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Course overview

Classical control theory is intrinsically linked to the frequency domain and the
s-plane. The main drawback of classical control theory is the di�culty to
apply it in Multi-Input Multi-Output (MIMO) systems. Rudolf Emil Kalman
(Hungarian-born American, May 19, 1930 � July 2, 2016) is one of the greatest
protagonist of modern control theory1. He has introduced the concept of state
as well as linear algebra and matrices in control theory. With this formalism
systems with multiple inputs and outputs could easily be treated.

The purpose of this lecture is to present an overview of modern control
theory. More speci�cally, the objectives are the following:

− to learn how to model dynamic systems in the state-space and the state-
space representation of transfer functions;

− to learn linear dynamical systems analysis in state-space: more speci�cally
to solve the time invariant state equation and to get some insight on
controllability, observability and stability;

− to learn state-space methods for observers and controllers design.

Assumed knowledge encompass linear algebra, Laplace transform and linear
ordinary di�erential equations (ODE)

This lecture is organized as follows:

− The �rst chapter focuses on the state-space representation as well as state-
space representation associated to system interconnection;

− The conversion from transfer functions to state-space representation is
presented in the second chapter. This is also called transfer function
realization;

− The analysis of linear dynamical systems is presented in the third chapter;
more speci�cally we will concentrate on the solution of the state equation
and present the notions of controllability, observability and stability;

− The fourth chapter is dedicated to observers design. This chapter focuses
on Luenberger observer, state observer for SISO systems in observable
canonical form, state observer for SISO systems in arbitrary state-space
representation and state observer for MIMO systems will be presented.

1http://www.uta.edu/utari/acs/history.htm
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− The �fth chapter is dedicated to observers and controllers design. As far
as observers and controllers are linked through the duality principle the
frame of this chapter will be similar to the previous chapter: state feedback
controller for SISO systems in controllable canonical form, state feedback
controller for SISO systems in arbitrary state-space representation, static
state feedback controller and static output feedback controller for MIMO
systems will be presented.
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Chapter 1

State-space representation

1.1 Introduction

This chapter focuses on the state-space representation as well as conversions
from state-space representation to transfer function. The state-space
representation associated to system interconnection is also presented.

The notion of state-space representation has been developed in the former
Soviet Union where control engineers preferred to manipulate di�erential
equations rather than transfer functions which originates in the United States
of America. The di�usion to the Western world of state-space representation
started after the �rst congress of the International Federation of Automatic
Control (IFAC) which took place in Moscow in 1960.

One of the interest of the state-space representation is that it enables to
generalize the analysis and control of Multi-Input Multi-Output (MIMO) linear
systems with the same formalism than Single-Input Single-Output (SISO) linear
systems.

Let's start with an example. We consider a system described by the following
second-order linear di�erential equation with a damping ratio denoted m, an
undamped natural frequency ω0 and a static gain K :

1

ω2
0

d2y(t)

dt2
+

2m

ω0

dy(t)

dt
+ y(t) = Ku(t) (1.1)

Here y(t) denotes the output of the system whereas u(t) is its input. The
preceding relation represents the input-ouput description of the system.

The transfer function is obtained thanks to the Laplace transform and
assuming that the initial conditions are zero (that is ẏ(t) = ÿ(t) = 0). We get:

1
ω2
0
s2Y (s) + 2m

ω0
sY (s) + Y (s) = KU(s)

⇔ F (s) = Y (s)
U(s) =

Kω2
0

s2+2mω0s+ω2
0

(1.2)

Now rather than computing the transfer function, let's assume that we wish
to transform the preceding second order di�erential equation into a single �rst
order vector di�erential equation. To do that we introduce two new variables,
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say x1 and x2, which are de�ned for example as follows:{
y(t) = Kω2

0x1(t)
ẋ1(t) = x2(t)

(1.3)

Thanks to the new variables x1 and x2 the second order di�erential equation
(1.1) can now be written as follows:{

dy(t)
dt = Kω2

0
dx1(t)
dt = Kω2

0x2(t)
d2y(t)
dt2

= Kω2
0
dx2(t)
dt

⇒ dx2(t)
dt + 2mω0x2(t) + ω2

0x1(t) = u(t)

(1.4)

The second equation of (1.3) and equation (1.4) form a system of two coupled
�rst order linear di�erential equations:{

dx1(t)
dt = x2(t)

dx2(t)
dt = −2mω0x2(t)− ω2

0x1(t) + u(t)
(1.5)

In is worth noticing that variables x1(t) and x2(t) constitute a vector which

is denoted

[
x1(t)
x2(t)

]
: this is the state vector. Equation (1.5) can be rewritten

in a vector form as follows:

d

dt

[
x1(t)
x2(t)

]
=

[
0 1
−ω2

0 −2mω0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t) (1.6)

Furthermore using the �rst equation of (1.3) it is seen that the output y(t)

is related to the state vector

[
x1(t)
x2(t)

]
by the following relation:

y(t) =
[
Kω2

0 0
] [ x1(t)

x2(t)

]
(1.7)

Equations (1.6) and (1.7) constitute the so called state-space representation
of the second order system model (1.4). This representation can be generalized
as follows: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.8)

The state-space representation is formed by a state vector and a state
equation. This representation enables to describe the dynamics of a linear
dynamical systems through n �rst order di�erential equations, where n is the
size of the state vector, or equivalently through a single �rst order vector
di�erential equation.

1.2 State and output equations

Any system that can be described by a �nite number of nth order linear
di�erential equations with constant coe�cients, or any system that can be
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Figure 1.1: Block diagram of a state-space representation

approximated by them, can be described using the following state-space
representation: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.9)

Where:

− x(t) is the state vector, which is of dimension n. The number n of the
state vector components is called the order of the system;

− u(t) is the input of the system;

− y(t) is the output of the system.

State vector x(t) can be de�ned as a set of variables such that their
knowledge at the initial time t0 = 0, together with knowledge of system inputs
u(t) at t ≥ 0 are su�cient to predict the future system state and output y(t)
for all time t > 0.

Both equations in (1.9) have a name:

− Equation ẋ(t) = Ax(t) +Bu(t) is named as the state equation;

− Equation y(t) = Cx(t) +Du(t) is named as the output equation.

The state equation and the output equation both constitute the state-space
representation of the system.

The block diagram corresponding to state-space representation (1.9) is
shown in Figure 1.1.

Furthermore matrices (A,B,C,D) which de�ne the state-space
representation of the system are named as follows 1:

− A is the state matrix and relates how the current state a�ects the state
change ẋ(t). This is a constant n× n square matrix where n is the size of
the state vector;

− B is the control matrix and determines how the system inputs u(t) a�ects
the state change; This is a constant n×m matrix where m is the number
of system inputs;

1https://en.wikibooks.org/wiki/Control_Systems/State-Space_Equations
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− C is the output matrix and determines the relation between the system
state x(t) and the system outputs y(t). This is a constant p × n matrix
where p is the number of system outputs;

− D is the feedforward matrix and allows for the system input u(t) to a�ect
the system output y(t) directly. This is a constant p×m matrix.

1.3 From ordinary di�erential equations to
state-space representation

1.3.1 Brunovsky's canonical form

Let's consider a Single-Input Single-Output (SISO) dynamical system modelled
by the following input-output relation, which is an nth order non-linear time-
invariant Ordinary Di�erential Equation (ODE):

dny(t)

dtn
= g

(
y(t),

dy(t)

dt
,
d2y(t)

dt2
, · · · , d

n−1y(t)

dtn−1
, u(t)

)
(1.10)

This is a time-invariant input-output relation because time t does not
explicitly appears in function g.

The usual way to get a state-space equation from the nth order non-linear
time-invariant ordinary di�erential equation (1.10) is to choose the components
x1(t), · · · , xn(t) of the state vector x(t) as follows:

x(t) =


x1(t)
x2(t)
...

xn−1(t)
xn(t)

 :=



y(t)
dy(t)
dt

d2y(t)
dt2

...
dn−2y(t)
dtn−2

dn−1y(t)
dtn−1


(1.11)

Thus Equation (1.10) reads:

ẋ(t) =


ẋ1(t)
ẋ2(t)
...

ẋn−1(t)
ẋn(t)

 =


x1(t)
x2(t)
...

xn−1(t)
g (x1, · · · , xn−1, u(t))

 := f (x(t), u(t)) (1.12)

Furthermore:

y(t) := x1(t) =
[
1 0 · · · 0

]
x(t) (1.13)

This special non-linear state equation is called the Brunovsky's canonical
form.
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1.3.2 Linearization of non-linear time-invariant state-space
representation

More generally most of Multi-Input Multi-Output (MIMO) dynamical systems
can be modelled by a �nite number of coupled non-linear �rst order ordinary
di�erential equations (ODE) as follows:

ẋ(t) = f (x(t), u(t)) (1.14)

The Brunovsky's canonical form may be used to obtain the �rst order
ordinary di�erential equations.

In the preceding state equation f is called a vector �eld. This is a time-
invariant state-space representation because time t does not explicitly appears
in the vector �eld f .

When the vector �eld f is non-linear there exists quite few mathematical
tools which enable to catch the intrinsic behavior of the system. Nevertheless
this situation radically changes when vector �eld f is linear both in the state x(t)
and in the control u(t). The good news is that it is quite simple to approximate
a non-linear model with a linear model around an equilibrium point.

We will �rst de�ne what we mean by equilibrium point and then we will see
how to get a linear model from a non-linear model.

An equilibrium point is a constant value of the pair (x(t), u(t)), which will
be denoted (xe, ue), such that:

0 = f (xe, ue) (1.15)

It is worth noticing that as soon as (xe, ue) is a constant value then we have
ẋe = 0.

Then the linearization process consists in computing the Taylor expansion
of vector �eld f around the equilibrium point (xe, ue) and to stop it at order 1.
Using the fact that f (xe, ue) = 0 the linearization of a vector �eld f (x(t), u(t))
around the equilibrium point (xe, ue) reads:

f (xe + δx, ue + δu) ≈ Aδx+Bδu (1.16)

Where: {
δx(t) = x(t)− xe
δu(t) = u(t)− ue

(1.17)

And where matrices A and B are constant matrices:
A = ∂f(x,u)

∂x

∣∣∣
u=ue,x=xe

B = ∂f(x,u)
∂u

∣∣∣
u=ue,x=xe

(1.18)

Furthermore as far as xe is a constant vector we can write:

ẋ(t) = ẋ(t)− 0 = ẋ(t)− ẋe =
d (x(t)− xe)

dt
= δẋ(t) (1.19)



18 Chapter 1. State-space representation

Thus the non-linear time-invariant state equation (1.14) turns to be a linear
time-invariant state equation:

δẋ(t) = Aδx(t) +Bδu(t) (1.20)

As far as the output equation is concerned we follow the same track. We
start with the following non-linear output equation:

y(t) = h (x(t), u(t)) (1.21)

Proceeding as to the state equation, we approximate the vector �eld h by
its Taylor expansion at order 1 around the equilibrium point (xe, ue):

y(t) = h (xe, ue) + h (δx(t) + xe, δu(t) + ue) ≈ ye +Cδx+Dδu (1.22)

Where:
y
e
= h (xe, ue) (1.23)

And where matrices C and D are constant matrices:
C = ∂h(x,u)

∂x

∣∣∣
u=ue,x=xe

D = ∂h(x,u)
∂u

∣∣∣
u=ue,x=xe

(1.24)

Let's introduce the di�erence δy(t) as follows:

δy(t) = y(t)− y
e

(1.25)

Thus the non-linear output equation (1.21) turns to be a linear output
equation:

δy(t) = Cδx(t) +Dδu(t) (1.26)

Consequently a non-linear time-invariant state representation:{
ẋ(t) = f (x(t), u(t))
y(t) = h (x(t), u(t))

(1.27)

can be approximated around an equilibrium point (xe, ue), de�ned by
0 = f (xe, ue), by the following linear time-invariant state-space representation:{

δẋ(t) = Aδx(t) +Bδu(t)
δy(t) = Cδx(t) +Dδu(t)

(1.28)

Nevertheless is worth noticing that the linearization process is an
approximation that is only valid around a region close to the equilibrium
point.

The δ notation indicates that the approximation of the non-linear state-space
representation is made around an equilibrium point. This is usually omitted and
the previous state-space representation will be simply rewritten as follows:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.29)
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Example 1.1. Let's consider a �ctitious system whose dynamics reads:

d3y(t)

dt3
= cos(ÿ(t)) + e3ẏ(t) − tan(y(t)) + u(t) (1.30)

Find a non-linear state-space representation of this system with the
Brunovsky's choice for the components of the state vector. Then linearize the
state-space representation around the equilibrium output ye = 0.

As far as the di�erential equation which describes the dynamics of the system
is of order 3, there are 3 components in the state vector:

x(t) =

 x1(t)
x2(t)
x3(t)

 (1.31)

The Brunovsky's canonical form is obtained by choosing the following
components for the state vector:

x(t) =

 x1(t)
x2(t)
x3(t)

 =

 y(t)
ẏ(t)
ÿ(t)

 (1.32)

With this choice the dynamics of the system reads:
 ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

 x2(t)
x3(t)

cos(x3(t)) + e3x2(t) − tan(x1(t)) + u(t)


y(t) = x1(t)

(1.33)

The preceding relations are of the form:{
ẋ(t) = f (x(t), u(t))
y(t) = h (x(t), u(t))

(1.34)

Setting the equilibrium output to be ye = 0 leads to the following equilibrium
point xe:

ye = 0⇒ xe =

 ye
ẏe
ÿe

 =

 0
0
0

 (1.35)

Similarly the value of the control ue at the equilibrium point is obtained by
solving the following equation:

d3ye
dt3

= cos(ÿe) + e3ẏe − tan(ye) + ue
⇒ 0 = cos(0) + e3×0 − tan(0) + ue
⇒ ue = −2

(1.36)

Matrices A and B are constant matrices which are computed as follows:
A = ∂f(x,u)

∂x

∣∣∣
u=ue,x=xe

=

 0 1 0
0 0 1

−
(
1 + tan2(x1e)

)
3e3x2e −sin(x3e)

 =

 0 1 0
0 0 1
−1 3 0


B = ∂f(x,u)

∂u

∣∣∣
u=ue,x=xe

=

 0
0
1


(1.37)
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Similarly matrices C and D are constant matrices which are computed as
follows: 

C = ∂h(x,u)
∂x

∣∣∣
u=ue,x=xe

=
[
1 0 0

]
D = ∂h(x,u)

∂u

∣∣∣
u=ue,x=xe

= 0
(1.38)

Consequently the non-linear time-invariant state representation
d3y(t)
dt3

= cos(ÿ(t)) + e3ẏ(t) − tan(y(t)) + u(t) can be approximated around the
equilibrium output ye = 0 by the following linear time-invariant state-space
representation:

δẋ(t) = Aδx(t) +Bδu(t) =

 0 1 0
0 0 1
−1 3 0

 δx(t) +
 0

0
1

 δu(t)
δy(t) = Cδx(t) +Dδu(t) =

[
1 0 0

]
δx(t)

(1.39)

The Scilab code to get the state matrix A around the equilibrium point (xe =
0, ue = −2) is the following:

function xdot = f(x,u)

xdot = zeros(3,1);

xdot(1) = x(2);

xdot(2) = x(3);

xdot(3) = cos(x(3)) + exp(3*x(2)) - tan(x(1)) + u;

endfunction

xe = zeros(3,1);

xe(3) = 0;

ue = -2;

disp(f(xe,ue), 'f(xe,ue)=');

disp(numderivative(list(f,ue),xe),'df/dx=');

■

Example 1.2. We consider the following equations which represent the
dynamics of an aircraft considered as a point with constant mass2:

mV̇ = T −D −mg sin(γ)
mV γ̇ = L cos(ϕ)−mg cos(γ)

mV cos(γ)ψ̇ = L sin(ϕ)

ϕ̇ = p

(1.40)

Where:

− V is the airspeed of the aircraft;

− γ is the �ight path angle;

− ψ is the heading;

2Etkin B., Dynamics of Atmospheric Flight, Dover Publications, 2005
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− ϕ is the bank angle;

− m is the mass (assumed constant) of the aircraft;

− T is the Thrust force applied by the engines on the aircraft model;

− D is the Drag force;

− g is the acceleration of gravity (g = 9.80665 m/s2);

− L is the Lift force;

− ϕ is the bank angle;

− p is the roll rate.

We will assume that the aircraft control vector u(t) has the following
components:

− The longitudinal load factor nx:

nx =
T −D
mg

(1.41)

− The vertical load factor nz:

nz =
L

mg
(1.42)

− The roll rate p

Taking into account the components of the control vector u(t) the dynamics
of the aircraft model (1.40) reads as follows:

V̇ = g (nx − sin(γ))
γ̇ = g

V (nz cos(ϕ)− cos(γ))

ψ̇ = g
V

sin(ϕ)
cos(γ)nz

ϕ̇ = p

(1.43)

This is clearly a non-linear time-invariant state equation of the form:

ẋ = f(x, u) (1.44)

Where: {
x =

[
V γ ψ ϕ

]T
u =

[
nx nz p

]T (1.45)

Let (xe, ue) be an equilibrium point de�ned by:

f(xe, ue) = 0 (1.46)

The equilibrium point (or trim) for the aircraft model is obtained by

arbitrarily setting the values of state vector xe =
[
Ve γe ψe ϕe

]T
which

are airspeed, �ight path angle, heading and bank angle, respectively. From that
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value of the state vector xe we get the value of the corresponding control vector

ue =
[
nxe nze pe

]T
by solving the following set of equations:

0 = g (nxe − sin(γe))
0 = g

Ve
(nze cos(ϕe)− cos(γe))

0 = g
Ve

sin(ϕe)
cos(γe)

nze

0 = pe

(1.47)

We get: 
pe = 0
ϕe = 0

nze =
cos(γe)
cos(ϕe)

here ϕe = 0⇒ nze = cos(γe)

nxe = sin(γe)

(1.48)

Let δx(t) and δx(t) be de�ned as follows:{
x(t) = xe + δx(t)
u(t) = ue + δu(t)

(1.49)

The linearization of the vector �eld f around the equilibrium point (xe, ue)
reads:

δẋ(t) ≈ ∂f(x, u)

∂x

∣∣∣∣
u=ue,x=xe

δx(t) +
∂f(x, u)

∂u

∣∣∣∣
u=ue,x=xe

δu(t) (1.50)

Assuming a level �ight (γe = 0) we get the following expression of the state
vector at the equilibrium:

xe =


Ve

γe = 0
ψe

ϕe = 0

 (1.51)

Thus the control vector at the equilibrium reads:

ue =

 nxe = sin (γe) = 0
nze = cos (γe) = 1

pe = 0

 (1.52)

Consequently:

∂f(x,u)
∂x

∣∣∣
u=ue,x=xe

=


0 −g cos(γ) 0 0

− g
V 2 (nz cos(ϕ)− cos(γ)) g

V sin(γ) 0 − g
V nz sin(ϕ)

− g
V 2

sin(ϕ)
cos(γ)nz −

g
V

sin(ϕ) sin(γ)
cos2(γ)

nz 0 g
V

cos(ϕ)
cos(γ)nz

0 0 0 0

∣∣∣∣∣∣ x = xe
u = ue

=


0 −g 0 0
0 0 0 0
0 0 0 g

Ve
0 0 0 0


(1.53)
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And:

∂f(x,u)
∂u

∣∣∣
u=ue,x=xe

=


g 0 0
0 g

V cos(ϕ) 0

0 g
V

sin(ϕ)
cos(γ) 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣

V = Ve
γ = γe = 0

nz = nze = cos (γe) = 1
ϕ = ϕe = 0

=


g 0 0
0 g

Ve
0

0 0 0
0 0 1


(1.54)

Finally using the fact that γe = 0 ⇒ δγ = γ, ϕe = 0 ⇒ δϕ = ϕ and
pe = 0⇒ δp = p we get the following linear time-invariant state equation:

δV̇
γ̇

δψ̇

ϕ̇

 =


0 −g 0 0
0 0 0 0
0 0 0 g

Ve
0 0 0 0



δV
γ
δψ
ϕ

+


g 0 0
0 g

Ve
0

0 0 0
0 0 1


 δnx
δnz
p

 (1.55)

Obviously this is a state equation of the form δẋ(t) = Aδx(t) +Bδu(t).
It can be seen that the linear aircraft model can be decoupled into longitudinal

and lateral dynamics:

− Longitudinal linearized dynamics:[
δV̇
γ̇

]
=

[
0 −g
0 0

] [
δV
δγ

]
+

[
g 0
0 g

Ve

] [
δnx
δnz

]
(1.56)

− Lateral linearized dynamics:[
δψ̇

ϕ̇

]
=

[
0 g

Ve
0 0

] [
δψ
ϕ

]
+

[
0
1

]
p (1.57)

The previous equations show that:

− Airspeed variation is commanded by the longitudinal load factor nx;

− Flight path angle variation is commanded by the vertical load factor nz;

− Heading variation is commanded by the roll rate p.

■

1.4 From state-space representation to transfer
function

Let's consider the state-space representation (1.9) with state vector x(t), input
vector u(t) and output vector y(t). The transfer function relates the relation
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between the Laplace transform of the output vector, Y (s) = L
[
y(t)

]
, and the

Laplace transform of the input vector, U(s) = L [u(t)], assuming no initial
condition, that is x(t)|t=0+ = 0. From (1.9) we get:

x(t)|t=0+ = 0⇒
{
sX(s) = AX(s) +BU(s)
Y (s) = CX(s) +DU(s)

(1.58)

From the �rst equation of (1.58) we obtain the expression of the Laplace
transform of the state vector (be careful to multiply s by the identity matrix to
obtain a matrix with the same size than A ):

(sI−A)X(s) = BU(s)⇔ X(s) = (sI−A)−1BU(s) (1.59)

And using this result in the second equation of (1.58) leads to the expression
of the transfer function F(s) of the system:

Y (s) = CX(s) +DU(s) =
(
C (sI−A)−1B+D

)
U(s) := F(s)U(s) (1.60)

Where the transfer function F(s) of the system has the following expression:

F(s) = C (sI−A)−1B+D (1.61)

It is worth noticing that the denominator of the transfer function F(s) is
also the determinant of matrix sI−A. Indeed the inverse of sI−A is given by:

(sI−A)−1 =
1

det(sI−A)
adj(sI−A) (1.62)

Where adj(sI−A) is the adjugate of matrix sI−A (that is the transpose of the
matrix of cofactors 3). Consequently, and assuming no pole-zero cancellation
between adj(sI−A) and det(sI−A), the eigenvalues of matrix A are also the
poles of the transfer function F(s).

From (1.62) it can be seen that the polynomials which form the numerator of
C (sI−A)−1B have a degree which is strictly lower than the degree of det(sI−
A). Indeed the entry in the ith row and jth column of the cofactor matrix of
sI − A (and thus the adjugate matrix) is formed by the determinant of the
submatrix formed by deleting the ith row and jth column of matrix sI − A;
thus each determinant of those submatrices have a degree which is strictly lower
than the degree of det(sI−A). We say that C (sI−A)−1B is a strictly proper
rational matrix which means that:

lim
s→∞

C (sI−A)−1B = 0 (1.63)

In the general case of MIMO systems F(s) is a matrix of rational functions:
the number of rows of F(s) is equal to the number of outputs of the system
(that is the size of the output vector y(t)) whereas the number of columns of
F(s) is equal to the number of inputs of the system (that is the size of the input
vector u(t)).

3https://en.wikipedia.org/wiki/Invertible_matrix
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1.5 Zeros of a transfer function - Rosenbrock's system
matrix

Let R(s) be the so-called Rosenbrock's system matrix, as proposed in 1967 by
Howard H. Rosenbrock4:

R(s) =

[
sI−A −B

C D

]
(1.64)

From the fact that transfer function F(s) reads F(s) = C (sI−A)−1B+D,
the following relation holds:[

I 0

−C (sI−A)−1 I

]
R(s) =

[
I 0

−C (sI−A)−1 I

] [
sI−A −B

C D

]
=

[
sI−A −B

0 F(s)

]
(1.65)

Matrix

[
I 0

−C (sI−A)−1 I

]
is a square matrix for which the following

relation holds:

det

([
I 0

−C (sI−A)−1 I

])
= 1 (1.66)

Now assume that R(s) is a square matrix. Using the property
det (XY) = det (X) det (Y), we get the following property for the
Rosenbrock's system matrix R(s):

det

([
I 0

−C (sI−A)−1 I

]
R(s)

)
= det

([
sI−A −B

0 F(s)

])
⇒ det

([
I 0

−C (sI−A)−1 I

])
det (R(s)) = det (sI−A) det (F(s))

⇒ det (R(s)) = det (sI−A) det (F(s))
(1.67)

For SISO systems we have det (F(s)) = F (s) and consequently the preceding
property reduces as follows:

det (F(s)) = F (s)⇒ F (s) =
det (R(s))

det (sI−A)
(1.68)

For non-square matrices, the Sylvester's rank inequality states that if X is
a m× n matrix and Y is a n× k matrix, then the following relation holds:

rank (X) + rank (Y)− n ≤ rank (XY) ≤ min (rank (X) , rank (Y)) (1.69)

For MIMO systems the transfer function between input i and output j is
given by:

Fij(s) =

det

([
sI−A −bi
cTj dij

])
det(sI−A)

(1.70)

4https://en.wikipedia.org/wiki/Rosenbrock_system_matrix
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where bi is the i
th column of B and cTj the jth row of C.

Furthermore in the general case of MIMO linear time invariant systems, the
(transmission) zeros of a transfer function F(s) are de�ned as the values of s

such that the rank of the Rosenbrock's system matrix R(s) =

[
sI−A −B

C D

]
is lower than its normal rank, meaning that the rank of R(s) drops.

When R(s) is a square matrix this means that R(s) is not invertible; in such
a situation the (transmission) zeros are the values of s such that det (R(s)) = 0.

Furthermore when R(s) is a square matrix a (transmission) zero z in the
transfer function F(s) indicates that there exists non-zero input vectors u(t)
which produces a null output vector y(t). Let's write the state vector x(t) and
input vector u(t) as follows where z is a (transmission) zero of the system:{

x(t) = x0e
zt

u(t) = u0e
zt (1.71)

Imposing a null output vector y(t) we get from the state-space representation
(1.9): {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

⇔
{
zx0e

zt = Ax0e
zt +Bu0e

zt

0 = Cx0e
zt +Du0e

zt (1.72)

That is:{
(zI−A)x0e

zt −Bu0e
zt = 0

Cx0e
zt +Du0e

zt = 0
⇔
[
sI−A −B

C D

]
s=z

[
x0
u0

]
ezt = 0 (1.73)

This relation holds for a non-zero input vector u(t) = u0e
zt and a non-zero

state vector x(t) = x0e
zt when the values of s are chosen such that R(s) is not

invertible (R(s) is assumed to be square); in such a situation the (transmission)
zeros are the values of s such that det (R(s)) = 0. We thus retrieve Rosenbrock's
result.

Example 1.3. Let's consider the following state-space representation: ẋ(t) =

[
−7 −12
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
1 2

]
x(t)

(1.74)

From the identi�cation with the general form of a state-space representation
(1.9) it is clear that D = 0. Furthermore we get the following expression for the
transfer function:

F (s) = C (sI−A)−1B

=
[
1 2

] [ s+ 7 12
−1 s

]−1 [
1
0

]
=
[
1 2

]
1

s(s+7)+12

[
s −12
1 s+ 7

] [
1
0

]
= 1

s2+7s+12

[
1 2

] [ s
1

]
= s+2

s2+7s+12

(1.75)
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It can be checked the denominator of the transfer function F (s) is also the
determinant of matrix sI−A.

det(sI−A) = det

([
s+ 7 12
−1 s

])
= s2 + 7s+ 12 (1.76)

Furthermore as far as F (s) is the transfer function of a SISO system it can
also be checked that its numerator of can be obtained thanks to the following
relation:

det

([
sI−A −B

C D

])
= det

 s+ 7 12 −1
−1 s 0
1 2 0

 = s+ 2 (1.77)

Thus the only (transmission) zero for this system is s = −2.
■

1.6 Faddeev-Leverrier's method to get (sI−A)−1

Let A be a n × n matrix with coe�cients in R. Then matrix (sI−A)−1,
which is called the resolvent of A, may be obtained by a method proposed by
D.K. Faddeev (Dmitrii Konstantinovitch Faddeev, 1907 - 1989, was a Russian
mathematician). This is a modi�cation of a method proposed by U.J.J. Leverrier
(Urbain Jean Joseph Le Verrier, 1811 - 1877, was a French mathematician who
specialized in celestial mechanics and is best known for predicting the existence
and position of Neptune using only mathematics 5). The starting point of the
method is to relate the resolvent of matrix A to its characteristic polynomial
det (sI−A) through the following relation:

(sI−A)−1 =
N(s)

det (sI−A)
=

F0s
n−1 + F1s

n−2 + · · ·+ Fn−1

sn − d1sn−1 − · · · − dn
(1.78)

where the adjugate matrix N(s) is a polynomial matrix in s of degree n−1 with
constant n× n coe�cient matrices F0, · · · ,Fn−1.

The Faddeev-Leverrier's method indicates that the n matrices Fk and
coe�cients dk in (1.78) can be computed recursively as follows:

F0 = I
d1 = tr (AF0) and F1 = AF0 − d1I
d2 =

1
2 tr (AF1) and F2 = AF1 − d2I

...
dk =

1
k tr (AFk−1) and Fk = AFk−1 − dkI

...
dn = 1

n tr (AFn−1)

and det (sI−A) = sn − d1sn−1 − · · · − dn

(1.79)

5https://en.wikipedia.org/wiki/Urbain_Le_Verrier
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To arrive at the Faddeev-Leverrier's method we shall compare coe�cients of
like powers of s in the following formula which is derived from (1.78):

(sI−A)
(
F0s

n−1 + F1s
n−2 + · · ·+ Fn−1

)
= I

(
sn − d1sn−1 − · · · − dn

)
(1.80)

and obtain immediately that matrices Fk are given by:

F0 = I
F1 = AF0 − d1I
F2 = AF1 − d2I
...
Fk = AFk−1 − dkI

(1.81)

The rest of the proof can be found in the paper of Shui-Hung Hou 6.

Example 1.4. Compute the resolvent of matrix A where:

A =

[
0 1
0 0

]
(1.82)

Matrix A is a 2× 2 matrix. The Faddeev-Leverrier's method gives:
F0 = I
d1 = tr (AF0) = tr (A) = 0 and F1 = AF0 − d1I = A
d2 =

1
2 tr (AF1) =

1
2 tr

(
A2
)
= 0

and det (sI−A) = s2 − d1s− d2 = s2

(1.83)

Then:

(sI−A)−1 =
F0s+ F1

det (sI−A)
=

1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s2

]
(1.84)

■

Example 1.5. Compute the resolvent of matrix A where:

A =

[
1 2
0 −5

]
(1.85)

Matrix A is a 2× 2 matrix. The Faddeev-Leverrier's method gives:
F0 = I

d1 = tr (AF0) = −4 and F1 = AF0 − d1I =
[
5 2
0 −1

]
d2 =

1
2 tr (AF1) =

1
2 tr

([
5 0
0 5

])
= 5

and det (sI−A) = s2 − d1s− d2 = s2 + 4s− 5 = (s− 1)(s+ 5)

(1.86)

6Shui-Hung Hou, A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial
Algorithm, SIAM Review, Vol. 40, No. 3 (Sep., 1998), pp. 706-709
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Then:

(sI−A)−1 = F0s+F1
det(sI−A) =

1
(s−1)(s+5)

[
s+ 5 2
0 s− 1

]
=

[
1
s−1

2
(s−1)(s+5)

0 1
s+5

] (1.87)

■

Example 1.6. Compute the resolvent of matrix A where:

A =

[
0 1
−ω2

0 −2mω0

]
(1.88)

Matrix A is a 2× 2 matrix. The Faddeev-Leverrier's method gives:
F0 = I

d1 = tr (AF0) = −2mω0 and F1 = AF0 − d1I =
[
2mω0 1
−ω2

0 0

]
d2 =

1
2 tr (AF1) =

1
2 tr

([
−ω2

0 0
−4mω3

0 −ω2
0

])
= −ω2

0

and det (sI−A) = s2 − d1s− d2 = s2 + 2mω0s+ ω2
0

(1.89)

Then:
(sI−A)−1 = F0s+F1

det(sI−A)

= 1
s2+2mω0s+ω2

0

[
s+ 2mω0 1
−ω2

0 s

]
(1.90)

■

Example 1.7. Compute the resolvent of matrix A where:

A =

 2 −1 0
0 1 0
1 −1 1

 (1.91)

Matrix A is a 3× 3 matrix. The Faddeev-Leverrier's method gives:

F0 = I

d1 = tr (AF0) = 4 and F1 = AF0 − d1I =

 −2 −1 0
0 −3 0
1 −1 −3


d2 =

1
2 tr (AF1) =

1
2 tr

 −4 1 0
0 −3 0
−1 1 −3

 = −5

F2 = AF1 − d2I =

 1 1 0
0 2 0
−1 1 2


d3 =

1
3 tr (AF2) =

1
3 tr

 2 0 0
0 2 0
0 0 2

 = 2

and det (sI−A) = s3 − d1s2 − d2s− d3 = s3 − 4s2 + 5s− 2

(1.92)
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Then:

(sI−A)−1 = F0s2+F1s+F2
det(sI−A)

= 1
s3−4s2+5s−2

 s2 − 2s+ 1 −s+ 1 0
0 s2 − 3s+ 2 0

s− 1 −s+ 1 s2 − 3s+ 2



= 1
(s−2)(s−1)2

 (s− 1)2 −(s− 1) 0
0 (s− 2)(s− 1) 0

s− 1 −(s− 1) (s− 2)(s− 1)


=


1
s−2

−1
(s−1)(s−2) 0

0 1
s−1 0

1
(s−1)(s−2)

−1
(s−1)(s−2)

1
s−1


(1.93)

■

1.7 Matrix inversion lemma

Assuming that A11 and A22 are invertible matrices, the inversion of a
partitioned matrix reads as follows:[

A11 A12

A21 A22

]−1

=

[
Q1 −A−1

11 A12Q2

−A−1
22 A21Q1 Q2

]
=

[
Q1 −Q1A12A

−1
22

−Q2A21A
−1
11 Q2

] (1.94)

where: {
Q1 =

(
A11 −A12A

−1
22 A21

)−1

Q2 =
(
A22 −A21A

−1
11 A12

)−1 (1.95)

We can check that:[
A11 A12

A21 A22

] [
Q1 −A−1

11 A12Q2

−A−1
22 A21Q1 Q2

]
=

[
I 0
0 I

]
(1.96)

and that:[
A11 A12

A21 A22

] [
Q1 −Q1A12A

−1
22

−Q2A21A
−1
11 Q2

]
=

[
I 0
0 I

]
(1.97)

Matrix inversion formula can be used to compute the resolvent of A, that
is matrix (sI−A)−1.

From the preceding relations the matrix inversion lemma reads as follows:(
A11 −A12A

−1
22 A21

)−1

= A−1
11 +A−1

11 A12

(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11 (1.98)

In the particular case of upper triangular matrix where A21 = 0, the
preceding relations simplify as follows:[

A11 A12

0 A22

]−1

=

[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]
(1.99)
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Figure 1.2: Parallel interconnection of systems

1.8 Interconnection of systems

We will consider in the following the state-space representation resulting from
di�erent systems interconnection. This will be useful to get the state-space
representation of complex models.

Lets consider two linear time-invariant system with transfer functions F1(s)

and F2(s) and state-space representations

(
A1 B1

C1 D1

)
and

(
A2 B2

C2 D2

)
:

{
ẋ1(t) = A1x1(t) +B1u1(t)
y
1
(t) = C1x1(t) +D1u1(t)

and

{
ẋ2(t) = A2x2(t) +B2u2(t)
y
2
(t) = C2x2(t) +D2u2(t)

(1.100)

The state vector attached to the interconnection of two systems, whatever
the type of interconnection, is the vector x(t) de�ned by:

x(t) =

[
x1(t)
x2(t)

]
(1.101)

The output of the interconnection is denoted y(t) whereas the input is
denoted u(t).

1.8.1 Parallel interconnection

Parallel interconnection is depicted on Figure 1.2. The transfer function F(s) of
the parallel interconnection between two systems with transfer function F1(s)
and F2(s) is:

F(s) = F1(s) + F2(s) (1.102)

Parallel interconnection is obtained when both systems have a common input
and by summing the outputs assuming that the dimension of the outputs �t:{

u(t) = u1(t) = u2(t)
y(t) = y

1
(t) + y

2
(t)

(1.103)

The state-space representation of the parallel interconnection is the
following:  ẋ(t) =

[
A1 0
0 A2

]
x(t) +

[
B1

B2

]
u(t)

y(t) =
[
C1 C2

]
x(t) + (D1 +D2)u(t)

(1.104)
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Figure 1.3: Series interconnection of systems

This result can also be easily retrieved by summing the realization of each
transfer function:

F(s) = F1(s) + F2(s)

= C1 (sI−A1)
−1B1 +D1 +C2 (sI−A2)

−1B2 +D2

=
[
C1 C2

] [ (sI−A1)
−1 0

0 (sI−A2)
−1

] [
B1

B2

]
+D1 +D2

=
[
C1 C2

] [ sI−A1 0
0 sI−A2

]−1 [
B1

B2

]
+D1 +D2

=
[
C1 C2

](
sI−

[
A1 0
0 A2

])−1 [
B1

B2

]
+D1 +D2

(1.105)

The preceding relation indicates that the realization of the sum F1(s)+F2(s)
of two transfer functions is:

F1(s) + F2(s) =

 A1 0 B1

0 A2 B2

C1 C2 D1 +D2

 (1.106)

1.8.2 Series interconnection

Series interconnection is depicted on Figure 1.3. The transfer function F(s) of
the series interconnection between two systems with transfer function F1(s) and
F2(s) is:

F(s) = F2(s)F1(s) (1.107)

Series interconnection is obtained when the output of the �rst system enters
the second system as an input:

u2(t) = y
1
(t)

y(t) = y
2
(t)

u(t) = u1(t)

(1.108)

The state-space representation of the series interconnection is the following: ẋ(t) =

[
A1 0

B2C1 A2

]
x(t) +

[
B1

B2D1

]
u(t)

y(t) =
[
D2C1 C2

]
x(t) +D2D1u(t)

(1.109)
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Figure 1.4: Feedback interconnection of systems

1.8.3 Feedback interconnection

Feedback interconnection is depicted on Figure 1.4. To get the transfer function
F(s) of the feedback interconnection between two systems with transfer function
F1(s) and F2(s) we write the relation between the Laplace transform Y (s) of
the output vector and the Laplace transform of input vector U(s):

Y (s) = F1(s) (U(s)− F2(s)Y (s))
⇔ (I− F1(s)F2(s))Y (s) = F1(s)U(s)

⇔ Y (s) = (I− F1(s)F2(s))
−1F1(s)U(s)

(1.110)

We �nally get:

F(s) = (I− F1(s)F2(s))
−1F1(s) (1.111)

As depicted on Figure 1.4 feedback interconnection is obtained when the
output of the �rst system enters the second system as an input and by feeding
the �rst system by the di�erence between the system input u(t) and the output
of the second system (assuming that the dimension �t):

u1(t) = u(t)− y
2
(t)⇔ u(t) = u1(t) + y

2
(t)

y(t) = y
1
(t)

u2(t) = y
1
(t)

(1.112)

Thus the state-space representation of the feedback interconnection is the
following:

ẋ(t) = Afx(t) +

[
B1 −B1D2MD1

B2D1 −B2D1D2MD1

]
u(t)

Af =

[
A1 −B1D2MC1 −B1C2 +B1D2MD1C2

B2C1 −B2D1D2MC1 A2 −B2D1C2 +B2D1D2MD1C2

]
M = (I+D1D2)

−1

y(t) = M
( [

C1 −D1C2

]
x(t) +D1u(t)

)
(1.113)

In the special case of an unity feedback we have:

F2(s) = I⇔
(

A2 B2

C2 D2

)
=

(
0 0

0 K2

)
(1.114)



34 Chapter 1. State-space representation

Thus the preceding relations reduce as follows:
ẋ(t) = Afx(t) +

[
B1 −B1K2 (I+D1)

−1D1

0

]
u(t)

Af =

[
A1 −B1K2 (I+D1K2)

−1C1 0
0 0

]
y(t) = (I+D1K2)

−1
( [

C1 0
]
x(t) +D1u(t)

) (1.115)

It is clear from the preceding equation that the state vector of the system
reduces to its �rst component x1(t). Thus the preceding state-space realization
reads: ẋ1(t) =

(
A1 −B1K2 (I+D1K2)

−1C1

)
x1(t) +

(
B1 −B1K2 (I+D1)

−1D1

)
u(t)

y(t) = (I+D1K2)
−1
(
C1x1(t) +D1u(t)

)
(1.116)



Chapter 2

Realization of transfer functions

2.1 Introduction

A realization of a transfer function F(s) consists in �nding a state-space model
given the input-output description of the system through its transfer function.
More speci�cally we call realization of a transfer function F(s) any quadruplet
(A,B,C,D) such that:

F(s) = C (sI−A)−1B+D (2.1)

We said that a transfer function F(s) is realizable if F(s) is rational and
proper. The state-space representation of a transfer function F(s) is then:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.2)

This chapter focuses on canonical realizations of transfer functions that are
the controllable canonical form, the observable canonical form and the
diagonal (or modal) form. Realization of SISO (Single-Input Single Output),
SIMO (Single-Input Multiple-Outputs) and MIMO (Multiple-Inputs
Multiple-Outputs) linear time invariant systems will be presented.

2.2 Non-unicity of state-space representation

2.2.1 Similarity transformations

Contrary to linear di�erential equation or transfer function which describe the
dynamics of a system in a single manner the state-space representation of a
system is not unique. Indeed they are several ways to choose the internal
variables which describe the dynamics of the system, that is the state vector
x(t), without changing the input-output representation of the system, that is
both the di�erential equation and the transfer function.

To be more speci�c let's consider the state-space representation (2.2) with
state vector x(t). Then choose a similarity transformation with an invertible
change of basis matrix Pn which de�nes a new state vector xn(t) as follows:

x(t) = Pnxn(t)⇔ xn(t) = P−1
n x(t) (2.3)
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Then take the time derivative of xn(t):

ẋn(t) = P−1
n ẋ(t) (2.4)

The time derivative of x(t) is obtained thanks to (2.2). By replacing x(t) by
xn(t) we get:

ẋ(t) = Ax(t) +Bu(t) = APnxn(t) +Bu(t) (2.5)

Thus we �nally get:{
ẋn(t) = P−1

n ẋ(t) = P−1
n APnxn(t) +P−1

n Bu(t)
y(t) = CPnxn(t) +Du(t)

(2.6)

We can match the preceding equations with the general form of a state-space
representation (2.2) by rewriting it as follows:{

ẋn(t) = Anxn(t) +Bnu(t)
y(t) = Cnxn(t) +Du(t)

(2.7)

Where: 
An = P−1

n APn

Bn = P−1
n B

Cn = CPn

(2.8)

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

Now let's focus on the transfer function. With the new state vector xn(t)
the transfer function F(s) has the following expression:

F(s) = Cn (sI−An)
−1Bn +D (2.9)

Using the expressions of (2.8) to express An, Bn and Cn as a function of
A, B and C we get:

F(s) = CPn

(
sI−P−1

n APn

)−1
P−1
n B+D (2.10)

Now use the fact that I = P−1
n Pn and that (XYZ)−1 = Z−1Y−1X−1 (as

soon as matrices X, Y and Z are invertible) to get:

F(s) = CPn

(
sP−1

n Pn −P−1
n APn

)−1
P−1
n B+D

= CPn

(
P−1
n (sI−A)Pn

)−1
P−1
n B+D

= CPnP
−1
n (sI−A)−1PnP

−1
n B+D

= C (sI−A)−1B+D

(2.11)

We obviously retrieve the expression of the transfer function F(s) given by
matrices (A,B,C,D). Thus the expression of the transfer function is
independent of the choice of the state vector.
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2.2.2 Inverse of a similarity transformation

Let v1, v2, · · · , vn be the n vectors which form matrix Pn:

Pn =
[
v1 v2 · · · vn

]
(2.12)

As far as matrix Pn is invertible vectors v1, v2, · · · , vn are independent. Let
x(t) = Pnxn(t). Denoting by xn1, xn2, · · · , xnn the components of vector xn(t)
we get:

xn(t) =


xn1
xn2
...
xnn

⇒ x(t) = Pnxn(t) = xn1v1 + xn2v2 + · · ·+ xnnvn (2.13)

Thus the state vector x(t) can be decomposed along the components of the
change of basis matrix Pn.

The inverse of the change of basis matrix Pn can be written in terms of rows
as follows:

P−1
n =


wT1
wT2
...
wTn

 (2.14)

Since P−1
n Pn = I it follows that:

P−1
n Pn =


wT1 v1 wT1 v2 · · · wT1 vn
wT2 v1 wT2 v2 · · · wT2 vn

...
...

...
wTnv1 wTnv2 · · · wTnvn

 = I (2.15)

Hence the relation between vectors wi and vj is the following:

wTi vj =

{
1 if i = j
0 if i ̸= j

(2.16)

2.3 Realization of SISO transfer function

We have seen that a given transfer function F(s) can be obtained by an in�nity
number of state-space representations. We call realization of a transfer function
F(s) any quadruplet (A,B,C,D) such that:

F(s) = C (sI−A)−1B+D (2.17)

The preceding relation is usually written as follows:

F(s) =

(
A B

C D

)
(2.18)
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We consider the following Single-Input Single-Output (SISO) transfer
function which is composed of the sum between a strictly proper rational
function and a constant value d:

Y (s)

U(s)
= F (s) =

N(s)

D(s)
+ d (2.19)

Where N(s) and D(s) are polynomials in s such that the degree of N(s) is
strictly lower than the degree of D(s):{

D(s) = a0 + a1s+ · · ·+ an−1s
n−1 + 1× sn

N(s) = n0 + n1s+ · · ·+ nn−1s
n−1 (2.20)

It is worth noticing that polynomial D(s) is assumed to be a monic
polynomial without loss of generally. This means that the leading coe�cient
(that is the coe�cient of sn) of D(s) is 1. Indeed D(s) is identi�ed to
det (sI−A).

When identifying (2.19) with (2.17) we get:

d = D = lim
s→∞

F(s) (2.21)

Thus all we need now is to �nd a triplet (A,B,C) such that:

N(s)

D(s)
= C (sI−A)−1B (2.22)

2.3.1 Controllable canonical form

Let N(s) = N1(s)N2(s). Then one solution of the realization problem is the
following quadruplet:

N(s) = N1(s)N2(s)⇒



Ac =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1



Bc = T−1



...

...
N ′′2 (0)

2!
N ′2(0)
1!

N2(0)


Cc =

[
N1(0)

N ′1(0)
1!

N ′′1 (0)
2! · · · · · ·

]
D = d

(2.23)
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where T is the following Toeplitz matrix:

T =



1 0 · · · · · · 0

an−1 1
. . .

. . . 0

an−2 an−1 1
. . . 0

...
. . .

. . .
. . .

a1 a2 · · · an−1 1


(2.24)

In the case where we choose N1(s) := N(s) and N2(s) := 1 we get:

{
N1(s) := N(s)
N2(s) := 1

⇒



Ac =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 · · · 1
−a0 −a1 −a2 · · · −an−1



Bc =


0
0
...
0
1


Cc =

[
n0 n1 · · · nn−2 nn−1

]
D = d

(2.25)

The quadruplet (Ac,Bc,Cc, d) is called the controllable canonical form of
the SISO transfer function F (s).

Alternatively the following realization is also called the controllable
canonical form of the SISO transfer function F (s). Compared with (2.25)
value 1 appears in the lower diagonal of the state matrix which is obtained by
choosing a similarity transformation with value 1 on the antidiagonal (or
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counter diagonal): 

Aca =



0 0 0 −a0

1 0 0
. . . −a1

0
. . .

. . .
. . . −a2

. . . 0
...

0 · · · 0 1 −an−1



Bca =


1
0
...
0
0


Cca =

[
nn−1 nn−2 · · · n1 n0

]
D = d

(2.26)

To get the realization (2.25) we start by expressing the output Y (s) of SISO
system (2.19) as follows:

Y (s) = N(s)
U(s)

D(s)
+ dU(s) (2.27)

Now let's focus on the following intermediate variable Z(s) which is de�ned
as follows:

Z(s) =
U(s)

D(s)
=

U(s)

a0 + a1s+ a2s2 + · · ·+ an−1sn−1 + sn
(2.28)

That is:

a0Z(s) + a1sZ(s) + a2s
2Z(s) + · · ·+ an−1s

n−1Z(s) + snZ(s) = U(s) (2.29)

Then we de�ne the components of the state vector x(t) as follows:

x1(t) := z(t)
x2(t) := ẋ1(t) = ż(t)
x3(t) := ẋ2(t) = z̈(t)
...

xn(t) := ẋn−1(t) = z(n−1)(t)

(2.30)

Coming back in the time domain Equation (2.29) is rewritten as follows:

a0x1(t) + a1x2(t) + a2x3(t) + · · ·+ an−1xn(t) + ẋn(t) = u(t)
⇔ ẋn(t) = −a0x1(t)− a1x2(t)− a2x3(t)− · · · − an−1xn(t) + u(t)

(2.31)
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The intermediate variable Z(s) allows us to express the output Y (s) as
follows:

Y (s) = N(s)Z(s) + dU(s) =
(
n0 + · · ·+ nn−1s

n−1
)
Z(s) + dU(s) (2.32)

That is, coming back if the time domain:

y(t) = n0z(t) + · · ·+ nn−1z
(n−1)(t) + du(t) (2.33)

The use of the components of the state vector which have been previously
de�ned leads to the following expression of the output y(t):

y(t) = n0x1(t) + · · ·+ nn−1xn(t) + du(t) (2.34)

By combining in vector form Equations (2.30), (2.31) and (2.34) we retrieve
the state-space representation (2.25).

Thus by ordering the numerator and the denominator of the transfer function
F (s) according to the increasing power of s and taking care that the leading
coe�cient of the polynomial in the denominator is 1, the controllable canonical
form (2.25) of a SISO transfer function F (s) is immediate.

Example 2.1. Let's consider the following transfer function:

F (s) =
(s+ 1)(s+ 2)

2(s+ 3)(s+ 4)
=

s2 + 3s+ 2

2s2 + 14s+ 24
(2.35)

We are looking for the controllable canonical form of this transfer function.

First we have to set to 1 the leading coe�cient of the polynomial which
appears in the denominator of the transfer function F (s). We get:

F (s) =
0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
(2.36)

Then we decompose F (s) as a sum between a strictly proper rational function
and a constant coe�cient d. Constant coe�cient d is obtained thanks to the
following relation:

d = lim
s→∞

F (s) = lim
s→∞

0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
= 0.5 (2.37)

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F (s):

N(s)

D(s)
= F (s)− d =

0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
− 0.5 =

−2s− 5

s2 + 7s+ 12
(2.38)

We �nally get:

F (s) =
N(s)

D(s)
+ d =

−2s− 5

s2 + 7s+ 12
+ 0.5 (2.39)
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Then we apply Equation (2.25) to get the controllable canonical form of F (s):

Ac =

[
0 1
−a0 −a1

]
=

[
0 1
−12 −7

]

Bc =

[
0
1

]
Cc =

[
n0 n1

]
=
[
−5 −2

]
D = 0.5

(2.40)

■

2.3.2 Poles and zeros of the transfer function

It is worth noticing that the numerator of the transfer function only depends on
matrices B and C whereas the denominator of the transfer function is built from
the characteristic polynomial coming from the eigenvalues of the state matrix
A.

As far as the transfer function does not depend on the state space realization
which is used, we can get this result by using the controllable canonical form.
Indeed we can check that transfer functionCc (sI−Ac)

−1Bc has a denominator
which only depends on the state matrix Ac whereas its numerator only depends
on Cc, which provides the coe�cients of the numerator:

(sI−Ac)
−1Bc =

 1

det (sI−Ac)


∗ ∗ 1
∗ ∗ s
...

...
...

∗ ∗ sn−1





0
...
0
1



⇒ Cc (sI−Ac)
−1Bc =

Cc

det (sI−Ac)


1
s
...

sn−1


(2.41)

More generally, the characteristic polynomial of the state matrix A sets
the denominator of the transfer function whereas the product BC sets the
coe�cients of the numerator of a strictly proper transfer function (that is a
transfer function where D = 0). Consequently state matrix A sets the poles of
a transfer function whereas product BC sets its zeros.

2.3.3 Similarity transformation to controllable canonical form

We consider the following general state-space representation:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.42)

where the size of the state vector x(t) is n.
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Use of the controllability matrix

The controllable canonical form (2.25) exists if and only if the following matrix
Qc, which is called the controllability matrix, has full rank:

Qc =
[
B AB · · · An−1B

]
(2.43)

As soon as the characteristic polynomial of matrix A is computed the state
matrix Ac as well as the control matrix Bc corresponding to the controllable
canonical form are known. Thus the controllability matrix in the controllable
canonical basis, which will be denoted Qcc, can be computed as follows:

Qcc =
[
Bc AcBc · · · An−1

c Bc

]
(2.44)

At that point matrices Ac and Bc are known. The only matrix which need
to be computed is the output matrix Cc. Let Pc be the change of basis matrix
which de�nes the new state vector in the controllable canonical basis. From
(2.8) we get:

Cc = CPc (2.45)

And: {
Ac = P−1

c APc

Bc = P−1
c B

(2.46)

Using these two last equations within (2.44) and the fact that
(
P−1
c APc

)k
=

P−1
c APc · · ·P−1

c APc︸ ︷︷ ︸
k-times

= P−1
c AkPc, we get the following expression of matrix

Qcc:

Qcc =
[
Bc AcBc · · · An−1

c Bc

]
=
[
P−1
c B P−1

c APcP
−1
c B · · ·

(
P−1
c APc

)n−1
P−1
c B

]
=
[
P−1
c B P−1

c AB · · · P−1
c An−1B

]
= P−1

c

[
B AB · · · An−1B

]
= P−1

c Qc

(2.47)

We �nally get:
P−1
c = QccQ

−1
c ⇔ Pc = QcQ

−1
cc (2.48)

Furthermore the controllable canonical form (2.25) is obtained by the
following similarity transformation:

x(t) = Pcxc(t)⇔ xc(t) = P−1
c x(t) (2.49)

Alternatively the constant nonsingular matrix P−1
c can be obtained through

the state matrix A and the last row qT
c
of the inverse of the controllability

matrix Qc as follows:

Q−1
c =


∗
...
∗
qT
c

⇒ P−1
c =


qT
c

qT
c
A
...

qT
c
An−1

 (2.50)
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To get this result we write from (2.8) the following similarity transformation:

Ac = P−1
c APc ⇔ AcP

−1
c = P−1

c A (2.51)

Let's denote det (sI−A) as follows:

det (sI−A) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (2.52)

Thus the coe�cients ai of the state matrix Ac corresponding to the
controllable canonical form are known and matrix Ac is written as follows:

Ac =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1

 (2.53)

Furthermore let's write the unknown matrix P−1
c as follows:

P−1
c =

 rT1
...
rTn

 (2.54)

Thus the rows of the unknown matrix P−1
c can be obtained thanks to the

following similarity transformation:

AcP
−1
c = P−1

c A

⇔



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1


 rT1

...
rTn

 =

 rT1
...
rTn

A
(2.55)

Working out with the �rst n− 1th rows gives the following equations:
rT2 = rT1 A
rT3 = rT2 A = rT1 A

2

...
rTn = rTn−1A = rT1 A

n−1

(2.56)

Furthermore from (2.8) we get the relation Bc = P−1
c B which is rewritten

as follows:

P−1
c B = Bc ⇔

 rT1
...
rTn

B =


0
0
...
0
1

⇔


rT1 B = 0
...
rTn−1B = 0
rTnB = 1

(2.57)
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Combining (2.56) and (2.57) we get:

rT1 B = 0
rT2 B = rT1 AB = 0
...
rTn−1B = rT1 A

n−2B = 0
rTnB = rT1 A

n−1B = 1

(2.58)

These equations can in turn be written in matrix form as:

rT1
[
B AB · · · An−2B An−1B

]
=
[
0 0 · · · 0 1

]
(2.59)

Let's introduce the controllability matrix Qc:

Qc =
[
B AB · · · An−1B

]
(2.60)

Assuming that matrix Qc has full rank we get:

rT1 Qc =
[
0 0 · · · 0 1

]
⇔ rT1 =

[
0 0 · · · 0 1

]
Q−1
c (2.61)

From the preceding equation it is clear that rT1 is the last row of the inverse
of the controllability matrix Qc. We will denote it qT

c
:

rT1 := qT
c

(2.62)

Having the expression of rT1 we can then go back to (2.56) and construct all
the rows of P−1

c .

Example 2.2. We consider the following general state-space representation:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.63)

where: 

A =

[
28.5 −17.5
58.5 −35.5

]

B =

[
2
4

]
C =

[
7 −4

]
D = 0.5

(2.64)

We are looking for the controllable canonical form of this state-space
representation.

First we build the controllability matrix Qc from (2.43):

Qc =
[
B AB

]
=

[
2 −13
4 −25

]
(2.65)
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To build matrix Qcc let's compute det (sI−A):

det (sI−A) = s2 + a1s+ a0 = s2 + 7s+ 12 (2.66)

As soon as matrix Ac is built from the denominator of the transfer function,
that is from det (sI−A), we get:

Ac =

[
0 1
−a0 −a1

]
=

[
0 1
−12 −7

]
(2.67)

Furthermore matrix Bc is straightforward for the controllable canonical form:

Bc =

[
0
1

]
(2.68)

Thus we are in position to compute matrix Qcc :

Qcc =
[
Bc AcBc

]
=

[
0 1
1 −7

]
(2.69)

Then we use (2.48) to build the similarity transformation:

Pc = QcQ
−1
cc =

[
2 −13
4 −25

] [
0 1
1 −7

]−1

=

[
2 −13
4 −25

] [
7 1
1 0

]
=

[
1 2
3 4

] (2.70)

Alternatively we can use (2.50) to build the similarity transformation:

Q−1
c = 1

2

[
−25 13
−4 2

]
=

[
∗
qT
c

]
⇒ qT

c
= 1

2

[
−4 2

]
=
[
−2 1

] (2.71)

And:

P−1
c =

[
qT
c

qT
c
A

]
=

[
−2 1
1.5 −0.5

]
(2.72)

Using the similarity relations (2.8) we �nally get the following controllable
canonical form of the state-space representation:

Ac = P−1
c APc =

[
−2 1
1.5 −0.5

] [
28.5 −17.5
58.5 −35.5

] [
1 2
3 4

]
=

[
0 1
−12 −7

]
Bc = P−1

c B =

[
−2 1
1.5 −0.5

] [
2
4

]
=

[
0
1

]
Cc = CPc =

[
7 −4

] [ 1 2
3 4

]
=
[
−5 −2

]
(2.73)

■
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Iterative method

Equivalently change of basis matrix Pc of the similarity transformation can be
obtained as follows:

Pc =
[
c1 c2 · · · cn

]
(2.74)

where: 
det (sI−A) = sn + an−1s

n−1 + · · ·+ a1s+ a0
cn = B
ck = Ack+1 + akB ∀ n− 1 ≥ k ≥ 1

(2.75)

To get this result we write from (2.8) the following similarity transformation:

Ac = P−1
c APc ⇔ PcAc = APc (2.76)

Let's denote det (sI−A) as follows:

det (sI−A) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (2.77)

Thus the coe�cients ai of the state matrix Ac corresponding to the
controllable canonical form are known and matrix Ac written as follows:

Ac =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1

 (2.78)

Furthermore let's write the unknown change of basis matrix Pc as follows:

Pc =
[
c1 c2 · · · cn

]
(2.79)

Thus the columns of the unknown matrix Pc can be obtained thanks to the
similarity transformation:

PcAc = APc

⇔
[
c1 c2 · · · cn

]


0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1

 = A
[
c1 c2 · · · cn

]

(2.80)

That is:
0 = a0cn +Ac1
c1 = a1cn +Ac2
...
cn−1 = an−1cn +Acn

⇔
{

0 = a0cn +Ac1
ck = Ack+1 + akcn ∀ n− 1 ≥ k ≥ 1

(2.81)
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Furthermore from (2.8) we get the relation Bc = P−1
c B which is rewritten

as follows:

PcBc = B⇔
[
c1 c2 · · · cn

]


0
0
...
0
1

 = B⇒ cn = B (2.82)

Combining the last equation of (2.81) with (2.82) gives the proposed result:{
cn = B
ck = Ack+1 + akB ∀ n− 1 ≥ k ≥ 1

(2.83)

Example 2.3. We consider the following general state-space representation:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.84)

where: 

A =

[
28.5 −17.5
58.5 −35.5

]

B =

[
2
4

]
C =

[
7 −4

]
D = 0.5

(2.85)

This is the same state-space representation than the one which has been used
in the previous example. We have seen that the similarity transformation which
leads to the controllable canonical form is the following:

P−1
c =

[
−2 1
1.5 −0.5

]
(2.86)

It is easy to compute matrix Pc, that is the inverse of P−1
c . We get the

following expression:

Pc =

[
1 2
3 4

]
(2.87)

We will check the expression of matrix Pc thanks to the iterative method
proposed in (2.75). We get:


det (sI−A) = s2 + 7s+ 12

c2 = B =

[
2
4

]
c1 = Ac2 + a1B =

[
28.5 −17.5
58.5 −35.5

] [
2
4

]
+ 7

[
2
4

]
=

[
1
3

] (2.88)
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Thus we fortunately retrieve the expression of matrix Pc:

Pc =
[
c1 c2

]
=

[
1 2
3 4

]
(2.89)

■

2.3.4 Observable canonical form

Another solution of the realization problem is the following quadruplet:



Ao =



0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1



Bo =


n0
n1
...

nn−2

nn−1


Co =

[
0 0 · · · 0 1

]
D = d

(2.90)

The quadruplet (Ao,Bo,Co, d) is called the observable canonical form of the
SISO transfer function F (s).

Alternatively the following realization is also called the observable
canonical form of the SISO transfer function F (s). Compared with (2.90)
value 1 appears in the upper diagonal of the state matrix which is obtained by
choosing a similarity transformation with value 1 on the antidiagonal (or
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counter diagonal):

Aoa =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1



Boa =


nn−1

nn−2

· · ·
n1
n0


Coa =

[
1 0 · · · 0 0

]
D = d

(2.91)

To get the realization (2.90) we start by expressing the output Y (s) of SISO
system (2.19) as follows:

Y (s)

U(s)
=
N(s)

D(s)
+ d⇔ (Y (s)− dU(s))D(s) = N(s)U(s) (2.92)

That is:(
a0 + a1s+ a2s

2 + · · ·+ an−1s
n−1 + sn

)
(Y (s)− dU(s))

=
(
n0 + n1s+ · · ·+ nn−1s

n−1
)
U(s) (2.93)

Dividing by sn we get:(a0
sn

+
a1
sn−1

+
a2
sn−2

+ · · ·+ an−1

s
+ 1
)
(Y (s)− dU(s))

=
(n0
sn

+
n1
sn−1

+
n2
sn−2

+ · · ·+ nn−1

s

)
U(s) (2.94)

When regrouping the terms according the increasing power of 1
s we obtain:

Y (s) = dU(s) +
1

s
(αn−1U(s)− an−1Y (s)) +

1

s2
(αn−2U(s)− an−2Y (s))+

· · ·+ 1

sn
(α0U(s)− a0Y (s)) (2.95)

Where:
αi = ni + d ai (2.96)

That is:

Y (s) = dU(s) +
1

s

(
αn−1U(s)− an−1Y (s) +

1

s

(
αn−2U(s)− an−2Y (s)

)
+

1

s

(
· · ·+ 1

s

(
α0U(s)− a0Y (s)

))))
(2.97)
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Then we de�ne the Laplace transform of the components of the state vector
x(t) as follows: 

sX1(s) = α0U(s)− a0Y (s)
sX2(s) = α1U(s)− a1Y (s) +X1(s)
sX3(s) = α2U(s)− a2Y (s) +X2(s)
...
sXn(s) = αn−1U(s)− an−1Y (s) +Xn−1(s)

(2.98)

So we get:

Y (s) = dU(s) +
1

s

(
sXn(s)

)
= dU(s) +Xn(s) (2.99)

Replacing Y (s) by Xn(s) and using the fact that αi = ni + d ai Equation
(2.98) is rewritten as follows:

sX1(s) = α0U(s)− a0 (dU(s) +Xn(s))
= −a0Xn(s) + n0U(s)

sX2(s) = α1U(s)− a1 (dU(s) +Xn(s)) +X1(s)
= X1(s)− a1Xn(s) + n1U(s)

sX3(s) = α2U(s)− a2 (dU(s) +Xn(s)) +X2(s)
= X2(s)− a2Xn(s) + n2U(s)

...
sXn(s) = αn−1U(s)− an−1 (dU(s) +Xn(s)) +Xn−1(s)

= Xn−1(s)− an−1Xn(s) + nn−1U(s)

(2.100)

Coming back in the time domain we �nally get:

ẋ1(t) = −a0xn(t) + n0u(t)
ẋ2(t) = x1(t)− a1xn(t) + n1u(t)
ẋ3(t) = x2(t)− a2xn(t) + n2u(t)
...
ẋn(t) = xn−1(t)− an−1xn(t) + nn−1u(t)

(2.101)

And:
y(t) = xn(t) + d u(t) (2.102)

The preceding equations written in vector form leads to the observable
canonical form of Equation (2.90).

Thus by ordering the numerator and the denominator of the transfer function
F (s) according to the increasing power of s and taking care that the leading
coe�cient of the polynomial in the denominator is 1, the observable canonical
form (2.90) of a SISO transfer function F (s) is immediate.

Example 2.4. Let's consider the following transfer function:

F (s) =
(s+ 1)(s+ 2)

2(s+ 3)(s+ 4)
=

s2 + 3s+ 2

2s2 + 14s+ 24
(2.103)
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We are looking for the observable canonical form of this transfer function.

As in the preceding example we �rst set to 1 the leading coe�cient of the
polynomial which appears in the denominator of the transfer function F (s). We
get:

F (s) =
0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
(2.104)

Then we decompose F (s) as a sum between a strictly proper rational function
and a constant coe�cient d. Constant coe�cient d is obtained thanks to the
following relation:

d = lim
s→∞

F(s) = lim
s→∞

0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
= 0.5 (2.105)

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F (s):

N(s)

D(s)
= F (s)− d =

0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
− 0.5 =

−2s− 5

s2 + 7s+ 12
(2.106)

We �nally get:

F (s) =
N(s)

D(s)
+ d =

−2s− 5

s2 + 7s+ 12
+ 0.5 (2.107)

Then we apply Equation (2.90) to get the observable canonical form of F (s):

Ao =

[
0 −a0
1 −a1

]
=

[
0 −12
1 −7

]

Bo =

[
n0
n1

]
=

[
−5
−2

]
Co =

[
0 1

]
D = 0.5

(2.108)

■

2.3.5 Similarity transformation to observable canonical form

We consider the following general state-space representation:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.109)

where the size of the state vector x(t) is n.
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Use of the observability matrix

The observable canonical form (2.90) exists if and only if the following matrix
Qo, which is called the observability matrix, has full rank:

Qo =


C
CA
...

CAn−1

 (2.110)

As soon as the characteristic polynomial of matrix A is computed the state
matrix Ao as well as the output matrix Co corresponding to the observable
canonical form are known. Thus the observability matrix in the observable
canonical basis, which will be denoted Qoo, can be computed as follows:

Qoo =


Co

CoAo

...
CoA

n−1
o

 (2.111)

At that point matrices Ao and Co are known. The only matrix which need
to be computed is the control matrix Bo. Let Po be the change of basis matrix
which de�nes the new state vector in the observable canonical basis. From (2.8)
we get:

Bo = P−1
o B (2.112)

And: {
Ao = P−1

o APo

Co = CPo
(2.113)

Using these last two equations within (2.111) leads to the following
expression of matrix Qoo:

Qoo =


Co

CoAo

...
CoA

n−1
o

 =


CPo

CPoP
−1
o APo

...

CPo

(
P−1
o APo

)n−1



=


CPo

CAPo

...
CAn−1Po

 =


C
CA
...

CAn−1

Po

= QoPo

(2.114)

We �nally get:
Po = Q−1

o Qoo ⇔ P−1
o = Q−1

oo Qo (2.115)

Furthermore the observable canonical form (2.90) is obtained by the
following similarity transformation:

x(t) = Poxo(t)⇔ xo(t) = P−1
o x(t) (2.116)
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Alternatively the constant nonsingular matrix Po can be obtained through
the state matrix A and the last column q

o
of the inverse of the observability

matrix Qo as follows:

Q−1
o =

[
∗ · · · ∗ q

o

]
⇒ Po =

[
q
o

Aq
o
· · · An−1q

o

]
(2.117)

To get this result we write from (2.8) the following similarity transformation:

Ao = P−1
o APo ⇔ PoAo = APo (2.118)

Let's denote det (sI−A) as follows:

det (sI−A) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (2.119)

Thus the coe�cients ai of the state matrix Ao corresponding to the
observable canonical form are known and matrix Ao is written as follows:

Ao =



0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1


(2.120)

Furthermore let's write the unknown matrix Po as follows:

Po =
[
c1 · · · cn

]
(2.121)

Thus the columns of the unknown change of basis matrix Po can be obtained
thanks to the following similarity transformation:

PoAo = APo

⇔
[
c1 · · · cn

]


0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1


= A

[
c1 · · · cn

]

(2.122)

Working out with the �rst n− 1th columns gives the following equations:
c2 = Ac1
c3 = Ac2 = A2c1
...
cn = Acn−1 = An−1c1

(2.123)
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Furthermore from (2.8) we get the relation CPo = Co which is rewritten as
follows:

CPo = Co

⇔ C
[
c1 · · · cn

]
=
[
0 · · · 0 1

]

⇔



Cc1 = 0
Cc2 = 0
...
Ccn−1 = 0
Ccn = 1

(2.124)

Combining (2.123) and (2.124) we get:

Cc1 = 0
Cc2 = CAc1 = 0
...
Ccn−1 = CAn−2c1 = 0
Ccn = CAn−1c1 = 1

(2.125)

These equations can in turn be written in matrix form as:
C
CA
...

CAn−2

CAn−1

 c1 =


0
0
...
0
1

 (2.126)

Let's introduce the observability matrix Qo:

Qo =


C
CA
...

CAn−1

 (2.127)

Assuming that matrix Qo has full rank we get:

Qoc1 =


0
0
...
0
1

⇔ c1 = Q−1
o


0
0
...
0
1

 (2.128)

From the preceding equation it is clear that c1 is the last column of the
inverse of the observability matrix Qo. We will denote it q

o
:

c1 := q
o

(2.129)

Having the expression of c1 we can then go back to (2.123) and construct
all the columns of Po.
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Example 2.5. We consider the following general state-space representation:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.130)

where: 

A =

[
28.5 −17.5
58.5 −35.5

]

B =

[
2
4

]
C =

[
7 −4

]
D = 0.5

(2.131)

We are looking for the observable canonical form of this state-space
representation.

First we build the observability matrix Qo from (2.110):

Qo =

[
C
CA

]
=

[
7 −4

−34.5 19.5

]
(2.132)

To build matrix Qoo let's compute det (sI−A):

det (sI−A) = s2 + a1s+ a0 = s2 + 7s+ 12 (2.133)

As soon as matrix Ao is built from the denominator of the transfer function,
that is from det (sI−A), we get:

Ao =

[
0 −a0
1 −a1

]
=

[
0 −12
1 −7

]
(2.134)

Furthermore matrix Co is straightforward for the observable canonical form:

Co =
[
0 1

]
(2.135)

Thus we are in position to compute matrix Qoo :

Qoo =

[
Co

CoAo

]
=

[
0 1
1 −7

]
(2.136)

Then we use (2.115) to build the similarity transformation:

Po = Q−1
o Qoo =

[
7 −4

−34.5 19.5

]−1 [
0 1
1 −7

]
= 1

−1.5

[
19.5 4
34.5 7

] [
0 1
1 −7

]
= 2

3

[
−19.5 −4
−34.5 −7

] [
0 1
1 −7

]
= 2

3

[
−4 8.5
−7 14.5

]
(2.137)
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Alternatively we can use (2.117) to build the similarity transformation:

Q−1
o = 2

3

[
−19.5 −4
−34.5 −7

]
=
[
∗ q

o

]
⇒ q

o
= 2

3

[
−4
−7

] (2.138)

And:

Po =
[
q
o

Aq
o

]
=

2

3

[
−4 8.5
−7 14.5

]
(2.139)

Using the similarity relations (2.8) we �nally get the following observable
canonical form of the state-space representation:

Ao = P−1
o APo =

[
14.5 −8.5
7 −4

] [
28.5 −17.5
58.5 −35.5

]
2
3

[
−4 8.5
−7 14.5

]
=

[
0 −12
1 −7

]
Bo = P−1

o B =

[
14.5 −8.5
7 −4

] [
2
4

]
=

[
−5
−2

]
Co = CPo =

[
7 −4

]
2
3

[
−4 8.5
−7 14.5

]
=
[
0 1

]
(2.140)

■

Iterative method

Equivalently the inverse of the change of basis matrix Po of the similarity
transformation can be obtained as follows:

P−1
o =


rT1
rT2
...
rTn

 (2.141)

where: 
det (sI−A) = sn + an−1s

n−1 + · · ·+ a1s+ a0
rTn = C
rTk = rTk+1A+ akC ∀ n− 1 ≥ k ≥ 1

(2.142)

To get this result we write from (2.8) the following similarity transformation:

Ao = P−1
o APo ⇔ AoP

−1
o = P−1

o A (2.143)

Let's denote det (sI−A) as follows:

det (sI−A) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (2.144)

Thus the coe�cients ai of the state matrix Ao corresponding to the
observable canonical form are known and matrix Ao is written as follows:

Ao =



0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1


(2.145)
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Furthermore let's write the inverse of the unknown change of basis matrix
Po as follows:

P−1
o =


rT1
rT2
...
rTn

 (2.146)

Thus the columns of the unknown matrix Po can be obtained thanks to the
similarity transformation:

AoP
−1
o = P−1

o A

⇔



0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1




rT1
rT2
...
rTn

 =


rT1
rT2
...
rTn

A
(2.147)

That is:
−a0rTn = rT1 A
rT1 − a1rTn = rT2 A
...
rTn−1 − an−1r

T
n = rTnA

⇔
{

0 = rT1 A+ a0r
T
n

rTk = rTk+1A+ akr
T
n ∀ n− 1 ≥ k ≥ 1

(2.148)

Furthermore from (2.8) we get the relation Co = CPo which is rewritten as
follows:

CoP
−1
o = C⇔

[
0 · · · 0 1

]

rT1
rT2
...
rTn

 = C⇒ rTn = C (2.149)

Combining the last equation of (2.148) with (2.149) gives the proposed
result: {

rTn = C
rTk = rTk+1A+ akC ∀ n− 1 ≥ k ≥ 1

(2.150)

Example 2.6. We consider the following general state-space representation:

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.151)
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where: 

A =

[
28.5 −17.5
58.5 −35.5

]

B =

[
2
4

]
C =

[
7 −4

]
D = 0.5

(2.152)

This is the same state-space representation than the one which has been used
in the previous example. We have seen that the similarity transformation which
leads to the controllable canonical form is the following:

Po =
2

3

[
−4 8.5
−7 14.5

]
(2.153)

It is easy to compute matrix P−1
o , that is the inverse of Po. We get the

following expression:

P−1
o =

[
14.5 −8.5
7 −4

]
(2.154)

We will check the expression of matrix P−1
o thanks to the iterative method

proposed in (2.142). We get:


det (sI−A) = s2 + 7s+ 12
rT2 = C =

[
7 −4

]
rT1 = rT2 A+ a1C =

[
7 −4

] [ 28.5 −17.5
58.5 −35.5

]
+ 7

[
7 −4

]
=
[
14.5 −8.5

]
(2.155)

Thus we fortunately retrieve the expression of matrix P−1
o :

P−1
o =

[
rT1
rT2

]
=

[
14.5 −8.5
7 −4

]
(2.156)

■

2.3.6 Diagonal (or modal) form

One particular useful canonical form is called the (block) diagonal or modal
form. The (block) diagonal form is obtained thanks to the partial fraction
expansion of transfer function F (s). This is a diagonal representation of the
state-space model when all the poles of F (s) are distinct. Otherwise this is a
Jordan representation.
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Transfer function with distinct poles

Assume for now that transfer function F (s) has distinct poles λi. Then the
partial fraction expansion of F (s) reads:

Y (s)
U(s) = F (s) = N(s)

D(s) + d

= N(s)
(s−λ1)(s−λ2)···(s−λn) + d

= r1
s−λ1 + r2

s−λ2 + · · ·+ rn
s−λn + d

(2.157)

Number ri is called the residue of transfer function F (s) in λi. When the
multiplicity of the pole (or eigenvalue) λi is 1 it is clear from the preceding
relation that the residue ri can be obtained thanks to the following formula:

ri = (s− λi)F (s)|s=λi (2.158)

Now we de�ne constants bi and ci such that the product bici is equal to ri:

ri = ci bi (2.159)

Consequently transfer function F (s) can be written as follows:

F (s) =
c1 b1
s− λ1

+
c2 b2
s− λ2

+ · · ·+ cn bn
s− λn

+ d (2.160)

Then we de�ne the Laplace transform of the components
x1(t), x2(t), · · · , xn(t) of the state vector x(t) as follows:

X1(s)
U(s) = b1

s−λ1
X2(s)
U(s) = b2

s−λ2
...
Xn(s)
U(s) = bn

s−λn

(2.161)

Using (2.161) transfer function F (s) can be written as follows:

Y (s)
U(s) = F (s) = c1

X1(s)
U(s) + c2

X2(s)
U(s) + · · ·+ cn

Xn(s)
U(s) + d

⇒ Y (s) = c1X1(s) + c2X2(s) + · · ·+ cnXn(s) + dU(s)
(2.162)

Coming back to the time domain we get:

y(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) + du(t) (2.163)

Whereas in the time domain (2.161) reads:
ẋ1(t) = λ1x1(t) + b1u(t)
ẋ2(t) = λ2x2(t) + b2u(t)
...
ẋn(t) = λnxn(t) + bnu(t)

(2.164)

Equations (2.164) and (2.163) lead to the following state-space
representation, which is called the diagonal or modal form:
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{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.165)

where: 

A =


λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn



B =


b1
b2
...
bn


C =

[
c1 c2 · · · cn

]
D = d

(2.166)

Example 2.7. Let's consider the following transfer function:

F (s) =
(s+ 1)(s+ 2)

2(s+ 3)(s+ 4)
=

s2 + 3s+ 2

2s2 + 14s+ 24
(2.167)

We are looking for the diagonal form of this transfer function.

First we have to set to 1 the leading coe�cient of the polynomial which
appears in the denominator of the transfer function F (s). We get:

F (s) =
0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
(2.168)

Then we decompose F (s) as a sum between a strictly proper rational function
and a constant coe�cient d. Constant coe�cient d is obtained thanks to the
following relation:

d = lim
s→∞

F(s) = lim
s→∞

0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
= 0.5 (2.169)

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F (s):

N(s)

D(s)
= F (s)− d =

0.5s2 + 1.5s+ 1

1× s2 + 7s+ 12
− 0.5 =

−2s− 5

s2 + 7s+ 12
(2.170)

The two poles of F (s) are −3 and −4. Thus the partial fraction expansion
of F (s) reads:

F (s) =
r1

s+ 3
+

r2
s+ 4

+ d =
r1

s+ 3
+

r2
s+ 4

− 0.5 (2.171)
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where the residues r1 and r2 are: r1 = (s+ 3)F (s)|s=−3
(s+1)(s+2)

2(s+4)

∣∣∣
s=−3

= (−3+1)(−3+2)
2(−3+4) = 1

r2 = (s+ 4)F (s)|s=−4
(s+1)(s+2)

2(s+3)

∣∣∣
s=−4

= (−4+1)(−4+2)
2(−4+3) = −3

(2.172)

We �nally get:

F (s) =
N(s)

D(s)
+ d =

1

s+ 3
+
−3
s+ 4

+ 0.5 (2.173)

Residues r1 and r2 are expressed for example as follows:{
r1 = 1 = 1× 1 = c1 × b1
r2 = −3 = −3× 1 = c2 × b2

(2.174)

Then we apply Equation (2.166) to get the diagonal canonical form of F (s):

A =

[
λ1 0
0 λ2

]
=

[
−3 0
0 −4

]

B =

[
b1
b2

]
=

[
1
−3

]
C =

[
c1 c2

]
=
[
1 1

]
D = d = 0.5

(2.175)

■

Similarity transformation to diagonal form

Assume that state matrix A has distinct eigenvalues λi. Starting from a

realization

(
A B

C d

)
let Pm be the change of basis matrix such that:

Am =


λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 = P−1
m APm (2.176)

We will denote Pm as follows:

Pm =
[
v1 v2 · · · vn

]
(2.177)

It can be seen that vectors vi are the eigenvectors of matrix A. Indeed let
λi be an eigenvalue of A. Then:

Av1 = λ1v1
...

Avn = λnvn

(2.178)
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Writing this equation in vector form leads to the following relation:

[
v1 v2 · · · vn

]

λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 = A
[
v1 v2 · · · vn

]
(2.179)

That is:

Pm


λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 = APm (2.180)

Or equivalently: 
λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 = P−1
m APm (2.181)

The inverse of the change of basis matrix Pn can be written in terms of rows
as follows:

P−1
m =


wT1
wT2
...
wTn

 (2.182)

It can be seen that vectors wi are the eigenvectors of matrix AT . Indeed
let λi be an eigenvalue of A, which is also an eigenvalue of AT as far as
det (sI−A) = det (sI−A)T = det

(
sI−AT

)
. Then:

ATwi = λiwi ⇒ wTi A = λiw
T
i (2.183)

Thus by multiplying by vj and using the fact that vj is an eigenvector of A,
that is Avj = λjvj , we get:

λiw
T
i vj = wTi Avj = λjw

T
i vj ⇒ (λi − λj)wTi vj = 0 (2.184)

Since λi ̸= λj ∀i ̸= j we �nally get:

wTi vj = 0 if i ̸= j (2.185)

As far as wi and vj are de�ned to within a constant we impose wTi vj =
1 if i = j. Consequently:

wTi vj =

{
1 if i = j
0 if i ̸= j

(2.186)
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Transfer function with complex conjugate pair of poles

If some of the poles are complex so are the residues and so is the diagonal form.
This may be inconvenient. We will see hereafter how to retrieve real matrices
corresponding to the diagonal form.

Assume that λ and λ is a complex conjugate pair of poles of F (s):

F (s) =
r1

s− λ
+

r1

s− λ
(2.187)

Let α be the real part of the pole λ and β its imaginary part:

λ = α+ jβ ⇔ λ = α− jβ (2.188)

According to the preceding section the state-space representation of F (s) is
the following: 

Am =

[
λ 0

0 λ

]
=

[
α+ jβ 0

0 α− jβ

]

Bm =

[
b1
b1

]
Cm =

[
c1 c1

]
D = 0

(2.189)

Where:

r1 = b1c1 ⇒ r1 = b1c1 (2.190)

It is clear that the diagonal form of transfer function F (s) is complex. From
the preceding realization we get the following equations:{

ẋ1(t) = (α+ jβ)x1(t) + b1u(t)

ẋ2(t) = (α− jβ)x2(t) + b1u(t)
(2.191)

We deduce from the preceding equation that the state components x1(t) and
x2(t) are complex conjugate. Let xR(t) be the real part of x1(t) and xI(t) its
imaginary part:

x1(t) = xR(t) + jxI(t)⇒ x2(t) = x1(t) = xR(t)− jxI(t) (2.192)

Thus Equation (2.191) reads:{
ẋR(t) + jẋI(t) = (α+ jβ) (xR(t) + jxI(t)) + b1u(t)

ẋR(t)− jẋI(t) = (α− jβ) (xR(t)− jxI(t)) + b1u(t)
(2.193)

We deduce two new equations from the two preceding equations as follows:
the �rst new equation is obtained by adding the two preceding equations and
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dividing the result by 2 whereas the second new equation is obtained by
subtracting the two preceding equations and dividing the result by 2j. We get:{

ẋR(t) = αxR(t)− βxI(t) + b1+b1
2 u(t)

ẋI(t) = βxR(t) + αxI(t) +
b1−b1
2j u(t)

(2.194)

As far as the output y(t) is concerned we can express it as a function of the
new components xR(t) and xI(t) of the state vector:

y(t) = c1x1(t) + c1x1(t)
= c1 (xR(t) + jxI(t)) + c1 (xR(t)− jxI(t))
= (c1 + c1)xR(t) + j (c1 − c1)xI(t)

(2.195)

Consequently the complex diagonal form in Equation (2.189) is rendered real
by using the real part and the imaginary part of the complex state component
which appear in the state vector rather than the complex state component and
its conjugate. Indeed Equations (2.194) and (2.195) lead to the following state-
space representation where matrices (Am,Bm,Cm,D) are real:

Am =

[
α −β
β α

]

Bm =

[
b1+b1

2
b1−b1
2j

]

Cm =
[
(c1 + c1) j (c1 − c1)

]
D = 0

(2.196)

It can be seen that complex matrix A has the same determinant than the
real matrix Am:

det

(
sI−

[
α+ jβ 0

0 α− jβ

])
= det

(
sI−

[
α −β
β α

])
(2.197)

Example 2.8. Let's consider the following transfer function:

F (s) =
s+ 2

s2 − 2s+ 5
(2.198)

The two poles of F (s) are λ1 = 1 + 2j and λ1 = 1 − 2j. Thus the partial
fraction expansion of F (s) reads:

F (s) =
s+ 2

s2 − 2s+ 5
=

s+ 2

(s− λ1)(s− λ1)
=

r1
s− λ1

+
r2

s− λ1
where λ1 = 1 + 2j

(2.199)
where the residues r1 and r2 are: r1 = (s− λ1)F (s)|s=λ1 = s+2

s−λ1

∣∣∣
s=λ1

= 3+2j
4j = 2−3j

4

r2 = (s− λ1)F (s)
∣∣
s=λ1

= s+2
s−λ1

∣∣∣
s=λ1

= 3−2j
−4j = 2+3j

4 = r1
(2.200)
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We �nally get:

F (s) =
r1

s− λ1
+

r2

s− λ1
=

2−3j
4

s− (1 + 2j)
+

2+3j
4

s− (1− 2j)
(2.201)

Residues r1 and r2 are expressed for example as follows:{
r1 =

2−3j
4 = (2− 3j)× 1

4 = c1 × b1
r2 =

2+3j
4 = (2 + 3j)× 1

4 = c̄1 × b̄1
(2.202)

Then we apply Equation (2.166) to get the diagonal canonical form of F (s):

Am =

[
λ1 0

0 λ1

]
=

[
α+ jβ 0

0 α− jβ

]
=

[
1 + 2j 0

0 1− 2j

]

Bm =

[
b1
b1

]
= 1

4

[
1
1

]
Cm =

[
c1 c1

]
=
[
2− 3j 2 + 3j

]
D = 0

(2.203)

This complex diagonal form realization is rendered real by using (2.196):

Am =

[
α −β
β α

]
=

[
1 −2
2 1

]

Bm =

[
b1+b1

2
b1−b1
2j

]
= 1

4

[
1
0

]

Cm =
[
(c1 + c1) j (c1 − c1)

]
=
[
4 6

]
D = 0

(2.204)

For both realizations we can check that F (s) = Cm (sI−Am)
−1Bm+D but

in the last realzation matrices (Am,Bm,Cm,D) are real.

■

2.3.7 Algebraic and geometric multiplicity of an eigenvalue

The algebraic multiplicity ni of an eigenvalue λi of matrix A ∈ Rn×n is the
number of times λi appears as a root of the characteristic polynomial det(sI−A).

The geometric multiplicity qi of an eigenvalue λi of matrix A ∈ Rn×n is the
dimension of the kernel of λiI−A.

If for every eigenvalue of A the geometric multiplicity equals the algebraic
multiplicity, then matrix A is said to be diagonalizable.



2.3. Realization of SISO transfer function 67

Example 2.9. Let's consider the following matrix:

A =

[
2 3
0 2

]
(2.205)

We have:
det(sI−A) = (s− 2)2 (2.206)

Consequently the algebraic multiplicity of eigenvalue λ1 = 2 is n1 = 2.
In order to get the geometric multiplicity of eigenvalue λ1 we consider the

following matrix:

λ1I−A =

[
0 −3
0 0

]
(2.207)

The dimension of the kernel of λ1I − A is clearly 1. Consequently the
geometric multiplicity of eigenvalue λ1 is q1 = 1.

■

2.3.8 Jordan form and generalized eigenvectors

Matrix A is not diagonalizable if there is at least one eigenvalue with
geometric multiplicity qi (dimension of its eigenspace) strictly less than its
algebraic multiplicity ni. Equivalently, if for every eigenvalue λi of A the
geometric multiplicity equals the algebraic multiplicity then A is
diagonalizable. If not, the diagonal form of matrix A is replaced by its Jordan
form which is achieved through the so-called generalized eigenvectors.

Indeed, any square matrix A is similar to the a block diagonal matrix
through an invertible matrix P:

AP = P

 Jλ1
. . .

Jλp

 (2.208)

where the Jordan block Jλi of matrix A corresponding to eigenvalue λi with
algebraic multiplicity ni is the following ni × ni matrix:

Jλi =


λi 1 0 · · · 0
0 λi 1 0 · · ·
...

. . .
. . .

. . .

λi 1
0 · · · · · · 0 λi


︸ ︷︷ ︸

ni terms

= λi Ini +N (2.209)

Matrix N is a nilpotent matrix. The number of 1 over the diagonal (the
superdiagonal) of Jλi (and N) is equal to the di�erence between the algebraic
multiplicity ni and the geometric multiplicity (dimension of its eigenspace) qi of
eigenvalue λi. When the algebraic multiplicity of eigenvalue λi is strictly greater
than its geometric multiplicity (dimension of its eigenspace), we said that λi is
degenerate.
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For example, assume that matrix A has one eigenvalue λi with algebraic
multiplicity ni = 3 and geometric multiplicity (dimension of its eigenspace)
equals to qi = 1. Then λi is degenerate and matrix A is not diagonalizable. Its
Jordan form has ni−qi = 3−1 = 2 values 1 over its diagonal (the superdiagonal):

Jλi =

 λi 1 0
0 λi 1
0 0 λi

 = λi I3 +N where N =

 0 1 0
0 0 1
0 0 0

 (2.210)

Then matrix P, which has to be found, reads:

P =
[
vλi,1 vλi,2 vλi,3

]
(2.211)

and (2.208) reads:

A
[
vλi,1 vλi,2 vλi,3

]
=
[
vλi,1 vλi,2 vλi,3

]  λi 1 0
0 λi 1
0 0 λi

 (2.212)

Developing each column of the previous product leads to the following
relations:

A vλi,1 = λi vλi,1
A vλi,2 = vλi,1 + λi vλi,2
A vλi,3 = vλi,2 + λi vλi,3

⇔


(A− λiI) vλi,1 = 0

(A− λiI) vλi,2 = vλi,1
(A− λiI) vλi,3 = vλi,2

(2.213)

The �rst equality indicates that vλi,1 belongs to the kernel of A−λiI, which
is also the kernel of λiI−A. Once vλi,1 has been chosen, generalized eigenvectors
vλi,2 and vλi,3 shall be chosen such that (2.213) holds.

Alternatively, relation (2.213) indicates that as soon as vλi,3 ̸= 0 is known,
then vλi,2 and vλi,1 can be computed recursively as follows:{

vλi,2 = (A− λiI) vλi,3
vλi,1 = (A− λiI) vλi,2

(2.214)

To get vλi,3, it is worth noticing that by multiplying the second equation of

(2.213) by A − λiI and the third equation of (2.213) by (A− λiI)2, and using
the fact that (A− λiI) vλi,1 = 0, we get:

(A− λiI) vλi,1 = 0

(A− λiI)2 vλi,2 = (A− λiI) vλi,1
(A− λiI)3 vλi,3 = (A− λiI)2 vλi,2

⇒


(A− λiI) vλi,1 = 0

(A− λiI)2 vλi,2 = 0

(A− λiI)3 vλi,3 = 0

(2.215)

From the relation (A− λiI)3 vλi,3 = 0, it is clear that vλi,3 ̸= 0 belongs

to the nullspace of (A− λiI)3, where ni = 3 is the algebraic multiplicity of
eigenvalue λi. Moreover, as soon as matrix P shall be invertible, we shall have
vλi,2 ̸= 0 and vλi,1 ̸= 0. Thus, we get from (2.214):{

vλi,2 = (A− λiI) vλi,3 ̸= 0

vλi,1 = (A− λiI) vλi,2 = (A− λiI)2 vλi,3 ̸= 0
(2.216)
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More generally, to get the Jordan form of any n × n square matrix A with
eigenvalues λi with algebraic multiplicity ni we must compute the nullspace of
(A− λiI)ni or equivalently the nullspace of (A− λiI)n (in that situation there
is no need to know ni). Let vλi,ni

be a vector which spans the nullspace of

(A− λiI)ni but which does not belong to the nullspace of (A− λiI)ni−1:{
(A− λiI)ni vλi,ni

= 0

(A− λiI)ni−1 vλi,ni
̸= 0

(2.217)

Then the following chain of vectors can be formed:
vλi,ni−1 = (A− λiI) vλi,ni

vλi,ni−2 = (A− λiI) vλi,ni−1 = (A− λiI)2 vλi,ni

...

vλi,1 = (A− λiI)ni−1 vλi,ni

(2.218)

A nonzero vector vλi which satis�es the following properties is called a
generalized eigenvector of A corresponding to eigenvalue λi:{

(A− λiI)k vλi = 0

(A− λiI)k−1 vλi ̸= 0
(2.219)

It is clear that when k = 1 the preceding de�nition leads to the usual
de�nition of eigenvector.

It can be shown that:

ker
(
(A− λiI)k

)
⊂ ker

(
(A− λiI)k+1

)
(2.220)

Furthermore if A is an n × n matrix with an eigenvalue λi with algebraic
multiplicity ni then there is some integer νi ≤ ni such that the following property
holds:

dim (ker ((A− λiI)νi)) = ni (2.221)

Let Pλi be the matrix formed by the chain of vectors
[
vλi,1 · · · vλi,ni

]
.

Then the Jordan form J of matrix A of order n corresponding is obtained as:

J = P−1AP where

{
P =

[
Pλ1 · · · Pλn

]
Pλi =

[
vλi,1 · · · vλi,ni

] (2.222)

2.3.9 Transfer function with multiple poles on the same
location

Multiple real poles on the same location

Now assume that transfer function F (s) has a pole λ of multiplicity n. Partial
fraction expansion of F (s) results in:

Y (s)

U(s)
= F (s) =

r1
s− λ

+
r2

(s− λ)2
+ · · ·+ rn

(s− λ)n
+ d (2.223)
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It is clear from the preceding relation that the numbers ri ∀ n ≥ i ≥ 1 can
be obtained thanks to the following formula:

ri =
1

(n− i)!
dn−i

dsn−i
((s− λ)nF (s))

∣∣∣∣
s=λ

∀ n ≥ i ≥ 1 (2.224)

Number r1 is called the residue of transfer function F (s) in λ.

Then we de�ne the Laplace transform of the components x1(t), · · · , xn(t) of
the state vector x(t) as follows:

Xi(s)

U(s)
=

1

(s− λ)n−i+1
∀ n ≥ i ≥ 1 (2.225)

Using (2.225) transfer function F (s) can be written as follows:

Y (s)
U(s) = F (s) = r1

Xn(s)
U(s) + r2

Xn−1(s)
U(s) + · · ·+ rn

X1(s)
U(s) + d

⇒ Y (s) = r1Xn(s) + r2Xn−1(s) + · · ·+ rnX1(s) + dU(s)
(2.226)

Coming back to the time domain and rearranging the order of the state
vector components we get:

y(t) = rnx1(t) + rn−1x2(t) + · · ·+ r1xn(t) + du(t) (2.227)

The n components of the state vector x(t) de�ned by (2.225) reads:

Xi(s)
U(s) = 1

(s−λ)n−i+1 ∀ 1 ≤ i ≤ n

⇔



Xn(s)
U(s) = 1

s−λ
Xn−1(s)
U(s) = 1

(s−λ)2 ⇒ Xn−1(s) =
Xn(s)
s−λ

...
X2(s)
U(s) = 1

(s−λ)n−1 ⇒ X2(s) =
X3(s)
s−λ

X1(s)
U(s) = 1

(s−λ)n ⇒ X1(s) =
X2(s)
s−λ

(2.228)

Coming back in the time domain and reversing the order of the equations
we get: 

ẋ1(t) = λx1(t) + x2(t)
ẋ2(t) = λx2(t) + x3(t)
...
ẋn−1(t) = λxn−1(t) + xn(t)
ẋn(t) = λxn(t) + u(t)

(2.229)

Equations (2.229) and (2.227) lead to the following state-space
representation, which is called the diagonal (Jordan) or modal form:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.230)
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Matrix A is a n × n square matrix, B is a vector with n rows and C is a
row with n columns: 

A =


λ 1 0 · · ·

0
. . .

. . .
. . .

...
. . .

. . . 1
0 · · · 0 λ


︸ ︷︷ ︸

n terms

B =


0
...
0
1


C =

[
rn rn−1 · · · r1

]
D = d

(2.231)

Alternatively we can introduce polynomials N1(s) and N2(s) de�ned as
follows:

F (s) =
r1

s− λ
+

r2
(s− λ)2

+ · · ·+ rn
(s− λ)n

=
N1(s)N2(s)

(s− λ)n
(2.232)

Then Pradin1 has shown that equivalent diagonal form realizations of
transfer function F (s) are the following where A is a n× n square matrix, B a
vector with n rows and C a row with n columns:

A =


λ 1 0 · · ·

0
. . .

. . .
. . .

...
. . .

. . . 1
0 · · · 0 λ


︸ ︷︷ ︸

n terms

B =


...

1
2!

d2

ds2
N2(s)

∣∣∣
s=λ

1
1!

d
dsN2(s)

∣∣
s=λ

N2(s)|s=λ


C =

[
N1(s)|s=λ

1
1!

d
dsN1(s)

∣∣
s=λ

1
2!

d2

ds2
N1(s)

∣∣∣
s=λ

. . .
]

D = d

(2.233)

1Bernard Pradin, Automatique Linéaire - Systémes multivariables, Notes de cours INSA
2000
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The preceding relations can be extended to the general case where transfer
function F (s) has poles λi with multiplicity ni:

F (s) =
∑

i
ri1
s−λi +

ri2
(s−λi)2 + · · ·+ rini

(s−λi)ni
+ d

=
∑

i

∑ni
j=1

rij
(s−λi)j + d

=
∑

i
Ni1(s)Ni2(s)
(s−λi)ni

+ d

(2.234)

Then it is shown in 1 that a diagonal form realization of transfer function
F (s) is the following:



A =

 A1

A2

. . .



B =

 B1

B2

...


C =

[
C1 C2 · · ·

]
D = d

(2.235)

Matrix Ai is a ni × ni square matrix, Bi is a vector with ni rows and Ci is
a row with ni columns:



Ai =


λi 1 0 · · ·

0
. . .

. . .
. . .

...
. . .

. . . 1
0 · · · 0 λi


︸ ︷︷ ︸

ni terms

Bi =


0
...
0
1


Ci =

[
rini · · · ri2 ri1

]
D = d

(2.236)

or equivalently:



2.3. Realization of SISO transfer function 73



Ai =


λi 1 0 · · ·

0
. . .

. . .
. . .

...
. . .

. . . 1
0 · · · 0 λi


︸ ︷︷ ︸

ni terms

Bi =


...

1
2!

d2

ds2
Ni2(s)

∣∣∣
s=λi

1
1!

d
dsNi2(s)

∣∣
s=λi

Ni2(s)|s=λi


Ci =

[
Ni1(s)|s=λi

1
1!

d
dsNi1(s)

∣∣
s=λi

1
2!

d2

ds2
Ni1(s)

∣∣∣
s=λi

. . .
]

D = d

(2.237)

Multiple complex conjugate pair of poles on the same location

If some of the poles are complex so are the residues and so is the Jordan form.
This may be inconvenient. Assume that λ and λ is a complex conjugate pair of
poles of F (s) with multiplicity 3:

F (s) =
r1

s− λ
+

r2
(s− λ)2

+
r3

(s− λ)3

+
r1

s− λ
+

r2

(s− λ)2
+

r3

(s− λ)3
(2.238)

Let α be the real part of the pole λ and β its imaginary part:

λ = α+ jβ ⇔ λ = α− jβ (2.239)

Using the result of the preceding section the Jordan form of transfer function
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F (s) is the following:

A =



λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0

0 0 0 λ 1 0

0 0 0 0 λ 1

0 0 0 0 0 λ



B =



0
0
1

0
0
1


C =

[
r3 r2 r1 r3 r2 r1

]
D = 0

(2.240)

It is clear that the Jordan form of transfer function F (s) is complex. This
complex Jordan form is rendered real by using the real part and the imaginary
part of the complex state components which appear in the state vector rather
than the complex state components and its conjugate. This is the same kind of
trick which has been used in the section dealing with complex conjugate pair of
poles. The real state matrix An is the following:

An =

 Jab I 0
0 Jab I
0 0 Jab

 where Jab =

[
α −β
β α

]
(2.241)

It can be seen that complex matrix A has the same determinant than the
following real matrix An:

det (sI−A) = det (sI−An) (2.242)

2.4 Realization of SIMO transfer function

The acronym SIMO stands for Single-Input Multiple-Output. The transfer
function F(s) relates the relation between the Laplace transform of the output
of the system, y(t), which is a vector, and the Laplace transform of the input
of the system, u(t), which is a scalar as in the SISO case. Thus in that
situation the transfer function becomes a vector. Let Y (s) = L

[
y(t)

]
and

U(s) = L [u(t)]. Thus we write:

Y (s) = F(s)U(s) (2.243)

As in the SISO case, the realization of a SIMO transfer function F(s) consists
in �nding any quadruplet (A,B,C,D) such that:

F(s) = C (sI−A)−1B+D (2.244)
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We will consider in the following a SIMO system with p outputs. Thus Y (s)
is a vector of p rows and U(s) a scalar. Several kind of realizations are possible
which will be presented hereafter.

2.4.1 Generic procedure

In the SIMO case we can always write the transfer function F(s) as a vector
composed of p transfer functions of SISO systems:

F(s) =

 F1(s)
...

Fp(s)

 (2.245)

If we realize Fi(s) by

(
Ai Bi

Ci di

)
then one realization of F(s) is the

following:

Fi(s) =

(
Ai Bi

Ci di

)
⇒ F(s) =



A1 0 · · · B1

0
. . .

...
... Ap Bp

C1 0 · · · d1

0
. . .

...
... Cp dp


(2.246)

To get the previous result we have to write F(s) as follows:

F(s) =

 F1(s)
...

Fp(s)

 =

 C1 (sI−A1)
−1B1 + d1
...

Cp (sI−Ap)
−1Bp + dp


=


C1 0 · · ·

0
. . .

... Cp


 (sI−A1)

−1B1

...

(sI−Ap)
−1Bp

+

 d1
...
dp



=


C1 0 · · ·

0
. . .

... Cp




(sI−A1)
−1 0 · · ·

0
. . .

... (sI−Ap)
−1


 B1

...
Bp

+

 d1
...
dp



=


C1 0 · · ·

0
. . .

... Cp





(sI−A1) 0 · · ·

0
. . .

... (sI−Ap)




−1  B1

...
Bp

+

 d1
...
dp


(2.247)

From the preceding relation we deduce the realization (2.246).

Example 2.10. Let's consider the following SIMO transfer function:

F(s) =

[ s+1
s2+6s+9

5
s2+6s+9

]
(2.248)
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F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).

We notice that F(s) is a strictly proper. Consequently:

d =

[
0
0

]
(2.249)

Then we write the transfer function Fsp(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial Ψ(s):

F(s) := Fsp(s) =
N(s)

Ψ(s)
=

[
s+ 1
5

]
s2 + 6s+ 9

(2.250)

A realization of transfer function F1(s) = s+1
s2+6s+9

is for example the
controllable canonical form:

F1(s) =
s+ 1

s2 + 6s+ 9
=

 0 1 0
−9 −6 1

1 1 0

 (2.251)

Similarly a realization of transfer function F2(s) = 5
s2+6s+9

is for example
the controllable canonical form:

F2(s) =
5

s2 + 6s+ 9
=

 0 1 0
−9 −6 1

5 0 0

 (2.252)

Applying the generic procedure we get a realization of the SIMO transfer
function F(s):

F(s) =



0 1 0 0 0
−9 −6 0 0 1
0 0 0 1 0
0 0 −9 −6 1

1 1 0 0 0
0 0 5 0 0

 (2.253)

■

2.4.2 Controllable canonical form

We can also write the transfer function F(s) as follows:

F(s) = Fsp(s) +

 d1
...
dp

 = Fsp(s) + d (2.254)

where d is a constant vector and Fsp(s) a strictly proper transfer function:{
lims→∞F(s) = d
lims→∞Fsp(s) = 0

(2.255)
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With the same argument than in the SISO case we have:

D = d =

 d1
...
dp

 (2.256)

Then we have to �nd matrices (A,B,C) such that:

Fsp(s) = C (sI−A)−1B (2.257)

To get the controllable canonical form we write the transfer function Fsp(s)
as the ratio between a polynomial vector N(s) with p rows and a polynomial
Ψ(s):

Fsp(s) =
N(s)

Ψ(s)
=

 N1(s)
...

Np(s)


Ψ(s)

(2.258)

Then we build for each SISO transfer function Ni(s)/Ψ(s) a controllable
realization (Ac,Bc,Ci,0). Note that:

− Matrix Ac is common to each realization because the denominator Ψ(s)
of each transfer function Ni(s)/Ψ(s) is the same. When we write Ψ(s) as
follows:

Ψ(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (2.259)

Then Ac is a n× n square matrix:

Ac =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1

 (2.260)

− Vector Bc is common to each realization because we use the controllable
canonical form of each SISO transfer function Ni(s)/Ψ(s). This is a vector
vector with n rows:

Bc =


0
...
0
1

 (2.261)

− Each vector Ci is dedicated to one output. This is a row vector with p
columns formed with the coe�cients of polynomials Ni(s).

Then the controllable canonical form of the SIMO transfer function F(s) is
the following:

F(s) =


Ac Bc

C1 d1
...

...
Cp dp

 (2.262)
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Example 2.11. Let's consider the following SIMO transfer function:

F(s) =

[ 1
s+1
2
s+2

]
(2.263)

F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).

We notice that F(s) is a strictly proper. Consequently:

d =

[
0
0

]
(2.264)

Then we write the transfer function Fsp(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial Ψ(s):

F(s) := Fsp(s) =
N(s)

Ψ(s)
=

[
s+ 2

2(s+ 1)

]
(s+ 1)(s+ 2)

=

[
s+ 2

2(s+ 1)

]
s2 + 3s+ 2

(2.265)

Then matrix Ac of the controllable canonical form of F(s) is obtained
thanks to the coe�cients of the denominator Ψ(s) whereas vector Bc is set by
the controllable canonical form:

Ac =

[
0 1
−2 −3

]
Bc =

[
0
1

] (2.266)

Vector Cc is obtained thanks to the coe�cients of the polynomial vector N(s)
:

Cc =

[
2 1
2 2

]
(2.267)

We �nally get:

F(s) =


0 1 0
−2 −3 1

2 1 0
2 2 0

 (2.268)

■

Example 2.12. Let's consider the following SIMO transfer function:

F(s) =

[ s+1
s2+6s+9

5
s2+6s+9

]
(2.269)

F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).

We notice that F(s) is a strictly proper. Consequently:

d =

[
0
0

]
(2.270)
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Then we write the transfer function Fsp(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial Ψ(s):

F(s) := Fsp(s) =
N(s)

Ψ(s)
=

[
s+ 1
5

]
s2 + 6s+ 9

(2.271)

Then matrix Ac of the controllable canonical form of F(s) is obtained
thanks to the coe�cients of the denominator Ψ(s) whereas vector Bc is set by
the controllable canonical form:

Ac =

[
0 1
−9 −6

]
Bc =

[
0
1

] (2.272)

Vector Cc is obtained thanks to the coe�cients of the polynomial vector N(s)
:

Cc =

[
1 1
5 0

]
(2.273)

We �nally get:

F(s) =


0 1 0
−9 −6 1

1 1 0
5 0 0

 (2.274)

■

2.5 Realization of MIMO transfer function

The acronym MIMO stands for Multi-Input Multiple-Output.

The transfer function F(s) relates the relation between the Laplace
transform of the output of the system, which is a vector, and the Laplace
transform of the input of the system, which is also a vector in the MIMO case.
Due to the fact that the output y(t) of the system and the input u(t) of the
system are no more scalars but vectors it is not possible to express the ratio
between Y (s) = L

[
y(t)

]
and U(s) = L [u(t)]. Thus we write:

Y (s) = F(s)U(s) (2.275)

We will consider in the following a MIMO system with p outputs and m
inputs. Then Y (s) = L

[
y(t)

]
is a vector of p rows, U(s) = L [u(t)] is a vector

of m rows and transfer function F(s) is a matrix with m columns and p rows.

As in the SIMO case, the realization of a MIMO transfer function F(s)
consists in �nding any quadruplet (A,B,C,D) such that:

F(s) = C (sI−A)−1B+D (2.276)
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2.5.1 Generic procedure

In the MIMO case we can always write the transfer function F(s) as a matrix
composed of p×m transfer functions of SISO systems Fij(s):

F(s) =

 F11(s) · · · F1m(s)
...

...
Fp1(s) · · · Fpm(s)

 (2.277)

The transfer function F(s) can be written as the sum of SIMO systems:

F(s) =

 F11(s)
...

Fp1(s)

 [ 1 0 · · · 0
]
+

· · ·+

 F1m(s)
...

Fpm(s)

 [ 0 · · · 0 1
]

(2.278)

That is:

F(s) = F1(s)
[
1 0 · · · 0

]
+ · · ·+ Fm(s)

[
0 · · · 0 1

]
=
∑m

i=1Fi(s)

[
0 . . . 0 1︸︷︷︸

i-th column

0 . . . 0
]

(2.279)

If we realize the SIMO system Fi(s) =

 F1i(s)
...

Fpi(s)

 in the ith column of F(s)

by

(
Ai Bi

Ci Di

)
then one realization of transfer function F(s) is the following:

Fi(s) =

 F1i(s)
...

Fpi(s)

 =

(
Ai Bi

Ci Di

)

⇒ F(s) =


A1 0 · · · B1 0 · · ·

0
. . . 0

. . .
... Am

... Bm

C1 · · · Cm D1 · · · Dm

 (2.280)

The state-space representation of each SIMO transfer function Fi(s) can
be obtained thanks to the controllable canonical form (2.262). The achieved
state-space representation is block diagonal but is not necessarily minimal (see
section 2.6).

To get this result we use the same kind of demonstration than the one which
has been to obtain the generic procedure seen in Equation (2.246). Indeed:
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F(s) = F1(s)
[
1 0 · · · 0

]
+ · · ·+ Fm(s)

[
0 · · · 0 1

]
=
[
F1(s) · · · Fm(s)

]
=
[
C1 (sI−A1)

−1B1 +D1 · · · Cm (sI−Am)
−1Bm +Dm

]
=
[
C1 · · · Cm

] 
(sI−A1)

−1B1 0 · · ·

0
. . .

... (sI−Am)
−1Bm

+
[
D1 · · · Dm

]

=
[
C1 · · · Cm

] 
(sI−A1)

−1 0 · · ·

0
. . .

... (sI−Am)
−1




B1 0 · · ·

0
. . .

... Bm


+
[
D1 · · · Dm

]
=
[
C1 · · · Cm

]


(sI−A1) 0 · · ·

0
. . .

... (sI−Am)




−1 
B1 0 · · ·

0
. . .

... Bm


+
[
D1 · · · Dm

]
(2.281)

2.5.2 Controllable canonical form

In the MIMO case, transfer function F(s) can always be expanded as follows
where p×m constant matrices Ci, i = 1, · · · , n− 1 and D are of the same size
than transfer function F(s) with m inputs and p outputs:

F(s) =
N(s)

Ψ(s)
+D =

Cn−1s
n−1 + · · ·+C1s+C0

1× sn + an−1sn−1 + · · ·+ a1s+ a0
+D (2.282)

Following the same procedure than in the SISO case, and by denoting Im the
identity matrix of dimension m, the controllable canonical form of F(s) reads:

F(s) =

(
Ac Bc

Cc D

)
(2.283)
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where:



Ac =



0 Im 0 0

0 0 Im
. . . 0

. . .
. . . 0

0 0 0 Im
−a0Im −a1Im −a2Im · · · −an−1Im



Bc =


0
0
...
0
Im


Cc =

[
C0 C1 · · · Cn−2 Cn−1

]
D = lims→∞F(s)

(2.284)

Example 2.13. Let's consider the following transfer function:

F(s) =

[ 2
s+2

s+1
s+3

1
s+2

5
s+2

]
(2.285)

Let's decompose F(s) as follows:

F(s) =

[ 2
s+2

−2
s+3

1
s+2

5
s+2

]
+

[
0 1
0 0

]

=

 2(s+ 3) −2(s+ 2)
s+ 3 5(s+ 3)


(s+2)(s+3) +

[
0 1
0 0

]

=

 2 −2
1 5

 s+
 6 −4
3 15


s2+5s+6

+

[
0 1
0 0

]
(2.286)

The system described by transfer function F(s) has m = 2 inputs. Using
(2.284) leads to the following controllable canonical realization of F(s):

[
ẋ(t)

y(t)

]
=

[
Ac Bc

Cc D

] [
x(t)

u(t)

]
(2.287)
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where: 

Ac =


0 0 1 0
0 0 0 1

−6 0 −5 0
0 −6 0 −5



Bc =


0 0
0 0

1 0
0 1


Cc =

[
6 −4 2 −2
3 15 1 5

]

D =

[
0 1
0 0

]

(2.288)

This result can be checked by using Equation (2.1).
■

2.5.3 Observable canonical form

The observable canonical form

(
Ao Bo

Co Do

)
of F(s) can be obtained by

computing the transpose of the controllable canonical form of its transpose,
that is the transpose of the controllable canonical form of FT (s):

FT (s) = Cc (sI−Ac)
−1Bc +D :=

(
Ac Bc

Cc D

)
⇒ F(s) = BT

c

(
sI−AT

c

)−1
CT
c +DT =

(
AT
c CT

c

BT
c DT

)
:=

(
Ao Bo

Co Do

)
(2.289)

2.5.4 Diagonal (or modal) form

As in the SIMO case we expand F(s) as follows:

F(s) = Fsp(s) +D (2.290)

where D is a constant matrix and Fsp(s) a strictly proper transfer function:{
lims→∞F(s) = D
lims→∞Fsp(s) = 0

(2.291)

Then we have to �nd matrices (A,B,C) such that:

Fsp(s) = C (sI−A)−1B (2.292)

To get the diagonal (or modal) form we write the transfer function Fsp(s)
as the sum between rational functions. Let λ1, · · · , λr be the r distinct roots
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of Ψ(s) and ni the multiplicity of root λi. Then we get the following partial
fraction expansion of Fsp(s) where matrices Rij are constant:

Fsp(s) =
∑
i

ni∑
j=1

Rij

(s− λi)j
(2.293)

The diagonal (or modal) form of the MIMO transfer function F(s) is the
following:

F(s) =


J1 0 · · · B1

0
. . .

...
... Jr Br

C1 · · · Cr D

 (2.294)

Denoting by ni the multiplicity of the root λi, m the number of inputs of
the system and Im the identity matrix of size m ×m, matrices Ji, Bi and Ci

are de�ned as follows:

− The Jordan matrix Ji is a (m× ni)× (m× ni) matrix with the following
expression:

Ji =


λiIm Im 0 · · ·

0
. . .

. . .
. . .

...
. . .

. . . Im
0 · · · 0 λiIm


︸ ︷︷ ︸

ni termes λiIm

(2.295)

It is worth noticing that matrix (sI− Ji)
−1 reads:

(sI− Ji)
−1 =


(s− λi)−1Im (s− λi)−2Im · · · (s− λi)−niIm

0 (s− λi)−1Im
. . . (s− λi)−ni+1Im

...
. . .

. . .
. . .

0 · · · 0 (s− λi)−1Im


(2.296)

− Bi is a (m× ni)×m matrix:

Bi =


0
...
0
Im

 (2.297)

− Ci is a p× (m× ni) matrix:

Ci =
[
Rini · · · Ri2 Ri1

]
(2.298)
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An alternative diagonal (or modal) form also exists. To get it �rst let's focus
on the realization of the following p ×m transfer function Fi(s) with a pole λ
of multiplicity i:

Fi(s) =

[
Iρi 0ρi×(m−ρi)

0(p−ρi)×ρi 0(p−ρi)×(m−ρi)

]
(s− λ)i

(2.299)

where Iρi is the identity matrix of dimension ρi and 0p×m the null matrix
with p rows and m columns.

Then we recall the inverse of the following n× n bidiagonal matrix:

L =


λ −1 0

λ
. . .

. . . −1
0 λ

⇒ L−1 =


λ−1 λ−2 · · · λ−n

λ−1 . . .

. . . λ−2

0 λ−1

 (2.300)

The alternative diagonal (or modal) form of Fi(s) is then the following 2:

Fi(s) =

 Ai

[
Bi 0nρi×(m−ρi)

][
Ci

0(p−ρi)×nρi

]
0p×m

 (2.301)

where Ai is a (n× ρi)× (n× ρi) square matrix, BT
i (the transpose of Bi) a

ρi× (n× ρi) matrix whose ρi rows are built from row vector 0 0 · · · 1︸ ︷︷ ︸
n terms

and

2Toshiya Morisue, Minimal Realization of a Transfer Function Matrix with Multiple Poles,
Transactions of the Society of Instrument and Control Engineers, Volume 21 (1985) Issue 6
Pages 546-549
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Ci a ρi×(n×ρi) matrix whose ρi rows are built from row vector 1 0 · · · 0︸ ︷︷ ︸
n terms

:



Ai =


Ji 0 · · ·

0
. . .

. . .
...

. . . Ji


︸ ︷︷ ︸

ρi terms

where Ji =


λ 1 0 · · ·

0
. . .

. . .
. . .

. . . 1
0 0 λ


︸ ︷︷ ︸

n terms

BT
i =


0 0 · · · 1︸ ︷︷ ︸

n terms

01×n · · ·

. . .
. . .

01×n · · · 0 0 · · · 1︸ ︷︷ ︸
n terms




ρi terms

Ci =


1 0 · · · 0︸ ︷︷ ︸

n terms

01×n · · ·

. . .
. . .

01×n · · · 1 0 · · · 0︸ ︷︷ ︸
n terms




ρi terms

(2.302)
Now let's consider the following transfer function Fi(s) where Ni1 is a

constant p × ρi matrix, Ni2 a constant ρi ×m matrix and Ni1Ni2 is a p ×m
constant matrix of rank ρi:

Fi(s) =
Ni1Ni2

(s− λ)i
=

Ni1IρiNi2

(s− λ)i
where rank (Ni1Ni2) = ρi (2.303)

From the preceding realization it is clear that the alternative diagonal (or
modal) form of Fi(s) is the following:

Fi(s) =

(
Ai BiNi2

Ni1Ci 0p×m

)
(2.304)

Finally let's consider a p×m transfer function F(s) which has pole λ with
multiplicity n and where R(s) is a matrix of polynomial of degree strictly lower
than n. The partial fraction expansion of F(s) reads:

F(s) = R(s)
(s−λ)n

= R1
s−λ + R2

(s−λ)2 + · · ·+ Rn
(s−λ)n

=
∑n

i=1
Ri

(s−λ)i

(2.305)

Constant matrices Ri are de�ned by:

Ri =
1

(n− i)!
dn−i

dsn−i
(s− λ)nF(s)

∣∣∣∣
s=λ

(2.306)
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Let ρi be the rank of constant matrix Ri:

ρi = rank (Ri) (2.307)

Each term Ri can be expanded as a product of two constant matrices Ni1

and Ni2 where Ni1 is a p× ρi matrix and Ni2 a ρi ×m matrix:

Ri = Ni1Ni2 = Ni1IρiNi2 (2.308)

Then the alternative diagonal (or modal) form of the MIMO transfer function
F(s) is the following:

F(s) =

n∑
i=1

Fi(s) +D =


A1 0 · · · B1N12

0
. . .

...
... An BnNn2

N11C1 · · · Nn1Cn D

 (2.309)

This diagonal (or modal) form of F(s) is in general not minimal (see section
2.6).

2.6 Minimal realization

2.6.1 System's dimension

Let's start with an example and consider the following transfer functions:{
F1(s) =

1
s+1

F2(s) =
s+2

s2+3s+2

(2.310)

From the preceding sections it can be seen that the controllable canonical
form of transfer functions F1(s) and F2(s) are the following:

F1(s) =

(
A1 B1

C1 D1

)
=

(
−1 1

1 0

)
F2(s) =

(
A2 B2

C2 D2

)
=

 0 1 0
−2 −3 1

2 1 0

 (2.311)

It is clear that the dimension of state matrix A1 is 1 and the dimension of
state matrix A2 is 2.

On the other hand it can be seen that the poles of transfer function F2(s)
are −1 and −2:

s2 + 3s+ 2 = (s+ 1)(s+ 2) (2.312)

Consequently F2(s) reads:

F2(s) =
s+ 2

s2 + 3s+ 2
=

s+ 2

(s+ 1)(s+ 2)
=

1

s+ 1
(2.313)
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Thus we �nally get:

F2(s) = F1(s) (2.314)

Despite the fact that F2(s) = F1(s) we have obtained two realizations with
di�erent size of the state matrix. This usually appears when pole-zero
cancellation appears in the transfer function.

The order of a realization is the size of state matrix A. So in that example
the order of the realization of F2(s) is greater than the order of the realization
of F1(s).

This example can be extended to the general case where the dimension of
the state matrix A corresponding to the same transfer function F(s) may vary.
We said that a realization of a transfer function F(s) is minimal if there exists
no realization of lesser order whose transfer function is F(s).

For SISO systems it can be proven that a realization of transfer function F(s)
is minimal if and only if the two polynomials C adj(sI−A)B and det(sI−A)
are coprime.

For MIMO systems it can be proven that a realization of transfer function
F(s) is minimal if and only if the characteristic polynomial of matrix A is equal
to the Least Common Multiple (LCM), or Greatest Common Factor (GCF), of
the denominators of all possible non zero minors (of all sizes) in F(s) 3.

We recall that minors or order k are the determinants of square sub-matrices
of dimension k. More precisely if F(s) is a p × m matrix then the minors of
order k are obtained by computing the determinant of all the square k × k
sub-matrices where p− k rows and m− k columns of F(s) have been deleted.

To �nd the Least Common Multiple (LCM) of two polynomials simply
factor each of the two polynomials completely. Then take the product of all
factors (common and not common), every factor being a�ected with its
greatest exponent. Finally multiply the obtained polynomial by a constant to
obtain a monic polynomial.

Let

(
A B

C D

)
be a minimal realization of a transfer function F(s). Then

the eigenvalues of A are identical to the poles of F(s). If the realization is not
minimal then the poles of F(s) are a subset of the eigenvalues of A. It can be
proven that Gilbert's diagonal realization is a minimal realization.

Example 2.14. Let's consider the following transfer function:

F(s) =

[ 1
s+1

1
s+2

2
s+1

3
s+1

]
(2.315)

A �rst realization of F(s) is obtained by writing a realization of each SISO

3Mohammed Dahleh, Munther A. Dahleh, George Verghese, Lectures on Dynamic Systems
and Control, Massachuasetts Institute of Technology



2.6. Minimal realization 89

transfer function:

F(s) =



−1 1 0
−1 2 0

−2 0 1
−1 0 3

1 0 1 0 0 0
0 1 0 1 0 0

 (2.316)

The characteristic polynomial of state matrix A is:

det(sI−A) = (s+ 1)3(s+ 2) (2.317)

Whereas the Least Common Multiple (LCM) of the denominators of all
possible non zero minors (of all sizes) in F(s) is the following:

den (m11(s)) = s+ 1
den (m12(s)) = s+ 2
den (m21(s)) = s+ 1
den (m22(s)) = s+ 1
den (F(s)) = (s+ 1)2(s+ 2)

⇒ LCM = (s+ 1)2(s+ 2) (2.318)

As far as det(sI − A) ̸= LCM we conclude that the realization is not
minimal. Furthermore the characteristic polynomial of any state matrix of a
minimal realization shall be the LCM, that is here (s+ 1)2(s+ 2).

An other realization of F(s) can be obtained by writing F(s) in diagonal (or
modal) form as explained in section 2.5.4:

F(s) =
1

s+ 1

[
1
2

] [
1 0

]
+

1

s+ 1

[
0
3

] [
0 1

]
+

1

s+ 2

[
1
0

] [
0 1

]
(2.319)

Then we get:

F(s) =


−1 1 0

−1 0 1
−2 0 1

1 0 1 0 0
2 3 0 0 0

 (2.320)

Because F(s) has distinct roots we can also use for this example Gilbert's
realization as explained in section 2.6.2:

F(s) =
1

s+ 1
R1 +

1

s+ 2
R2 =

1

s+ 1

[
1 0
2 3

]
+

1

s+ 2

[
0 1
0 0

]
(2.321)

− The rank of matrix R1 =

[
1 0
2 3

]
is ρ1 = 2. Thus we write R1 = C1B1

where C1 is a p× ρ1 = 2× 2 matrix and B1 is a ρ1 ×m = 2× 2 matrix.
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We choose for example:
C1 = R1 =

[
1 0
2 3

]
B1 = I =

[
1 0
0 1

] (2.322)

− The rank of matrix R2 =

[
0 1
0 0

]
is ρ2 = 1. Thus we write R2 = C2B2

where C2 is a p× ρ2 = 2× 1 matrix and B2 is a ρ2 ×m = 1× 2 matrix.
We choose for example:  C2 =

[
1
0

]
B2 = I =

[
0 1

] (2.323)

Then we get:

F(s) =

 Λ1 0 B1

0 λ2 B2

C1 C2 D

 =


−1 1 0

−1 0 1
−2 0 1

1 0 1 0 0
2 3 0 0 0

 (2.324)

For this example we get the same realization than (2.320).
With this realization we have det(sI−A) = LCM = (s+ 1)2(s+ 2). Thus

we conclude that this realization is minimal.
■

2.6.2 Gilbert's minimal realization

Let's write the p×m transfer function F(s) as follows:

F(s) = Fsp(s) +D (2.325)

where D is a constant matrix and Fsp(s) a strictly proper transfer function:{
lims→∞F(s) = D
lims→∞Fsp(s) = 0

(2.326)

We consider in that section MIMO systems in which the denominator
polynomial of the strictly proper transfer function Fsp(s) has distinct roots:

Fsp(s) =
∑
i

Ri

s− λi
(2.327)

The residue Ri can be obtained as:

Ri = lim
s→λi

(s− λi)Fsp(s) = lim
s→λi

(s− λi)F(s) (2.328)
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Now let ρi be the rank of Ri:

ρi = rank (Ri) (2.329)

and write Ri as follows where Ci is a p×ρi constant matrix and Bi a ρi×m
constant matrix:

Ri = CiBi (2.330)

Then a realization of the transfer function F(s) is the following4:

F(s) =


Λ1 0 · · · B1

0
. . .

...
... Λm Bm

C1 · · · Cm D

 (2.331)

where matrices Λi = λiIρi are diagonal matrices of size ρi.

Moreover Gilbert's realization is minimal with order n given by:

n =
∑
i

ρi (2.332)

2.6.3 Ho-Kalman algorithm

To get a minimal realization

(
Am Bm

Cm D

)
from a realization

(
A B

C D

)
we

can use the Ho-Kalman algorithm which is described hereafter:

− Let r be the dimension of the state matrix A, which may not be minimal.
First compute the observability matrix Qo and the controllability matrix

Qc of the realization

(
A B

C D

)
:


Qo =


C
CA
...

CAr−1


Qc =

[
B AB · · · Ar−1B

]
(2.333)

The realization is minimal if and only if:

rank (Qo) = rank (Qc) (2.334)

In all situations the dimension n of the system is given by:

n = min (rank (Qo) , rank (Qc)) (2.335)

4Thomas Kailath, Linear Systems, Prentice-Hall, 1st Edition
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− If the realization

(
A B

C D

)
is not minimal then compute the singular

value decomposition (svd) of the product QoQc:

QoQc = UΣVT (2.336)

Matrix Σ is a rectangular diagonal matrix with non-negative real
coe�cients situated on its diagonal. The strictly positive coe�cients of
Σ are called the singular values of QoQc. The number of singular values
of QoQc (which are the strictly positive coe�cients within the diagonal
of matrix Σ) is the dimension n of the system. Again note that n ̸= r if

the realization

(
A B

C D

)
is not minimal.

− Let Σn be the square diagonal matrix built from the n singular values
of QoQc (which are the non-zero coe�cients within the diagonal matrix
Σ), Un the matrix built from the n columns of U corresponding to the
aux n singular values and Vn the matrix built from the n columns of V
corresponding to the aux n singular values:

QoQc = UΣVT =
[
Un Us

] [ Σn 0
0 Σs

] [
VT
n

VT
s

]
(2.337)

− Matrices On and Cn are de�ned as follows:

OnCn = UnΣnV
T
n where

{
On = UnΣ

1/2
n

Cn = Σ
1/2
n VT

n

(2.338)

− Then the state matrix Am of a minimal realization is obtained as follows:

Am = Σ−1/2
n UT

n (QoAQc)VnΣ
−1/2
n (2.339)

− Let m be the number of inputs of the system and p its number of outputs
and Im the identity matrix of size m. Matrix Bm and Cm of the minimal
realization are obtained as follows:


Bm = Cn

 Im
0
...

 = Σ
1/2
n VT

n


Im
0
...
0


Cm =

[
Ip 0 · · · 0

]
On =

[
Ip 0 · · · 0

]
UnΣ

1/2
n

(2.340)

− Matrix D is independent of the realization.



Chapter 3

Analysis of Linear Time

Invariant systems

3.1 Introduction

This chapter is dedicated to the analysis of linear dynamical systems. More
speci�cally we will concentrate on the solution of the state equation and we will
present the notions of controllability, observability and stability. Those notions
will enable the modal analysis of Linear Time Invariant (LTI) dynamical systems

3.2 Solving the time invariant state equation

We have seen that the state equation attached to a linear time invariant system
is the following:

ẋ(t) = Ax(t) +Bu(t) (3.1)

The purpose of this section is to obtain the general solution of this linear
di�erential equation, which is actually a vector equation.

The solution of the non-homogeneous state equation ẋ(t) = Ax(t) +Bu(t)
can be obtained by the Laplace transform. Indeed the Laplace transform of this
equation yields:

sX(s)− x(0) = AX(s) +BU(s) (3.2)

That is:

(sI−A)X(s) = x(0) +BU(s) (3.3)

Pre-multiplying both sides of this equation by (sI−A)−1 leads to the
following equation:

X(s) = (sI−A)−1 x(0) + (sI−A)−1BU(s) (3.4)

By taking the inverse Laplace transform of this equation we get the
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expression of the state vector x(t):

x(t) = L−1 [X(s)]

= L−1
[
(sI−A)−1 x(0) + (sI−A)−1BU(s)

]
= L−1

[
(sI−A)−1

]
x(0) + L−1

[
(sI−A)−1BU(s)

] (3.5)

To inverse the preceding equation in the s domain and come back in the
time domain we will use the following properties of the Laplace transform:

− Convolution theorem: let x(t) and y(t) be two causal scalar signals and
denote by X(s) and Y (s) their Laplace transforms, respectively. Then the
product X(s)Y (s) is the Laplace transform of the convolution between
x(t) and y(t) which is denoted by x(t) ∗ y(t):

X(s)Y (s) = L [x(t) ∗ y(t)]⇔ L−1 [X(s)Y (s)] = x(t) ∗ y(t) (3.6)

Where:

x(t) ∗ y(t) =
∫ t

0
x(t− τ)y(τ)dτ (3.7)

This relation is readily extended to the vector case where X(t) is a matrix
and y(t) a vector:

L−1 [X(s)Y (s)] = X(t) ∗ y(t) =
∫ t

0
X(t− τ)y(τ)dτ (3.8)

− Laplace transform of exponential matrix: in the scalar case we have seen
that:

L
[
eat
]
=

1

s− a
= (s− a)−1 ⇔ L−1

[
(s− a)−1

]
= eat (3.9)

This relation is readily extended to the vector case as follows:

L
[
eAt
]
= (sI−A)−1 ⇔ L−1

[
(sI−A)−1

]
= eAt (3.10)

Thus the inverse Laplace transform of Equation (3.5) leads to the expression
of the state vector x(t) which solves the state equation (3.1):

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ (3.11)

The solution x(t) of Equation (3.5) is often referred to as the state trajectory
or the system trajectory.

Exponential eAt is de�ned as the transition matrix Φ(t):

Φ(t) = eAt (3.12)

In the more general case of time dependent linear di�erential equation of
the form ẋ(t) = A(t)x(t) +B(t)u(t) the expression of the state vector is x(t) =
Φ(t, t0)x(0) +

∫ t
t0
Φ(t, τ)Bu(τ)dτ where Φ(t, t0) is also named the transition
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matrix (or Green's matrix). In this case the transition matrix is a solution of

the homogeneous equation ∂Φ(t,t0)
∂t = A(t)Φ(t, t0). In addition Φ(t, t) = I ∀t

and Φ(t, t0) = ϕ(t)ϕ−1(t0) where ϕ(t) is the solution of ẋ(t) = A(t)x(t). For a
linear time invariant system the transition matrix Φ(t, t0) is Φ(t, t0) = eA(t−t0);
as far as for the time invariant case the initial time t0 is meaningless we can
choose t0 = 0 and we retrieve Φ(t) = eAt.

3.3 Output response

We have seen that the output vector y(t) of the state-space representation is
obtained using the output equation. Using the expression of the state vector
x(t) we get:

y(t) = Cx(t) +Du(t)

= C
(
eAtx(0) +

∫ t
0 e

A(t−τ)Bu(τ)dτ
)
+Du(t)

= CeAtx(0) +
∫ t
0 Ce

A(t−τ)Bu(τ)dτ +Du(t)

(3.13)

− The term CeAtx(0) is called the zero-input response (or output) of the
system; this is the response of the system when there is no input signal
u(t) applied on the system;

− The term
∫ t
0 Ce

A(t−τ)Bu(τ)dτ +Du(t) is called the zero-state output (or
response) of the system; this is the response of the system when there is
no initial condition x(0) applied on the system.

3.4 Impulse and unit step responses

The impulse response of a dynamical system is the zero-state output of the
system when the input signal u(t) is the impulse δ(t) called the Dirac delta
function.

Setting in (3.13) the input signal u(t) to the Dirac delta function δ(t) and
putting the initial conditions x(0) to zero leads to the following expression of
the impulse response of the system:

y(t) =

∫ t

0
CeA(t−τ)Bδ(τ)dτ +Dδ(t) (3.14)

The term
∫ t
0 Ce

A(t−τ)Bδ(τ)dτ can be expressed as the convolution between
the matrix CeAtB and the input vector δ(τ). We get:

y(t) = CeAtB ∗ δ(t) +Dδ(t) (3.15)

Using the fact that the Dirac delta function δ(t) is the neutral element for
convolution we can write CeAtB ∗ δ(t) = CeAtB. Consequently the output
vector y(t), that is the impulse response of a linear time invariant system which
will be denoted h(t), can be expressed as follows:

y(t) := h(t) = CeAtB+Dδ(t) (3.16)
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The Laplace transform of the impulse response h(t) is de�ned to be the
transfer function F(s) of the system. Using the fact that the Laplace transform
of the Dirac delta function δ(t) is 1 we retrieve the following expression for the
transfer function F(s) of the linear system:

F(s) = L [h(t)] = C (sI−A)−1B+D (3.17)

The unit step response is the response of the system to the unit step input.
Setting in (3.13) the input signal u(t) to u(t) = 1 ∀t > 0 and putting the initial
conditions x(0) to zero leads to the following expression of the unit step response
of the system:

y(t) =
∫ t
0 Ce

A(t−τ)Bdτ +D1

= CeAt
(∫ t

0 e
−Aτdτ

)
B+D1

= CeAt
(
−A−1e−Aτ

∣∣t
τ=0

)
B+D1

= CeAt
(
A−1 −A−1e−At

)
B+D1

(3.18)

Using the fact that eAtA−1 = A−1eAt (which is easy to show using the
series expansion of eAt) and assuming that matrix A−1 exists, we �nally get the
following expression for the unit step response of the system:

y(t) = CA−1
(
eAt − I

)
B+D1 (3.19)

3.5 Matrix exponential

3.5.1 De�nition

Let A be a n×n square matrix. The matrix exponential is a n×n matrix which
is de�ned by analogy with the scalar exponential and its series as follows:

eAt =

∞∑
k=0

(At)k

k!
= I+

∞∑
k=1

(At)k

k!
(3.20)

This calculus involves an in�nity of terms and it is in general impossible to
compute it by hand except for some speci�c cases, for example if matrix A is
nilpotent.

A matrix A is nilpotent if there exists an integer k such that Ak = 0. The
smallest value of k is called the index of nilpotency (of the nilpotent matrix). In
this case the matrix exponential eAt can be computed directly from the series
expansion as the series terminates after a �nite number of terms:

eAt = I+At+A2 t
2

2!
+ · · ·+Ak−1 tk−1

(k − 1)!
(3.21)

A necessary and su�cient condition for a n × n square matrix A to be
nilpotent is that its characteristic polynomial det (sI−A) is equal to sn:

Ak = 0⇔ det (sI−A) = sn where k ≤ n (3.22)
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We recall that the minimal polynomial πA(s) of a matrix A is the monic
polynomial (a monic polynomial is a polynomial in which the leading coe�cient
(the nonzero coe�cient of highest degree) is equal to 1) of least degree such
that πA(A) = 0. The minimal polynomial divides the characteristic polynomial
χA(s) := det (sI−A) of matrix A. Consequently its degree is lower or equal to
the order n of matrix A.

A matrix A is said to be cyclic if and only if its characteristic polynomial is
the same than its minimal polynomial.

Furthermore matrix A is diagonalizable if and only if its minimal
polynomial's roots are all of multiplicity one.

The previous result to compute eAt when A is nilpotent can be generalized
to the case where the minimal polynomial πA(s) of A reads (s− λ)k. Indeed
we get in this case:

πA(s) = (s− λ)k ⇒ (A− λI)k = 0 (3.23)

Thus matrix A− λI is nilpotent and we can write:

e(A−λI)t = I+ (A− λI) t+ (A− λI)2 t
2

2!
+ · · ·+ (A− λI)k−1 tk−1

(k − 1)!
(3.24)

As soon as matrices A and λI commute the following relation holds:

e(A−λI)t = e−λteAt ⇒ eAt = eλt e(A−λI)t (3.25)

Thus as soon as πA(s) = (s− λ)k we �nally get the following result:

eAt =

eλt
(
I+ (A− λI) t+ (A− λI)2 t

2

2!
+ · · ·+ (A− λI)k−1 tk−1

(k − 1)!

)
(3.26)

Example 3.1. Let A =

[
0 1
0 0

]
. The characteristic polynomial of A is:

det (sI−A) = det

([
s −1
0 s

])
= s2 (3.27)

Consequently matrix A is nilpotent and eAt can be computed as follows:

A =

[
0 1
0 0

]
⇒ A2 =

[
0 0
0 0

]
⇒ eAt = I+At =

[
1 t
0 1

] (3.28)

■
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3.5.2 Properties

The following properties hold1:

− Value at t = 0:
eAt
∣∣
t=0

= e0 = I (3.29)

− Derivation:
d

dt
eAt = AeAt = eAtA (3.30)

− Integration:

eAt = I+A

∫ t

0
eAτdτ (3.31)

− In general:
e(A+B)t ̸= eAteBt ̸= eBteAt (3.32)

Nevertheless if matrices A and B commute (meaning that AB = BA)
then:

e(A+B)t = eAteBt = eBteAt (3.33)

As far as the product AA commutes we have:

eAteAτ = eA(t+τ) = eAτeAt (3.34)

And thus setting τ to −t we get:(
eAt
)−1

= e−At (3.35)

− Let λ(A) be the eigenvalues of matrix A. Then:

λ
(
eAt
)
= eλ(A)t (3.36)

− Let det (A) be the determinant of matrix A and tr (A) be the trace of
matrix A. Then:

det
(
eAt
)
= etr(A)t (3.37)

Example 3.2. Let's consider the following matrices A and B:
A =

[
0 1
0 0

]

B =

[
1 0
0 0

] (3.38)

It is clear that A et B do not commute. Indeed:

AB =

[
0 0
0 0

]
̸= BA =

[
0 1
0 0

]
(3.39)

1https://en.wikipedia.org/wiki/Matrix_exponential
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Consequently we expect that eAteBt ̸= eBteAt. We will check it by using the
preceding de�nitions and properties:

eAt =

[
1 t
0 1

]
(3.40)

And:

(Bt)k =

[
tk 0
0 0

]
⇒ eBt = I+

∑∞
k=1

(Bt)k

k! =

[
1 +

∑∞
k=1

tk

k! 0
0 1

]
⇔ eBt =

[
et 0
0 1

] (3.41)

It is clear that:

eAteBt =

[
et t
0 1

]
̸= eBteAt =

[
et tet

0 1

]
(3.42)

We can also easily check the following properties:
d
dte

At = AeAt = eAtA =

[
0 1
0 0

]
d
dte

Bt = BeBt = eBtB =

[
et 0
0 0

] (3.43)

■

3.5.3 Computation of eAt using the diagonal form of A

We will assume in that section that matrix A is diagonalizable or equivalently
that matrix A has linearly independent eigenvectors; this means that for all
eigenvalues λi of A the rank of matrix λiI−A is equal to the size of A minus
the multiplicity of λi.

Assuming that matrix A is diagonalizable then there exists a similarity
transformation such that:

A = PΛP−1 where Λ =

 λ1
. . .

λn

 (3.44)

The change of basis matrix P, as well as its inverse P−1, can be obtained as
follows:

− Let vi be the eigenvector of A corresponding to eigenvalue λi. As far as
the n×n matrix A is assumed to have n linearly independent eigenvectors
we can write: 

Av1 = λ1v1
...
Avn = λnvn

(3.45)
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− The preceding relation can be written in a vector form as follows:

A
[
v1 . . . vn

]
=
[
v1 . . . vn

]  λ1
. . .

λn

 (3.46)

− Identifying the preceding equation with AP = PΛ we �nally get

P =
[
v1 v2 · · · vn

]
(3.47)

− Furthermore let wi be the eigenvectors of matrix AT :

ATwj = λjwj ⇔ wTj A = λjw
T
j (3.48)

It can be seen that vectors wj et vi are orthogonal. Indeed:

λjw
T
j vi = wTj Avi = wTj λivi ⇔ (λi − λj)wTj vi = 0

⇒ wTj vi = 0 si j ̸= i
(3.49)

Thus imposing wTi vi = 1 ∀i, the inverse of matrix P is obtained as follows:

wTi vi = 1 ∀i⇒ P−1 =


wT1
wT2
...
wTn

 (3.50)

Indeed using wTj vi =

{
0 if j ̸= i
1 if j = i

we get:

P−1P =


wT1
wT2
...
wTn

 [ v1 v2 · · · vn
]

=


wT1 v1 wT1 v2 · · · wT1 vn
wT2 v1 wT2 v2 · · · wT2 vn
...

...
...

wTnv1 wTnv2 · · · wTnvn



=


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1

 = I

(3.51)

Then, as soon as matrix A diagonalizable, eAt can be obtained using the
following relation :

eAt = PeΛtP−1 =
n∑
i=1

viw
T
i e

λit (3.52)
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The preceding relation is easily obtained by using the series development of
the exponential:

ePΛtP−1
=

∞∑
k=0

(
PΛtP−1

)k
k!

=
∞∑
k=0

P (Λt)kP−1

k!
= P

( ∞∑
k=0

(Λt)k

k!

)
P−1 (3.53)

As far as the diagonal (or modal) matrix Λ is diagonal we get:
Λk =

 λk1
. . .

λkn


eΛt =

∑∞
k=0

(Λt)k

k!

⇒ eΛt =

 eλ1t

. . .

eλnt

 (3.54)

Thus using the expression of P and P−1:

eAt = PeΛtP−1 = P

 eλ1t

. . .

eλnt

P−1

=
[
v1 v2 · · · vn

]  eλ1t

. . .

eλnt



wT1
wT2
...
wTn


(3.55)

We �nally get:

eAt =
n∑
i=1

vie
λitwTi =

n∑
i=1

viw
T
i e

λit (3.56)

Example 3.3. Compute eAt where A =

[
1 2
0 −5

]
.

Le characteristic polynomial of A reads:

det (sI−A) = det

([
s− 1 −2
0 s+ 5

])
= (s− 1)(s+ 5) (3.57)

The two eigenvalues λ1 = 1 and λ2 = −5 of A are distinct. Since the size
of A is equal to the number of the distinct eigenvalues we conclude that matrix
A is diagonalizable.

− Let v1 =

[
v11
v12

]
be the eigenvector of A corresponding to λ1 = 1. We

have: [
1 2
0 −5

] [
v11
v12

]
= 1×

[
v11
v12

]
⇔
{
v11 + 2v12 = v11
−5v12 = v12

⇒ v12 = 0

(3.58)

Thus the expression of eigenvector v1 is:

v1 =

[
v11
0

]
(3.59)
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− Let v2 =

[
v21
v22

]
be the eigenvector of A corresponding to λ2 = −5. We

have: [
1 2
0 −5

] [
v21
v22

]
= −5×

[
v21
v22

]
⇔
{
v21 + 2v22 = −5v21
−5v22 = −5v22

⇒ 6v21 + 2v22 = 0
⇔ v22 = −3v21

(3.60)

Thus the expression of eigenvector v2 is:

v2 =

[
v21
−3v21

]
(3.61)

− Let w1 =

[
w11

w12

]
be the eigenvector of AT corresponding to λ1 = 1. We

have: [
1 0
2 −5

] [
w11

w12

]
= 1×

[
w11

w12

]
⇔
{
w11 = w11

2w11 − 5w12 = w12

⇒ 2w11 − 6w12 = 0
⇔ w11 = 3w12

(3.62)

Thus the expression of eigenvector w1 is:

w1 =

[
3w12

w12

]
(3.63)

It is clear that w1 and v2 are orthogonal:

wT1 v2 =
[
3w12 w12

] [ v21
−3v21

]
= 0 (3.64)

− Let w2 =

[
w21

w22

]
be the eigenvector of AT corresponding to λ2 = −5. We

have: [
1 0
2 −5

] [
w21

w22

]
= −5×

[
w21

w22

]
⇔
{
w21 = −5w21

2w21 − 5w22 = −5w22

⇒ w21 = 0

(3.65)

Thus the expression of eigenvector w2 is:

w2 =

[
0
w22

]
(3.66)

It is clear that w2 and v1 are orthogonal:

wT2 v1 =
[
0 w22

] [ v11
0

]
= 0 (3.67)
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Finally v1, v2, w1 and w2 are chosen such that wT1 v1 = wT2 v2 = 1. We can
chose for example:

v1 =

[
v11
0

]
=

[
1
0

]
and w1 =

[
3w12

w12

]
=

[
1
1
3

]
(3.68)

And:

v2 =

[
v21
−3v21

]
=

[
−1

3
1

]
and w2 =

[
0
w22

]
=

[
0
1

]
(3.69)

Then applying Equation (3.52) we get:

eAt =
∑n

i=1 viw
T
i e

λit

= v1w
T
1 e

λ1t + v2w
T
2 e

λ2t

=

[
1
0

]
et
[
1 1

3

]
+

[
−1

3
1

]
e−5t

[
0 1

]
=

[
1 1

3
0 0

]
et +

[
0 −1

3
0 1

]
e−5t

=

[
et 1

3e
t − 1

3e
−5t

0 e−5t

]
(3.70)

We can check that eAt
∣∣
t=0

= I.
■

3.5.4 Computation of eAt using the Jordan form of A

In that section we will assume that the algebraic multiplicity ni of an eigenvalue
λi of matrix A ∈ Rn×n, that is the number of times that λi appears as a
root of the characteristic polynomial det(sI−A), is not equal (actually strictly
greater) to its geometric multiplicity qi, that is the dimension of the kernel of
λiI−A. In that situation eigenvalue λi is said to be degenerate and matrix A
is not diagonalizable. Nevertheless, a block-diagonal form Λ of matrix A can
be achieved using its Jordan form:

Λ =

[
D 0
0 J

]
(3.71)

As in the previous section, it can be shown that:

eAt = PeΛtP−1 (3.72)

where:

eΛt = e

 Dt 0
0 Jt



=
∑∞

k=0
1
k!

[
Dt 0
0 Jt

]k
=

[ ∑∞
k=0

1
k! (Dt)

k 0

0
∑∞

k=0
1
k! (Jt)

k

]
=

[
eDt 0
0 eJt

]
(3.73)
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− Matrix D is a diagonal matrix which is build form the non-degenerate
eigenvalues of A. It has been seen in the previous section how to get eDt

in that case;

− Matrix J is a block-diagonal matrix build from Jordan blocks Ji:

J =


J1 0

0
. . .

. . .

. . . Ji

⇒ eJt =


eJ1t 0

0
. . .

. . .

. . . eJit

 (3.74)

Each Jordan blocks Ji corresponds to a degenerate eigenvalue λi.

We will see hereafter how to compute eJit.

− Assume that λi is a real eigenvalue, λi ∈ R. Then the Jordan block
Ji corresponding to λi is a square matrix of order ni with the following
structure (note the the number of 1 over the diagonal is equal to ni − qi):

Ji =


λi 1 0

0
. . .

. . .

0 0
. . . 1

0 0 0 λi

 = λiIni +N (3.75)

Matrix N is a nilpotent matrix of order ni which obviously commutes with
λiIni . Consequently, e

Jit reads:

eJit = eλiIni teNt

⇔ eJit = eλit
(
Ini +N t

1! + · · ·+Nni−1 tni−1

(ni−1)!

) (3.76)

− Alternatively, if λi is a complex valued eigenvalue, then λi reads a+jb. In
that case, the complex conjugate of λi is also an eigenvalue of A. In that
case, the Jordan block Ji corresponding to λi and its complex conjugate
value is a square matrix of order 2ni with the following structure:

Ji =


Λi I 0

0
. . .

. . .

0 0
. . . I

0 0 0 Λi

 où


Λi =

[
a b
−b a

]
I =

[
1 0
0 1

] (3.77)

The Jordan block can be rewritten as follows:

Ji = aI2ni +



[
0 b
−b 0

]
. . . [

0 b
−b 0

]
+N (3.78)
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Matrix N is a nilpotent matrix of order 2ni and the exponential of matrix
Ji reads:

eJit = eat

 R(bt)
. . .

R(bt)

(I2ni +N t
1! + · · ·+Nni−1 tni−1

(ni−1)!

)
(3.79)

where matrix R(bt) is the following rotation matrix:

R(bt) = e

 0 bt
−bt 0


=

[
cos(bt) sin(bt)
− sin(bt) cos(bt)

]
(3.80)

Example 3.4. Compute eJt where matrix J reads as follows:

J =

[
1 1
0 1

]
(3.81)

Matrix J is a Jordan matrix. Then eJt is computed as follows:

J =

[
1 0
0 1

]
+

[
0 1
0 0

]
= I2 +N (3.82)

As far as nilpotent N commute with identity matrix and that the index of
nilpotency of matrix N is 2 we can write:

eJt = e

 t 0
0 t


eNt

=

∑∞
k=0

 t 0
0 t

k

k!


∑2−1

k=0

 0 t
0 0

k

k!


=

[
et 0
0 et

]
(I2 +Nt) =

[
et 0
0 et

] [
1 t
0 1

]
=

[
et tet

0 et

]
(3.83)

■

Example 3.5. Compute eΛt where matrix Λ reads as follows:

Λ =

 2 0 0
0 1 1
0 0 1

 (3.84)

Matrix Λ is block diagonal:

Λ =

[
D 0
0 J

]
(3.85)
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where: 
D = 2

J =

[
1 1
0 1

]
(3.86)

As far as Λ is block diagonal, eΛt is computed as follows:

eΛt =

[
eDt 0
0 eJt

]
(3.87)

Using the result of the preceding example, we get:
eDt = e2t

eJt =

[
et tet

0 et

]
(3.88)

Thus:

eΛt =

 e2t 0 0
0 et tet

0 0 et

 (3.89)

■

3.5.5 Dunford (or Jordan�Chevalley) decomposition

Dunford (or Jordan�Chevalley) decomposition (Nelson Dunford was an
American mathematician (1906 - 1986)) states that for any matrix A with real
coe�cients there exists a unique pair of a diagonalizable matrix D and a
nilpotent matrix N which commutes with D such that:

A = D+N and DN = ND (3.90)

Note that a necessary and su�cient condition for an endomorphism A in a
vector space of dimension n to be nilpotent is that its characteristic polynomial
det (λI−A) be equal to λn.

Taking the exponential of the Dunford decomposition we get the following
result since matrices N and D commute:

eAt = e(D+N)t = eDteNt (3.91)

Denoting k the index of nilpotency of matrixN the previous expression becomes:

eAt = eDt

(
I+

k−1∑
i=1

(Nt)i

i!

)
(3.92)

Nilpotent matrix N is null when the dimension of the eigenspace generated
by each eigenvalue of A is equal to the multiplicity of the eigenvalue or
equivalently when all the roots of the minimal polynomial of A have
multiplicity 1.

Note that we can write the following relation:

eDteNt = eDt + eDt
(
eNt − I

)
(3.93)
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As far as matrix N is nilpotent, its spectrum is {0}. Therefore the spectrum
of eNt is {1}. We therefore deduce that matrix eDt

(
eNt − I

)
is also a nilpotent

matrix.
Let χA(λ) := det (λI−A) be the characteristic polynomial of matrix A.

Then Dunford decomposition is obtained from the partial fraction expansion
of the inverse of its characteristic polynomial χA(λ). Let λi be the eigenvalues
of A, ni the multiplicity of λi and r the number of distinct eigenvalues of A.
Then2:

χA(λ) =
∏r
i=1(λ− λi)ni

⇒ 1
χA(λ) =

∑r
i=1

(∑ni
k=1

ai,k
(λ−λi)k

)
=
∑r

i=1

(∑ni
k=1

ai,k(λ−λi)ni−k

(λ−λi)ni

) (3.94)

Setting Ui(λ) :=
∑ni

k=1 ai,k(λ−λi)ni−k where Ui(λ) is a polynomial of degree
ni − 1, we get:

1

χA(λ)
=

r∑
i=1

Ui(λ)

(λ− λi)ni
(3.95)

Then multiplying by χA(λ) =
∏r
i=1(λ− λi)ni it comes:

1 =
r∑
i=1

Ui(λ)
∏
i ̸=j

(λ− λi)ni =
r∑
i=1

Pi(λ) (3.96)

Then it can be shown that:

D =
r∑
i=1

λiPi(A) and N = A−D (3.97)

Example 3.6. Let A be the following matrix:

A =

 1 0 1
−1 2 1
1 −1 1

 (3.98)

The characteristic polynomial of A reads as follows:

χA(λ) := det (λI−A) = (λ− 1)2(λ− 2) (3.99)

The eigenvalues of A are λ1 = 1 with multiplicity n1 = 2 and λ2 = 2 with
multiplicity n2 = 1. Let's perform the product:

(A− λ1I3)(A− λ2I3) =

 1 −1 −1
1 −1 −1
0 0 0

 ̸= 0 (3.100)

Therefore (λ−1)(λ−2) is not an annihilating polynomial of A. The minimal
polynomial of A is therefore the characteristic polynomial (λ − 1)2(λ − 2). As
the minimal polynomial does not have all its simple roots the matrix A is not

2Alaeddine Ben Rhouma. Autour de la décomposition de Dunford réelle ou complexe.
Théorie spectrale et méthodes e�ectives. 2013. hal-00844141
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diagonalizable. We will use the Dunford decomposition to write A in the form
A = D+N where D is diagonalizable and where N is nilpotent and commutes
with D.

First we compute the partial fraction expansion of 1
χA(λ) :

1

χA(λ)
= − 1

λ− 1
− 1

(λ− 1)2
+

1

(λ− 2)
=

U1(λ)

(λ− 1)2
+
U2(λ)

λ− 2
(3.101)

where: {
U1(λ) = −λ
U2(λ) = 1

(3.102)

Then multiplying by χA(λ) = (λ− 1)2(λ− 2) we get:

1 =
2∑
i=1

Ui(λ)
∏
i ̸=j

(λ− λi)ni = P1(λ) + P2(λ) (3.103)

where: {
P1(λ) = −λ(λ− 2)
P2(λ) = (λ− 1)2

(3.104)

We deduce that:

D = λ1P1(A) + λ2P2(A)

= −A(A− 2I3) + 2(A− I3)2

=

 2 −1 0
0 1 0
1 −1 1


(3.105)

Let's compute the product (D− λ1I3)(D− λ2I3). We get:

(D− λ1I3)(D− λ2I3) = 0 (3.106)

Consequently (λ − 1)(λ − 2) is an annihilating polynomial of D. As all
the roots of the annihilating polynomial of D have multiplicity 1, matrix D is
diagonalizable. Then nilpotent matrix N is obtained as follows:

N = A−D =

 −1 1 1
−1 1 1
0 0 0

 (3.107)

We can check that N commutes with D:

ND = DN =

 −1 1 1
−1 1 1
0 0 0

 (3.108)

Consequently taking into account that N2 = 0 we �nally get:

eAt = e(D+N)t = eDteNt = eDt (I3 +Nt) (3.109)

■
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3.5.6 Computation of eAt using the Laplace transform

Computation of eAt can be done using the Laplace transform. Denoting by L
the Laplace transform and by L−1 the inverse Laplace transform we have the
following property which extends to the vector case a well-known result in the
scalar case:

L
[
eAt
]
= (sI−A)−1 ⇔ eAt = L−1

[
(sI−A)−1

]
∀ t ≥ 0 (3.110)

Matrix (sI−A)−1 is called the resolvent of matrix A. It can be computed
using the Faddeev-Leverrier's method for example (see section 1.6).

The inverse Laplace transform is taken for each term of the resolvent of
matrix A. We recall that the inverse Laplace transform of a strictly proper
rational function F (s) (i.e. the degree of the denominator is strictly greater
than the degree of the denominator) can be obtained using the Mellin-Fourier
integral.

The Mellin-Fourier integral reads:

g(t) = L−1 [F (s)] =
∑

poles of F (s)

Res
[
F (s)est

]
∀t ≥ 0 (3.111)

The residue Res
[
F (s)est

]
shall be computed around each pole of F (s).

Assuming that λk is a pole of multiplicity nk then the residue of F (s) around
pole λk is given by:

Ress=λk
[
F (s)est

]
=

1

(nk − 1)!

dnk−1

dsnk−1
(s− λk)nk F (s)est

∣∣∣∣
s=λk

(3.112)

Alternatively if resolvent of matrix A is decomposed as N(s)
Ψ(s) where degree

of polynomial matrix N(s) is strictly lower than degree of polynomial Ψ(s) =∏
k(s − λk)

nk then the use of Mellin-Fourier integral leads to the following
expression of eAt:

(sI−A)−1 = N(s)
Ψ(s) = N(s)∏

k(s−λk)nk

⇒ eAt =
∑

k
1

(nk−1)!
dnk−1

dsnk−1 (s− λk)nk N(s)
Ψ(s) e

st
∣∣∣
s=λk

(3.113)

Example 3.7. Compute eAt where:

A =

[
0 1
0 0

]
(3.114)

Here n = 2 and the Faddeev-Leverrier's method (see section 1.6) reads:
F0 = I
d1 = tr (AF0) = tr (A) = 0 and F1 = AF0 − d1I = A
d2 =

1
2 tr (AF1) =

1
2 tr

(
A2
)
= 0

and det (sI−A) = s2 − d1s− d2 = s2

(3.115)
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Thus:

(sI−A)−1 =
1

det (sI−A)
(F0s+ F1) =

1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]
(3.116)

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matrix of A:

L−1
[
1
s

]
= Res

[
1
se
st
]
s=0

= 1
(1−1)!

d1−1

ds1−1 s
1
se
st
∣∣∣
s=0

= est
∣∣
s=0

= 1

L−1
[
1
s2

]
= Res

[
1
s2
est
]
s=0

= 1
(2−1)!

d2−1

ds2−1 s
2 1
s2
est
∣∣∣
s=0

= test
∣∣
s=0

= t
(3.117)

We �nally get:

exp

([
0 1
0 0

]
t

)
= L−1

[
1
s

1
s2

0 1
s

]
=

[
1 t
0 1

]
(3.118)

Alternatively resolvent of matrix A can be decomposed as N(s)
Ψ(s) . Indeed we

have seen that:

(sI−A)−1 =
1

s2

[
s 1
0 s

]
(3.119)

The use of Mellin-Fourier integral leads to the following expression of eAt:

(sI−A)−1 = N(s)
Ψ(s)

⇒ eAt =
∑

k
1

(nk−1)!
dnk−1

dsnk−1 (s− λk)nk N(s)
Ψ(s) e

st
∣∣∣
s=λk

= 1
(2−1)!

d2−1

ds2−1 s
2 1
s2

[
s 1
0 s

]
est
∣∣∣∣
s=0

= d
ds

[
s 1
0 s

]
est
∣∣∣∣
s=0

=

[
1 0
0 1

]
est
∣∣∣∣
s=0

+

[
s 1
0 s

]
t est

∣∣∣∣
s=0

=

[
1 0
0 1

]
+

[
0 1
0 0

]
t

=

[
1 t
0 1

]

(3.120)

■

Example 3.8. Compute eAt where:

A =

[
1 1
0 0

]
(3.121)

We have:

(sI−A)−1 =

([
s− 1 −1
0 s

])−1

=
1

s(s− 1)

[
s 1
0 s− 1

]
(3.122)

Thus (sI−A)−1 = N(s)
Ψ(s) where Ψ(s) = s(s − 1) has two roots, λ1 = 0 and

λ2 = 1, each of multiplicity 1: n1 = n2 = 1.
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The use of Mellin-Fourier integral leads to the following expression of eAt:

(sI−A)−1 = N(s)
Ψ(s)

⇒ eAt =
∑

k
1

(nk−1)!
dnk−1

dsnk−1 (s− λk)nk N(s)
Ψ(s) e

st
∣∣∣
s=λk

= 1
(1−1)!

d1−1

ds1−1 s
1

s(s−1)

[
s 1
0 s− 1

]
est
∣∣∣∣
s=0

+ 1
(1−1)!

d1−1

ds1−1 (s− 1) 1
s(s−1)

[
s 1
0 s− 1

]
est
∣∣∣∣
s=1

= 1
s−1

[
s 1
0 s− 1

]
est
∣∣∣∣
s=0

+ 1
s

[
s 1
0 s− 1

]
est
∣∣∣∣
s=1

=

[
0 −1
0 1

]
+

[
1 1
0 0

]
et

=

[
et et − 1
0 1

]

(3.123)

■

Example 3.9. Compute eAt where:

A =

[
1 2
0 −5

]
(3.124)

Here n = 2 and the Faddeev-Leverrier's method (see section 1.6) reads:
F0 = I

d1 = tr (AF0) = −4 and F1 = AF0 − d1I =
[
5 2
0 −1

]
d2 =

1
2 tr (AF1) =

1
2 tr

([
5 0
0 5

])
= 5

and det (sI−A) = s2 − d1s− d2 = s2 + 4s− 5 = (s− 1)(s+ 5)

(3.125)

Thus:

(sI−A)−1 = 1
det(sI−A) (F0s+ F1) =

1
(s−1)(s+5)

[
s+ 5 2
0 s− 1

]
⇔ (sI−A)−1 =

[
1
s−1

2
(s−1)(s+5)

0 1
s+5

] (3.126)

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matrix of A:

L−1
[

1
s−1

]
= et

L−1
[

1
s+5

]
= e−5t

L−1
[

2
(s−1)(s+5)

]
= 2

(
1
6e
t − 1

6e
−5t
)
= 1

3e
t − 1

3e
−5t

(3.127)

We �nally get:

exp

([
1 2
0 −5

]
t

)
= L−1

[
1
s−1

2
(s−1)(s+5)

0 1
s+5

]
=

[
et 1

3e
t − 1

3e
−5t

0 e−5t

] (3.128)



112 Chapter 3. Analysis of Linear Time Invariant systems

Alternatively resolvent of matrix A can be decomposed as N(s)
Ψ(s) . Indeed we

have seen that:

(sI−A)−1 =
1

(s− 1)(s+ 5)

[
s+ 5 2
0 s− 1

]
(3.129)

The use of Mellin-Fourier integral leads to the following expression of eAt:

(sI−A)−1 = N(s)
Ψ(s)

⇒ eAt =
∑

k
1

(nk−1)!
dnk−1

dsnk−1 (s− λk)nk N(s)
Ψ(s) e

st
∣∣∣
s=λk

= (s− 1) 1
(s−1)(s+5)

[
s+ 5 2
0 s− 1

]
est
∣∣∣∣
s=1

+ (s+ 5) 1
(s−1)(s+5)

[
s+ 5 2
0 s− 1

]
est
∣∣∣∣
s=−5

=

[
1 1

3
0 0

]
est
∣∣∣∣
s=1

+

[
0 −1

3
0 1

]
est
∣∣∣∣
s=−5

=

[
et 1

3e
t

0 0

]
+

[
0 −1

3e
−5t

0 e−5t

]
=

[
et 1

3e
t − 1

3e
−5t

0 e−5t

]

(3.130)

■

Example 3.10. Compute eAt where:

A =

 2 −1 0
0 1 0
1 −1 1

 (3.131)

From the Faddeev-Leverrier's method (see section 1.6) we get:

(sI−A)−1 =


1
s−2

−1
(s−1)(s−2) 0

0 1
s−1 0

1
(s−1)(s−2)

−1
(s−1)(s−2)

1
s−1

 (3.132)

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matrix of A:

L−1
[

1
s−2

]
= e2t

L−1
[

1
s−1

]
= et

L−1
[

1
(s−1)(s−2)

]
= e2t − et

(3.133)

We �nally get:

eAt =

 e2t et − e2t 0
0 et 0

e2t − et et − e2t et

 (3.134)

■
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3.6 Stability

There are two di�erent de�nitions of stability: internal stability and input-
output stability:

− A linear time-invariant system is internally stable if its the zero-input
state eAtx0 moves towards zero for any initial state x0. This is a basic
requirement for feedback system. Indeed interconnected systems may be
subject to some nonzero initial conditions and some (possibly small) errors
and it is not acceptable from a practical point of view that such nonzero
initial conditions lead to unbounded signals in the closed-loop system.

− A linear time-invariant system is input-output stable if its zero-state
output is bounded for all bounded inputs. This type of stability is also
called Bounded-Input Bounded-Output (BIBO) stability. Bounded-Input
Bounded-Output (BIBO) stability guarantees that all signals in a system
are bounded provided that the input signals (at any locations) are
bounded.

We have seen in (3.13) that the output response y(t) of a linear time-invariant
system is the following:

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) (3.135)

Assuming that matrix A is diagonalizable, we have seen in (3.52) that eAt

can be obtained using the following relation :

eAt = PeΛtP−1 =
n∑
i=1

viw
T
i e

λit (3.136)

Thus;

− The zero-input state, which is obtained when u(t) = 0, has the following
expression:

x(t) = eAtx0 =

n∑
i=1

viw
T
i e

λitx0 (3.137)

Consequently the zero-input state moves towards zero for any initial state
x0 as soon as all the eigenvalues λi of matrix A are situated in the open
left-half plane (they have strictly negative real part). This means that a
linear time-invariant system is internally stable when all the eigenvalues
λi of matrix A are situated in the open left-half plane (i.e. they have
strictly negative real part).

The result which have been shown assuming that matrix A is
diagonalizable can be extended to the general case where matrix A is
not diagonalizable; in that situation this is the Jordan form of A which
leads to the same result concerning internal stability.
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− The zero-state output, which is obtained when x0 = 0, has the following
expression:

y(t) =
∫ t
0 Ce

A(t−τ)Bu(τ)dτ +Du(t)

=
(
CeAtB+Dδ(t)

)
∗ u(t) (3.138)

It can be shown that the zero-state output is bounded if and only all the
poles of each term of the transfer function F(s) are situated in the open
left-half plane (i.e. they have strictly negative real part):

F(s) = L
[
CeAtB+Dδ(t)

]
= C (sI−A)−1B+D (3.139)

The two types of stability are related. Indeed:

− If a linear time invariant system is internally stable it is also input-output
(or BIBO) stable because all the poles of the transfer function F(s) are
eigenvalues of matrix A;

− Nevertheless the converse is not true since matrix A could have unstable
hidden modes which do not appear in the poles of F(s). Indeed there may
be pole-zero cancellation while computing F(s). Thus a system may be
BIBO stable even when some eigenvalues of A do not have negative real
part.

Example 3.11. Let's consider the following realization:(
A B

C D

)
=

 −1 10 −2
0 1 0

−2 3 −2

 (3.140)

Matrix A has a stable mode, which is −1, and an unstable mode, which is
1. Thus the system is not internally stable.

When computing the transfer function of the system we can observe a pole
/ zero cancellation of the unstable mode:

F (s) = C (sI−A)−1B+D

=
[
−2 3

] [ 1
s+1

10
s2−1

0 1
s−1

] [
−2
0

]
− 2

= 4
s+1 − 2

= −2s+2
s+1

(3.141)

The pole of the transfer function F (s) is −1. Thus the system is BIBO stable
but not internally stable.

■

3.7 Controllability

3.7.1 De�nition

Let's consider the state trajectory x(t) of a linear time-invariant system:

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ (3.142)
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Where A is a n× n real matrix and B is a n×m real matrix.
Controllability answers the question whether it is possible to control the

state vector x(t) through an appropriate choice of the input signal u(t).
More precisely an initial state x0 is said controllable if and only if there

exists an input signal u(t) which is able to move the state vector x(t) from an
initial state x(0) = x0 at t = 0 to the origin x(tf ) = 0 in a �nite time tf . We
said that a system is controllable when any arbitrary initial state x0 ∈ Rn is
controllable 3.

If the system is controllable then the input signal u(t) which is able to move
the state vector x(t) from an initial state x(0) = x0 at t = 0 to the origin
x(tf ) = 0 in a �nite time tf reads4:

u(t) = −BT eA
T (tf−t)W−1

c (tf )e
Atf x0 (3.143)

Where Wc(tf ) is a symmetric matrix de�ned as follows:

Wc(tf ) =

∫ tf

0
eAτBBT eA

T τdτ (3.144)

Indeed when x(tf ) is computed with this control we get x(tf ) = 0:

x(tf ) = eAtfx0 +
∫ tf
0 eA(tf−τ)Bu(τ)dτ

= eAtfx0 −
∫ tf
0 eA(tf−τ)BBT eA

T (tf−τ)W−1
c (tf )e

Atf x0 dτ

= eAtfx0 +
(∫ 0

tf
eAvBBT eA

T v dv
)
W−1

c (tf )e
Atf x0

= eAtfx0 −
(∫ tf

0 eAτBBT eA
T τ dτ

)
W−1

c (tf )e
Atf x0

= eAtfx0 −Wc(tf )W
−1
c (tf )e

Atf x0
= 0

(3.145)

More generally one can verify that a particular input which achieves x(tf ) =
xf is given by4:

u(t) = −BT eA
T (tf−t)W−1

c (tf )
(
eAtf x0 − xf

)
(3.146)

Consequently a system is controllable if and only if symmetric matrixWc(tf )
is nonsingular for any tf > 0. FurthermoreWc(t) is the solution of the following
di�erential equation:

AWc(t) +Wc(t)A
T +BBT =

d

dt
Wc(t) (3.147)

If all eigenvalues of matrix A have negative real parts (A is said to be
Hurwitz ) then Wc(t) tends towards a constant matrix as t → ∞. The
controllability Gramian Wc is the following positive de�nite symmetric
matrix:

Wc =

∫ ∞

0
eAτBBT eA

T τdτ (3.148)

It can be shown that Wc is the unique solution of the following Lyapunov
equation:

AWc +WcA
T +BBT = 0 (3.149)

3https://en.wikibooks.org/wiki/Control_Systems/Controllability_and_Observability
4S. Skogestad and I. Postlethwaite: Multivariable Feedback Control Analysis and design,

Wiley, 1996; 2005
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3.7.2 Kalman's controllability rank condition

Let Qc be the controllability matrix. Matrix Qc is de�ned as follows:

Qc =
[
B AB · · · An−1B

]
(3.150)

It can be shown that a linear system is controllable if and only if the rank of
the controllability matrix Qc is equal to n. This is the Kalman's controllability
rank condition.

The sketch of the demonstration is the following:

− First we recall that the expression of the state vector x(t) at time t = tf
which solves the state equation (3.1) is:

x(tf ) = eAtfx0 +

∫ tf

0
eA(tf−τ)Bu(τ)dτ (3.151)

As far as x0, tf and x(tf ) are assumed to be known we rewrite the
preceding equation as follows:

e−Atfx(tf )− x0 =
∫ tf

0
e−AτBu(τ)dτ (3.152)

− To continue the sketch of the proof we need the Cayley�Hamilton theorem.
Let χA(s) be the characteristic polynomial of the n × n matrix A. We
write the characteristic polynomial χA(s) of matrix A as follows:

χA(s) := det(sI−A) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (3.153)

The Cayley�Hamilton theorem states that substituting matrix A for s in
the characteristic polynomial χA(s) of matrix A results in the zero matrix
5:

χA(A) = 0 = An + an−1A
n−1 + · · ·+ a1A+ a0I (3.154)

From the preceding equation it is clear that we can express An as a
function of Ak where 0 ≤ k ≤ n− 1:

An = −an−1A
n−1 − · · · − a1A− a0I (3.155)

More generally this relation allows to replace a term of the formAm where
m ≥ n by a linear combination of Ak where 0 ≤ k ≤ n − 1. When we
use this property to replace the terms Am where m ≥ n in the series
expansion of eAt we get the following relation:

eAt =
∑∞

k=0
(At)k

k! =
∑n−1

k=0
Aktk

k! +
∑∞

k=n
Aktk

k!
An = −an−1A

n−1 − · · · − a1A− a0I
Am =

∑n−1
i=0 αiA

i ∀m ≥ n
(3.156)

5https://en.wikipedia.org/wiki/Cayley�Hamilton_theorem
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Consequently the series expansion of eAt can be cut so that no power of
matrix A greater that n appears in the series expansion:

eAt =

n−1∑
k=0

γk(t)A
k (3.157)

where γk(t) are functions of time t. As far as det(sI−A) is equal to zero
when s = λi is an eigenvalue of matrix A the preceding matrix relation
is also be obtained for all the eigenvalues of matrix A. We obtain the
following relation which is satis�ed by the functions γk(t):

eλit =
n−1∑
k=0

γk(t)λ
k
i (3.158)

− Using (3.157) and the fact that functions γk(t) are scalar functions (3.152)
is rewritten as follows:

e−Atfx(tf )− x0 =
∫ tf
0 e−AτBu(τ)dτ

=
∫ tf
0

∑n−1
k=0 γk(−τ)AkBu(τ)dτ

=
∑n−1

k=0

∫ tf
0 γk(−τ)AkBu(τ)dτ

=
∑n−1

k=0 A
kB
∫ tf
0 γk(−τ)u(τ)dτ

(3.159)

Now let's introduce vector w(tf ) whose n components
w0(tf ), w1(tf ), · · · , wn−1(tf ) are de�ned as follows:

wk(tf ) =

∫ tf

0
γk(−τ)u(τ)dτ ∀ 0 ≤ k ≤ n− 1 (3.160)

Thus Equation (3.159) reads:

e−Atfx(tf )− x0 =
∑n−1

k=0 A
kB
∫ tf
0 wk(tf )

=
[
B AB · · · An−1B

]


w0(tf )
w1(tf )
...

wn−1(tf )


= Qcw(tf )

(3.161)

In order to be able to compute the expression of vector w(tf ) and then
solving the integral equation in the input signal u(t), the controllability
matrix Qo shall be invertible; consequently the rank of the controllability
matrix Qc shall be equal to n. Thus we retrieve the Kalman's
controllability rank condition.

Example 3.12. Let's consider the following realization:

(
A B

C D

)
=

 −1 10 −2
0 1 0

−2 3 −2

 (3.162)
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The controllability matrix Qc reads:

Qc =
[
B AB

]
=

[
−2
0

[
−1 10
0 1

] [
−2
0

] ]
=

[
−2
0

2
0

] (3.163)

Consequently rank (Qc) = 1 ̸= 2. We conclude that the system in not
controllable.

■

3.7.3 Use of the diagonal form: Gilbert's criteria

Assuming that all eigenvalues are distinct, controllability property can be readily
analyzed by inspecting the null rows of the input matrix Bm as soon as we get
the modal (or diagonal) form of the state-space representation.

Indeed we have seen in the the chapter dedicated to the state-space
representation that for a single input system matrices Am and Bm of the state
equation ẋ(t) = Amx(t) + Bmu(t) read as follows assuming that matrix Am

has n independent eigenvectors :

Am =


λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn



Bm =


b1
b2
...
bn


(3.164)

Thus in the time domain the diagonal form of the state-space representation
ẋ(t) = Amx(t) +Bmu(t) reads:

ẋ1(t) = λ1x1(t) + b1u(t)
ẋ2(t) = λ2x2(t) + b2u(t)
...
ẋn(t) = λnxn(t) + bnu(t)

(3.165)

Gilbert's controllability criteria (1963) states that a multi inputs system
with distinct eigenvalues is controllable if and only if each row of control matrix
Bm of the diagonal realization (all eigenvalues are distinct) has at least one non
zero element.

Indeed if at least one of the bi's coe�cients is zero then the state component
xi(t) is independent of the input signal u(t) and the state is uncontrollable.
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Alternatively, if we apply Kalman's controllability rank condition in the
modal basis we get:

Am =

 λ1
. . .

λn



⇒ Qcm =
[
Bm AmBm · · · An−1

m Bm

]
=


b1 b1λ1 · · · b1λ

n−1
1

b2 b2λ2 · · · b2λ
n−1
2

...
...

...
...

bn bnλn · · · bnλ
n−1
n


(3.166)

Then it can be seen that Qcm is full rank as soon as bi ̸= 0 ∀i = 1, · · · , n.
For multi inputs system with m inputs then matrix B has m columns and

the preceding analysis is readily extended to each column of matrix B assuming
that the state-space representation is the diagonal form.

3.7.4 Popov-Belevitch-Hautus (PBH) test

There exists another test for controllability which is called the Popov-Belevitch-
Hautus (PBH) test.

Popov-Belevitch-Hautus (PBH) test indicates that a linear system is
controllable when the rank of matrix

[
A− λiI B

]
is equal to n for all

eigenvalues {λi} of matrix A.
A linear system is stabilizable when the rank of matrix

[
A− λiI B

]
is

equal to n for all unstable eigenvalues {λi} of matrix A.
Eigenvalues λi for which rank of matrix

[
A− λiI B

]
is not equal to n

are said uncontrollable.
Equivalently, an eigenvalue λi is controllable6 if all its corresponding left

eigenvectors wi (i.e. wi ̸= 0 such that wTi A = λiw
T
i ) satisfy w

T
i B ̸= 0.

Example 3.13. Let's consider the following realization:(
A B

C D

)
=

 −1 10 −2
0 1 0

−2 3 −2

 (3.167)

Matrix A has two modes, λ1 = −1 and λ2 = 1.
Let's apply the PBH test for λ1 = −1:

rank
[
A− λ1I B

]
= rank

[
0 10 −2
0 2 0

]
= 2 (3.168)

We conclude that the mode λ1 = −1 is controllable.
Let's apply the PBH test for λ2 = 1:

rank
[
A− λ2I B

]
= rank

[
−2 10 −2
0 0 0

]
= 1 ̸= 2 (3.169)

6Antsaklis P. J. and Michel A. N., A Linear Systems Primer, Birkhäuser Boston,
Boston,MA, 2007
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We conclude that the mode λ2 = 1 is not controllable.
■

3.7.5 Uncontrollable mode

Following Bélanger7 a state xc̄ ̸= 0 is uncontrollable if the zero-state output of
the system (i.e. the system's response to the input signal u(t) ̸= 0 when the
initial state x0 is zero) is orthogonal to xc̄ for all �nal time tf > 0 and all input
signal u(t). An uncontrollable state xc̄ ̸= 0 satis�es the following equation:

xTc̄
[
B AB · · · An−1B

]
= 0 (3.170)

Equivalently the pair (A,B) is uncontrollable if and only if there exists an
eigenvector wi of A

T such that wTi B = 0. If wTi B = 0 then the mode λi (i.e.
the eigenvalue) corresponding to wi is called an uncontrollable mode.

Indeed if wi is an eigenvector of matrix AT corresponding to the mode (i.e.
the eigenvalue) λi then ATwi = λiwi ⇔ wTi A = λiw

T
i . Specializing xc̄ to wi

Equation (3.170) reads:

0 = wTi
[
B AB · · · An−1B

]
= wTi

[
B λiB · · · λn−1

i B
]

= wTi B
[
1 λi · · · λn−1

i

] (3.171)

Coupling wTi A = λiw
T
i and wTi B = 0 leads to the Popov-Belevitch-Hautus

(PBH) test for controllability:{
wTi A = λiw

T
i

wTi B = 0
⇔ wTi

[
A− λiI B

]
= 0 (3.172)

Example 3.14. Let's consider the following realization:(
A B

C D

)
=

 −1 10 −2
0 1 0

−2 3 −2

 (3.173)

Matrix A has two modes, λ1 = −1 and λ2 = 1. We have seen that the mode
λ2 = 1 is not controllable. We will check that there no input signal u(t) which
is able to move towards zero an initial state x0 which is set to the value of an
eigenvector of AT corresponding to the uncontrollable mode λ2 = 1.

Let w2 be an eigenvector of AT corresponding to the uncontrollable mode
λ2 = 1:

ATw2 = λ2w2 ⇔
[
−1 0
10 1

]
w2 = w2 (3.174)

We expand w2 as

[
w21

w22

]
to get:

[
−1 0
10 1

] [
w21

w22

]
=

[
w21

w22

]
⇒
{

−w21 = w21

10w21 + w22 = w22
(3.175)

7P. Bélanger, Control EngineeControl Engineering: A Modern Approach, P. Bélanger,
Oxford University Press, 2005
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We �nally get:

w21 = 0⇒ w2 =

[
0
w22

]
(3.176)

Now let's express the state vector x(t) assuming that the initial state x0 is
set to w2. We have:

x(t) = eAtx0 +
∫ t
0 e

A(t−τ)Bu(τ)dτ

= eAt
[

0
w22

]
+
∫ t
0 e

A(t−τ)
[
−2
0

]
u(τ)dτ

(3.177)

Where:

eAt = L−1
[
(sI−A)−1

]
= L−1

([
s+ 1 −10
0 s− 1

]−1
)

= L−1

(
1

(s+1)(s−1)

[
s− 1 10
0 s+ 1

])
= L−1

([
1
s+1

10
(s+1)(s−1)

0 1
s−1

])
=

[
e−t 5et − 5e−t

0 et

]
(3.178)

Consequently state vector x(t) reads:

x(t) =

[
e−t 5et − 5e−t

0 et

] [
0
w22

]
+

∫ t

0

[
e−(t−τ) 5e(t−τ) − 5e−(t−τ)

0 e(t−τ)

] [
−2
0

]
u(τ)dτ (3.179)

That is:

x(t) =

[
5et − 5e−t

et

]
w22 +

∫ t

0

[
−2e−(t−τ)

0

]
u(τ)dτ (3.180)

It is clear that for this speci�c initial state the input vector u(t) will not act
on the second component of x(t) whatever its expression. Consequently it will
not be possible to �nd a control u(t) which moves towards zero the initial state
vector x0 = w2: this state is uncontrollable and the system is said uncontrollable.

■

3.7.6 Stabilizability

A linear system is stabilizable if all unstable modes are controllable or
equivalently if all uncontrollable modes are stable.
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3.8 Observability

3.8.1 De�nition

Let's consider the output response y(t) of a linear time-invariant system:

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) (3.181)

Let's de�ne vector ỹ(t) as follows:

ỹ(t) = y(t)−
∫ t

0
CeA(t−τ)Bu(τ)dτ −Du(t) (3.182)

Thus we get:
CeAtx0 = ỹ(t) (3.183)

Observability answers the question whether it is possible to determine the
initial state x0 through the observation of ỹ(t), that is from the output signal
y(t) and the knowledge of the input signal u(t).

More precisely an initial state x0 is observable if and only if the initial
state can be determined from ỹ(t) which is observed through the time interval
0 ≤ t ≤ tf , that is from the knowledge of the output signal y(t) and the input
signal u(t) that are observed through the time interval 0 ≤ t ≤ tf . A system is
said to be observable when any arbitrary initial state x0 ∈ Rn is observable.

If the system is observable then the value x0 of the initial state can be
determined from signal ỹ(t) that has been observed through the time interval
0 ≤ t ≤ tf as follows:

x0 = W−1
o (tf )

∫ tf

0
eA

T τCT ỹ(τ)dτ (3.184)

Where Wo(tf ) is a symmetric matrix de�ned as follows:

Wo(tf ) =

∫ tf

0
eA

T τCTCeAτdτ (3.185)

Indeed from CeAtx0 = ỹ(t) we get:

CeAtx0 = ỹ(t)

⇒ eA
T tCTCeAtx0 = eA

T tCT ỹ(t)

⇒
∫ tf
0 eA

T τCTCeAτdτx0 =
∫ tf
0 eA

T τCT ỹ(τ)dτ

⇔Wo(tf )x0 =
∫ tf
0 eA

T τCT ỹ(τ)dτ

⇔ x0 = W−1
o (tf )

∫ tf
0 eA

T τCT ỹ(τ)dτ

(3.186)

Consequently a system is observable if and only if symmetric matrix Wo(tf )
is nonsingular for any tf > 0. FurthermoreWo(t) is the solution of the following
di�erential equation:

ATWo(t) +Wo(t)A+CTC =
d

dt
Wo(t) (3.187)
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If all eigenvalues of matrix A have negative real parts (A is said to be
Hurwitz ) then Wo(t) tends towards a constant matrix as t → ∞. The
observability Gramian Wo is the following positive de�nite symmetric matrix:

Wo =

∫ ∞

0
eA

T τCTCeAτdτ (3.188)

It can be shown that Wo is the unique solution of the following Lyapunov
equation:

ATWo +WoA+CTC = 0 (3.189)

3.8.2 Kalman's observability rank condition

Let Qo be the observability matrix. Matrix Qo is de�ned as follows:

Qo =


C
CA
...

CAn−1

 (3.190)

It can be shown that a linear system is observable if and only if the rank of
the observability matrix Qo is equal to n. This is the Kalman's observability
rank condition.

The sketch of the demonstration is the following:

− First we recall that the expression of the output vector y(t) at time t with
respect to the state vector x(t) is:

y(t) = Cx(t) +Du(t) (3.191)

where x(t) solves the state equation (3.1):

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ (3.192)

Thus:

y(t) = CeAtx0 +C

∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t) (3.193)

As far as y(t), t and u(t) are assumed to be known we rewrite the preceding
equation as follows:

y(t)−C

∫ t

0
eA(t−τ)Bu(τ)dτ −Du(t) = CeAtx0 (3.194)

− To continue the sketch of the proof we need the Cayley�Hamilton theorem.
As shown in (3.157) this theorem indicates that eAt can be written as
follows:

eAt =
n−1∑
k=0

γk(t)A
k (3.195)

where γk(t) are functions of time t.
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− Using (3.157) and the fact that functions γk(t) are scalar functionsCe
Atx0

reads:
CeAtx0 = C

∑n−1
k=0 γk(t)A

kx0
=
∑n−1

k=0 Cγk(t)A
kx0

=
(∑n−1

k=0 γk(t)CAk
)
x0

(3.196)

Now let's sample the time interval 0 ≤ t ≤ tf into n values of time,
t1 = 0, t2, · · · , tn−1, tn = tf which are situated inside the time interval
0 ≤ t ≤ tf . Using (3.194) for each value ti of the time we get:

y(t1)−C
∫ t1
0 eA(t1−τ)Bu(τ)dτ −Du(t1)

y(t2)−C
∫ t2
0 eA(t2−τ)Bu(τ)dτ −Du(t2)

...

y(tn)−C
∫ tn
0 eA(tn−τ)Bu(τ)dτ −Du(tn)



=


γ0(t1) γ1(t1) · · · γn−1(t1)
γ0(t2) γ1(t2) · · · γn−1(t2)
...

...
...

...
γ0(tn) γ1(tn) · · · γn−1(tn)




C
CA
...

CAn−1

x0 (3.197)

That is:
y(t1)−C

∫ t1
0 eA(t1−τ)Bu(τ)dτ −Du(t1)

y(t2)−C
∫ t2
0 eA(t2−τ)Bu(τ)dτ −Du(t2)

...

y(tn)−C
∫ tn
0 eA(tn−τ)Bu(τ)dτ −Du(tn)

 = VQox0 (3.198)

Where:

V =


γ0(t1) γ1(t1) · · · γn−1(t1)
γ0(t2) γ1(t2) · · · γn−1(t2)
...

...
...

...
γ0(tn) γ1(tn) · · · γn−1(tn)

 (3.199)

In order to be able to compute the expression of vector x0 from (3.198)
and assuming that matrix V is invertible (which is always the case when
all the eigenvalues of matrix A are distinct), the observability matrix Qo

shall be invertible; consequently the rank of the observability matrix Qo

shall be equal to n. Thus we retrieve the Kalman's observability rank
condition.

Example 3.15. Let's consider the following realization:

(
A B

C D

)
=

 −1 0 −2
10 1 3

−2 0 −2

 (3.200)
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The observability matrix Qo reads:

Qo =

[
C
CA

]
=

 [
−2 0

][
−2 0

] [ −1 0
10 1

] 
=

[
−2 0
2 0

] (3.201)

Consequently rank (Qo) = 1 ̸= 2. We conclude that the system in not
observable.

■

3.8.3 Use of the diagonal form: Gilbert's criteria

Assuming that all eigenvalues are distinct, observability property can be readily
analyzed by inspecting the null columns of the output matrix C as soon as we
get the modal (or diagonal) form of the state-space representation.

Indeed we have seen in the the chapter dedicated to the state-space
representation that for a single output system matrix Cm of the output
equation y(t) = Cm x(t) +Du(t) read as follows assuming that state matrix A
has n independent eigenvectors :

Cm =
[
c1 c2 · · · cn

]
(3.202)

Thus in the time domain the diagonal form of the state-space representation
y(t) = Cm x(t) +Du(t) reads:

y(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) +Du(t) (3.203)

Gilbert's observability criteria (1963) states that a system with distinct
eigenvalues is observable if and only if each column of output matrix C of the
diagonal realization (all eigenvalues are distinct) has at least one non zero
element.

Indeed if at least one of the ci's coe�cients is zero then the output signal
y(t) is independent of the state component xi(t) and the state is unobservable.

Alternatively, if we apply Kalman's observability rank condition in the modal
basis we get:

Am =

 λ1
. . .

λn



⇒ Qom =


Cm

CmAm

...
CmA

n−1
m

 =


c1 · · · cn
c1λ1 · · · cnλn
...

...
...

c1λ
n−1
1 · · · cnλnn− 1


(3.204)

Then it can be seen that Qom is full rank as soon as ci ̸= 0 ∀i = 1, · · · , n.
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For multi outputs system with p outputs then matrix Cm has p rows and
the preceding analysis is readily extended to each row of matrix Cm assuming
that the state-space representation is the diagonal form.

3.8.4 Input-output di�erential equation and observable modes

Assume that the modal basis is used and let Cm be as follows:

Cm =
[
c1 · · · cq 0 · · · 0

]
(3.205)

It is clear from the Gilbert's criteria that {λ1, · · · , λq} forms the set of
observable modes.

Furthermore, the following relation holds:

Cm (Am − λ1I) · · · (Am − λqI) = 0 (3.206)

Indeed:

Cm (Am − λ1I) · · · (Am − λqI)

= Cm



0
λ2 − λ1

. . .

. . .

λn − λ1

 · · ·


. . .

λq−1 − λq
0

. . .

λn − λq



=
[
c1 · · · cq 0 · · · 0

]


0
. . .

0
αq+1

. . .

αn


= 0

(3.207)

This completes the proof. ■
Coming back to any state space representation, (3.206) reads:{

Am = P−1AP
Cm = CP

⇒ C (A− λ1I) · · · (A− λqI) = 0 (3.208)

Furthemore, (A− λ1I) · · · (A− λqI) can be developed as follows:

(A− λ1I) · · · (A− λqI) = Aq + aq−1A
q−1 + · · ·+ a1 A+ a0 I (3.209)

where coe�cients ai are the coe�cients of the polynomial obtained from the
observable modes:

(s− λ1) · · · (s− λq) = sq + aq−1 s
q−1 + · · ·+ a1 s+ a0 (3.210)
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Thus (3.208) reads as follows, where {λ1, · · · , λq} is the set of observable
modes:

(s− λ1) · · · (s− λq) = sq + aq−1 s
q−1 + · · ·+ a1 s+ a0

⇒ CAq + aq−1CAq−1 + · · ·+ a1CA+ a0C = 0
(3.211)

In other words, (s− λ1) · · · (s− λq) is an annihilating polynomial of CAi.
Finally we can use relation y = Cx + Du to compute

y(q) + aq−1 y
(q−1) + · · · + a1 ẏ + a0 y and �nally obtain the input-output

relation between output vector y and input vector u. Indeed, this expression

will exhibit the term
(
CAq + aq−1CAq−1 + · · ·+ a1CA+ a0C

)
x, which is

zero from (3.211).

3.8.5 Popov-Belevitch-Hautus (PBH) test

There exists another test for observability which is called the Popov-Belevitch-
Hautus (PBH) test.

Popov-Belevitch-Hautus (PBH) test indicates that a linear system is

observable when the rank of matrix

[
A− λiI

C

]
is equal to n for all

eigenvalues {λi} of matrix A.

A linear system is detectable when the rank of matrix

[
A− λiI

C

]
is equal

to n for all unstable eigenvalues {λi} of matrix A.

Eigenvalues λi for which rank of matrix

[
A− λiI

C

]
is not equal to n are

said unobservable.
Equivalently, an eigenvalue λi is observable8 if all its corresponding right

eigenvectors vi (i.e. vi ̸= 0 such that Avi = λivi) satisfy Cvi ̸= 0.

Example 3.16. Let's consider the following realization:(
A B

C D

)
=

 −1 0 −2
10 1 3

−2 0 −2

 (3.212)

Matrix A has two modes, λ1 = −1 and λ2 = 1.
Let's apply the PBH test for λ1 = −1:

rank

[
A− λ1I

C

]
= rank

 0 0
10 2
−2 0

 = 2 (3.213)

We conclude that the mode λ1 = −1 is observable.
Let's apply the PBH test for λ2 = 1:

rank

[
A− λ2I

C

]
= rank

 −2 0
10 0
−2 0

 = 1 ̸= 2 (3.214)

8Antsaklis P. J. and Michel A. N., A Linear Systems Primer, Birkhäuser Boston,
Boston,MA, 2007
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We conclude that the mode λ2 = 1 is not observable.

■

3.8.6 Unobservable mode

Following Bélanger7 a state xō ̸= 0 is said to be unobservable if the zero-input
response of the system (i.e. the system's response to the initial condition x(0) =
x0 ̸= 0 when the input signal u(t) is zero) with x(0) = xō is zero ∀ t ≥ 0. An
unobservable state xō ̸= 0 satis�es the following equation:

C
CA
...

CAn−1

xō = 0 (3.215)

Equivalently the pair (A,C) is unobservable if and only if there exists an
eigenvector vi of matrix A such that Cvi = 0. If Cvi = 0 then the mode λi (i.e.
the eigenvalue) corresponding to vi is called an unobservable mode.

Indeed if vi is an eigenvector of matrix A corresponding to the mode (i.e.
the eigenvalue) λi thenAvi = λivi. Specializing xō to vi Equation (3.215) reads:

C
CA
...

CAn−1

 vi =


C
Cλi
...

Cλn−1
i

 vi =


1
λi
...

λn−1
i

Cvi = 0 (3.216)

Coupling Avi = λivi and Cvi = 0 leads to the Popov-Belevitch-Hautus
(PBH) test for observability:{

Avi = λivi
Cvi = 0

⇔
[
A− λiI

C

]
vi = 0 (3.217)

3.8.7 Detectability

A linear system is detectable if all unstable modes are observable or equivalently
if all unobservable modes are stable.

3.8.8 Additional observability topic: relation between linear
di�erential equation and state-space representation

We consider hereafter a SISO system which is described by the following linear
di�erential equation where m < no:

a0 y(t) + a1
dy(t)

dt
+ · · ·+ ano−1

dno−1y(t)

dtno−1
+ ano

dnoy(t)

dtno
=

b0 u(t) + b1
du(t)

dt
+ · · ·+ bm−1

dm−1u(t)

dtm−1
+ bm

dmu(t)

dtm
(3.218)
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As far as m < no, the state-space representation of (3.218) is the following:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(3.219)

Now, we will see what is the constraint on state matrix A to retrieve the
linear di�erential equation from the state-space representation. First, we will
compute the derivatives of output y(t):

ẏ(t) = Cẋ(t) = CAx(t) +CBu(t)
ÿ(t) = CA2x(t) +CABu(t) +CBu̇(t) = CA2x(t) +C (ABu(t) +Bu̇(t))

...
dky(t)
dtk

= CAkx(t) +C
(∑k−1

i=0 AiBdk−1−iu(t)
dtk−1−i

)
(3.220)

Thus, the linear combination
∑no

k=0 ak
dky(t)
dtk

which appears in the linear
di�erential equation (3.218) reads:

no∑
k=0

ak
dky(t)

dtk
=

no∑
k=0

ak

(
CAkx(t) +C

(
k−1∑
i=0

AiB
dk−1−iu(t)

dtk−1−i

))
(3.221)

We conclude that the linear combination
∑no

k=0 ak
dky(t)
dtk

can be written as a
linear combination of input u(t) and its derivatives as in the linear di�erential
equation (3.218) as soon as state vector x(t) no more appears in this the linear
combination. Thus the following relation must hold:

no∑
k=0

akCAk = 0⇔ C

(
no∑
k=0

akA
k

)
= 0 (3.222)

It can be shown that polynomial
∑no

k=0 ak s
k is the polynomial corresponding

to the observable modes of the system:

no∑
k=0

ak s
k =

no∏
i=1

(s− λi) where {λ1, · · · , λno} observable modes (3.223)

3.9 Interpretation of the diagonal (or modal)
decomposition

When the state matrix A is diagonalizable we have seen in (3.56) that eAt reads
as follows where vi is a right eigenvector corresponding to eigenvalue λi and wi
is a left eigenvector corresponding to the same eigenvalue λi:

eAt =
n∑
i=1

viw
T
i e

λit (3.224)

On the other hand we know from (3.13) that the output response of the
system can be expressed as follows:

y(t) = CeAtx(0) +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) (3.225)
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Gathering the two previous results leads to the following expression of the
output vector y(t) where it is worth noticing that wTi x(0) is a scalar:

y(t) =
n∑
i=1

Cvie
λit
(
wTi x(0)

)
+

n∑
i=1

Cvi

∫ t

0
eλi(t−τ)wTi Bu(τ)dτ

+Du(t) (3.226)

The product Cvi is called the direction in the output space associated with
eigenvalue λi. From the preceding equation it is clear that if Cvi = 0 then any
motion in the direction vi cannot be observed in the output y(t) and we say
that eigenvalue λi is unobservable.

The product wTi B is called the direction in the input space associated with
eigenvalue λi. From the preceding equation we cannotice that if wTi B = 0 the
control input u(t) cannot participate to the motion in the direction vi and we
say that eigenvalue λi is uncontrollable.

As a consequence the coupling between inputs, states and outputs is set by
the eigenvectors vi and w

T
i . It can be seen that those vectors also in�uence the

numerator of the transfer function F(s) which reads:

F(s) = C (sI−A)−1B+D =
n∑
i=1

Cviw
T
i B

s− λi
+D (3.227)

Indeed let Λ be the diagonal form of the diagonalizable matrix A:

Λ =

 λ1
. . .

λn

 (3.228)

We have seen that the change of basis matrix P as well as its inverse P−1

have the following expression:

Λ = P−1AP where



P =
[
v1 v2 · · · vn

]
P−1 =


wT1
wT2
...
wTn

 (3.229)

Using the fact that (XY)−1 = Y−1X−1 for any two inversible square
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Figure 3.1: Modal decomposition of a transfer function

matrices the transfer function F(s) reads:

F(s) = C (sI−A)−1B+D

= C
(
P
(
sI−P−1AP

)
P−1

)−1
B+D

= CP (sI−Λ)−1P−1B+D

= C
(
P
(
sI−P−1AP

)
P−1

)−1
B+D

= CP (sI−Λ)−1P−1B+D

=
[
Cv1 Cv2 · · · Cvn

] 
1

s−λ1
. . .

1
s−λn



wT1 B
wT2 B
...

wTnB

+D

=
[
Cv1 Cv2 · · · Cvn

]


wT
1 B

s−λ1
wT

2 B
s−λ2
...

wT
nB

s−λn

+D

(3.230)

We �nally get:

F(s) =
n∑
i=1

Cviw
T
i B

s− λi
+D (3.231)

Figure 3.1 presents the diagonal (or modal) decomposition of the transfer
function F(s) where xm(t) is the state vector expressed in the diagonal (or
modal) basis and matrices Λ, P and P−1 are de�ned as follows:

Λ =

 λ1
. . .

λn


P =

[
v1 · · · vn

]
P−1 =

 wT1
...
wTn


(3.232)
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3.10 Duality principle

The concept of controllability and observability was introduced by American-
Hungarian engineer Rudolf E. Kalman for linear dynamic systems 9. Let's
consider a system which is denoted Σ. Then system ΣD, which is the dual of
Σ, as de�ned as follows:

Σ =

(
A B

C D

)
⇒ ΣD = dual (Σ) =

(
A B

C D

)T
=

(
AT CT

BT DT

)
(3.233)

The duality principle indicates that:

− System Σ is observable if and only if system ΣD is controllable.

− System Σ is controllable if and only if system ΣD is observable.

Furthermore we cannotice that the observable canonical form is the dual of
the controllable canonical form.

3.11 Kalman decomposition

3.11.1 Controllable / uncontrollable decomposition

We recall that the controllability matrix Qc is de�ned as follows:

Qc =
[
B AB · · · An−1B

]
(3.234)

Suppose that the system is not controllable, meaning that:

rank (Qc) = nc < n (3.235)

Let Pcc̄ be the following change of basis matrix which de�nes a new state
vector xcc̄(t) as follows:

x(t) = Pcc̄ xcc̄(t)⇔ xcc̄(t) = P−1
cc̄ x(t) (3.236)

The �rst nc columns of Pcc̄ are chosen to be nc independent columns of Qc

whereas the remaining n − nc columns are arbitrarily chosen such that Pcc̄ is
invertible:

Pcc̄ =
[
q
1
· · · q

nc
q
nc+1

· · · q
n

]
(3.237)

Then, according to the results in section 2.2, the state-space representation
involving the state vector xcc̄(t) reads:{

ẋcc̄(t) = Acc̄xcc̄(t) +Bcc̄u(t)
y(t) = Ccc̄xcc̄(t) +Du(t)

(3.238)

9R. E. Kalman, On the General Theory of Control Systems, Proceeding of the 1st IFAC
congress, Moscow 1960
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where: 
Acc̄ = P−1

cc̄ APcc̄ :=

[
Ac A12

0 Ac̄

]
Bcc̄ = P−1

cc̄ B :=

[
Bc

0

]
Ccc̄ = CPcc̄ :=

[
Cc Cc̄

] (3.239)

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

The state vector xcc̄(t) can be split into vector xc(t), which represents the
controllable states, and vector xc̄(t) which represents the uncontrollable states:

xcc̄(t) :=

[
xc(t)
xc̄(t)

]
(3.240)

Furthermore, the reduced-order state equation of the controllable state
vector xc(t) is controllable and has the same transfer function than the full
state equation: {

ẋc(t) = Acxc(t) +Bcu(t)
y(t) = Ccxc(t) +Du(t)

(3.241)

3.11.2 Observable / unobservable decomposition

We recall that the observability matrix Qo is de�ned as follows:

Qo =


C
CA
...

CAn−1

 (3.242)

Suppose that the system is not observable, meaning that:

rank (Qo) = no < n (3.243)

Let Poō be the following change of basis matrix which de�nes a new state
vector xoō(t) as follows:

x(t) = Poō xoō(t)⇔ xoō(t) = P−1
oō x(t) (3.244)

The �rst no rows of P
−1
oō are chosen to be no independent rows ofQo whereas

the remaining n− no rows are arbitrarily chosen such that P−1
oō is invertible:

P−1
oō =



q
1
...
q
no

q
no+1
...
q
n


(3.245)
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Then, according to the results in section 2.2, the state-space representation
involving the state vector xoō(t) reads:{

ẋoō(t) = Aoōxoō(t) +Boōu(t)
y(t) = Coōxoō(t) +Du(t)

(3.246)

where: 
Aoō = P−1

oō APoō :=

[
Ao 0
A21 Aō

]
Boō = P−1

oō B :=

[
Bo

Bō

]
Coō = CPoō :=

[
Co 0

] (3.247)

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

The state vector xoō(t) can be split into vector xo(t), which represents the
observable states, and vector xō(t) which represents the unobservable states:

xoō(t) :=

[
xo(t)
xō(t)

]
(3.248)

Furthermore, the reduced-order state equation of the observable state
vector xo(t) is observable and has the same transfer function than the full
state equation: {

ẋo(t) = Aoxo(t) +Bou(t)
y(t) = Coxo(t) +Du(t)

(3.249)

3.11.3 Canonical decomposition

Kalman decomposition is a state-space representation which makes clear the
observable and controllable components of the system. More precisely any linear

system

(
A B

C D

)
can be transformed by a similarity transformation as follows:

{
ẋK(t) = AKxK(t) +BKu(t)
y(t) = CKxK(t) +Du(t)

(3.250)

The Kalman decomposition expands as follows:

(
AK BK

CK D

)
=


Acō A12 A13 A14 Bcō

0 Aco 0 A24 Bco

0 0 Ac̄ō A34 0
0 0 0 Ac̄o 0

0 Cco 0 Cc̄o D

 (3.251)

This leads to the conclusion that10:

− Subsystem

(
Aco Bco

Cco D

)
is both controllable and observable;
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Figure 3.2: Example of uncontrollable mode through pole / zero cancellation in
series interconnection

Figure 3.3: Example of unobservable mode through pole / zero cancellation in
series interconnection

− Subsystem

 Acō A12 Bcō

0 Aco Bco

0 Cco D

 is controllable;

− Subsystem

 Aco A24 Bco

0 Ac̄o 0

Cco Cc̄o D

 is observable.

Practical cases of uncontrollability and unobservability may appear in
pole(s) / zero(s) cancellation in series interconnection as represented in Figure
3.2 and Figure 3.3.

In the special case where matrix A has distinct eigenvalues then matrices
Aij = 0 ∀ i ̸= j and Kalman decomposition reduces as follows:

(
AK BK

CK D

)
=


Acō 0 0 0 Bcō

0 Aco 0 0 Bco

0 0 Ac̄ō 0 0
0 0 0 Ac̄o 0

0 Cco 0 Cc̄o D

 (3.252)

Figure 3.4 represents the Kalman decomposition: there is no path, direct or
through a block, from the input to either of the uncontrollable blocks. Similarly
the unobservable blocks have no path to the output.

The new state representation

(
AK BK

CK D

)
is obtained using the change

of basis matrix PK : 
AK = P−1

K APK

BK = P−1
K B

CK = CPK

(3.253)

Let v1, v2, · · · , vn be the eigenvectors of matrix A and w1, w2, · · · , wn be
the eigenvectors of matrix AT . The change of basis matrix PK is an invertible
matrix de�ned as follows:

PK =
[
v1 v2 · · · vn

]
=
[
Pcō Pco Pc̄ō Pc̄o

]
(3.254)
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Figure 3.4: Kalman decomposition in the special case where matrix A has
distinct eigenvalues
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Where10:

− Pcō is a matrix whose columns span the subspace of states which are both
controllable and unobservable: wTi B ̸= 0 and Cvi = 0;

− Pco is chosen so that the columns of
[
Pcō Pco

]
are a basis for the

controllable subspace: wTi B ̸= 0 and Cvi ̸= 0;

− Pc̄ō is chosen so that the columns of
[
Pcō Pc̄ō

]
are a basis for the

unobservable subspace: wTi B = 0 and Cvi = 0;

− Pc̄o is chosen so that PK is invertible: wTi B = 0 and Cvi ̸= 0.

It is worth noticing that some of those matrices may not exist. For
example if the system is both controllable and observable then PK = Pco; thus
other matrices do not exist. In addition Kalman decomposition is more than
getting a diagonal form for the state matrix A. When state matrix A is
diagonal observability and controllability have still to be checked using the
rank condition test. Finally all realizations obtained from a transfer function
are both controllable and observable.

Example 3.17. Let's consider the following realization:

(
A B

C D

)
=

 −1 10 −2
0 1 0

−2 3 −2

 (3.255)

Matrix A has a stable mode, which is −1, and an unstable mode, which is
1. When computing the transfer function of the system we can observe a pole /
zero cancellation of the unstable mode:

F (s) = C (sI−A)−1B+D

=
[
−2 3

] [ 1
s+1

10
s2−1

0 1
s−1

] [
−2
0

]
− 2

= 4
s+1 − 2

= −2s+2
s+1

(3.256)

From PBH test it can be checked that mode −1 is both controllable and
observable whereas mode 1 is observable but not controllable. Thus the system
is not stabilizable.

Internal stability (which implies input-output stability, or BIBO stability) is
required in practice. This cannot be achieved unless the plant is both detectable
and stabilizable.

■

10https://en.wikipedia.org/wiki/Kalman_decomposition
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3.12 Minimal realization (again!)

We have seen that a realization of a transfer function F(s) is minimal if there
exists no realization of lesser order whose transfer function is F(s). The order
of a realization is the size of matrix A.

A realization is said to be minimal if and only if the realization is both
controllable and observable. Consequently a minimal realization of the transfer
function F(s) = C (sI−A)−1B+D is Cco (sI−Aco)

−1Bco +D:

F(s) =

(
A B

C D

)
=

(
Aco Bco

Cco D

)
(3.257)

Indeed:

(sI−A)−1B =


sI−Acō −A12 −A13 −A14

0 sI−Aco 0 −A24

0 0 sI−Ac̄ō −A34

0 0 0 sI−Ac̄o


−1 

Bcō

Bco

0
0



=


(sI−Acō)

−1 ∗ ∗ ∗
0 (sI−Aco)

−1 ∗ ∗
0 0 (sI−Ac̄ō)

−1 ∗
0 0 0 (sI−Ac̄o)

−1




Bcō

Bco

0
0



=


∗

(sI−Aco)
−1Bco

0
0


(3.258)

And:

F(s) = C (sI−A)−1B+D

=
[
0 Cco 0 Cc̄o

] 
∗

(sI−Aco)
−1Bco

0
0

+D

= Cco (sI−Aco)
−1Bco +D

=

(
Aco Bco

Cco D

)
(3.259)

The number of states of a minimal realization can be evaluated by the rank
of the product of the observability and the controllability matrix 11.

11Albertos P., Sala A., Multivariable Control Systems, Springer, p78



Chapter 4

Observer design

4.1 Introduction

The components of the state vector x may not be fully available as
measurements. Observers are used in order to estimate state variables of a
dynamical system, which will be denoted x̂ in the following, from the output
signal y(t) and the input signal u(t) as depicted on Figure 4.1.

Several methods may be envisioned to reconstruct the state vector x(t) of a
system from the observation of its output signal y(t) and the knowledge of the
input signal u(t):

− From the output equation y(t) = Cx(t) +Du(t) we can imagine to build

x(t) from the relation x(t) = C−1
(
y(t)−Du(t)

)
. Unfortunately this

relation holds as soon as matrixC is square and invertible, which is seldom
the case;

− Assuming that the size of the state vector is n we may also imagine to take
the derivative of the output signal n− 1 times and use the state equation
ẋ(t) = Ax(t) + Bu(t) to get n equations where the state vector x(t) is
the unknown. Unfortunately this not possible in practice because each
derivative of an unsmoothed signal increases its noise ;

Figure 4.1: Observer principle
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− We can also use a Luenberger observer which will be developed in the
next section. David Gilbert Luenberger, born in 1937 in Los Angeles, is
an American mathematical scientist1. The theory of full order observer
originated in the work of Luenberger in 1964.

This chapter focuses on observers design. More speci�cally Luenberger
observer, state observer for SISO systems in observable canonical form, state
observer for SISO systems in arbitrary state-space representation and state
observer for MIMO systems will be presented. We will also present
reduced-order observer design.

4.2 Luenberger observer

4.2.1 State observer

Consider the following state space representation where x(t) denotes the state
vector, y(t) the measured output and u(t) the control input:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(4.1)

We assume that state vector x(t) cannot be measured. The purpose of the
state observer is to estimate x(t) based on the measured output y(t).
Luenberger observer provides an estimation x̂(t) of the state vector x(t)
through the following di�erential equation where output signal y(t) and input
signal u(t) are known and where matrices F, J and L have to be determined:

˙̂x(t) = Fx̂(t) + Ju(t) + Ly(t) (4.2)

The estimation error e(t) is de�ned as follows:

e(t) = x(t)− x̂(t) (4.3)

The time derivative of the estimation error reads:

ė(t) = ẋ(t)− ˙̂x(t)
= Ax(t) +Bu(t)− Fx̂(t)− Ju(t)− Ly(t)

(4.4)

Thanks to the output equation y(t) = Cx(t)+Du(t) and the relation x(t) =
e(t) + x̂(t) we get:

ė(t) = Ax(t) +Bu(t)− Fx̂(t)− Ju(t)− L (Cx(t) +Du(t))
= (A− LC)x(t) + (B− J− LD)u(t)− Fx̂(t)
= (A− LC) e(t) + (B− J− LD)u(t) + (A− LC− F) x̂(t)

(4.5)

As soon as the purpose of the observer is to move the estimation error e(t)
towards zero independently of control u(t) and true state vector x(t) we choose
matrices J and F as follows:

1https://en.wikipedia.org/wiki/David_Luenberger
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{
J = B− LD
F = A− LC

(4.6)

Thus the dynamics of the estimation error e(t) reduces to be:

ė(t) = (A− LC) e(t) (4.7)

In order that the estimation error e(t) moves towards zero, meaning that the
estimated state vector x̂ becomes equal to the actual state vector x(t), matrix
L shall be chosen such that all the eigenvalues of A − LC are situated in the
left half plane.

With the expression of matrices J and F the dynamics of the Luenberger
observer can be written as follows:

˙̂x(t) = Fx̂(t) + Ju(t) + Ly(t)

= (A− LC) x̂(t) + (B− LD)u(t) + Ly(t)
(4.8)

That is:
˙̂x(t) = Ax̂(t) +Bu(t) + L

(
y(t)− ŷ(t)

)
(4.9)

Where:
ŷ(t) = Cx̂(t) +Du(t) (4.10)

Thus the dynamics of the Luenberger observer is the same than the dynamics
of the original system with the additional term L

(
y(t)− ŷ(t)

)
where L is a gain

to be set. This additional term is proportional to the error y(t) − ŷ(t). It
enables to drive the estimated state x̂(t) towards its actual value x(t) when the
measured output y(t) deviates from the estimated output ŷ(t).

In order to compute a state space representation and the transfer function
of the observer we �rst identify its input and output.

− As discussed previously the input vector uo(t) of the observer is composed
of the output y(t) of the plant whose state is estimated and its input u(t):

uo(t) =

[
y(t)

u(t)

]
(4.11)

− The output y
o
(t) of the observer is the estimated state vector x̂(t) of the

plant:
y
o
(t) = x̂(t) (4.12)

Consequently (4.9) and (4.10) can be organized to obtain a state space
representation of the observer:

˙̂x(t) = Ax̂(t) +Bu(t) + L
(
y(t)− ŷ(t)

)
= Ax̂(t) +Bu(t) + L

(
y(t)−Cx̂(t)−Du(t)

)
= (A− LC) x̂(t) +

[
L B− LD

] [ y(t)
u(t)

]
= (A− LC) x̂(t) +

[
L B− LD

]
uo(t)

:= Aobsx̂(t) +Bobsuo(t)
y
o
(t) = x̂(t)

= Ix̂(t) + 0uo(t)
:= Cobsx̂(t) +Dobsuo(t)

(4.13)



142 Chapter 4. Observer design

Figure 4.2: Block diagram of the state-space representation of an observer

It is worth noticing that the state matrix of the observer reads (A− LC).
Setting the eigenvalues of (A− LC) through the observer gain L is equivalent
by duality to set the eigenvalues of matrix (A− LC)T = AT −CTK through
the state feedback gain K. Observer gain L is related to state feedback K as
follows:

L := KT (4.14)

Finally the transfer function of the observer, which is obviously a Multi-
Input Multi-Output (MIMO) system, reads:

Gobs(s) = Cobs (sI−Aobs)
−1Bobs +Dobs

= (sI− (A− LC))−1 [ L B− LD
] (4.15)

The block diagram corresponding to state-space representation (4.9) is
shown in Figure 4.2.

In the following we will assume that the system is observable, or at least
detectable, such that it is possible to design a state observer.

4.2.2 Estimating output derivative

Assume that the plant has no feedforward matrix (D = 0) and that the following
state observer has been designed:

D = 0⇒ ˙̂x(t) = (A− LC) x̂(t) +
[
L B

] [ y(t)
u(t)

]
(4.16)

We wish to estimate the derivative ˙̂y(t) of the actual output y(t) of the plant
from the output x̂(t) of the observer. We get:

y(t) = Cx(t)⇒ ẏ(t) = Cẋ(t)

= C (Ax(t) +Bu(t))
= CAx(t) +CBu(t)

(4.17)

We �nally get:
˙̂y(t) = CAx̂(t) +CBu(t) (4.18)
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4.2.3 Output observer

Consider the following state space representation where x(t) denotes the state
vector, y(t) the measured output, z(t) the performance output and u(t) the
control input: 

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

z(t) = Tx(t)

(4.19)

We assume that the performance output z(t) cannot be measured. The
purpose of the output observer is to estimate the performance output z(t) based
on the measured output y(t). Luenberger observer provides an estimation ẑ(t)
of the performance output z(t) through the following di�erential equation where
output signal y(t) and input signal u(t) are known and where matrices F, J and
L have to be determined:

˙̂z(t) = Fẑ(t) +TBu(t) + Ly(t) (4.20)

The estimation error e(t) is de�ned as follows:

e(t) = z(t)− ẑ(t) (4.21)

Thanks to equation z(t) = Tx(t) and the relation z(t) = e(t)+ ẑ(t) the time
derivative of the estimation error reads:

ė(t) = ż(t)− ˙̂z(t)
= T (Ax(t) +���Bu(t))− Fẑ(t)−����TBu(t)− Ly(t)

= TAx(t)− Fẑ(t)− Ly(t)

= TAx(t)− F (z(t)− e(t))− Ly(t)

= (TA− FT− LC)x(t) + Fe(t)

(4.22)

Thus, as soon as the following relation holds:

LC = TA− FT (4.23)

We get:
ė(t) = Fe(t)⇒ e(t) = eFt e(0) (4.24)

In addition, if F is stable, we get:

lim
t→∞

e(t) = 0 (4.25)

Moreover, if we wish to estimate the state vector x(t) through ẑ(t) and the
actual output y(t) we can use matrices M1 and M2 such that:

x̂(t) = M1ẑ(t) +M2y(t)

= M1 (z(t)− e(t)) +M2y(t)

= (M1T+M2C)x(t)−M1e(t)

(4.26)

Then choosing M1 and M2 such that:

M1T+M2C = I (4.27)
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We get:

x̂(t) = x(t)−M1e(t) (4.28)

And, thanks to (4.25):

lim
t→∞

x̂(t) = x(t) (4.29)

Matrices M1 and M2 can be computed as follows assuming that matrix[
T
C

]
is full rank2:

[
M1 M2

]
=

[
T
C

]−1

(4.30)

If matrix T is full rank, then we can choose M2 = 0. Then we get for the
dynamics of the estimator x̂(t) of state x(t):

˙̂z(t) = Fẑ(t) +TBu(t) + Ly(t)

y(t) = Cx(t)

ẑ(t) = Tx̂(t)

⇒ ˙̂x(t) = T−1 ˙̂z(t) = T−1
(
FTx̂(t) +TBu(t) + Ly(t)

) (4.31)

We �nally retrieve the expression of the state observer by using (4.23).
Indeed, for the general case where T ̸= I we get:

FT = TA− LC⇒ ˙̂x(t) = T−1
(
(TA− LC) x̂(t) +TBu(t) + Ly(t)

)
= Ax̂(t) +Bu(t) +T−1L

(
y(t)−Cx̂(t)

)
(4.32)

4.3 State observer for SISO systems in observable
canonical form

Let

(
A B

C D

)
be an observable Single-Input Single-Output (SISO) linear time-

invariant system of order n and let χA−LC(s) be an imposed nth order monic
polynomial (a monic polynomial is a polynomial in which the leading coe�cient,
that is the nonzero coe�cient of highest degree, is equal to 1). Polynomial
χA−LC(s) corresponds to the characteristic polynomial of matrix A − LC. It
is formed thanks to the prede�ned eigenvalues λL1, · · · , λLn assigned for the
dynamics of the observer:

χA−LC(s) = det (sI− (A− LC)) = (s− λL1) · · · (s− λLn) (4.33)

When expanding the preceding product we get:

χA−LC(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 (4.34)

2Daniel Alazard, Pierre Apkarian, Christelle Cumer, Gilles Ferreres, Michel Gauvrit,
Robustesse et Commande Optimale, Cepadues, 1999
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We begin with the case where the system realization

(
A B

C D

)
is the

observable canonical form. Then matrices Ao and Co are the following:

Ao =



0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1


Co =

[
0 0 · · · 0 1

]
(4.35)

Matrices Bo and D will not be used.

Let Lo be the observer gain matrix when the observable canonical form of
the system is used. For a SISO system this is a n × 1 matrix. Let Li be the
(scalar) component in the ith row of matrix Lo:

Lo =

 L1

...
Ln

 (4.36)

Then matrix Ao − LoCo reads:

Ao − LoCo =



0 0 0 −a0

1 0 0
. . . −a1

0 1 0
. . . −a2

...
. . .

. . .
...

0 0 1 −an−1


−

 L1

...
Ln

 [ 0 0 · · · 0 1
]

=



0 0 0 −a0 − L1

1 0 0
. . . −a1 − L2

0 1 0
. . . −a2 − L3

...
. . .

. . .
...

0 0 1 −an−1 − Ln


(4.37)

Since this matrix still remains in the observable canonical form its
characteristic polynomial is readily written as follows:

χA−LC(s) = det (A− LC)
= det (Ao − LoCo)
= sn + (an−1 + Ln) s

n−1 + · · ·+ (a1 + L2) s+ a0 + L1

(4.38)

Identifying Equations (4.34) and (4.38) leads to the expression of each
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component of the observer matrix Lo:
p0 = a0 + L1

p1 = a1 + L2

...
pn−1 = an−1 + Ln

⇔ Lo =


L1

L2

...
Ln

 =


p0 − a0
p1 − a1

...
pn−1 − an−1

 (4.39)

4.4 State observer for SISO systems in arbitrary
state-space representation

When an arbitrary state-space representation is used the system has to be
converted into the observable canonical form via a similarity transformation.
Let Po be the matrix of the similarity transformation which enables to get the
observable canonical form. We get:

x̂(t) = Pox̂o(t)⇔ x̂o(t) = P−1
o x̂(t) (4.40)

We have seen in the chapter dedicated to Realization of transfer functions
that Po is a constant nonsingular change of basis matrix which is obtained
through the following relation:

Po = Q−1
o Qoo (4.41)

Where:

− Qo is the observability matrix in the actual basis:

Qo =


C
CA
...

CAn−1

 (4.42)

− and Qoo the observability matrix expressed in the observable canonical
basis (which is readily obtained through det (sI−A)).

Thus the state equation of the observer (4.9) reads:

˙̂xo(t) = Aox̂o(t) +Bou(t) + Lo
(
y(t)− ŷ(t)

)
⇔ P−1

o
˙̂x(t) = AoP

−1
o x̂(t) +Bou(t) + Lo

(
y(t)− ŷ(t)

)
⇔ ˙̂x(t) = PoAoP

−1
o x̂(t) +PoBou(t) +PoLo

(
y(t)− ŷ(t)

) (4.43)

That is:
˙̂x(t) = Ax̂(t) +Bu(t) + L

(
y(t)− ŷ(t)

)
(4.44)

Where:
L = PoLo (4.45)

And: {
A = PoAoP

−1
o

B = PoBo
(4.46)
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Example 4.1. Design an observer for the following plant:
ẋ(t) =

[
−1 0
0 −2

]
x(t) +

[
1
2

]
u(t)

y(t) =
[
3 5

]
x(t)

(4.47)

As far as this is a modal (or diagonal) state space representation, plant's
observability is readily checked by inspecting row of output matrix C: because
there is no null element in the output matrix C we conclude that the plant is
observable by applying Gilbert's criteria.

The poles of the observer shall be chosen faster than the dynamics of the
plant, whose modes are −1 and −2. We choose (for example) to locate the poles
of the observer at λL1 = −10 and λL2 = −20.

We will �rst design the observer assuming that we have the observable
canonical form of the SISO system. The observable canonical form is readily
obtained through det(sI−A):

det(sI−A) = (s+ 1)(s+ 2) = s2 + 3 s+ 2 := s2 + a1 s+ a0

⇒ Ao =

[
0 −2
1 −3

]
and Co =

[
0 1

] (4.48)

On the other hand the characteristic polynomial of the observer is formed
thanks to the prede�ned eigenvalues assigned for the dynamics of the observer:

χA−LC(s) = (s− λL1) (s− λL2) = (s+ 10) (s+ 20)
= s2 + 30 s+ 200 := s2 + p1 s+ p0

(4.49)

Applying relation (4.39) we get:

Lo =

[
L1

L2

]
=

[
p0 − a0
p1 − a1

]
=

[
200− 2
30− 3

]
=

[
198
27

]
(4.50)

Now let's compute the similarity transformation matrix Po which enables to
get the observable canonical form.

Po = Q−1
o Qoo (4.51)

Where:

− Qo is the observability matrix in the actual basis:

Qo =

[
C
CA

]
=

 3 5[
3 5

] [
−1 0
0 −2

]  =

[
3 5
−3 −10

]
(4.52)

− and Qoo the observability matrix expressed in the observable canonical basis
(which is readily obtained through det (sI−A)):

Qoo =

[
Co

CoAo

]
=

 0 1[
0 1

] [
0 −2
1 −3

]  =

[
0 1
1 −3

]
(4.53)
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Thus:

Po = Q−1
o Qoo =

[
3 5
−3 −10

]−1 [
0 1
1 −3

]
= −1

15

[
−10 −5
3 3

] [
0 1
1 −3

]
= −1

15

[
−5 5
3 −6

]
= 1

15

[
5 −5
−3 6

] (4.54)

We �nally get:

L = PoLo =
1

15

[
5 −5
−3 6

] [
198
27

]
=

[
57
−28.8

]
(4.55)

■

4.5 Ackermann's formula

Ackermann's formula states that the observer gain matrix L of a SISO system
in arbitrary state-space representation can be obtained as the product between
the assigned characteristic polynomial χA−LC(s) of matrix A − LC evaluated
at matrix A and vector q

o
:

L = χA−LC(A)q
o

(4.56)

To get this result we �rst recall that similarity transformation generates
equivalent state-space representations. Let Po be the matrix of the similarity
transformation which enables to get the observable canonical form. Starting

from a state-space representations

(
A B

C D

)
in an arbitrary basis, the

observable canonical form is obtained through the following relations:
Ao = P−1

o APo

Bo = P−1
o B

Co = CPo

(4.57)

Consequently matrix Ao − LoCo reads:

Ao − LoCo = P−1
o APo − LoCPo

= P−1
o (A−PoLoC)Po

(4.58)

This equation indicates that the observer gain matrix L in arbitrary state-
space representation reads:

L = PoLo (4.59)

We have seen in the chapter dedicated to Realization of transfer functions
that Po is a constant nonsingular change of basis matrix which is obtained
through the state matrix A and vector q

o
:

Po =
[
q
o

Aq
o
· · · An−1q

o

]
(4.60)
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Vector q
o
is the last column of the inverse of the observability matrix Qo:

Q−1
o =

[
∗ · · · ∗ q

o

]
where Qo =


C
CA
...

CAn−1

 (4.61)

Then we recall Cayley�Hamilton theorem. Let χAo(s) be the characteristic
polynomial of the n × n matrix Ao. We write the characteristic polynomial
χAo(s) of matrix Ao as follows:

χAo(s) := det(sI−Ao) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (4.62)

The Cayley�Hamilton theorem states that substituting matrix Ao for s in
the characteristic polynomial χAo(s) of matrix Ao results in the zero matrix 3:

χAo(Ao) = 0 = An
o + an−1A

n−1
o + · · ·+ a1Ao + a0I (4.63)

Let χA−LC(s) be the characteristic polynomial of matrix Ao − LoCo. We
have seen that when prede�ned eigenvalues λL1, · · · , λLn are assigned for the
dynamics of the observer the characteristic polynomial of matrix Ao − LoCo

reads:
χA−LC(s) = det (sI− (Ao − LoCo))

= (s− λL1) · · · (s− λLn)
= sn + pn−1s

n−1 + · · ·+ p1s+ p0

(4.64)

Substituting s for matrix Ao leads to the following relation:

χA−LC(Ao) = An
o + pn−1A

n−1
o + · · ·+ p1Ao + p0I (4.65)

Note that χA−LC(Ao) is not equal to 0 because χA−LC(s) is not the
characteristic polynomial of matrix Ao.

Thanks to Equation (4.39) and the relation pi = ai + Li we get:

χA−LC(Ao) = An
o + (an−1 + Ln−1)A

n−1
o + · · ·

+ (a1 + L1)Ao + (a0 + L0) I (4.66)

By subtracting Equations (4.63) to (4.66) we get:

χA−LC(Ao) = Ln−1A
n−1
o + · · ·+ L1Ao + L0I (4.67)

Let u be the vector de�ned by:

u =


1
0
...
0

 (4.68)

3https://en.wikipedia.org/wiki/Cayley�Hamilton_theorem
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Due to the special form of matrix Ao we have:

Aou =


0
1
0
...

 , A2
ou =


0
0
1
0
...

 , · · · , An−1
o u =


0
...
0
1

 (4.69)

Thus multiplying Equation (4.67) by u leads to the following relation:

χA−LC(Ao)u =


L0

L1

...
Ln−1

 = Lo (4.70)

Thus we get the expression of the observer matrix Lo when we use the
observable canonical form.

We multiply Equation (4.70) by Po and use the fact that

Ak
o =

(
P−1
o APo

)k
= P−1

o AkPo to get the expression of the observer gain
matrix L in arbitrary state space representation:

L = PoLo
= PoχA−LC(Ao)u
= χA−LC(PoAo)u
= χA−LC(PoAoP

−1
o Po)u

= χA−LC(PoAoP
−1
o )Pou

= χA−LC(A)Pou

(4.71)

Because u is the vector de�ned by u =


1
0
...
0

 we get using (4.60):

Pou = q
o

(4.72)

Consequently Equation (4.71) reduces to be the Ackermann's formula (4.56):

L = χA−LC(A)q
o

(4.73)

4.6 State observer for MIMO systems -
Roppenecker's formula

We have seen in Equation (4.7) that the dynamics of the estimation error e(t)
reads:

ė(t) = (A− LC) e(t) (4.74)

The purpose of this section is to design the observer gain matrix L such
that the eigenvalues of matrix A − LC are assigned to prede�ned eigenvalues
λL1, · · · , λLn where n is the size of matrix A.
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Let λK1, · · · , λKn be n distinct speci�ed eigenvalues of the closed loop state
matrix A − LC. Furthermore we assume that eigenvalues of matrix A do not
shift (meaning that they are di�erent) the eigenvalues of the closed loop state
matrix A− LC. Then it can be shown that the transpose of the observer gain
matrix L can be computed as follows where p

i
denotes parameter vectors:

LT = −
[
p
1
· · · p

n

] [
wL1 · · · wLn

]−1
(4.75)

Where vector wLi is related to parameter vector p
i
through the following

relation: [
AT − λLiI CT

] [ wLi
p
i

]
= 0 (4.76)

This is the so-called Roppenecker's formula to get the observer gain matrix
L.

To get this result we rewrite the dynamics of the estimation error e(t) as
follows:

ėT (t) = (A− LC)T eT (t)⇔ ėT (t) =
(
AT −CTLT

)
eT (t) (4.77)

Let wLi be an eigenvector of matrix (A− LC)T . As far as (A− LC)T and
(A− LC) have the same eigenvalues, which are the prede�ned eigenvalues λLi,
we can write: (

AT −CTLT
)
wLi = λLiwLi (4.78)

The preceding equation can be written as follows:(
AT − λLiI

)
wLi = CTLTwLi (4.79)

That is:
wLi =

(
AT − λLiI

)−1
CTLTwLi (4.80)

Then we introduce n parameter vectors p
i
de�ned as follows;

p
i
= −LTwLi (4.81)

Each parameter vector p
i
is a p× 1 vector where p is the number of rows of

matrix C, that is the number of outputs of the system.
Using parameter vector p

i
Equation (4.80) reads:

wLi = −
(
AT − λLiI

)−1
CT p

i
(4.82)

Writing Equation (4.81) for the n distinct prede�ned eigenvalues
λL1, · · · , λLn leads to the following relation:[

p
1
· · · p

n

]
= −LT

[
wL1 · · · wLn

]
(4.83)

Finally the transpose of the observer gain matrix L can be computed as
follows:

LT = −
[
p
1
· · · p

n

] [
wL1 · · · wLn

]−1
(4.84)

We have retrieved the so-called Roppenecker's formula to get the observer
gain matrix L.

It is worth noticing the following facts:
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− Using equation (4.81) within Equation (4.79) it is clear that parameter
vectors p

i
shall satisfy the following relation:(

AT − λLiI
)
wLi = −CT p

i
(4.85)

That is: [
AT − λLiI CT

] [ wLi
p
i

]
= 0 (4.86)

It is clear from the previous equation that each (n+ p) × 1 vector[
wLi
p
i

]
belong to the null-space of matrix

[
AT − λLiI CT

]
. So once

any (n+ p) × 1 vector which belongs to the null-space of matrix[
AT − λLiI CT

]
has been found, its p bottom rows are used to form

vector parameter p
i
. In the MIMO case several possibilities are o�ered.

− By taking the transpose of equation (4.86) we get the following expression:[
wTLi pT

i

] [ A− λLiI
C

]
= 0 (4.87)

We recognize in matrix

[
A− λLiI

C

]
the key matrix used in the PBH

observability test;

− If we wish to keep an eigenvalue λi of matrixA within the set of eigenvalues
of A−LC then Equation (4.79) is equal to zero because in that case wLi
is also an eigenvector of A:

λLi = λi ⇒
(
AT − λLiI

)
wLi = −CT p

i
=
(
AT − λiI

)
wLi = 0 (4.88)

Consequently we have to replace p
i
by 0 and wLi by eigenvector wi of A

corresponding to λi in the Roppenecker's formula (4.75);

− If we chose a complex eigenvalue λLi then its complex conjugate must also
be chosen. Let's λLiR and λLiI be the real part and the imaginary part
of λLi, wLiR and wLiI be the real part and the imaginary part of wLi and
p
iR

and p
iI
be the real part and the imaginary part of p

i
respectively:

λLi = λLiR + jλLiI
wLi = wLiR + jwLiI
p
i
= p

iR
+ jp

iI

(4.89)

Then equation (4.86) reads:(
AT − (λLiR + jλLiI) I

)
(wLiR + jwLiI) +CT

(
p
iR

+ jp
iI

)
= 0 (4.90)

Taking the complex conjugate of the preceding equation reads:(
AT − (λLiR − jλLiI) I

)
(wLiR − jwLiI) +CT

(
p
iR
− jp

iI

)
= 0 (4.91)
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Summing and subtracting Equations (4.90) and (4.91) reads:{ (
AT − λLiRI

)
wLiR + λLiIwLiI +CT p

iR
= 0(

AT − λLiRI
)
wLiI − λLiIwLiR +CT p

iI
= 0

(4.92)

That is in vector form:

[
AT − λLiRI λLiII CT 0
−λLiII AT − λLiRI 0 CT

]
wLiR
wLiI
p
iR
p
iI

 = 0 (4.93)

In Equation (4.75) vectors p
i
, p∗

i
(where ∗ denotes complex conjugate),

wLi and w
∗
Li are replaced by vectors p

iR
, p

iI
, wLiR and wLiI , respectively.

− In the SISO case the observer gain matrix L no more depends on parameter
vectors p

i
. Indeed is that case the observer gain matrix L is obtained as

follows:

LT =
[
1 · · · 1

][ (
AT − λL1I

)−1
CT · · ·

(
AT − λLnI

)−1
CT

]−1
(4.94)

To get this result we start by observing that in the SISO case parameter
vector are scalars; they will be denoted pi. Let vector li be de�ned as
follows:

li = −
(
AT − λLiI

)−1
CT (4.95)

Then Equation (4.75) reads:

LT = −
[
p1 · · · pn

] [
l1p1 · · · lnpn

]−1
(4.96)

Let's rearrange the term
[
l1p1 · · · lnpn

]−1
as follows:

[
l1p1 · · · lnpn

]−1
=

[ l1 · · · ln
]  p1 0

. . .

0 pn




−1

=

 p1 0
. . .

0 pn


−1 [

l1 · · · ln
]−1

=


∏

i ̸=1 pi∏n
i=1 pi

0

. . .

0
∏

i̸=n pi∏n
i=1 pi

 [ l1 · · · ln
]−1

(4.97)
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Multiplying this expression by −
[
p1 · · · pn

]
leads to the expression

of LT :

LT = −
[
p1 · · · pn

] [
l1p1 · · · lnpn

]−1

= −
[
p1 · · · pn

]


∏
i ̸=1 pi∏n
i=1 pi

0

. . .

0
∏

i ̸=n pi∏n
i=1 pi

 [ l1 · · · ln
]−1

= −
[
1 · · · 1

] [
l1 · · · ln

]−1

(4.98)

Using the expression of vector li = −
(
AT − λLiI

)−1
CT provided by

Equation (4.95) we �nally get:

LT =
[
1 · · · 1

][ (
AT − λL1I

)−1
CT · · ·

(
AT − λLnI

)−1
CT

]−1
(4.99)

We conclude that in the SISO case the observer gain matrix L no more
depends on parameter vectors p

i
.

4.7 Reduced-order observer

Consider the following state space representation where D = 0 and where x(t)
denotes the state vector, y(t) the measured output and u(t) the control input:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(4.100)

We will show in this section how to derive an observer of reduced dimension
by exploiting the output equation y(t) = Cx(t).

Let p be the rank of matrixC. Then, from the output equation y(t) = Cx(t),
we can extract p linearly independent equations and then compute directly p
components of the state vector x(t). Assuming that n is the dimension of the
state vector, only the remaining n − r components of the state vector have to
be estimated and then the order of the observer can be reduced to n− r.

More precisely, since matrix C is of rank p, there exists a n× n nonsingular
matrix P such that the following relation holds, where Ip denotes the identity
matrix of size p and 0p,n−p the p× (n− p) matrix of zeros:

CP =
[
Ip 0p,n−p

]
(4.101)

Indeed, let C be a (n−p)×n matrix such that matrix

[
C

C

]
is nonsingular.

Then a possible choice for P is the following:

P =

[
C

C

]−1

(4.102)
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Hence, using (4.101), we can write:

y(t) = Cx(t) = CPP−1x(t) =
[
Ip 0p,n−p

]
x∗(t) (4.103)

where:

x∗(t) = P−1x(t)⇔ x(t) = Px∗(t) (4.104)

Hence, mapping the system in the new state vector x∗(t) via the similarity
transformation P, we obtain the following state space representation:{

ẋ∗(t) = P−1APx∗(t) +P−1Bu(t)
y(t) = CPx∗(t)

(4.105)

From the fact that CP =
[
Ip 0p,n−p

]
, it can be seen that the �rst p

components of the new state vector x∗(t) are equal to y(t). Thus we can write:

CP =
[
Ip 0p,n−p

]
⇒ x∗(t) =

[
y(t)

xr(t)

]
(4.106)

As far as the p �rst components of the new state vector x∗(t) are equal
to y(t), they are available through measurements and thus there is no need to
estimate those components. Consequently the reduced-order observer focuses
on the estimation of the remaining state vector xr(t).

The state equation (4.105) can be written as follows:
ẋ∗(t) :=

[
ẏ(t)

ẋr(t)

]
=

[
A∗

11 A∗
12

A∗
21 A∗

22

] [
y(t)

xr(t)

]
+

[
B∗

1

B∗
2

]
u(t)

y(t) =
[
Ip 0p,n−p

] [ y(t)

xr(t)

]
:= C∗x∗(t)

(4.107)

Let's split matrix P as follows, where P1 is a n×pmatrix and P2 a n×(n−p)
matrix:

P =

[
C

C

]−1

:=
[
P1 P2

]
(4.108)

Then we get:
[
A∗

11 A∗
12

A∗
21 A∗

22

]
= P−1AP =

[
CAP1 CAP2

CAP1 CAP2

]
[
B∗

1

B∗
2

]
= P−1B =

[
CB

CB

] (4.109)

To design an observer for xr(t), we use the knowledge that an observer has
the same structure as the system plus the driving feedback term whose role is to
reduce the estimation error to zero4. Hence, an observer for xr(t) reads:

˙̂xr(t) = A∗
21y(t) +A∗

22x̂r(t) +B∗
2u(t) + Lr

(
y(t)− ŷ(t)

)
(4.110)

4Zoran Gajic, Introduction to Linear and Nonlinear Observers, Rutgers University,
https://www.ece.rutgers.edu/�gajic/
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Unfortunately, since y(t) = ŷ(t), the di�erence y(t)− ŷ(t) does not carry any
information about xr(t). Nevertheless, by taking the time derivative of y(t), we
get the �rst equation of (4.107) which carries information about xr(t):

ẏ(t) = A∗
11y(t) +A∗

12xr(t) +B∗
1u(t)

⇒ A∗
12xr(t) = ẏ(t)−A∗

11y(t)−B∗
1u(t)

(4.111)

Regarding y
r
(t) := A∗

12xr(t) as a virtual output of the reduced state
equation, the observer for xr(t) �nally reads:{

˙̂xr(t) = A∗
21y(t) +A∗

22x̂r(t) +B∗
2u(t) + Lr

(
y
r
(t)−A∗

12x̂r(t)
)

y
r
(t) = ẏ(t)−A∗

11y(t)−B∗
1u(t)

(4.112)

Furthermore the dynamics of the error er(t) = xr(t)− x̂r(t) reads as follows:

er(t) = xr(t)− x̂r(t)
⇒ ėr(t) = ẋr(t)− ˙̂xr(t)

= A∗
21y(t) +A∗

22xr(t) +B∗
2u(t)

−
(
A∗

21y(t) +A∗
22x̂r(t) +B∗

2u(t) + Lr

(
y
r
(t)−A∗

12x̂r(t)
))

= (A∗
22 − LrA

∗
12) er(t)

(4.113)
Consequently, designing the observer gain Lr such that the characteristic

polynomial of matrix A∗
22 − LrA

∗
12 is Hurwitz leads to the asymptotic

convergence of the estimates x̂r(t) towards xr(t). Such a design is always
possible as soon as the pair (A∗

22,A
∗
12) is observable, which is a consequence of

the observability of the pair (A,C) (this can be shown using PBH test4).
Since it is not wise to use ẏ(t) because in practice the di�erentiation process

introduces noise, we will estimate vector x̂ry(t) rather than xr(t). Vector x̂ry(t)
is de�ned as follows:

x̂ry(t) := x̂r(t)− Lry(t) (4.114)

From (4.112), we get the following observer for x̂ry(t):

˙̂xry(t) = ˙̂xr(t)− Lrẏ(t)

= A∗
21y(t) +A∗

22x̂r(t) +B∗
2u(t) + Lr

(
y
r
(t)−A∗

12x̂r(t)
)
− Lrẏ(t)

= A∗
21y(t) +A∗

22

(
x̂ry(t) + Lry(t)

)
+B∗

2u(t)

+Lr
(
−A∗

11y(t)−B∗
1u(t)−A∗

12

(
x̂ry(t) + Lry(t)

))
:= Ayy(t) +Aryx̂ry(t) +Buu(t)

(4.115)
where: 

Ay = A∗
21 +A∗

22Lr − LrA
∗
11 − LrA

∗
12Lr

Ary = A∗
22 − LrA

∗
12

Bu = B∗
2 − LrB

∗
1

(4.116)

Assembling the previous results, the estimation of state vector x(t) �nally
reads as follows where the dynamics of x̂ry(t) is given by (4.115):

x̂(t) = Px̂∗(t) = P

[
y(t)

x̂r(t)

]
= P

[
y(t)

x̂ry(t) + Lry(t)

]
(4.117)



Chapter 5

Controller design

5.1 Introduction

Controller enables to obtain stable systems which meet performances
speci�cations. In the case where the full state vector x(t) is available then
controller design involves state feedback. In the more usual case where only
some components of the state vector are available through the output vector
y(t) then controller design involves output feedback in association with a state
observer.

This chapter focuses on controllers design. More speci�cally state feedback
controller for SISO systems in controllable canonical form, state feedback
controller for SISO systems in arbitrary state-space representation, static state
feedback controller and static output feedback controller for MIMO systems
will be presented. We will also present controller with integral action.

5.2 Static state feedback controller

Consider the following state equation where x(t) denotes the state vector and
u(t) the control input:

ẋ(t) = Ax(t) +Bu(t) (5.1)

We will assume in the following that the full state vector x(t) is available
for control.

Let r(t) be a reference input signal. A static state feedback (or full state)
controller computes the control input u(t) as a function of a state-feedback gain
K and a feedforward gain matrix H as follows:

u(t) = Hr(t)−Kx(t) (5.2)

Substituting the control law (5.2) into the state equation (5.1) of the system
yields:

ẋ(t) = (A−BK)x(t) +BHr(t) (5.3)

− The purpose of the controller gain K is at least to assign the eigenvalues of
the closed-loop state matrix A−BK at prede�ned locations. For MIMO
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systems there are additional degrees of freedom which may be used for
others purposes like eigenstructure assignment;

− The purpose of the feedforward gain matrix H is to pick up the desired
�nal value such that the closed-loop system has no steady state error to
any constant value of the reference input r(t).

In steady state conditions we have ẋ(t) = 0 and consequently (5.3) reads:

ẋ(t) = 0⇒ x(t) = − (A−BK)−1BHr(t) (5.4)

On the other hand, using (5.2) the output equation y(t) = Cx(t) +Du(t)
reads:

{
y(t) = Cx(t) +Du(t)

u(t) = −Kx(t) +Hr(t)
⇒ y(t) = (C−DK)x(t) +DHr(t) (5.5)

Inserting (5.4) into (5.5) yields:

y(t) = − (C−DK) (A−BK)−1BHr(t) +DHr(t)

=
(
D− (C−DK) (A−BK)−1B

)
Hr(t)

(5.6)

Then matrixH is computed such that the closed-loop system has no steady
state error to any constant value of the reference input r(t). So imposing
y(t) = r(t) leads to the following expression of the feedforward gain matrix
H:

y(t) = r(t)⇒ H =
(
D− (C−DK) (A−BK)−1B

)−1
(5.7)

In the usual case where matrix D is null the preceding relation simpli�es
as follows:

H = −
(
C (A−BK)−1B

)−1
(5.8)

We will see in section 5.5 that adding an integral action within the controller
is an alternative method which avoid the computation of feedforward gain matrix
H.

In the following we will assume that the system is controllable, or at least
stabilizable, such that it is possible to design a state feedback controller. Indeed
Wonham1 has shown that controllability of an open-loop system is equivalent
to the possibility of assigning an arbitrary set of poles to the transfer matrix
of the closed-loop system, formed by means of suitable linear feedback of the
state.

1Wonham W., On pole assignment in multi-input controllable linear systems, IEEE
Transactions on Automatic Control, vol. 12, no. 6, pp. 660-665, December 1967. doi:
10.1109/TAC.1967.1098739
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5.3 Control of SISO systems

5.3.1 State feedback controller in controllable canonical form

Let

(
A B

C D

)
be an controllable Single-Input Single-Output (SISO) linear

time-invariant system of order n and let χA−BK(s) be an imposed nth order
monic polynomial (a monic polynomial is a polynomial in which the leading
coe�cient, that is the nonzero coe�cient of highest degree, is equal to 1).
Polynomial χA−BK(s) corresponds to the characteristic polynomial of matrix
A − BK. It is formed thanks to the prede�ned eigenvalues λK1 , · · · , λKn

assigned for the dynamics of the controller:

χA−BK(s) = det (sI− (A−BK)) = (s− λK1) · · · (s− λKn) (5.9)

When expanding the preceding product we get:

χA−BK(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 (5.10)

We begin with the case where the system realization

(
A B

C D

)
is the

controllable canonical form. Then matrices Ac and Bc are the following:

Ac =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1



Bc =


0
0
...
0
1



(5.11)

Matrices Cc and D will not be used.

Let Kc be the controller gain matrix when the controllable canonical form
of the system is used. For a SISO system this is a 1× n matrix. Let Ki be the
(scalar) component in the ith row of matrix Kc:

Kc =
[
K1 · · · Kn

]
(5.12)

Using the duality principle we can infer that the expression of the state
feedback controller for SISO systems in controllable canonical form has the
following expression:

Kc = LTo =
[
p0 − a0 · · · pn−1 − an−1

]
(5.13)
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To check it just notice that when the controllable canonical form of the
system is used then matrix Ac −BcKc reads:

Ac −BcKc =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1

−


0
0
...
0
1


[
K1 · · · Kn

]

=



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −K1 −a1 −K2 −a2 −K3 · · · −an−1 −Kn


(5.14)

Since this matrix still remains in the controllable canonical form its
characteristic polynomial is readily written as follows:

χA−BK(s) = det (A−BK)
= det (Ac −BcKc)
= sn + (an−1 +Kn) s

n−1 + · · ·+ (a1 +K2) s+ a0 +K1

(5.15)

Identifying Equations (5.10) and (5.15) leads to the expression of each
component of the controller matrix Kc:

p0 = a0 +K1

p1 = a1 +K2

...
pn−1 = an−1 +Kn

⇔ Kc = [ K1 K2 · · · Kn ]
= [ p0 − a0 p1 − a1 · · · pn−1 − an−1 ]

(5.16)

5.3.2 State feedback controller in arbitrary state-space
representation

When an arbitrary state-space representation is used the system has to be
converted into the controllable canonical form via a similarity transformation.
Let Pc be the matrix of the similarity transformation which enables to get the
controllable canonical form. We get:

x(t) = Pcxc(t)⇔ xc(t) = P−1
c x(t) (5.17)

We have seen in the chapter dedicated to Realization of transfer functions
that P−1

c is a constant nonsingular change of basis matrix which is obtained
through the following relation:

P−1
c = QccQ

−1
c (5.18)

Where:
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− Qc is the controllability matrix in the actual basis:

Qc =
[
B AB · · · An−1B

]
(5.19)

− and Qcc the controllability matrix expressed in the controllable canonical
basis (which is readily obtained through det (sI−A)).

Thus the control law u(t) reads:

u(t) = −Kcxc(t) +Hr(t) = −KcP
−1
c x(t) +Hr(t) (5.20)

That is:

u(t) = −Kx(t) +Hr(t) (5.21)

Where:

K = KcP
−1
c (5.22)

Example 5.1. Design a state feedback controller for the following unstable
plant: 

ẋ(t) =

[
1 0
0 2

]
x(t) +

[
1
2

]
u(t)

y(t) =
[
3 5

]
x(t)

(5.23)

As far as this is a modal (or diagonal) state space representation, plant's
controllability is readily checked by inspecting column of control matrix B:
because there is no null element in the control matrix B we conclude that the
plant is controllable by applying Gilbert's criteria.

The poles of the controller shall be chosen to render the closed-loop stable
and to satisfy some speci�cations. We choose (for example) to locate the poles
of the controller at λK1 = −1 and λK2 = −2.

We will �rst design the controller assuming that we have the controllable
canonical form of the SISO system. The controllable canonical form is readily
obtained through det(sI−A):

det(sI−A) = (s− 1)(s− 2) = s2 − 3 s+ 2 := s2 + a1 s+ a0

⇒ Ac =

[
0 1
−2 3

]
and Bc =

[
0
1

]
(5.24)

On the other hand the characteristic polynomial of the controller is formed
thanks to the prede�ned eigenvalues assigned for the dynamics of the controller:

χA−BK(s) = (s− λK1) (s− λK2) = (s+ 1) (s+ 2)
= s2 + 3 s+ 2 := s2 + p1 s+ p0

(5.25)

Applying relation (5.16) we get:

Kc =
[
K1 K2

]
=
[
p0 − a0 p1 − a1

]
=
[
2− 2 3 + 3

]
=
[
0 6

] (5.26)
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Now let's compute the inverse of the similarity transformation matrix P−1
c

which enables to get the controllable canonical form.

P−1
c = QccQ

−1
c (5.27)

Where:

− Qc is the controllability matrix in the actual basis:

Qc =
[
B AB

]
=

[
1 1
2 4

]
(5.28)

− and Qcc the controllability matrix expressed in the controllable canonical
basis (which is readily obtained through det (sI−A)):

Qcc =
[
Bc AcBc

]
=

[
0 1
1 3

]
(5.29)

Thus:

P−1
c = QccQ

−1
c =

[
0 1
1 3

] [
1 1
2 4

]−1

= 1
2

[
0 1
1 3

] [
4 −1
−2 1

]
= 1

2

[
−2 1
−2 2

] (5.30)

We �nally get:

K = KcP
−1
c =

1

2

[
0 6

] [ −2 1
−2 2

]
=

1

2

[
−12 12

]
=
[
−6 6

]
(5.31)

The feedforward gain matrix H is computed thanks to (5.7) (where D = 0):

H = −
(
C (A−BK)−1B

)−1
= −0.125 (5.32)

■

5.3.3 Ackermann's formula

Ackermann's formula states that the controller gain matrix K of a SISO system
in arbitrary state-space representation can be obtained as the product between
vector qT

c
and the assigned characteristic polynomial χA−BK(s) of matrix A−

KC evaluated at matrix A:

K = qT
c
χA−BK(A) (5.33)

To get this result we �rst recall that similarity transformation generates
equivalent state-space representations. Let Pc be the matrix of the similarity
transformation which enables to get the controllable canonical form. Starting
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from a state-space representations

(
A B

C D

)
in an arbitrary basis, the

controllable canonical form is obtained through the following relations:
Ac = P−1

c APc

Bc = P−1
c B

Cc = CPc

(5.34)

Consequently matrix Ac −BcKc reads:

Ac −BcKc = P−1
c APc −P−1

c BKc

= P−1
c

(
A−BKcP

−1
c

)
Pc

(5.35)

This equation indicates that the controller gain matrix K in arbitrary state-
space representation reads:

K = KcP
−1
c (5.36)

We have seen in the chapter dedicated to Realization of transfer functions
that P−1

c is a constant nonsingular change of basis matrix which is obtained
through the state matrix A and vector qT

c
:

P−1
c =


qT
c

qT
c
A
...

qT
c
An−1

 (5.37)

Vector qT
c
is the last row of the inverse of the controllability matrix Qc:

Q−1
c =


∗
...
∗
qT
c

 where Qc =
[
B AB · · · An−1B

]
(5.38)

Then we recall Cayley�Hamilton theorem. Let χAc(s) be the characteristic
polynomial of the n × n matrix Ac. We write the characteristic polynomial
χAc(s) of matrix Ac as follows:

χAc(s) := det(sI−Ac) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (5.39)

The Cayley�Hamilton theorem states that substituting matrix Ac for s in
the characteristic polynomial χAc(s) of matrix Ac results in the zero matrix2:

χAc(Ac) = 0 = An
c + an−1A

n−1
c + · · ·+ a1Ac + a0I (5.40)

Let χA−BK(s) be the characteristic polynomial of matrix Ac − BcKc. We
have seen that when prede�ned eigenvalues λK1 , · · · , λKn are assigned for the

2https://en.wikipedia.org/wiki/Cayley�Hamilton_theorem
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dynamics of the controller the characteristic polynomial of matrix Ac −BcKc

reads:
χA−BK(s) = det (sI− (Ac −BcKc))

= (s− λK1) · · · (s− λKn)
= sn + pn−1s

n−1 + · · ·+ p1s+ p0

(5.41)

Substituting s for matrix Ac leads to the following relation:

χA−BK(Ac) = An
c + pn−1A

n−1
c + · · ·+ p1Ac + p0I (5.42)

Note that χA−BK(Ac) is not equal to 0 because χA−BK(s) is not the
characteristic polynomial of matrix Ac.

Thanks to Equation (5.16) and the relation pi = ai +Ki we get:

χA−BK(Ac) = An
c + (an−1 +Kn−1)A

n−1
c + · · ·
+ (a1 +K1)Ac + (a0 +K0) I (5.43)

By subtracting Equations (5.40) to (5.43) we get:

χA−BK(Ac) = Kn−1A
n−1
c + · · ·+K1Ac +K0I (5.44)

Due to the fact that coe�cients Ki are scalar we can equivalently write:

χA−BK(Ac) = An−1
c Kn−1 + · · ·+AcK1 + IK0 (5.45)

Let uT be the vector de�ned by:

uT =
[
1 0 · · · 0

]
(5.46)

Due to the special form of matrix Ac we have:

uTAc =
[
0 1 0 · · ·

]
uTA2

c =
[
0 0 1 0 · · ·

]
...
uTAn−1

c =
[
0 · · · 0 1

] (5.47)

Thus multiplying Equation (5.45) by uT leads to the following relation:

uTχA−BK(Ac) =
[
K0 K1 · · · Kn−1

]
= Kc (5.48)

Thus we get the expression of the controller matrix Kc when we use the
controllable canonical form.

We multiply Equation (5.48) by P−1
c and use the fact that

Ak
c =

(
P−1
c APc

)k
= P−1

c AkPc get the expression of the controller gain matrix
K in arbitrary state-space representation:

K = KcP
−1
c

= uTχA−BK(Ac)P
−1
c

= uTχA−BK(AcP
−1
c )

= uTχA−BK(P−1
c PcAcP

−1
c )

= uTP−1
c χA−BK(PcAcP

−1
c )

= uTP−1
c χA−BK(A)

(5.49)
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Because u is the vector de�ned by uT =
[
1 0 · · · 0

]
we get using (5.37):

uTP−1
c = qT

c
(5.50)

Consequently Equation (5.49) reduces to be the Ackermann's formula (5.33):

K = qT
c
χA−BK(A) (5.51)

5.3.4 Invariance of (transmission) zeros under state feedback

It is worth noticing that the zeros of the closed-loop transfer function are the
same than the zeros of the open-loop transfer function when state feedback is
used. In other words, state feedback K just changes the values poles of the
poles, the zeros remaining unchanged.

To get this result, we can use the controllable canonical form to compute
the closed-loop transfer function, Cc (sI−Ac +BcKc)

−1BcH, and notice that
its numerator is independent of both state feedback gain Kc and state matrix
Ac. When the controllable canonical form is used, it is clear that coe�cients
which appear in the numerator of the closed-loop transfer function come from
product CcH and from the last column of the adjugate of the closed-loop state

matrix, which is
[
1 s · · · sn−1

]T
:

(sI−Ac +BcKc)
−1Bc =

 1

det (sI−Ac +BcKc)


∗ ∗ 1
∗ ∗ s
...

...
...

∗ ∗ sn−1





0
...
0
1



⇒ Cc (sI−Ac +BcKc)
−1BcH =

Cc

det (sI−Ac +BcKc)


1
s
...

sn−1

H (5.52)

Consequently state feedback gain Kc, or K in general, does not a�ect the
numerator of the closed-loop transfer function. A practical use of this
observation is that state feedback gain K can NOT be used to change zeros
location in a state feedback loop.

5.4 Static state feedback controller

5.4.1 Roppenecker's formula

We consider the following state-space representation where y(t) ∈ Rp denotes
the measured output signal and u(t) ∈ Rm the control input:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(5.53)
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We will assume in the following that only the output vector y(t) is available
for control.

Let r(t) be a reference input signal. A static output feedback controller
computes the control input u(t) as a function of a state-feedback gain K and a
feedforward gain matrix H as follows:

u(t) = −Ky(t) +Hr(t) (5.54)

Using the output equation y(t) = Cx(t) +Du(t) the control input u(t) can
be expressed as a function of the state vector x(t) and the reference input r(t):

u(t) = −K (Cx(t) +Du(t)) +Hr(t)

⇒ u(t) = (I+KD)−1 (−KCx(t) +Hr(t))
(5.55)

Substituting the control law (5.55) into the state equation (5.53) of the
system reads:

ẋ(t) = Ax(t) +B (I+KD)−1 (−KCx(t) +Hr(t))

=
(
A−B (I+KD)−1KC

)
x(t) +B (I+KD)−1Hr(t)

(5.56)

We denote by Acl the closed-loop state matrix:

Acl = A−B (I+KD)−1KC (5.57)

It is worth noticing that in the special case where the feedforward gain
matrix D is zero (D = 0) and where the output matrix C is equal to identity
(C = I) then the static output feedback controller K reduces to be a static state
feedback controller.

Let λK1 , · · · , λKn be n distinct speci�ed eigenvalues of the closed-loop state
matrix Acl. Furthermore we assume that eigenvalues of matrix A do not shift
(meaning that they are di�erent) the eigenvalues λKi of the closed-loop state
matrix Acl. Let vKi

be an eigenvector of the closed-loop state matrix Acl

corresponding to eigenvalue λKi :(
A−B (I+KD)−1KC

)
vKi

= λKivKi
(5.58)

The preceding relation can be rewritten as follows:

(A− λKiI) vKi
−B (I+KD)−1KCvKi

= 0 (5.59)

Let's p
i
be the parameter vector which is actually the input direction

corresponding to eigenvector vKi
:

p
i
= − (I+KD)−1KCvKi

(5.60)

Combining Equations (5.59) and (5.60) leads to the following relation:

[
A− λKiI B

] [ vKi

p
i

]
= 0 (5.61)
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From (5.61) it is clear that vector

[
vKi

p
i

]
belongs to the kernel of matrix[

A− λKiI B
]
: [

vKi

p
i

]
∈ N

([
A− λKiI B

])
(5.62)

Assuming that the rank of matrix A−λKiI is n, matrix
[
A− λKiI B

]
is

of rank n. For a system with m inputs, B has m columns and (5.61) represents

o system with n linearly independant equations and n+m unknowns

[
vKi

p
i

]
.

Thus we can choose arbitrarym unknowns. In the following, we will assume that
p
i
is arbitrarily chosen. Nevertheless, in general, the m unknowns parameters

can be split indi�erently either on vKi
or p

i
.

Writing (5.61) for all the distinct prede�ned eigenvalues
Λcl = diag(λK1 , · · · , λKp) of the closed-loop state matrix gives:

[
A− λKiI B

] [ vKi

p
i

]
= 0

⇔ AvKi
− vKi

λKi +Bp
i
= 0 ∀ i = 1, · · · , n

(5.63)

This leads to the so-called Sylvester matrix equation:

AV −VΛcl +BP = 0 (5.64)

Where matrices P and V are de�ned as follows:{
P =

[
p
1

. . . p
p

]
= − (I+KD)−1KCV

V =
[
vK1

. . . vKp

] (5.65)

It is clear that as soon as vKi
= − (A− λKiI)

−1Bp
i
then kernel equation

(5.61) is solved. Consequently matrices P and V satisfying Sylvester matrix
equation (5.64) are obtained as follows where m × r parameter matrix P is a
real matrix of rank m: P =

[
p
1
· · · p

p

]
where rank (P) = m

V =
[
W1p1 · · · Wppp

] (5.66)

Where: {
p
i
=
[
pi1 · · · pim

]T
Wi = − (A− λKiI)

−1B
(5.67)

There are p vectors p
i
, i = 1, · · · , p to determine, each of size m, thus m×p

unknowns. Thus the number n of required eigenvalues λKi , i = 1, · · · , n shall
be such that m× p ≥ n.

From the de�nition of matrix P given in (5.65) we get:

P = − (I+KD)−1KCV

⇔ P = − (I+KD)−1KCV
⇔ (I+KD)P = −KCV
⇔ K (CV +DP) = −P

(5.68)
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Usually matrix CV + DP is not square. Consequently the static output
feedback gainK is obtained by taking the pseudo-inverse (CV +DP)† of matrix
CV +DP:

K = −P (CV +DP)†

where (CV +DP)† := (CV +DP)T
(
(CV +DP) (CV +DP)T

)−1

(5.69)

In the special case where matrix CV + DP is square and invertible the
preceding relation reads:

K = −P (CV +DP)−1 (5.70)

Or equivalently:

K = −
[
p
1

. . . p
n

] (
C
[
vK1

. . . vKn

]
+D

[
p
1

. . . p
n

])−1
(5.71)

The preceding relation is the so-called Roppenecker's formula3 to get the
static output feedback gain matrix K.

5.4.2 Comments on Roppenecker's formula

We recall that the n distinct eigenvalues λKi of the closed-loop state matrix and
the corresponding eigenvectors vKi

are related to the parameter vectors p
i
by

relation (5.61) which is reported hereafter:

[
A− λKiI B

] [ vKi

p
i

]
= 0 (5.72)

It is worth noticing the following facts:

− From the relation:

[
A− λKiI B

] [ vKi

p
i

]
= 0 (5.73)

It is clear that each (n+m) × 1 vector

[
vKi

p
i

]
belongs to the kernel of

matrix
[
A− λKiI B

]
. So once any (n+m) × 1 vector which belongs

to the kernel of matrix
[
A− λKiI B

]
has been found, its m bottom

rows are used to form vector parameter p
i
. In the MIMO case several

possibilities are o�ered.

− We recognize in matrix
[
A− λKiI B

]
the key matrix used in the PBH

controllability test;

3G. Roppenecker, On Parametric State Feedback Design, International Journal of Control,
Volume 43, 1986 - Issue 3
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− In the special case of state feedback where D = 0 and C = I then matrix
CV +DP = V where V is a square and invertible matrix. In that case
Equation (5.70) leads to the expression of the static state feedback gain
matrix K:{

C = I
D = 0

⇒ K = −PV−1 = −
[
p
1

. . . p
n

] ([
vK1

. . . vKn

])−1

(5.74)

− If we wish to keep an eigenvalue λi of matrixA within the set of eigenvalues
of the closed-loop state matrix Acl then (A− λKiI) vKi

is equal to zero
because in that case vKi

is also an eigenvector of A:

λKi = λi ⇒ (A− λKiI) vKi
= −Bp

i
= (A− λiI) vKi

= 0 (5.75)

Consequently we have to replace p
i
by 0 and vKi

by eigenvector vi of A
corresponding to λi in the Roppenecker's formula (5.70);

− The static output feedback gain K satisfy the following relation:

K
(
CvKi

+Dp
i

)
= −p

i
(5.76)

Indeed by combining Equations (5.61) and (5.76) we retrieve Equation
(5.58):{

AvKi
+Bp

i
= λKivKi

K
(
CvKi

+Dp
i

)
= −p

i
⇔ p

i
= − (I+KD)−1KCvKi

⇒
(
A−B (I+KD)−1KC

)
vKi

= λKivKi

(5.77)

Conversely we can write the preceding equation as follows:

[
A− λKiI B

] [ vKi

− (I+KD)−1KCvKi

]
= 0 (5.78)

Thus by de�ning parameter vector p
i
as p

i
= − (I+KD)−1KCvKi

we

retrieve K
(
CvKi

+Dp
i

)
= −p

i
which is exactly Equation (5.76).

− In the SISO case where D = 0 and C = I, that is where a state feedback
is assumed, the controller gain matrix K no more depends on parameter
vectors p

i
. Indeed is that case the controller gain matrix K is obtained as

follows:

K =
[
1 · · · 1

][
(A− λK1I)

−1B · · · (A− λKnI)
−1B

]−1
(5.79)
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To get this result we start by observing that in the SISO case whereD = 0
andC = I parameter vector are scalars; they will be denoted pi. Let vector
Ki be de�ned as follows:

Ki = − (A− λKiI)
−1B (5.80)

Then Equation (5.71) reads:

K = −
[
p1 · · · pn

] [
K1p1 · · · Knpn

]−1
(5.81)

Let's rearrange the term
[
K1p1 · · · Knpn

]−1
as follows:

[
K1p1 · · · Knpn

]−1
=

[ K1 · · · Kn

]  p1 0
. . .

0 pn




−1

=

 p1 0
. . .

0 pn


−1 [

K1 · · · Kn

]−1

=


∏

i ̸=1 pi∏n
i=1 pi

0

. . .

0
∏

i ̸=n pi∏n
i=1 pi

 [ K1 · · · Kn

]−1

(5.82)

Multiplying this expression by −
[
p1 · · · pn

]
leads to the expression

of K:

K = −
[
p1 · · · pn

] [
K1p1 · · · Knpn

]−1

= −
[
p1 · · · pn

]


∏
i ̸=1 pi∏n
i=1 pi

0

. . .

0
∏

i ̸=n pi∏n
i=1 pi

 [ K1 · · · Kn

]−1

= −
[
1 · · · 1

] [
K1 · · · Kn

]−1

(5.83)

Using the expression of vector Ki = − (A− λKiI)
−1B provided by

Equation (5.80) we �nally get:

K =
[
1 · · · 1

][
(A− λK1I)

−1B · · · (A− λKnI)
−1B

]−1
(5.84)

We conclude that in the SISO case where D = 0 and C = I, that is where
a state feedback is assumed, the controller gain matrixK no more depends
on parameter vectors p

i
.
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5.4.3 Solving Sylvester equation

The Sylvester equation reads as follows where A ∈ Rn×n, B ∈ Rm×m, C ∈
Rn×m and X ∈ Rn×m is the sought-after solution:

AX+XB+C = 0 (5.85)

Following Peter Benner4, Sylvester equation (5.85) has a unique solution if
and only if α + β ̸= 0 for all α ∈ σ(A) and β ∈ σ(B), where σ(Z) denotes the
spectrum of the matrix Z. In particular, this property holds for stable Sylvester
equations, where both σ(A) and σ(B) lie in the open left half plane. The anti-
stable case, where σ(A) and σ(B) are contained in the open right half plane, is
trivially turned into a stable one by multiplying (5.85) by −1. Furthermore, the
unique solution X of a stable Sylvester equation can be found from the block
upper triangular matrix H as follows4:

H =

[
A C
0 −B

]
⇒ 1

2
(sign(H) + In+m) =

[
0 X
0 I

]
(5.86)

We recall that if H = PJP−1 is a Jordan decomposition of H with
diag(J) = diag(λi) then sign(H) is de�ned as follows:

H = PJP−1 ⇒ sign(H) = P sign(J)P−1 = P diag (sign(λi)) P
−1 (5.87)

For a scalar complex variable λ, the sign function is de�ned as follows:

sign(λ) =

{
+1 if Re(λ) > 0
−1 if Re(λ) < 0

(5.88)

Alternatively, the unique solution of a stable Sylvester matrix equation (5.85)
can be computed as follows5:

X =

∫ ∞

0
eAtC eBt dt (5.89)

5.4.4 Solving general algebraic Riccati and Lyapunov equations

The general algebraic Riccati equation reads as follows where all matrices are
square of dimension n× n:

AX+XB+C+XDX = 0 (5.90)

MatricesA, B, C andD are known whereas matrixX has to be determined.

The general algebraic Lyapunov equation is obtained as a special case of the
algebraic Riccati by setting D = 0.

4Peter Benner, Factorized Solution of Sylvester Equations with Applications in Control,
January 2004

5Zeyad Abdel Aziz Al-Zhour, New techniques for solving some matrix and matrix
di�erential equations, Ain Shams Engineering Journal (2015) 6, 347�354
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The general algebraic Riccati equation can be solved6 by considering the
following 2n× 2n matrix H:

H =

[
B D
−C −A

]
(5.91)

Let the eigenvalues of matrix H be denoted λ1, i = 1, · · · , 2n, and the
corresponding eigenvectors be denoted vi. Furthermore let M be the 2n × 2n
matrix composed of all real eigenvectors of matrix H; for complex conjugate
eigenvectors, the corresponding columns of matrix M are changed into the real
and imaginary parts of such eigenvectors. Note that there are many ways to
form matrix M.

Then we can write the following relation:

HM = MΛ =
[
M1 M2

] [ Λ1 0
0 Λ2

]
(5.92)

Matrix M1 contains the n �rst columns of M whereas matrix M2 contains
the n last columns of M.

Matrices Λ1 and Λ2 are diagonal matrices formed by the eigenvalues of H
as soon as there are distinct; for eigenvalues with multiplicity greater than 1,
the corresponding part in matrix Λ represents the Jordan form.

Thus we have: {
HM1 = M1Λ1

HM2 = M2Λ2
(5.93)

We will focus our attention on the �rst equation and split matrix M1 as
follows:

M1 =

[
M11

M12

]
(5.94)

Using the expression of H in (5.91), the relation HM1 = M1Λ1 reads as
follows:

HM1 = M1Λ1 ⇒
{

BM11 +DM12 = M11Λ1

−CM11 −AM12 = M12Λ1
(5.95)

Assuming that matrix M11 is not singular, we can check that a solution X
of the general algebraic Riccati equation (5.90) reads:

X = M12M
−1
11 (5.96)

6Optimal Control of Singularly Perturbed Linear Systems with Applications: High
Accuracy Techniques, Z. Gajic and M. Lim, Marcel Dekker, New York, 2001
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Indeed:
BM11 +DM12 = M11Λ1

CM11 +AM12 = −M12Λ1

X = M12M
−1
11

⇒ AX+XB+C+XDX = AM12M
−1
11 +M12M

−1
11 B+C

+M12M
−1
11 DM12M

−1
11

= (AM12 +CM11)M
−1
11

+M12M
−1
11 (BM11 +DM12)M

−1
11

= −M12Λ1M
−1
11 +M12M

−1
11 M11Λ1M

−1
11

= 0
(5.97)

It is worth noticing that each selection of eigenvectors within matrix M1

leads to a new solution of the general algebraic Riccati equation (5.90).
Consequently the solution to the general algebraic Riccati equation (5.90) is
not unique. The same statement holds for di�erent choice of matrix M2 and
the corresponding solution of (5.90) obtained from X = M21M

−1
22 .

5.5 Control with integral action

5.5.1 Adding an integrator in the state-space realization

We consider the state-space representation (5.98) where the state vector x is of
dimension n (that is the size of state matrix A). In addition y(t) denotes the
output vector and u(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.98)

In some circumstances it may be helpful to use integral action in the
controller design. This can be achieved by adding to the state vector of the
state-space realization (5.98) the integral of the tracking error eI(t) which is
de�ned as follows where T is a design matrix (usually T = I) and where r(t) is
the reference input signal:

eI(t) =

∫ t

0
T
(
r(τ)− y(τ)

)
dτ (5.99)

As far as the feedforward gain matrix D is zero (D = 0) we get:

ėI(t) = T
(
r(t)− y(t)

)
= Tr(t)−TCx(t) (5.100)

This leads to the following augmented state-space realization:
[
ẋ(t)
ėI(t)

]
=

[
A 0
−TC 0

] [
x(t)
eI(t)

]
+

[
B
0

]
u(t) +

[
0
T

]
r(t)

y(t) =
[
C 0

] [ x(t)
eI(t)

] (5.101)
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The regulation problem deals with the case where r(t) = 0. In that situation
the preceding augmented state-space realization has the same structure than the
state-space realization (5.98). Thus the same techniques may be applied for the
purpose of regulator design.

On the other hand the tracking problem deals with the case where r(t) ̸= 0.
Let's denote xa(t) the augmented state-space vector:

xa(t) =

[
x(t)
eI(t)

]
(5.102)

Thus the augmented state-space realization (5.101) reads:{
ẋa(t) = Aa xa(t) +Ba u(t) +E r(t)
y(t) = Ca xa(t)

(5.103)

Let the control u(t) be chosen as follows (here pre-�lter gain doesn't exists):

u(t) = −Ka xa(t) = −
[
Kp Ki

] [x(t)
eI(t)

]
= −Kp x(t)−Ki eI(t) (5.104)

Obviously, termKp represents the proportional gain of the controller whereas
term Ki represents the integral gain of the controller.

The state space equation of closed-loop system is obtained by setting u(t) =
−Ka xa(t) = −Kp x(t)−Ki eI(t) in (5.101):

d
dt

[
x(t)
eI(t)

]
= (Aa −BaKa)xa(t) +Er(t)

=

[
A−BKp −BKi

−TC 0

] [
x(t)
eI(t)

]
+

[
0
T

]
r(t)

y(t) =
[
C 0

] [x(t)
eI(t)

]
eI(t) = T

∫ t
0

(
r(τ)− y(τ)

)
dτ

(5.105)

The corresponding bloc diagram is shown in Figure 5.1 where
Φa(s) = (sI−Aa)

−1.

5.5.2 Proof of the cancellation of the steady state error through
integral augmentation

In order to proof that integrator cancels the steady state error when r(t) is a
step input, let us compute the �nal value of the error e(t) using the �nal value
theorem where s denotes the Laplace variable:

lim
t→∞

e(t) = lim
s→0

sE(s) (5.106)

When r(t) is a step input with amplitude one, we have:

r(t) = 1 ∀ t ≥ 0⇒ R(s) =
1

s
(5.107)



5.5. Control with integral action 175

Figure 5.1: Plant augmented with integrator

Using the feedback u = −Kaxa the dynamics of the closed-loop system is:

ẋa = (Aa −BaKa)xa +

[
0
T

]
r(t)

⇒ e(t) = T
(
r(t)− y(t)

)
= T

(
r(t)−

[
C 0

] [x
xi

])
= T

(
r(t)−

[
C 0

]
xa
)

(5.108)

Using the Laplace transform, and denoting by I the identity matrix, we get:Xa(s) = (sI−Aa +BaKa)
−1

[
0
T

]
R(s)

E(s) = T
(
R(s)−

[
C 0

]
Xa(s)

) (5.109)

Inserting (5.107) in (5.109) we get:

E(s) = T

(
I−

[
C 0

]
(sI−Aa +BaKa)

−1

[
0
T

])
1

s
(5.110)

Then the �nal value theorem (5.106) takes the following expression:

limt→∞ e(t) = lims→0 sE(s)

= lims→0T

(
I−

[
C 0

]
(sI−Aa +BaKa)

−1

[
0
T

])
= T

(
I−

[
C 0

]
(−Aa +BaKa)

−1

[
0
T

]) (5.111)

Let us focus on the inverse of the matrix −Aa +BaKa. First we write Ka

as Ka =
[
Kp Ki

]
, where Kp and Ki represents respectively the proportional

and the integral gains. Then using (5.101) we get:

−Aa +BaKa =

[
−A 0
TC 0

]
+

[
B
0

] [
Kp Ki

]
=

[
−A+BKp BKi

TC 0

]
(5.112)
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Assuming that X is a square invertible matrix, it can be shown that the

inverse of the matrix

[
X Y
Z 0

]
is the following:

[
X Y
Z 0

]−1

=

[
0 Y (ZY)−1

YT
(
YYT

)−1
W

]
where XY (ZY)−1 +YW = 0 (5.113)

Thus:

(−Aa +BaKa)
−1 =

[
−A+BKp BKi

TC 0

]−1

=

[
0 BKi (TCBKi)

−1

(BKi)
T
(
BKi (BKi)

T
)−1

W

]
(5.114)

And:

(−Aa +BaK)−1

[
0
T

]
=

[
0 BKi (TCBKi)

−1

∗ W

] [
0
T

]
=

[
BKi (TCBKi)

−1T
WT

]
⇒
[
C 0

]
(−Aa +BaK)−1

[
0
T

]
=
[
C 0

] [BKi (TCBKi)
−1T

WT

]
= CBKi (TCBKi)

−1T

(5.115)

Consequently, using (5.115) in (5.111), the �nal value of the error e(t)
becomes:

limt→∞ e(t) = T

(
I−

[
C 0

]
(−Aa +BaKa)

−1

[
0
T

])
= T

(
I−CBKi (TCBKi)

−1T
)

= T−TCBKi (TCBKi)
−1T

= T−T
= 0

(5.116)

As a consequence, the integrator allows to cancel the steady state error
whatever the input step r(t).

5.6 Observer-based controller

5.6.1 Separation principle

We consider the following state-space representation of dimension n (that is the
size of state matrix A) where y(t) denotes the output vector and u(t) the input
vector: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(5.117)
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Figure 5.2: Block diagram of the observer-based controller

When the full state x(t) cannot be measured then it is estimated thanks to
an observer. This leads to an observer-based controller with inputs y(t) and
u(t). The output of the observer-based controller will be denoted uo(t). Its
dynamics reads as follows:{

˙̂x(t) = Ax̂(t) +Bu(t) + L
(
y(t)− (Cx̂(t) +Du(t))

)
uo(t) = Kx̂(t)

(5.118)

Gain matrices L, K and H are degrees of freedom which shall be set to
achieve some performance criteria.

The block diagram corresponding to the observer-based controller is shown
in Figure 5.2.

The estimation error e(t) is de�ned as follows:

e(t) = x(t)− x̂(t) (5.119)

The time derivative of the estimation error reads:

ė(t) = ẋ(t)− ˙̂x(t)
= Ax(t)−Ax̂(t)− L

(
y(t)−Cx̂(t)−Du(t)

)
= Ax(t)−Ax̂(t)− L (Cx(t) +Du(t)−Cx̂(t)−Du(t))
= Ae(t)− LCe(t)
= (A− LC) e(t)

(5.120)

Combining the dynamics of the state vector x(t) in (5.117) and dynamics of
the estimation error e(t), and using the fact that x̂(t) = x(t) − e(t), yields to
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the following state-space representation for the closed-loop system:[
ẋ(t)
ė(t)

]
= Acl

[
x(t)
e(t)

]
+

[
BH
0

]
r(t) (5.121)

where:

Acl =

[
A−BK BK

0 A− LC

]
(5.122)

Gain matrices L and K shall be chosen such that the eigenvalues of matrices
A − BK and A − LC are situated in the left half complex plane so that the
closed-loop system is asymptotically stable.

Furthermore it is worth noticing that matrix is block triangular.
Consequently we can write:

det (sI−Acl) = det

([
sI−A+BK −BK

0 sI−A+ LC

])
= det (sI−A+BK) det (sI−A+ LC) (5.123)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A−BK, that is the state matrix of the
closed-loop system without the observer, and the eigenvalues of matrix A−LC,
that is the state matrix of the closed-loop system without the controller. This
result is known as the separation principle. As a consequence the observer
and the controller can be designed separately: the eigenvalues obtained thanks
to the controller gain K assuming full state feedback are independent of the
eigenvalues obtained thanks to the observer gain L assuming no controller.

Gain matrices L and K shall be chosen such that the eigenvalues of matrices
A − BK and A − LC are situated in the left half complex plane so that the
closed-loop system is asymptotically stable.

Usually observer gain L is chosen such that the eigenvalues of matrixA−LC
are around 5 to 10 times faster than the eigenvalues of matrix A−BK, so that
the state estimation moves towards the actual state as early as possible.

Furthermore the reference input r(t) has no in�uence on the dynamics of
the estimation error e(t). Consequently the feedforward gain matrix H is still
given by Equation (5.7).

5.6.2 Example

Design an output feedback controller for the following unstable plant:
ẋ(t) =

[
1 0
0 2

]
x(t) +

[
1
2

]
u(t)

y(t) =
[
3 5

]
x(t)

(5.124)

The poles of the controller shall be chosen to render the closed-loop stable
and to satisfy some speci�cations. We choose (for example) to locate the poles
of the controller at λK1 = −1 and λK2 = −2.
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First we check that is system is observable and controllable.
We have seen in example 5.1 how to design a state feedback controller. By

applying the separation principle the observer which estimates the state vector
x̂(t) which will feed the controller can be designed separately from the controller.
We have obtained: {

K =
[
−6 6

]
H = −0.125 (5.125)

As mentioned the eigenvalues of the observer are chosen around 5 to 10
times faster than the eigenvalues achieved thanks to the controller. As far as
the closed-loop poles obtained thanks to the controller are located at λK1 = −1
and λK2 = −2 we choose (for example) to locate the poles of the observer at
λL1 = −10 and λL2 = −20.

As described in the chapter dedicated to Observer design, we �rst design
the observer assuming that we have the observable canonical form of the SISO
system. The observable canonical form is readily obtained through det(sI−A):

det(sI−A) = (s− 1)(s− 2) = s2 − 3 s+ 2 := s2 + a1 s+ a0

⇒ Ao =

[
0 −2
1 3

]
and Co =

[
0 1

] (5.126)

On the other hand the characteristic polynomial of the observer is formed
thanks to the prede�ned eigenvalues assigned for the dynamics of the observer:

χA−LC(s) = (s− λL1) (s− λL2) = (s+ 10) (s+ 20)
= s2 + 30 s+ 200 := s2 + p1 s+ p0

(5.127)

Applying relation (4.39) we get:

Lo =

[
L1

L2

]
=

[
p0 − a0
p1 − a1

]
=

[
200− 2
30 + 3

]
=

[
198
33

]
(5.128)

Now let's compute the similarity transformation matrix Po which enables
to get the observable canonical form.

Po = Q−1
o Qoo (5.129)

Where:

− Qo is the observability matrix in the actual basis:

Qo =

[
C
CA

]
=

 3 5[
3 5

] [
1 0
0 2

]  =

[
3 5
3 10

]
(5.130)

− and Qoo the observability matrix expressed in the observable canonical
basis (which is readily obtained through det (sI−A)):

Qoo =

[
Co

CoAo

]
=

 0 1[
0 1

] [
0 −2
1 3

]  =

[
0 1
1 3

]
(5.131)
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Thus:

Po = Q−1
o Qoo =

[
3 5
3 10

]−1 [
0 1
1 3

]
= 1

15

[
10 −5
−3 3

] [
0 1
1 3

]
= 1

15

[
−5 −5
3 6

] (5.132)

We �nally get:

L = PoLo =
1

15

[
−5 −5
3 6

] [
198
33

]
=

[
−77
52.8

]
(5.133)

5.6.3 Feedback controller

It is possible to avoid the need to feed the observer (5.118) with control u(t).
In the alternative design presented hereafter, the output-based controller is feed
by the output y(t) of the plant to be controlled. The counterpart of this design
is that the estimation x̂(t) of the state vector of the plant is now not provided
by the output-based controller. The output of the output-based controller will
be denoted uo(t). Its dynamics reads as follows:

{
ẋc(t) = (A−BK)xc(t) + L

(
y(t)− (C−DK)xc(t)

)
uo(t) = Kxc(t)

(5.134)

The block diagram corresponding to the observer-based controller is shown
in Figure 5.3.

By combining the dynamics of the plant (5.117) and the dynamics of the
output-based controller (5.134), we get the dynamics of the closed-loop system,
which reads as follows:{

u(t) = Hr(t)− uo(t)
y(t) = Cx(t) +Du(t)

⇒
[
ẋ(t)
ẋc(t)

]
= Acl

[
x(t)
xc(t)

]
+

[
BH
LD

]
r(t) (5.135)

where the closed-loop state matrix Acl reads:

Acl =

[
A −BK
LC A−BK− LC

]
(5.136)

The closed-loop eigenvalues are the roots of the characteristic polynomial
χAcl

(s) de�ned as follows:

χAcl
(s) = det (sI−Acl) = det

([
sI−A BK
−LC sI−A+BK+ LC

])
(5.137)

Now we will use the fact that adding one column / row to another column /
row does not change the value of the determinant. Thus subtracting the second

row to the �rst row of

[
sI−A BK
−LC sI−A+BK+ LC

]
leads to the following

expression of χAcl
(s):

χAcl
(s) = det

([
sI−A+ LC −sI+A− LC
−LC sI−A+BK+ LC

])
(5.138)
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Figure 5.3: Block diagram of the output-based controller

Now adding the �rst column to the second column of[
sI−A+ LC −sI+A− LC
−LC sI−A+BK+ LC

]
leads to the following expression of

χAcl
(s):

χAcl
(s) = det

([
sI−A+ LC 0
−LC sI−A+BK

])
(5.139)

Furthermore it is worth noticing that matrix is block triangular.
Consequently we can write:

det (sI−Acl) = det

([
sI−A+BK −BK

0 sI−A+ LC

])
= det (sI−A+BK) det (sI−A+ LC) (5.140)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A−BK, that is the state matrix of the
closed-loop system assuming L = 0, and the eigenvalues of matrix A − LC,
that is the state matrix of the closed-loop system assuming K = 0. This result
is known (again) as the separation principle. As a consequence, gains K and
L can be designed separately: the eigenvalues obtained thanks to the gain K
assuming L = 0 are independent of the eigenvalues obtained thanks to the gain
L assuming assuming K = 0.

Furthermore the reference input r(t) has no in�uence on the dynamics of
the closed-loop. Consequently matrix H is still given by Equation (5.7).

Consequently, the block diagram in Figure 5.3 is equivalent to the block
diagram in Figure 5.4 where the controller C(s) is put in the feedback loop.
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Figure 5.4: Feedback loop with C(s)

Figure 5.5: Unity feedback loop

Assuming that D = 0, the transfer function of the output-based controller
can be obtained by taking the Laplace transform (assuming no initial conditions)
of its state space representation:{

ẋc(t) = (A−BK)xc(t) + L
(
y(t)−Cxc(t)

)
uo(t) = Kxc(t)

(5.141)

We get:
Uo(s) = C(s)Y (s) (5.142)

Where:
C(s) = K (sI−A+BK+ LC)−1 L (5.143)

5.6.4 Unity feedback loop

We consider now the unity feedback loop shown in Figure 5.5. The realization
of the plant transfer function F (s) is assumed to be the following:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.144)

On the other hand, the realization of the controller transfer function C(s)
is assumed to be the following, where gain matrices K and L are the design
parameters of the controller :{

ẋc(t) = (A−BK− LC)xc(t) + Le(t)
u(t) = Kxc(t)

(5.145)

To get the transfer function of the controller we take the Laplace transform
(assuming no initial conditions) of its state space representation (5.145). We
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get:

U(s) = C(s)e(s) (5.146)

Where:

C(s) = K (sI−A+BK+ LC)−1 L (5.147)

In order to get the closed-loop realization, we get the following relations
from Figure 5.5 : {

e(t) = r(t)− y(t) = r(t)−Cx(t)

u(t) = Kxc(t)
(5.148)

Thus the state space realization of the unity feedback loop reads:
ẋ(t) = Ax(t) +BKxc(t)
ẋc(t) = (A−BK− LC)xc(t) + L (r(t)−Cx(t))
y(t) = Cx(t)

(5.149)

That is:
[
ẋ(t)
ẋc(t)

]
=

[
A BK
−LC A−BK− LC

] [
x(t)
xc(t)

]
+

[
0
L

]
r(t)

y(t) =
[
C 0

] [ x(t)
xc(t)

] (5.150)

It is worth noticing that the following relations hold:

P−1
1

[
A BK
−LC A−BK− LC

]
P1 =

[
A−BK BK

0 A− LC

]

where


P−1

1 =

[
I 0
I I

]
P1 =

[
I 0
−I I

] (5.151)

Let ξ
1
be another state vector de�ned as follows:[

x(t)
xc(t)

]
= P1ξ1 ⇔ ξ

1
= P−1

1

[
x(t)
xc(t)

]
(5.152)

Then state space representation (5.150) becomes:
ξ̇
1
(t) = P−1

1

[
A BK
−LC A−BK− LC

]
P1ξ1(t) +P−1

1

[
0
L

]
r(t)

=

[
A−BK BK

0 A− LC

]
ξ
1
(t) +

[
0
L

]
r(t)

y(t) =
[
C 0

]
P1ξ1(t) =

[
C 0

]
ξ
1
(t)

(5.153)
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Using the fact that the state space matrix is now block triangular, the
characteristic polynomial χAcl

(s) of the unity feedback loop reads as follows:

χAcl
(s) = det

(
sI−

[
A−BK BK

0 A− LC

])
= det

([
sI−A+BK −BK

0 sI−A+ LC

])
= det (sI−A+ LC) det (sI−A+BK)

(5.154)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A−BK, that is the state matrix of the
closed-loop system assuming L = 0, and the eigenvalues of matrix A − LC,
that is the state matrix of the closed-loop system assuming K = 0. This result
is known (again) as the separation principle. As a consequence, gains K and
L can be designed separately: the eigenvalues obtained thanks to the gain K
assuming L = 0 are independent of the eigenvalues obtained thanks to the gain
L assuming assuming K = 0.

As far as the closed-loop transfer function G(s) is concerned, we get from
(5.153):

G(s) =
[
C 0

](
sI−

[
A−BK BK

0 A− LC

])−1 [
0
L

]
=
[
C 0

] [ sI−A+BK −BK
0 sI−A+ LC

]−1 [
0
L

]
=
[
C 0

] [ (sI−A+BK)−1 X(s)

0 (sI−A+ LC)−1

] [
0
L

] (5.155)

where:
X(s) = (sI−A+BK)−1BK (sI−A+ LC)−1 (5.156)

We �nally get:

G(s) = CX(s)L

=
(
C (sI−A+BK)−1 B

)(
K (sI−A+ LC)−1 L

) (5.157)

The preceding relation indicates that the closed-loop transfer function G(s)
can be seen as the series interconnection between transfer functions G1(s) and
G2(s):

G(s) = G1(s)G2(s) where

{
G1(s) = C (sI−A+BK)−1 B

G2(s) = K (sI−A+ LC)−1 L
(5.158)

Similar results can be obtained through the following alternative relation:

P−1
2

[
A BK
−LC A−BK− LC

]
P2 =

[
A− LC 0
−LC A−BK

]

where


P−1

2 =

[
I I
0 I

]
P2 =

[
I −I
0 I

] (5.159)
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5.7 Static output feedback controller

5.7.1 Partial eigenvalues assignment

We consider in this section the following linear dynamical system where
u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp. Furthermore we assume that (A,B) is
controllable and that (A,C) is observable:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.160)

Let's consider a static output feedback where the control u(t) is proportional
to output y(t) through gain K as well as reference input r(t):

u(t) = −Ky(t) +Hr(t) (5.161)

Let Λ be the following diagonal matrix:

Λ =

[
Λp 0
0 Λn−p

]
where

{
Λp = diag

(
λK1 , · · · , λKp

)
Λn−p = diag

(
λKp+1 , · · · , λKn

) (5.162)

It is assumed that Λp and Λn−p are self-conjugate sets and that Λ contains
distinct eigenvalues. The problem considered is to �nd a real matrix K such
that the eigenvalues of A−BKC are those of the set Λ.

Brasch & Pearson11 have shown that the transfer function of the closed-loop
plant can be written as follows:

G(s) = C (sI−A+BKC)−1BH

=
(
I+C (sI−A)−1BK

)−1
C (sI−A)−1BH

= C (sI−A)−1B
(
I+KC (sI−A)−1B

)−1
H

(5.163)

Then, given any set Λp there exists a static output feedback gain K such
that the eigenvalues of A − BKC are precisely the elements of the set Λp.
Furthermore, in view of (5.163), the same methodology than in section 5.12.2
can be applied to compute K.

Let Nol(s) := adj (sI−A)B ∈ Rn×m, where adj (sI−A) stands for the
adjugate matrix of sI − A, and D(s) := det (sI−A) is the determinant of
sI−A, that is the characteristic polynomial of the open-loop plant :

(sI−A)−1B =
adj (sI−A)B

det (sI−A)
:=

Nol(s)

D(s)
(5.164)

Consequently, we get from (5.163) the expression of the characteristic
polynomial of the closed-loop transfer function G(s):

det (sIn −A+BKC) = det (D(s)Im +KCNol(s)) (5.165)

As soon as λKi is a desired closed-loop eigenvalue then the following relation
holds:

det (D(s)Im +KCNol(s))|s=λKi
= 0 (5.166)
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Consequently it is desired that matrix D(s)I+KCNol(s)|s=λKi
is singular.

Following Shieh & al.7, let ωi ̸= 0 be a vector of size m × 1, where m is the
number of columns of B (that is the size of the input vector u(t) of the plant),
belonging to the kernel of matrix D(s)I+KCNol(s)|s=λKi

. Thus changing s

by λKi we can write:

(D(λKi)Im +KCNol(λKi))ωi = 0 (5.167)

Actually, vector ωi ̸= 0 ∈ Cm is used as a design parameter.
In order to get gain K the preceding relation is rewritten as follows:

KCNol(λKi)ωi = −D(λKi)ωi (5.168)

This relation does not lead to the value of gain K as soon as Nol(λKi)ωi is a
vector which is not invertible. Nevertheless assuming that n denotes the order
of state matrix A we can apply this relation for the p closed-loop eigenvalues
given by Λp. We get:

KC
[
vK1

· · · vKp

]
= −

[
p
1
· · · p

p

]
(5.169)

Where vectors vKi
and p

i
are given by:{

vKi
= Nol(λKi)ωi

p
i
= D(λKi)ωi

∀ i = 1, · · · , p (5.170)

We �nally retrieve expression (5.74) of the static state feedback gain matrix
K to get the p closed-loop eigenvalues given by Λp:

K = −P (CV)−1 (5.171)

where:{
P =

[
D(λK1)ω1 · · · D(λKp)ωp

]
:=
[
p
1
· · · p

p

]
V =

[
Nol(λK1)ω1 · · · Nol(λKp)ωp

]
:=
[
vK1

· · · vKp

] (5.172)

As shown by Duan8, by duality (5.171) can be changed as follows:

K = −P
(
BTV

)−1
(5.173)

Then relation (5.172) still holds when vectors vKi
and p

i
are de�ned as

follows where vector νi ̸= 0 ∈ Cp is used as a design parameter:{
vKi

= Nd
ol(λKi) νi

p
i
= Dd(λKi) νi

∀ i = 1, · · · ,m (5.174)

7L. S. Shieh, H. M. Dib and R. E. Yates, Sequential design of linear quadratic state
regulators via the optimal root-locus techniques, IEE Proceedings D - Control Theory and
Applications, vol. 135, no. 4, pp. 289-294, July 1988.

8G. R. Duan, Parametric eigenstructure assignment via output feedback based on singular
value decompositions, Proceedings of the 40th IEEE Conference on Decision and Control (Cat.
No.01CH37228), Orlando, FL, USA, 2001, pp. 2665-2670 vol.3.
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where Nd
ol(s) := adj

(
sI−AT

)
CT ∈ Rn×p, where adj

(
sI−AT

)
stands for

the adjugate matrix of sI−AT , and Dd(s) := det
(
sI−AT

)
is the determinant

of sI−AT , that is the characteristic polynomial of the dual plant :

(
sI−AT

)−1
CT =

adj
(
sI−AT

)
CT

det (sI−AT )
:=

Nd
ol(s)

Dd(s)
(5.175)

Furthermore, and assuming that rank (B) = m and rank (C) = p, the
remaining n − p eigenvalues of the closed-loop matrix A − BKC can be
achieved by selecting parameter vectors ωi ̸= 0 and νj ̸= 0 such that the
following constraints hold:

νTj Nji ωi = 0 where

{
ωi ̸= 0 ∈ Cm×1, i = 1, · · · , p
νj ̸= 0 ∈ Cp×1, j = p+ 1, · · · , n (5.176)

where p×m matrix Nji is de�ned as follows:

Nji =
(
Nd
ol(λKj )

)T
Nol(λKi) (5.177)

Matrices Nd
ol(λKi) and Nol(λKj ) are de�ned in (5.164) and (5.175).

The last component of each parameter vectors as follows is set as follows:

− If the eigenvalue λKi is real, the last component of parameter vectors ωi
and νi is set to 1 ;

− If the eigenvalue λKi and λKj are complex conjugate, the last component
of parameter vectors ωi and νi is set to 1+ j whereas the last component
of parameter vectors ωj and νj is set to 1− j;

− More generally, Duan8 has shown that to ful�ll (5.176) parameter vectors
ωi and νi are real as soon as λKi is real. But if λKi and λKj are complex
conjugate, that is λKi = λ̄Kj , then ωi = ω̄j and νi = ν̄j .

Alexandridis & al.9 have shown that given a set Λ of n eigenvalues λKi for
the closed-loop system, we have to determine p parameter vectors ωi such that
there exits n − p parameter vectors νi which solve the set of bilinear algebraic
equations (5.176).

From (5.176) there is p× (n−p) equality constraints which shall be ful�lled.
On the other hand, p parameter vectors ωi with m− 1 free parameters (the last
component is set) and n−p parameter vectors νj with p−1 free parameters (the
last component is set) have to be found. A necessary condition for constraints
(5.176) to be solvable is that the number of equations must be equal or less than
the sum of the free parameters:

p× (n− p) ≤ p× (m− 1) + (n− p)× (p− 1)⇔ m× p ≥ n (5.178)

9A. T. Alexandridis and P. N. Paraskevopoulos, A new approach to eigenstructure
assignment by output feedback, IEEE Transactions on Automatic Control, vol. 41, no. 7,
pp. 1046-1050, July 1996
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Thus a necessary condition for this set to be solvable is that m × p ≥ n.
However the condition m × p ≥ n does not assure that a solution exists (it is
not a su�cient condition).

Furthermore, in the particular case where m+ p ≥ n+1, parameter vectors
νj , j = p + 1, · · · , n can be arbitrarily set. In that case the set of equations
(5.176) reduce to a linear system of algebraic equations with ωi, i = 1, · · · , p as
unknown parameters.

As mentioned by Duan8, an e�cient manner to solve constraints (5.176) is
to use a Singular Value Decomposition (SVD) of matrices Nji which reads as
follows: 

Nji = UjΣjiV
H
i

Σji =

[
Λq 0
0 0

]

Λq =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . . . . .

0 0 0 σq


(5.179)

where:
Uj and Vi are unitary matrices
σi ∈ R+ ∀i = 1, 2, · · · , q
σ1 ≥ σ2 ≥ · · · ≥ σq > 0
q = min(m, p) assuming that Nji has no eigenvalue equal to 0

(5.180)

In all cases, and assuming that ωi and possibly νj have be chosen such that
det (CV) ̸= 0, static output feedback K is computed thanks to (5.171).

5.7.2 Changing PID controller into static output feedback

We present hereafter some results provided by Zheng & al.10 which transforms
a PID controller to static output feedback.

We consider the following linear time-invariant system:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.181)

And the following PID controller where matrices Kp, Ki and Kd have to be
designed:

u(t) = −
(
Kp e(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t)

)
(5.182)

where:
e(t) = y(t)− r(t) (5.183)

Let's denote xa(t) the augmented state-space vector de�ned as follows:

xa(t) =

[
x(t)∫ t

0 e(τ)dτ

]
(5.184)

10Zheng, F., Wang, Q.-G. & Lee, T. H. (2002). On the design of multivariable PID
controllers via LMI approach. Automatica 38, 517-526
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Thus:

ẋa(t) = Aaxa(t) +Bau(t) +

[
0
−I

]
r(t) (5.185)

where: 
Aa =

[
A 0
C 0

]
Ba =

[
B
0

] (5.186)

Furthermore, assuming that ṙ(t) = 0, we have:

ṙ(t) = 0⇒ d

dt
e(t) = Cẋ(t) = CAx(t) +CBu(t) (5.187)

Using the de�nition of xa(t), the PID controller reads:

u(t) = −
(
Kp e(t) +Ki

∫ t
0 e(τ)dτ +Kd

d
dte(t)

)
= −KpCx(t) +KpCr(t)−Ki

d
dte(t)−Kd (CAx(t) +CBu(t))

= −Kp

[
C 0

]
xa(t)−Ki

[
0 I

]
xa(t)−Kd

[
CA 0

]
xa(t)

−KdCBu(t) +KpCr(t)

= −
[
Kp Ki Kd

]  C 0
0 I

CA 0

xa(t)−KdCBu(t) +KpCr(t)

(5.188)
We will assume that I+KdCB is invertible and de�ne Ca andKa as follows:

Ca =

 C 0
0 I

CA 0


Ka = (I+KdCB)−1 [ Kp Ki Kd

] (5.189)

Let K̃p, K̃i and K̃d be de�ned as follows:
K̃p = (I+KdCB)−1Kp

K̃i = (I+KdCB)−1Ki

K̃d = (I+KdCB)−1Kd

(5.190)

Assuming that K̃p, K̃i and K̃d are known, gainsKp, Ki andKd are obtained

as follows where it can be shown10 that matrix I−CBK̃d is always invertible:
Kd = K̃d

(
I−CBK̃d

)−1

Kp = (I+KdCB) K̃p

Ki = (I+KdCB) K̃i

(5.191)

Thus the problem of PID controller design is changed into the following
static output feedback problem:

ẋa(t) = Aaxa(t) +Bau(t)
y
a
(t) = Caxa(t)

u(t) = −Kaya(t) + (I+KdCB)−1KpCr(t)

(5.192)
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It is worth noticing that the same results are obtained, but without the
assumption that ṙ(t) = 0, when a PI-D controller is used; for such a controller
the term multiplied by Kd is y(t) rather than e(t):

u(t) = −
(
Kp e(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
y(t)

)
(5.193)

5.7.3 Adding integrators, controllability and observability
indexes

We consider the following controllable and observable state-space representation
where the state vector x is of dimension n (that is the size of state matrix A).
In addition y(t) denotes the output vector and u(t) the input vector. We will
assume that the feedforward gain matrix D is zero (D = 0):{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.194)

Brasch & Pearson11 have computed the number ni of integrators that can
be added to increase the size of the output vector:

ni = min(pc − 1, po − 1) (5.195)

where pc is the controllability index of the plant and po the observability index
of the plant.

The controllability index pc of the plant is the smallest integers such that:

rank
([

B AB · · · Apc−1B
])

= n (5.196)

Similarly, the observability index po of the augmented plant is the smallest
integers such that:

rank




C
CA
...

CApo−1


 = n (5.197)

The compensator in cascade with the plant will be taken to be ni integrations
of the component yi(t) = Cix(t) of the output vector y(t) of the plant:

ẋi,1(t) = yi(t) = Cix(t)
...

ẋi,ni(t) = xi,ni−1(t)

(5.198)

Furthermore the control u(t) of the augmented plant, that is the plant and
the ni integrators, will be taken to be the actual input u(t) of the plant and the

11F. Brasch and J. Pearson, Pole placement using dynamic compensators, IEEE
Transactions on Automatic Control, vol. 15, no. 1, pp. 34-43, February 1970.
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ni integrations of the output yi(t) of the plant:

u(t) =


u(t)
xi,1(t)

...
xi,ni(t)

 (5.199)

Then we de�ne matrices Ani , Bni and Cni of the augmented plant as follows
where 0ni is the null matrix of size ni and Ini is the identity matrix of size ni:

Ani =

[
A 0

0 0ni

]
Bni =

[
B 0

0 Ini

]
Cni =

[
C 0

0 Ini

] (5.200)

Alternatively matrices Ani , Bni and Cni of the augmented plant can be
de�ned as follows where 0p×r is the null matrix of size p × r and Ini is the
identity matrix of size ni:

Ani =

 A 0

Ci 01×ni

0(ni−1)×n Ini−1

... 0(ni−1)×1


Bni =

[
B

0

]
Cni =

[
C 0

0 Ini

]
(5.201)

The interest of the preceding state space representation of the augmented
plant is that its input vector uni

(t) is the same than the input vector u(t) of the
actual plant :

uni
(t) = u(t) (5.202)

5.8 Dynamical output feedback controller

5.8.1 From dynamical output feedback to observer-based
control

Again we consider the state-space representation (5.203) where the state vector
x is of dimension n (that is the size of state matrix A). In addition y(t) denotes
the output vector and u(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.203)
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Figure 5.6: Plant with dynamic compensator

Following Radman12, we assume that this system is controllable and
observable and is controlled as shown in Figure 5.6 by a dynamical output
feedback controller C(s) of dimension nc (that is the size of Ac) whose state
space representation reads:{

ẋc(t) = Acxc(t) +Bcyy(t) +Bcrr(t)

u(t) = Ccxc(t) +Dcyy(t) +Dcrr(t)
(5.204)

Assuming that compensator C(s) has the same dimension than plant F(s),
that is nc = n, and from the following settings:

Bcy = L
Bcr = B
Cc = −K
Dcy = 0
Dcr = I

(5.205)

We get: {
ẋc(t) = Acxc(t) + Ly(t) +Br(t)

u(t) = −Kxc(t) + r(t)
(5.206)

From the second relation we get r(t) = u(t) + Kxc(t). Thus the previous
state space representation reads:{

ẋc(t) = (Ac +BK)xc(t) +Bu(t) + Ly(t)

u(t) = −Kxc(t) + r(t)
(5.207)

Thus the dynamical output feedback controller C(s) can be seen as an
observer-based controller with gain K that uses xc(t) as an estimate of the
plant state x(t).

5.8.2 Dynamical output feedback

We now assume that plant F(s) is controlled by the dynamical output feedback
controller C(s) de�ned in (5.204) where nc ̸= n (nc is the size of Ac):

12G. Radman, Design of a dynamic compensator for complete pole-zero placement, The
Twentieth Southeastern Symposium on System Theory, Charlotte, NC, USA, 1988, pp. 176-
177
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{
ẋc(t) = Acxc(t) +Bcyy(t) +Bcrr(t)

u(t) = Ccxc(t) +Dcyy(t) +Dcrr(t)
(5.208)

It is worth noticing that we retrieve the static output feedback controller:

u(t) = Hr(t)−Kcy(t) (5.209)

When setting: 
Ac = Bcy = Bcr = Cc = 0
Dcy = −Kc

Dcr = H
(5.210)

When the dynamical output feedback controller is of order nc ≤ n the
design problem can be bring back to a static output feedback controller13 by
introducing a new control v(t) de�ned by:

v(t) = ẋc(t) (5.211)

and by considering the following augmented output vector y
a
(t), input vector

ua(t) and state vector xa(t):

xa(t) =

[
x(t)
xc(t)

]
ua(t) =

[
u(t)
v(t)

]
y
a
(t) =

[
y(t)

xc(t)

] (5.212)

Then the augmented equivalent open-loop system reads:
[
ẋ(t)
ẋc(t)

]
=

[
A 0
0 0

] [
x(t)
xc(t)

]
+

[
B 0
0 I

] [
u(t)
v(t)

]
[
y(t)

xc(t)

]
=

[
C 0
0 I

] [
x(t)
xc(t)

] (5.213)

That is in a more compact form:{
ẋa(t) = Aaxa(t) +Baua(t)
y
a
(t) = Caxa(t)

(5.214)

Where: 

Aa =

[
A 0
0 0

]
Ba =

[
B 0
0 I

]
Ca =

[
C 0
0 I

] (5.215)

13V.L. Syrmos, C. Abdallah, P. Dorato, Static Output Feedback: a Survey, Proceedings of
the 33rd IEEE Conference on Decision and Control, 1994
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It is worth noticing that the dynamical output feedback controller C(s)
de�ned in (5.204) becomes static in the augmented state-space:[

u(t)
v(t)

]
=

[
Dcy Cc

Bcy Ac

] [
y(t)

xc(t)

]
+

[
Dcr

Bcr

]
r(t) (5.216)

That is in a more compact form:

ua(t) = −Kaya(t) +Har(t) (5.217)

Where: 
Ka = −

[
Dcy Cc

Bcy Ac

]
Ha =

[
Dcr

Bcr

] (5.218)

Assuming that u(t) is of dimension m, x(t) is of dimension n, xc(t) is of
dimension nc and y(t) is of dimension p we conclude that:

− Aa is a square matrix of dimension (n+ nc);

− Ba is a matrix of size (n+ nc)× (m+ nc);

− Ca is a matrix of size (p+ nc)× (n+ nc);

− Ka is a matrix of size (m+ nc)× (p+ nc);

If we wish to apply the Roppenecker's formula (5.71) to set the static output
feedback gain Ka so that np prede�ned closed-loop eigenvalues are achieved, we
have to notice that matrix CaVa is a (p+nc)×np matrix. Consequently matrix
CaVa is square and possibly invertible as soon as:

p+ nc = np (5.219)

− In the case of state feedback we have nc = 0 and p = n thus the number
of eigenvalues which can be prede�ned is np = n.

− In the case of output feedback the number np of eigenvalues which can be
prede�ned is obviously lower or equal to the size n+nc of the augmented
state matrix Aa:

np ≤ n+ nc (5.220)

Assuming p + nc = np so that CaVa is a square matrix we conclude that
there are n− p remaining eigenvalues whose location is not controlled through
output feedback.

Using the relations ua(t) = −Kaya(t) + Har(t) and y
a
(t) = Caxa(t) the

dynamics of the closed-loop system reads:

ẋa(t) = Aaxa(t) +Baua(t)

= Aaxa(t) +Ba

(
−Kaya(t) +Har(t)

)
= (Aa −BaKaCa)xa(t) +BaHar(t)

(5.221)



5.9. Mode decoupling controller 195

The product BaKaCa expands as follows:

BaKaCa =

[
B 0
0 I

] [
Dcy Cc

Bcy Ac

] [
C 0
0 I

]
=

[
B 0
0 I

] [
DcyC Cc

BcyC Ac

]
=

[
BDcyC BCc

BcyC Ac

] (5.222)

And consequently Aa −BaKaCa reads:

Aa −BaKaCa =

[
A−BDcyC −BCc

−BcyC −Ac

]
(5.223)

The transfer function G(s) of the closed-loop system between the output
vector y(t) and the reference input vector r(t) reads:

y(t) = G(s)r(t) (5.224)

Where:

G(s) =
[
C 0

]
(sI− (Aa −BaKaCa))

−1BaHa

=
[
C 0

]
(sI− (Aa −BaKaCa))

−1

[
BDcr

Bcr

]
=
[
C 0

] [ sI− (A−BDcyC) BCc

BcyC sI+Ac

]−1 [
BDcr

Bcr

] (5.225)

5.9 Mode decoupling controller

5.9.1 Eigenstructure assignment

We consider the following state-space representation of a controllable and
observable system where u(t) ∈ Rm denotes the control input, x(t) ∈ Rn the
state vector and y(t) ∈ Rp the output vector:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.226)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.
Assume the following state feedback control:

u(t) = −Kx(t) + r(t) (5.227)

Then the closed-loop system reads:{
ẋ(t) = (A−BK)x(t) +Br(t)
y(t) = Cx(t)

(5.228)

Similarly to the open-loop case the transfer function GK(s) of the closed-
loop system when the control u(t) is −Kx(t) + r(t) reads:

Y (s) = GK(s)R(s) (5.229)
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Figure 5.7: Modal decomposition of a transfer function

Where:
GK(s) = C (sI− (A−BK))−1B (5.230)

As in the open-loop case the transfer function GK(s) of the closed-loop
system may be expressed as a function of the closed-loop eigenvalues λKi and
the left and right eigenvectors of matrixA−BK. Assuming that matrixA−BK
is diagonalizable we have:

GK(s) = C

(
n∑
i=1

vKi
wTKi

s− λKi

)
B (5.231)

Figure 5.7 presents the modal decomposition of the transfer function where
xm(t) is the state vector expressed in the modal basis and where matrices Λcl,
P and P−1 are de�ned as follows:

A−BK = PΛclP
−1 where



Λcl =

 λK1

. . .

λKn


P =

[
vK1

· · · vKn

]
P−1 = PT =

 wTK1

...
wTKn


(5.232)

Vector vKi
is a right eigenvector corresponding to eigenvalue λKi : it is a real

vector if the eigenvalue λKi is real, a complex vector otherwise.
The components of the desired eigenvector vKi

can be used for decoupling.
Indeed we can see from the modal decomposition of the transfer function
provided in (5.231) that:

− Mode λKi will not appear in the jth component of output vector y(t) if

the following relation holds where cTj represents the jth row of C:

cTj vKi
= 0 (5.233)

− Alternatively mode λKi will not be excited by the jth component of
control vector u(t) if the following relation holds where bj represents the

jth column of B:
wTKi

bj = 0 (5.234)
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5.9.2 Design procedure

We consider the following state-space representation of a controllable and
observable system where u(t) ∈ Rm denotes the control input, x(t) ∈ Rn the
state vector and y(t) ∈ Rp the output vector:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.235)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.
Assume the following state feedback control:

u(t) = −Kx(t) + r(t) (5.236)

Then the closed-loop system reads:{
ẋ(t) = (A−BK)x(t) +Br(t)
y(t) = Cx(t)

(5.237)

The following design procedure for mode decoupling and eigenstructure
assignment has been suggested by Chouaib and Pradin14

− Assuming that state matrixA is of order n and that (A,B) is controllable,
we de�ne n closed-loop eigenvalues λK1 , · · · , λKn . Thus for each closed-
loop eigenvalue λKi , and denoting vKi

the corresponding eigenvector, we
shall have:

(A−BK) vKi
= λKivKi

⇔
[
λKiI−A B

] [ vKi

K vKi

]
= 0 (5.238)

− Furthermore assume that mode λKi shall not appear in the jth component
of output vector y(t). Then the following relation shall hold where cTj
represents the jth row of C:

cTj vKi
= 0 (5.239)

Matrix Si is then de�ned as follows:

Si =

[
λKiI−A B

cTj 0

]
i = 1, · · · , n (5.240)

− Then compute matrix NSi whose columns constitute a basis of the right
null-space of Si:

SiNSi = 0 (5.241)

It is worth noticing that matrix NSi can be obtained through a singular
value decomposition of matrix Si

15. Indeed singular value decomposition

14I. Chouaib and B. Pradin, On mode decoupling and minimum sensitivity
by eigenstructure assignment, Electrotechnical Conference, 1994. Proceedings., 7th
Mediterranean, Antalya, 1994, pp. 663-666 vol.2.

15P. Kocsis, R. Fonod, Eigenstructure Decoupling in State Feedback Control Design, ATP
Journal plus, HMH s.r.o., 2012, ATP Journal plus, 2, pp.34-39. <hal-00847146>
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of matrix Si leads to the following decomposition where UiU
T
i = I and

ViV
T
i = I:

Si = Ui

 σi,1
. . . 0

σi,n

VT
i (5.242)

Denoting Σi =

 σi,1
. . .

σi,n

 we get:

Si = Ui

[
Σi 0

]
VT
i

⇔ SiVi = Ui

[
Σi 0

]
=
[
UiΣi 0

] (5.243)

Let vi,1, vi,2, · · · , vi,n+m be the vectors which form matrix Vi:

Vi =
[
vi,1 · · · vi,n vi,n+1 · · · vi,n+m

]
(5.244)

From (5.243) it is clear that the set of vectors vi,n+1, · · · , vi,n+m satisfy
the following relation:

Si vi,j = 0 ∀ j = n+ 1, · · · , n+m (5.245)

Consequently matrix NSi can be de�ned as follows:

NSi =
[
vi,n+1 · · · vi,n+m

]
(5.246)

− Matrix NSi is then compatibly partitioned between matrix N(λKi) and
matrix M(λKi). Matrix N(λKi) is built from the n �rst rows of NSi :

NSi =

[
N(λKi)
M(λKi)

]
(5.247)

Each vector πi which belongs to the kernel of Si is characterized by a non
zero parameter vector zi such that:{

zi ̸= 0
πi = NSi zi

⇒ SiNSi zi = 0 (5.248)

As a consequence the right eigenvector vKi
, which constitutes the ith

column of matrix P, can be written as follows:

vKi
= N(λKi) zi (5.249)

Parameter vector zi may be used to minimize the sensitivity of the assigned
eigenvalues as it will be seen in the next section.
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− Finally decompose matrix B as follows where Y is a non-singular matrix
and where Ui =

[
U0 U1

]
is an orthogonal matrix such that:

B =
[
U0 U1

] [ Y
0

]
(5.250)

One possible way to derive this decomposition is to use the singular value
decomposition of B:

B = U

[
Σ
0

]
VT (5.251)

Where Σ is a diagonal matrix formed by the rank(B) = m singular values
of B (matrix B is assumed to have full column rank) and where U and V
are orthogonal matrices (i.e. UTU = I and VTV = I).
Then we can de�ne Y = ΣVT and suitably split U =

[
U0 U1

]
such

that U0 has m columns: {
Y = ΣVT

U =
[
U0 U1

] (5.252)

Let Λcl be the diagonal matrix of the closed-loop eigenvalues:

Λcl =

 λK1

. . .

λKn

 (5.253)

As far as all eigenvectors vKi
which compose each column of matrix P

have been computed matrix K can be calculated by:

K = Y−1UT
0

(
A−PΛclP

−1
)

(5.254)

Furthermore the su�cient condition for pole assignment reads as follows16:

UT
1 PΛclP

−1 = UT
1 A⇔ UT

1 (AP−PΛcl) = 0 (5.255)

To get those results we write the closed-loop state matrix as follows:

A−BK = PΛclP
−1 (5.256)

Then pre-multiplying the preceding equation by UT , using the
decomposition of B and the fact that U is an orthogonal matrix (i.e.
UTU = I) we get:

UTPΛclP
−1 = UT (A−BK)

= UTA−UTBK

= UTA−
[
Y
0

]
K

=

[
UT

0

UT
1

]
A−

[
Y
0

]
K

(5.257)

16J. Kautsky, N. K. Nichols, P. Van Dooren, Robust pole assignment in linear state
feedback, International Journal of Control, Volume 41, 1985 - Issue 5
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The �rst row of (5.257) reads:

UT
0 PΛclP

−1 = UT
0 A−YK⇔ K = Y−1UT

0

(
A−PΛclP

−1
)

(5.258)

Furthermore the second row of (5.257) leads to the following necessary
and su�cient condition for pole assignment:

UT
1 PΛclP

−1 = UT
1 A⇔ UT

1 (AP−PΛcl) = 0 (5.259)

This completes the proof. ■

It is worth noticing that if a closed-loop eigenvalue λKi is complex, then its
conjugate value, λKi is also a closed-loop eigenvalue. In order to manipulate
real matrices during the computations, eigenvectors vKi

and vKi
corresponding

to complex conjugate eigenvalues are replaced by Re(vKi
) and Im(vKi

)
respectively:[

· · · vKi
vKi

· · ·
]
→
[
· · · Re(vKi

) Im(vKi
) · · ·

]
(5.260)

Furthermore eigenvalues λKi and λKi in the diagonal matrix Λcl are replaced
by Re(λKi) and Im(λKi) as follows:

. . .

λKi

λKi

. . .

→

. . .

Re(λKi) Im(λKi)
− Im(λKi) Re(λKi)

. . .

 (5.261)

Indeed from the relations:{
AclvKi

= λKivKi

AclvKi
= λKivKi

(5.262)

We get by adding and subtracting the preceding equations:{
Acl

(
vKi

+ vKi

)
= λKivKi

+ λKivKi

Acl

(
vKi
− vKi

)
= λKivKi

− λKivKi

⇒
{

Acl Re(vKi
) = Re(λKivKi

)
Acl Im(vKi

) = Im(λKivKi
)

⇔
{

Acl Re(vKi
) = Re(λKi)Re(vKi

)− Im(λKi) Im(vKi
)

Acl Im(vKi
) = Re(λKi) Im(vKi

) + Im(λKi)Re(vKi
)

(5.263)

That is:

Acl

[
Re(vKi

) Im(vKi
)
]

=
[
Re(vKi

) Im(vKi
)
] [ Re(λKi) Im(λKi)
− Im(λKi) Re(λKi)

]
(5.264)
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5.9.3 Example

Following an example provided by A. Fossard17 we consider the following system:

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.265)

where: 

A =

 1 0 0
1 0 1
0 1 1


B =

 0 1
1 0
0 1


C =

[
1 1 −1
1 1 0

]
(5.266)

This system has m = 2 inputs, n = 3 states and p = 2 outputs and is both
controllable and observable. We wish to �nd a state feedback matrix K such
that the closed-loop eigenvalues are as follows:


λK1 = −3
λK2 = −3 + 4j
λK3 = λ̄K2 = −3− 4j

(5.267)

Moreover it is desired that the �rst output y1(t) of y(t) is decoupled from
the �rst mode λK1 whereas the second output y2(t) of y(t) is decoupled from
the last two modes λK2 , λK3 .

The decoupling speci�cations leads to the following expression of the product
CP where ∗ represents unspeci�ed components:

CP = C
[
vK1

vK2
vK3

]
=

[
0 ∗ ∗
∗ 0 0

]
(5.268)

For the �rst row of matrix C we get:

[
1 1 −1

]
vK1

= 0⇔ cT1 vK1
= 0 (5.269)

And for the second row of matrix C:{ [
1 1 0

]
vK2

= 0⇔ cT2 vK2
= 0[

1 1 0
]
vK3

= 0⇔ cT2 vK3
= 0

(5.270)

17A. Fossard, Commande modale des systèmes dynamiques, notes de cours, Sup'Aéro, 1994
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At the end of this step we de�ne n = 3 matrices Si as follows:



S(λK1) =

[
A− λK1I B

cT1 0

]
=


3 0 0 0 1
1 2 1 1 0
0 1 3 0 1

1 1 −1 0 0


S(λK2) =

[
A− λK2I B

cT2 0

]
=


4− 4j 0 0 0 1

1 3− 4j 1 1 0
0 1 4− 4j 0 1

1 1 0 0 0


S(λK3) =

[
A− λK3I B

cT2 0

]
=


4 + 4j 0 0 0 1

1 3 + 4j 1 1 0
0 1 4 + 4j 0 1

1 1 0 0 0


(5.271)

Then we compute matrix NSi whose columns constitute a basis of the right
kernel of Si:

SiNSi = Si

[
N(λKi)
M(λKi)

]
= 0 (5.272)

We get:



NS1 =

[
N(λK1)
M(λK1)

]
=


−0.2581989

0
−0.2581989
0.5163978
0.7745967



NS2 =

[
N(λK2)
M(λK2)

]
=


−0.0970284− 0.0971143j
0.0970284 + 0.0971143j
−0.0970177− 0.1213821j

−0.4854962 + 0.3152674j
0.7765709 + 0.0003433j



NS3 =

[
N(λK3)
M(λK3)

]
=


−0.0970284 + 0.0971143j
0.0970284− 0.0971143j
−0.0970177 + 0.1213821j

−0.4854962− 0.3152674j
0.7765709− 0.0003433j



(5.273)

As far as each matrix NSi reduces here to be a column vector we set the
non zero parameter vector zi to 1; as a consequence vector vKi

= N(λKi)zi
is set to N(λKi). Thus matrix eigenvector vKi

is built from the n = 3 �rst
rows of NSi . In order to manipulate real matrices during the computations,
eigenvectors vKi

and vKi
corresponding to complex conjugate eigenvalues are
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replaced by Re(vKi
) and Im(vKi

) respectively:

vK1
= N(λK1) =

 −0.25819890
−0.2581989


vK2

= N(λK2) =

 −0.09702840.0970284
−0.0970177


vK3

= N(λK3) =

 −0.09711430.0971143
−0.1213821


(5.274)

Eigenvectors vKi
compose each column of matrix P. We get:

P =
[
vK1

vK2
vK3

]
=

 −0.2581989 −0.0970284 −0.0971143
0 0.0970284 0.0971143

−0.2581989 −0.0970177 −0.1213821


(5.275)

Finally a singular value decomposition of B is performed:

B = U

[
Σ
0

]
VT

=

 0.7071068 0 −0.7071068
0 −1 0

0.7071068 0 0.7071068

 1.4142136 0
0 1
0 0

[ 0 1
−1 0

]
(5.276)

Then we de�ne Y = ΣVT and suitably split U =
[
U0 U1

]
such that

U0 has m = 2 columns:
Y = ΣVT =

[
1.4142136 0

0 1

] [
0 1
−1 0

]
=

[
0 1.4142136
−1 0

]
U0 =

 0.7071068 0
0 −1

0.7071068 0

 (5.277)

Let Λcl be the diagonal matrix of the closed-loop eigenvalues:

Λcl =

 λK1

λK2

λK3

 =

 −3 −3 + 4j
−3− 4j

 (5.278)

Then state feedback gain K is calculated as follows:

K = Y−1UT
0

(
A−PΛclP

−1
)
=

[
−31 7 33
35 −5 −32

]
(5.279)

We can check that the product CP satisfy the decoupling speci�cations.
Indeed:

CP = C
[
vK1

vK2
vK3

]
=

[
0 0.0970177 0.1213821

−0.2581989 0 0

]
:=

[
0 ∗ ∗
∗ 0 0

]
(5.280)
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5.10 Sensitivity to additive uncertainties

5.10.1 Sensitivity analysis

Let Acl be the closed-loop state matrix and assume that Acl is a diagonalizable
matrix:

Acl = A−BK (5.281)

Let P be the matrix which is composed by the right eigenvectors vKi
of Acl

corresponding to eigenvalue λKi and P−1 be the matrix which is composed by
the left eigenvectors wKi

of Acl corresponding to eigenvalue λKi :

P =
[
vK1

· · · vKn

]

P−1 =

 wTK1

...
wTKn

 (5.282)

LetAcl+∆A be the perturbed state matrix subject to additive uncertainties
∆A. Then the Bauer�Fike theorem18 states that the variation ∆λKi of the
eigenvalues of the perturbed state matrix are bounded according to the following
relation:

max
i
|∆λKi | ≤ κ(P) ∥∆A∥2 (5.283)

where:

P−1AclP =

 λK1

. . .

λKn

 (5.284)

Coe�cient κ(P) is called the condition number of matrix P and is de�ned
as follows:

κ(P) =

√
λmax (PTP)

λmin (PTP)
(5.285)

For a square invertible matrix P this reduces as follows:

κ(P) = ∥P∥2
∥∥P−1

∥∥
2

(5.286)

The induced matrix 2-norm ∥P∥2 is de�ned as the largest singular value of
P, that is the root square of the largest eigenvalue of PTP (or PPT ).

According to (5.283), to guarantee a small variation of the assigned poles
against possible perturbations ∆A, one has to achieve a small condition number
κ(P) of the eigenvector matrix.

To get this result we �rst rewrite the relation which links the eigenvalue λKi

and the corresponding right eigenvector vK1
:

AclvKi
= λKivKi

, i = 1, · · · , n (5.287)

18https://en.wikipedia.org/wiki/Bauer-Fike_theorem



5.10. Sensitivity to additive uncertainties 205

Then the �rst order derivative of the preceding equation reads:

∆AvKi
+Acl∆vKi

= ∆λKivKi
+ λKi∆vKi

(5.288)

On the other hand the relation which links the eigenvalue λKi and the
corresponding left eigenvector vK1

is the following:

wTKi
Acl = λKiw

T
Ki
, i = 1, · · · , n (5.289)

Pre-multiplying (5.288) by wTKi
and using (5.289) leads to the following

expression of dλKi :

wTKi
∆AvKi

+ wTKi
Acl∆vKi

= ∆λKiw
T
Ki
vKi

+ λKiw
T
Ki
∆vKi

⇔ wTKi
∆AvKi

+
�������
λKiw

T
Ki
∆vKi

= ∆λKiw
T
Ki
vKi

+
�������
λKiw

T
Ki
∆vKi

⇔ ∆λKi =
wT

Ki
∆AvKi

wT
Ki
vKi

(5.290)

As far as the left and right eigenvectors are normalized such that wTKi
vKi

= 1
we get:

∆λKi = wTKi
∆AvKi

(5.291)

Be taking the norm of the preceding relation we �nally obtain:

|∆λKi | ≤
∥∥vKi

∥∥
2

∥∥wTKi

∥∥
2
∥∆A∥2 (5.292)

From the fact that
∥∥vKi

∥∥
2

∥∥wTKi

∥∥
2
≤ ∥P∥2

∥∥P−1
∥∥
2
∀ i we �nally get:

max
i
|∆λKi | ≤ κ(P) ∥∆A∥2 where κ(P) = ∥P∥2

∥∥P−1
∥∥
2

(5.293)

5.10.2 Robust placement method

We have seen that the variation of each closed-loop eigenvalue is bounded by
the following relation:

|∆λKi | ≤
∥∥vKi

∥∥
2

∥∥wTKi

∥∥
2
∥∆A∥2 (5.294)

Thus in order to minimize the sensitivity of the assigned eigenvalues it could
be worth to minimize the following criteria:

J =
∑
i

Ji where Ji =
∥∥vKi

∥∥
2

∥∥wTKi

∥∥
2

(5.295)

As far as wTKi
vKi

= 1 criteria Ji reads:

Ji =
∥∥vKi

∥∥
2

∥∥wTKi

∥∥
2
=

1

cos(vKi
, wTKi

)
(5.296)

From the fact that wTKi
vKj

= 0 ∀i ̸= j we conclude that vector wTKi
is

perpendicular to the subspace spanned by the vectors of matrix Vi where:

Vi =
[
vK1

· · · vKi−1
vKi+1

· · · vKn

]
(5.297)
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Thus Ji can be interpreted as the inverse of the sinus of the angle between
vKi

and Vi. Minimizing the sensitivity of the eigenvalues of Acl = A−BK to
perturbations can be done by choosing a set of eigenvectors vKi

so that each is
maximally orthogonal to the space spanned by the remaining vectors. In others
words eigenvectors vKi

are shaped such that they are as orthogonal as possible to
the remaining eigenvectors, which consequently minimizes the condition number
of κ(P) where P =

[
vK1

· · · vKn

]
.

Unfortunately this method, known as Kautsky et al. method19, cannot
handle complex eigenvalues in its original form, due to the need to update two
complex conjugate eigenvectors at the same time.

To overcome this di�culty we present hereafter the method proposed by
Byers et al.19:

− Assuming that state matrix A is of dimension n and that (A,B) is
controllable we de�ne n closed-loop eigenvalues λK1 , · · · , λKn and de�ne
n matrices Si as follows:

Si =
[
A− λKiI B

]
(5.298)

− Then compute matrix NSi whose columns constitute a basis of the right
kernel of Si:

SiNSi = 0 (5.299)

For complex conjugate eigenvalues λKi and λKi , the corresponding
matrices NSi and N Si are also complex conjugates. They are replaced by
their real and imaginary part, Re (NSi) and Im (NSi), respectively.

Matrix NSi is a (n + m) × si matrix, where si = m unless λKi is an
uncontrollable mode of the pair (A,B) in which case si > m. In the
following we will assume that none of the λKi 's is an uncontrollable mode
of the pair (A,B) and consequently si = m.

− We denote Z the following nm×n block diagonal free parameters matrix
build from n blocks z(λK1) of size m× 1.

Z =

 z(λK1) 0
. . .

0 z(λKn)

 (5.300)

For complex conjugate eigenvalues λKi and λKi , the corresponding free
parameters matrices z(λKi) and z(λKi) shall be chosen to be equal:

z(λKi) = z(λKi) (5.301)

19A. Pandey, R. Schmid, T. Nguyen, Y. Yang, V. Sima and A. L. Tits, Performance Survey
of Robust Pole Placement Methods, 53rd IEEE Conference on Decision and Control, 2014.
Los Angeles



5.10. Sensitivity to additive uncertainties 207

− Let R(Z) be the following (n + m) × n matrix de�ned as the product
between matrix

[
NS1 · · · NSn

]
of size (n + m) × nm and the free

parameters matrix Z of size nm× n:

R(Z) =
[
NS1 · · · NSn

]
× Z (5.302)

Matrix R(Z) is then compatibly partitioned between matrix N(Z) and
matrix M(Z). Matrix N(Z) is a n × n matrix which is built from the n
�rst rows of R(Z):

R(Z) =

[
N(Z)
M(Z)

]
(5.303)

− Then Schmid et al.20 have shown that for almost every choice of the
parameter matrix Z the rank of matrix N(Z) is equal to n as well as the
rank of matrix Z. Furthermore the m × n gain matrix K such that the
eigenvalues of Acl = A−BK read (λK1 , · · · , λKn) is given by:

K = −M(Z)N(Z)−1 (5.304)

Last but not least we have:

max
i
|∆λKi | ≤ κ(N(Z)) ∥∆A∥2 (5.305)

Coe�cient κ(N(Z)) is called the condition number of matrix N(Z) and is
de�ned as follows:

κ(N(Z)) = ∥N(Z)∥2
∥∥N(Z)−1

∥∥
2

(5.306)

∥N(Z)∥2 is the induced matrix 2-norm and is de�ned as the largest
singular value of N(Z); similarly ∥∆A∥2 is the largest singular value of
∆A.

Consequently the free parameters matrix Z can be used to minimize the
sensitivity of the closed-loop state matrix Acl to additive uncertainties.

5.10.3 Lyapunov approach

Assume that the closed-loop dynamics reads as follows, where the state matrix
Acl is asymptotically stable:

ẋ(t) = (Acl +∆A)x(t) (5.307)

Denoting σmax (X) the maximum singular value of X = XT ≥ 0 and
σmin (X) the minimum singular value of X, it is known21 that the closed-loop
remains asymptotically stable for all ∆A such that:

σmax (∆A) ≤
σmin

(
Q1/2

)
σmax

(
Q−1/2P

) (5.308)

20R. Schmid, P. Pandey, T. Nguyen, Robust Pole Placement With Moore's Algorithm,
IEEE Trans. Automatic Control, 2014, 59(2), 500-505

21Horng-Giou Chen, Kuang-Wei Han, Improved quantitative measures of robustness for
multivariable systems, IEEE Transactions on Automatic Control, 1994, Volume: 39, Issue: 4
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where Q = QT ≥ 0 and where P = PT > 0 is the solution of the following
Lyapunov equation:

AT
clP+PAcl + 2Q = 0 (5.309)

Thus, the smaller the two-norm of P is, the more robustly stable the closed-
loop system will be to unstructured parametric variations.

Moreover, the bound is maximum when matrix Q = I is assigned in the
Lyapunov equation.

To get this result, let V (x) the following candidate Lyapunov function where
P = PT > 0:

V (x) = xTPx > 0 ∀ x ̸= 0 (5.310)

The su�cient condition for stability reads:

dV (x)

dt
≤ 0 (5.311)

where:

dV (x)
dt = dx

dt

T
Px+ xTPdx

dt

= ((Acl +∆A)x)T Px+ xTP ((Acl +∆A)x)

= xT (Acl +∆A)T Px+ xTP (Acl +∆A)x
= xT

(
AT
clP+PAcl

)
x+ xT

(
∆ATP+P∆A

)
x

= xT
(
AT
clP+PAcl

)
x+ 2xT∆ATPx

(5.312)

BecauseAcl is asymptotically stable, we have xT
(
AT
clP+PAcl

)
x ≤ 0. This

inequality is rewritten as equality (5.309) as follows:

AT
clP+PAcl = −2Q (5.313)

Thus the su�cient condition for robust stability becomes:

−2xTQx+ 2xT∆ATPx ≤ 0
⇔ xT∆ATPx ≤ xTQx (5.314)

Because Q = QT ≥ 0, we have Q = Q1/2Q1/2 where Q1/2 =
(
Q1/2

)T ≥ 0.

Making the slight modi�cation x =
(
Q−1/2Q1/2

)
x, the preceding inequality is

equivalently rewritten as follows:

xT∆ATPx = xT∆ATP
(
Q−1/2Q1/2

)
x ≤

(
Q1/2x

)T (
Q1/2x

)
(5.315)

The preceding inequality is equivalently given by:(
Q−1/2P∆Ax

)T (
Q1/2x

)
≤
(
Q1/2x

)T (
Q1/2x

)
(5.316)

Then a su�cient condition for stability can be given as:∥∥∥Q−1/2P∆Ax
∥∥∥ ≤ ∥∥∥Q1/2x

∥∥∥ (5.317)
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Knowing that:∥∥∥Q−1/2P∆Ax
∥∥∥ ≤ σmax (Q−1/2P

)
∥∆Ax∥ (5.318)

and ∥∥∥Q1/2x
∥∥∥ ≥ σmin (Q1/2

)
∥x∥ (5.319)

Then (5.317) is su�ciently justi�ed when the following inequality holds,
which complete the proof:

σmax

(
Q−1/2P

)
∥∆Ax∥ ≤ σmin

(
Q1/2

)
∥x∥ (5.320)

5.10.4 Eigenvalues derivatives

Assume that the closed-loop dynamics reads as follows:

ẋ(t) = (A−BKC)x(t) (5.321)

The eigenvalues λKi and corresponding right and left eigenvectors, vKi
and

wKi
respectively, are given by the solutions of the following equations:{

(−λKiI+A−BKC) vKi
= 0

wTKi
(−λKiI+A−BKC) = 0

(5.322)

Di�erentiating the �rst equation of (5.322) with respect to K reads:(
−∂λKi

∂K
I+

∂ (A−BKC)

∂K

)
vKi

+ (−λKiI+A−BKC)
∂vKi

∂K
= 0 (5.323)

This equation is now multiplied by wTKi
and the second term is then zero

because of the second equation of (5.322):

wTKi

(
−∂λKi

∂K
I+

∂ (A−BKC)

∂K

)
vKi

= 0 (5.324)

Finally if λKi is an eigenvalue of A−BKC then it can be shown that22:

∂λKi

∂K
= −

BTwKi
vTKi

CT

wTKi
vKi

(5.325)

where wKi
and vKi

are the row and column eigenvectors of A − BKC
corresponding to λKi .

More generally, for di�erential equations of the form:

Mẍ+Cẋ+Dx = u (5.326)

the eigenvalues λKi and corresponding right and left eigenvectors, vKi
and wKi

respectively, are given by the solutions of the following equations23:{ (
λ2Ki

M+CλKi +D
)
vKi

= 0

wTKi

(
λ2Ki

M+CλKi +D
)
= 0

(5.327)

22H. Sirisena, S. Choi, Pole placement in prescribed regions of the complex plane using
output feedback, IEEE Transactions on Automatic Control, 1975, Page(s):810 - 812

23Michael Ian Friswell and Sondipon Adhikari, Derivatives of complex eigenvectors using
Nelson's method, AIAA Journal 38:2355-2357, January 2000, DOI:10.2514/3.14688
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5.11 Input-output decoupling control

5.11.1 Necessary and su�cient condition

We consider the following state-space representation of a controllable and
observable square system where u(t) ∈ Rm denotes the control input,
x(t) ∈ Rn the state vector and y(t) ∈ Rp, p = m the output vector (which has
the same size that control input u(t)):{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where dim
(
y(t)

)
= dim (u(t)) (5.328)

Let's assume that u(t) can be split into
[
u1(t) u2(t)

]T
; similarly we

assume that y(t) can be split into
[
y
1
(t) y

2
(t)

]T
. Thus the state-space

representation reads:
ẋ(t) = Ax(t) +

[
B1 B2

] [ u1(t)
u2(t)

]
[
y
1
(t)

y
2
(t)

]
=

[
C1

C2

]
x(t)

(5.329)

The transfer function from u1(t) to y2(t) is obtained by setting u2(t) = 0
and assuming no initial condition. We get:

Fu1y2(s) = C2 (sI−A)−1B1 (5.330)

Thus input u1(t) and output y
2
(t) will be decoupled as soon as transfer

function Fu1y2(s) is null:

Fu1y2(s) = C2 (sI−A)−1B1 = 0 (5.331)

This condition is equivalent to the existence of an invertible change of basis
matrix P which de�nes a new state vector ξ(t) as follows:

x(t) = Pξ(t)⇔ ξ(t) = P−1x(t)⇒

{
ξ̇(t) = Ãξ(t) + B̃u(t)

y(t) = C̃ξ(t)
(5.332)

where:

Ã = P−1AP :=

[
Ã11 0

Ã21 Ã22

]
B̃ = P−1

[
B1 B2

]
:=
[
B̃1 B̃2

]
where B̃1 = P−1B1 =

[
0

B̃21

]
C̃ =

[
C1

C2

]
P :=

[
C̃1

C̃2

]
where C̃2 = C2P =

[
C̃21 0

]
(5.333)
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Indeed:

C2 (sI−A)−1B1 = C2

(
sPP−1 −A

)−1
B1

= C2

(
P
(
sI−P−1AP

)
P−1

)−1
B1

= C2P
(
sI−P−1AP

)−1
P−1B1

=
[
C̃21 0

] (
sI− Ã

)−1
[

0

B̃21

]
=
[
C̃21 0

] [ 0(
sI− Ã

)−1
B̃21

]
= 0

(5.334)

This completes the proof. ■
Moreover, from Neumann's theory, it is known that the inverse M−1 of a

nonsingular matrix M has the following series expansion as soon as the
spectral radius of the square matrix I −XM, that is the maximum moduli of
its eigenvalues, is lower than 124:

M−1 =
∞∑
k=0

(I−XM)kX (5.335)

Setting X = I and M = I−A we get:

(I−A)−1 =
∞∑
k=0

Ak (5.336)

This relation can be related to the series expansion of (sI−A)−1 as follows:

(sI−A)−1 =
1

s

(
I− A

s

)−1

=
1

s

∞∑
k=0

(
A

s

)k
=

∞∑
k=1

Ak−1

sk
(5.337)

Thus transfer function Fu1y2(s) reads:

Fu1y2(s) = C2 (sI−A)−1B1 =

∞∑
k=1

C2
Ak−1

sk
B1 (5.338)

We conclude that transfer function Fu1y2(s) is null as soon as the following
relation holds:

Fu1y2(s) = 0⇔ C2A
kB1 = 0 ∀k ≥ 0 (5.339)

Let Qc1 be the following controllability matrix:

Qc1 =
[
B1 AB1 · · · An−1B1

]
(5.340)

Let Qo2 be the following observability matrix:

Qo2 =


C2

C2A
...

C2A
n−1

 (5.341)

24Joan-Josep Climent, Néstor Thome, Yimin Wei, A geometrical approach on generalized
inverses by Neumann-type series, Linear Algebra and its Applications 332�334 (2001) 533�540
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Then relation (5.339) with Cayley-Hamilton theorem indicates that a
necessary and su�cient condition for u1(t) to be decoupled from y

2
(t) is that

the controllable subspace of (A,B1) is contained in the unobservable subspace
of (A,C2). Denoting ker (Qo2) the kernel of Qo2 and by range (Qc1) the span
of Qc1, we shall have

25:

range (Qc1) ⊂ ker (Qo2) (5.342)

5.11.2 Relative degree

In this section, we consider the input-output decoupling of the following square
system:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where dim
(
y(t)

)
= dim (u(t)) (5.343)

We will assume that the input vector u(t) and the output vector y(t) are of

dimension m and we denote cTi the ith row of output matrix C:

dim
(
y(t)

)
= dim (u(t)) = m⇒ C :=

 cT1
...
cTm

 (5.344)

Let y1(t) be the �rst component of y(t):

y1(t) = cT1 x(t) (5.345)

The �rst time derivative of y1(t) reads:

d

dt
y1(t) = cT1 ẋ(t) = cT1 Ax(t) + cT1 Bu(t) (5.346)

We compute the time derivative of y1(t) until some components of the input
vector u(t) explicitly appears in the time derivative. Let r1 ≥ 1 be the lowest
order of the derivative such that cT1 A

r1−1B ̸= 0:

dr1

dtr1
y1(t) = cT1 A

r1x(t) + cT1 A
r1−1Bu(t) where cT1 A

r1−1B ̸= 0, r1 ≥ 1 (5.347)

More generally, let ri ≥ 1 be the lowest order of the derivative of the ith

component of the output vector y(t) such that some components of the input
vector u(t) explicitly appears in the time derivative. Then for i = 1, · · · ,m, the
corresponding ri is such that:

dri

dtri
yi(t) = cTi A

rix(t) + cTi A
ri−1Bu(t) where cTi A

ri−1B ̸= 0, ri ≥ 1 (5.348)

25Luigi Glielmo and Martin Corless, On output feedback control of singularly perturbed
systems, Applied Mathematics and Computation Volume 217, Issue 3, 1 October 2010, Pages
1053-1070
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Equations (5.347) and (5.348) are written in vector form for i = 1, · · · ,m as
follows: 

y
(r1)
1 (t)
...

y
(rm)
m (t)

 =

 cT1 A
r1

...
cTmA

rm

x(t) +
 cT1 A

r1−1

...
cTmA

rm−1

Bu(t) (5.349)

or, equivalently:


y
(r1)
1 (t)
...

y
(rm)
m (t)

 = A∗x(t) +B∗u(t) where



A∗ :=

 cT1 A
r1

...
cTmA

rm


B∗ :=

 cT1 A
r1−1

...
cTmA

rm−1

B

(5.350)

Coe�cients ri are called relative degrees of output yi(t). For SISO systems,
the relative degree corresponds to the di�erence between the degree of the
denominator and the degree of the numerator of the transfer function.

5.11.3 Falb-Wolovich decoupling method

Falb-Wolovich decoupling method was published in 196726. Assume that we
desire to set the transfer function between Yi(s) and its commanded value Yci(s)
as follows where λi,ri , i = 1, · · · , ri represents the ri desired closed-loop poles of
the transfer function:

Yi(s)

Yci(s)
:=

(−λi,1) · · · (−λi,ri)
(s− λi,1) · · · (s− λi,ri)

where i = 1, · · · ,m (5.351)

Once the closed-loop transfer function Yi(s)
Yci (s)

is developed we get:

Yi(s)

Yci(s)
=

ai,0
sri + ai,ri−1 sri−1 + · · ·+ ai,1 s+ ai,0

:=
ai,0
ϕi(s)

(5.352)

Note that closed-loop transfer function Yi(s)
Yci (s)

has a unity static feedback

gain;
Yi(s)

Yci(s)

∣∣∣∣
s=0

= 1 (5.353)

Then we de�ne matrix Ã∗ as follows:

Ã∗ =

 cT1 ϕ1(A)
...

cTmϕm(A)


where ϕi(A) := Ari + ai,ri−1A

ri−1 + · · ·+ ai,1A+ ai,0 I

(5.354)

26P. Falb, W. Wolovich, Decoupling in the design and synthesis of multivariable control
systems, IEEE Transactions on Automatic Control, December 1967



214 Chapter 5. Controller design

Assuming that B∗ in (5.350) is non-singular, control vector u(t) is chosen as
follows:

u(t) = −Kx(t) +Hr(t) where


K := (B∗)−1 Ã∗

H := (B∗)−1

 a1,0
. . .

am,0


(5.355)

Then the closed-loop transfer function reads:

G(s) = C (sI−A+BK)−1BH :=


a1,0
ϕ1(s)

. . .
am,0

ϕm(s)

 (5.356)

Indeed, coming back in the time domain, (5.352) reads:

y
(ri)
i (t) + ai,ri−1 y

(ri−1)
i (t) + · · ·+ ai,1 ẏi(t) + ai,0 yi(t) = ai,0 yic(t)

⇔ y
(ri)
i (t) = −ai,ri−1 y

(ri−1)
i (t)− · · · − ai,1 ẏi(t)− ai,0 yi(t) + ai,0 yic(t)

(5.357)

On the other hand, we have seen in (5.349) that the rthi time derivative of
the ith output yi(t) reads:

y
(ri)
i (t) = cTi A

rix(t) + cTi A
ri−1Bu(t) (5.358)

When the control u(t) = −Kx(t) +Hr(t) is applied we get:

y
(ri)
i (t) =

(
cTi A

ri − cTi Ari−1BK
)
x(t) + cTi A

ri−1BHr(t) (5.359)

Setting r(t) :=

 yc1(t)
...

ycm(t)

, where yci(t) denotes the commanded value for

the ith output yi(t), and comparing the targeted di�erential equation (5.357)
with the actual di�erential equation (5.359), we conclude that decoupling control
yields the following conditions27:

ai,ri−1 y
(ri−1)
i (t) + · · ·+ ai,1 ẏi(t) + ai,0 yi(t) = cTi

(
Ari−1BK−Ari

)
x(t)

cTi A
ri−1BH = [ 0 · · · 0 ai,0︸︷︷︸

ith column

0 · · · 0 ]

(5.360)

Using the fact that cTi A
j−1B = 0 ∀j < ri we get:

cTi A
j−1B = 0 ∀j < ri ⇒ y

(j)
i (t) = cTi A

jx(t) ∀j < ri (5.361)

27Eric Ostertag, Mono- and Multivariable Control and Estimation, Springer, 2011
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Thus the �rst equality of (5.360) reads:

ai,ri−1 c
T
i A

ri−1x(t) + · · ·+ ai,1 c
T
i Ax(t) + ai,0 c

T
i x(t) = cTi

(
Ari−1BK−Ari

)
x(t)

⇔ cTi
(
ai,ri−1A

ri−1 + · · ·+ ai,1A+ ai,0I
)
x(t) = cTi

(
Ari−1BK−Ari

)
x(t)

(5.362)
This equality shall hold whatever the value of the state vector x(t). Thus

we �nally get:

cTi
(
ai,ri−1A

ri−1 + · · ·+ ai,1A+ ai,0I
)
= cTi

(
Ari−1BK−Ari

)
⇔ cTi

(
Ari + ai,ri−1A

ri−1 + · · ·+ ai,1A+ ai,0I
)
= cTi A

ri−1BK
⇔ cTi ϕi(A) = cTi A

ri−1BK
where ϕi(A) := Ari + ai,ri−1A

ri−1 + · · ·+ ai,1A+ ai,0 I

(5.363)

Applying the same process for each output component yi(t), i = 1, · · · ,m,

and assuming that B∗ :=

 cT1 A
r1−1

...
cTmA

rm−1

B is non-singular, yields:

Ã∗ :=

 cT1 ϕ1(A)
...

cTmϕm(A)

 =

 cT1 A
r1−1

...
cTmA

rm−1

BK := B∗K

⇔ K := (B∗)−1 Ã∗

(5.364)

Finally, let us focus on the second of (5.360). Applying the same constraint
for each output component yi(t), i = 1, · · · ,m, and assuming again that B∗ is
non-singular, yields: cT1 A

r1−1

...
cTmA

rm−1

BH =

 a1,0
. . .

am,0


⇔ H := (B∗)−1

 a1,0
. . .

am,0


(5.365)

This completes the proof. ■

5.11.4 Zeros and zero dynamics

Note that det (sI−A+BK) has n eigenvalues whereas r =
∑m

i=1 ri eigenvalues
have been set through the choice of polynomials ϕi(s), i = 1, · · · ,m. Thus
n−r eigenvalues have disappear due to pole-zero cancellation in the closed-loop
transfer function G(s).

In the general case, let B be a n×m matrix and C be a p×n matrix. Then:

− The values of s which drops the normal rank of
[
sI−A −B

]
are called

the input-decoupling zeros. Then it can be seen that input-decoupling
zeros are also eigenvalues of state matrix A. In addition, if λi is such an
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input-decoupling zero, then rank
([

λi I−A −B
])
< n and thus there

exists an 1× n vector wTi ̸= 0 such that:

rank
([

λi I−A −B
])
< n⇔ ∃wi ̸= 0 s.t. wTi

[
λi I−A −B

]
= 0

(5.366)

This however implies that λi is an uncontrollable eigenvalue of state matrix
A, and wTi the corresponding left eigenvector.

− Conversely, the values of s which drops the normal rank of

[
sI−A

C

]
are called the output-decoupling zeros. Then it can be seen that output-
decoupling zeros are also eigenvalues of state matrix A. In addition, if

λi is such an output-decoupling zero, then rank

([
λi I−A

C

])
< n and

thus there exists an n× 1 vector vi ̸= 0 such that:

rank

([
λi I−A

C

])
< n⇔ ∃ vi ̸= 0 s.t.

[
λi I−A

C

]
vTi = 0, (5.367)

This however implies that λi is an unobservable eigenvalue of state matrix
A, and vi the corresponding right eigenvector.

There are eigenvalues of state matrix A which are both uncontrollable and
unobservable. These uncontrollable and unobservable eigenvalues of state
matrix A are called input-output-decoupling zeros.

In order to exhibit the dynamics of zeros, we consider the following change
of coordinates:

ξi,j = cTi A
j−1x where

{
i = 1, · · · ,m
j = 1, · · · , ri

(5.368)

Those r =
∑m

i=1 ri coordinates are completed by choosing n− r coordinates
zk such that:

zk = pT
k
x such that pT

k
B = 0 for k = 1, · · · , n− r (5.369)

From the preceding relation, it is clean that p
k
belongs to the kernel of BT :

BT p
k
= 0 for k = 1, · · · , n− r (5.370)

Then we get the following state vector

[
ξ

z

]
of size n, which linearly depends

on state vector x as follows where the coordinate transformation matrix P is
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square and non-singular:

[
ξ

z

]
:=



ξ1,1
ξ1,2
...

ξ1,r1
...

ξm,1
ξm,2
...

ξm,rm
z1
...

zn−r



=



cT1
cT1 A
...

cT1 A
r1−1

...

cTm
cTmA
...

cTmA
rm−1

pT
1
...

pT
n−r



x := P−1x (5.371)

Then the state space representation (5.343) becomes :

x = P

[
ξ

z

]
⇒


[
ξ̇

ż

]
= Ã

[
ξ

z

]
+ B̃u

y = C̃ξ

(5.372)

where: 
Ã = P−1AP :=

[
Ã11 Ã12

Ã21 Ã22

]
B̃ = P−1B =

[
B̃1

0

]
C̃ = CP =

[
C̃1 0

] (5.373)

Then we get:

ż :=

 ż1
...

żn−r

 = Ã21 ξ + Ã22 z (5.374)

The zero dynamics is represented by the eigenvalues of the (n− r)× (n− r)
square matrix Ã22. It is worth noticing that the closed loop will be stable as
soon as all the input-output-decoupling zeros (that are the eigenvalues of matrix
Ã22) have negative real part.

5.12 Frequency domain approach

5.12.1 Hsu-Chen theorem

We consider the following state-space representation of a controllable and
observable system where u(t) ∈ Rm denotes the control input, x(t) ∈ Rn the
state vector and y(t) ∈ Rp the output vector:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5.375)
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.
Assume the following state feedback control:

u(t) = −Kx(t) +Hr(t) (5.376)

Then the closed-loop system reads:{
ẋ(t) = (A−BK)x(t) +BHr(t)
y(t) = Cx(t)

(5.377)

The Hsu-Chen theorem28 states that the following relation holds:

det (sI−A+BK) = det (sI−A) det (I+KΦ(s)B) (5.378)

where:
Φ(s) = (sI−A)−1 (5.379)

Hsu-Chen theorem is an application of the Sylvester's determinant theorem29

which states that the following relation holds assuming that M1 is an m × n
matrix and M2 an n×m matrix (so that M1 and M2 have dimensions allowing
them to be multiplied in either order forming a square matrix):

det (Im +M1M2) = det (In +M2M1) (5.380)

Sylvester's determinant theorem may be proven using the Schur's formula,
which is recalled hereafter:

det

([
A11 A12

A21 A22

])
= det(A22) det(A11 −A12A

−1
22 A21)

= det(A11) det(A22 −A21A
−1
11 A12)

(5.381)

Thus if M =

[
Im −M1

M2 In

]
, we get:

det (M) = det

([
Im −M1

M2 In

])
= det(Im +M1M2)

= det(In +M2M1)
(5.382)

In addition, for square matrices M3 and M4 of equal size, the determinant
of the matrix product equals the product of their determinants:

det (M3M4) = det (M3) det (M4) (5.383)

Then we get:

det (sI−A+BK) = det
(
(sI−A)

(
I+ (sI−A)−1BK

))
= det ((sI−A) (I+Φ(s)BK))
= det (sI−A) det (I+Φ(s)BK)
= det (sI−A) det (I+KΦ(s)B)

(5.384)

28Pole-shifting techniques for multivariable feedback systems, Retallack D.G., MacFarlane
A.G.J., Proceedings of the Institution of Electrical Engineers, 1970

29https://en.wikipedia.org/wiki/Determinant



5.12. Frequency domain approach 219

We �nally get the Hsu-Chen theorem (5.378). ■
Furthermore, let F(s) be the transfer function of the plant and G(s) the

closed-loop transfer function:{
F(s) = C (sI−A)−1B

G(s) = C (sI−A+BK)−1BH
(5.385)

Then Wang30 has shown that the closed-loop transfer function G(s) is
related to the transfer function of the plant F(s) through the following
relation:

G(s) = F(s)
(
I+K (sI−A)−1B

)−1
H (5.386)

Indeed, we can write:

G(s) = C (sI−A+BK)−1BH

= C (sI−A)−1 ((sI−A+BK)−BK) (sI−A+BK)−1BH

= C (sI−A)−1
(
I−BK (sI−A+BK)−1

)
BH

= C (sI−A)−1
(
B−BK (sI−A+BK)−1B

)
H

= C (sI−A)−1B
(
I−K (sI−A+BK)−1B

)
H

= F(s)
(
I−K (sI−A+BK)−1B

)
H

(5.387)

Then, notice that (Φ(s) +BK)−1 (I+BKΦ−1(s)
)
= Φ−1(s). Thus we get:(

I−K
(
Φ−1(s) +BK

)−1
B
)
(I+KΦ(s)B) = I

where Φ(s) = (sI−A)−1 (5.388)

This completes the proof. ■
Furthermore from Equations (5.385) and (5.386) we can write:

F(s) = C (sI−A)−1B = C
adj (sI−A)

det (sI−A)
B

G(s) = C (sI−A+BK)−1BH = C
adj (sI−A+BK)

det (sI−A+BK)
BH

(
I+K (sI−A)−1B

)−1
=

adj
(
I+K (sI−A)−1B

)
det
(
I+K (sI−A)−1B

)
(5.389)

Thus Equation (5.386) reads as follows:

C
adj (sI−A+BK)

det (sI−A+BK)
BH = C

adj (sI−A)

det (sI−A)
B
adj
(
I+K (sI−A)−1B

)
det
(
I+K (sI−A)−1B

)H
(5.390)

30Decoupling Control, Qing-Guo Wang, Springer, 2003
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When identifying the denominator of this relation, we retrieve the Hsu-Chen
theorem (5.378).

Finally Equation (5.387) indicates that closed-loop transfer function G(s)
is equivalent to the transfer function of the plant F(s) serially driven by the
following controller:

C(s) =
(
I−K (sI−A+BK)−1B

)
H (5.391)

This controller can be represented by the following state space equations:{
ẋc(t) = (A−BK)xc(t) +BHr(t)
y
c
(t) = −Kxc(t) +Hr(t)

(5.392)

5.12.2 Output-based controller

We consider the state-space representation (5.393) where the state vector x is
of dimension n (that is the size of state matrix A) and where u(t) denotes the
input vector: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(5.393)

As in section 5.6.3, we will assume the following output feedback controller
(5.134):{

ẋc(t) = (A−BK)xc(t) + L
(
y(t)− (C−DK)xc(t)

)
uo(t) = Kxc(t)

(5.394)

We have seen in section 5.6.3 that the characteristic polynomial χAcl
(s) of

the closed-loop reads:

χAcl
(s) = det (sI−Acl) = det

([
sI−A BK
−LC sI−A+BK+ LC

])
= det (sI−A+BK) det (sI−A+ LC)

(5.395)

Furthermore from the Hsu-Chen theorem (5.378) the following relation
holds:

det (sI−A+BK) = det (sI−A) det (I+KΦ(s)B) (5.396)

Let D(s) = det (sI−A) be the determinant of Φ(s), that is the
characteristic polynomial of the open-loop plant, and Nol(s) = adj (sI−A)B
be the adjugate matrix of sI−A times matrix B:

Φ(s)B = (sI−A)−1B =
adj (sI−A)B

det (sI−A)
:=

Nol(s)

D(s)
(5.397)

Consequently (5.378) reads:

det (sI−A+BK) = det (D(s)I+KNol(s)) (5.398)
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As soon as λKi is a desired closed-loop eigenvalue then the following relation
holds:

det (D(s)I+KNol(s))|s=λKi
= 0 (5.399)

Consequently it is desired that matrix D(s)I+KNol(s)|s=λKi
is singular.

Following Shieh & al.31, let ωi ̸= 0 be a vector of size m × 1, where m is the
number of columns of B (that is the size of the input vector u(t) of the plant),
belonging to the kernel of matrix D(s)I+KNol(s)|s=λKi

. Thus changing s by

λKi we can write:
(D(λKi)I+KNol(λKi))ωi = 0 (5.400)

Actually, vector ωi ̸= 0 can be used as a design parameter.
Alternatively, when making the parallel that λi is an eigenvalue of matrix

A as soon as det (sI−A)|s=λi = 0, we conclude that D(λKi) is an eigenvalue
of matrix −KNol(λKi), and thus ωi is an eigenvector of −KNol(λKi)
corresponding to the eigenvalue D(λKi). This remark can be extended to the
output feedback case where Nol(s) = C adj (sI−A)B.

In order to get gain K the preceding relation is rewritten as follows:

KNol(λKi)ωi = −D(λKi)ωi (5.401)

This relation does not lead to the value of gain K as soon as Nol(λKi)ωi
is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relation for the n desired closed-loop
eigenvalues. We get:

K
[
vK1

· · · vKn

]
= −

[
p
1
· · · p

n

]
(5.402)

Where vectors vKi
and p

i
are given by:{
vKi

= Nol(λKi)ωi
p
i
= D(λKi)ωi

(5.403)

We �nally get the following static state feedback gain matrix K:

K = −
[
p
1
· · · p

n

] [
vK1

· · · vKn

]−1
(5.404)

This is also the so-called Roppenecker's formula which has been developed
in (5.74).

Note that for complex conjugate eigenvalues we have λKi = λ̄Ki+1 and
vKi

= v̄Ki+1
. Thus, assuming that i = 1 and multiplying both of left sides of

equation K
[
vK1

vK2
vK3

· · ·
]
= −

[
p
1

p
2

p
3
· · ·

]
by the following

nonsingular matrix M will not alter the calculation of K:

M =

 0.5 −0.5j
0.5 0.5j

0

0 I

 (5.405)

31L. S. Shieh, H. M. Dib and R. E. Yates, Sequential design of linear quadratic state
regulators via the optimal root-locus techniques, IEE Proceedings D - Control Theory and
Applications, vol. 135, no. 4, pp. 289-294, July 1988.
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Then in this case (5.404) reads:

K = −
[
Re(p

1
) Im(p

1
) p

3
· · ·

] [
Re(vK1

) Im(vK1
) vK3

· · ·
]−1

(5.406)

A similar result can be achieved with det (sI−A+ LC). Indeed from the
Hsu-Chen theorem (5.378) we get:

det (sI−A+ LC) = det
(
(sI−A+ LC)T

)
= det

(
sI−AT +CTLT

)
= det

(
sI−AT

)
det(I+ LTΦ′(s)CT )

(5.407)

where:

Φ′(s) =
(
sI−AT

)−1
(5.408)

Let D(s) = det
(
sI−AT

)
= det (sI−A) be the determinant of Φ′(s), that

is the characteristic polynomial of the open-loop plant, and
N′
ol(s) = adj

(
sI−AT

)
CT be the adjugate matrix of sI − AT times matrix

CT :

Φ′(s)CT =
(
sI−AT

)−1
CT =

adj
(
sI−AT

)
CT

det (sI−AT )
:=

N′
ol(s)

D(s)
(5.409)

Consequently (5.407) reads:

det (sI−A+ LC) = det
(
D(s)I+ LTN′

ol(s)
)

(5.410)

As soon as λLi is a desired closed-loop eigenvalue then the following relation
holds:

det
(
D(s)I+ LTN′

ol(s)
)∣∣
s=λLi

= 0 (5.411)

Consequently it is desired that matrix D(s)I+ LTN′
ol(s)

∣∣
s=λLi

is singular.

Let ω′
i ̸= 0 be a vector of size p× 1, where p is the number of rows of C (that is

the size of the output vector y(t) of the plant), belonging to the kernel of matrix

D(s)I+ LTN′
ol(s)

∣∣
s=λLi

. Thus changing s by λLi we can write:

(
D(λLi)I+ LTN′

ol(λLi)
)
ω′
i = 0 (5.412)

Actually, vector ω′
i ̸= 0 can be used as a design parameter.

In order to get gain L the preceding relation is rewritten as follows:

LTN′
ol(λLi)ω

′
i = −D(λLi)ω

′
i (5.413)

This relation does not lead to the value of gain L as soon as Nol(λLi)ω
′
i

is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relation for the n desired closed-loop
eigenvalues. We get:

LT
[
vL1

· · · vLn

]
= −

[
p′
1
· · · p′

n

]
(5.414)
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Where vectors vLi
and p′

i
are given by:{
vLi

= Nol(λLi)ω
′
i

p′
i
= D(λLi)ω

′
i

(5.415)

We �nally get the following static observer gain matrix L, which is equivalent
to (5.404) but dedicated to observer design:

LT = −
[
p′
1
· · · p′

n

] [
vL1

· · · vLn

]−1
(5.416)

5.12.3 Invariance of (transmission) zeros under state feedback

We consider the following system:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(5.417)

We have seen in section 1.5 that the (transmission) zeros of the open-loop
transfer function F(s) = C (sI−A)−1B+D are de�ned as the values of s such

that the rank of the Rosenbrock's system matrix R(s) =

[
sI−A −B

C D

]
is

lower than its normal rank, meaning that the rank of R(s) drops.
Now, assume that we apply the following feedback on the plant:

u(t) = −Kx(t) +Hr(t) (5.418)

Thus the closed-loop state space realization reads:{
ẋ(t) = (A−BK)x(t) +BHr(t)
y(t) = (C−DK)x(t) +DHr(t)

(5.419)

Thus the closed-loop transfer function G(s) reads:

G(s) = (C−DK) (sI− (A−BK))−1BH+DH (5.420)

The (transmission) zeros of the closed-loop transfer functionG(s) are de�ned
as the values of s such that the rank of the Rosenbrock's system matrix Rcl(s) is
lower than its normal rank, meaning that the rank of R(s) drops, where Rcl(s)
is de�ned as follows:

Rcl(s) =

[
sI− (A−BK) −BH

(C−DK) DH

]
(5.421)

The Rosenbrock's system matrix Rcl(s) can be re-written as follows:

Rcl(s) =

[
sI−A −B

C D

] [
I 0
−K H

]
= R(s)

[
I 0
−K H

]
(5.422)

Thus, assuming that R(s) is a square matrix, we can write det (Rcl(s)) =
det (R(s)) det (H), from which it follows that the (transmission) zeros of a plant
are invariant under state feedback.
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5.12.4 Matrix fraction description of a transfer function

Right matrix fraction description

Given any transfer function F(s), the right matrix fraction description of F(s)
reads as follows where FRN (s) and FRD(s) are stable transfer functions:

F(s) = FRN (s)F
−1
RD(s) (5.423)

Stable transfer functions FRN (s) and FRD(s) are such that there exist two
stable transfer functionsXR(s) andYR(s) such that the following relation holds:

YR(s)FRD(s) +XR(s)FRN (s) = I ∀ s (5.424)

To get a matrix fraction description, consider a minimal realization of
transfer function F(s):

F(s) = C (sI−A)−1B+D :=

(
A B

C D

)
(5.425)

Then stable transfer functions FRN (s) and FRD(s) reads as follows where
K is chosen such that A−BK has all its eigenvalues with negative real part32:

FRN (s) :=

(
A−BK B

C−DK D

)
FRD(s) :=

(
A−BK B

−K I

) (5.426)

Furthermore, stable transfer functions XR(s) and YR(s) reads as follows
where L is chosen such that A − LC has all its eigenvalues with negative real
part: 

XR(s) :=

(
A− LC L

−K 0

)
YR(s) :=

(
A− LC B− LD

K I

) (5.427)

If A is a n×n matrix, B a n×m matrix and C a p×n matrix, then FRN (s)
is a p×m matrix and FRD(s) is a square m×m matrix. In addition, XR(s) is
a m× p matrix and YR(s) is a square m×m matrix.

Left matrix fraction description

Similarly the left matrix fraction description of F(s) reads as follows where
FLN (s) and FLD(s) are stable transfer functions:

F(s) = F−1
LD(s)FLN (s) (5.428)

Stable transfer functions FLN (s) and FLD(s) are such that there exist two
stable transfer functionsXL(s) andYL(s) such that the following relation holds:

FLD(s)YL(s)− FLN (s)XL(s) = I ∀ s (5.429)

32Fortuna L., Frasca M., Optimal and Robust Control, CRC Press, 2012
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It can be shown that stable transfer functions FLN (s) and FLD(s) reads as
follows whereK is chosen such thatA−BK has all its eigenvalues with negative
real part: 

FLN (s) :=

(
A− LC B− LD

C D

)
FLD(s) :=

(
A− LC L

−C I

) (5.430)

Furthermore, stable transfer functions XL(s) and YL(s) reads as follows
where L is chosen such that A − LC has all its eigenvalues with negative real
part: 

XL(s) :=

(
A−BK L

−K 0

)
YL(s) :=

(
A−BK L

C−DK I

) (5.431)

The preceding relations can be rewritten in a shorter form as follows33:[
FRD(s) XL(s)
FRN (s) YL(s)

]
=

[
−K
CK

]
(sI−AK)−1 [ B L

]
+

[
I 0
D I

]
(5.432)

and:[
YR(s) −XR(s)
−FLN (s) FLD(s)

]
=

[
K
−C

]
(sI−AL)

−1 [ BL L
]
+

[
I 0
−D I

]
(5.433)

where: 
CK = C−DK
AK = A−BK
AL = A− LC
BL = B− LD

(5.434)

The above functions constitute a doubly coprime factorization of F(s),
meaning that:[

YR(s) −XR(s)
−FLN (s) FLD(s)

] [
FRD(s) XL(s)
FRN (s) YL(s)

]
=

[
I 0
0 I

]
⇔
[

FRD(s) XL(s)
FRN (s) YL(s)

] [
YR(s) −XR(s)
−FLN (s) FLD(s)

]
=

[
I 0
0 I

] (5.435)

5.12.5 Youla parameterization of all stabilizing controllers

We consider the model reference feedback loop shown in Figure 5.8, where F(s),
C(s) and Cpf (s) are the plant, feedback controller and pre�lter, respectively34.

Let:
F(s) = FRN (s)F

−1
RD(s) = F−1

LD(s)FLN (s) (5.436)

33Ruth Curtain, George Weiss and Martin Weiss, Coprime Factorization for Regular Linear
Systems, Automatica. Vol. 32. No. 11, pp. 1519-1531, 1996

34Two-degree-of-freedom Optimal Flight Control System Design, Chih - Min Lin & Jiann -
Min Wu, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan December
1996
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Figure 5.8: Feedback loop with two-degree of freedom

where the pairs (FRN (s), FRD(s)) and (FLN (s), FLD(s)) constitute any left
and right coprime, proper, stable, rational decomposition of F(s). We have seen
in (5.426) and (5.430) how to get FRN (s), FRD(s), FLN (s), FLD(s) from a
minimal realization of transfer function F(s).

Then Youla & al.35 have shown in 1976 that the class of controllers that
make the closed-loop system internally stable is given as follows where Q(s) and
Qpf (s) are arbitrary compatibly dimensioned real rational matrices analytic in
Re(s) ≥ 0 (i.e. stable):

C(s) = (YR(s) +Q(s)FLN (s))
−1 (XR(s) +Q(s)FLD(s))

= (XL(s) + FRD(s)Q(s)) (YL(s) + FRN (s)Q(s))−1

and

Cpf (s) = (YR(s) +Q(s)FLN (s))
−1Qpf (s)

= Qpf (s) (YL(s) + FRN (s)Q(s))−1

(5.437)

5.12.6 Frequency domain representation of state feedback loop

The material of this section comes from the work of P. Hippe36.
We consider the following linear, time-invariant MIMO systems where x(t) ∈

Rn, y(t) ∈ Rp and u(t) ∈ Rm:{
ẋ(t) = Ax(t) +Bu(t)
z(t) = Nx(t)

(5.438)

Figure 5.9 shows the linear state feedback loop in the time domain where:

u(t) = −uK(t) + r(t) = −Kx(t) + r(t) (5.439)

Reference input r(t) ∈ Rp shall be multipliable by an appropriate pre-�lter
gain H for zero steady-state tracking error, but it will have no consequences on
the following results.

Based on the right polynomial matrix fraction description (see Section C.1.6)
of the open loop transfer function F(s) which reads F(s) = FRN (s)F

−1
RD(s),

35Youla, D. C., Bongiomo, J. J., Jr., and Jabr, H. A., Modem Wiener-Hopf design of
optimal controllers; Part 1: the single-input-output case, IEEE Transaction on Automatic
Control, vol. AC-21, Feb. 1976, pp.3-13

36Hippe P., Parameterization of the full-order compensator in the frequency domain,
International Journal of Control, Volume 48- Issue 4, 1988
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Figure 5.9: State feedback loop in the time domain

Figure 5.10: State feedback loop in the frequency domain

the state feedback loop in the time domain in Figure 5.9 can be equivalently
represented by the state feedback loop in the frequency domain in Figure 5.10
where DC(s) is a m×m polynomial matrix.

From Figure 5.9, we get the following relation between uK(t) and u(t) :

uK(s) = K (sI−A)−1Bu(s) (5.440)

On the other hand, from Figure 5.10, we get the following relation between
uC(t) and u(t) :

uC(s) = DC(s)F
−1
RD(s)u(s) (5.441)

Because both control loops exhibit the same input-output behavior, the
following relation holds:

uK(s) = uC(s)⇒ K (sI−A)−1B = DC(s)F
−1
RD(s) (5.442)

Similarly, from Figure 5.9 and Figure 5.10, we get the following expressions
for x(s) and xC(s) :

sx(s) = Ax(s) +B (r(s)−Kx(s))

⇔ x(s) = (sI−A+BK)−1Br(s)

xC(s) = F−1
RD(s) (r(s)−DC(s)xC(s))

⇔
(
I+ F−1

RD(s)DC(s)
)
xC(s) = F−1

RD(s)r(s)
⇔ (FRD(s) +DC(s))xC(s) = r(s)

⇔ xC(s) = (FRD(s) +DC(s))
−1 r(s)

(5.443)
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Then, by identifying the output z(s) in Figure 5.9 and Figure 5.10, we get:{
z(s) = Nx(s) = N (sI−A+BK)−1Br(s)

z(s) = FRN (s)xC(s) = FRN (s) (FRD(s) +DC(s))
−1 r(s)

(5.444)

The relation z(s) = FRN (s) (FRD(s) +DC(s))
−1 r(s) indicates that the

(transmission) zeros are invariant under state feedback.

Moreover, because both control loops exhibit the same input-output
behavior, the following relation holds:

N (sI−A+BK)−1B = FRN (s) (FRD(s) +DC(s))
−1 (5.445)

Let the closed-loop polynomial matrix Dcl(s) be de�ned as follows:

Dcl(s) = FRD(s) +DC(s) (5.446)

Then the previous equation reads:

N (sI−A+BK)−1B = FRN (s)D
−1
cl (s) (5.447)

Furthermore, using this relation in (5.442) leads to the following relation:

I+K (sI−A)−1B = Dcl(s)F
−1
RD(s) (5.448)

Furthermore, the following relations hold36 where Γc(·) denotes the highest
column-degree coe�cient matrix and δci(·) denotes the i

th column degree.{
Γc (Dcl(s)) = Γc

(
F−1
RD(s)

)
δci (Dcl(s)) = δci

(
F−1
RD(s)

)
∀ i (5.449)

Matrix Dcl(s) contains exactly the same number of free parameters than the
state feedback matrix K.

5.12.7 Pre-�ltering applied to SISO plants

We will assume hereafter the following state feedback control of a SISO plant:
ẋ(t) = Ax(t) +Bu(t)
u(t) = −Kx(t) + rpf (t)

z(t) = Nx(t)
(5.450)

As shown in Figure 5.11, the pre-�lter Cpf (s) is a controller which is situated
outside the feedback loop.

What is the purpose of the pre-�lter ? Once the state feedback gain K is
designed, the eigenvalues of closed-loop state matrix A −BK are set, but not
the zeros of the closed-loop transfer function G(s):

G(s) =
Z(s)

Rpf (s)
= N (sI− (A−BK))−1B (5.451)
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Figure 5.11: State feedback loop with pre-�lter

These zeros may cause undesirable overshoots in the transient response of
the closed-loop system. The purpose of the pre-�lter Cpf (s) is to reduce or
eliminate such overshoots in the closed-loop system. Additionally the pre-�lter
may annihilate slow stable poles which sometimes cannot be shifted by the
controller.

We focus in Figure 5.11. Let Ncl(s) be the numerator of transfer function

G(s) = Z(s)
Rpf (s)

and Dcl(s) its denominator:

G(s) =
Z(s)

Rpf (s)
=
Ncl(s)

Dcl(s)
(5.452)

We will assume that transfer function Z(s)
Rpf (s)

has all its zeros with negative

real-parts, or equivalently that all the roots of Ncl(s) are located in the left half
plane.

Pre-�lter Cpf (s) is designed such that its poles cancel the zeros of the closed-
loop system (i.e. the roots ofNcl(s)). If there is no pole of the closed-loop system
to cancel, the numerator of the pre-�lter is set to be a constant Kpf . In such a
case the transfer function of the full system reads:

Z(s)

R(s)
=

Kpf

Dcl(s)
(5.453)

As a consequence the transfer function of the pre-�lter reads:

Cpf (s) =
Kpf

Ncl(s)
(5.454)

Note that this is only possible because the roots of Ncl(s) have negative
real-parts, meaning Cpf (s) is stable.

Usually constant Kpf is set such that the static gain of Z(s)
R(s) is unitary,

meaning that the position error is zero:

Y (s)

R(s)

∣∣∣∣
s=0

= 1⇒ Kpf = Dcl(0) (5.455)

Additionally the numerator of the pre-�lter may also cancel some slow stable
poles (poles in the left plane) of the closed-loop system when they are not placed
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Figure 5.12: State feedback loop with pre-�lter inside the closed-loop

by the controller K. In this case, the numerator of the pre-�lter Cpf (s) is no
more a constant.

Equivalently, the pre-�lter may be inserted inside the closed-loop, as shown
in Figure 5.12.

Figure 5.11 and 5.12 are equivalent as soon as the following relation holds:

Cpf (s)G(s) =
C2(s)G(s)

1 + C2(s)G(s)
(5.456)

Finally, controller C2(s) can be computed from Cpf (s) as follows:

Cpf (s) =
C2(s)

1 + C2(s)G(s)
⇔ C2(s) =

Cpf (s)

1−G(s)Cpf (s)
(5.457)
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Appendix A

Refresher on linear algebra

A.1 Section overview

The purpose of this chapter is to review the main results in elementary linear
algebra. We will review vectors and matrices notions. This chapter ends with
the presentation of the notions of eigenvalues and eigenvectors. The content of
this chapter is mainly based on the material provided within the paper of Daniel
S. Stutts1 and Gregory J. Hakim2.

A.2 Vectors

A.2.1 De�nitions

A column vector, or simply a vector, is a set of numbers which are written in a
column form:

x =


x1
x2
...
xn

 (A.1)

A row vector is a set of numbers which are written in a horizontal form. We
denote a row vector by xT where T denotes the transpose operation:

xT =
[
x1 x2 · · · xn

]
(A.2)

Vectors can represent the coordinate of a point within a space of dimension
n.

1https://www.researchgate.net/publication/242366881_Linear_Algebra_Primer
2https://atmos.washington.edu/ hakim/591/LA_primer.pdf
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A.2.2 Vectors operations

− The sum (or subtraction) of two vectors proceed element-wise:

x =


x1
x2
...
xn



y =


y1
y2
...
yn


⇒ x+ y =


x1 + y1
x2 + y2

...
xn + yn

 (A.3)

− The sum (or subtraction) is:

� Commutative:

x+ y = y + x (A.4)

� Associative:

(x+ y) + z = x+ (y + z) (A.5)

− The sum (or subtraction) of two vectors which are not of the same size is
unde�ned.

− For vector subtraction, you have to replace + by − in the preceding
expressions.

− Multiplication of a vector x by a scalar c is de�ned by the multiplication
of each number of the vector by c:

cx =


cx1
cx2
...
cxn

 (A.6)

− The inner product (or dot product) xT y of two vectors x and y of the same
size is obtained by multiplying each number element-wise:



x =


x1
x2
...
xn



y =


y1
y2
...
yn


⇒ xT y =

n∑
i

xiyi (A.7)
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A.3 Matrices

A.3.1 De�nitions

A n × m matrix is a rectangular array of numbers formed by n rows and m
columns:

A =

 a11 · · · a1m
...

...
an1 · · · anm

 (A.8)

Number aij refers to the number which is situated on the ith row and the
jth column.

Matrix and vectors can be used to represent a system of equations in a
compact form: 

a11x1 + · · · a1mxm = b1
...

an1x1 + · · · anmxm = bm

⇔

 a11 · · · a1m
...

...
an1 · · · anm


 x1

...
xm

 =

 b1
...
bm


⇔ Ax = b

(A.9)

− A square matrix is a matrix with the same number of rows and columns;

− A diagonal matrix is a square matrix in which the numbers outside the
main diagonal are all zero;

− The identity matrix I is a diagonal matrix having only ones along the main
diagonal:

I =

 1 0 · · · 0
. . .

0 · · · 0 1

 (A.10)

− The transpose of a matrixA has rows and columns which are interchanged:
the �rst row becomes the �rst column, the second row becomes the second
column and so on. The transpose of a matrix A is denoted AT :

A =

 a11 · · · a1m
...

...
an1 · · · anm

⇒ AT =

 a11 · · · an1
...

...
a1m · · · anm

 (A.11)

− A symmetric matrix is a square matrix that is equal to its transpose;

− The trace of a square matrix is the sum of its diagonal numbers:

tr (A) =

n∑
i=1

aii (A.12)
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A.3.2 Matrix Operations

− The sum (or subtraction) of two matrices of the same size proceed element-
wise:

A =

 a11 · · · a1m
...

...
an1 · · · anm


B =

 b11 · · · b1m
...

...
bn1 · · · bnm


⇒ A+B =

 a11 + b11 · · · a1m + b1m
...

...
an1 + bn1 · · · anm + bnm



(A.13)

− The sum (or subtraction) of two matrices which are not of the same size
is unde�ned.

− The sum (or subtraction) of a matrix with a scalar is de�ned as the sum
(or subtraction) of each number of the matrix with the scalar:

A =

 a11 · · · a1m
...

...
an1 · · · anm

⇒ A+ c =

 a11 + c · · · a1m + c
...

...
an1 + c · · · anm + c

 (A.14)

− Multiplication of a matrix A by a scalar c is de�ned by the multiplication
of each number of the matrix by c:

A =

 a11 · · · a1m
...

...
an1 · · · anm

⇒ cA =

 ca11 · · · ca1m
...

...
can1 · · · canm

 (A.15)

− If A is an n × m matrix and B is an m × p matrix then the matrix
product AB is de�ned to be the n×p matrix for which the number on the
ith row and the jth column is obtained by taking the dot product of the
corresponding ith row of the left matrix with the jth column of the right
matrix: 

A =

 a11 · · · a1m
...

...
an1 · · · anm

 =

 aT1
...
aTn


B =

 b11 · · · b1p
...

...
bm1 · · · bmp

 =
[
b1 · · · bp

]

⇒ AB =

 aT1 b1 · · · aT1 bp
...

...
aTn b1 · · · aTn bp


(A.16)



A.3. Matrices 237

− The kth power of a square matrix is obtained be multiplying k-times the
matrix:

Ak = A · · ·A︸ ︷︷ ︸
k-times

(A.17)

A.3.3 Properties

For any matrices A, B and C the following hold:

− A+B = B+A

− (A+B) +C = A+ (B+C)

− IA = AI = A

− (AB)C = A (BC)

− A (B+C) = AB+AC

− A0 = I

− (AB)T = BTAT

− For any scalar c: cA = Ac

− But be careful, in general AB ̸= BA

A.3.4 Determinant and inverse

The determinant of a square matrix is a scalar. If the matrix is not square its
determinant is unde�ned.

For of a 2 × 2 square matrix its determinant represents the area of the
parallelogram obtained by the vectors in the rows of the matrix:

A =

[
a11 a12
a21 a22

]
⇒ det (A) = a11a22 − a21a12 (A.18)

Let A be a square n × n matrix and Aij be the square (n − 1) × (n − 1)
submatrix obtained by removing the ith row and the jth column from A. Then
determinant of A may be obtained recursively by reduction to the 2 × 2 form
as follows:

det (A) =
n∑
i=1

aij
(
(−1)i+j det (Aij)

)
=

n∑
j=1

aij
(
(−1)i+j det (Aij)

)
(A.19)

The inverse of a square matrix A is the matrix denoted A−1 such that:

AA−1 = A−1A = I (A.20)

A matrix that has no inverse is called singular.
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The inverse of a matrix can be expressed by the following formula where
adj (A) is called the adjoint (or adjugate) matrix:

A−1 =
adj (A)

det (A)
(A.21)

The number on the ith and jth column of the adjoint matrix adj (A) is the
cofactor of aij . The cofactor of aij is the determinant of the submatrix Aij

obtained by removing the ith row and the jth column from A multiplied by
(−1)i+j .

For of a 2× 2 square matrix we get:

A =

[
a11 a12
a21 a22

]
⇒


det (A) = a11a22 − a21a12

adj (A) =

[
a22 −a12
−a21 a11

]
⇒ A−1 = 1

a11a22−a21a12

[
a22 −a12
−a21 a11

] (A.22)

It can be shown that:

− If det (A) ̸= 0 then A is nonsingular ;

− If any row or column of A is zero then det (A) = 0 ;

− If two rows or columns of A are proportional then det (A) = 0 ;

− det (AB) = det (A) det (B) ;

− det
(
AT
)
= det (A) ;

− det
(
A−1

)
= 1

det(A) provided that A−1 exists ;

− If A is a n× n matrix and c a scalar then det (cA) = cn det (A) ;

− (AB)−1 = B−1A−1 ;

−
(
A−1

)T
=
(
AT
)−1

;

Furthermore let A be of dimension n × n, B of dimension n × k, D of
dimension k × k and C of dimension k × n, then the Woodbury Formulae3

reads:{
(A+BDC)−1 = A−1 −A−1B(D−1 +CA−1B)−1CA−1

DC(A+BDC)−1 = (D−1 +CA−1B)−1CA−1 (A.23)

3Linear Algebra Primer Gregory J. Hakim, University of Washington, 2 January 2009 v2.0
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A.4 Eigenvalues and eigenvectors

A vector x is called a (right) eigenvector of matrix A if x is proportional to Ax,
or equivalently in the same direction than Ax:

sx = Ax (A.24)

In order for (A.24) to hold the following relation shall be satis�ed:

(sI−A)x = 0 (A.25)

Relation (A.25) holds for x ̸= 0 as soon as the resolvent matrix Φ(s) =
(sI−A)−1 is singular. For the resolvent matrix Φ(s) to be singular we shall
have:

det (sI−A) = 0 (A.26)

Assuming that A is of dimension n× n then the determinant det (sI−A),
which is called the characteristic polynomial of A, is a polynomial of degree n.
Furthermore its n roots are called the eigenvalues of A and are usually denoted
λ1, · · · , λn.
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Appendix B

Overview of Lagrangian

Mechanics

B.1 Euler-Lagrange equations

Euler-Lagrange equations is a useful technique to obtain the equations of motion
of mechanical systems. Euler-Lagrange equations rely on the expressions of
the kinetic and potential energy of the system with respect to its generalized
coordinates qi, one for each degree of freedom of the system.

Euler-Lagrange equations read:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Qi (B.1)

where:

− qi denotes a generalized coordinates of the system. Generalized coordinates
are composed by the set of minimum size of variables which allows to
determine unambiguously the con�guration of the system. They are either
positions or angles. The number of generalized coordinates is equal to the
number of degrees of freedom of the system. We will denote q the vector
of generalized coordinates:

q = [q1, · · · , qn]T (B.2)

− The Lagrangian L denotes the di�erence between the kinetic energy, which
is denoted T (q, q̇), and the potential energy, which is denoted V (q). The
kinetic energy T (q, q̇) depends on the generalized coordinates q and also
on their derivatives q̇ whereas the potential energy V (q) is a function of
only the generalized coordinates q:

L = T (q, q̇)− V (q) (B.3)

− The kinetic energy T (q, q̇) of a rigid body is de�ned as follows, where P
is any point of the rigid body B:

T (q, q̇) =
1

2

∫∫∫
B
v(P )T v(P ) dm (B.4)
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We recall that the velocity vector v(P ) of any material point P of a rigid
body can be expressed as the sum of the velocity v of its center of mass
and the cross product between the angular velocity vector ω, which is
independent of P , of the rigid body with respect to its center of mass and
the relative position vector x̃(P ) of P with respect to the center of mass
of the body:

v(P ) = v + ω × x̃(P ) (B.5)

Substituting for v(P ) in the expression of T (q, q̇) and expanding, we get:

T (q, q̇) = 1
2

∫∫∫
B (v + ω × x̃(P ))T (v + ω × x̃(P )) dm

= 1
2

∫∫∫
B v

T v + (ω × x̃(P ))T (ω × x̃(P ))
+2 vT (ω × x̃(P )) dm

(B.6)

However:
1

2

∫∫∫
B
vT v dm =

1

2
vT v

∫∫∫
B
dm =

1

2
mvT v (B.7)

and, by de�nition of the center of mass:

1
2

∫∫∫
B v

T (ω × x̃(P )) dm = 1
2 v

T
(
ω ×

∫∫∫
B x̃(P ) dm

)
= 1

2 v
T (ω × 0)

= 0
(B.8)

Moreover the following relation holds:

(ω × x̃(P ))T (ω × x̃(P )) =
((
x̃(P )T x̃(P )

)
ω −

(
x̃(P )Tω

)
x̃(P )

)T
ω (B.9)

We �nally get:

T (q, q̇) = 1
2mvT v + 1

2

(∫∫∫
B
((
x̃(P )T x̃(P )

)
ω −

(
x̃(P )Tω

)
x̃(P )

)T
dm
)
ω

= 1
2mvT v + 1

2

(∫∫∫
B
((
x̃(P )T x̃(P )

)
ω −

(
x̃(P )Tω

)
x̃(P )

)
dm
)T

ω
(B.10)

Hence, we obtain the König decomposition:

T (q, q̇) =
1

2
mvT v +

1

2
HTω (B.11)

where H is the angular momentum of the rigid body relatively to its center
of mass:

H :=
∫∫∫

B
((
x̃(P )T x̃(P )

)
ω −

(
x̃(P )Tω

)
x̃(P )

)
dm

=
∫∫∫

B (x̃(P )× ω × x̃(P )) dm (B.12)

Finally, the angular momentum H can expressed as the product between
the angular velocity ω and the moment of inertia I = IT of the rigid body
relatively to its center of mass:

H = Iω (B.13)
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Thus, for a rigid body with mass m and moment of inertia I the kinetic
energy T (q, q̇) is obtained as the sum between the kinetic energy due to
the velocity v of the center of mass of the body and its angular velocity
ω, both velocities being expressed in an inertial frame:

T (q, q̇) =
1

2
mvT v +

1

2
ωT Iω (B.14)

− Moment of inertia I is a positive de�nite matrix. Matrix I shall be
computed with respect to the point O corresponding to the origin of the
frame chosen for the generalized coordinates q. Denoting by x, y and z
the coordinates of an element of mass dm with respect to the point O,
the moment of inertia I reads as follows:

I =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz


=

 ∫ (y2 + z2) dm −
∫
x y dm −

∫
x z dm

−
∫
x y dm

∫
(x2 + z2) dm −

∫
y z dm

−
∫
x z dm −

∫
y z dm

∫
(x2 + y2) dm


= IT > 0

(B.15)

Quantities Ix, Iy and Iz are called moments of inertia with respect to the
x, y and z axis,respectively whereas quantities Ixy, Ixz and Iyz are called
products of inertia.

− Huygens-Steiner theorem gives the moment of inertia IP at any point P
of a solid of mass m given its moment of inertia I de�ned at a point O:

OP =

 xP
yP
zP

⇒ I = IP +m

 (y2P + z2P ) −xP yP −xP zP
−xP yP (x2P + z2P ) −yP zP
−xP zP −yP zP (x2P + y2P )


(B.16)

− It is worth noticing that the kinetic and the potential energy have to be
evaluated in an inertial frame.

Assuming that a non-inertial frame is considered, let vb be the linear
velocity expressed in the non-inertial frame and ν the angular velocity
expressed in the non-inertial frame. In such a non-inertial frame the kinetic
energy T (q, q̇) reads:

T (q, q̇) =
1

2
m
(
vb
)T

vb +
1

2
νT I ν (B.17)

Denoting by η the vector of angles which allows to position the non-inertial
frame (body frame) with respect to the inertial frame (those are Euler
angles for example) and by Ri

b

(
η
)
the rotation matrix from the non-

inertial frame (body frame) to the inertial frame, we have:

v = Ri
b

(
η
)
vb (B.18)
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Similarly, denoting by ν the angular velocity in the non-inertial frame and
by ω the angular velocity in the inertial frame, we have:

ν = W(η)ω (B.19)

The relation between ω and ν, that is matrix W(η), is obtained by
developing each row of the following matrix equation:

d

dt
Ri
b(η) = Ri

b(η)Ω(ν) where



ω := η̇

ν :=
[
p q r

]T
Ω(ν) =

 0 −r q
r 0 −p
−q p 0

 (B.20)

Let w be a vector with coordinates
[
a b c

]T
. Using the fact that

Ω(ν) is an antisymmetric (or skew-symmetric) matrix, we get the following
relation:

ν =

 p
q
r

⇒ Ω(ν)w =

 0 −r q
r 0 −p
−q p 0

 a
b
c


= −

 0 −c b
c 0 −a
−b a 0

 p
q
r


= −Ω(w) ν

(B.21)

Using the fact that a rotation matrix is an orthogonal matrix, meaning

that
(
Ri
b

(
η
))−1

=
(
Ri
b

(
η
))T

, the kinetic energy T (q, q̇) expressed in the
inertial frame reads as follows:

T (q, q̇) = 1
2m
(
vb
)T
v + 1

2 (ν)
T I ν

= 1
2m
((

Ri
b

(
η
))T

v
)T ((

Ri
b

(
η
))T

v
)
+ 1

2

(
W(η)ω

)T
I
(
W(η)ω

)
= 1

2mv
T v + 1

2ωWT (η) I
(
W(η)ω

)
(B.22)

Thus, the kinetic energy T (q, q̇) expressed in the inertial frame is:

T (q, q̇) =
1

2
mvT v +

1

2
ωT J

(
η
)
ω (B.23)

where the �ctitious moment of inertia J
(
η
)
is de�ned by:

J
(
η
)
= WT (η) IW(η) (B.24)

Finally, let IP be the inertia matrix with respect to a point P of the rigid
body, vbP the linear velocity of P expressed in the non-inertial frame, νP
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its angular velocity expressed in the non-inertial frame and rPG the vector
between the rigid body centre of mass G and P . Then, denoting by × the
cross product between two vectors, the kinetic energy T (q, q̇) of P reads
as follows1:

T (q, q̇) =
1

2
m
(
vbP

)T
vbP +

1

2
(νP )

T IP νP +m
(
vbP

)T
(νP × rPG) (B.25)

− Qi represents the non-conservative generalized forces that are either forces
or torques that are external to the system or which cannot be obtained as
the derivative of a scalar potential function (that is a potential energy).
Generalized force Qi generates a movement, either a translation for a force
or a rotation for a torque, according to the direction of the generalized
coordinates qi.

− The chain rule may be used to get the following relation:(
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

)
qi =

∂L
∂t
− d

dt

(
L − q̇i

∂L
∂q̇i

)
(B.26)

Consequently, assuming that Lagrangian L does not explicitly depends
on time (∂L∂t = 0) and that no non-conservative generalized forces acts on

the system (Qi = 0), then the quantity L − q̇i ∂L∂q̇i is a �rst integral of the
system: {

∂L
∂t = 0
Qi = 0

⇒ L− q̇i
∂L
∂q̇i

= constant (B.27)

The kinetic energy T (q, q̇) can always be expressed as follows where M(q) =

M(q)T > 0 is a positive de�nite matrix:

T (q, q̇) =
1

2
q̇T M(q) q̇ where M(q) = MT (q) > 0 (B.28)

Using the preceding relation for the kinetic energy, it can be shown that:

d

dt

(
∂ T (q, q̇)

∂q̇

)
−
∂ T (q, q̇)

∂q
= M(q)q̈ +C(q, q̇) q̇ (B.29)

Matrix C(q, q̇)q̇ is the so-called Coriolis (terms involving products q̇i q̇j i ̸=
j) and centrifugal (terms involving products q̇2i ) forces matrix. It is worth
noticing that the kth row of matrix C(q, q̇), which will be denoted cTk (q, q̇), can
be obtained thanks to the following relation: cTk (q, q̇) = q̇TSk(q)

Sk(q) =
1
2

(
∂Mk(q)

∂q +
(
∂Mk(q)

∂q

)T
− ∂M(q)

∂qk

)
(B.30)

1Complete dynamic model of the Twin Rotor MIMO System (TRMS) with experimental
validation, Azamat Tastemirov, Andrea Lecchini-Visintini, Rafael M. Morales-Viviescas,
Control Engineering Practice 66 (2017) 89�98
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where Mk(q) is the k
th column of matrix M(q) and qk is the k

th component
of vector q. Terms of matrix C(q, q̇) are called Christo�el symbols.

Once developed, Euler-Lagrange equations (B.1) can then be written as
follows:

M(q)q̈ +C(q, q̇)q̇ +G(q) = D(q, q̇, u) (B.31)

− The term G(q) corresponds to conservative forces. We recall that

conservative generalized forces can be obtained as ∂V (qi)
∂qi

where V (qi) is a
potential function. Such conservative generalized forces are taken into
account within the Lagrangian L but not within the generalized forces
Qi.

− The termD(q, q̇, u) corresponds to the non-conservative generalized forces.
The term u corresponds to the control vector of the system.

− External forces due to dissipation are encompassed within the term

D(q, q̇, u). They are of the form −∂ F(q̇)

∂q̇ where F(q̇) is the Rayleigh

dissipation function which by de�nition satis�es2:

q̇T
∂ F(q̇)
∂q̇

≥ 0 (B.32)

It is worth noticing that damping forces are always dissipative.

− The system is said to be passive when the following relation holds 2:

Passivity ⇔ d

dt
M(q)− 2C(q, q̇) = P where P = −PT (B.33)

Assume now that the generalized coordinates q are not all independent but
subject to m holonomic constraints (nonholonomic constraints are of the form
gj(q, q̇) = 0):

gj(q) = 0 j = 1, · · · ,m (B.34)

Then the variations of δqi are not free but must obey to the following
relations:

δgj(q) =

n∑
i=1

∂gj(q)

∂qi
δqi = 0 j = 1, · · · ,m (B.35)

In that situation the constraints (B.34) are associated with m Lagrange's
multipliers λj and the Euler-Lagrange equations read:{

gj(q1, · · · , qn) = 0 j = 1, · · · ,m
d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi +

∑m
j=1 λj

∂gj
∂qi

i = 1, · · · , n (B.36)

2Passivity-based Control of Euler-Lagrange Systems, Romeo Ortega, Antonio Loria, Per
Johan Nicklasson and Hebertt Sira-Ramírez, Springer, 1998
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Figure B.1: Robot arm

The term
∑m

j=1 λj
∂gj
∂qi

corresponds to the internal generalized force Q̃i related
to the constraints on component qi of the generalized coordinates vector:

Q̃i =
m∑
j=1

λj
∂gj
∂qi

(B.37)

A generalization of the Euler-Lagrange equations taking into account the
constraints on the components of the generalized coordinates vector are the
Boltzmann-Hamel equations3.

B.2 Robot arm

Let's consider Figure B.1 where a robot arm is depicted: u(t) is the torque
applied by a motor drive and y(t) is the angular position of the arm. In addition
we denote m the mass of the arm, l the distance between the axis of the motor
and the centre of mass of the arm, b the viscous friction coe�cient, I its inertia
and g the acceleration of gravity.

The generalized coordinates is chosen to be the angle q(t) = y(t). Indeed
the knowledge of the value of y(t) allows to determine unambiguously the
con�guration of the system. It is worth noticing that the knowledge of the
coordinates of the centre of gravity of the arm also allows to determine
unambiguously the con�guration of the system. Nevertheless the coordinates
of the centre of gravity form a vector of dimension 2 whereas the angle
q(t) = y(t) is a scalar of dimension 1. Consequently the coordinates of the
centre of gravity don't constitute a set a minimum size.

The coordinates of the centre of gravity within the inertial frame read:

O⃗G(t) =

[
xG(t)
yG(t)

]
=

[
l sin(θ(t))
−l cos(θ(t))

]
(B.38)

3Jonathan M. Cameron and Wayne Book, Modeling Mechanisms with Nonholonomic
Joints Using the Botzmann-Hamel Equations, The International Journal of Robotics Research,
February 1997 16(1):47-59, DOI:10.1177/027836499701600104
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By taking the derivative we get the components of the velocity vector as well
as the square of its norm:

v(t) =
d

dt
O⃗G(t) =

[
lθ̇ cos(θ)

lθ̇ sin(θ)

]
⇒ v(t)T v(t) = l2θ̇2 (B.39)

The kinetic energy T (q, q̇) and the potential energy V (q) read:{
T (q, q̇) = 1

2mv(t)
T v(t) + 1

2Iθ̇
2 = 1

2ml
2θ̇2 + 1

2Iθ̇
2

V (q) = −mgl cos (θ) (B.40)

And the Lagrangian L reads:

L = T (q, q̇)− V (q) =
1

2
ml2θ̇2 +

1

2
Iθ̇2 +mgl cos (θ) (B.41)

Consequently the partial derivatives have the following expression:{
∂L
∂θ̇

= (ml2 + I)θ̇
∂L
∂θ = −mgl sin (θ)

(B.42)

The non-conservative generalized forces (forces and torques) are here the
torque u(t) applied by the motor as well as the friction torque −kθ̇ which is
proportional to the angular velocity θ̇:

Q = u(t)− kθ̇ (B.43)

Applying the Euler-Lagrange equations (B.1) leads to the following dynamic
model of the robot arm:

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Q (B.44)

That is:

(ml2 + I)θ̈ +mgl sin (θ) = u(t)− kθ̇ (B.45)

It is clear that the preceding equation can be written as
M(q)q̈ +C(q, q̇)q̇ +G(q) = D(q, q̇, u) (cf. (B.31)) where C(q, q̇) = 0 and where

the term D(q, q̇, u) := u(t) − kθ̇ represents the generalized force encompassing

control u and friction torque kθ̇, which is a non conservative force.

B.3 Quadrotor

The quadcopter structure is presented in Figure B.2. It shows angular velocities
ωi and forces fi created by the four rotors, numbered from i = 1 to i = 4. Torque
direction is opposite to velocities ωi.
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Figure B.2: Inertial and body frames of a quadcopter

B.3.1 Inertial frame and body frame

The following vectors will be used:

− ξ =
[
x y z

]T
is the vector whose components de�ne the position of

the centre of gravity of the quadcopter in the inertial frame;

− η =
[
ϕ θ ψ

]T
is the vector of so-called Euler angles whose components

de�ne the orientation (attitude) of the quadcopter in the inertial frame:

� The roll angle ϕ determines the angular position of the quadcopter
around the x-axis of the body frame;

� The pitch angle θ determines the angular position of the quadcopter
around the y-axis of the body frame;

� The yaw angle ψ determines the angular position of the quadcopter
around the z-axis of the body frame.

− ν =
[
p q r

]T
is the vector whose components de�ne the angular

velocities of the quadcopter in the body frame.

B.3.2 Direct Cosine Matrix (DCM) and kinematic relations

Let xi be a vector expressed in the inertial frame, xb a vector expressed in the
body frame and Rb

i(η) the rotation matrix, also called Direct Cosine Matrix
(DCM), from the inertial frame to the body frame:

xb = Rb
i(η)x

i (B.46)

Rotation matrix Rb
i(η) is obtained by the multiplication of the rotation

matrices around Euler angles, namely yaw angle ψ, pitch angle θ and then roll
angle ϕ, respectively. Denoting cx = cos(x), sx = sin(x) and Ry the rotation
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matrix dedicated to angle y we get:

Rb
i(η) = RϕRθRψ

=

 1 0 0
0 cϕ sϕ
0 −sϕ cϕ

 cθ 0 −sθ
0 1 0
sθ 0 cθ

 cψ sψ 0
−sψ cψ 0
0 0 1


=

 cθcψ cθsψ −sθ
(sϕsθcψ − cϕsψ) (sϕsθsψ + cϕcψ) sϕcθ
(cϕsθcψ + sϕsψ) (cϕsθsψ − sϕcψ) cϕcθ


(B.47)

It is worth noticing that Rb
i(η) is an orthogonal matrix. Consequently the

rotation matrix Ri
b(η) from the body frame to the inertial frame is obtained as

follows:

Ri
b(η) :=

(
Rb
i(η)

)−1
=
(
Rb
i(η)

)T
=

 cθcψ (sϕsθcψ − cϕsψ) (cϕsθcψ + sϕsψ)
cθsψ (sϕsθsψ + cϕcψ) (cϕsθsψ − sϕcψ)
−sθ sϕcθ cϕcθ

 (B.48)

The relation between the angular velocities (p, q, r) in the body frame and
the time derivative of the Euler angles (ϕ, θ, ψ) is the following:

ν :=

 p
q
r

 =

 ϕ̇
0
0

+Rϕ

 0

θ̇
0

+RϕRθ

 0
0

ψ̇

 (B.49)

We �nally get: p
q
r

 =

 1 0 − sin(θ)
0 cos(ϕ) sin(ϕ) cos θ
0 − sin(ϕ) cos(ϕ) cos θ

 ϕ̇

θ̇

ψ̇

 (B.50)

That is:
ν = W(η) η̇ (B.51)

where:

η :=

 ϕ
θ
ψ

 (B.52)

and:

W(η) =

 1 0 − sin(θ)
0 cos(ϕ) sin(ϕ) cos(θ)
0 − sin(ϕ) cos(ϕ) cos(θ)

 (B.53)

It is worth noticing that the preceding relation can be obtained from the
following equality which simply states that the time derivative of matrix Ri

b(η)
can be seen as matrix Ω(ν) of the angular velocities in the body frame expressed
in the inertial frame:

d

dt
Ri
b(η) = Ri

b(η)Ω(ν) where Ω(ν) = −Ω(ν)T =

 0 −r q
r 0 −p
−q p 0

] (B.54)
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Conversely we have:
η̇ = W(η)−1 ν (B.55)

where:

W(η)−1 =

 1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)

0 sin(ϕ)
cos(θ)

cos(ϕ)
cos(θ)

 (B.56)

B.3.3 Forces and torques

We will use the following notation:

− Ir is the inertia moment of each rotor;

− d is the distance between the rotor and the centre of mass of the
quadcopter, that is the arm length basically;

− ωi the angular velocity of the ith rotor;

− fi is the thrust force created by each rotor in the direction of the body
zb-axis;

− Cl is the lift coe�cient;

− Cd is the drag coe�cient.

The non-conservative generalized forces (forces and torques) are the
following:

− Aerodynamic thrust force ft in the direction of the body zb-axis. This
force is the sum of each force coming from each rotor:

ft =
4∑
i=1

fi =
4∑
i=1

Cl ω
2
i (B.57)

Let vector f i
a
be the thrust force created by all rotors in the inertial frame:

f i
a
= Ri

b(η)

 0
0
ft

 = Ri
b(η)

 0
0∑4

i=1Cl ω
2
i

 (B.58)

Where Ri
b(η) denotes the rotation matrix from the body frame to the

inertial frame.

− Aerodynamic torque τ b expressed in the body frame. Vector τ b is the sum
of the following terms:

� Torque τ ba coming from the aerodynamics actions coming from
propellers in the direction of the corresponding body frame angles:

τ ba =

 τϕ
τθ
τψ

 =

 dCl
(
ω2
4 − ω2

2

)
dCl

(
ω2
3 − ω2

1

)
Cd
(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
 (B.59)
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� Torque τ bg coming from the gyroscopic e�ect due to propeller rotation:

τ bg = −

Ir d
dt

 0
0∑4

i=1 sgn(ωi)ωi

+

 p
q
r

× Ir
 0

0∑4
i=1 sgn(ωi)ωi


=

 Ir q (ω1 − ω2 + ω3 − ω4)
−Ir p (ω1 − ω2 + ω3 − ω4)
Ir (ω̇1 − ω̇2 + ω̇3 − ω̇4)


(B.60)

where sgn(ωi) = +1 for counterclockwise propeller rotation and
sgn(ωi) = −1 for clockwise propeller rotation.

We �nally get:

τ b = τ ba + τ bg

=

 dCl
(
ω2
4 − ω2

2

)
+ Ir q (ω1 − ω2 + ω3 − ω4)

dCl
(
ω2
3 − ω2

1

)
− Ir p (ω1 − ω2 + ω3 − ω4)

Cd
(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
+ Ir (ω̇1 − ω̇2 + ω̇3 − ω̇4)


(B.61)

It is worth noticing that terms which depends on Ir come from the
gyroscopic e�ect due to propeller rotation and are usually omitted.

B.3.4 Generalized coordinates

The vector of generalized coordinates q which will determine the con�guration
of the quadcopter is a vector with six components which is de�ned as follows:

q =

[
ξ

η

]
where


ξ =

 x
y
z


η =

 ϕ
θ
ψ

 (B.62)

B.3.5 Inertia matrix

The quadcopter is assumed to have symmetric structure with four arms aligned
with the body x and y axes. Thus the inertia matrix I is diagonal and Ix = Iy:

I =

 Ix 0 0
0 Iy 0
0 0 Iz

 (B.63)

B.3.6 Kinetic energy

Because the inertia matrix is expressed in the body frame, vector ν is naturally
chosen to express the rotational kinetic energy. Nevertheless the rotational
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kinetic energy shall be expressed as a function of the chosen generalized
coordinates. Consequently we shall use the transformation matrix W(η) to get
η̇ from ν and express the rotational kinetic energy as a function of the chosen

generalized coordinates. Consequently the kinetic energy T
(
q, q̇
)
reads:

T
(
q, q̇
)

= 1
2mξ̇

T
ξ̇ + 1

2ν
T I ν

= 1
2mξ̇

T
ξ̇ + 1

2 η̇
TW(η)T IW(η)η̇

= 1
2mξ̇

T
ξ̇ + 1

2 η̇
T J(η) η̇

(B.64)

where we use symmetric matrix J(η) de�ned as follows:

J(η) = W(η)T IW(η) = J(η)T (B.65)

From (B.53) and (B.63) matrix J(η) reads:

J(η) =

 1 0 0
0 cϕ −sϕ
−sθ sϕcθ cϕcθ

 Ix 0 0
0 Iy 0
0 0 Iz

 1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ


=

 Ix 0 −Ixsθ
0 Iyc

2
ϕ + Izs

2
ϕ (Iy − Iz) cϕsϕcθ

−Ixsθ (Iy − Iz) cϕsϕcθ Ixs
2
θ + Iys

2
ϕc

2
θ + Izc

2
ϕc

2
θ

 (B.66)

Thus:

1

2
η̇T J(η) η̇ =

1

2
Ix

(
ϕ̇− ψ̇ sin θ

)2
+

1

2
Iy

(
θ̇ cosϕ+ ψ̇ sinϕ cos θ

)2
+

1

2
Iz

(
θ̇ sinϕ− ψ̇ cosϕ cos θ

)2
(B.67)

Kinetic energy T
(
q, q̇
)
as a function of the chosen generalized coordinates

�nally reads:

T
(
q, q̇
)
=

1

2
m
(
ẋ2 + ẏ2 + ż2

)
+

1

2
Ix

(
ϕ̇− ψ̇ sin θ

)2
+

1

2
Iy

(
θ̇ cosϕ+ ψ̇ sinϕ cos θ

)2
+

1

2
Iz

(
θ̇ sinϕ− ψ̇ cosϕ cos θ

)2
(B.68)

It can be shown that the determinant of symmetric matrix J(η) reads as
follows and that this is a positive de�nite matrix ∀ θ ̸= (2k+1)π/2, k = 1, 2, · · · :

det
(
J(η)

)
= IxIyIz (cos(θ))

2 (B.69)

B.3.7 Potential energy

Potential energy V (q) a function of the chosen generalized coordinates reads:

V (q) = mg z = mg
[
0 0 1

]
ξ (B.70)



254 Appendix B. Overview of Lagrangian Mechanics

B.3.8 Lagrangian

Consequently Lagrangian L reads:

L = T
(
q, q̇
)
− V (q)

= 1
2mξ̇

T
ξ̇ + 1

2 η̇
T J(η) η̇ −mg

[
0 0 1

]
ξ

= 1
2m
(
ẋ2 + ẏ2 + ż2

)
+ 1

2Ix

(
ϕ̇− ψ̇ sin θ

)2
+1

2Iy

(
θ̇ cosϕ+ ψ̇ sinϕ cos θ

)2
+ 1

2Iz

(
θ̇ sinϕ− ψ̇ cosϕ cos θ

)2
−mg z

(B.71)

B.3.9 Euler-Lagrange equations

We have seen that the Lagrangian L reads:

L =
1

2
mξ̇

T
ξ̇ +

1

2
η̇T J(η) η̇ −mg

[
0 0 1

]
ξ (B.72)

Since the Lagrangian L contains no cross terms combining ξ̇ with η̇ the
Euler-Lagrange equations can be partitioned as follows:

− Euler-Lagrange equations with respect to ξ lead to the translational
equations of motion of the quadcopter. Applying the Euler-Lagrange
equations (B.1) and denoting by f i

a
the thrust force created by all rotors

in the inertial frame we get:

f i
a

= d
dt

(
∂L
∂ξ̇

)
− ∂L

∂ξ

⇔ f i
a

= mξ̈ +mg
[
0 0 1

]T (B.73)

From (B.58) we get the di�erential equations for the positional
accelerations:

ξ̈ =
1

m
Ri
b(η)

 0
0∑4
i=1 fi

− g
 0

0
1

 (B.74)

− Euler-Lagrange equations with respect to η lead to the rotational equations
of motion of the quadcopter. Applying Euler-Lagrange equations (B.1)
and denoting by τ i the torque created by all rotors in the inertial frame
we get:

τ i = d
dt

(
∂L
∂η̇

)
− ∂L

∂η

= d
dt

(
J(η) η̇

)
− ∂

∂η

(
1
2 η̇

T J(η) η̇
)

= J(η) η̈ +
dJ(η)

dt η̇ − 1
2

∂ (η̇TJ(η))
∂η η̇

= J(η) η̈ +

(
dJ(η)

dt −
1
2

∂ (η̇TJ(η))
∂η

)
η̇

(B.75)

The preceding equation can be rewritten as follows where C(η, η̇) η̇ is the
Coriolis and centrifugal forces matrix:

J(η)η̈ +C(η, η̇) η̇ = τ i (B.76)
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The expression of J(η) has been provided in (B.66) whereas the expression
of coe�cients Cij of matrix C(η, η̇) are the following:

C(η, η̇) =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 (B.77)

where:

C11 = 0

C12 = (Iy − Iz)θ̇cϕsϕ + 1
2 ψ̇cθ

(
(Iy − Iz)(s2ϕ − c2ϕ)− Ix

)
C13 = (Iz − Iy)ψ̇cϕsϕc2θ +

1
2 θ̇cθ

(
(Iy − Iz)(s2ϕ − c2ϕ)− Ix

)
C21 = (Iz − Iy)θ̇cϕsϕ + 1

2 ψ̇cθ

(
(Iz − Iy)(s2ϕ − c2ϕ) + Ix

)
C22 = (Iz − Iy)ϕ̇cϕsϕ
C23 =

(
Iys

2
ϕ + Izc

2
ϕ − Ix

)
ψ̇sθcθ

+1
2 ϕ̇cθ

(
(Iz − Iy)(s2ϕ − c2ϕ) + Ix

)
C31 = (Iy − Iz)ψ̇c2θsϕcϕ

+1
2 θ̇cθ

(
(Iy − Iz)(c2ϕ − s2ϕ)− Ix

)
C32 = (Iz − Iy)θ̇cϕsϕsθ +

(
Ix − Iys2ϕ − Izc2ϕ

)
ψ̇sθcθ

+1
2 ϕ̇cθ

(
(Iy − Iz)(c2ϕ − s2ϕ)− Ix

)
C33 = (Iy − Iz)ϕ̇cϕsϕc2θ + Ixθ̇cθsθ − ψ̇cθsθ

(
Iys

2
ϕ + Izc

2
ϕ

)

(B.78)

It is worth noticing that the kth row of matrix C(η, η̇), which will be

denoted cTk (η, η̇), can be obtained thanks to the following relation: cTk (η, η̇) = η̇TSk(η)

Sk(η) =
1
2

(
∂Jk(η)

∂η +
(
∂Jk(η)

∂η

)T
− ∂J(η)

∂ηk

)
(B.79)

where Jk(η) is the k
th column of matrix J(η) and ηk is the k

th component
of vector η.

From (B.76) we get the di�erential equations for the angular accelerations:

η̈ = J(η)−1
(
τ i −C(η, η̇) η̇

)
(B.80)

B.3.10 Newton-Euler equations

Let vb = Rb
i(η)ξ̇ be the translational velocity vector expressed in the body

frame and f b the external forces applied on the quadcopter expressed in the
body frame:

f b =

 0
0∑4
i=1 fi

−Rb
i(η)mg

 0
0
1

 (B.81)
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Applying Newton-Euler equations, the translational and angular dynamics
in the body frame of the rigid body quadcopter reads as follows:[

mI 0
0 I

] [
v̇b

ν̇

]
+

[
mΩ(ν) 0

0 Ω(ν) I

] [
vb

ν

]
=

[
f b

τ b

]
(B.82)

Where:

Ω(ν) = −Ω(ν)T =

 0 −r q
r 0 −p
−q p 0

 (B.83)

The preceding Newton-Euler equations are equivalent to equations (B.74)
and (B.80) obtained through the Euler-Lagrange formalism:

vb = Rb
i(η)ξ̇

m v̇b +mΩ(ν) vb = f b

η̇ = W(η)−1 ν

ν̇ = I−1
(
τ b −Ω(ν) I ν

) ⇔


ξ̈ = 1
mRi

b(η)

 0
0∑4
i=1 fi

− g
 0

0
1


η̈ = J(η)−1

(
τ i −C(η, η̇) η̇

)
(B.84)

Where:
τ i = W(η)T τ b (B.85)

The equivalence of the translational equations of motion is easily veri�ed
thanks to the kinematics relations.

As far as the Newton-Euler equations related to the rotational equations of
motion we get:{

ν = W(η) η̇

I ν̇ +Ω(ν) I ν = τ b

⇒

{
ν̇ = Ẇ(η) η̇ +W(η) η̈

I
(
Ẇ(η) η̇ +W(η) η̈

)
+Ω(ν) IW(η) η̇ = τ b

⇒ IW(η) η̈ +
(
I Ẇ(η) +Ω(ν) IW(η)

)
η̇ = τ b

(B.86)

Multiplying both side by W(η)T leads to the equation of the rotational
equation of motion obtained through the Euler-Lagrange formalism:

W(η)T IW(η) η̈ +
(
W(η)T I Ẇ(η) +W(η)TΩ(ν) IW(η)

)
η̇ = W(η)T τ b

⇔ J(η)η̈ +C(η, η̇) η̇ = τ i

(B.87)
More generally the Newton-Euler equations for a point which is located to

(∆x,∆y,∆z) with respect to the center of mass of the rigid body with velocity
(ub, vb, wb) in the body �xed axis (of course these components are the
components of vb, that is the velocity of the center of mass when the center of
mass is considered, that is when ∆x = ∆y = ∆z = 0) reads as follows4:[

mI −∆
∆ I

] [
v̇b

ν̇

]
+

[
mΩ(ν) −Ω(ν)∆
Ω(ν)∆ Ω(ν)I−V∆

] [
vb

ν

]
=

[
f b

τ b

]
(B.88)

4Barton J. Bacon and Irene M. Gregory, General Equations of Motion for a Damaged
Asymmetric Aircraft, NASA Langley Research Center, Hampton, VA, 23681
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Where: 

Ω(ν) =

 0 −r q
r 0 −p
−q p 0


∆ =

 0 −m∆z m∆y

m∆z 0 −m∆x

−m∆y m∆x 0


V =

 0 −wb vb
wb 0 −ub
−vb ub 0


(B.89)

B.3.11 Translational equations of motion with wind

The velocity of the quadcopter with respect to the inertial frame (the Earth)
is the sum of the velocity of the quadcopter with respect to the wind, which is
denoted Ri

b(η)v
b, and the wind velocity, which is denoted w. Denoting by ξ the

position of the drone, we have:

ξ̇ := vi = Ri
b(η)v

b + w (B.90)

where:

vb =

uv
w

 (B.91)

Rotation matrix Ri
b(η) is given by (B.48).

Taking the time derivative of the velocity in the inertial frame, vi, we get:

v̇i = Ṙi
bv
b +Ri

b(η)v̇
b + ẇ (B.92)

From Newton's translational equations of motion we have:

mv̇i =
∑

f i (B.93)

Multiplying by Rb
i(η) leads to the following relation:

mRb
i(η)v̇

i = Rb
i(η)

∑
f i =

∑
f b (B.94)

We get: ∑
f b = m(Rb

i(η)Ṙ
i
bv
b + v̇b +Rb

i(η)ẇ)

⇔ v̇b =
∑
fb

m −Rb
i(η)Ṙ

i
bv
b −Rb

i(η)ẇ
(B.95)

where Rb
i(η)Ṙ

i
b := Ω(ν) has been seen previously. We �nally get the

following equation of motion taking into account the wind component w reads:

v̇b =

∑
f b

m
−Ω(ν)vb −Rb

i(η)ẇ (B.96)



258 Appendix B. Overview of Lagrangian Mechanics

Furthermore the wind is assumed to be not a constant but dependent on time
t as well as on the quadcopter location ξ := [x, y, z]T . So we have: w := w(t, ξ).
Taking into account the rule of chain derivative we have:

ẇ(t, ξ) =
∂w(t, ξ)

∂t
+
∂w(t, ξ)

∂ξ

∂ξ

∂t
(B.97)

Taking into account that the time derivative of the location of the quadcopter
is its velocity expressed in the inertial we have:

∂ξ

∂t
= vi = Ri

b(η)v
b + w (B.98)

Thus (B.96) �nally reads:

v̇b =

∑
f b

m
− (Ω(ν) +Ω(w)) vb −Rb

i(η)

(
∂w(t, ξ)

∂t
+
∂w(t, ξ)

∂ξ
w

)
(B.99)

where:

Ω(w) = Rb
i(η)

∂w(t, ξ)

∂ξ
Ri
b(η) (B.100)

Of course, as soon as w = 0, we have Ω(w) = 0 and we retrieve equation of
motion (B.82).

B.3.12 Small angle approximation of angular dynamics

The second equation of (B.82) represents the angular dynamics in the body
frame of the rigid body quadcopter:

Iν̇ +Ω(ν) Iν = τ b

⇔ ν̇ = I−1
(
τ b −Ω(ν) Iν

) (B.101)

We have seen that angular velocities in the inertial frame are expressed in
the body frame through the transformation matrix W(η)−1:

η̇ = W(η)−1 ν (B.102)

The derivative of (B.102) with respect to time of the preceding equation
leads to the expression of η̈:

η̈ =
dW(η)−1

dt
ν +W(η)−1 ν̇ (B.103)

According to (B.56) we have:

W(η)−1 =

1 sin (ϕ) tan (θ) cos (ϕ) tan (θ)
0 cos (ϕ) − sin (ϕ)

0 sin (ϕ)
cos (θ)

cos (ϕ)
cos (θ)


⇒ dW(η)−1

dt =


0

ϕ̇cϕsθ
cθ

+
θ̇sϕ
c2θ

θ̇cϕ
c2θ
− ϕ̇sϕsθ

cθ

0 −ϕ̇sϕ −ϕ̇cϕ
0

ϕ̇cϕ
cθ

+
θ̇sϕsθ
c2θ

θ̇cϕsθ
c2θ
− ϕ̇sϕ

cθ


(B.104)
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Figure B.3: Electrical model of a DC motor

Small angle approximation of angular dynamics is obtained by setting Euler
angles vector η to zero within transformation matrix W(η)−1, that is by setting
transformation matrix W(η)−1 to identity matrix. As a consequence the time
derivative of the Euler angles η̇ is approximated by the angular velocities ν of
the quadcopter in the body frame:

η = 0⇒W(η)−1 ≈ I⇒ η̈ ≈ ν̇ ⇒ η̇ ≈ ν (B.105)

In addition thanks to this approximation τ i = W(η)T τ b ≈ τ b and (B.101)
reads as follows, which is the small angle approximation of angular dynamics
(B.80):

η̈ ≈ I−1
(
τ b −Ω(η̇) Iη̇

)
(B.106)

B.3.13 Synthesis model

The synthesis model is a simpli�ed model when compared to the validation
model (B.84). Synthesis model enables to design control laws in a linear time
invariant frame.

As far as the angular dynamics is concerned, since term Ω(η̇) Iη̇ is usually

small when compared to τ b, equation (B.106) can be reduced as follows, which
is basically the dynamics of a double integrator:

Ω(η̇) Iη̇ ≪ τ b ⇒ η̈ ≈ I−1τ b (B.107)

B.3.14 BLDC motor with ESC and propeller

Miniature BrushLess Direct Current (BLDC) motors are commonly used on
small UAV. Such motor converts the electrical power to a torque on its output
shaft at a speci�c angular speed ωm

5.

A model of DC Motor Plant is shown in Figure B.3. Let:

− um be the motor input voltage;

5R. Martinez-Alvarado, F. J. Ruiz-Sanchez, A. Sanchez-Orta and O. Garcia-Salazar,
Dynamic response of BLDC-thruster for small scale Quadrotors under aerodynamic load
torque, 2014 IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC), 2014, pp. 1-6, doi: 10.1109/ROPEC.2014.7036341.
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− i be the armature current;

− r be the motor internal resistance;

− L be the motor internal inductance;

− e be the back ElectroMotive Force (EMF).

From Figure B.3, the electrical model of a DC motor reads:

L
d i

dt
= um − r i− e (B.108)

On the other hand, the mechanical model of a DC motor reads:

J
dωm
dt

= τm − τd (B.109)

where:

− ωm is motor angular speed;

− τm is the motor torque;

− τd is the motor load;

− J is the propeller inertia.

The motor load τd is described as follows, where kD is the aerodynamic
torque coe�cient which depends on the drag of the propeller:

τd = kD ωm |ωm| (B.110)

Assuming that the BLDC motor is powered by an Electronic Speed Control
(ESC) device, the coupling between the electrical model and the mechanical
model appears through the following expression of angular speed ωm and motor
torque τm as a function of the ElectroMotive Force (EMF) e and the constant
armature current i: {

ωm = kV e
τm = kT i

(B.111)

The proportionality constant kV is the motor's speed constant while kT is
the torque constant.

Finally, when all those relations are merged, we get the following dynamics
model for a DC motor equipped with a propeller:{

L d i
dt = um − r i− ωm

kV
J dωm

dt = kT i− kD ωm |ωm|
(B.112)

When the motor internal inductance L is neglected, the �rst equation
simpli�es as follows:

L ≈ 0⇒ um ≈ r i+
ωm
kV

(B.113)
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With this simpli�cation, the second equation becomes:

i ≈
um − ωm

kV

r
⇒ J

dωm
dt
≈ kT

um − ωm
kV

r
− kD ωm |ωm| (B.114)

We �nally get:

dωm
dt
≈ −1

τ
ωm −

kD
J
ωm |ωm|+

kV
τ
um (B.115)

where:
1

τ
=

kT
kV J r

(B.116)

Multiplying by τ the nonlinear di�erential equation (B.115), and assuming
that time constant τ is small, we get the fact that the motor angular speed ωm
is proportional to the motor input voltage um:

τ ≈ 0⇒ ωm ≈ kV um (B.117)

Alternatively nonlinear di�erential equation (B.115) can be linearized
around an equilibrium point (ωme, ume):

δω̇m = Aδωm +B δum where

 0 = − 1
τ ωme −

kD
J ωme |ωme|+ kV

τ ume
δωm = ωm − ωme
δum = um − ume

(B.118)
Finally, assuming that the electrical power e i related to the back

ElectroMotive Force (EMF) is fully converted into mechanical power τm ωm,
we have:

e i = τm ωm (B.119)

Using the coupling equations (B.111) we get kT = 1
kV

. Indeed:{
ωm = kV e
τm = kT i

⇒ e i = τm ωm ⇔ �
��ωm i

kV
= kT���i ωm ⇒ kT =

1

kV
(B.120)

Thanks to the ESC, the motor input voltage um is related to the commanded
Pulse Width Modulation (PWM) δP ∈ [0, 1] by the following relation, where Vs
is a constant supply voltage:

um = δP Vs (B.121)

To summarize, a BLDC motor with its ESC is characterized by the following
4 constants: the motor's speed constant kV , the supply voltage Vs, the constant
current passing through the windings i and the winding resistance r.
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Appendix C

Linear Algebraic Method for

Control System Design

C.1 Matrix polynomial fraction

C.1.1 Greatest Common Divisor of two polynomials

The greatest common divisor (frequently abbreviated as GCD) of two
polynomials N(s) and Ψ(s) is a monic polynomial (a monic polynomial is a
polynomial in which the nonzero coe�cient of highest degree (also called the
leading coe�cient) is equal to 1) of the highest possible degree that is a factor
of both N(s) and Ψ(s).

The greatest common divisor (GCD) of two polynomials N(s) and Ψ(s) can
be obtained through the Euclidean algorithm: this consists in making repeated
Euclidean division (according to the descending power of s) and to use the
following results: the Euclidean division of N(s) by Ψ(s) such that deg (Ψ(s)) ≤
deg (N(s)) provides a quotient Q(s) and a remainder R(s) such that:

deg (Ψ(s)) ≤ deg (N(s))⇒
{
N(s) = Q(s)Ψ(s) +R(s)
deg (R(s)) < deg (Ψ(s))

(C.1)

Then: {
GCD (N(s),Ψ(s)) = GCD (Ψ(s), R(s))
GCD (Ψ(s), R(s)) = GCD (Ψ(s), λR(s))

(C.2)

where λ is a non-zero scalar.
The greatest common divisor (GCD) is then the last non-zero remainder

divided by the its leading coe�cient (we recall that GCD is a monic polynomial
by convention).

Example C.1. Let N(s) and Ψ(s) be the following polynomials:{
N(s) = s3 + 6s2 + 11s+ 6
Ψ(s) = s3 + 4s2 + s− 6

(C.3)

Because N(s) and Ψ(s) have the same degree, we can write:

N(s) = s3 + 4s2 + s− 6 +
(
2s2 + 10s+ 12

)
= Ψ(s) + 2s2 + 10s+ 12 = Ψ(s) +R(s)

(C.4)
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and:
GCD (N(s),Ψ(s)) = GCD (Ψ(s), R(s))

= GCD
(
Ψ(s), 2s2 + 10s+ 12

) (C.5)

Then we make the Euclidean division of Ψ(s) by 2s2 + 10s+ 12:

s3 +4s2 +s −6 2s2 + 10s+ 12

−(s3 +5s2 +6s) 1
2s−

1
2

−s2 −5s
−(−s2 −5s −6)

0

(C.6)

Here the last non-zero remainder is s2+5s+6, which is a monic polynomial.
We �nally get:

GCD (N(s),Ψ(s)) = s2 + 5s+ 6 (C.7)

Finally we can write:

N(s) = s3 + 6s2 + 11s+ 6
= (s+ 1)

(
s2 + 5s+ 6

)
= (s+ 1)×GCD (N(s),Ψ(s))

Ψ(s) = s3 + 4s2 + s− 6
= (s− 1)

(
s2 + 5s+ 6

)
= (s− 1)×GCD (N(s),Ψ(s))

(C.8)

Those relations clearly show that GCD (N(s),Ψ(s)) is a factor of both N(s) and
Ψ(s).

■

C.1.2 Smith form of polynomial matrix

First, let's de�ne unimodular polynomial matrix: a square polynomial matrix
U(s) is unimodular as soon as its inverse is also a polynomial matrix.
Equivalently a square polynomial matrix U(s) is unimodular if and only if its
determinant is a nonzero constant independent of s.

Example C.2. Consider the following square polynomial matrix U(s):

U(s) =

[
s 1

2s− 3 2

]
(C.9)

It is clear that det (U(s)) = 3. Thus the determinant of U(s) is a nonzero
constant independent of s. As a consequence U(s) as an unimodular polynomial
matrix and its inverse is also a polynomial matrix:

U−1(s) =
1

3

[
2 −1

−2s+ 3 s

]
(C.10)

■
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Smith form is a canonical form for polynomial matrices. Let N(s) be a p×m
polynomial matrix. Smith's theorem states that any polynomial matrix N(s)
can be written as follows:

S(s) = V(s)N(s)W(s) (C.11)

where:

− S(s) is a quasi-diagonal polynomial matrix;

− Square matrices V(s) and W(s) are unimodular polynomial matrices;

− The dimension of matrix V(s) is p × p whereas the dimension of matrix
W(s) is m×m.

Matrices N(s) and S(s) are said to be equivalent.
Quasi-diagonal matrix S(s) has the following expression, where r is the

normal rank of N(s) (the normal rank of the polynomial matrix N(s) is the
rank of the matrix for almost every value of s).

S(s) =


s1(s) 0

. . .
...

sr(s) 0
0 · · · 0 0

 (C.12)

Monic polynomials sk(s) are invariant factors of N(s). A monic polynomial
is a polynomial in which the coe�cient of highest degree (also called the leading
coe�cient) is equal to 1. Furthermore sk(s) divides sk+1(s) ∀ k = 1, . . . , r − 1:

sk(s) | sk+1(s) ∀ k = 1, . . . , r − 1 (C.13)

Elementary row and column operations are used to transform N(s) into its
Smith form S(s). The three elementary operations for a polynomial matrix are:

− Multiplying a row or column by a constant;

− Interchanging two rows or two columns; and

− Adding a polynomial multiple of a row or column to another row or
column.

The sequences, which are not unique, of elementary row and column
operations are the following:

1. By performing suitable row and column swaps, put the polynomial with
the lowest degree in �rst row and �rst column. Let a11(s) be this
polynomial;

2. By Euclidean division expand each polynomial in the �rst row as follows
where deg (rj(s)) < deg (a11(s)):

a1j(s) = a11(s)qj(s) + rj(s) (C.14)
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Then subtract qj(s) times the �rst column from column j and perform
suitable row and column swaps to put the polynomial with the lowest
degree in �rst row and �rst column. This is to be repeated until all
elements of the �rst row are divisible by a11(s);

3. Subtract the appropriate multiple of the �rst column from columns j where
j > 1 to get 0 in the �rst row and columns j > 1;

4. Proceed with the same type of elementary operations, but operating on
rows rather than columns;

5. Once �nalized, the process yields to the following matrix where s1(s) ̸= 0
is a monic polynomial: 

s1(s) 0 · · · 0
0
... N1(s)
0

 (C.15)

If N1(s) = 0 the process stops. Otherwise the sequence of elementary
row and column operations shall continue over N1(s) to produce another
diagonal element.

From an algorithmic point of view, matrices V(s) and W(s) are initialized
to identity matrix with an appropriate dimension and are put left and right to
N(s). Then the sequence of elementary operations on row (matrix V(s)) and
column (matrix W(s)) are applied until matrix S(s) is achieved.

Alternatively the expression of S(s), that is the Smith canonical form of
polynomial matrix N(s), can be obtained through all minors of size k of N(s)
as follows: let P0(s) = 1 and de�ne Pk(s), k = 1, . . . , r as the greatest common
divisor (GCD) of all minors of size k of N(s). Then:

sk(s) =
Pk(s)

Pk−1(s)
, k = 1, . . . , r (C.16)

Minors of size k of a matrix are the determinants of the square submatrices of
size k. Let N(s) be a p×m matrix. Then minors of size k are the determinants
of all the k × k square submatrices obtained from N(s) by deleting p− k rows

and m− k columns. There are a total of

(
p
k

)
×
(
m
k

)
= p!

k!(p−k)! ×
m!

k!(m−k)!

minors of size k within N(s), where k ≤ min(p,m).

Example C.3. Let N(s) be the following polynomial matrix:

N(s) =

[
4 −(s+ 2)

2(s+ 2) −0.5

]
(C.17)

The normal rank of N(s) is 2. Thus the Smith form of N(s) reads:

S(s) =

[
s1(s) 0
0 s2(s)

]
(C.18)
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In order to get the Smith form of N(s) and express S(s) as V(s)N(s)W(s)
we apply the sequences of elementary row and column operations (which are not
unique) described in Table C.1.

Sequence V(s) (on rows) N(s) W(s) (on columns)[
1 0
0 1

] [
4 −(s + 2)

2(s + 2) −0.5

] [
1 0
0 1

]
r1 ← r1/4

[
1/4 0
0 1

] [
1 −(s + 2)/4

2(s + 2) −0.5

] [
1 0
0 1

]
c2 ← c2 + (s + 2)/4 c1

[
1/4 0
0 1

] [
1 0

2(s + 2) −0.5 + (s + 2)2/2

] [
1 (s + 2)/4
0 1

]

r2 ← r2 − 2(s + 2) r1

[
1/4 0

−(s + 2)/2 1

] [
1 0

0 −0.5 + (s + 2)2/2 = s2+4s+3
2

] [
1 (s + 2)/4
0 1

]
r2 ← 2r2

[
1/4 0

−(s + 2) 2

] [
1 0

0 s2 + 4s + 3

] [
1 (s + 2)/4
0 1

]

Table C.1: Smith form of N(s)

We can check that S(s) = V(s)N(s)W(s) where V(s) and W(s) are
unimodular polynomial matrices:

S(s) =

[
1 0
0 s2 + 4s+ 3

]
=

[
1 0
0 (s+ 1)(s+ 3)

]
V(s) =

[
1/4 0

−(s+ 2) 2

]
⇒ det (V(s)) = 1

2

W(s) =

[
1 (s+ 2)/4
0 1

]
⇒ det (W(s)) = 1

(C.19)

Alternatively the expression of S(s), that is the Smith form of polynomial
matrix N(s), can be obtained through all minors of size k of N(s).

− We start with:
P0(s) = 1 (C.20)

− Minors of size 1 of N(s) are the following:

4, −(s+ 2), 2(s+ 2), −0.5 (C.21)

Thus the greatest common divisor (GCD) of all minors of size 1 of N(s)
is −0.5. Because this is not a monic polynomial, we divide it by its leading
coe�cient, that is −0.5 here. We get:

P1(s) = 1 (C.22)

− The minor of size 2 of N(s) is the following:

det

([
4 −(s+ 2)

2(s+ 2) −0.5

])
= −2 + 2(s+ 2)2 = 2(s2 + 4s+ 3) (C.23)

Thus the greatest common divisor (GCD) of all minors of size 2 of N(s)
is 2(s2 + 4s+ 3). Because this is not a monic polynomial, we divide it by
its leading coe�cient, that is 2 here. We get:

P2(s) = s2 + 4s+ 3 (C.24)
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We �nally get:

sk(s) =
Pk(s)

Pk−1(s)
, k = 1, 2⇒

{
s1(s) =

P1(s)
P0(s)

= 1

s2(s) =
P2(s)
P1(s)

= s2 + 4s+ 3
(C.25)

The Smith form of N(s) is thus the following matrix S(s):

S(s) =

[
s1(s) 0
0 s2(s)

]
=

[
1 0
0 s2 + 4s+ 3

]
=

[
1 0
0 (s+ 1)(s+ 3)

]
(C.26)

■

Example C.4. Let N(s) be the following polynomial matrix1:

N(s) =

 1 −1
s2 + s− 4 2s2 − s− 8
s2 − 4 2s2 − 8

 (C.27)

The normal rank of N(s) is 2. Thus the Smith form of N(s) reads:

S(s) =

 s1(s) 0
0 s2(s)
0 0

 (C.28)

In order to get the Smith form of N(s) and express S(s) as V(s)N(s)W(s)
we apply the sequences of elementary row and column operations (which are not
unique) described in Table C.2.

We can check that S(s) = V(s)N(s)W(s) where V(s) and W(s) are
unimodular polynomial matrices:

S(s) =

 1 0
0 s2 − 4
0 0


V(s) =

 1/3 0 0
−s/3 1/3 0
s −1 1

⇒ det (V(s)) = 1
9

W(s) =

[
2 1
−1 1

]
⇒ det (W(s)) = 3

(C.29)

Alternatively the expression of S(s), that is the Smith form of polynomial
matrix N(s), can be obtained through all minors of size k of N(s).

− We start with:
P0(s) = 1 (C.30)

− Minors of size 1 of N(s) are the following:

1, −1, s2 + s− 4, 2s2 − s− 8, s2 − 4, 2s2 − 8 (C.31)

Thus the greatest common divisor (GCD) of all minors of size 1 of N(s)
is:

P1(s) = 1 (C.32)
1Multivariable Feedback Design (Addison-Wesley) J.M. Maciejowski (1989)
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Sequence V(s) (on rows) N(s) W(s) (on columns) 1 0 0
0 1 0
0 0 1

  1 −1
s2 + s− 4 2s2 − s− 8
s2 − 4 2s2 − 8

 [
1 0
0 1

]

c2 ← c2 + c1

 1 0 0
0 1 0
0 0 1

  1 0
s2 + s− 4 3s2 − 12
s2 − 4 3s2 − 12

 [
1 1
0 1

]

c1 ← 3c1 − c2

 1 0 0
0 1 0
0 0 1

  3 0
3s 3s2 − 12
0 3s2 − 12

 [
2 1
−1 1

]

r2 ← r2 − sr1

 1 0 0
−s 1 0
0 0 1

  3 0
0 3s2 − 12
0 3s2 − 12

 [
2 1
−1 1

]

r1 ← r1/3

 1/3 0 0
−s 1 0
0 0 1

  1 0
0 3s2 − 12
0 3s2 − 12

 [
2 1
−1 1

]

r3 ← r3 − r2

 1/3 0 0
−s 1 0
s −1 1

  1 0
0 3s2 − 12
0 0

 [
2 1
−1 1

]

r2 ← r2/3

 1/3 0 0
−s/3 1/3 0
s −1 1

  1 0
0 s2 − 4
0 0

 [
2 1
−1 1

]
Table C.2: Smith form of N(s)

− Minors of size 2 of N(s) are the following:

det

([
1 −1

s2 + s− 4 2s2 − s− 8

])
= 3s2 − 12

det

([
1 −1

s2 − 4 2s2 − 8

])
= 3s2 − 12

det

([
s2 + s− 4 2s2 − s− 8
s2 − 4 2s2 − 8

])
= s

(
3s2 − 12

) (C.33)

Thus the greatest common divisor (GCD) of all minors of size 2 of N(s)
is 3s2 − 12. Because this is not a monic polynomial, we divide it by its
leading coe�cient, that is 3 here. We get:

P2(s) =
3s2 − 12

3
= s2 − 4 (C.34)

We �nally get:

sk(s) =
Pk(s)

Pk−1(s)
, k = 1, 2⇒

{
s1(s) =

P1(s)
P0(s)

= 1

s2(s) =
P2(s)
P1(s)

= s2 − 4
(C.35)

The Smith form of N(s) is thus the following matrix S(s):

S(s) =

 s1(s) 0
0 s2(s)
0 0

 =

 1 0
0 s2 − 4
0 0

 (C.36)

■
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C.1.3 Smith-McMillan form of transfer matrix

The Smith-McMillan form of a transfer matrix can be used to generalize the
notion of poles and zeros of a transfer matrix with multiple inputs and/or
outputs.

We consider the following transfer matrix F(s) where N(s) is a polynomial
matrix and Ψ(s) is a polynomial which is actually the least common multiple
of the denominators of all the elements in F(s)):

F(s) =
N(s)

Ψ(s)
(C.37)

We will assume that N(s)
Ψ(s) is proper, meaning that all the polynomials which

appear in N(s) have a degree lower or equal to the degree of Ψ(s):

lim
s→∞

F(s) <∞ (C.38)

Using the Smith form (C.12) of polynomial matrix N(s) we get:

S(s) =


s1(s) 0

. . .
...

sr(s) 0
0 · · · 0 0



⇒ S(s)
Ψ(s) =


s1(s)
Ψ(s) 0

. . .
...

sr(s)
Ψ(s) 0

0 · · · 0 0


(C.39)

Matrix S(s)
Ψ(s) is called the Smith-McMillan form of transfer matrix F(s): this

is a quasi-diagonal matrix of rational functions which may possibly simplify. Let
εi(s)
ψi(s)

be the rational functions obtained after simpli�cation of each element of

quasi-diagonal matrix S(s)
Ψ(s) . Then the Smith-McMillan form of transfer matrix

F(s) reads:

S(s)

Ψ(s)
=


ε1(s)
ψ1(s)

0

. . .
...

εr(s)
ψr(s)

0

0 · · · 0 0

 (C.40)

Polynomials εk(s) and ψk(s) are coprime. Furthermore εk(s) divides εk+1(s)
and ψk+1(s) divides ψk(s) ∀ k = 1, . . . , r − 1:

εk(s) | εk+1(s)
ψk+1(s) |ψk(s)

}
∀ k = 1, . . . , r − 1 (C.41)
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Example C.5. Let F(s) be the following transfer matrix:

F(s) =


1

(s+1)(s+2)
−1

(s+1)(s+2)
s2+s−4

(s+1)(s+2)
2s2−s−8

(s+1)(s+2)
s−2
s+1

2s−4
s+1


= 1

(s+1)(s+2)

 1 −1
s2 + s− 4 2s2 − s− 8
s2 − 4 2s2 − 8


:= N(s)

Ψ(s)

(C.42)

The Smith form of polynomial matrix N(s) which appears in the numerator
of transfer matrix F(s) has been achieved in a previous example. Thus the
Smith-McMillan form of transfer matrix F(s) reads as follows where we can
notice some simpli�cations in the rational functions within the quasi-diagonal
matrix S(s)

Ψ(s) :

S(s)
Ψ(s) = 1

(s+1)(s+2)

 1 0
0 s2 − 4
0 0


=


1

(s+1)(s+2) 0

0 (s−2)(s+2)
(s+1)(s+2)

0 0


=

 1
(s+1)(s+2) 0

0 s−2
s+1

0 0


(C.43)

■

Example C.6. Let F(s) := N(s)
Ψ(s) be the following transfer matrix:

F(s) =

[ 2
s+2

s+1
s+3

1
s+2

5
s+2

]
=

1

(s+ 2)(s+ 3)

[
2(s+ 3) (s+ 1)(s+ 2)
s+ 3 5(s+ 3)

]
(C.44)

Let N(s) be the following polynomial matrix:

N(s) =

[
2(s+ 3) (s+ 1)(s+ 2)
s+ 3 5(s+ 3)

]
=

[
2s+ 6 s2 + 3s+ 2
s+ 3 5s+ 15

]
(C.45)

The normal rank of N(s) is 2. Thus the Smith form of N(s) reads:

S(s) =

[
s1(s) 0
0 s2(s)

]
(C.46)

In order to get the Smith form of N(s) and express S(s) as V(s)N(s)W(s)
we apply the sequences of elementary row and column operations (which are not
unique) described in Table C.3.
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Séquence V(s) (lignes) N(s) W(s) (colonnes)[
1 0
0 1

] [
2s + 6 s2 + 3s + 2
s + 3 5s + 15

] [
1 0
0 1

]
r1 ← r1/2

[
0.5 0
0 1

] [
s + 3 s2/2 + 1.5s + 1
s + 3 5s + 15

] [
1 0
0 1

]
r2 ← r2 − r1

[
0.5 0
−0.5 1

] [
s + 3 s2/2 + 1.5s + 1

0 −s2/2 + 3.5s + 14

] [
1 0
0 1

]
c2 ← c2 − 0.5 s c1

[
0.5 0
−0.5 1

] [
s + 3 1

0 −s2/2 + 3.5s + 14

] [
1 −0.5s
0 1

]
c2 ↔ c1

[
0.5 0
−0.5 1

] [
1 s + 3

−s2/2 + 3.5s + 14 0

] [
−0.5s 1

1 0

]
r2 ← p(s) r1 − r2

p(s) = −s2/2 + 3.5s + 14

[
0.5 0

−0.25s2 + 1.75s + 7.5 −1

] [
1 s + 3

0 (−s2/2 + 3.5s + 14)(s + 3)

] [
−0.5s 1

1 0

]
c2 ← (s + 3)c1 − c2

[
0.5 0

−0.25s2 + 1.75s + 7.5 −1

] [
1 0

0 (s2/2− 3.5s− 14)(s + 3)

] [
−0.5s −s2/2− 1.5s− 1

1 s + 3

]
c2 ← 2 c2

[
0.5 0

−0.25s2 + 1.75s + 7.5 −1

] [
1 0

0 (s2 − 7s− 28)(s + 3)

] [
−0.5s −s2 − 3s− 2

1 2(s + 3)

]

Table C.3: Forme de Smith de N(s)

We can check that S(s) = V(s)N(s)W(s) where V(s) and W(s) are
unimodular polynomial matrices:

S(s) =

[
1 0
0 (s2 − 7s− 28)(s+ 3)

]
V(s) =

[
0.5 0

−0.25s2 + 1.75s+ 7.5 −1

]
⇒ det (V(s)) = −0.5

W(s) =

[
−0.5s −s2 − 3s− 2

1 2(s+ 3)

]
⇒ det (W(s)) = 2

(C.47)

Alternatively the expression of S(s), that is the Smith form of polynomial
matrix N(s), can be obtained through all minors of size k of N(s):

− We start with:
P0(s) = 1 (C.48)

− Minors of size 1 of N(s) are the following:

2(s+ 3), (s+ 1)(s+ 2), s+ 3, 5(s+ 3) (C.49)

Thus the greatest common divisor (GCD) of all minors of size 1 of N(s)
is:

P1(s) = 1 (C.50)

− The only minor of size 2 of N(s) is the following:

det (N(s)) = det

([
2(s+ 3) (s+ 1)(s+ 2)
s+ 3 5(s+ 3)

])
= 10(s+ 3)2 − (s+ 1)(s+ 2)(s+ 3)

(C.51)

Thus the greatest common divisor (GCD) of all minors of size 2 is
obviously det (N(s)) = 10(s + 3)2 − (s + 1)(s + 2)(s + 3) is 3s2 − 12.
Because this is not a monic polynomial, we divide it by its leading
coe�cient, that is −1 here. We get:

P2(s) = (s+ 1)(s+ 2)(s+ 3)− 10(s+ 3)2 (C.52)
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We �nally get:

sk(s) =
Pk(s)
Pk−1(s)

, k = 1, 2

⇒

 s1(s) =
P1(s)
P0(s)

= 1

s2(s) =
P2(s)
P1(s)

= (s+ 1)(s+ 2)(s+ 3)− 10(s+ 3)2

(C.53)

Consequently the Smith form of polynomial matrix N(s) is the following:

S(s) =

[
s1(s) 0
0 s2(s)

]
=

[
1 0
0 (s+ 1)(s+ 2)(s+ 3)− 10(s+ 3)2

]
=

[
1 0
0 (s2 − 7s− 28)(s+ 3)

]
(C.54)

Consequently the Smith-McMillan form of transfer matrix F(s) is obtained
when dividing polynomial matrix S(s) by polynomial Ψ(s) = (s+ 2)(s+ 3):

S(s)
Ψ(s) = 1

(s+2)(s+3)

[
1 0
0 (s2 − 7s− 28)(s+ 3)

]
=

[
1

(s+2)(s+3) 0

0 s2−7s−28
s+2

]

:=

[
ε1(s)
ψ1(s)

0

0 ε2(s)
ψ2(s)

] (C.55)

■

C.1.4 System dimension, poles and zeros

As soon as the Smith-McMillan form (C.40) of transfer matrix F(s) is obtained,
the following results can be applied:

− System dimension n is obtained as the sum of the degrees of invariant
factors ψk(s):

n =

r∑
k=1

deg (ψk(s)) (C.56)

− The characteristic polynomial of the system is de�ned as follows:

χA(s) =

r∏
k=1

ψk(s) (C.57)

− Poles of F(s) are the roots of polynomial χA(s) =
∏r
k=1 ψk(s);

− Transmission zeros of F(s) are the roots of polynomial
∏r
k=1 εk(s);

− Poles and zeros at in�nity are obtained by evaluating poles and zeros of

the Smith-McMillan form of transfer matrix F
(
1
s

)
:= N(s)

d(s) where d(s) is
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the least common multiple of all elements of F
(
1
s

)
and where V(s) and

W(s) are some unimodular matrices2:

F
(
1
s

)
:= N(s)

d(s) ⇒



N(s) = V(s)S(s)W(s)

S(s) =


s1(s) 0

. . .
...

sr(s) 0
0 · · · 0 0



⇒ F
(
1
s

)
= V(s)S(s)d(s)W(s) = V(s)


ψ1(s)
ε1(s)

0

. . .
...

ψr(s)
εr(s)

0

0 · · · 0 0

W(s)

(C.58)

Polynomials εk(s) and ψk(s) are coprime. Since sk(s) divides sk+1(s),
k = 1, · · · , r − 1, polynomial ψk(s) divides ψk+1(s) and εk+1(s) divides
εk(s) ∀ k = 1, . . . , r − 1:

ψk(s) |ψk+1(s)
εk+1(s) | εk(s)

}
∀ k = 1, . . . , r − 1 (C.59)

Furthermore we said that F(s) has a pole at in�nity with multiplicity νp
if s = 0 is a root of

∏r
k=1 εk(s) with multiplicity νp. Similarly, we said

that F(s) has a zero at in�nity with multiplicity νz if s = 0 is a root of∏r
k=1 ψk(s) with multiplicity νz.

Example C.7. Let F(s) be the following transfer matrix:

F(s) =

[ 2
s+2

s+1
s+3

1
s+2

5
s+2

]
(C.60)

We have already seen that the Smith-McMillan form of transfer matrix F(s)
reads as follows:

S(s)

Ψ(s)
=

[
ε1(s)
ψ1(s)

0

0 ε2(s)
ψ2(s)

]
=

[
1

(s+2)(s+3) 0

0 s2−7s−28
s+2

]
(C.61)

Consequently we have the following results:

− System dimension n is obtained as the sum of the degrees of invariant
factors ψi(s):

n =

r∑
i=1

deg (ψi(s)) = 2 + 1 = 3 (C.62)

System dimension n is the dimension of a minimal state-space realization
of F(s);

2Juan C. Zuniga�Anaya, Structural Properties of Polynomial and Rational Matrices, a
Survey, Mathematica Aeterna, Vol. 1, 2011, no. 06, 361 - 403
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− The characteristic polynomial of the system is de�ned as follows:

χA(s) =

r∏
i=1

ψi(s) = (s+ 2)2(s+ 3) (C.63)

− Poles of F(s) are the roots of polynomials ψi(s), that are here −2, with
multiplicity 2, and −3;

− Transmission of F(s) are the roots of polynomials εi(s), , that are here the
roots of s2 − 7s− 28.

■

C.1.5 Transfer matrix realization

We start with the following relation:

Y (s) = F(s)U(s) (C.64)

where:{
F(s) = N(s)

Ψ(s)

S(s) = V(s)N(s)W(s)
⇒ F(s) = V−1(s)

S(s)

Ψ(s)
W−1(s) (C.65)

For a system with p outputs and m inputs, we split the square unimodular
polynomial matrices V(s) (of dimension p×p) and W(s) (of dimension m×m)
as follows: 

V−1(s) =
[
v1(s) . . . vp(s)

]
W−1(s) =

 wT1 (s)
...

wTm(s)

 (C.66)

Then we get:

F(s) =
r∑
i=1

εi(s)

ψi(s)
vi(s)w

T
i (s) (C.67)

Let Fi(s) be the following multiple-input multiple-output elementary
transfer matrix of dimension p×m:

Fi(s) =
εi(s)

ψi(s)
vi(s)w

T
i (s) (C.68)

Let Ai be a companion matrix of polynomial ψi(s). Then the characteristic
polynomial of Ai is ψi(s):

det (sI−Ai) = ψi(s) (C.69)
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Using the results dedicated to state-space realizations of transfer functions,
we can achieve the following realization of Fi(s):

Fi(s) =
εi(s)
ψi(s)

vi(s)w
T
i (s) = Ci (sI−Ai)

−1Bi +Di :=

(
Ai Bi

Ci Di

)
⇔
{
ẋi(t) = Aixi(t) +Biu(t)
y
i
(t) = Cixi(t) +Diu(t)

(C.70)

For example matrix Ai could be a block diagonal Jordan matrix. Then
matrices Ci and Bi are constant matrices of dimension p × ni and ni × m,
respectively, where ni is the degree of polynomial ψi(s). Constant matrices Ci

and Bi shall be computed such that:

(sI−Ai)
−1 =

adj (sI−Ai)

ψi(s)
⇒ Ci adj (sI−Ai)Bi = εi(s) vi(s)w

T
i (s) (C.71)

Furthermore Di = lims→∞Fi(s). Other realizations will be presented in
Section C.1.6.

A realization of F(s) is then obtained by aggregating the realizations of all
elementary transfer matrices Fi(s):

Λ =


A1 0

A2

. . .

0 Ar


B =

 B1

...
Br


C =

[
C1 · · · Cr

]
D =

∑
iDi

(C.72)

This minimal realization is a generalization of Gilbert's method.

Example C.8. Let F(s) be the following transfer matrix:

F(s) =


1

(s+1)(s+2)
−1

(s+1)(s+2)
s2+s−4

(s+1)(s+2)
2s2−s−8

(s+1)(s+2)
s−2
s+1

2s−4
s+1


= 1

(s+1)(s+2)

 1 −1
s2 + s− 4 2s2 − s− 8
s2 − 4 2s2 − 8


:= N(s)

Ψ(s)

(C.73)

We have seen in a previous example that the Smith-McMillan form of transfer
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matrix F(s) reads as follows:

F(s) = V−1(s) S(s)Ψ(s)W
−1(s)

= V−1(s) 1
(s+1)(s+2)

 1 0
0 s2 − 4
0 0

W−1(s)

=
[
v1(s) v2(s) v3(s)

]  1
(s+1)(s+2) 0

0 s−2
s+1

0 0

[ wT1 (s)
wT2 (s)

]
= 1

(s+1)(s+2) v1(s)w
T
1 (s) +

s−2
s+1 v2(s)w

T
2 (s)

(C.74)

where:
V(s) =

 1/3 0 0
−s/3 1/3 0
s −1 1

⇒ V−1(s) :=
[
v1(s) v2(s) v3(s)

]
=

 3 0 0
3s 3 0
0 3 1


W(s) =

[
2 1
−1 1

]
⇒W−1(s) :=

[
wT1 (s)
wT2 (s)

]
=

[
1/3 −1/3
1/3 2/3

]
(C.75)

Then we get:

F(s) =
1

(s+ 1)(s+ 2)

 1 −1
s −s
0 0

+
s− 2

s+ 1

 0 0
1 2
1 2

 (C.76)

Let F(s) = F1(s) +F2(s) where the elementary transfer matrices F1(s) and
F2(s) read as follows:

F1(s) =
1

(s+1)(s+2)

 1 −1
s −s
0 0

 = 1
s+1

 1 −1
−1 1
0 0

+ 1
s+2

 −1 1
2 −2
0 0


F2(s) =

s−2
s+1

 0 0
1 2
1 2

 =
(
1− 3

s+1

) 0 0
1 2
1 2


(C.77)

Elementary transfer matrices F1(s) and F2(s) are such that all the factors
of 1

s−λi are 3× 2 matrices with rank ni = 1. Those matrices can then be written
as the product between two constant matrices Ci and Bi of dimension 3× 1 and
1× 2, respectively:

F1(s) =
1
s+1

 1
−1
0

 [ 1 −1
]
+ 1

s+2

 −12
0

 [ 1 −1
]

F2(s) =
1
s+1

 0
−3
−3

 [ 1 2
]
+

 0 0
1 2
1 2

 (C.78)

The realization of F1(s) and F2(s) using block diagonal Jordan form is then
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the following:

F1(s) =

(
A1 B1

C1 D1

)
=


−1 0 1 −1
0 −2 1 −1
1 −1 0 0
−1 2 0 0
0 0 0 0


F2(s) =

(
A2 B2

C2 D2

)
=


−1 1 2

0 0 0
−3 1 1
−3 2 2


(C.79)

A minimal realization of F(s) is then obtained by aggregating the realizations
of all elementary transfer matrices Fi(s):

Λ =

[
A1 0
0 A2

]
=

 −1 0 0
0 −2 0

0 0 −1


B =

[
B1

B2

]
=

 1 −1
1 −1
1 2


C =

[
C1 C2

]
=

 1 −1 0
−1 2 −3
0 0 −3


D =

∑
iDi =

 0 0
1 1
2 2



(C.80)

■

C.1.6 Polynomial matrix fraction description (P-MFD)

Polynomial Matrix Fraction Description (P-MFD) is an alternative method to
state space representation. It generalizes the notion of numerator and
denominator for MIMO (Multiple-Input Multiple-Output) transfer matrices.

A right polynomial matrix fraction description of transfer matrix F(s) of
dimension p × m reads as follows where FRN (s) is a polynomial matrix of
dimension p × m and FRD(s) is a square polynomial matrix of dimension
m×m:

F(s) = FRN (s)F
−1
RD(s) (C.81)

Similarly, a left polynomial matrix fraction description of transfer matrix
F(s) of dimension p×m reads as follows where FLD(s) is a square polynomial
matrix of dimension p × p and FLN (s) is a polynomial matrix of dimension
p×m:

F(s) = F−1
LD(s)FLN (s) (C.82)

We have seen that transfer matrix F(s) can be decomposed as follows:{
F(s) = N(s)

Ψ(s)

N(s) = V−1(s)S(s)W−1(s)
⇒ F(s) = V−1(s)

S(s)

Ψ(s)
W−1(s) (C.83)
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Matrix S(s)
Ψ(s) is the Smith-McMillan form of transfer matrix F(s): this is a

quasi-diagonal matrix of rational functions which may possibly simplify.
Furthermore S(s) is a polynomial matrix of dimension p × m and Ψ(s) is a

polynomial. Let εi(s)
ψi(s)

be the elements obtained after possible simpli�cations of

this quasi-diagonal matrix. Then matrix S(s)
Ψ(s) has the following expression:

S(s)

Ψ(s)
=


ε1(s)
ψ1(s)

0

. . .
...

εr(s)
ψr(s)

0

0 · · · 0 0

 (C.84)

Let DΨp(s) and DΨm(s) be the following square polynomial matrices, build
from polynomials ψi(s) and of dimension p × p and m ×m respectively (those
2 matrices just di�er by the number of 1 on their diagonal), and Nεpm(s) the
following polynomial matrix build from polynomials εi(s) and of dimension p×
m: 

DΨp(s) = diag (ψ1(s), · · · , ψr(s), 1, · · · , 1) : p× p square matrix
DΨm(s) = diag (ψ1(s), · · · , ψr(s), 1, · · · , 1) : m×m square matrix
Nεpm(s) = diag (ε1(s), · · · , εr(s), 0, · · · , 0) : p×m matrix

(C.85)

Matrix S(s)
Ψ(s) of dimension p×m can then be expressed in 2 di�erent ways:

S(s)

Ψ(s)
= Nεpm(s)D

−1
Ψm

(s) = D−1
Ψp

(s)Nεpm(s) (C.86)

By carrying these expressions in (C.83), transfer function F(s) is then
written as follows:

F(s) = V−1(s) S(s)Ψ(s)W
−1(s)

= V−1(s)Nεpm(s)D
−1
Ψm

(s)W−1(s)

= V−1(s)D−1
Ψp

(s)Nεpm(s)W
−1(s)

(C.87)

By identifying (C.87) to (C.81) we get the following expression of the right
polynomial matrix fraction description of transfer matrix F(s):

F(s) = FRN (s)F
−1
RD(s)

= V−1(s)Nεpm(s)D
−1
Ψm

(s)W−1(s)

= V−1(s)Nεpm(s) (W(s)DΨm(s))
−1

⇒
{

FRN (s) = V−1(s)Nεpm(s)
FRD(s) = W(s)DΨm(s)

(C.88)

Similarly, by identifying (C.87) to (C.82) we get the following expression of
the left polynomial matrix fraction description of transfer matrix F(s):

F(s) = F−1
LD(s)FLN (s)

= V−1(s)D−1
Ψp

(s)Nεpm(s)W
−1(s)

=
(
DΨp(s)V(s)

)−1
Nεpm(s)W

−1(s)

⇒
{

FLD(s) = DΨp(s)V(s)
FLN (s) = Nεpm(s)W

−1(s)

(C.89)
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Note that V(s) and W(s) are unimodular polynomial matrices. Therefore
V−1(s) and W−1(s) are also unimodular polynomial matrices and matrices
FRN (s), FRD(s), FLN (s) and FLD(s) are polynomial matrices.

Consider now the following linear and time invariant system with m inputs
and p outputs:

{
ẋ = Ax+Bu
y = Cx

(C.90)

Once the Smith-McMillan form of this system is obtained, the right
polynomial matrix fraction description of F(s) leads to the following
realization of the system in the controllable canonical form:

F(s) = FRN (s)F
−1
RD(s)

=
(
Nr−1s

r−1 + · · ·+N1s+N0

) (
Imsr +Dr−1s

r−1 + · · ·+D1s+D0

)−1

= Cc (sI−Ac)
−1Bc :=

(
Ac Bc

Cc 0p×m

)
(C.91)

where: 

Ac =



0m Im 0m · · · 0m

0m 0m Im · · ·
...

. . .

Im
−D0 −D1 · · · −Dr−1



Bc =


0m
...

0m
Im


Cc =

[
N0 N1 · · · Nr−1

]

(C.92)

Similarly, the left polynomial matrix fraction description of F(s) leads to
the following realization of the system in the observable canonical form:

F(s) = F−1
LD(s)FLN (s)

=
(
Imsr +Dr−1s

r−1 + · · ·+D1s+D0

)−1 (
Nr−1s

r−1 + · · ·+N1s+N0

)
= Co (sI−Ao)

−1Bo :=

(
Ao Bo

Co 0p×m

)
(C.93)
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where: 

Ao =


0m 0m · · · 0m −D0

Im 0m · · · 0m −D1

. . .

0m · · · Im −Dr−1



Bo =


N0

N1

...
Nr−1


Co =

[
0m · · · 0m Im

]

(C.94)

Example C.9. We consider (again) the following transfer matrix F(s):

F(s) =


1

(s+1)(s+2)
−1

(s+1)(s+2)
s2+s−4

(s+1)(s+2)
2s2−s−8

(s+1)(s+2)
s−2
s+1

2s−4
s+1

 (C.95)

Here the number of outputs p of the system is equal to 3 whereas the number
of inputs m of the system is equal to 2.

We have seen in a previous example that the Smith-McMillan form of the
transfer matrix F(s) is the following:

F(s) = V−1(s) S(s)Ψ(s)W
−1(s)

= V−1(s) 1
(s+1)(s+2)

 1 0
0 s2 − 4
0 0

W−1(s)

= V−1(s)

 1
(s+1)(s+2) 0

0 s−2
s+1

0 0

W−1(s)

= V−1(s)Nεpm(s)D
−1
Ψm

(s)W−1(s)

= V−1(s)D−1
Ψp

(s)Nεpm(s)W
−1(s)

(C.96)

where: 

Nεpm(s) =

 1 0
0 s− 2
0 0


DΨm(s) =

[
(s+ 1)(s+ 2) 0

0 s+ 1

]
DΨp(s) =

 (s+ 1)(s+ 2) 0 0
0 s+ 1 0
0 0 1


(C.97)

and:
V(s) =

 1/3 0 0
−s/3 1/3 0
s −1 1


W(s) =

[
2 1
−1 1

] ⇔


V−1(s) =

 3 0 0
3s 3 0
0 3 1


W−1(s) =

[
1/3 −1/3
1/3 2/3

] (C.98)
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Then the right polynomial matrix fraction description of F(s) reads as
follows:

F(s) = FRN (s)F
−1
RD(s)

where


FRN (s) = V−1(s)Nεpm(s) =

 3 0
3s 3s− 6
0 3s− 6


FRD(s) = W(s)DΨm(s) =

[
2s2 + 6s+ 4 s+ 1
−s2 − 3s− 2 s+ 1

] (C.99)

And the left polynomial matrix fraction description of F(s) reads as follows:

F(s) = F−1
LD(s)FLN (s)

where


FLD(s) = DΨp(s)V(s) =

 s2/3 + s+ 2/3 0 0
−s2/3− s/3 s/3 + 1/3 0

s −1 1


FLN (s) = Nεpm(s)W

−1(s) =

 1/3 −1/3
−2/3 + s/3 2/3s− 4/3

0 0


(C.100)

■

C.1.7 Right and left coprimeness

Consider two polynomial matrices D(s) and N(s) with the same number of
columns. A square polynomial matrix R(s) is called a common right divisor of
D(s) and N(s) if there exists polynomial matrices D(s) and N(s) such that:[

D(s)
N(s)

]
=

[
D(s)

N(s)

]
R(s) (C.101)

Assume D(s) and N(s) have both m columns and such that the sum of their
rows is greater of equal to m. Then the following statements are equivalent3:

− D(s) and N(s) are right coprime, meaning that the greatest common
right divisor of D(s) and N(s) is an unimodular matrix. We will see in
section C.1.8 how to compute the greatest common right divisor of two
polynomials matrices.

− There exists polynomial matrices X(s) and Y(s) which solve the following
Bezout identity:

X(s)D(s) +Y(s)N(s) = Im (C.102)

− For any complex number s:

rank

([
D(s)
N(s)

])
= m (C.103)

3Panos J. Antsaklis, Anthony N. Michel, A Linear Systems Primer, Birkhäuser Boston
2007, https://doi.org/10.1007/978-0-8176-4661-5
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− The Smith form of

[
D(s)
N(s)

]
is

[
Im
0

]
.

Assume now D(s) and N(s) have both p rows and such that the sum of their
columns is greater of equal to p. Then the following statements are equivalent:

− D(s) and N(s) are left coprime, meaning that the greatest common left
divisor of D(s) and N(s) is an unimodular matrix.

− There exists polynomial matrices X(s) and Y(s) which solve the following
Bezout identity:

D(s)X(s) +N(s)Y(s) = Ip (C.104)

− For any complex number s:

rank
([

D(s) N(s)
])

= p (C.105)

− The Smith form of
[
D(s) N(s)

]
is
[
Ip 0

]
.

C.1.8 Hermite form and applications

Greatest Common Right Divisor (GCD)

The row Hermite form of a matrix, initially discovered by Charles Hermite
(1822-1901) in 1851 for the domain of integers, is an upper triangular matrix
that has the added constraints that the diagonals have the largest degrees in
each column.

Let D(s) and N(s) be two polynomial matrices with the same number of

columns andP(s) :=

[
D(s)
N(s)

]
. The row Hermite form ofP(s) can be computed

by the following algorithm4:

1. In the �rst column of P(s) use row interchange to bring to the �rst row a
lowest-degree entry among nonzero �rst-column entries;

2. Multiply the �rst row by a real number so that the �rst column entry
m1,1(s) is monic, meaning that the coe�cient corresponding to the highest
degree monomial is 1;

3. For each entry mi,1(s) below the �rst row in the �rst column, use
polynomial division to write the following relation where each remainder
ri,1(s) is such that deg(ri,1(s)) < deg(m1,1(s)):

mi,1(s) = qi(s)m1,1(s) + ri,1(s), i ≥ 2 (C.106)

If mi,1(s) = 0 we set qi(s) = ri,1(s) = 0. If deg(mi,1(s)) = 0 then
deg(m1,1(s)) = 0 and ri,1(s) = 0.

4Rugh W. J., Linear System Theory, Prentice Hall, 1992
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4. For i ≥ 2, add to the ith-row the product between −qi(s) and the �rst
row, that is the product −qi(s)m1,1(s). The resulting entries in the �rst
column, below the �rst row, are polynomials r2,1(s), · · · , rp+m,1(s), all of
which having degrees less than deg(m1,1(s)).

5. Repeat the preceding steps until all entries of the �rst column are zero
except the �rst entry. Since the degrees of the entries below the �rst entry
are lowered by at least one in each iteration, a �nite number of operations
is required.

Next, proceed with the second column of P(s) and repeat the above steps
while ignoring the �rst row. This results in a monic, nonzero entry m2,2(s),
with all entries below it are zero.

If m1,2(s) does not have lower degree than m2,2(s), then polynomial division
of m1,2(s) by m2,2(s) as in step 4 replaces m1,2(s) by a polynomial of degree
less than deg(m2,2(s)).

Next repeat the process for the third column of P(s), while ignoring the
�rst two rows. Continuing until the last column of P(s) yields to the so-called

row Hermite form of polynomial matrix P(s) =

[
D(s)
N(s)

]
, where U(s) is an

unimodular polynomial matrix (meaning that det (U(s)) = constant): U(s)

[
D(s)
N(s)

]
=

[
R(s)
0

]
det (U(s)) = constant

(C.107)

Polynomial matrix R(s) is the Greatest Common Right Divisor (GCD) of
polynomial matrices N(s) and D(s).

Polynomial matrix fraction description

The results presented in section 5.12.4 lead to a matrix fraction description of
F(s), where NFR(s), DFR(s), XR(s) and YR(s) are rational matrices.

To achieve a polynomial matrix description of F(s), �rst write F(s) as
follows:

F(s) = N(s)D−1(s) where D(s) = diag (Ψ(s), · · · ,Ψ(s)) (C.108)

whereN(s) is a p×m polynomial matrix, D(s) am×m diagonal polynomial
matrix and Ψ(s) a polynomial.

From the row Hermite form (see Section C.1.8) of polynomial matrix P(s) =[
D(s)
N(s)

]
, we get relation (C.107) where U(s) is a (p+m)×(p+m) unimodular

polynomial matrix (meaning that det (U(s)) = constant): U(s)

[
D(s)
N(s)

]
=

[
R(s)
0

]
det (U(s)) = constant

(C.109)
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Then U(s) is partitioned as follows, where U11(s) is a m ×m polynomial
matrix and U22(s) a p× p polynomial matrix:

U(s) =

[
U11(s) U12(s)
U21(s) U22(s)

]
(C.110)

Matrix U22(s) is square and invertible. Then the left coprime polynomial
matrix description of F(s) reads:

F(s) = −U−1
22 (s)U21(s) (C.111)

Indeed, from (C.107) we have:[
U11(s) U12(s)
U21(s) U22(s)

] [
D(s)
N(s)

]
=

[
R(s)
0

]
⇒ U21(s)D(s) +U22(s)N(s) = 0

⇒ F(s) = N(s)D−1(s) = −U−1
22 (s)U21(s)

(C.112)

With V(s) = U−1(s) we get the following relation where V11(s) is a m×m
polynomial matrix and V22(s) a p× p polynomial matrix:

U−1(s) = V(s) =

[
V11(s) V12(s)
V21(s) V22(s)

]
(C.113)

Matrix V11(s) is square and invertible. Then the right coprime polynomial
matrix description of F(s) reads:

F(s) = V21(s)V
−1
11 (s) (C.114)

Indeed we have:[
D(s)
N(s)

]
=

[
V11(s) V12(s)
V21(s) V22(s)

] [
R(s)
0

]
⇒
{

D(s) = V11(s)R(s)
N(s) = V21(s)R(s)

⇒ F(s) = N(s)D−1(s) = V21(s)R(s)R−1(s)V−1
11 (s) = V21(s)V

−1
11 (s)

(C.115)

Furthermore, as far as V(s) = U−1(s), the following relation, known as
Bézout identity, holds:[

U11(s) U12(s)
U21(s) U22(s)

] [
V11(s) V12(s)
V21(s) V22(s)

]
=

[
I 0
0 I

]
(C.116)

With the same kind of work on the columns of the achieved row Hermite
form, matrixR(s) can be diagonalized. Then we get the following relation where
matricesU(s) (rows operations) andW(s) (columns operations) are unimodular
and diag(pi(s)) is a diagonal polynomial matrix:

U(s)

[
D(s)
N(s)

]
W(s) =

[
diag(pi(s))

0

]
(C.117)
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Example C.10. We consider the following transfer function:

F(s) =


0 s

s2−s−1

1
s2

s−1
s(s2−s−1)

1
s

s−1
s2−s−1

0 1
s2−s−1

 (C.118)

It is clear that F(s) can be written as follows:

F(s) = 1
s2(s2−s−1)


0 s3

(s2 − s− 1) s(s− 1)
s(s2 − s− 1) s2(s− 1)

0 s2


=


0 s3

(s2 − s− 1) s(s− 1)
s(s2 − s− 1) s2(s− 1)

0 s2

[ s2(s2 − s− 1) 0
0 s2(s2 − s− 1)

]−1

(C.119)

Then we seek the row Hermite form of P(s) :=

[
D(s)
N(s)

]
where:

D(s) =

[
s2(s2 − s− 1) 0

0 s2(s2 − s− 1)

]

N(s) =


0 s3

(s2 − s− 1) s(s− 1)
s(s2 − s− 1) s2(s− 1)

0 s2

 (C.120)

Following the algorithm proposed by Rugh4, the row Hermite form of P(s)
can be computed step by step as shown in Table C.4 for the �rst column.

Then we proceed with the second column while ignoring the �rst row, as
shown in Table C.5.

Finally matrix U(s) is partitioned as follows, where U11(s) is a m × m
polynomial matrix and U22(s) is a p× p polynomial matrix:

U(s) =



0 0 0 1 0 0
0 0 0 0 0 1

0 0 1 0 0 −s
1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0
0 1 0 0 0 −(s2 − s− 1)

 =

[
U11(s) U12(s)

U21(s) U22(s)

]
(C.121)

Matrix U22(s) is a square invertible polynomial matrix. The left coprime
polynomial matrix description of F(s) reads:

F(s) = −U−1
22 (s)U21(s) = −


1 0 0 −s
0 −s2 0 (s2 − s)
0 −s 1 0
0 0 0 −(s2 − s− 1)


−1 

0 0
1 0
0 0
0 1


(C.122)
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Row operation U(s) P(s)
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




s2(s2 − s− 1) 0

0 s2(s2 − s− 1)
0 s3

(s2 − s− 1) s(s− 1)
s(s2 − s− 1) s2(s− 1)

0 s2



r1 ↔ r4


0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(s2 − s− 1) s(s− 1)

0 s2(s2 − s− 1)
0 s3

s2(s2 − s− 1) 0
s(s2 − s− 1) s2(s− 1)

0 s2



r4 ← r4 − s2 r1


0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 −s2 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(s2 − s− 1) s(s− 1)

0 s2(s2 − s− 1)
0 s3

0 −s3(s− 1)
s(s2 − s− 1) s2(s− 1)

0 s2



r5 ← r5 − s r1


0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 −s2 0 0
0 0 0 −s 1 0
0 0 0 0 0 1




(s2 − s− 1) s(s− 1)

0 s2(s2 − s− 1)
0 s3

0 −s3(s− 1)
0 0
0 s2


Table C.4: Row Hermite form of P(s): process with the �rst column
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Row operation U(s) P(s)

r2 ↔ r6


0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 −s2 0 0
0 0 0 −s 1 0
0 1 0 0 0 0




(s2 − s− 1) s(s− 1)

0 s2

0 s3

0 −s3(s− 1)
0 0
0 s2(s2 − s− 1)



r3 ← r3 − s r2


0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 −s
1 0 0 −s2 0 0
0 0 0 −s 1 0
0 1 0 0 0 0




(s2 − s− 1) s(s− 1)

0 s2

0 0
0 −s3(s− 1)
0 0
0 s2(s2 − s− 1)



r4 ← r4 + (s2 − s) r2


0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 −s
1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0
0 1 0 0 0 0




(s2 − s− 1) s(s− 1)

0 s2

0 0
0 0
0 0
0 s2(s2 − s− 1)



r6 ← r6 − (s2 − s− 1) r2


0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 −s
1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0
0 1 0 0 0 −(s2 − s− 1)




(s2 − s− 1) s(s− 1)

0 s2

0 0
0 0
0 0
0 0


Table C.5: Row Hermite form of P(s): process with the second column
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Opération (colonne ou ligne) U(s) P(s) W(s)
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 −s

1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0

0 1 0 0 0 −(s2 − s− 1)




(s2 − s− 1) s(s− 1)

0 s2

0 0
0 0
0 0
0 0


[

1 0
0 1

]

c2 ← c2 − c1


0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 −s

1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0

0 1 0 0 0 −(s2 − s− 1)




(s2 − s− 1) 1

0 s2

0 0
0 0
0 0
0 0


[

1 −1
0 1

]

c2 ↔ c1


0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 −s

1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0

0 1 0 0 0 −(s2 − s− 1)




1 (s2 − s− 1)

s2 0
0 0
0 0
0 0
0 0


[
−1 1
1 0

]

r2 ← r2 − s2 r1



0 0 0 1 0 0

0 0 0 −s2 0 1
0 0 1 0 0 −s

1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0

0 1 0 0 0 −(s2 − s− 1)




1 (s2 − s− 1)

0 −s2(s2 − s− 1)
0 0
0 0
0 0
0 0


[
−1 1
1 0

]

c2 ← c2 − (s2 − s− 1) c1



0 0 0 1 0 0

0 0 0 −s2 0 1
0 0 1 0 0 −s

1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0

0 1 0 0 0 −(s2 − s− 1)




1 0

0 −s2(s2 − s− 1)
0 0
0 0
0 0
0 0


[
−1 s2 − s

1 −s2 + s + 1)

]

Table C.6: Getting the Smith-McMillan form from the row Hermite form

With V(s) = U−1(s) we get:

U−1(s) = V(s) =

[
V11(s) V12(s)

V21(s) V22(s)

]

=



s2 s− s2 0 1 0 0
0 −1− s+ s2 0 0 0 1

0 s 1 0 0 0
1 0 0 0 0 0
s 0 0 0 1 0
0 1 0 0 0 0


(C.123)

Matrix V11(s) is a square invertible polynomial matrix. The right coprime
polynomial matrix description of F(s) reads as follows:

F(s) = V21(s)V
−1
11 (s) =


0 s
1 0
s 0
0 1

[ s2 s− s2
0 −1− s+ s2

]−1

(C.124)

With the same kind of work on the columns of the achieved row Hermite
form, matrix R(s) can be diagonalized. Starting with Table C.5, rows operations
(matrix U(s)) and columns operations (matrix W(s)) on P(s) are presented in
Table C.6.

Then we get the following relation where matrices U(s) (rows operations)
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and W(s) (columns operations) are unimodular:

U(s)

[
D(s)
N(s)

]
W(s) =

[
diag(pi(s))

0

]

⇔


0 0 0 1 0 0
0 0 0 −s2 0 1
0 0 1 0 0 −s
1 0 0 −s2 0 (s2 − s)
0 0 0 −s 1 0
0 1 0 0 0 −(s2 − s− 1)




s2(s2 − s− 1) 0

0 s2(s2 − s− 1)
0 s3

(s2 − s− 1) s(s− 1)
s(s2 − s− 1) s2(s− 1)

0 s2


[
−1 s2 − s
1 −s2 + s+ 1)

]

=


1 0
0 −s2(s2 − s− 1)
0 0
0 0
0 0
0 0


(C.125)

■

C.1.9 McMillan degree, poles and zeros of a transfer function

From the left and right coprime polynomial matrix descriptions of F(s) reads,
the following properties hold4:

− The determinant of V11(s) is equal to the determinant of U22(s) times a
constant c:

det (V11(s)) = c det (U22(s)) , c = constant (C.126)

− The degree of det (V11(s)) (or det (U22(s))) is called the McMillan degree
of F(s). This degree equals the dimension of any minimal realization of
F(s).

− The poles of F(s) are either the roots of det (V11(s)) = 0 or the roots of
det (U22(s)) = 0.

− The zeros of F(s) are the values of s for which the rank of either V21(s)
or U21(s) drops below its normal rank.

C.1.10 Column reduced and row reduced polynomial matrix

Let D(s) a square p × p polynomial matrix and denote its column degree by
{dci}. Then we can write the following relation, where Γc is a constant matrix
and D0(s) a polynomial matrix with column degrees strictly lower than those
of D(s):

D(s) = Γc diag
(
sdc1 , · · · , sdcp

)
+D0(s) (C.127)

Matrix Γc is called the highest column degree coe�cient matrix, or the
leading column coe�cient matrix, of D(s).
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By de�nition5, a square nonsingular polynomial matrix is column reduced if
and only if its leading column coe�cient matrix Γc is nonsingular, or
equivalently if:

det (Γc) ̸= 0⇔ deg det (D(s)) =

p∑
i=1

dci (C.128)

The example provided by Kailath6 will give an insight. Let D(s) be the
following polynomial matrix:

D(s) =

[
(s+ 1)2(s+ 2)2 −(s+ 1)2(s+ 2)

0 s+ 2

]
=

[
1 −1
0 0

] [
s4 0
0 s3

]
+

[
6s3 + 13s2 + 12s+ 4 −4s2 − 5s− 2

0 s+ 2

]
:= Γc diag

(
s4, s3

)
+D0(s)

(C.129)

Then the leading column coe�cient matrix Γc of D(s) reads:

Γc =

[
1 −1
0 0

]
(C.130)

The column coe�cient matrix Γc is singular, thus D(s) is not column reduced
and deg det (D(s)) = 5 ̸=

∑p
i=1 dci = 4 + 3.

Similarly, a square nonsingular polynomial matrix is row reduced if and only
if the matrix formed by its row leading coe�cients is nonsingular. Coming back
to polynomial matrix D(s) in (C.129), its leading row coe�cient matrix Γr
reads:

Γr =

[
1 0
0 1

]
(C.131)

We can see that D(s) is row reduced. Indeed denoting by dri the row degree
of D(s) we have:

det (Γr) ̸= 0⇔ deg det (D(s)) = 5 =

2∑
i=1

dri = 4 + 1 (C.132)

Elementary row / column operations can be used to make a polynomial
matrix column reduced or row reduced. For example, putting in the �rst column
ofD(s) in (C.129) the sum between its �rst column and polynomial (s+2) times
its second column leads to the following matrix:

c1 ← c1 + (s+ 2)c2 ⇒ Dcr(s) =

[
0 −(s+ 1)2(s+ 2)

(s+ 2)2 s+ 2

]
(C.133)

5J. Ruiz-León, F. Kra�er, A. Castellanos and V. L. E. Ramos, Column reduced proper
rational matrices, 1999 European Control Conference (ECC), 1999, pp. 936-941, doi:
10.23919/ECC.1999.7099427.

6Kailath T., Linear Systems, Prentice Hall, Englewood Cli�s, N.J., 1980
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MatrixDcr(s). Indeed the highest column degree coe�cient matrix ofDcr(s)
reads:

Γc =

[
0 −1
1 0

]
(C.134)

Because Γc is nonsingular, Dcr(s) is column reduced and the following
relation holds:

det (Γc) ̸= 0⇔ deg det (Dcr(s)) = 5 =

p∑
i=1

dci = 2 + 3 (C.135)

Furthermore, it can be shown6 that transfer function N(s)D−1(s) where
D(s) is column reduced is strictly proper (proper) if and only if each column of
N(s) has a degree less than (less than or equal to) the degree of the
corresponding column of D(s).

C.1.11 Row index of transfer matrix

The row index ν of a transfer matrix F(s) is the largest row degree of DL(s)
in any left coprime factorization of F(s) = DL(s)

−1NL(s) with DL(s) row
reduced.

Alternatively row index ν is also equal to the observability index of any

irreducible realization of F(s) = C (sI−A)−1B + D :=

(
A B

C D

)
. To be

more speci�c, let cTi be the ith row of C. Then the observability matrix Qo can
be written explicitly as follows:

Qo =


C
CA
...

CAn−1

 =



cT1
...
cTp

cT1 A
...

cTpA

cT1 A
n−1

...
cTpA

n−1



(C.136)

Let νj be the number of the linearly independent rows associated with cTj
in Qo. In other words rows

(
cTj , cTj A, · · · , cTj A

νj−1
)

are linearly

independent and cTj A
νj+i ∀ i ≥ 0 are linearly dependent. Then if Qo has rank

n we have
∑p

j=1 νj = n and ν = max (ν1, · · · , νp) is called the observability
index.

A similar de�nition exists for controllability index based on the columns of
the controllability matrix Qc.
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C.1.12 Flat outputs

Let F(s) = (sI−A)−1B (here the output matrix C has been set to the identity
matrix: C = I) and consider the right polynomial matrix fraction description
(C.81) of transfer matrix F(s):

X(s) = F(s)U(s) = FRN (s)F
−1
RD(s)U(s) (C.137)

By introducing vector ξ(s) , we can write:{
X(s) = FRN (s)ξ(s)

U(s) = FRD(s)ξ(s)
(C.138)

Matrices FRN (s) and FRD(s) are polynomial maytrices. Thus the preceding
relation states that state vector x(t) and control vector u(t) can be expressed as
a function of vector ξ(t) and its derivatives: vector ξ(t) is called vector of �at
outputs7.

Interestingly, when �at vector is used, the system dynamics can be obtained
without integrating di�erential equations, just di�erentiations.

C.2 ICD controllers

C.2.1 Controller structure

ICD stands for Individual Control Channel. ICD controllers are also named
reversed frame normalizing controllers after Hung & MacFarlane in 19828. In
the ICD framework, which is basically the Smith-McMillan form of the transfer
matrix, SISO techniques can be used to control MIMO systems.

We consider the following transfer matrix F(s) where N(s) is a p × m
polynomial matrix and Ψ(s) is a polynomial which is actually the least
common multiple of the denominators of all the elements in F(s)):

F(s) =
N(s)

Ψ(s)
(C.139)

We have seen in Section C.1.2 that matrix N(s) is equivalent to matrix S(s),
where polynomial S(s) is called the Smith form N(s):

S(s) = V(s)N(s)W(s)⇔ N(s) = V−1(s)S(s)W−1(s) (C.140)

Moreover:

− S(s) is a p×m quasi-diagonal polynomial matrix:

S(s) =


s1(s) 0

. . .
...

sr(s) 0
0 · · · 0 0

 (C.141)

7J. Lévine, D.V. Nguyen, Flat output characterization for linear systems using polynomial
matrices, Systems & Control Letters 48 (2003) 69 - 75

8Y.S. Hung & A.G.J. MacFarlane, Multivariable Feedback: A Quasi-Classical Approach,
Lecture Notes in Control and Information Sciences, vol 40. Springer, Berlin, 1982



294 Appendix C. Linear Algebraic Method for Control System Design

− Square matrices V(s) and W(s) are unimodular polynomial matrices;

− The dimension of matrix V(s) is p × p whereas the dimension of matrix
W(s) is m×m.

Dividing polynomial matrix N(s) by polynomial Ψ(s) we get:

F(s) = N(s)
Ψ(s) = V−1(s) S(s)Ψ(s)W

−1(s) := V−1(s)FS(s)W
−1(s) (C.142)

Matrix FS(s) :=
S(s)
Ψ(s) is called the Smith-McMillan form of transfer matrix

F(s): this is a quasi-diagonal matrix of rational functions which may possibly

simplify. Let εi(s)
ψi(s)

be the rational functions obtained after simpli�cation of each

element of quasi-diagonal matrix S(s)
Ψ(s) . Then the Smith-McMillan form FS(s)

of transfer matrix F(s) reads:

FS(s) :=
S(s)

Ψ(s)
=


s1(s)
Ψ(s) 0

. . .
...

sr(s)
Ψ(s) 0

0 · · · 0 0

 =


ε1(s)
ψ1(s)

0

. . .
...

εr(s)
ψr(s)

0

0 · · · 0 0


(C.143)

The polynomials εk(s) and ψk(s) are coprime. Furthermore εk(s) divides
εk(s)(s) and ψk+1(s) divides ψk(s) ∀ k = 1, . . . , r − 1:

sk(s) | sk+1(s)
ψk+1(s) |ψk(s)

}
∀ k = 1, . . . , r − 1 (C.144)

We present hereafter some results presented by Mohsenizadeh & al.9.

We consider Figure C.1 where F(s) is a MIMO plant with m inputs and p
outputs, and C(s) a MIMO controller with p inputs and m outputs:

The main idea is to change the actual control loop in the top of Figure C.1
by an equivalent control loop using the Smith-McMillan form FS(s) of plant
F(s), as shown in the bottom of Figure C.1. The connection between C(s) and
CS(s) is obtained through the square unimodular polynomial matrices V(s)
and W(s):

F(s) = V−1(s)FS(s)W
−1(s)⇒ C(s) = W(s)CS(s)V(s) (C.145)

A controller de�ned by (C.145) is called SVD controller or reversed-frame
normalizing controller.

9Daniel N. Mohsenizadeh, Lee H. Keel and Shankar P. Bhattacharyya, Multivariable
Controller Synthesis using SISO Design Methods, 2015 IEEE 54th Annual Conference on
Decision and Control (CDC), December 15-18, 2015. Osaka, Japan
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Figure C.1: Equivalent control loops with MIMO controller C(s)

C.2.2 Closed loop transfer function

We will assume that CS(s) is a quasi-diagonal m × p controller with transfer
functions C1(s), · · · , Cr(s), where r is the number of non-zero terms in the Smith
form S(s) of N(s). Then, denoting by nCk

(s) the numerator of transfer function
CSk

(s) and by dCk
(s) its denominator, we get:

CSk
(s) =

nCk
(s)

dCk
(s)
⇒ CS(s) =


nC1

(s)

dC1
(s) 0

. . .
...

nCr (s)
dCr (s)

0

0 · · · 0 0

 (C.146)

Thanks to the de�nition (C.145) of controller C(s), the product F(s)C(s)
reads as follows:{

F(s) = V−1(s)FS(s)W
−1(s)

C(s) = W(s)CS(s)V(s)
⇒ F(s)C(s) = V−1(s)FS(s)CS(s)V(s)

(C.147)
Then we can use this result to compute the closed-loop transfer function:

Y (s) = F(s)C(s) (R(s)− Y (s))
⇒ (I+ F(s)C(s))Y (s) = F(s)C(s)R(s)

(C.148)

We �nally get:

Y (s) = (I+ F(s)C(s))−1F(s)C(s)R(s)

=
(
I+V−1(s)FS(s)CS(s)V(s)

)−1
F(s)C(s)R(s)

=
(
V−1(s) (I+ FS(s)CS(s))V(s)

)−1
F(s)C(s)R(s)

= V−1(s) (I+ FS(s)CS(s))
−1FS(s)CS(s)V(s)R(s)

:= G(s)R(s)

(C.149)

Thus the closed-loop transfer matrix G(s) reads:

G(s) = V−1(s) (I+ FS(s)CS(s))
−1FS(s)CS(s)V(s)

:= V−1(s)GS(s)V(s)

where GS(s) = (I+ FS(s)CS(s))
−1FS(s)CS(s)

(C.150)
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This equivalence between closed-loop transfer matrix G(s) and GS(s) is
represented in Figure C.1.

C.2.3 Proper controller

Let w̃k(s) be the column polynomial vectors of unimodular of matrix W(s) and
ṽTk (s) be the row polynomial vectors of unimodular of matrices V(s). Then we
get:


W(s) :=

[
w̃1(s) · · · w̃r(s)

]
V(s) :=

 ṽT1 (s)
...

ṽTr (s)


⇒ C(s) = W(s)CS(s)V(s) =

∑r
k=1 w̃k(s)ṽ

T
k (s)CSk

(s)

(C.151)

In order to achieve a proper transfer matrix C(s) for the actual MIMO
controller, the relative degree of each transfer function CSk

(s), rdeg (CSk
(s)),

shall be chosen such that w̃k(s)ṽ
T
k (s)CSk

(s) is proper:

rdeg (CSk
(s)) such that lims→∞w̃k(s)ṽ

T
k (s)CSk

(s) <∞ ∀k = 1, · · · , r
(C.152)

From relation (C.150), it is clear that the characteristic polynomial of I +
F(s)C(s) is equal to the characteristic polynomial of I + FS(s)CS(s). Then
we use the assumption (C.146) that CS(s) is a quasi-diagonal controller with

transfer functions CSk
(s) =

nCk
(s)

dCk
(s) :

FS(s)CS(s) =


ε1(s)
ψ1(s)

nC1
(s)

dC1
(s) 0

. . .
...

εr(s)
ψr(s)

nCr (s)
dCr (s)

0

0 · · · 0 0



⇒ I+ FS(s)CS(s) =


1 +

ε1(s)nC1
(s)

ψ1(s) dC1
(s) 0

. . .
...

1 +
εr(s)nCr (s)
ψr(s) dCr (s)

0

0 · · · 0 I



⇒ (I+ FS(s)CS(s))
−1 =


ψ1(s) dC1

(s)

ψ1(s) dC1
(s)+ε1(s)nC1

(s) 0

. . .
...

ψr(s) dCr (s)
ψr(s) dCr (s)+εr(s)nCr (s)

0

0 · · · 0 I


(C.153)
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We �nally get:

GS(s) = (I+ FS(s)CS(s))
−1FS(s)CS(s)

=


ε1(s)nC1

(s)

ψ1(s) dC1
(s)+ε1(s)nC1

(s) 0

. . .
...

εr(s)nCr (s)
ψr(s) dCr (s)+εr(s)nCr (s)

0

0 · · · 0 0


(C.154)

Then the poles of GS(s), which are also the poles of G(s) because matrix
V(s) is unimodular, are the roots of the following polynomial χG(s):

χG(s) =
r∏

k=1

(ψk(s) dCk
(s) + εk(s)nCk

(s)) (C.155)

The interest in this expression is that each elementary transfer function

CSk
(s) =

nCk
(s)

dCk
(s) is used to set the roots of each polynomial ψk(s) dCk

(s) +

εk(s)nCk
(s), k = 1, · · · , r under the constraint (C.152). Assume that ψk(s)

is a polynomial of degree nk and that polynomial εk(s) has a degree lower or
equal to nk. Then denoting by mk the degree of polynomial dCk

(s) and by
mk − rdeg (CSk

(s)) the degree of polynomial nCk
(s):

deg (εk(s)) ≤ deg (ψk(s)) := nk
deg (dCk

(s)) := mk

deg (nCk
(s)) = mk − rdeg (CSk

(s))
(C.156)

Polynomials dCk
(s) and nCk

(s) have a total of
mk + 1 + (mk − rdeg (CSk

(s)) + 1) = 2mk − rdeg (CSk
(s)) + 2 coe�cients to

be determined. On the other hand, and with the assumptions that we made,
polynomial ψk(s) dCk

(s) + εk(s)nCk
(s) is a polynomial of degree nk + mk

which has nk + mk + 1 coe�cients. Thus the number of known coe�cients,
nk + mk + 1, will be equal to the number of coe�cients to be determined,
2mk − rdeg (CSk

(s)) + 2, as soon as the following equality holds:

nk +mk + 1 = 2mk − rdeg (CSk
(s)) + 2

⇒ mk = nk + rdeg (CSk
(s))− 1

(C.157)

Furthermore we have:

deg (ψk(s) dCk
(s) + εk(s)nCk

(s)) = nk+mk = 2nk+rdeg (CSk
(s))−1 (C.158)

In other words, as soon as a polynomial of degree 2nk + rdeg (CSk
(s)) − 1

is provided, the coe�cients of this polynomial can be identi�ed with the
coe�cients of polynomial ψk(s) dCk

(s) + εk(s)nCk
(s), where dCk

(s) is a
polynomial of degree mk and nCk

(s) a polynomial of degree
mk − rdeg (CSk

(s)).

Once each elementary transfer function CSk
(s) =

nCk
(s)

dCk
(s) , k = 1, · · · , r, of

CS(s) have been set, the actual controller C(s) is obtained thanks to (C.145).
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C.2.4 Decoupling

It is worth noticing that for square systems with p inputs and p outputs, input-
output decoupling can be achieved through the following setting, provided that
the relative degree condition (C.152) is satis�ed and that each open loop transfer
function FSi(S) is stable (in order to ensure internal stability):

FSi(S)CSi(s) = FSj (S)CSj (s) ∀ i, j (C.159)

Indeed, in this situation FS(s)CS(s) is a p× p square matrix:
FS(s)CS(s) =


GS1(s)

GS2(s)
. . .

GSp(s)


GSi(s) =

FSi
(S)CSi

(s)

1+FSi
(S)CSi

(s) ∀ i

(C.160)

Furthermore the closed-loop transfer matrix G(s) is also a p × p square
matrix. From (C.150) we get:

G(s) = V−1(s)GS(s)V(s)

= V−1(s)


GS1(s)

GS2(s)
. . .

GSp(s)

V(s)
(C.161)

Thus it is clear that if FSi(S)CSi(s) = FSj (S)CSj (s) ∀ i, j then
GSi(s) = GSj (s) ∀ i, j. Then provided than the relative degree condition
(C.152) is satis�ed, we achieve decoupling control:

GSi(s) = GSj (s) ∀ i, j ⇒ G(s) = V−1(s)


GS1(s)

GS1(s)
. . .

GS1(s)

V(s)

= GS1(s)V
−1(s)


1

1
. . .

1

V(s)

= GS1(s)V
−1(s) IpV(s)

= GS1(s) Ip
(C.162)

Furthermore let rdeg (CSk
(s)) be the relative degree of controller CSk

(s)
such that (C.152) holds and let rdeg (FSk

(s)) be the relative degree of transfer
function FSk

(s). Denoting r = max (rdeg (CSk
(s)) + rdeg (FSk

(s))), the
relation FSi(S)CSi(s) = FSj (S)CSj (s) ∀ i, j implies that rdeg (CSk

(s)) shall
be chosen such that the following relation holds:

rdeg (CSk
(s)) = r − rdeg (FSk

(s)) (C.163)
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Figure C.2: Equivalent control loops with MIMO two-degree-of-freedom control
loop

C.2.5 Two-degree-of-freedom control loop

Consider the con�guration shown in Figure C.2 where F(s) is the plant transfer
function and C1(s) and C2(s) two controllers. This feedback loop is called a
two-degree-of-freedom control loop. From Figure C.2 control u(s) reads:

u(s) = C1(s)r(s)−C2(s)y(s) (C.164)

The relation between the output y(s) and the reference input r(s) reads:

y(s) = F(s)u(s) = F(s)
(
C1(s) r(s)−C2(s) y(s)

)
⇒ (I+ F(s)C2(s)) y(s) = F(s)C1(s) r(s)

⇔ y(s) = (I+ F(s)C2(s))
−1 F(s)C1(s) r(s)

(C.165)

Thus the closed loop transfer function G(s) reads as follows:

G(s) = (I+ F(s)C2(s))
−1 F(s)C1(s) (C.166)

Now as in section C.2.1, plant transfer function F(s) and controllers transfer
function C1(s) and C2(s) are written as follows, where CS1(s) and CS1(s) are
quasi-diagonal transfer functions:

F(s) = V−1(s)FS(s)W
−1(s)⇒

{
C1(s) = W(s)CS1(s)V(s)
C2(s) = W(s)CS2(s)V(s)

(C.167)

Then the closed-loop transfer matrix G(s) becomes:

G(s) = V−1(s) (I+ FS(s)CS2(s))
−1FS(s)CS1(s)V(s)

:= V−1(s)GS(s)V(s)

where GS(s) = (I+ FS(s)CS2(s))
−1FS(s)CS1(s)

(C.168)



300 Appendix C. Linear Algebraic Method for Control System Design

The equivalent two-degree-of-freedom control loop using the
Smith-McMillan form FS(s) of plant F(s) is shown in the bottom of Figure
C.2. The connection between Ci(s) and CSi(s) is obtained through the square
unimodular polynomial matrices V(s) and W(s):

C.3 Matrix polynomials and solvents of λ-matrices

C.3.1 Latent roots and latent vectors

We present hereafter some results provided by Yaici & al.10. Let's consider
the following r-degree, mth order monic matrix polynomials D(λ) where λ is a
complex number and Di ∈ Rm×m:

D(λ) = Imλr +Dr−1λ
r−1 + · · ·+D1λ+D0 (C.169)

A latent root λi of D is a complex number satisfying:

det (D (λi)) = 0 (C.170)

Matrix polynomials D(λ) has at most m × r latent roots. In the following
we will assume that matrix polynomials D(λ) has exactly m × r latent roots
{λ1, · · · , λm×r}, including multiplicity.

A right latent vector corresponding to λi is a vector vi ∈ Rm×1 belonging to
the kernel of D(λi):

D(λi) vi = 0 (C.171)

Similarly, a left latent vector is a row vector wi ∈ Rm×1 belonging to the
kernel of D(λi)

T :

D(λi)
T wi = 0⇔ wTi D(λi) = 0T (C.172)

C.3.2 Right and left solvents

A right solvent of D(λ) is a square matrix R ∈ Rm×m satisfying:

Rr +Dr−1R
r−1 + · · ·+D1R+D0 = 0m×m (C.173)

Similarly, a left solvent of D(λ) is a square matrix L ∈ Rm×m satisfying:

Lr + Lr−1Dr−1 + · · ·+ LD1 +D0 = 0m×m (C.174)

Assume that D(λ) have m linearly independent right latent vectors
{v1, v2, · · · , vm} and m linearly independent left latent vectors
{w1, w2, · · · , wm} corresponding to latent roots {λ1, λ2, · · · , λm}. Let V be
the m ×m matrix whose columns are the m linearly independent right latent

10Malika Yaici and Kamel Hariche, On Solvents of Matrix Polynomials, International
Journal of Modeling and Optimization, Vol. 4, No. 4, August 2014
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vectors vi and W its inverse whose rows are the m linearly independent left
latent vectors wi: 

V =
[
v1 v2 · · · vm

]

W := V−1 =


wT1
wT2
...
wTm

 (C.175)

Then the following m ×m matrices R and L are right and left solvents of
D(λ), respectively:

{
R = V diag (λ1, · · · , λm)V−1

L = W−1 diag (λ1, · · · , λm)W
where diag (λ1, · · · , λm) :=

 λ1
. . .

λm


(C.176)

It can be shown that:

− Solvents of λ-matrices D(λ) do not always exist.

− If R is a right solvent of D(λ) then there exists a λ-matrix Q(λ) of degree
r − 1 such that D(λ) = Q(λ) (λIm −R).

− If L is a left solvent of D(λ) then there exists a λ-matrix S(λ) of degree
r − 1 such that D(λ) = (λIm − L)S(λ).

− Generalized right or left eigenvectors of a right or left solvent are the
generalized latent vectors of D(λ).

C.3.3 Block Vandermonde matrices

Let split the set of m × r latent roots, including multiplicity, of D(λ) into r
sets corresponding to m latent roots. For each set of m latent roots, let Ri, i =
1, · · · , r and Li, i = 1, · · · , r be right and left solvents of D(λ), respectively.
We denote λ (Ri) the set of eigenvalues of right solvent Ri and λ (Li) the set of
eigenvalues of left solvent Li. A complete set of right solvents and left solvents
is obtained if we can �nd r right solvents and r left solvents such that:

{ ⋃r
i=1 λ (Ri) = {λ1, · · · , λm×r}⋃r
i=1 λ (Li) = {λ1, · · · , λm×r}

(C.177)

Furthermore the following block Vandermonde matrices VR and VL are
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non-singulars: 

VR =


Im Im · · · Im
R1 R2 · · · Rr

...
...

...

Rr−1
1 Rr−1

2 · · · Rr−1
r



VL =


Im L1 · · · Lr−1

1

Im L2 · · · Lr−1
2

...
...

...
Im Lr · · · Lr−1

r


(C.178)

C.3.4 Modal form based on right solvents

Now consider the following linear time invariant realization with m inputs and
p outputs: {

ẋ = Ax+Bu
y = Cx

(C.179)

The corresponding state space equation in block controller form is the
following:

F(s) = C (sI−A)−1B

=
(
Nr−1s

r−1 + · · ·+N1s+N0

) (
Imsr +Dr−1s

r−1 + · · ·+D1s+D0

)−1

= Cc (sI−Ac)
−1Bc :=

(
Ac Bc

Cc 0p×m

)
(C.180)

where: 

Ac =



0m Im 0m · · · 0m

0m 0m Im · · ·
...

. . .

Im
−D0 −D1 · · · −Dr−1



Bc =


0m
...

0m
Im


Cc =

[
N0 N1 · · · Nr−1

]

(C.181)

Using the transformation xm = VR xc whereVR is a non-singular right block
Vandermonde matrix, we get the following modal form based on a complete set
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of right solvents:

{
ẋm = Amxm +Bmu
y = Cmx

where


Am = V−1

R AcVR =


R1 0m · · ·
0m R2 0m · · ·

. . .
. . .

. . .

0m 0m · · · Rr


Bm = V−1

R Bc

Cm = CcVR

(C.182)

It is worth noticing that:

− The state matrix Am is block diagonal.

− Input matrix Bm is the last block column of V−1
R .

− The ith block column ofCm isCmi = N0+N1Ri+N2R
2
i+· · ·+Nr−1R

r−1
i .

This leads to the following block partial fraction expansion of F(s) where
Bmi is i

th block row of Bm :

F(s) = Cm (sI−Am)
−1Bm =

r∑
i=1

Cmi (sIm −Ri)
−1Bmi (C.183)

C.3.5 Modal form based on left solvents

Similarly, the state space equation in block observer form is the following:

F(s) = C (sI−A)−1B

=
(
Imsr +Dr−1s

r−1 + · · ·+D1s+D0

)−1 (
Nr−1s

r−1 + · · ·+N1s+N0

)
= Co (sI−Ao)

−1Bo :=

(
Ao Bo

Co 0p×m

)
(C.184)

where: 

Ao =


0m 0m · · · 0m −D0

Im 0m · · · 0m −D1

. . .

0m · · · Im −Dr−1



Bo =


N0

N1

...
Nr−1


Co =

[
0m · · · 0m Im

]

(C.185)

Using the transformation xm = V−1
L xo whereVL is a non-singular left block

Vandermonde matrix, we get the following modal form based on a complete set
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of left solvents:

{
ẋm = Amxm +Bmu
y = Cmx

where


Am = VLAoV

−1
L =


L1 0m · · ·
0m L2 0m · · ·

. . .
. . .

. . .

0m 0m · · · Lr


Bm = VLBo

Cm = CoV
−1
L

(C.186)
It is worth noticing that:

− The state matrix Am is block diagonal.

− Output matrix Cm is the last block row of V−1
L .

− The ith block row of Bm is Bmi = N0 +LiN1 +L2
iN2 + · · ·+Lr−1

i Nr−1.

This leads to the following block partial fraction expansion of F(s) where
Cmi is i

th block column of Cm :

F(s) = Cm (sI−Am)
−1Bm =

r∑
i=1

Cmi (sIm − Li)
−1Bmi (C.187)



Appendix D

Singular perturbations and

hierarchical control

D.1 Block triangular and block-diagonal forms

D.1.1 Block triangular form

Let's consider the following dynamical system arbitrarily partitioned as follows:
[
ẋ1
ẋ2

]
= Ax(t) +Bu :=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u

y = Cx(t) :=
[
C1 C2

] [ x1
x2

] (D.1)

The preceding state space representation can be transformed into the
following block triangular form1:

[
ẋ1
ẋf

]
=

[
As A12

0 Af

] [
x1
xf

]
+

[
B1

Bf

]
u

y =
[
Cs C2

] [ x1
xf

] (D.2)

Where: {
As = A11 −A12L
Af = A22 + LA12

(D.3)

and: {
Bf = LB1 +B2

Cs = C1 −C2L
(D.4)

Matrix L is a solution of the following non-symmetric algebraic Riccati
equation:

LA11 −A22L− LA12L+A21 = 0 (D.5)

1Multi-Time Scale Systems, A.J.Fossard, IFAC Proceedings, Volume 17, Issue 2, July
1984, Pages 1139-1144
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The corresponding similarity transformation is the following:[
x1
x2

]
=

[
I 0
−L I

] [
x1
xf

]
⇔
[
x1
xf

]
=

[
I 0
L I

] [
x1
x2

]
(D.6)

It is worth noticing that the following relation holds as soon as square
matrices P11 and P22 are invertible:[

P11 0
P21 P22

]−1

=

[
P−1

11 0

−P−1
22 P21P

−1
11 P−1

22

]

D.1.2 Block-diagonal form

The block-diagonal form is obtained by introducing an additional similarity
transformation:[

x1
xf

]
=

[
I M
0 I

] [
xs
xf

]
⇔
[
xs
xf

]
=

[
I −M
0 I

] [
x1
xf

]
(D.7)

We �nally get the similarity transformation to the block-diagonal form:[
x1
x2

]
=

[
I 0
−L I

] [
I M
0 I

] [
xs
xf

]
=

[
I M
−L I− LM

] [
xs
xf

]
(D.8)

Conversely:[
xs
xf

]
=

[
I −M
0 I

] [
I 0
L I

] [
x1
x2

]
=

[
I−ML −M

L I

] [
x1
x2

]
(D.9)

The preceding similarity transformation leads to the following block-diagonal
form: 

[
ẋs
ẋf

]
=

[
As 0
0 Af

] [
xs
xf

]
+

[
Bs

Bf

]
u

y =
[
Cs Cf

] [ xs
xf

] (D.10)

where:

[
As 0
0 Af

]
= P−1

[
A11 A12

A21 A22

]
P[

Bs

Bf

]
= P−1

[
B1

B2

]
[
Cs Cf

]
=
[
C1 C2

]
P


P =

[
I M
−L I− LM

]
P−1 =

[
I−ML −M

L I

]

⇔


As = (I−ML)A11 −MA21 + (MA22 + (ML− I)A12)L
Af = (A21 + LA11)M+ (A22 + LA12) (I− LM)
Bs = B1 −MBf = B1 −M (LB1 +B2)
Cf = CsM+C2 = (C1 −C2L)M+C2

(D.11)
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Matrices Bf and Cs are still given by (D.4). Matrix L is still a solution of
the non-symmetric algebraic Riccati equation (D.5). Thus matrices As and Af

simplify as follows:

As = (I−ML)A11 −MA21 + (MA22 + (ML− I)A12)L
= A11 −A12L−M (LA11 +A21 −A22L− LA12L)
= A11 −A12L

Af = (A21 + LA11)M+ (A22 + LA12) (I− LM)
= A22 + LA12 + (A21 + LA11 −A22L− LA12L)M
= A22 + LA12

(D.12)

Finally matrix M is a solution of the following Sylvester equation:

0 = ((I−ML)A11 −MA21)M+ (MA22 + (ML− I)A12) (LM− I)
= ((I−ML)A11 −MA21 + (MA22 + (ML− I)A12)L)M

−M (A22 + LA12) +A12

= (A11 −A12L)M−M (A22 + LA12) +A12

(D.13)

To summarize, we �nally achieve the following block-diagonal form:

[
ẋs
ẋf

]
=

[
A11 −A12L 0

0 A22 + LA12

] [
xs
xf

]
+

[
B1 −M (LB1 +B2)

LB1 +B2

]
u

y =
[
C1 −C2L (C1 −C2L)M+C2

] [ xs
xf

] (D.14)

where matrices L and M solve the following equations:{
LA11 −A22L− LA12L+A21 = 0
(A11 −A12L)M−M (A22 + LA12) +A12 = 0

(D.15)

It is useful to note that L = 0 when A21 = 0 and M = 0 when A12 = 0.

D.1.3 Similarity transformation

In order to get matrices L and M, let χA(s) be the characteristic polynomial of
matrix A:

χA(s) := det(sI−A) = det

(
sI−

[
A11 A12

A21 A22

])
(D.16)

Let the n roots of χA(s) be split into two sets: the �rst set contains ns roots,
λ1, · · · , λns , which are dedicated to the roots of the characteristic polynomial
of As, whereas the second set contains n−ns roots, which are dedicated to the
roots of the characteristic polynomial of Af . Then we can write:

χA(s) = χAf
(s)χAs(s) (D.17)
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Assuming that polynomials χAs(s) and χAf
(s) are coprime (no common

root), (n− ns)× ns matrix L and ns × (n− ns) matrix M can be obtained as
follows1: {

L = −TS−1

M = U (V + LU)−1 (D.18)

Matrices S, T, U and V belongs to the nullspace (or Kernel) of χAs(A)
and χAf

(A) respectively (notice that in the characteristic polynomial the scalar
variable s has been replaced by the n×n state matrix A), each nullspace being
partitioned appropriately:

[
S
T

]
= ker (χAs(A))[

U
V

]
= ker

(
χAf

(A)
) (D.19)

Furthermore the similarity transformation to the block-diagonal form reads
as follows1: [

x1
x2

]
:= P

[
xs
xf

]
(D.20)

Where:

P :=

[
I M
−L I− LM

]
=

[ [
S
T

]
S−1

[
U
V

]
(V + LU)−1

]
(D.21)

Let ns be the size of state vector xs and nf be the size of state vector xf .
Then L is an nf × ns matrix whereas M is an ns × nf matrix.

D.2 Two-stage design for eigenvalue placement of
block-diagonal systems

We consider hereafter the following block-diagonal state space representation
(D.14) of a system:[

ẋs
ẋf

]
=

[
As 0
0 Af

] [
xs
xf

]
+

[
Bs

Bf

]
u (D.22)

where: 
As = A11 −A12L
Af = A22 + LA12

Bs = B1 −M (LB1 +B2)
Bf = LB1 +B2

(D.23)

The block diagram representation corresponding to this block diagonal state
space representation is shown in Figure D.1.

Following Phillips2, the steps of the design dedicated to eigenvalue placement
are the following:

2R. Phillips, A two-stage design of linear feedback controls, IEEE Transactions
on Automatic Control, vol. 25, no. 6, pp. 1220-1223, December 1980, doi:
10.1109/TAC.1980.1102548.
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Figure D.1: Block diagram representation of a block diagonal system

− In the �rst stage of the design a state feedback gain Kf is set to place the
eigenvalues of Af −BfKf at desired location:

u = us −
[
0 Kf

] [ xs
xf

]
⇒
[
ẋs
ẋf

]
=

[
As −BsKf

0 Af −BfKf

] [
xs
xf

]
+

[
Bs

Bf

]
us (D.24)

− Then transformation (D.9) is applied where it is worth noticing that L̃ = 0
because the block at location (2, 1) in the closed-loop state matrix is zero:[

xs
xf

]
=

[
I M̃
0 I

] [
x̃s
x̃f

]
⇔
[
x̃s
x̃f

]
=

[
I −M̃
0 I

] [
xs
xf

]
(D.25)

We get:[
˙̃xs
˙̃xf

]
=

[
I −M̃
0 I

] [
As −BsKf

0 Af −BfKf

] [
I M̃
0 I

] [
x̃s
x̃f

]
+

[
I −M̃
0 I

] [
Bs

Bf

]
us

=

[
I −M̃
0 I

] [
As AsM̃−BsKf

0 Af −BfKf

] [
x̃s
x̃f

]
+

[
Bs − M̃Bf

Bf

]
us

=

[
As AsM̃− M̃ (Af −BfKf )−BsKf

0 Af −BfKf

] [
x̃s
x̃f

]
+

[
Bs − M̃Bf

Bf

]
us

(D.26)
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Matrix M̃ is then de�ned as a solution of the following Lyapunov equation,
as seen in (D.15):

AsM̃− M̃ (Af −BfKf )−BsKf = 0 (D.27)

We �nally get, using (D.27):[
˙̃xs
˙̃xf

]
=

[
As 0
0 Af −BfKf

] [
x̃s
x̃f

]
+

[
Bs − M̃Bf

Bf

]
us (D.28)

− Then in the second stage of the design a state feedback gain Ks is set to

place the eigenvalues of As −
(
Bs − M̃Bf

)
Ks at desired location:

us = r −
[
Ks 0

] [ x̃s
x̃f

]
⇒

[
˙̃xs
˙̃xf

]
= Acl

[
x̃s
x̃f

]
+

[
Bs − M̃Bf

Bf

]
r (D.29)

where:

Ãcl =

[
As −

(
Bs − M̃Bf

)
Ks 0

−BfKs Af −BfKf

]
=

[
As −BsKs + M̃BfKs 0

−BfKs Af −BfKf

] (D.30)

The preceding relation indicates that the closed-loop eigenvalues are
obtained by the union of two sets: the set of the fast closed-loop
eigenvalues λ (Af −BfKf ) and the set of the slow closed-loop

eigenvalues λ
(
As −BsKs + M̃BfKs

)
:

λ
(
Ãcl

)
= λ (Af −BfKf ) ∪ λ

(
As −BsKs + M̃BfKs

)
(D.31)

− The control law is �nally obtained by taking into account the control
obtained during the �rst stage into the control obtained during the �rst
stage. Using (D.9) we get the control K corresponding to state vector[
xT1 xT2

]T
:

u = us −
[
0 Kf

] [ xs
xf

]
= r −

[
Ks 0

] [ x̃s
x̃f

]
−
[
0 Kf

] [ xs
xf

]
= r −

([
Ks 0

] [ I −M̃
0 I

]
+
[
0 Kf

]) [ xs
xf

]
= r −

[
Ks Kf −KsM̃

] [ xs
xf

]
= r −

[
Ks Kf −KsM̃

]
P−1

[
x1
x2

]
:= r −K

[
x1
x2

]

(D.32)
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where:

K =
[
Ks Kf −KsM̃

]
P−1

=
[
Ks Kf −KsM̃

] [ I−ML −M
L I

]
=
[
Ks (I−ML) +

(
Kf −KsM̃

)
L −KsM+Kf −KsM̃

]
(D.33)

According to (D.30) and (D.9), the closed-loop state matrix Acl

corresponding to state vector
[
xT1 xT2

]T
reads Acl = P̃−1ÃclP̃ where

matrix P̃ is de�ned as follows:[
x̃s
x̃f

]
=

[
I −M̃
0 I

] [
xs
xf

]
=

[
I −M̃
0 I

] [
I−ML −M

L I

] [
x1
x2

]
=

[
I−

(
M+ M̃

)
L −

(
M+ M̃

)
L I

][
x1
x2

]
:= P̃

[
x1
x2

]
(D.34)

Example D.1. We consider the following state space representation, which
models the linearized longitudinal dynamics at a trimmed �ight condition of a
jet liner. In the following, Vp stands for the true airspeed, α the angle of
attack, θ the pitch angle, q the pitch rate and δe the elevator de�ection:

d

dt


Vp
α
θ
q

 = A


Vp
α
θ
q

+B δe (D.35)

Where:

A =


−1.4900× 10−2 5.8649 −9.8059 −6.8000× 10−2

−3.0000× 10−4 −1.5863 0.0000 9.7250× 10−1

0.0000 0.0000 0.0000 1.0000
0.0000 −4.9799 0.0000 −2.2514


B =


−0.7137
−0.2886

0.
−23.6403


(D.36)

The eigenvalues of A are {λf , λ̄f = −1.919 ± 2.176j}, which are the fast
eigenvalues, and {λs, λ̄s = −7.293× 10−3 ± 4.108× 10−2j}, which are the slow
eigenvalues.
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The block-diagonal form of (D.36) is obtained with the similarity
transformation P de�ned in (D.21):

P =


1.000 0.000 2.809× 10−4 −3.420× 10−1

0.000 1.000 8.122× 10−6 2.900× 10−5

−9.857 −1.228× 105 1.549× 10−4 −1.885× 10−1

−7.671× 10−3 −9.776× 101 −7.962× 10−4 9.998× 10−1


(D.37)

We get: 

Af =

[
−96.657765 119379.91
−0.0752234 92.819752

]
Bf =

[
−35434.23
−51.859333

]
As =

[
96.643387 1203739.2
−0.0077603 −96.657974

]
Bs =

[
−8.4969422
0.0007172

]
(D.38)

Assume that we wish to achieve the following closed-loop eigenvalues:{
λclf , λ̄clf = −1± j
λcls, λ̄cls = −0.01± 0.01j

(D.39)

It is worth noticing that the choice of the closed-loop eigenvalues maintain
the distinction between the slow and the fast modes.

Then state feedback gains Kf and Ks are set as follows:

− State feedback gain Kf is set such that the eigenvalues of Af −BfKf are
equal to {λclf , λ̄clf}. This leads to the following value of Kf :

Kf =
[
−5.914× 10−5 7.585× 10−2

]
(D.40)

− Matrix M̃ is then de�ned as the solution of Lyapunov equation (D.27).
We get:

M̃ (Af −BfKf )−AsM̃+BsKf = 0

⇒ M̃ =

[
4.255× 10−3 −5.301
−3.454× 10−7 4.304× 10−4

]
(D.41)

− In the second stage, state feedback gain Ks is set such that the

eigenvalues of As −
(
Bs − M̃Bf

)
Ks are equal to {λcls, λ̄cls}. This leads

to the following value of Ks:

Ks =
[
2.291× 10−3 2.865× 101

]
(D.42)

State feedback gain K for the actual system is �nally obtained according to
(D.33):

K =
[
Ks Kf −KsM̃

]
P−1

=
[
−1.011× 10−5 1.559× 10−1 −2.923× 10−4 7.562× 10−2

]
(D.43)
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We check that the eigenvalues of A − BK of the whole system are exactly
the expected eigenvalues {λclf , λ̄clf , λcls, λ̄cls}.

■

D.3 Singularly perturbed system

D.3.1 Linear system

Dynamical system (D.1) is assumed to be stable. Let χA(s) be the characteristic
polynomial of state matrix A and λ (χA(s)) the roots of χA(s). Then dynamical
system (D.1) is said to be singularly perturbed if χA(s) can be split as follows:

χA(s) = χAf
(s)χAs(s)

where max
(
Re
(
λ
(
χAf

(s)
)))
≪ min (Re (λ (χAs(s)))) < 0

(D.44)

Small number ϵ is related to the value of ns which delimits the border
between the slow and the fast modes.

Let ϵ ≥ 0 be a small number which may be de�ned as follows:

ϵ =
min (Re (λ (χAs(s))))

max
(
Re
(
λ
(
χAf

(s)
))) ≈ 0 (D.45)

Alternatively, ϵ may be de�ned as the minimum of |λns |
|λns+1| , assuming that

the real part of the eigenvalues λi of the open loop state matrix A are sorted in
a descending manner.

Let A be a state matrix. The corresponding state vector can re-ordered
using the following permutation matrix T where eTi is an elementary row vector
whose ith entry is 1:

T =



eTr1
...

eTrns

eTrns+1

...
eTrn


where eTi = [0, · · · , 0, 1︸︷︷︸

ith column

, 0, · · · , 0] (D.46)

Since T is a permutation matrix we have T−1 = TT . Assume that x̃ = Tx
corresponds to the following state space representation where ϵ ≥ 0 is a small
number, Ã11 is an ns × ns matrix and Ã22 is an (n− ns)× (n− ns) matrix:

x̃ = Tx⇒


˙̃x = TATT x̃+TBu :=

[
Ã11 Ã12

Ã21
ϵ

A22
ϵ

]
x̃+

[
B̃1

B̃2
ϵ

]
u

y =
[
C1 C2

]
TT x̃ :=

[
C̃1 C̃2

]
x̃

(D.47)
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Following Khalil3, the system possesses a two-time scale property if the
eigenvalues of Ã can then be approximated as follows:

λ
(
Ã
)
:= λ

([
Ã11 Ã12

Ã21
ϵ

Ã22
ϵ

])
≈ λ

(
Ã22
ϵ

)
∪ λ

(
Ã0

)
(D.48)

where, assuming that matrix Ã22
ϵ is invertible:

Ã0 = Ã11 − Ã12

(
Ã22

ϵ

)−1
Ã21

ϵ
= Ã11 − Ã12Ã

−1
22 Ã21 (D.49)

The core of this result is the Schur's formula, which is stated hereafter:

det

([
X11 X12

X21 X22

])
= det (X22) det

(
X11 −X12X

−1
22 X21

)
(D.50)

The Schur's formula applied to the closed-loop state matrix Acl reads:

det

([
sI− Ã11 −Ã12

− Ã21
ϵ sI− Ã22

ϵ

])

= det

(
sI− Ã22

ϵ

)
det

sI− Ã11 − Ã12

(
sI− Ã22

ϵ

)−1
Ã21

ϵ

 (D.51)

When ϵ→ 0, we can write sI− Ã22
ϵ ≈︸︷︷︸

ϵ→0

− Ã22
ϵ . Then result (D.48) is obtained

as follows:

det

([
sI− Ã11 Ã12

Ã21
ϵ sI− Ã22

ϵ

])
≈ det

(
sI− Ã22

ϵ

)
det

(
sI− Ã11 − Ã12

(
− Ã22

ϵ

)−1
Ã21
ϵ

)
= det

(
sI− Ã22

ϵ

)
det
(
sI− Ã11 + Ã12Ã

−1
22 Ã21

)
= det

(
sI− Ã22

ϵ

)
det

(
sI− Ã11 + Ã12

(
Ã22
ϵ

)−1
Ã21
ϵ

)
(D.52)

This completes the proof. ■

Assuming that system possesses a two-time scale property and that Ã22
ϵ is

not singular, a recursive determination of L and M can be obtained from (D.15)
as follows: Lk+1 =

(
Ã22
ϵ

)−1 (
LkÃ11 − LkÃ12Lk +

(
Ã21
ϵ

))
Mk+1 =

((
Ã11 − Ã12L

)
Mk −MkLÃ12 + Ã12

)(
Ã22
ϵ

)−1 (D.53)

3Hassan K. Khalil, On the robustness of output feedback control methods to modeling
errors, IEEE Transactions on Automatic Control, Vol. AC-26, April 1981, pp 524-526
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where:  L0 =
(
Ã22
ϵ

)−1
Ã21
ϵ = Ã−1

22 Ã21

M0 = Ã12

(
Ã22
ϵ

)−1
= ϵ Ã12 Ã

−1
22

(D.54)

Usually, matrices L0 and M0 are su�cient to approximate matrices L and
M, respectively4 . Then the similarity transformation P de�ned in (D.21) can
be approximated as follows:

P =

[
I M
−L I− LM

]
≈
[

I 0
−L0 I

]
P−1 =

[
I−ML −M

L I

]
≈
[

I −M0

0 I

] (D.55)

Consequently the block diagonal state space representation (D.10) can be
approximated as follows where ϵ ≥ 0 is a small number:

[
ẋs
ẋf

]
≈

[
Ã11 − Ã12L0 0

0 Ã22
ϵ

][
xs
xf

]
+

[
B̃1 −M0

B̃2
ϵ

B̃2
ϵ

]
u

y ≈
[
C̃1 − C̃2L0 C̃2

] [ xs
xf

] (D.56)

The state equation equivalently reads as follows:[
ẋs
ẋf

]
=

[
Ãs 0

0 Ãf

] [
xs
xf

]
+

[
B̃s

B̃f

]
u (D.57)

where: {
Ãs = Ã11 − Ã12L0

Ãf = Ã22
ϵ

and

{
B̃s = B̃1 −M0

B̃2
ϵ

B̃f = B̃2
ϵ

(D.58)

State vector xs is related to the slow variables of the system whereas state
vector xf is related to the fast variables of the system and the two-time scale
property (D.48) can be rewritten as follows: λ

(
sI− Ãs

)
≈ λ (χAs(s))

λ
(
sI− Ãf

)
≈ λ

(
χAf

(s)
) (D.59)

The two-stage design method for eigenvalue placement presented in Section
D.2 can also be applied. Matrix M̃ de�ned in (D.27) is now approximated as
follows:

M̃ ≈ −B̃sK̃f

(
Ãf − B̃fK̃f

)−1
(D.60)

4Fu-Chuang Chen & Hassan K. Khalil, Two-Time-Scale Longitudinal Control Of Airplanes
Using Singular Perturbation, Journal of Guidance Control and Dynamics, 1990, vol. 13, pp.
952-960
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Finally, the state feedback gain which achieves approximate eigenvalue
placement of of Ã− B̃K̃ is obtained from (D.33) as follows:

K̃ =
[
K̃s K̃f − K̃sM̃

]
P−1

=
[
K̃s K̃f − K̃sM̃

] [ I −M0

0 I

]
=
[
K̃s K̃f − K̃s

(
M̃+M0

) ] (D.61)

The state feedback gain K corresponding to state vector x is then obtained
as follows:

K = K̃T (D.62)

Example D.2. We consider example D.1 where we can check that the two-time
scale property (D.48) is satis�ed with the following permutation matrix T:

T =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 (D.63)

Matrix T indicates that the third and the �rst components of the state vector
are the slow variables, that are pitch angle θ and true airspeed Vp, whereas the
fourth and the second components of the state vector are the fast variables, that
are pitch rate q and angle of attack α.

We get:

Ã = TATT =


0.000 0.000 1.000 0.000
−9.806 −1.490× 10−2 −6.800× 10−2 5.865

0.000 0.000 −2.251 −4.980
0.000 −3.000× 10−4 9.725× 10−1 −1.586

 (D.64)

And thus:

Ãs = Ã11 − Ã12L0 =

[
0.000 1.776× 10−4

−9.806 −1.538× 10−2

]
Ãf = Ã22

ϵ =

[
−2.251 −4.980

9.725× 10−1 −1.586

]
B̃s = B̃1 −M0

B̃2
ϵ =

[
−4.286

−1.690× 101

]
B̃f = B̃2

ϵ =

[
−2.364× 101

−2.886× 10−1

]
(D.65)

We check that the two-time scale property (D.48) is satis�ed. Indeed:

λ
(
Ã
)
=
{
−1.919± 2.176j , −7.293× 10−3 ± 4.108× 10−2j

}
(D.66)

and:

λ
(
Ã22
ϵ

)
∪ λ

(
Ã0

)
=
{
−1.919± 2.175j

}
∪
{
−7.691× 10−3 ± 4.101× 10−2j

}
≈ λ

(
Ã
) (D.67)

Then state feedback gains K̃f and K̃s are then set as follows:
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− State feedback gain K̃f is set such that the eigenvalues of Ãf − B̃fK̃f are

equal to {λclf , λ̄clf}. This leads to the following value of K̃f :

K̃f =
[
7.584× 10−2 1.556× 10−1

]
(D.68)

− Matrix M̃ is then approximated by (D.60). We get:

M̃ ≈ −B̃sK̃f

(
Ãf − B̃fK̃f

)−1
=

[
−5.822× 10−1 5.836× 10−2

−2.295 2.301× 10−1

]
(D.69)

− In the second stage, state feedback gain K̃s is set such that the

eigenvalues of Ãs −
(
B̃s − M̃B̃f

)
K̃s are equal to {λcls, λ̄cls}. This leads

to the following value of K̃s:

K̃s =
[
−2.203× 10−4 −9.077× 10−6

]
(D.70)

State feedback gain K̃ for the actual system is �nally obtained according to
(D.61):

K̃ =
[
K̃s K̃f − K̃s

(
M̃+M0

) ]
=
[
−2.203× 10−4 −9.077× 10−6 7.564× 10−2 1.558× 10−1

]
(D.71)

We check that the eigenvalues of Ã − B̃K̃ of the whole system are close to
the expected eigenvalues {λclf , λ̄clf , λcls, λ̄cls}:

λ
(
Ã− B̃K̃

)
=
{
−1.000± 1.001j , −9.277× 10−3 ± 1.675× 10−2j

}
(D.72)

The state feedback gain K corresponding to state vector x is then obtained
as follows:

K = K̃T
=
[
−9.077× 10−6 1.558× 10−1 −2.203× 10−4 7.564× 10−2

]
(D.73)

This state feedback gain has to be compared with state feedback gain
obtained in (D.43) to achieve exact eigenvalue placement: the exact eigenvalue
placement is achieved by manipulating a state vector of dimension 4 whereas
the approximate eigenvalue placement is achieved by manipulating 2 state
vectors of dimension 2, which leads to simpler computations.

■

D.3.2 Nonlinear system

Nonlinear singularly perturbed systems, also known as two-timescale systems,
are described by ordinary di�erential equation of the form:{

ẋs = f(xs, xf , ϵ)

ϵ ẋf = g(xs, xf , ϵ)
(D.74)
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where xs ∈ Rns are the slow states, xf ∈ Rnf the fast states, 0 < ϵ≪ 1 is a
small parameter responsible for the timescale separation between slow and fast
dynamics, and f and g are smooth vector �elds. For ϵ > 0 we can de�ne a new
time parameter τ = t/ϵ and obtain an equivalent system to (D.74) of the form:

τ =
t

ϵ
⇒
{

d
dτ xs = ϵ f(xs, xf , ϵ)
d
dτ xf = g(xs, xf , ϵ)

(D.75)

In the study of slow-fast systems, two reduced subsystems are de�ned by
taking the limit ϵ → 0 of (D.74) and (D.75). By doing so we obtain the DAE
(Di�erential Algebraic Equation) and the Layer Equation, which read5:

DAE:

{
ẋs = f(xs, xf , 0)

0 = g(xs, xf , 0)
Layer Equation:

{
d
dτ xs = 0
d
dτ xf = g(xs, xf , 0)

(D.76)
The critical manifold M associated to the two-timescale systems (D.74) is

de�ned as:

M =
{(
xse, xfe

)
∈ Rns+nf | g(xse, xfe, 0) = 0

}
(D.77)

Note that M is the phase-space of the DAE and the set of equilibrium
points of the Layer Equation5. We say thatM is Normally Hyperbolic if every
point inM is a hyperbolic equilibrium point of the reduced dynamics d

dτ xf =
g(xs, xf , 0).

D.4 Two-frequency-scale transfer function

We consider hereafter the following block-diagonal state space representation
(D.14) of a system:

[
ẋs
ẋf

]
=

[
As 0
0 Af

] [
xs
xf

]
+

[
Bs

Bf

]
u

y =
[
Cs Cf

] [ xs
xf

] (D.78)

From this block-diagonal form we get the following transfer function of the
system as follows:

F(s) =
[
Cs Cf

](
sI−

[
As 0
0 Af

])−1 [
Bs

Bf

]
= Cs (sI−As)

−1Bs +Cf (sI−Af )
−1Bf

(D.79)

In the preceding relations we assume that the system is stable; in others
words all the eigenvalues of matrices As and Af have negative real part.

Furthermore, we will assume that matrix As contains the slow modes of the
system (that are the eigenvalues which are the closest to zero) whereas matrix
Af contains the fast modes of the system (that are the eigenvalues which are

5Hildeberto Jardon-Kojakhmetov & Jacquelien M.A. Scherpen, Stabilization of slow-fast
control systems: the non-hyperbolic case, https://doi.org/10.48550/arXiv.1710.01629
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the most distant to zero). From a practical point of view, and assuming that
the real part of the eigenvalues λi of A are sorted in a descending manner, the
value of ns which delimits the border between the slow and the fast modes can
be obtained by �nding the minimum of |λns |

|λns+1| .

The slow subsystem is obtained by setting ẋf = 0 in (D.14). Physically, it
means that the fast components of the state vector have achieved the equilibrium
point well before the slow components of the state vector. We get from (D.14):

ẋs = As xs +Bs u
ẋf := 0 = Af xf +Bf u

y = Cs xs +Cf xf

(D.80)

Assuming that A−1
f exists, we get xf = −A−1

f Bf u. Thus the preceding
relations reduce as follows:

xf = −A−1
f Bf u⇒

{
ẋs = As xs +Bs u

y = Cs xs −CfA
−1
f Bf u

(D.81)

The transfer function of the slow dynamics Fs(s) is then obtained by taking
the Laplace transform of the preceding relations, assuming no initial condition.
We get:

Fs(s) = Cs (sI−As)
−1Bs −CfA

−1
f Bf (D.82)

The fast subsystem is obtained by setting xs = 0 in (D.14). Physically,
it means that the slow components of the state vector stay at the equilibrium
point while the fast components of the state vector are changing. We get from
(D.14): {

ẋf = Af xf +Bf u

ẋs := 0⇒ y = Cs xs +Cf xf := Cf xf
(D.83)

The transfer function of the fast dynamics Ff (s) is then obtained by taking
the Laplace transform of the preceding relations, assuming no initial condition.
We get:

Ff (s) = Cf (sI−Af )
−1Bf (D.84)

The so-called fast outputs are the outputs for which the Bode magnitude
plot of Ff (s) and F(s) match for high frequencies. In the time domain, the
impulse response of Ff (s) and F(s) match on the fast scale time.

Furthermore it can be noticed that the Bode magnitude and phase plots of
Fs(s) and F(s) match pretty well for low frequencies, both for fast and for slow
outputs.

Finally the following property holds:

lim
s→∞

(sI−As)
−1 = 0⇒ Fs(∞) = Ff (0) = −CfA

−1
f Bf (D.85)

Example D.3. We use again example D.1. Figure D.2 shows the Bode
magnitude plot and the impulse response of the fast outputs, that are α and q:
it can be seen that the Bode magnitude plot of Ff (s) and F(s) match for high
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Figure D.2: Bode magnitude plot and impulse response of fast outputs

Figure D.3: Bode magnitude plot and impulse response of slow outputs
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Figure D.4: Block diagonal system in the Laplace domain

frequencies. In the time domain, the impulse response of Ff (s) and F(s)
match on the fast scale time (here 5 seconds) .

On the other hand, Figure D.3 shows the Bode magnitude plot and the
impulse response of the slow outputs, that are Vp and θ: contrary to the fast
outputs, the high frequencies Bode magnitude plot of Ff (s) and F(s) do not
match for high frequencies. The mismatch is also clear between the impulse
response of Ff (s) and F(s) on the fast scale time (here 5 seconds) .

Furthermore it can be noticed that the Bode magnitude and phase plots of
Fs(s) and F(s) match pretty well for low frequencies, both for fast and for slow
outputs.

■

D.5 Hierarchical output feedback of singularly
perturbed system

We consider hereafter the following block-diagonal state space representation
(D.14) of a system:

[
ẋs
ẋf

]
=

[
As 0
0 Af

] [
xs
xf

]
+

[
Bs

Bf

]
u[

y
s
y
f

] [
Cs 0
0 Cf

] [
xs
xf

] (D.86)

where:

− xs(t) represents the slow components of the state vector;

− xf (t) represents fast components of the state vector;

− y
s
(t) is a slow output vector;

− y
f
(t) is a fast output vector.

Let F(s) be the transfer function of the plant:[
Y s(s)
Y f (s)

]
= F(s)U(s) (D.87)
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Figure D.5: Hierarchical output feedback of a singularly perturbed system

Figure D.6: Control of the fast subsystem

The transfer function F(s) expands as follows:

F(s) =

[
Cs 0
0 Cf

](
sI−

[
As 0
0 Af

])−1 [
Bs

Bf

]
=

[
Cs 0
0 Cf

] [
(sI−As)

−1 0

0 (sI−Af )
−1

] [
Bs

Bf

] (D.88)

We �nally get: [
Y s(s)
Y f (s)

]
=

[
CsΦs(s)Bs

Cf Φf (s)Bf

]
U(s) (D.89)

where: {
Φs(s) = (sI−As)

−1

Φf (s) = (sI−Af )
−1 (D.90)

The corresponding block diagram representation is shown in Figure D.4
where transfer function Cf Φf (s)Bf corresponds to the fast subsystem
whereas transfer function CsΦs(s)Bs corresponds to the slow subsystem.

The hierarchical output feedback of a singularly perturbed system is shown
in Figure D.5 and uses results presented in Section D.4. It consists in splitting
the control into two control loops:
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Figure D.7: Control of the slow subsystem

− In the �rst stage, the fast subsystem is �rst controlled through the fast
controller Cf (s) as shown in Figure D.6.

− In the second stage, the slow subsystem is then controlled through the
slow controller Cs(s) as shown in Figure D.7. The fast controller Cf (s)
is replaced by its low frequency approximation Cf (0) as well as transfer
function Cf Φf (s)Bf , which is replaced by its low frequency
approximation Cf Φf (0)Bf . Following Figure D.7, the open loop
transfer function between Ys(s) and Us(s) reads:

U(s) = Us(s)− Cf (s)Cf Φf (s)Bf U(s)

⇒ U(s) = (I+ Cf (s)Cf Φf (s)Bf )
−1 Us(s)

≈ (I+ Cf (0)Cf Φf (0)Bf )
−1 Us(s)

⇒ Ys(s) = CsΦs(s)Bs U(s)

≈ CsΦs(s)Bs (I+ Cf (0)Cf Φf (0)Bf )
−1 Us(s)

(D.91)

Thus, in the SISO case all is working as if transfer function CsΦs(s)Bs is
feedback with static gain Cf (0)Cf Φf (0)Bf , as shown in Figure D.8

A similar approach can be applied when the fast controller Cf (s) and the
slow controller Cs(s) are placed in the direct path rather than the feedback
path.

D.6 Weierstrass decomposition and descriptor system

If det (sE−A) = c
∏rE
i=1 (s− λi), where c ̸= 0 is a constant and where E and

A are n× n square matrices, and if λ ∈ C is such that λE−A is non-singular,
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Figure D.8: Equivalent control of the slow subsystem

than it can be shown that6:

det (sE−A) = c
∏rE
i=1 (s− λi)

⇒ det
(
sI− (λE−A)−1E

)
= sn−rE

∏rE
i=1

(
s− 1

λ−λi

) (D.92)

The following relation also holds:

(λE−A)−1A = λ (λE−A)−1E− I (D.93)

Furthermore let ns ≤ rE . Then it can be shown that range (S)+range (F) =
Rn and range (ES) + range (AF) = Rn, where:

S = ker
(∏ns

i=1

(
(λE−A)−1E− 1

λ−λi I
))

F = ker

((
(λE−A)−1E

)n−rE ∏rE
i=ns+1

(
(λE−A)−1E− 1

λ−λi I
))
(D.94)

Note that if matrices E andA are real-valued, the preceding relations reduce
as follows where Re (X) designates the real part of matrix X:

S = ker
(
Re
(∏ns

i=1

(
(λE−A)−1E− 1

λ−λi I
)))

F = ker

(
Re

((
(λE−A)−1E

)n−rE ∏rE
i=ns+1

(
(λE−A)−1E− 1

λ−λi I
)))

(D.95)
Thus ∀ x ∈ Rn, we can write:

x := Sxs + Fxf =
[
S F

] [ xs
xf

]
∀ x ∈ Rn (D.96)

Let Js and Jf be the restriction of (λE−A)−1E to S and F, respectively:{
Js := ST (λE−A)−1ES

Jf := FT (λE−A)−1EF
(D.97)

6Cobb, J.D. Global analyticity of a geometric decomposition for linear singularly
perturbed systems. Circuits Systems and Signal Process 5, 139�152 (1986).
https://doi.org/10.1007/BF01600192
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Then the following relations hold: det (sI− Js) =
∏ns
i=1

(
s− 1

λ−λi

)
det (sI− Jf ) =

∏rE
i=ns+1

(
s− 1

λ−λi

) (D.98)

Now consider the following descriptor system:{
Eẋ = Ax+Bu
y = Cx

(D.99)

From the Weierstrass decomposition theorem, it can be shown that there
exists an invertible matrix M such that this system has the following canonical
form7:

x :=
[
S F

] [ xs
xf

]
ME

[
S F

]
=

[
Ins 0
0 Af

]
MA

[
S F

]
=

[
As 0
0 In−ns

]
MB =

[
Bs

Bf

]
C
[
S F

]
=
[
Cs Cf

]
⇔


ẋs = Asxs +Bsu

Af ẋf = xf +Bfu

y = Csxs +Cfxf

(D.100)

where :

M =
[
ES AF

]−1
(D.101)

Furthermore the following relations hold:
det (sIns −As) =

∏ns
i=1 (s− λi)

det (sAf − In−ns) = det (M) det
([

S F
])∏rE

i=ns+1 (s− λi)
det (M) det

([
S F

])
det (sE−A) = det (sIns −As) det (sAf − In−ns)

(D.102)

Matrix Af can alternatively be obtained as:

Af = (λJf − I)−1 Jf (D.103)

Moreover matrix Af is nilpotent if det (sE−A) has degree ns, that is when
rE = ns. Assuming thatAf is nilpotent, matrix (sE−A)−1 is a rational matrix
with Laurent series expansion at in�nity given by8:

(sE−A)−1 = s−1
∑∞

i=−h Li s
−i

= L−hs
h−1 + · · ·+ L−1s

0 + L0s
−1 + L1s

−2 + · · · (D.104)

7Thomas Berger, On Di�erential-Algebraic Control Systems, 2013, PhD thesis
8L. Moysis, I. Kafetzis and N. P. Karampetakis, Reachability and controllability of

discrete time descriptor systems using the Weierstrass decomposition, 2018 5th International
Conference on Control, Decision and Information Technologies (CoDIT), 2018, pp. 379-384,
doi: 10.1109/CoDIT.2018.8394863



326 Appendix D. Singular perturbations and hierarchical control

where h ≤ rank(E) − deg (det (sE−A)) + 1 is the index of nilpotency of the
pair (E,A) and:

Li =


[
Ai
s 0

0 0n−ns

]
M ∀ i ≥ 0[

0ns 0

0 −A−i−1
f

]
M i = −h, · · · ,−1

(D.105)

If matrix Js is built from the slowest eigenvalues of state matrix A and
matrix Jf is built from the fastest eigenvalues of state matrix A, then matrices
As corresponds to the state matrix of the slowest modes of the system whereas
matrixAf encompasses its fastest modes. MatrixAf can then be seen as a small
valued matrix and can be written as Af := ϵAf0. When small parameter ϵ is
set to zero, the following singularly perturbed system is obtained:

Af := ϵAf0 ⇒


ẋs = Asxs +Bsu

ϵAf0 ẋf = xf +Bfu

y = Csxs +Cfxf

ϵ = 0 ⇒


ẋs = Asxs +Bsu
0 = xf +Bfu

y = Csxs +Cfxf

(D.106)

Example D.4. We consider the linearized longitudinal dynamics at a trimmed
�ight condition of a jet liner presented in Example D.1. To get the descriptor
form of (D.99), we simply set E := I4. Then applying (D.95) with λ = 1, and
choosing ns = 2, we get the following expression of matrices S, F and M:

S =


0.9882059 −0.1531309
−0.0000781 0.0000203
−0.1531309 −0.9882056
0.0000547 −0.0008144


F =


0.1210859 −0.6715563
0.4109715 −0.5249282
0.0734018 −0.378629
0.9005847 0.3606974


M =


0.9880751 −0.9410508 −0.1533847 0.3090902
−0.1530286 0.7444567 −0.9880101 −0.2386219
0.0000682 0.3446454 0.0001831 −0.2264441
0.0000549 0.7795729 −0.0000278 0.04285



(D.107)

Then: 
As =

[
1.4688616 9.5785097
−0.2276681 −1.4834483

]
Af =

[
−0.0622709 −0.262707
0.3589769 −0.3937903

] (D.108)

We can check that:
det (sAf − I) = det (M) det

([
S F

])
(s− λf )

(
s− λ̄f

)
= 1 + 0.4560613s+ 0.1188274s2

det (sI−As) = (s− λs)
(
s− λ̄s

)
= 0.0017408 + 0.0145867s+ s2

(D.109)
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Appendix E

Carleman linearization

E.1 Reduced Kronecker product

Let x :=
[
x1 · · · xn

]T ∈ Rn. We will denote x[k] the kth reduced Kronecker

product of x. Denoting by ⊗̃ the reduced Kronecker product, vectors x[1] ∈ Rn
and x[2] ∈ Rn(n+1)/2 are de�ned as follows1:

x[0] := 1

x[1] := x

x[2] := x⊗̃x
:= [x21, x1 x2, · · · , x1 xn︸ ︷︷ ︸

n terms

, x22, x2 x3, · · · , x2 xn︸ ︷︷ ︸
n−1 terms

, · · · , x2n︸︷︷︸
1 term

]T
(E.1)

In this way we de�ne:

x[k] := x⊗̃x⊗̃ · · · ⊗̃x︸ ︷︷ ︸
k times

(E.2)

The components of x[k] are the unitary monomials which appears in the
development of polynomial (x1 + · · ·+ xn)

k. The size of vector x[k] is(
n+ k − 1

k

)
= (n+k−1)!

k! (n−1)! .

Example E.1. Assume that x =
[
x1 x2

]T
. Then (x1 + x2)

3 = x31+3x21x2+
3x1x

2
2 + x32. Thus the unitary monomials which appears in the development of

polynomial (x1 + x2)
3 are

(
x31, x

2
1x2, x1x

2
2, x

3
2

)
and consequently:

x =

[
x1
x2

]
⇒ x[3] =


x31
x21x2
x1x

2
2

x32

 (E.3)

1S. Irving and C. Joaquín, On stabilization of non linear systems by using
Carleman linearization and periodic systems theory, 8th International Conference on
Electrical Engineering, Computing Science and Automatic Control, 2011, pp. 1-6, doi:
10.1109/ICEEE.2011.6106597.
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The size of vector x[3] is 4 = (2+3−1)!
3! (2−1)! .

■

Note that (Ax) ⊗̃ (Bx) =
(
A⊗̃B

)
x[2]. In order to express the product

A⊗̃B in terms ofA andB, we will use the Kronecker product ⊗ (not the reduced
one !). Let ⊗ be the Kronecker product between matrices A = (aij) ∈ Rp×q
and B ∈ Rr×s. Then2:

A⊗B :=

 a11B · · · a1qB
...

...
ap1B · · · apqB

 (E.4)

Furthermore let Q and Q̃ the matrices such that:{
Q (x⊗ x) = x⊗̃x
Q̃
(
x⊗̃x

)
= x⊗ x (E.5)

The product A⊗̃B can be written using A and B as follows:

A⊗̃B = Q (A⊗B) Q̃ (E.6)

Example E.2. Assume that x =
[
x1 x2

]T
. Then:

(Ax) ⊗̃ (Bx) =

([
a11 a12
a21 a22

] [
x1
x2

])
⊗̃
([

b11 b12
b21 b22

] [
x1
x2

])
=

[
a11 x1 + a12 x2
a21 x1 + a22 x2

]
⊗̃
[
b11 x1 + b12 x2
b21 x1 + b22 x2

]
=

 (a11 x1 + a12 x2) (b11 x1 + b12 x2)
(a11 x1 + a12 x2) (b21 x1 + b22 x2)
(a21 x1 + a22 x2) (b21 x1 + b22 x2)


=

 a11 b11 a11 b12 + a12 b11 a12 b12
a11 b21 a11 b22 + a12 b21 a12 b22
a21 b21 a21 b22 + a22 b21 a22 b22

 x21
x1 x2
x22


:=
(
A⊗̃B

)
x[2]

(E.7)

Consequently:

A⊗̃B =

 a11 b11 a11 b12 + a12 b11 a12 b12
a11 b21 a11 b22 + a12 b21 a12 b22
a21 b21 a21 b22 + a22 b21 a22 b22

 (E.8)

On the other hand we have:

{
Q (x⊗ x) = x⊗̃x
Q̃
(
x⊗̃x

)
= x⊗ x ⇔



 1 0 0 0
0 1 0 0
0 0 0 1




x21
x1x2
x2x1
x22

 =

 x21
x1x2
x22




1 0 0
0 1 0
0 1 0
0 0 1


 x21
x1x2
x22

 =


x21
x1x2
x2x1
x22


(E.9)

2Kathrin Schacke, On the Kronecker Product, August 1, 2013
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It can be checked that:

A⊗̃B = Q (A⊗B) Q̃ (E.10)

■

E.2 Taylor series expansion of any continuous vector
�eld

Let f (x) be a continuous vector �eld. The N th order approximation of this
vector �eld around any point x0 can be achieved through the following Taylor
series expansion3:

f (x) ≈ f (x0) +
N∑
k=1

1

k!
∂f [k]

∣∣∣
x=x0

(x− x0)
[k] (E.11)

Assuming that where x ∈ Rn, each column of ∂f [k] formally corresponds to each
term of the development of the following expression:

(
∂f

∂x1
+ · · ·+ ∂f

∂xn

)k
(E.12)

We recall that the second partial derivative ∂2f
∂xi∂xj

is obtained as follows:

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
(E.13)

Schwarz's theorem states that if the second derivatives are continuous, the
expression for the second partial derivative is una�ected by which variable the
partial derivative is taken with respect to �rst and which is taken second4:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(E.14)

The higher order partial derivatives are obtained by successive
di�erentiation.

3N. Hashemian and A. Armaou, Fast Moving Horizon Estimation of Nonlinear Processes
via Carleman Linearization, 2015 American Control Conference, Palmer House Hilton, July
1-3, 2015. Chicago, IL, USA

4https://en.wikipedia.org/wiki/Partial_derivative
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Example E.3. Assume that x =
[
x1 x2

]T
, then we get:

k = 1 ⇒ x[1] = x =
[
x1 x2

]T
⇒
(
∂f
∂x1

+ ∂f
∂x2

)1
= ∂f

∂x1
+ ∂f

∂x2

⇒ ∂f [1] =
[

∂f
∂x1

∂f
∂x2

]
k = 2 ⇒ x[2] = x⊗̃x =

[
x21 x1 x2 x22

]T
⇒
(
∂f
∂x1

+ ∂f
∂x2

)2
= ∂2f

∂x21
+ 2 ∂2f

∂x1 ∂x2
+ ∂2f

∂x22

⇒ ∂f [2] =
[

∂2f
∂x21

2 ∂2f
∂x1 ∂x2

∂2f
∂x22

]
k = 3 ⇒ x[3] = x[2]⊗̃x =

[
x31 x21 x2 x1 x

2
2 x32

]T
⇒
(
∂f
∂x1

+ ∂f
∂x2

)3
= ∂3f

∂x31
+ 3 ∂3f

∂x21 ∂x2
+ 3 ∂3f

∂x1 ∂x22
+ ∂2f

∂x32

⇒ ∂f [3] =
[

∂3f
∂x31

3 ∂3f
∂x21 ∂x2

3 ∂3f
∂x1 ∂x22

∂2f
∂x32

]

(E.15)

Consequently, the third order approximation of f (x) around any point x0
reads as follows:

f (x) ≈ f (x0) +
∑3

k=1
1
k! ∂f

[k]
∣∣
x=x0

(x− x0)
[k]

≈ f (x0) +
[

∂f
∂x1

∂f
∂x2

]
x=x0

[
x1 − x10
x2 − x20

]
+ 1

2!

[
∂2f
∂x21

2 ∂2f
∂x1 ∂x2

∂2f
∂x22

]
x=x0

 (x1 − x10)2
(x1 − x10) (x2 − x20)

(x2 − x20)2



+ 1
3!

[
∂3f
∂x31

3 ∂3f
∂x21 ∂x2

3 ∂3f
∂x1 ∂x22

∂2f
∂x32

]
x=x0


(x1 − x10)3

(x1 − x10)2 (x2 − x20)
(x1 − x10) (x2 − x20)2

(x2 − x20)3


(E.16)

■

E.3 Time derivative

To get time derivative of reduced Kronecker product, the product rule holds:

d

dt
x[2] =

d

dt
x⊗̃x = ẋ⊗̃x+ x⊗̃ẋ (E.17)

Example E.4. Assume that x =
[
x1 x2

]T
. Then expanding de�nition (E.1)

we get: 
ẋ⊗̃x =

[
ẋ1
ẋ2

]
⊗̃
[
x1
x2

]
=

 ẋ1x1
ẋ1x2
ẋ2x2


x⊗̃ẋ =

[
x1
x2

]
⊗̃
[
ẋ1
ẋ2

]
=

 x1ẋ1
x1ẋ2
x2ẋ2

 (E.18)



E.3. Time derivative 333

It can be checked that:

d

dt
x[2] =

d

dt

 x21
x1x2
x22

 =
d

dt
x⊗̃x = ẋ⊗̃x+ x⊗̃ẋ =

 2x1ẋ1
x1ẋ2 + x2ẋ1

2x2ẋ2

 (E.19)

■

Now assume that:

ẋ =

N1∑
k=1

Ak x
[k] + u

N2∑
k=0

Bk x
[k] (E.20)

Then it can be shown than1:

d

dt
x[j] =

N1∑
k=1

Ajk x
[k+j−1] + u

N2∑
k=0

Bjk x
[k+j−1] (E.21)

where A1k = Ak and, for j > 1, Ajk is obtained by summing j terms, each
term being formed through j − 1 reduced Kronecker product:

Ajk = Ak ⊗̃In⊗̃ · · · ⊗̃In︸ ︷︷ ︸
j−1 times

+In⊗̃Ak⊗̃In⊗̃ · · · ⊗̃In + · · ·+ In⊗̃In⊗̃ · · · ⊗̃Ak (E.22)

Notation for Bjk is likewise.

Similar to (E.6), Ajk is related to the Kronecker product ⊗ through the
following relation:

Ajk = Qj ( (AkQk)⊗In ⊗ · · · ⊗ In︸ ︷︷ ︸
j−1 times

+ In ⊗ (AkQk)⊗ In ⊗ · · · ⊗ In + · · ·
· · · + (In ⊗ · · · ⊗ In ⊗ (AkQk)) ) Q̃k+j−1

(E.23)

where n is the size of vector x and where matrices Qj , Qk and Q̃k+j−1 are
such that: 

Qj (x⊗ x · · · ⊗ x︸ ︷︷ ︸
j times

) = x[j]

Qk (x⊗ x · · · ⊗ x︸ ︷︷ ︸
k times

) = x[k]

Q̃k+j−1 x
[k+j−1] = (x⊗ x · · · ⊗ x︸ ︷︷ ︸

k+j−1 times

)

(E.24)

Example E.5. Assume that x =
[
x1 x2

]T
and that:

ẋ = A1 x =

[
a11 a12
a21 a22

] [
x1
x2

]
=

[
a11 x1 + a12 x2
a21 x1 + a22 x2

]
(E.25)
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Then we have:

x[3] =


x31
x21x2
x1x

2
2

x32

⇒ d

dt
x[3] =


3x21ẋ1

2x1x2ẋ1 + x21ẋ2
x22ẋ1 + 2x1x2ẋ2

3x22ẋ2

 (E.26)

Using the relation ẋ = A1 x we get:

d
dtx

[3] =


3x21 (a11 x1 + a12 x2)

2x1x2 (a11 x1 + a12 x2) + x21 (a21 x1 + a22 x2)
x22 (a11 x1 + a12 x2) + 2x1x2 (a21 x1 + a22 x2)

3x22 (a21 x1 + a22 x2)


=


3a11x

3
1 + 3a12x2x

2
1

a21x
3
1 + 2a11x

2
1x2 + 2a12x1x

2
2 + a22x

2
1x2

a12x
3
2 + a11x1x

2
2 + 2a21x

2
1x2 + 2a22x1x

2
2

3a22x
3
2 + 3a21x1x

2
2


=


3a11 3a12 0 0
a21 2a11 + a22 2a12 0
0 2a21 a11 + 2a22 a12
0 0 3a21 3a22

 x[3]
:= A31 x

[3]

(E.27)

It can be checked that matrix A31 can be computed as follows:

A31 = Q3

(A1Q1)⊗I2 ⊗ I2︸ ︷︷ ︸
3−1 times

+I2 ⊗ (A1Q1)⊗ I2 + I2 ⊗ I2 ⊗ (A1Q1)

 Q̃3

(E.28)

where matrices Q1, Q3 and Q̃3 are such that:

Q1 x = x⇒ Q1 = I2 (E.29)

and: 

Q3 ( x⊗ x⊗ x︸ ︷︷ ︸
1+3−1 times

) = x[3] :=


x31
x21x2
x1x

2
2

x32



Q̃3 x
[3] = ( x⊗ x⊗ x︸ ︷︷ ︸

1+3−1 times

) :=



x31
x21x2
x21x2
x1x2

2

x21x2
x1x2

2

x1x2
2

x23



(E.30)
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We get: 

Q3 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1



Q̃3 =



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1



(E.31)

■

E.4 Carleman linearization of nonlinear system a�ne
in control

We consider the following nonlinear system a�ne in the control vector u ∈ Rm:

ẋ = f (x) +
m∑
j=1

gj (x) uj (E.32)

Let v =
[
xT uT

]T
. Then (E.32) reads:

v =

[
x
u

]
⇒ ẋ = h (v) (E.33)

Assuming that h (v) is a continuous vector �eld, theN th order approximation
of the vector �eld h (v) around any point ve is achieved through the following
Taylor series expansion according to (E.11):

ẋ = h (v) ≈ h (ve) +
N∑
k=1

1

k!
∂h[k]

∣∣∣
v=ve

δv[k] (E.34)

where:

δv := v − ve =
[
x− xe
u− ue

]
:=

[
δx
δu

]
(E.35)

Because the vector �eld h (v) := h (x, u) is a�ne in the control u, terms
in factors of δu[k] in (E.34) are null ∀k > 1. Thus (E.34) can be rewritten as
follows:

ẋ ≈ h (ve) +
N∑
i=1

A1i δx
[i] +

m∑
j=1

δuj

N∑
i=0

B1ij δx
[i] (E.36)
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Furthermore, as far as xe is a constant vector, we have:

ẋ = δẋ+ ẋe = δẋ (E.37)

Thus, the (E.36) reads:

δẋ ≈ h (ve) +
N∑
i=1

A1i δx
[i] +

m∑
j=1

δuj

N∑
i=0

B1ij δx
[i] (E.38)

Carleman linearization has been introduced by Torsten Carleman in 19325.
The common use of Carleman linearization consists in approximating a nonlinear
state equation by a �nite dimensional polynomial model. Following Minisini &
al.6, the original state vector x ∈ Rn is extended by repeated application of the
Kronecker product to itself to give the following extended state vector z:

z :=


δx[1]

δx[2]

...

δx[N ]

 =


δx

δx⊗̃δx
...

δx⊗̃ · · · ⊗̃δx︸ ︷︷ ︸
N times

 where δx := x− xe (E.39)

Furthermore we can use (E.21) to write:

d

dt
δx[k] =

N1∑
i=1

Aki x
[i+k−1] +

m∑
j=1

δuj

N2∑
i=0

Bkij δx
[i+k−1] (E.40)

When the series is truncated to its �rst N terms we get:

d

dt
δx[k] =

N−k+1∑
i=1

Aki x
[i+k−1] +

m∑
j=1

δuj

N−k+1∑
i=0

Bkij δx
[i+k−1] (E.41)

Finally, assuming that ve is an equilibrium point, that is h (ve) = 0,
Carleman linearization of order N ≥ 1 leads to the following bilinear state

5Application de la théorie des équations intégrales linéaires aux systèmes
d'équations di�érentielles non linéaires. Acta Math. 59 63 - 87, 1932.
https://doi.org/10.1007/BF02546499

6J. Minisini, A. Rauh, and E. P. Hofer, Carleman Linearization for Approximate Solutions
of Nonlinear Control Problems: Part 1 - Theory. In F. L. Chernousko, G. V. Kostin, and
V. V. Saurin, editors, Advances in Mechanics: Dynamics and Control: Proc. of the 14th
International Workshop on Dynamics and Control, 2007, Moscow-Zvenigorod, Russia, 2008.
Nauka
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space representation around the equilibrium point ve := (xe, ue):

ż =


A11 A12 · · · A1N

0 A21 · · · A2N

...
...

. . .
...

0 0 · · · ANN



δx[1]

δx[2]

...

δx[N ]

+


B0

0
...
0

 δu

+
∑m

j=1 δuj


B11 B12 · · · B1N

B21 B22 · · · B2N

0 B31 · · · B3N

...
...

. . .
...

0 0 · · · BNN



δx[1]

δx[2]

...

δx[N ]


:= A z +B δu+

∑m
j=1 δuj Bj z

(E.42)

In practice components of the extended state vector z :=

 δx[1]

...

δx[N ]

 are

eliminated if they do not appear in the right hand side of the expression of ż.

Example E.6. We consider the following single input nonlinear system model:{
ẋ1 = −x31 + 1.5x21 − 0.5x1 + x2
ẋ2 = −x1 − x2 u

(E.43)

With v =

[
x
u

]
=

 x1
x2
u

 we get the following expression:

ẋ = h (v) where h (v) =

[
−x31 + 1.5x21 − 0.5x1 + x2

−x1 − x2 u

]
(E.44)

We can see that h (0) = 0. Thus ve = (xe, ue) = (0, 0) is an equilibrium
point. The second order linearization of the vector �eld h (v) around the
equilibrium point ve = 0 reads:

ẋ = h (v) ≈ h (ve) +
2∑

k=1

1

k!
∂h[k]

∣∣∣
v=ve

δv[k] =
2∑

k=1

1

k!
∂h[k]

∣∣∣
v=ve

δv[k] (E.45)

where: 
v[1] =

[
x1 x2 u

]T
∂h[1]

∣∣
v=0

=

[
−3x21 + 3x1 − 0.5 1 0

−1 −u −x2

]∣∣∣∣
v=0

=

[
−0.5 1 0
−1 0 0

] (E.46)
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and: 
v[2] =

[
x21 x1 x2 x1 u x22 x2 u u2

]T
∂h[2]

∣∣
v=0

=

[
−6x1 + 3 0 0 0 0 0

0 0 0 0 −1 0

]∣∣∣∣
v=0

=

[
3 0 0 0 0 0
0 0 0 0 −1 0

] (E.47)

Then we get:

h (v) ≈
∑2

k=1
1
k! ∂h

[k]
∣∣
v=ve

δv[k]

≈
[
−0.5 1 0
−1 0 0

] δx1
δx2
δu



+1
2

[
3 0 0 0 0 0
0 0 0 0 −1 0

]


δx21
δx1 x2
δx1 δu
δx22
δx2 δu
δu2


≈
[
−0.5 1
−1 0

] [
δx1
δx2

]
+ 1

2

[
3 0 0
0 0 0

] δx21
δx1 x2
δx22


+δu

[
0 0
0 −0.5

] [
δx1
δx2

]

(E.48)

Thus around the considered equilibrium point the following approximation
holds:

[
δẋ1
δẋ2

]
= h (v) ≈

[
−0.5 1
−1 0

]
δx[1]

+
1

2

[
3 0 0
0 0 0

]
δx[2] + δu

[
0 0
0 −0.5

]
δx[1] (E.49)

Furthermore, the time derivative of δx[2] reads as follows;

δẋ[2] = d
dt

 δx21
δx1 δx2
δx22


=

 2δx1δẋ1
δẋ1 δx2 + δx1 δẋ2

2δx2δẋ2

 (E.50)
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Then using the approximation (E.49) we get:

δẋ[2] ≈

 2δx1
(
−0.5δx1 + δx2 + 1.5δx21

)(
−0.5δx1 + δx2 + 1.5δx21

)
δx2 + δx1 (−δx1 − 0.5δuδx2)

2δx2 (−δx1 − 0.5δuδx2)


≈

 −δx21 + 2δx1δx2 + 3δx31
−δx21 − 0.5δx1δx2 + δx22 + 1.5δx21δx2 − 0.5δuδx1δx2

−2δx1δx2 − δuδx22


≈

 −1 2 0
−1 −0.5 1
0 −2 0

 δx[2] + δu

 0 0 0
0 −0.5 0
0 0 −1

 δx[2]
+

 3δx31
1.5δx21δx2
−2δx1δx2


(E.51)

Limiting the approximation to the terms involving δx[2] we get:

δẋ[2] ≈

 −1 2 0
−1 −0.5 1
0 −2 0

 δx[2] + δu

 0 0 0
0 −0.5 0
0 0 −1

 δx[2] (E.52)

Finally order 2 Carlerman linearization is obtained by merging relations
(E.49) and (E.52):

[
δẋ[1]

δẋ[2]

]
=


−0.5 1 1.5 0 0
−1 0 0 0 0

0 0 −1 2 0
0 0 −1 −0.5 1
0 0 0 −2 0


[
δx[1]

δx[2]

]

+ δu


0 0 0 0 0
0 −0.5 0 0 0

0 0 0 0 0
0 0 0 −0.5 0
0 0 0 0 −1


[
δx[1]

δx[2]

]
(E.53)

■

E.5 Application to mechanical systems

We consider systems described by the following di�erential equation where N
is the generalized coordinates vector, M(q) is a positive de�nite (and thus
symmetric) matrix known as the inertia matrix, C(q, q̇) is the matrix of terms
generated by centrifugal and Coriolis forces, G(q) is the vector of conservative
forces, H is a constant matrix and u the control vector:

M(q) q̈ +C(q, q̇) q̇ +G(q) = Hu (E.54)

Let x be the following state vector:

x =

[
x1
x2

]
:=

[
q

q̇

]
(E.55)
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Thus (E.54) can be written as follows:

ẋ =

[
ẋ1
ẋ2

]
:=

[
x2

−M−1(x2) (C(x1, x2)x2 +G(x1))

]
+

[
0

M−1(x2)H

]
u

(E.56)
Or, more generally:

ẋ =

[
ẋ1
ẋ2

]
=

[
x2

f(x1, x2)

]
+

[
0

g(x2)

]
u (E.57)

where: {
f(x1, x2) := −M−1(x2) (C(x1, x2)x2 +G(x1))
g(x2) := M−1(x2)H

(E.58)

Let (x1e, ue) be an equilibrium point. Then x2e = ẋ1e := 0 and the following
equality holds:

0 = f(x1e, 0) + g(0)ue (E.59)

Let v =
[
xT uT

]T
. Then the second equation of (E.57) reads:

v =

[
x
u

]
⇒ ẋ2 = f(x1, x2) + g(x2)u := h (v) (E.60)

Assuming that h (v) is a continuous vector �eld, the qth order approximation
of the vector �eld around any equilibrium point ve is achieved through the
following Taylor series expansion according to (E.11):

h (ve) = 0⇒ ẋ2 = h (v) ≈
q∑

k=1

1

k!
∂h[k]

∣∣∣
v=ve

δv[k] (E.61)

where:

δv := v − ve =
[
x− xe
u− ue

]
:=

[
δx
δu

]
(E.62)

Now the results of section E.4 can be applied. Indeed, notice that vector
�eld h (v) := h (x, u) is a�ne in the control u. Thus terms in factors of δu[k] are
null ∀k > 1 and (E.61) can be rewritten as follows:

ẋ2 ≈
N∑
i=1

Ã1i δx
[i] +

m∑
j=1

δuj

N∑
i=0

B̃1ij δx
[i] (E.63)

Then (E.57) can be approximated as follows around any equilibrium point:

δẋ =

[
δẋ1
δẋ2

]
=

[
δx2∑N

i=1 Ã1i δx
[i] +

∑m
j=1 δuj

∑N
i=0 B̃1ij δx

[i]

]
(E.64)

where: [
δx
δu

]
:=

[
x− xe
u− ue

]
(E.65)

Finally formalism of section E.4 can be applied and leads to Carleman
linearization of the form (E.42).
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E.6 Control law for bilinear systems

E.6.1 Linear state feedback

We present hereafter the results provided by I. Sánchez and J. Collado7. This
method considers the following time invariant bilinear system where state vector
x ∈ Rn, control u ∈ Rm, A ∈ Rn×n and Bi ∈ Rn×m:

ẋ = Ax+B0 u+

(
n∑
i=1

xiBi

)
u (E.66)

Then a locally asymptotically stabilizing linear time invariant state feedback
gain where K ∈ Rm×n reads:

u = Kx (E.67)

Let R a positive de�nite matrix such that some positive de�nite matrix
T ∈ Rn×n the following inequality holds:

R ≥

(
n∑
i=1

xiBi

)T
T

(
n∑
i=1

xiBi

)
(E.68)

where:

(
∑n

i=1 xiBi)
T T (

∑n
i=1 xiBi)

=
([

B1 · · · Bn

]
x
)T

T
([

B1 · · · Bn

]
x
)

= xT
([

B1 · · · Bn

]T
T
[
B1 · · · Bn

])
x

(E.69)

Then state feedback gain K is such that for some positive de�nite matrix
Q ∈ Rn×n there exists a positive de�nite matrix P which is solution of the
following matrix equation:

0 = (A+B0K)T P+P (A+B0K) +KTRK+PT−1P+Q (E.70)

In the case where K = −R−1BT
0 P then P is the positive de�nite matrix

which is solution of the following algebraic Riccati equation:

K = −R−1BT
0 P⇒ 0 = ATP+PA−P

(
B0R

−1BT
0 −T−1

)
P+Q (E.71)

To get this result7, we start with the following candidate Lyapunov function
V (x) where P is a positive de�nite matrix:

V (x) = xTPx (E.72)

Then setting u = Kx and using (E.66), the time derivative of V (x) reads:

V̇ (x) = ẋTPx+ xTPẋ

= (Ax+B0Kx+ (
∑n

i=1 xiBi) Kx)T Px
+xTP ((Ax+B0Kx+ (

∑n
i=1 xiBi) Kx))

= xT
(
ATP+KTBT

0 P+KT (
∑n

i=1 xiBi)
T P
)
x

+xT (PA+PB0K+P (
∑n

i=1 xiBi)K)x

(E.73)

7I. Sánchez and J. Collado, On a construction of a non-linear control law for non-linear
systems through Carleman Bilinearization, 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 4024-4029, doi: 10.1109/CDC.2010.5717625.
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Let vector v be de�ned as follows:

v =

(
n∑
i=1

xiBi

)
Kx (E.74)

Then the time derivative of V (x) reads:

V̇ (x) = xT
(
ATP+KTBT

0 P
)
x+ vTPx

+xT (PA+PB0K)x+ xTPv

= xT
(
(A+B0K)T P+P (A+B0K)

)
x+ 2xTPv

(E.75)

On the other hand, we can write:

(Px−Tv)T T−1 (Px−Tv) =
(
xTP− vTT

) (
T−1Px− v

)
= xTPT−1Px− 2xTPv + vTTv

(E.76)

Thus:

2xTPv = xTPT−1Px+ vTTv − (Px−Tv)T T−1 (Px−Tv) (E.77)

Then V̇ (x) becomes:

V̇ (x) = xT
(
(A+B0K)T P+P (A+B0K) +PT−1P

)
x

− (Px−Tv)T T−1 (Px−Tv)
+vTTv

= xT
(
(A+B0K)T P+P (A+B0K) +PT−1P+KTRK

)
x

− (Px−Tv)T T−1 (Px−Tv)
+vTTv − xTKTRKx

(E.78)
Finally using (E.68) we get the following inequality:

vTTv = xTKT

(
n∑
i=1

xiBi

)T
T

(
n∑
i=1

xiBi

)
Kx ≤ xTKTRKx (E.79)

Thus vTTv−xTKTRKx ≤ 0 and V̇ (x) < 0 ∀x ̸= 0 as soon as the following
equality holds where Q ∈ Rn×n is some positive de�nite matrix:

(A+B0K)T P+P (A+B0K) +KTRK+PT−1P = −Q < 0 (E.80)

This completes the proof. ■

E.6.2 Quadratic state feedback

Consider the following bilinear system where state vector x ∈ Rn, control u ∈
Rm, A ∈ Rn×n, B0 ∈ Rn×m and Bj ∈ Rn×n ∀ j > 0:

ẋ = Ax+B0 u+

 m∑
j=1

ujBj

 x (E.81)
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Let B0 be split as follows where bj0 represents the jth column of B0:

B0 =
[
b10 · · · bm0

]
(E.82)

Following Gutman8, assume that there exists a positive de�nite matrix P =
PT > 0 such that in the set

{
x | xT

(
ATP+PA

)
x > 0

}
the following relation

holds:  (b10 +B1 x)
T Px

...

(bm0 +Bm x)
T Px

 ̸= 0 (E.83)

Then there exists an α > 0 such that following control will stabilize the bilinear
system (E.81):

uj = −α
(
bj0 +Bj x

)T
Px j = 1, · · · ,m (E.84)

Thanks to this control, the closed loop reads:

ẋ = ẋ = Ax+B0 u+
(∑m

j=1 ujBj

)
x

= Ax+
∑m

j=1 uj bj0 +
(∑m

j=1 ujBj

)
x

= Ax+
∑m

j=1

(
bj0 +Bj x

)
uj

= Ax− α
∑m

j=1

(
bj0 +Bj x

) (
bj0 +Bj x

)T
Px

(E.85)

Then the following candidate Lyapunov function V (x) where P is a positive
de�nite matrix is introduced:

V (x) = xTPx (E.86)

Then the time derivative of V (x) reads:

V̇ (x) = ẋTPx+ xTPẋ

=
(
Ax− α

∑m
j=1

(
bj0 +Bj x

) (
bj0 +Bj x

)T
Px
)T

Px

+xTP
(
Ax− α

∑m
j=1

(
bj0 +Bj x

) (
bj0 +Bj x

)T
Px
)

= xT
(
ATP+PA

)
x

−2αxT P
(∑m

j=1

(
bj0 +Bj x

) (
bj0 +Bj x

)T)
Px

= xT
(
ATP+PA

)
x− 2α

∑m
j=1

(
xT P

(
bj0 +Bj x

))2
(E.87)

Alternatively, we can write:

V̇ (x) = xT
(
ATP+PA−PW(x)P

)
x (E.88)

where:

W(x) = 2α

 m∑
j=1

(
bj0 +Bj x

) (
bj0 +Bj x

)T (E.89)

8P.-O. Gutman, Stabilizing controllers for bilinear systems, IEEE Transactions on
Automatic Control, 1981, Volume: 26, Issue: 4
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E.6.3 Optimal control

We consider the following the following time invariant single input bilinear
system where state vector x ∈ Rn, control u ∈ Rm, A ∈ Rn×n and Bi ∈ Rn×1:

ẋ = Ax+B0 u+

(
n∑
i=1

xiBi

)
u (E.90)

We also consider the following cost function to be minimized where Q is a
semi-de�nite matrix and R a positive de�nite matrix:

J(u) =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt (E.91)

Denoting λ the costate variable, the Hamiltonian H related to this optimal
control problem reads:

H =
1

2

(
xTQx+ uTRu

)
+ λT

(
Ax+B0 u+

(
n∑
i=1

xiBi

)
u

)
(E.92)

The optimal control is determined by necessary optimality condition ∂H
∂u = 0.

We get:

∂H

∂u
= 0⇒ Ru+BT

0 λ+

(
n∑
i=1

xiB
T
i

)
λ = 0 (E.93)

Thus we get:

u = −R−1
(
BT

0 +
∑n

i=1 xiB
T
i

)
λ

= −R−1 (B0 +
∑n

i=1 xiBi)
T λ

(E.94)

Furthermore costate variable λ satis�es ∂H
∂x = −λ̇. We get:

∂H
∂x = −λ̇⇒ Qx+

(
AT +

[
B1 · · · Bn

]T
u
)
λ = −λ̇

⇔ λ̇ = −Qx−
(
AT +

[
B1 · · · Bn

]T
u
)
λ

= −Qx−ATλ− u
[
B1 · · · Bn

]T
λ

(E.95)

Control u in (E.94) is then inserted into state equation (E.90) and costate
equation (E.95). In order to stay in close proximity to the Riccati approach in
the linear-quadratic optimization, those equations are written in the same form
as in the linear case, namely9:{

ẋ = Ãx− B̃R−1 B̃T λ

λ̇ = −Q̃x− Ãλ
(E.96)

9E. Hofer and B. Tibken, An iterative method for the �nite-time bilinear quadratic control
problem, J. Optim. Theory Applications, vol. 57, pp. 41 1-427, 1988



E.6. Control law for bilinear systems 345

where:
Ãij = Aij − 1

2

[(
BjR

−1BT
0 +B0R

−1BT
j

)
λ
]
i

i, j = 1, · · · , n

Q̃ij = Qij − 1
2λ

T
(
BiR

−1BT
j +BjR

−1BT
i

)
λ i, j = 1, · · · , n

B̃R−1 B̃T = (B0 + (
∑n

i=1 xiBi))R
−1 (B0 + (

∑n
i=1 xiBi))

T

−1
2

(
(
∑n

i=1 xiBi)R
−1BT

0 +B0R
−1 (

∑n
i=1 xiBi)

T
) (E.97)

Then an iteration procedure in close proximity to the Riccati approach can
be used to get the control9.
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Appendix F

Introduction to fractional

systems

F.1 Pre-�ltering

A pre�lter Cpf (s) is a controller which is situated outside the feedback loop as
shown in Figure F.1.

What is the purpose of the pre�lter ? Once the controller C(s) is designed

the poles of the feedback loop transfer function Y (s)
Rpf (s)

are set. Nevertheless the

numerator of this transfer function is not mastered and the zeros of Y (s)
Rpf (s)

may

cause undesirable overshoots in the transient response of the closed loop system.
The purpose of the pre�lter Cpf (s) is to reduce or eliminate such overshoots in
the closed loop system.

Let Ncl(s) be the numerator of transfer function Y (s)
Rpf (s)

and Dcl(s) its

denominator:
Y (s)

Rpf (s)
=
Ncl(s)

Dcl(s)
(F.1)

The pre�lter Cpf (s) is then designed such that its poles cancel the zeros of
the closed loop system, that are the roots of Ncl(s). Furthermore the numerator
of the pre�lter is usually set to be a constant Kpf such that the transfer function
of the full system reads:

Y (s)

R(s)
=

Kpf

Dcl(s)
(F.2)

Figure F.1: Feedback loop design with pre�lter
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As a consequence the transfer function of the pre�lter reads:

Cpf (s) =
Kpf

Ncl(s)
(F.3)

Usually constant Kpf is set such that the static gain of Y (s)
R(s) is unitary,

meaning that the position error is zero:

Y (s)

R(s)

∣∣∣∣
s=0

= 1⇒ Kpf = Dcl(0) (F.4)

F.2 Design steps

The general scheme for the controlled system is provided in Figure F.1 where
Cpf (s) is the transfer function of the pre�lter.

The design philosophy is to set the transfer function C(s) of the controller
and the transfer function Cpf (s) of the pre�lter in order to force the transfer
function of the full system to have the following expression where Kpf is a
constant gain and Dcl(s) a polynomial formed with the desired closed loop
poles:

Y (s)

R(s)
=

Kpf

Dcl(s)
(F.5)

The design steps of the control loop are the following:

− Design the controller C(s) such that transfer function of feedback loop
without pre�ltering (Cpf (s) = 1) has the desired denominator Dcl(s).
In other words controller C(s) is used to set the poles of the controlled
system.

− Design the pre�lter Cpf (s) such that transfer function of the full system
does not have any zero:

Y (s)

R(s)
=

Kpf

Dcl(s)
(F.6)

In other words pre�lter Cpf (s) is used to shape the numerator of the
transfer function of the controlled system.

Example F.1. Consider a plant with the following transfer function:

F (s) =
1

s (s− 2)
(F.7)

Obviously the plant is not stable, indeed there is one pole at +2. In order to
stabilize the plant we decide to use the following PD controller (we do not use
an integral action because the plant F (s) has already an integral term):

C(s) = Kp +Kd s (F.8)
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Furthermore we set the targeted transfer function of the controlled system as
follows (see Figure F.1):

Y (s)

R(s)
=

2

s2 + 5 s+ 2
(F.9)

The �rst step of the design is to set the values Kp and Kd of the PD controller
such that the denominator of the targeted transfer function is achieved. Transfer
function Y (s)

Rpf (s)
(no pre�lter here) reads:

Y (s)
Rpf (s)

= C(s)F (s)
1+C(s)F (s)

=
Kp+Kd s

Kp+Kd s+s (s−2)

=
Kp+Kd s

s2+s (Kd−2)+Kp

(F.10)

The actual denominator will be equal to the targeted denominator as soon as
Kp and Kd are set as follows:

s2 + s (Kd − 2) +Kp = s2 + 5 s+ 2⇒
{
Kd = 7
Kp = 2

(F.11)

Thus transfer function Y (s)
Rpf (s)

(no pre�lter here) reads:

Y (s)

Rpf (s)
=

Kp +Kd s

s2 + s (Kd − 2) +Kp
=

2 + 7 s

s2 + 5 s+ 2
(F.12)

Taking now into account pre�lter Cpf (s) transfer function
Y (s)
R(s) reads:

Y (s)

R(s)
=
Rpf (s)

R(s)

Y (s)

Rpf (s)
= Cpf (s)

2 + 7 s

s2 + 5 s+ 2
(F.13)

Thus transfer function of the controlled system will read Y (s)
R(s) = 2

s2+5 s+2
as

soon as pre�lter Cpf (s) is set as follows:

Y (s)

R(s)
=

2

s2 + 5 s+ 2
⇒ Cpf (s) =

2

2 + 7 s
(F.14)

■

F.3 Pre-�ltering design for non-minimum phase
feedback loop

Sometimes the numerator of the feedback loop transfer function Y (s)
Rpf (s)

has zeros

with positive real part. Such transfer functions with zeros in the right half plane
in the complex plane, that is with positive real part, are called non-minimum
phase transfer functions. As far as the denominator of the pre�lter is set to
the numerator of the feedback loop transfer function this leads to an unstable
pre�lter, which is not acceptable.
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Suppose that feedback loop transfer function G(s) = Y (s)
Rpf (s)

has a positive

real zero of order one at s = z > 0, that is G(z) = 0 and dG(s)
ds

∣∣∣
s=z
̸= 0. Such

a transfer function can be decomposed as follows1 where Gmp(s) is a minimum
phase transfer function:

G(s) =
(
1− s

z

)
Gmp(s) (F.15)

Using remarkable identity 1 − x2 = (1 − x) (1 + x), the term 1 − s
z in the

preceding equation can be expanded using fractional powers of s as follows:

1− s
z =

(
1−

(
s
z

)1/2)(
1 +

(
s
z

)1/2)
=
(
1−

(
s
z

)1/4)(
1 +

(
s
z

)1/4)(
1 +

(
s
z

)1/2)
=
(
1−

(
s
z

)1/8)(
1 +

(
s
z

)1/8)(
1 +

(
s
z

)1/4)(
1 +

(
s
z

)1/2)
= · · ·

(F.16)

That is:

1− s

z
=

(
1−

(s
z

)1/M) log2(M/2)∏
k=0

(
1 +

(s
z

)2k/M)
(F.17)

where log2(M/2) is the base 2 logarithm of M/2 and M is any number
multiple of 2.

The positive real zero z can then be partially compensated through the

term DM (s) =
∏log2(M/2)
k=0

(
1 +

(
s
z

)2k/M)
which will appear in the denominator

of the transfer function of the pre�lter. Indeed it can be shown1 that GM (s) =(
1−

(
s
z

)1/M)
Gmp(s) has a weaker non-minimum phase zero at s = z than

G(s) =
(
1− s

z

)
Gmp(s).

The next step consists in approximating the state space fractional system
with the following transfer function Gf (s) which will appear in the pre�lter:

Gf (s) =
1∏log2(M/2)

k=0

(
1 +

(
s
z

)2k/M) (F.18)

F.4 Mathematical De�nitions of Fractional Integral
and Derivative

The most encountered de�nition of the fractional integral is called Riemann-
Liouville (RL) fractional integral and is de�ned as follows where q ∈ R+ is the
order of integral and Γ(q) is the Gamma function2:{

D−qx(t) := 1
Γ(q)

∫ t
t0
(t− τ)q−1 x(τ) dτ

Γ(q) =
∫∞
0 e−t tq−1 dt

(F.19)

1Farshad Merrikh-Bayat, Practical and e�cient method for fractional-order unstable pole-
zero cancellation in linear feedback systems, https://arxiv.org/abs/1207.6962

2Fujio Ikeda & Shigehiro Toyama (2009) A Frequency Domain Approach for Robust
Control Design by Fractional Calculus, SICE Journal of Control, Measurement, and System
Integration, 2:3, 162-167, DOI: 10.9746/jcmsi.2.162
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The above expression is used to de�ne the fractional derivative as follows,
where m ∈ N satis�es m− 1 < q ≤ m:

Dqx(t) := dm

dtm

(
D−(m−q)x(t)

)
=

1

Γ(m− q)
dm

dtm

∫ t

t0

(t−τ)m−q−1 x(τ) dτ (F.20)

The Laplace transform of the Riemann-Liouville (RL) fractional
derivative/integral under zero initial conditions for the order q is given by:

X(s) = L [x(t)]⇒ L
[
D±qx(t)

]
= s±qX(s) (F.21)

F.5 CRONE approximation of fractional derivative

CRONE (Commande Robuste d'Ordre Non-Entier : this is the French
abbreviation for Non Integer Order Robust Control which was introduced by
A. Oustaloup3) is a method which enables to approximate the in�nite
dimension fractional �lter sαi , αi ∈ (0, 1), by the following �nite dimension
rational transfer function Gαi(s)

4:

sαi ≈ Gαi(s) =

(
1

ωB

)αi

∏i=+N
i=−N

(
1 + s

ωz,i

)
∏i=+N
i=−N

(
1 + s

ωp,i

) (F.22)

In order to obtain a good accuracy in a frequency range (ωmin, ωmax), poles
and zeros are distributed in a broader frequency range (ωA, ωB) de�ned as a
function of (ωmin, ωmax) and an adjustment coe�cient σ which is often chosen
to σ = 10: 

ωB = σ ωmax
ωA = ωmin

σ

η =
(
ωB
ωA

)(1−αi)/(2N+1)

δ =
(
ωB
ωA

)αi/(2N+1)

ωz,−N =
√
η ωA

ωp,i = δ ωz,i i = −N, · · · , N
ωz,i+1 = η ωp,i i = −N, · · · , N − 1

(F.23)

We recall that as far as the approximated transfer function Gαi(s) of s
αi has

distinct real poles λi, its partial fraction expansion reads:

sαi ≈ Gαi(s) = N(s)
D(s) + d

= N(s)
(s−λ1)(s−λ2)···(s−λn) + d

= r1
s−λ1 + r2

s−λ2 + · · ·+ rn
s−λn + d

(F.24)

Number ri is called the residue of transfer function Gαi(s) in λi. When the
multiplicity of the pole (or eigenvalue) λi is 1 we have seen that residue ri can
be obtained thanks to the following formula:

ri = (s− λi)Gαi(s)|s=λi (F.25)

3A. Oustaloup - La commande CRONE, Hermes, 1991
4Mansouri Rachid, Bettayeb Maamar & Djennoune Said, Comparison between two

approximation methods of state space fractional systems Signal Processing 91 (2011) 461�469
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Now we de�ne constants bi and ci such that the product bici is equal to ri:

ri = bi ci (F.26)

This leads to the following state-space representation, which is called the
diagonal (Jordan) or modal form, corresponding to the approximation of sαi :

sαi ≈ Gαi(s) :

{
ż(t) = Aαi z(t) +Bαi u(t)
y(t) = Dαiu(t) ≈ Cαi z(t) +Dαi u(t)

(F.27)

where: 

Aαi =


λ1 0 0

0 λ2
...

...
. . . 0

0 · · · 0 λn



Bαi =


b1
b2
...
bn


Cαi =

[
c1 c2 · · · cn

]
Dαi = d

(F.28)

Similarly the Laplace transform of the fractional integration operator Iαi

is s−αi . The approximation of the fractional integration operation s−αi can be
obtained by exploiting the following equality5:

s−αi =
1

s
s1−αi (F.29)

Because 0 ≤ 1−αi ≤ 1 as soon as αi ∈ (0, 1), fractional integration operation
s1−αi can be approximated by a transfer function similar to (F.22). Then the
�nite dimension rational model is multiplied by 1

s which leads to a strictly proper
approximation 1

s s
1−αi of the fractional order integration operation s−αi :

s−αi =
1

s
s1−αi ≈ 1

s
G1−αi(s) (F.30)

Because 1
s s

1−αi is a strictly proper transfer function, matrix D−αi is null.
The state space representation corresponding to the approximation of s−αi

reads:

s−αi ≈ 1

s
G1−αi(s) :

{
ż(t) = A−αi z(t) +B−αi u(t)
y(t) = Iαiu(t) ≈ C−αi z(t)

(F.31)

5Thierry Poinot & Jean-Claude Trigeassou, A method for modelling and simulation of
fractional systems, Signal Processing 83 (2003) 2319-2333
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Figure F.2: Block diagram of a state-space representation

F.6 State space fractional systems

Usually the state space model of an integer linear time invariant system is the
following: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(F.32)

Where:

− x(t) is the state vector, which is of dimension n. The number n of the
state vector components is called the order of the system;

− u(t) is the input of the system;

− y(t) is the output of the system.

State vector x(t) can be de�ned as a set of variables such that their
knowledge at the initial time t0 = 0, together with knowledge of system inputs
u(t) at t ≥ 0 are su�cient to predict the future system state and output y(t)
for all time t > 0.

Both equations in (F.32) have a name:

− Equation ẋ(t) = Ax(t) +Bu(t) is named as the state equation;

− Equation y(t) = Cx(t) +Du(t) is named as the output equation.

The state equation and the output equation both constitute the state-space
representation of the system.

The block diagram corresponding to the state-space representation (F.32) is
shown in Figure F.2.

The corresponding transfer function of the model is given by:

G(s) = C (sI−A)−1B+D (F.33)

State space representation (F.32) can be extended to fractional case as
follows6: {

Dαx(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(F.34)

6W. Krajewski & U. Viaro, On the rational approximation of fractional order systems,
2011 16th International Conference on Methods & Models in Automation & Robotics,
Miedzyzdroje, 2011, pp. 132-136. doi: 10.1109/MMAR.2011.6031331
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where:

Dαx(t) =
[
Dα1x1(t) · · · Dαnxn(t)

]T
(F.35)

Denoting by [αk] the integer part of αk the Laplace transform of the
fractional Caputo derivative Dαkxk(t) is

6:

L [Dαkxk(t)] = sαkL [xk(t)]−
[αk]−1∑
i=0

sαk−i−1 d
ixk(t)

dti

∣∣∣∣
t=0

(F.36)

If all fractional orders are multiples of the same real number α ∈ (0, 1)
(commensurate fractional�order systems), operator Dαx(t) simpli�es as follows:

Dαx(t) =
[
Dαx1(t) · · · Dαxn(t)

]T
(F.37)

Example F.2. The following example presents a fractional state space
representation and its corresponding transfer function4:

 D1.56x1(t)
D1.13x2(t)
D0.77x3(t)

 =

 0 1 0
0 0 1
−4 −20 −10

x(t) +
 0

0
1

u(t)
y(t) =

[
4 1 0

]
x(t)

(F.38)

The corresponding transfer function is the following:

G(s) =
s1.56 + 4

s3.46 + 10 s2.69 + 20 s1.56 + 4
(F.39)

Denoting by y(t) the output of the system, it is worth noticing that the
components of the state vector are the following where y(i)(t) indicates the ith

time derivative of y(t):

x(t) =

 y(t)

y(1.56)(t)

y(2.69)(t)

 (F.40)

Furthermore D1.56 corresponds to the lower fractional derivative which
appears in the denominator of transfer function G(s) whereas the others terms,
D1.13 and D0.77 namely, are obtained by subtracting the consecutive fractional
derivatives which appears in the denominator of transfer function G(s).

Last but not least the fractional exponents which appear in the numerator of
G(s) are the same than those which appear in its denominator.

■

F.7 Approximation of fractional systems based on
di�erentiation operator

The approximation of fractional systems based on di�erentiation operator is
obtained by coupling (F.34) and (F.27):
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
{
Dαx(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t){
ż(t) = Aα z(t) +Bα x(t)
Dαx(t) ≈ Cα z(t) +Dα x(t)

(F.41)

Block-diagonal matrices Aα ∈ R(2N+1)·n×(2N+1)·n, Bα ∈ R(2N+1)·n×n, Cα ∈
Rn×(2N+1)·n and Dα ∈ Rn×n are obtained from (F.27) as follows:

Aα = diag
[
Aα1 · · · Aαn

]
Bα = diag

[
Bα1 · · · Bαn

]
Cα = diag

[
Cα1 · · · Cαn

]
Dα = diag

[
Dα1 · · · Dαn

] (F.42)

Equating the expression of Dαx(t) in both equations of (F.41) yields to the
expression of the state space vector x(t) of the fractional model:

Ax(t) +Bu(t) ≈ Cα z(t) +Dα x(t)

⇔ x(t) ≈
(
A−Dα

)−1 (
Cα z(t)−Bu(t)

)
≈
(
A−Dα

)−1
Cα z(t) +

(
Dα −A

)−1
Bu(t)

(F.43)

Finally the approximation of fractional system (F.41) based on
di�erentiation operator reads:{

ż(t) = AD z(t) +BD u(t)
y(t) ≈ CDz(t) +DDu(t)

where


AD = Aα +Bα

(
A−Dα

)−1
Cα

BD = Bα

(
Dα −A

)−1
B

CD = C
(
A−Dα

)−1
Cα

DD = C
(
Dα −A

)−1
B+D

(F.44)

F.8 Approximation of fractional systems based on
integration operator

The inspection of Figure F.2 shows that we may also choose the integral operator
input x(t) =

∫ t
0 w(τ)dτ as the state vector vector and write the corresponding

state space model using the integral function instead of the derivative one. This
yields to4: 

w(t) = A
∫ t
0 w(τ)dτ +Bu(t)

y(t) = C
∫ t
0 w(τ)dτ +Du(t)

x(t) =
∫ t
0 w(τ)dτ

(F.45)

The corresponding transfer function of the model then given by

G(s) = C
I
s

(
I−A

I
s

)−1

B+D (F.46)
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Denoting by Iαi the fractional integration operator, state space
representation (F.45) can be extended to fractional case as follows4:

w(t) = AIαw(t) +Bu(t)
y(t) = CIαw(t) +Du(t)

x(t) = Iαw(t)
(F.47)

where:

Iαw(t) =
[
Iα1w1(t) · · · Iαnwn(t)

]T
(F.48)

The approximation of fractional systems based on integration operator is
obtained by coupling (F.47) and (F.31):

{
w(t) = AIαw(t) +Bu(t)
y(t) = CIαw(t) +Du(t){
ż(t) = A−α z(t) +B−αw(t)
x(t) = Iαw(t) ≈ C−α z(t)

(F.49)

Block-diagonal matrices A−α ∈ R(2N+2)·n×(2N+2)·n, B−α ∈ R(2N+2)·n×n and
C−α ∈ Rn×(2N+2)·n are obtained from (F.31) as follows:

A−α = diag
[
A−α1 · · · A−αn

]
B−α = diag

[
B−α1 · · · B−αn

]
C−α = diag

[
C−α1 · · · C−αn

] (F.50)

Using the expression of w(t) provided in the �rst equation of (F.49) within
the expression of ż(t) in the third equation of (F.49) and using the
approximation Iαw(t) ≈ C−α z(t) provided in the fourth equation yields:

w(t) = AIαw(t) +Bu(t)
⇒ ż(t) = A−α z(t) +B−αw(t)

= A−α z(t) +B−α (AIαw(t) +Bu(t))
= A−α z(t) +B−αAIαw(t) +B−αBu(t)
≈ A−α z(t) +B−αAC−α z(t) +B−αBu(t)
=
(
A−α +B−αAC−α

)
z(t) +B−αBu(t)

(F.51)

Finally the approximation of fractional system (F.49) based on integration
operator reads: {

ż(t) = AI z(t) +BI u(t)
y(t) ≈ CIz(t) +DIu(t)

where


AI = A−α +B−αAC−α
BI = B−αB
CI = CC−α
DI = D

(F.52)

Example F.3. Coming back to Figure F.1, we consider the following non-
minimum phase transfer function:

G(s) =
Y (s)

Rpf (s)
=

10s− 1

s2 + 1.4s+ 1
(F.53)
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It is clear that in order to obtain no static error, that is Y (s)
R(s) = 1

s2+1.4s+1
,

we shall choose the pre�lter Cpf (s) as follows:

Y (s)

R(s)
=

1

s2 + 1.4s+ 1
= G(s)Cpf (s)⇒ Cpf (s) =

1

10s− 1
=
−1

1− s
0.1

(F.54)

Obviously Cpf (s) is not a stable system and this pre�lter cannot be
implemented.

Alternatively we can write G(s) as follows where Gmp(s) is a minimum phase
transfer function:

G(s) =
(
1− s

z

)
Gmp(s) =

(
1− s

0.1

) −1
s2 + 1.4s+ 1

(F.55)

Then, choosing for example M = 4 we write:

1− s
0.1 =

(
1−

(
s
0.1

)1/M)∏log2(M/2)
k=0

(
1 +

(
s
0.1

)2k/M)
=
(
1−

(
s
0.1

)0.25)(
1 +

(
s
0.1

)0.25)(
1 +

(
s
0.1

)0.5) (F.56)

From this decomposition pre�lter Cpf (s) now reads:

Cpf (s) = −1(
1+( s

0.1)
0.25

)(
1+( s

0.1)
0.5

)
= −(0.1)0.25 (0.1)0.5

(s0.25+(0.1)0.25)(s0.5+(0.1)0.5)

= −(0.1)0.75

s0.75+(0.1)0.25s0.5+(0.1)0.5s0.25+(0.1)0.75

(F.57)

The fractional state space representation corresponding to this transfer
function reads:
 D0.25x1(t)
D0.25x2(t)
D0.25x3(t)

 =

 0 1 0
0 0 1

−(0.1)0.75 −(0.1)0.5 −(0.1)0.25

x(t) +
 0

0
1

u(t)
y(t) =

[
−(0.1)0.75 0 0

]
x(t)

(F.58)
Figure F.3 shows Bode plots of the two approximating methods for fractional

pre�lter Cpf (s) with the following setting:
N = 4
ωmin = 10−2

ωmax = 102
(F.59)

Figure F.4 shows the step response of the plant with the rational pre�lter
Cpf (s): it can be seen that the non-minimum phase e�ect has been reduced but
the time response has been highly increased compared with the result obtained
with a static pre�lter Cpf (s) = −1 which leads to Y (s)

R(s) = −
10s−1

s2+1.4s+1
= −G(s)

■
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Figure F.3: Bode plots of approximated fractional pre�lter Cpf (s)

Figure F.4: Step response with approximated fractional pre�lter Cpf (s)


