +B F =2B
5
Figure 6.2: Nyquist—Shannon sampling theorem

Usually the sampling rate Fy is chosen between 6B and 24B!:
6B < F, <24B (6.5)

When the spectrum of the continuous time signal is too wide (or when
there is no bandlimit) the reconstruction from discrete to continuous time
exhibits imperfections known as aliasing. To overcome the aliasing
phenomenon a low pass anti-aliasing continuous time filter is introduced just
before the sampler (Analog-to-Digital Converter) in order to reduce the higher
frequency components in the analog signal.

6.3 Reference sequences

The aim of this section is to present important sequences which are currently
use to study discrete time systems: more specifically we will focus on the unit
impulse, the sampled unit step and the sampled exponential.

Discrete-time signals zs are represented mathematically as sequences of
numbers. Denoting by x(k) the k' number in the causal sequence z, we get:

zs = {x(0),z(1),--- ,x(k), -} (6.6)

A sequence z(k) is said to be causal when the values of the sequence are null
VEk <O.

In a practical setting, such sequences arise from periodic sampling of a
continuous time (or analog) signal z(¢). In that case, the numeric value of the
k" number in the sequence is equal to the value of the continuous time signal
x(t) at time kT

x(k) = x(kT) (6.7)

!Peaucelle D., Systémes & temps discret: Commande numérique des procédés, notes de
cours, 2003
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Ji ork)
----- e e
0 ! 2 k

Figure 6.3: Unit impulse

6.3.1 Unit impulse

The unit impulse is denoted §(k); this sequence is zero everywhere except at
k = 0 where the value of the sequence is 1.

w={ ¢ "2 (65)

The schematic representation of the unit impulse is depicted on figure 6.3.
The following properties of the unit impulse are very close from the
properties of the Dirac delta function in the continuous time domain:

— Multiplication between a sequence x(k) and the unit impulse translated
by ko € N:
x(k)o(k — ko) = (ko) (k — ko) (6.9)

— Convolution: the discrete time convolution * between two sequences x(k)
and y(k) is defined by:

o0

2(k)ry(k) = 3 a(m)y(k - m) (6.10)

m=—oo
The discrete time convolution is a commutative product:

2(k)ry(k) = y(k)sa (k) (6.11)

Indeed, changing m by [ := k — m and using the fact that a summation
can be done either from the last term to the first term or vice-versa, i.e.

—00 o —+o00 N
D oo @1 = Y0 @y, we get:

{ w(k)xy(k) = 2 0= o w(m)y(k —m)

li=k—m

= a(kysy(k) = S5 (k= Dyl 042
& a(k)xy(k) = 37wk — Dy(l) = y(k)xz (k)
When the sequences x(k) and y(k) are causal, we get:
z(k)=0Vk <0
{ (k) =0VE<O0 y(k—m) =0¥(k—m)<0om>k (013
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Itk
!

Figure 6.4: Sampled unit step

Thus the discrete time convolution reduces to:

k
w(k)ry(k) =Y a(m)y(k —m) (6.14)

m=0

As far as the discrete time convolution is concerned, the unit impulse
satisfies the following property:

2(k)#6(k — ko) = x(k — ko) Vko € N (6.15)

Taking kg = 0 we get:
x(k)x0(k) = x(k) (6.16)

From the preceding equation, it is clear that the unit impulse is the neutral
element for discrete time convolution. The preceding equation can also be
stated as follows for causal sequences:

k
2(k) =Y x(m)é(k —m) (6.17)

6.3.2 Sampled unit step

The sampled unit step which will be denoted by I'(k) is a causal sequence whose
value is zero for negative values of k and one for positive values of k:

1Vk >0
rw)_{OVk<0 (6.18)

The sampled unit step is depicted on figure 6.4.
The sampled unit step is linked to the unit impulse by the following relation:

rwyzfia@—nw (6.19)

m=0
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6.3.3 Sampled exponential
The sampling of the complex exponential function e/“! reads:
ej“’t‘t:kT = % where o :=wT (6.20)

Setting w = 27f where f is the ordinary frequency (units of Hz or
equivalently cycles per second) and using the fact that —7m < o < +7 we get:

—m <27 fT < 4= (6.21)

In the following we will denote « the reduced frequency. This is linked to
the ordinary frequency f and the natural frequency w by the following relations
where T is the sampling period:

a=2rfT=uwl (6.22)
Thus the sampled exponential sequence is defined by:
z(k) = /% where —7m <a < 4w (6.23)

The preceding relation reads —m < o < +7 and comes from the
Nyquist—Shannon sampling theorem. Indeed setting f = B and having in
mind that the sampling period T represents the interval between samples and
is the reciprocal of the sampling frequency Fj yields:

2w BT <
{ 7;_177 = F, > 2B (6.24)
=%

We recognize in the preceding equation the Nyquist—Shannon sampling
theorem illustrated in Figure 6.1.

6.4 Z transform

6.4.1 Definition

Given the causal sequence {x(0),z(1),--- ,x(k),- -} we define its Z transform
by:
Zla(k) =) a(k)z" (6.25)
k=0

The region of convergence is the set of values of z in the complex plane for
which the Z transform summation converges. Similarly to the Laplace transform
the region of convergence of a Z transform is never computed from a practical
point of view.

Example 6.1. Compute the Z transform of the sequence z(k) = a* Yk > 0.

We get: . .
Z [ak] Z akz7F = Z (g)k (6.26)

k=0 k=0
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We recall that the sum of the first n terms of a geometric series where ag is
the first term of the series, and q 1s the common ratio is:

(6.27)

n—1
_ 1—-q"
ap + aoq + apq® + apg® + -+ +apg" ' = Zaoqk = a0
k=0
As n goes to infinity, the modulus of the common ratio ¢ must be less than
one for the series to converge. Then the sum then becomes:

00 1 '
> aodt =ap—— if gl <1 (6.23)
k=0 -4

Applying the preceding result to the computation of the Z transform of the
sequence x(k) = a¥ Yk >0 reads:

z {ak} - - (6.29)

1—% zZ—a

Note that the region of convergence is defined by H%H < 1.
Taking a = 1 leads to the Z transform of the sampled unit step T'(k):

Z[T(k)] = (6.30)

6.4.2 Properties

This section presents the main properties of the Z transform without
demonstration. In the following z(k) is a causal sequence and X (z) is its Z
transform.
Linearity

For any sequences z1(k) and x2(k) and any constants a; and ag in R or C:

Z [alxl(k') + (Ig.rg(k‘)] =a1X7 (Z) + CLQXQ(Z) (6.31)

Time delay

As soon as z(k) is a causal sequence we get:
Zx(k—1)]=2"1X(2) st. 2(k)=0VEk<0 (6.32)

1

Consequently z7+ is interpreted as the one sampling period delay operator.

More generally we have:

Zlz(k—n)=2"X(z) VneN" st. 2(k)=0Vk<0 (6.33)
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Time advance

Zz(k+1)] = 21 X (2) — 22(0) (6.34)
More generally we have:
Zx(k+n)] =2"X(2) = 2"2(0) — 2" 1z(1) — - - —zz(n—1) Vn e NT (6.35)
Initial value theorem
z(0) = li)m X(2) (6.36)

Example 6.2. Knowing the Z transform of x(k) = a* is = check that x(0) =
1. We check that:

z(0) = lim X(z) = lim

Z2—r00 Z2—=00 2 — Q

=1 (6.37)

Final value theorem

Assuming that the value of x(k) exists when k — oo then

lim (k) = lim (1-2"1X(2) (6.38)

— 00

Example 6.3. Knowing that the Z transform of the sampled unit step T'(k) is
2 compute limy_, o ['(k).

z—1
We check that:
. L IS T - St S A
AR tE =l (=) my ==y =t 659)
| |

It is worth noticing that the final value theorem gives the correct limit as
soon as the value of sequence z(k) exists when k£ — 0.

Example 6.4. If we apply the final value theorem on the sequence a® we get:
. oy 2 o2 —1 2z [0 Va#l
llgi(l : )zfa_;lanﬁ z za_{l if a=1 (6.40)

As far as a has no limit as soon as ||a|| > 1 it is clear that result provided
by the final value theorem is not correct when ||al| > 1.

Multiplication by exponential

z [a*kx(k)} = Za(K)]|,_.. = X(az) (6.41)

z—az

Example 6.5. From the Z transform of the sampled unit step I'(k) find the Z
transform of the exponential sequence x(k) = e~ T Vi € Nt

z(k) = (eT)
5 X(2) = 20| peur = =2

z—zeoT z—1

—k
Hk) oT (6.42)
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Multiplication by &

Z (k)] = —2-L 2 [w(k)] = —zd%X(z) (6.43)

Example 6.6. Find the Z transform of the sequence x(k) = kT Vk € N*

p(k) = ThT(k) = X(2) =-TzLZ (k)] = -TzL (zfl> 6.4
_ z—1—2 Tz :
= T2y T e
|

Example 6.7. From the preceding example find the Z transform of the sequence
z(k) = (kT)> VkeNt

x(k)=Tk -kT = X(z) = _Tzdizg [kT] = _Tzd% ((z’l——'i)2>
_TQZ% = -T2 G0 (6.45)
_ T?z(2+1)
- (271)3
| |
Convolution

We have seen that the discrete time convolution * between two causal sequences
x(k) and y(k) is defined by:

k
2(k)y(k) = 3 w(m)y(k — m) (6.46)
m=0

Then the Z transform of the convolution between two causal sequences x(k)
and y(k) is the product of the Z transforms of z(k) and y(k):

Z [e(k)ry (k)] = X ()Y (=) (6.47)

When y(k) is the unit impulse, y(k) = §(k), and using the fact that the unit
impulse is the neutral element for discrete time convolution, we can write:

Zx(k)x0(k)] = Z[z(k)] & X (2)Z[6(k)] = X(2) (6.48)
Simplifying by X (z), we get the Z transform of the unit impulse §(k):
Zo(k)] =1 (6.49)

6.4.3 Usual Z transform pairs

Usual Z transform pairs are provided in Table 6.1.
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[ 2k VkeNT | X(@ |
3(k) L
I'(k) (step function) 1
KT =t
22(z
(KT)? N
ak zia
e kT z—e—oT
sin(wokT) e
cos(wokT) z;—(;#m

Table 6.1: Usual Z transform pairs

6.4.4 Inverse Z transform

Basically there exists three methods to compute inverse Z transform:
— Method based on Cauchy’s residue theorem;
— Method based on partial fraction expansion;

— Method based on long division.

Cauchy’s residue theorem

From the residue theorem coming from complex analysis it can be demonstrated
that as soon as X (z) is a proper rational fraction (the degree of its denominator
is greater or equal to the degree of its numerator) its inverse Z transform reads:

(k) = 27 [X(2)] = Y Res., [zk—IX(z)} VkeNt  (6.50)

The residue Res,—, [zk_lX (z)] shall be computed around each pole A; of
X (2). Assuming that )\; is a pole of multiplicity n; then the residue of zF~1 X (2)
around pole A; is given by:

1 dni—l

.0l
(n; —1)! dzmi—1 (6.51)

Res,—y, [zk_lX(z)} = ((z - )" zk_lX(z))

Let ng(k) be the multiplicity of the root 0 of the polynomial corresponding
to the numerator of =1 X (z). Then z(k) is defined Vng(k) > 0.

Example 6.8. Find the inverse Z transform of X(z) = ==

Z—x

X (z) has a unique pole at \y = « with multiplicity ny = 1. The residue of
2F=1X (2) around pole Ny of multiplicity ny = 1 reads:

1—-1

) = s [5X09]) = gy £ (o 10)

sz(k) =aofVEe Nt
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The numerator of 2*~1X (2) is 2, which has root 0 with multiplicity no(k) =
k. Thus x(k) is defined ¥ no(k) = k > 0.

Example 6.9. Find the inverse Z transform of X(z) = (Zf‘i)z

X (z) has a unique pole at \y = 1 with multiplicity ny = 2. The residue of
2F1X (2) around pole A1 of multiplicity ny = 2 reads:

o) = Resma [#7X()] = gy i (2 - 0247 XG))|
= £T24 (6.53)

o a(k) =kT Vk e N

The numerator of 2* =1 X (2) is 2*, which has root 0 with multiplicity ng(k) =
k. Thus x(k) is defined Y no(k) =k > 0.

Partial fraction expansion

The computation of the partial fraction expansion of @ Then by
multiplying by 2z each term of the partial fraction expansion we should
recognize by inspection of Table 6.1 the associated pairs. It is worth noticing
that factor z systemically appears on the numerator of the pairs in Table 6.1
(except for the Z transform of the unit impulse). By making the partial
fraction expansion of Xiz) (and not X(z)) and then multiplying each term of
the partial fraction expansion by 2z we get a sum of factors where =z
systemically appears on the numerator and Table 6.1 can be used. You may
also use the residue theorem to compute the inverse Z transform of each term
of the partial fraction expansion.

Long division

The polynomial long division of X (z) written on the following form:

X(Z) . bn—l—bn_lzfl 4+ bz (6 54)
Captap_1z27 - agz " '

Indeed the division according to the increasing power of 2! allows to identify
z(k) with the quotient of the long division which reads Y 5o, z(k)z%. Tt is
worth noticing that as far as the Z transform involves z~* the long division has
to be done according to the increasing power of z~! and not of z. In addition
the long-division approach does not yield a closed-form solution because the
steps to compute each coefficient of the quotients shall be done indefinitely to
get the complete sequence z(k).

Example 6.10. Find the 3 first values of the sequence whose Z transform is

X(z) = (Z:Cif




178 Chapter 6. Discrete time systems

We get:
Tz Tz!

X = —
(2) 22 —92241 1—2z714 22

(6.55)

Then we compute the quotient of the polynomial long division (i.e. division
according to the increasing power of 27 1) of X (2):

Tz 1 1—2271 4272
—(Tz' = 27224+ T273) [T="T 42Tz 2 + - - (6.56)
222 —Tz73

Then we identify the quotient Tz~ + 2T272 + .- of the polynomial long
division with S 70 x(k)z. In that ezample this leads to the first 3 values of

z(0)=0
Tzl 427272 4. = Z z(k)z7F = ;((21))::21;;1 (6.57)
k=0

It is clear that the long-division approach does not yield a closed-form
solution because the steps to compute each coefficient of the quotients shall be
done indefinitely to get the complete sequence x(k).

6.4.5 Relation with Laplace transform
Laplace transform of a sampled continuous time signal

The Z transform can be seen as the Laplace transform of a sampled causal
continuous time signal where z = e*’. Indeed the sampling of a causal
continuous time signal xz(t) to a discrete time sequence x4(k) is
mathematically modelled thanks to the following product which involves the
Dirac delta function §(t) and the sampling interval 7"

ws(k) = 2(t),pp = Y _x(t)5(t — kT) = 2(kT)5(t — kT) (6.58)
k=0

By taking the Laplace transform of this equation we get:

Llxs(k)] = [Zk 0 x(kT)o(t — kT)]
= Llx(kT)o(t — kT)]
_Zk o (kT)L [5(t—kT)] (6.59)

—Zk:o z(kT)e™*
= Yo w(kT) (eT) 7"

Let’s define:
z=eT (6.60)
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Consequently setting z = e*7 in Laplace transform of a sampled causal

continuous time signal z(t) leads to the Z transform of the causal sequence

{x(O),x(l), T ’x(k)’ T }

Llza(k)),mpor = Y a(kT)27" = Z [2(k)] (6.61)
k=0

Conversely let’s consider a continuous time signal z(t) whose Laplace
transform exhibits distinct poles only. The partial fraction expansion of X (s)
reads:

B N(s) _ g
X(s) = s =) ; oy (6.62)

Taking the inverse Laplace transform of X(s) yields the expression of z(t)
as a sum of exponential functions:

LTUX(s)] =2z(t) = zn:aie’\it Vit >0 (6.63)
i=1

Then the sampling of the continuous time signal z(¢) to the discrete time
sequence z4(k) leads to the following expression:

zo(k) = 2(t)jpp = Y _ aied VE e NT (6.64)
i=1

Knowing that Z [ak] = %~ and using the fact that the Z transform is a
linear operator the Z transform of zs(k) reads:

l’s(k}) = Z?:l a; (e)u'T)k
= X(2) = Zzs(k)] =0 a2 [(em)k} S (6.65)

As a consequence each simple fraction ﬁ in the Laplace transform domain
7

is associated in the Z transform domain to the term z_eZMT:

1 z z
=
s—\i z—eMT

(6.66)

In others words each pole A; in the Laplace transform domain is associated
in the Z transform domain to the pole e’

A 2 T (6.67)

This relation can also be read as z = 7.
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From Laplace transform to Z transform

The purpose of this section is to provide the relation which enables to get the Z
transform of the discrete time sequence x(k) from the Laplace transform of the
related continuous time signal z(t). Thus starting from X (s), which is assumed
to be a strictly proper rational fraction, we have to apply the inverse Laplace
transform to get the continuous time signal x(¢). Then x(t) is sampled at every
time step kT to obtain the discrete time sequence x(k) and the Z transform is
applied to get X (z). This is denoted as follows:

X(z) = Z[X(s)] (6.68)

The residue theorem applied on this specific inversion problem leads to the
following result:

Z[X(s)] = Z Res,—», [IX(S)] (6.69)

— Z—lesT

Where the residue Res,—), [%

Ai of X(s). Assuming that \; is a pole of multiplicity n; then the residue of

} shall be computed around each pole

% around pole ); is given by:
X(s)
Heso=, [1_14 -

(6.70)

1 g <(8_ Ay X6 )

(n; — 1)! dsmi—1 1—z7lesT

s=\;

Example 6.11. Let’s compute the Z transform of X(s) = S%

It is clear that X (s) has a singe pole, \y = 0, with multiplicity ny = 2. The

residue of of % around pole Ay = 0 is given by:
— X(s) _ 1 dm-1 X (s)
:I)(k) = Ress=0 [W} T (ni—-1)! dsmil (Snl 1—2*165T> ’sz(]

_ d 1

T ods1—z7lesT | _
ST 5=0 (6.71)

N (1*2_16ST)2 s=0
27T

- (1—2z—1)?
By multiplying the numerator and the denominator by 2z we finally get:

T
w(k) = ——— Vk>0 (6.72)
(z—1)
In order to check this result let’s take the inverse Laplace transform of X(s).
We get:
x(t) = L7 [X(s)] =t (6.73)

Then the sequence x(k) is obtained by sampling the continuous time signal
x(t) at each time step t = kT. We get:

2(k) = 2(t)],gp = KT (6.74)
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Sequence x(k) can be written as follows where I'(k) is the unit step sequence:
xz(k) = kT = TkI'(k) (6.75)

The property of the Z transform with respect to the multiplication by k can
be applied to get the Z transform of sequence x(k):

Z[e(k)] = Z[TkT (k)]

=TZI[kI'(k)] (6.76)
=-Tz4T(2)
Where: .
[(z)=Z[['(k)] = o (6.77)
We finally get:
d =z Tz

Zz(k)] =

—T —_— pu— .
“dzz 1 (z—1)2 (6.78)
We obviously get the same result than the result obtained thanks to the residue

theorem.

6.5 Discrete linear time invariant systems

6.5.1 Discrete time transfer function

For systems that have only one input and one output it is frequently convenient
to work with an input-output description of the system. For discrete linear time
systems this consists of a single n'” order linear difference equation relating the
sampled output y(k) to the sampled input u(k) of the system:

aoy(k) + ary(k —1) + -+ any(k —n)
= bou(k) + byu(k — 1) + -+ - + bpyu(k —m) (6.79)

The constant coefficients a; and b; are defined by the system parameters.
For causal systems we have:
m<n (6.80)

When the difference equation reflects the input output relation of a digital
controller, the algorithm implemented on the computer (sometimes a DSP:
digital signal processor) computes at each time step the output y(k) as a
function of the previous values of the output and also current and past values
of the input:

y(k) = alo (bou(k) + bru(k — 1) + - - + bu(l — m))
@b = 1) any(k - m) (63)
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Assuming that sequences y(k) and u(k) are causal (so that the time response
of the discrete time system is invariant) and applying the time delay property
of the Z transform, the Z transform of difference equation (6.79) reads:

aY (2) + a1z 'Y (2) 4+ - + a2z "Y (2)
=boU(2) + b1z ' U(2) + - + bz ™U(2) (6.82)

Analogously to the continuous time domain, the discrete time transfer
function H(z) of a discrete linear time invariant system is defined to be the
ratio of the Z transform of the output sequence y(k) to the Z transform of the
input sequence u(k):

Y (2) bo+ bz 4+ + by,
H(z) = = 6.83
(2) U(z) ap+arz7t+-+az™" (6.83)

This transfer function is usually rationalized by multiplying top and bottom
by 2™
Y(2)  boz" +bi2" 4 by
U(z)  apz"+a12" 1+ +ay,

H(z) = (6.84)

As far as the Z transform of the unit impulse §(k) is 1, it is worth noticing
that the Z transform of the impulse response of a discrete linear time invariant
system is its transfer function (as in the continuous time case):

Y(z) = H(2)U(z) B
{MHZ&H$WQ:1jY@_H@ (6.85)

6.5.2 Stability analysis
Routh—Hurwitz based stability criterion

Analysis tools based on the Laplace domain also apply to Z domain thanks
to specific adjustments. As far as stability is concerned the symbolic relation
z = e*T is quite useful to analyze discrete time systems. Indeed we know
that a continuous time system is stable if and only if all the poles of its transfer
function have negative real part. Applying relation z = e shows that a discrete
time system is stable if and only if all the poles of its transfer function have a
magnitude less than 1.

As an example consider a first order discrete time system defined by the

following difference equation where a and b are real parameters:
y(k) +ay(k —1) = bu(k — 1) (6.86)

The transfer function H(z) of this system is obtained by taking the Z
transform of the difference equation. Assuming that y(k) and u(k) are causal
sequences this yields:

Y(2) +az"Y(2) = bz 1U(2)

_Y() _ bt b
= H(Z) - U(z) - 1+Zz*1 T z+ta

(6.87)
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A Im(z) A Im(w)
+1
-1 0 +1  Ref 0 Re(w)
-l
z-plane w-plane

Figure 6.5: Homographic transformation

It is clear that all the poles of its transfer function have a magnitude less
than 1 as soon as ||a|| < 1; as far as parameter a is a real this simply reads:

—l<a<+1 (6.88)

Analogously to the continuous time domain we may apply Routh criterion
to analyze discrete time stability. Nevertheless some adjustment shall be made
in order that the criterion shall indicates the number of poles outside the unity
circle rather than the number of poles with positive real part. This adjustment
is achieved thanks to the following homographic transformation which matches
the imaginary axis of the complex w-plan to the unit circle of the complex z-plan
as illustrated in Figure 6.5.

z—l@ 1+w
z2=—
z+1 1—w

(6.89)

The following relation indicates that the unit circle in the z-plane is changed
into the vertical imaginary line in the w-plane:

” = eje = w = eff—1 — e% 6%—67%
ef+1 eﬁ e%Jre*% (6 90)
_ 2jsin(§) . 9 '
Sw o= 2c0s(2) = jtan (5)

More generally every point within the unit circle in the z-plane is changed into
a point with negative real part in the w-plane.
From a practical point of view the stability of a discrete time system

described by its transfer function H(z) = ]1;178 can be assessed:

— either by computing the roots of the characteristic polynomial D(z) and
by checking that there are all encompassed in the unit circle,

— or by replacing z by %f—lw” in the characteristic polynomial D(z) and by

computing the Routh array of the polynomial in w which appears at the
numerator of the fraction.
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An alternative of the Routh—Hurwitz based stability criterion which has been
presented is the Jury stability criterion? which will not be developed here.

Stability analysis of a second order discrete time system

Consider a second order discrete time system defined by the following difference
equation where ay, ag and by are real parameters:

y(k) + a1y(k — 1) + apy(k — 2) = bou(k — 2) (6.91)

The transfer function H(z) of this system is obtained by taking the Z
transform of the difference equation. Assuming that y(k) and u(k) are causal
sequences this yields:

Y(2) +a127 Y (2) + apz72Y (2) = bpz2U(2)
—2

_Y(») _ boz _ bo
= H(Z) T U(z)  1+aiz l4apz?2 T 22+4ai1z+tao

(6.92)

In order to assess the stability of such a second order discrete time system we
shall localize the roots of D(z) = 2% + a1z +ag. The roots of D(z) are complex
if a? — 4ap < 0 and real otherwise. Rather than computing explicitly those
roots and assess if they are inside the unit circle we will use the homographic

transformation z = ﬁ—g We get:
1+w)? 1+w
D (Z)|Z:% = <1—u)) + ay (1_“]> + ap (693)

And D(z) = 0 yields:
D(z)=0= (1+w)?+a (1+w)(l—w)+a(l—w)?=0 (6.94)
Expanding leads to a polynomial of degree 2:
(1—ar+ap)w?+2(1 —ag)w+1+a;+ag=0 (6.95)

All the coefficients the polynomial exist and have the same sign; so the
necessary condition for the polynomial in w to have all its roots in the left half
(complex) plane (LHP) are satisfied. The Routh array reads:

s’ 1—aj+ag|14+a+ag
st 2(1 —ap) (6.96)

s [ 14 a1+ ag

All the roots in w have negative real part meaning that all the roots in z are
situated in the unit circle, if there is no sign change in the first column. Thus
the following inequalities shall be satisfied:

l1—a;+ap>0 ag > a; — 1
1—ap>0 4 ag < 1 (697)
14+a1+a>0 ag > —a; — 1

https://en.wikipedia.org/wiki/Jury _stability _criterion
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(J0=-(;F-I Aa P ;
a,=a-
a \‘\ + ] ({D = 1‘)’
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1Y
— 2/
a,;=a’ /4

Figure 6.6: Region of coefficient values for second-order discrete time system
stability

We have arbitrary chosen a positive sign; we can also do the test assuming
negative sign and check that there is no solution.

Conditions (6.97) are illustrated in Figure 6.6. This shows the resulting
stability triangle in the {ap, a1} plane. We conclude that a second order discrete
time system is stable if, and only if, coefficients {ag,a1} define a point that
lies inside this triangle. As previously noted the poles of the characteristic
polynomial D(z) are complex if ag > ‘14—% and real otherwise.

f

6.5.3 Frequency response

In this section we will focus on stable discrete time linear invariant systems.

The frequency response of a discrete time system is the response of the
system to the sampled exponential sequence u(k) = eI where « is the reduced
frequency. More specifically the frequency response consists in the magnitude
and phase relation between the input and the output sequence when the input
sequence u(k) is the causal sampled exponential e/,

We have previously seen that the Z transform of the output sequence y(k)
of a discrete linear time invariant system is obtained thanks to the product
between if transfer function H(z) and the Z transform of the input sequence
u(k). Coming back to the discrete time domain, and having in mind that the
inverse Z transform of a product is the discrete time convolution we get:

Y(z) = H(2)U(z) = y(k) = h(k)*u(k) (6.98)

As a consequence a discrete linear time invariant system is a convolutor.
Specializing relation (6.98) to the case where wu(k) is the causal sampled
exponential reads:

u(k) = % = y (k) = f: h(m)elok—m) (6.99)

m=0
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Using the fact that the summation is a linear operation we get:
k) = el > " h(m)e (6.100)

We recognize in the term Y oo h(m)e ™% the Z transform of the impulse
response h(k) where the Z transform variable z is specialized to be e/*:

> h(m)e ™ =" h(m)z™™ = H(2)|,_oia (6.101)

m=0 m=0 z=el™

Note that H(z)|
discrete time system.

As a consequence the frequency response of a discrete linear time invariant
system to the sampled exponential reads:

= H(e/®) is called the frequency response of the

z=eJa

&% = y(k) = I H(2)|,_ oo = H(I)eI (6.102)

z=—elc

The preceding relation shows that the frequency response of a discrete linear
time invariant system is closely linked to its transfer function. The frequency of
the output sequence is the same than the frequency of the input sequence; only
the amplitude and the phase of the input sequence are changed by the linear
system. In addition the phase of the output sequence is independent of the
amplitude of the input sequence. Denoting by HH(ejO‘)H the norm of H(e/?)
and by ®(«) the phase of H(e’%) the preceding relation reads:

u(k) = elok
H(el®) = HH () | e/ (6.103)
= y< — HH eja H eejakeyb _ HH e]a H el (ak+2(a))

Where Re stands for real part and Im stands for imaginary part:

| ()| = \/(Re (H(e92))? + (Im (H(e2)))?

. m el (6104)
®(a) = LH(e7Y) = arctan <[Regg((cja)))>>

Thus the frequency response of LTI systems is essentially the same for
continuous time and discrete time systems. However, an important distinction
arises because the frequency response of discrete time LTT systems is always a
periodic function of the reduced frequency « with period 2.

Since H(e’®) is periodic with period 27 and since the frequencies o and
a + 27 are indistinguishable, it follows that H(e/®) is only studied over the
interval —m < a < +7w. With respect to this interval, the low frequencies are
frequencies close to zero, whereas the high frequencies are frequencies close to
4. In addition as soon as the polynomials which appear on the numerator and
denominator of H(e/®) have real coefficients we have:

{Re( (7)) = Re (H(e™7*)) {HH | = [[H ()]

A A |
Im (H(e*)) = —Im (H(e—]a)) LH(e7%) = —/ H(e=3) (6.105)
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Thus ‘ H(e’¥)|| is an even function of a whereas ZH (e/?) is an odd function
of a. Consequently HH (eja)H and ZH (e?®) are only studied for positive values
of a, which corresponds to physically achievable frequencies:

0<a<m (6.106)

It is worth noticing that when input u(k) is not the sampled exponential
sequence but a real sinusoidal sequence then the output sequence y(k) is
obtained thanks to the real (or imaginary) part of the complex output
sequence:

u(k) = cos (ak) = Re (e7*F)

= y(k) = Re (HH(eja)H €j(ozk+<1>(oz))) — HH(eja)H cos (ak + ®()) (6.107)

And similarly:

u(k) = sin (ak) = I'm (e7°F)

= y(kﬁ) =1Im (HH(e]a)H ej(ak+<1>(a))) — HH(eja)H sin (Oék: + (I)(a)) (6108)

The static gain Gy of a discrete time system is the limit as kK — oo of the
ratio between the output sequence y(k) and the input sequence u(k). Assuming
that the limit exists and applying the final value theorem leads to the following
expression of the static gain:

(1-2")Y(2) Y(z)

Cyk) o L
Go=lim Sy~ I o) T pe) T imHE (6.109)

As an example consider again a first order discrete time system defined by
the following difference equation where a and b are real parameters:

y(k) +ay(k—1) =bu(k —1) (6.110)

The transfer function H(z) of this system is obtained by taking the Z
transform of the difference equation. Assuming that y(k) and w(k) are causal
sequences this yields:

Y(2)+az7 Y (2) = b271U(2)

Y(z 271
= H(Z) = ngg = 1—?—(12*1 = z—l‘,)—a

(6.111)

In order to assess the frequency response of the first order discrete time
system we replace z by €/% in the transfer function H(z):

H () = ejab-|- a  cos (o) + ab+ jsin (a) o412
That is:
H (%) = | H ()| /%) (6.113)
Where HH(ejO‘)H B |b]
1+2a cos(a)+a? (6.114)

®(a) = — arctan ( sin(a) ) (+7 if b<0)

cos(a)+a
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Figure 6.7: Frequency response of a low pass first order filter: o = —0.1 and

b=1

It can then be shown that a first order discrete time system is a low pass
filter as soon as —1 < a < 0 and a high pass filter as soon as 0 < a < 1.
Figure 6.7 presents the frequency response of a low pass first order filter where
a = —0.1 and b = 1, whereas Figure 6.8 presents the frequency response of a
high pass first order filter where a = +0.1 and b = 1. It is worth noticing that
the graduation on the abscissa is the product f7' (which shall be lower than 0.5
so that o < m) where f is the ordinary frequency of the input sequence and T
the sampling period whereas the ordinate is graduated in dB. We can check
that:

B 201logy ||H (e7Y)||,,_, = +0.91 dB
a=-01 { 20logy || H (e7¥)||,_, = —0.83 dB (6.115)
And: ,
_ 20logyg ||H (e’?)|| .y = —0.83 dB
a=+0.1= { 2010g10 H(@ja) = 0.91 dB (6116)

6.6 Continuous time plant with Zero-Order Hold
(ZOH) and sampler

The purpose of this section is to derive the transfer function of a continuous
time plant with sampled output and input. More specifically consider the
general configuration shown in Figure 6.9 where it is desired to find the
equivalent discrete time transfer function F(z) of the continuous time plant
F(s) with Digital-to-Analog Converter (DAC) and Analog-to-Digital
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Figure 6.8: Frequency response of a high pass first order filter: a = +0.1 and
b=1

Converter (ADC). The equivalent discrete time transfer function F'(z) will be
obtained by computing the impulse response of the block composed by the
DAC, the plant F(s) and the ADC.

The Digital-to-Analog Converter (DAC) converts the digital control u(k) to
the analog control signal u(t). It is modelled by a Zero-Order Hold device with
transfer function By(s) as illustrated in Figure 6.10.

The Zero-Order Hold (ZOH) device generates the continuous time input
signal u(t) by holding each sample value u(k) constant over one sample period 7.
Thus the impulse response of the Zero-Order Hold (ZOH) device is a rectangular
pulse of duration T' as illustrated in Figure 6.10. Therefore denoting by I'(¢)
the unit step function the transfer function of the ZOH device is given by:

u(k) = 0(k) = go(t) =T(t) = T(t —T) = By(s) = 1 (6.117)

s

Let ug(t) be the response of the plant with transfer function F'(s) to the

unit step function I'(¢). Assuming that F'(s) is a linear and invariant plant, its
response to a rectangular pulse of duration 7' reads:

uw(t) =go(t) =T({t) =Tt —T) = y(t) = uo(t) — ug(t — T) (6.118)

Finally the Analog-to-Digital Converter (ADC) is modelled by a sampler as
illustrated in Figure 6.11.

Thus the impulse response of the block composed by the DAC, the plant
F(s) and the ADC is signal defined by (6.118) sampled at the sampling period
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Figure 6.9: Continuous time plant F'(s) with Digital-to-Analog and Analog-to-
Digital Converters

Digital-to-Analog

Converter
1ek) u(t) 3
ork) > DAC 4 &Y
1 1
rrrrrr B P II
0 A 0o T
(k) u(t)

—- Bo(s) 4—>

Zero order hold
(ZOH) device

Figure 6.10: Zero-Order Hold (ZOH) device
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Figure 6.11: Model of analog-to-Digital Converter (ADC)

t = kT = y(k) = uo(kT) — ug(kT — T) = uo(kT) — uo (k —1)T)  (6.119)

Having in mind that 27! is the one sampling period delay operator, the Z
transform of the preceding equation yields:

F(z) = Zug(kT) —uo((k—1)T)]
= Z [ug(kT)] — 271 Z [ug(kT)) (6.120)
= (1=27") 2 [uo(kT)]

Here ug(kT') represents the sequence obtained by sampling continuous time

signal ug(t) which is the unit step response of the continuous time system. As

2

far as the Laplace transform of ug(t) is Ts) the preceding relation is usually

written as follows:

S

F(z) = Z [Bo(s)F(s)] = (1 — =) 2 [F(S)] (6.121)

In the preceding relation the term Z [@} shall be interpreted as the Z

S

transform of the sampled unit step response of the continuous time plant. Thus
the computation of Z [@] involves three steps: first to compute the inverse

F(s)

Laplace transform of —=, then to sample the obtained continuous time signal
to obtain a sequence and finally to take its Z transform. This is quite a long
process but hopefully the residue theorem applied on this specific inversion
problem leads to a straightforward result:

z [F(S)] = ZResz:Ai [ ! Fls) (6.122)

s 1 — z—lesT S

2
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The residue Res,—j, [ﬁ . Fis)] shall be computed around each pole

A of @ Assuming that A; is a pole of multiplicity n; then the residue of

T ng) around pole )\; is given by:
1 E(s)
Ress—y, [1 T } =

1 dni—t ‘ 1 F(s)
—)M .
(n; — 1)! dsmi—1 <(S ) 1—z7tesT >

Example 6.12. Consider the following continuous time plant whose transfer
function is:

(6.123)

S:)\i

1
F(s) = 14 7s
This plant is inserted in a discrete time environment as illustrated in Figure
6.9. We wish to find the equivalent discrete time transfer function F(z) of
the continuous time plant F(s) with Digital-to-Analog Converter (DAC) and
Analog-to-Digital Converter (ADC).
Applying (6.121) leads to the following expression of F(s):

(6.124)

_ 1
Where:
1 1 1
Z|l———| = gy . 6.126
[s(l—i—Ts)] zi:Res A [l—z—leST s(l—i-Ts)] ( )
Transfer function s(liTS) has two poles:

— A1 = 0, with multiplicity n; = 1; applying (6.123) the residue around that

pole reads:
1 1 _ 1 dit! 1 L F(s)
Ress=o |:1—271€ST s(l+7’s)] T (A-1)! dst1 (81—2*165T s =0
- 1 . _1
T l—z7lesT 14|
1
1—2-1
(6.127)

— )Xo = —%, with multiplicity ny = 1; applying (6.123) the residue around
that pole reads:

1 1 _ 1 gt 1 1 F(s)
Res,_ 1 [1_2—1esT Cshrs) | T (D)1 dsT ((5+ e

— 1 1

1—2-1esT " Ts
—1

T
1—z-le™ 7

s=—=

(6.128)
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Consequently F(z) reads:

FO) == (- 2y )

1—zle™ 7T

T
— 1 1=zt d-zrlemTol4er! (6.129)
1—271672 l—zflefg
_ z’l—zfle_g
l—z-le— 7
That is:
1—e 7
F(z) = —— (6.130)
zZ—€ T
[

6.7 State-space realization

6.7.1 Discretization

We consider the following state-space realization of the plant:

{ @(t) = Az(t) + Bu(t)

y(t) = Cz(t) + Du(?) (6.131)

The corresponding transfer function is obtained by taking the Laplace
transform of the preceding relations and assuming z(0) =0 :

F(s)=C(sl—A)'B+D (6.132)

The solution of the linear differential equation &(t) = Az(t) + Bu(t) where
z(0) = z, reads as follows:

t
z(t) = eAlzy + / AU Bu(r)dr (6.133)
0

Assuming that the state vector z(t) is sampled with a Zero-Order Hold
(ZOH) device with a sampling period T, we get at t = kT

kT
z(kT) = AT g, —|—/ AFT=T)By(7)dr (6.134)
0

We seek the expression of z((k + 1)T") as a function of z(kT'). To do that,
let’s express z(t) at t = (k + 1)T:

E((k"F 1)T) _ eA(k+1)T£0
+ f(k+1)T 6A((k+1)T—T)BH(T)dT
_ eA(k;+1)T£O
+f0kT eA((kJrl)Tff)Bg(T)dT (6.135)
+fk(:l;ﬂ)T eA((k—&—l)T—T)BQ(T)dT
_ AT ((ART, fOkT 6A(kT—T)Bg(7—)d7-)

+ fk(:lﬁﬂ)T eA((kH)T_T)By(T)dT
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We recognize in the term into parentheses the expression of z(kT"). Thus we
can write:
(k+1)T
2((k + 1)T) = AT (kT) + / AT By (1) (6.136)
kT
Assuming that the term u(7) which appears in the integral is constant during
each time step (this is the case when a Zero-Order Hold (ZOH) device is used),
we can replace it by w(kT) and put it out of the integral, as well as matrix B.
We get:

2((k+1)T) = ATx(kT) + [T AT DBy (KT)dr
— ATL(KT) + k(:i;ﬂ)T eA((k—f—l)T—r)dT) Bu(kT)
= ATy (KT) + g I eA(T—T)d7-> Bu(kT) (6.137)
= ATz (KT) + fOT eAtdt) Bu(kT)
We finally get:
2((k +1)T) = Agz(kT) + Byu(kT) (6.138)
where: —
{ gz;z T o) B (6.139)

A trick to get Ay and By in one shot is to use the following property>:

equ 13 ]3 ] T) = [ ‘%d ]?Id ] (6.140)

Shortly, denoting x; , := z((k 4+ 1)T") and wy, := u(kT'), we can write:

2y = z((k+1)T)
{ @ZH: w(kT) = 2311 = Agzy, + By, (6.141)
Assuming that A~! exists and using the fact that eATA~! = A~1eAT we
can compute the integral term which is needed to get By:
T T
/0 eMdt = A~ [eM]_ = AT (AT -T) (6.142)
Thus, assuming that A~! exists, we get:
Ty =eMay, + AT (eAT —1I) By, (6.143)
As far as the output equation is concerned, it remains unchanged:
y(t) = Cz(t) + Du(t) = Y, = Cz, + Duy, (6.144)

Consequently, the state space representation of a discrete time system is the
following where A, and By are provided by (6.139):

{ Ty = Agzy + Bauyy,

.14
Yy, = Czy, + Duy, (6.145)

3https://en.wikipedia.org/wiki/Discretization



6.7. State-space realization 195

6.7.2 Linear system perturbed by white Gaussian noises

When the continuous time system is perturbed by white Gaussian noises, the
state space representation reads:

(t) = Azx(t) + Bu(t) + w(t) w(t) ~ N(0,Q)
{ y(t) = Cz(t) + Du(t) + v(t) where { o(t) ~ N'(0, R) (6.146)

Then the corresponding discrete time system is the following?:

{ Zpr1 = Agzy + Bauy + wy, where { wy, ~ N(0,Qq = fOT eATQeA T dr)
Y, = Cap + Dy, + vy, v, ~N(O, Ry = &)
(6.147)
A trick to get Qg is to use the following property>:

exp ([ _(;* fT } T) = [ o A(Z?d ] = Q.= (A7) (A;'Qu) (6.148)

6.7.3 State space realization of (1 —271)Z [@}

S

The purpose of this section is to show that (6.145) corresponds to the state
space realization of (6.121). Indeed, from relation (6.121) we have:

F(z)=(1-2"1)Z2 {Fis)] (6.149)

The expression Z [@} represents the Z transform of the unit step response
of a plant with transfer function F(s). Let ys(¢) be the unit step response of
the plant. The unit step response ys(t) can be computed as the inverse Laplace

transform of @ :

yo(t) = L7 [F(S)} (6.150)

S

Consider a SISO plant with the following state-space realization:

Transfer function F'(s) is obtained assuming no initial condition (z(0) = 0).
By taking the Laplace transform of the state-space realization we get:

F(s) = = =C(sI-A)'B (6.152)

We have seen in (6.133) that, assuming to initial condition, the trajectory
of the state vector of a linear system reads as follows:

2(0) =0 = z(t) = /0 t AT Bu(r)dr (6.153)
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When u(t) =1Vt > 0, the expression of the state vector () corresponding
an unit step input reads:

t
u(t) =1Vt>0=z,(t) = / AT Bdr (6.154)
0

Assuming that A~! exists, and because A~ and e®! commute, the unit
step response z,(t) can be computed as follows:
z,(t) = [{ eATBdr = €Al [ e ATBdr
— _A-lpAt ( ~Ar|7= t) B

=0 (6.155)
=A"! (eAt — H) B
=(eM-1)A"'B
Thus the unit step response ys(t) of the plant reads:
ys(t) = Cz,(t) = C (A —~I) A7'B (6.156)

Now we have to compute the Z transform of the sampled unit step response
ys(kT):
ys(kT) = C (eAkT . H) A"'B (6.157)

The Z transform of e**”" and I are the following:

[eAkT _ ( 51 AT) (6.158)
ZM=2[M], o= (1-27)"1 |
From the facts that the Z transform is linear we get:

Zlys(kT)] =C(Z[eAT] - Z[1])A™'B

=C ((]1 _ Z—leAT)*1 o (1 _ 2_1)—1 H) A-'B (6.159)

Furthermore we can check that for any invertible matrices E and F we have:
E'-F!=E!'E-F)F! (6.160)
Setting E=1— 2z"'eAT and F = (1 — z_l) I we get:

E-l _p-1 (H _ -l AT)—1 (ﬂ_ 51 AT (/1/ _ z_l) ]I) (1 _ 2—1)—1]1

_ 17;1 ( 51 AT) 1( -1y _ 18AT)
RS R
= et (Bl e 1(1I )

(6.161)
Thus:

z M) = Z[y,0T)] =C (B -F 1) A'B
= L C (2l - AT H(I—eAT)AIB (6.162)
= L C (2l - AT) AT (1-¢AT)B



6.8. Discretization using Adomian series 197

We finally get:

(1-2z {

The preceding equation indicates that the state space realization of
(1 — z‘l) Z [@] is the following;:

Fs)

, ] —C(:I-AT) AT (I-AT)B (6.163)

(1-2Y)z2 [Fi‘s)] = ( %d ]?)d ) = C(zI - Ay) ' By (6.164)

We retrieve for A, and B, the expression given in (6.139):

Ad — eAT
B,=A"l(I-¢AT)B = (foT eAtdt) B (6.165)

6.7.4 First order approximation

When the sampling period T is small enough, the following approximations

hold:

Ad ~1+ AT

Bd ~ BT
Those approximations can also be obtained by discretizing the derivative of

4(t) using the Euler’s method:

&(kT) = Az(kT) + Bu(kT)
{ B (kT) ~ LEEDT) —2(kT) (6.167)
= 2((k+1)T) = (I+ AT)z(kT) + BTu(kT)

eAT zH—i—AT:{ (6.166)

Another approximation of eA” is the following:

-1 1 1 -t
AT — oAT/2 (eA—T/Q) ~ <]1+ 2AT> (H— 2AT) (6.168)

6.7.5 Miscellaneous

Furthermore, it is worth noticing that if zp = ar + jbi is an eigenvalue of the
state matrix Ay of the discrete time system, the corresponding eigenvalue s of
the state matrix A of the continuous time system can be obtained as follows:

1 1 br.
sp==In| /a2 + b2 ) + j—atan ) o 2p = ap + jbp = T (6.169)
T T ak

6.8 Discretization using Adomian series

6.8.1 Differential equations

First we recall the main principles of Adomian’s method*. We consider the
following differential equation where z is an unknown (vector) function, L a

%Y. Cherruault, G. Adomian, Decomposition methods: a new proof of convergence, Math.
Comp. Model. 18 (1993) 103-106
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linear differential operator, N(z(t)) a nonlinear operator acting upon z and
h(t) a known (vector) function independent of x:

L(z) = N(z) + h (6.170)
After integration, and using the linearity of L, we get:
z(t) = z(0) + L7 (N(z) + h) = (2(0) + L7 (b)) + L™ (N(z))  (6.171)

Then z(t) and the nonlinear operator N (z), which is assumed to be analytic
(meaning infinitely differentiable), are represented by the following series:

z(t) =Y 2 x;(t
{ 2(0) = £2(0 617
N(z) = > 20 Ailzg, -+ zy)
The so-called Adomian polynomials A,,(z,---,,,) are computed as
follows:
A _ |y m/\k =0,1,2 6.173
m(&gf";&m)—m i Z L m=U,1,2,--- ( )
k=0 A=0
Adomian polynomials Ay, (zg, - ,z,,) can equivalently be computed as
follows":
Ap(zg, -,z ):1/+WN zm:x A ) eI\ m =0,1,2,--- (6.174)
m\£0>» s Lm, 2t . k_ofk [ Rt .

Using series expansion (6.172) within (6.171) yields:

> zi(t) = (2(0)+ L7 (b)) + L (Z Az, - ,m) (6.175)
=0 =0

Equating terms with the same order on both sides leads to the approximation
of order n of z(t):

zo(t) = z(0) + L~ (R)
n z(t) = L7 (Ao(zo))
() ~ Y () where { Z2(t) = L7 (Ai(zo,2,)) (6.176)
=0

z,(t) = L7 (An—1(zo, - 1 21))
Example 6.13. Let’s consider the following differential equation®:

Z(t) = sin(x)
2(0) = 6y (6.177)
#(0) =0

K. K. Kataria, P. Vellaisamy, Simple Parametrization Methods For Generating Adomian
Polynomials, available online at http://pefmath.etf.rs

6G Adomian, A review of the decomposition method in applied mathematics, Journal
of Mathematical Analysis and Applications, Volume 135, Issue 2, 1988, Pages 501-544,
https://doi.org/10.1016,/0022-247X(88)90170-9.
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Here the linear differential operator L is the double integration d?/dt>.
Consequently L' is the twofold definite integration fot (fo" dr2) dry.
Furthermore, for this example h does not ezxist and N(x) = sin(z). Using
(6.173), the Adomian series expansion of sin(x) reads:

Ap(zg) = sin(zg)
Aj(xg,x1) = 21 cos(xg)
.1’2 .
Az(wo, 21, 22) = w2 cos(wo) — 5 sin(zo) (6.178)
Ag(xo, x1,T2,T3) = x3co8(xp) — %x? cos(xg) — w12 sin(xg)

Thus, using (6.176), we get the following approzimation of x(t):

~ i%(t) (6.179)
=0

where:
zo(t) =z(0)+ L7t (h) =6
2, (t) =L (Ag(zy)) = fg Jo ! sin(zo)dre dm
= fo Jo ! sin(fo)drydr = & ° sin(6p)
2o(t) = L7 (Ay(zg,27)) fo Yy cos(xg)dre dmy
= fo I 722 sin(o) cos(0p)dre dr = & ~ sin(6) cos(6o) (6.180)
z3(t) =L~ (Az(zg, 21, 25))
= fo I (;1?2 cos(xg) — ‘%% sin(m0)> dry dmy
=4 (sm(@o) cos?(0) — 3sin’(y))

6.8.2 Nonlinear dynamical systems

Now we consider the following nonlinear state space representation where
f(z(t),u(t)) is an analytic (meaning infinitely differentiable) vector field on
R™:
&(t) = f(z(t), u(t)) (6.181)
The solution z(t) of this differential equation reads as follows where L~! is
the onefold definite integration fg dr:

x(t) z(0)+L (f (f(t),y(t)))
a0+ [ () dr (6.182)

Assuming a Zero-Order Hold (ZOH) digital-to-analog converter (DAC), the
control vector u(t) is a known constant over the sampling interval T":

u(t) = u(kT) := w;, = constant V't € [ty, tx+1) = [kT, (k+1)T) (6.183)
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Thus, when discretization the nonlinear dynamical system (6.182), u(7) is
replaced by w;, = constantVt € [kT, (k+ 1)T"). We get:

)
=z + [T (f (2(7),u(r))) dr (6.184)
(a(

More generally, V¢ € [kT, (k+ 1)T), we can write:

t

o(t) = 2 + /k (el dr VEE T (k+1)T) (6.185)

Following the Adomian decomposition method, z(¢) and f(z(t),u;) are
presented by the following series:

z(t) =Y 2zt
{ xz(t) 21_07(20 (6.186)
f(z(t),u) = Zi:o Ai(zg, - z;)
The so-called Adomian polynomials A;(zg,---,z;) are computed as in
(6.173):
1| d Ny ,
Ailzo, - 2i) = o | 55 f ZOA T, i=0,1,2,---  (6.187)
J:

A=0

Then equating terms with the same order on both sides of (6.184) leads to
the approximation of order n of z(t). Denoting now L~! the onefold definite
integration fle dr, we get:

Zo(t) =z,
" 21(t) = L (Ao(zg)) = fy Aolo) d7
a(t) ~ 3 a;(t) where { Za2(t) = [y Ai(zo, z)) dr (6.188)

| 2,(t) = [ip Anci(zg, 2, ) dr

Finally, setting t to (k+1)T in z(t), we get the approximation of order n of
the dynamics of the discretized plant:

z((k+1)T) = zn:gl((k +1)7T) (6.189)
i=0

When n = 1, this corresponds to the Euler’s method.

Example 6.14. We consider the following linear time invariant plant:
= Az + Bu (6.190)
It is clear that we get from identification with (6.181):

f(z,u) = Az + Bu (6.191)
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Following Adomian’s procedure we get:

Ai(zg, zy) = [dd)\ (A (zo + Azy) +Bu,)], = Az,
2
As(zg, 1, 29) = % {% (A (&0 +Az;+ A &2) + Buk)]/\zo = Az,

\ ATL(&Oa s L.

n) = ALy,
(6.192)
Thus the approzimation of order n of x(t) reads x(t) = Y i ,xz;(t) where:
zo(t) = Lk
2, (t) = [y Ao(zo) d7 = (Azy + Buy,) (t — kT)
2y(t) = [i7 Av(g, 2y) dr = A (Azy, + Buy) (50 (6.193)
(1) = fip Anci (o, ) dr = AP (A + Buy) (S

Finally, setting t to (k+ 1)T in x(t), we get the approximation of order n
of the dynamics of the discretized plant:

(k+1)T Za; (k+1)T (6.194)
where:
zo((k+ 1T) =z,
z,((k+1)T) = (Azy + By )T
z,((k+1)T) = A (Azy, + By,) & (6.195)

z,((k+1)T) = A""! (Az;, + By,) L;

When n — 0o, and assuming that A~ exists, we get the following series:

2((k+DT) = X2 a,((k+1)T) |
= (02 B ) e+ A (X2, A7) Bu,

>oico (Ag) z, + AT (X2, (AuT) - H) Buy,
= ATy, + A1 (eAT — 1) By,
We clearly retrieve result (6.143).
]

Example 6.15. We consider the following differential equation where a # 0, b
and c are constant:

al(t) +bO(t) + ¢ sin(0(t)) = u(t)
0(0) = bo (6.197)
6(0) = 6y
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Let #1 := 0 and o := 0. Thus the state space representation of this
differential equation reads:
=0 [ ii=1 (6.198)
x9 =10 g9 =1 (u—bzy —csin(z1)) ’

Or, in vectorial form:

xz[“]mz[l( o ))]:zﬂx,u) (6.199)

T 2 (u—bxy —csin(z;
Following Adomian’s procedure we get:
Ao(zg) = Sz, )
Zo,2

- [ % (ug — bz — csin(zp1)) }
Az, 1) = [45 (f (o + Az, w)]
d o2 + AT12
dX é (up — b (zo2+ Az12) —esin(zo + Az1,1)) \—o

x1,2
(—ba:172 — Caj171 COS(wO,l))
d2

dfg (f (@0 + )\21 + )\2£27 Qk)):|

2,2

2
é <b X22 —C <x271 COS(.T[)J) x121 sm(mo 1)))

Il
IS

Ao(zg, 21,Z9) = 5 A=0

(6.200)
Thus the approzimation of order n of x(t) reads z(t) = >, x;(t) where:

zo,1
To(t) =z := ’
,0( ) Lk { T0.2 :|

z(t) = fktT Ao(zp) dr

0,2 .
[ (ug —bxzo2 — csin(xo1)) } (t = kT)
2(t) = fur Ar(zo,z1) dr

7

Q=

f T1,2
kT l bﬂslg—cazll COS 1‘01

a
l(uk—bxog—csm x0,1

c

_ [ } (t—KT)?
—i (ur, — bwo2 — ¢ sin(zo,1)) — £ 20,2 cos(xo 1)

2

(6.201)
Finally, setting t to (k+ 1)T in x(t), we get the approximation of order n
of the dynamics of the discretized plant:

(k+1)T Zw (k+1)T (6.202)



6.9. Derivation of discrete time controller from continuous time controller 203

where:

no(h4 DT) == | 201

Z0,2
B 20,2
z,((k+1)T) = [ % (ug —bxzo2 — csin(xo1)) } s
l(uk —b{L'()Q —CSin({L'() 1)) T2
zo((k+1)T) = [ _a% (uk — bxo — e sin(zo1)) — £ o2 cos(zoq) | 2
(6.203)
]

6.9 Derivation of discrete time controller from
continuous time controller

6.9.1 Tustin’s approximation

Tustin’s approximation (or bilinear transformation) is frequently used to derive

a discrete time controller that closely approximates the behaviour of the original

continuous time controller. .
Tustin’s approximation comes from the first order approximation of ez .

Indeed:

ST €7 1+<L 2z—-1
z=e :e_%w —%Hszfz—i—l (6.204)

Consequently the discrete time controller Cy(z) approximated from

continuous time controller C(s) is obtained by replacing s by %zj&

Cul) = o) gy (6.205)

Tustin’s approximation has the advantage that the left half s-plane is
transformed into the unit disc in the z-plane; indeed Tustin’s approximation is
an homographic transformation as illustrated in Figure 6.5.

Example 6.16. Consider the following PI continuous time controller whose

transfer function is:
K,
Cpi(s) =K, + ?Z (6.206)

Applying the Tustin’s approximation leads to the following discrete time

controller: T )
o =K, + K,Ei (6.207)

z4+1 Z_].

S

One of the problems with the Tustin’s approximation method is that the
frequency scale is distorted during the approximation. Recall that to evaluate
the frequency response the transfer function is evaluated along the imaginary
axis s = jw for continuous time systems whereas for discrete time systems the
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transfer function is evaluated along the unit circle z = e/® = ¢/“7. When the
discrete time transfer function is obtained by using the Tustin’s approximation
on a continuous transfer function, the continuous frequency w, is mapped to the
discrete frequency wy according to the following relation:

' 221 _ 20l 1 _ 2" o TF oo T
S = JWe = Ti"rl - TijcT+1 = Tejwch 67@ — jTtan (w2 ) (6208)
e 2 +e 2
That is: ) i
wC
We T wa = 75 tam 6.209
T < 2 ) (6.209)

Consequently the frequency scale is distorted. This will create mismatch
in the system’s response if the controller design is based on precise frequency
requirements. At low frequency the distortion is small. However close to the
Nyquist frequency the distortion becomes significant. In order to match the
continuous-time design at a specific frequency w,. the Tustin’s approximation
can me modified by using a pre-warping frequency:

We z—1

Sﬁtan(%)z—i—l

(6.210)

There are, however, still distortions at other frequencies.

Example 6.17. Consider the following continuous time controller whose

transfer function is:
1

T 1+7s
Applying the Tustin’s approximation with w. as the pre-warping frequency
leads to the following discrete time controller:

Cd(Z) = C(S)|S:tan WSLQ.T) i;}
1
B t‘“‘(zil) (6.212)
- 1 _ TWe
L) Ty
— 1z
1+ —2¢0 2+a
(%57)

C(s) (6.211)

Where:

TWe

tan( <L)
a= 1”# (6.213)

Setting w. to % leads to the following discrete time controller:

1 1 1
we =~ = Cyz) = T (6.214)
T

Where:

We
tan(ng) tan(%) (6 215)
1 .
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6.9.2 State-space realization of bilinear conformal mapping
We consider the following bilinear map on the Laplace transform variable s
where a and b # —% are real numbers:

5+a<:> . zZ—a
z s =
1+bs 1-bz

The function s + 2z maps the circle in the complex s-plane centred on

Sz = (6.216)

<_a;1/b, 0) and having diameter |—a + 1/b| onto the jw-axis in the s-plane and
it maps the jw-axis into a similar circle in the Right-Half-Plane RHP”.

Furthermore assume that transfer function F(s) as the following realization:

F(s) = C(sI— A)'B+D = (%‘%) (6.217)

Then the conformal map s — z yields”:

F(z) = F(s)|,e 2= =C (zH - K) TB4D— (%-H%) (6.218)

A= (A+al)(I+bA)"
B=(1-ab)(I+bA)'B
C=C(I+bA)"!
D=D-)C(I+bA)"'B
The proof of the preceding property follows by inspection: we check that
the following property holds:

(6.219)

-1
F(z) ZC(SJFGH—A) B+D=C(sI—A) 'B+D=F(s)
= 1S:bas ]' + b S
(6.220)
Similarly, the inverse transformation s = ;=% produces the same effect

on the state-space matrices, except that a and b are replaced by —a and —b,
respectively.

Furthermore, if wq is not an eigenvalue of A, then the Tustin’s map s +— 2z =
“ots changes transfer function F(s) as follows®:

F(z) = F(6)l, oy —C(1-R) ' B+D - <%H§—> (6.221)

A = (A + wol) (wol — A) 7!

]§ = 2(,00 ((.UO]I—A)_IB

C = /2wy C (wol — A)7?
D=F(w)=D+C(wl—A)'B

(6.222)

M. G. Safonov, Imaginary-axis zeros in multivariable H-optimal control, Modelling,
Robustness and Sensitivity Reduction in Control Systems, pp. 71-81, 1987

8Jarmo Malinen, The Cayley Transform as a Time Discretization Scheme,
Numerical Functional Analysis and Optimization 28(7):825-851, August 2007, DOL:
10.1080,/01630560701493321
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Similarly, if —1 is not an eigenvalue of g, then the inverse transformation

Z 8 = wy Z?‘L produces the following effect on the state-space realization of
F(z)8:
F(z)| .. =C(sI-A)'B+D:= <%‘£> = F(s) (6.223)
z=
UJO*S
where:

(6.224)

6.9.3 Matched Pole-Zero (MPZ) mapping method

The purpose of this method is to map the poles and the zeros of the
continuous time controller with the poles and the zeros of the discrete time
controller according to the relation z = eP” where p is either a pole or a zero of
the continuous time controller and to preserve the static gain of the continuous
time controller in the discrete time domain.

The steps of the Matched Pole-Zero (MPZ) mapping method are the
following:

— Map the poles and the zeros of the continuous time controller with the
poles and the zeros of the discrete time controller according to the following
relation where s is either a pole or a zero of the continuous time controller:

z=eT (6.225)

— If the degree of the numerator of the discrete time controller is lower than
the degree of its denominator then multiply by z + 1 the numerator until
that the degree of the numerator of the discrete time controller becomes
equal to the degree of its numerator.

The purpose of this step is to map the high frequency behaviours of the
discrete time and continuous time and controllers.

— Multiply the transfer function of the discrete time controller by a gain K,
and set it to identify the static gain of the discrete time controller with
the static gain of the continuous time controller:

lim C(s) = lim Cy(z) (6.226)
5—0 z—1

Example 6.18. Consider the following continuous time controller whose

transfer function is:
1

T 147s
It is clear that the pole of C(s) is —1 whereas C(s) has no zero.

C(s)

(6.227)
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— Map the poles and the zeros of the continuous time controller with the
poles and the zeros of the discrete time controller according to the following
relation where s is either a pole or a zero of the continuous time controller:

Cai(z) = _

z—e

(6.228)

NE

— If the degree of the numerator of the discrete time controller is lower than
the degree of its denominator then multiply by z + 1 the numerator until
that the degree of the numerator of the discrete time controller becomes
equal to the degree of its numerator. We get:

z+1

z—e

Caz(2) = (6.229)

415

— Multiply the transfer function of the discrete time controller by a gain K,
and set it to identify the static gain of the discrete time controller with the
static gain of the continuous time controller. We get:

1
Culz) = K=t 1 (6.230)
z2—€e 7
Gain K, is set such that:
T
lim C(s) = lim Cy(2) 1 = K2 = K, = 227 (6.231)
s—0 72—)1 d o nl_e—g no 2 ’

Thus the Matched Pole-Zero (MPZ) mapping method leads to the following
discrete time controller:

T
l—e 7= z+41
Cy(z) =

(6.232)
2 Z— e‘g
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