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Course overview

Classical control theory is intrinsically linked to the frequency domain and the
s-plane. The main drawback of classical control theory is the difficulty to
apply it in Multi-Input Multi-Output (MIMO) systems. Rudolf Emil Kalman
(Hungarian-born American, May 19, 1930 — July 2, 2016) is one of the greatest
protagonist of modern control theory'. He has introduced the concept of state
as well as linear algebra and matrices in control theory. With this formalism
systems with multiple inputs and outputs could easily be treated.

The purpose of this lecture is to present an overview of modern control
theory. More specifically, the objectives are the following:

— to learn how to model dynamic systems in the state-space and the state-
space representation of transfer functions;

— to learn linear dynamical systems analysis in state-space: more specifically
to solve the time invariant state equation and to get some insight on
controllability, observability and stability;

— to learn state-space methods for observers and controllers design.

Assumed knowledge encompass linear algebra, Laplace transform and linear
ordinary differential equations (ODE)
This lecture is organized as follows:

— The first chapter focuses on the state-space representation as well as state-
space representation associated to system interconnection;

— The conversion from transfer functions to state-space representation is
presented in the second chapter. This is also called transfer function
realization;

— The analysis of linear dynamical systems is presented in the third chapter;
more specifically we will concentrate on the solution of the state equation
and present the notions of controllability, observability and stability;

— The fourth chapter is dedicated to observers design. This chapter focuses
on Luenberger observer, state observer for SISO systems in observable
canonical form, state observer for SISO systems in arbitrary state-space
representation and state observer for MIMO systems will be presented.

"http://www.uta.edu/utari/acs/history.htm



— The fifth chapter is dedicated to observers and controllers design. As far
as observers and controllers are linked through the duality principle the
frame of this chapter will be similar to the previous chapter: state feedback
controller for SISO systems in controllable canonical form, state feedback
controller for SISO systems in arbitrary state-space representation, static
state feedback controller and static output feedback controller for MIMO
systems will be presented.
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Chapter 1

State-space representation

1.1 Introduction

This chapter focuses on the state-space representation as well as conversions
from state-space representation to transfer function. The state-space
representation associated to system interconnection is also presented.

The notion of state-space representation has been developed in the former
Soviet Union where control engineers preferred to manipulate differential
equations rather than transfer functions which originates in the United States
of America. The diffusion to the Western world of state-space representation
started after the first congress of the International Federation of Automatic
Control (IFAC) which took place in Moscow in 1960.

One of the interest of the state-space representation is that it enables to
generalize the analysis and control of Multi-Input Multi-Output (MIMO) linear
systems with the same formalism than Single-Input Single-Output (SISO) linear
systems.

Let’s start with an example. We consider a system described by the following
second-order linear differential equation with a damping ratio denoted m, an
undamped natural frequency wp and a static gain K :

d*y(t) | 2mdy(t)

1
— _— t) = Ku(t 1.1
T gy = Ku() (1)

Here y(t) denotes the output of the system whereas u(t) is its input. The
preceding relation represents the input-ouput description of the system.

The transfer function is obtained thanks to the Laplace transform and
assuming that the initial conditions are zero (that is y(¢) = ¢(t) = 0). We get:

552V (s) + Z25Y (s) + Y (s) = KU(s)

0
Y(s) Ku? (1.2)
= F(S) — U(s) 52+2mw(())s+w(2]

Now rather than computing the transfer function, let’s assume that we wish
to transform the preceding second order differential equation into a single first
order vector differential equation. To do that we introduce two new variables,



14 Chapter 1. State-space representation

say x1 and xo, which are defined for example as follows:

y(t) = Kwiry(t)
{2 (13)

Thanks to the new variables x1 and xo the second order differential equation
(1.1) can now be written as follows:

d d
‘Zl(tt) = ng%(t) = Kwiz(t)

Cut) _ e dealt) (1.4)

t
B2l 4 opugas(t) + wia (t) = u(t)

=

The second equation of (1.3) and equation (1.4) form a system of two coupled
first order linear differential equations:

d:l)1(t) — 2o(t
{ dacit(t) 2(1) (1.5)

2 = —2muwomy(t) — wiz (t) + u(t)

In is worth noticing that variables x;(¢) and x2(t) constitute a vector which

. t . . .
is denoted [ ?Et; ]: this is the state vector. Equation (1.5) can be rewritten
2

in a vector form as follows:
d xl(t) o 0 1 xl(t) 0
dt { a(t) | | —wi —2mwy xo(t) Tl u(t) (1.6)
Furthermore using the first equation of (1.3) it is seen that the output y(t)

T (t)
xa(t)

is related to the state vector [ } by the following relation:

y(t) = [ Ku 0] [ 28 ] (17)

Equations (1.6) and (1.7) constitute the so called state-space representation

of the second order system model (1.4). This representation can be generalized
as follows:

{ i(t) = Az(t) + Bu(t) (1.8)

y(t) = Cz(t) + Du(t)

The state-space representation is formed by a state vector and a state
equation. This representation enables to describe the dynamics of a linear
dynamical systems through n first order differential equations, where n is the
size of the state vector, or equivalently through a single first order vector
differential equation.

1.2 State and output equations

Any system that can be described by a finite number of n!* order linear
differential equations with constant coefficients, or any system that can be
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u(t) PN X L

3 B e J I C — +‘:/+>< —
| A —
‘ | I A <
L - > D

Figure 1.1: Block diagram of a state-space representation

approximated by them, can be described using the following state-space
representation:

(1.9)

Where:

— z(t) is the state vector, which is of dimension n. The number n of the
state vector components is called the order of the system;

— wu(t) is the input of the system,;

— y(t) is the output of the system.

State vector z(t) can be defined as a set of variables such that their
knowledge at the initial time tg = 0, together with knowledge of system inputs
wu(t) at t > 0 are sufficient to predict the future system state and output y(¢)
for all time ¢t > 0. B

Both equations in (1.9) have a name:

— Equation &(t) = Az(t) + Bu(t) is named as the state equation;
— Equation y(t) = Cz(t) + Du(t) is named as the output equation.

The state equation and the output equation both constitute the state-space
representation of the system.

The block diagram corresponding to state-space representation (1.9) is
shown in Figure 1.1.

Furthermore matrices (A,B,C,D) which define the state-space
representation of the system are named as follows '

— A is the state matrix and relates how the current state affects the state
change &(t). This is a constant n X n square matrix where n is the size of
the state vector;

— B is the control matrix and determines how the system inputs u(t) affects
the state change; This is a constant n X m matrix where m is the number
of system inputs;

"https://en.wikibooks.org/wiki/Control _Systems/State-Space_Equations
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— C is the output matrix and determines the relation between the system
state z(t) and the system outputs y(t). This is a constant p x n matrix
where p is the number of system outputs;

— D is the feedforward matrix and allows for the system input u(t) to affect
the system output y(t) directly. This is a constant p x m matrix.

1.3 From ordinary differential equations to

state-space representation

1.3.1 Brunovsky’s canonical form

Let’s consider a Single-Input Single-Output (SISO) dynamical system modelled
by the following input-output relation, which is an n** order non-linear time-
invariant Ordinary Differential Equation (ODE):

dy(t) d?y(t
(S0

d™y(t)
dn

d"ty(t) 7 u(t)>

1.10
dtn—1 (1.10)

This is a time-invariant input-output relation because time ¢ does not
explicitly appears in function g.

The usual way to get a state-space equation from the n* order non-linear
time-invariant ordinary differential equation (1.10) is to choose the components

x1(t), -+ ,xp(t) of the state vector z(t) as follows:
] N (O
Sﬂl(t) dy(t)
(1) (e
a(t)=| = (1.11)
ZL'n_l(t) d"*éy(t)
zn(t) s
L din=t
Thus Equation (1.10) reads:
[ a1 (t) ] i z1(t) i
(1) o (t)
i(t) : : = f(z@),u(t))  (1.12)
jjn—l(t) l‘n_l(t)
I’n(t) L g(xla"' 7$n—17u(t>) J
Furthermore:
yt) =z (t)=[1 0 0 ]x(t) (1.13)

This special non-linear state equation is called the Brunovsky’s canonical
form.
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1.3.2 Linearization of non-linear time-invariant state-space
representation

More generally most of Multi-Input Multi-Output (MIMO) dynamical systems
can be modelled by a finite number of coupled non-linear first order ordinary
differential equations (ODE) as follows:

&(t) = f(2(t), u(?)) (1.14)

The Brunovsky’s canonical form may be used to obtain the first order
ordinary differential equations.

In the preceding state equation f is called a vector field. This is a time-
invariant state-space representation because time ¢ does not explicitly appears
in the vector field f.

When the vector field f is non-linear there exists quite few mathematical
tools which enable to catch the intrinsic behavior of the system. Nevertheless
this situation radically changes when vector field f is linear both in the state z(t)
and in the control u(t). The good news is that it is quite simple to approximate
a non-linear model with a linear model around an equilibrium point.

We will first define what we mean by equilibrium point and then we will see
how to get a linear model from a non-linear model.

An equilibrium point is a constant value of the pair (z(t),u(t)), which will
be denoted (z,,u,), such that:

0= f(ze ue) (1.15)

It is worth noticing that as soon as (z,,u.) is a constant value then we have
i, = 0.

Then the linearization process consists in computing the Taylor expansion
of vector field f around the equilibrium point (z,,u,) and to stop it at order 1.
Using the fact that f (z,,u.) = 0 the linearization of a vector field f (z(t), u(t))
around the equilibrium point (z,,u,) reads:

f(z, +dz,u, + ou) ~ Adz + Bou (1.16)
Where:
s arm
And where matrices A and B are constant matrices:
B - 2y R (1.18)

u=u,,r=2,
Furthermore as far as x, is a constant vector we can write:

i) = (1) ~ 0= (1) — 2, = TEOTE) iy (L19)
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Thus the non-linear time-invariant state equation (1.14) turns to be a linear
time-invariant state equation:

5 (t) = Adz(t) + Bou(t) (1.20)

As far as the output equation is concerned we follow the same track. We
start with the following non-linear output equation:

y(t) = h(z(t), u(t)) (1.21)

Proceeding as to the state equation, we approximate the vector field h by
its Taylor expansion at order 1 around the equilibrium point (z.,u,):

y(t) = h(ze, u) + 0 (6z(t) + ., 6u(t) + u.) = y_+ Céz + Dou  (1.22)

Where:
y, = h(zeu,) (1.23)
And where matrices C and D are constant matrices:
C = ohl(zw
0z |y, g=g, (1.24)
D = ohzw '
- ou
= U=u,,t=,

Let’s introduce the difference dy(t) as follows:

dy(t) = y(t) — Y, (1.25)

Thus the non-linear output equation (1.21) turns to be a linear output
equation:

dy(t) = Cox(t) + Ddu(t) (1.26)

Consequently a non-linear time-invariant state representation:

i(t) = f (z(t),u(t))
{ y(t) = h(z(t), u(t)) (1.27)

can be approximated around an equilibrium point (z,.,u.), defined by
0= f(z,,u,), by the following linear time-invariant state-space representation:

{ 6i(t) = Adz(t) + Bou(t) (1.28)

dy(t) = Cox(t) + Ddu(t)

Nevertheless is worth noticing that the linearization process is an
approximation that is only valid around a region close to the equilibrium
point.

The 0 notation indicates that the approximation of the non-linear state-space
representation is made around an equilibrium point. This is usually omitted and
the previous state-space representation will be simply rewritten as follows:

{ i(t) = Az(t) + Bu(t)

y(t) = Cz(t) + Duf(t) (1.29)
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Example 1.1. Let’s consider a fictitious system whose dynamics reads:

d*y(t)
dt3
Find a non-linear state-space representation of this system with the
Brunovsky’s choice for the components of the state vector. Then linearize the
state-space representation around the equilibrium output y. = 0.
As far as the differential equation which describes the dynamics of the system
is of order 3, there are 3 components in the state vector:

z1(t)
z(t) = | za(t) (1.31)
3(t)
The Brunovsky’s canonical form is obtained by choosing the following
components for the state vector:

= cos(ij(t)) + €D — tan(y(t)) + u(t) (1.30)

1(t) yEt)

z(t) = | @2(t) | = | 9(t) (1.32)
wit) | L)
With this choice the dynamics of the system reads:
a1 (t) (1)
a(t) | = x3(t)
x3(t) cos(x3(t)) + €32 — tan(zy(t)) + u(t) (1.33)
y(t) = o1 (2)

The preceding relations are of the form:
&(t) = f(2(t),u(?))
1.34
L 30— h o) (139
Setting the equilibrium output to be y. = 0 leads to the following equilibrium
point z,:

Ye 0
Ye = 0= Lo = Ve = 0 (135)
Ye 0

Stmilarly the value of the control u. at the equilibrium point is obtained by
solving the following equation.:

e = cos(fic) + €% — tan(ye) + ug
= 0 = cos(0) + e3*0 — tan(0) + u, (1.36)
= Ue = —2

Matrices A and B are constant matrices which are computed as follows:

0 1 0 0
A= Ul = 0 0 1 =l o0
L u=ue,z=z, — (1 +tan®(z1e)) 3e®™2  —sin(ws.) -1
[0
af =
B= 7};’; g =10
U=Ue, X=T, 1

(1.37)

w O =

S = O
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Similarly matrices C and D are constant matrices which are computed as
follows:

_ Oh(zu) _
ohzw)| :
D = 2w =0
U=u,,T=I,

Consequently  the mnon-linear  time-invariant  stale  representation
3 .
dd?;g” = cos(§(t)) + e3® — tan(y(t)) + u(t) can be approzimated around the
equiltbrium output y. = 0 by the following linear time-invariant state-space

representation:

dx(t) = Adx(t) + Bou(t) =
Sy(t) = Coz(t) + Dou(t)=[1 0 0 ]dz(t)

The Scilab code to get the state matriz A around the equilibrium point (x, =
0,ue = —2) is the following:

function xdot = f(x,u)
xdot = zeros(3,1);
xdot (1) = x(2);

xdot(2) = x(3);
xdot(3) = cos(x(3)) + exp(3*x(2)) - tan(x(1)) + u;
endfunction

xe = zeros(3,1);

xe(3) = 0;

ue = -2;

disp(f(xe,ue), ’f(xe,ue)=’);
disp(numderivative(list(f,ue),xe),’df/dx=");

Example 1.2. We consider the following equations which represent the
dynamics of an aircraft considered as a point with constant mass?:

mV =T — D — mgsin(y)
mV+ = Lcos(¢) — mg cos(7y)
mV cos(y)y = Lsin(¢)

¢=p

(1.40)

Where:
— V is the airspeed of the aircraft;
— v is the flight path angle;

— 1) s the heading;

2Etkin B., Dynamics of Atmospheric Flight, Dover Publications, 2005
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— ¢ 1is the bank angle;

m is the mass (assumed constant) of the aircraft;

— T is the Thrust force applied by the engines on the aircraft model;
— D is the Drag force;

— g is the acceleration of gravity (g = 9.80665 m/s?);

— L is the Lift force;

— ¢ s the bank angle;

— p s the roll rate.

We will assume that the aircraft control vector w(t) has the following
components:

— The longitudinal load factor ny:

n, = =D (1.41)
mg
— The wvertical load factor n,:
n, = L (1.42)
mg

— The roll rate p

Taking into account the components of the control vector u(t) the dynamics
of the aircraft model (1.40) reads as follows:

V =g (n, —sin(v))

¥ = i (nz cos(¢) — cos(7))
qu g sn(), (1.43)
V cos(7) "

¢»=p

This is clearly a non-linear time-invariant state equation of the form:

&= f(z,u) (1.44)

Where: .
fa=1v 0 o) .
u=[ng n. p|

Let (z,,u,) be an equilibrium point defined by:
f(ze,u.) =0 (1.46)

The equilibrium point (or trim) for the aircraft model is obtained by

arbitrarily setting the values of state vector x, = [ Ve Ye Ve e ]T which
are airspeed, flight path angle, heading and bank angle, respectively. From that
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value of the state vector x, we get the value of the corresponding control vector

U = | Nge Nze Pe ]T by solving the following set of equations:

0=g (n:ce - Sin(’ye))
0 = £ (n2e cos(@e) — cos(7e))

0 g sin(de) (1.47)
T Ve cos(ye) %€
0= pe
We get:
pe =0
Qbe =0
__ cos(ve) (148)

Nze = cos(o0) here ¢e =0 = n. = cos(7e)

Nge = sin(ye)

Let 6z(t) and 6z(t) be defined as follows:

z(t) = z, + 0x(t)
{ u(t) = u, + du(t) (1.49)

The linearization of the vector field f around the equilibrium point (z,,u,)
reads:

Sit) ~ of (z,u)

o sa(t) + L&Y Sult) (1.50)

ou

U=U, L=, = U=U, L=,

Assuming a level flight (e = 0) we get the following expression of the state
vector at the equilibrium:
Ve
Ye =10
o 1.51
= | (151)
¢e =0

Thus the control vector at the equilibrium reads:

Nge = sin (7.) = 0

Uy = | Nze =cos(7e) =1 (1.52)
Pe = 0
Consequently:
[ 0 —gcos(y) O 0
ot | e —eos)  feinG) 0 g sin)
oz U= L=, o % cos(y) V= _% TM”Z 0 % cos(y) 'tz
0 00 0 =

ococoo
o oow
o oo o
ok o o

(1.53)

= |8
®

IS
®
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And:

of (z,u) _
ou -

- U=Up, X=T

V=1V
Y=7=0
Ny = Nye = oS (Ye) =1 (1.54)
¢:d)e:O

o O oW
Q
o
wn
~—~
<
~—

— o OO

oo ow
o ok o
— o oo

Finally using the fact that v = 0 = v = v, ¢ = 0 = d¢p = ¢ and
Pe = 0 = dp = p we get the following linear time-invariant state equation:

1% 0 —g 0 0 5V g 0 0 sn
1 1o 00 o y 0 £ 0 v
o) 0 00 & |ow | oo o] @
é 0 00 0 ¢ 00 1 b

Obviously this is a state equation of the form di(t) = Adx(t) + Bou(t).
It can be seen that the linear aircraft model can be decoupled into longitudinal
and lateral dynamics:

— Longitudinal linearized dynamics:

V1 [0 —g][éV g 0 5ny
e IR R e e
— Lateral linearized dynamics:
&) L00
RS R 71 A

The previous equations show that:
— Airspeed variation is commanded by the longitudinal load factor n;;
— Flight path angle variation is commanded by the vertical load factor n,;

— Heading variation is commanded by the roll rate p.

1.4 From state-space representation to transfer
function

Let’s consider the state-space representation (1.9) with state vector z(t), input
vector u(t) and output vector y(¢). The transfer function relates the relation
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between the Laplace transform of the output vector, Y (s) = £ [y(¢)], and the
Laplace transform of the input vector, U(s) = L[u(t)], assuming no initial
condition, that is z(t)|,_,+ = 0. From (1.9) we get:

o f sX(s) = AX(s) + BU(s)
2(0leo =0 { F SN0 bl
From the first equation of (1.58) we obtain the expression of the Laplace

transform of the state vector (be careful to multiply s by the identity matrix to
obtain a matrix with the same size than A ):

(1.58)

(sT— A) X(s) = BU(s) & X(s) = (sl — A)"' BU(s) (1.59)

And using this result in the second equation of (1.58) leads to the expression
of the transfer function F(s) of the system:

Y (s) = CX(s) + DU(s) = (c (sI—A)"'B+ D) U(s) :== F(s)U(s) (1.60)
Where the transfer function F(s) of the system has the following expression:
F(s)=C(sl—A)'B+D (1.61)

It is worth noticing that the denominator of the transfer function F(s) is
also the determinant of matrix sl — A. Indeed the inverse of sl — A is given by:

1

(- A)" = det(sI — A)

adj(sl — A) (1.62)
Where adj(sI — A) is the adjugate of matrix sI — A (that is the transpose of the
matrix of cofactors 3). Consequently, and assuming no pole-zero cancellation
between adj(sl — A) and det(sl — A), the eigenvalues of matrix A are also the
poles of the transfer function F(s).
From (1.62) it can be seen that the polynomials which form the numerator of
C (sI — A)™' B have a degree which is strictly lower than the degree of det(sI—
A). Indeed the entry in the i'® row and j** column of the cofactor matrix of
sl — A (and thus the adjugate matrix) is formed by the determinant of the
submatrix formed by deleting the i*® row and j** column of matrix sI — A;
thus each determinant of those submatrices have a degree which is strictly lower
than the degree of det(sI — A). We say that C (sl — A)"! B is a strictly proper
rational matrix which means that:
lim C(sI—A)"'B=0 (1.63)
S§—00
In the general case of MIMO systems F(s) is a matrix of rational functions:
the number of rows of F(s) is equal to the number of outputs of the system
(that is the size of the output vector y(t)) whereas the number of columns of
F(s) is equal to the number of inputs of the system (that is the size of the input
vector u(t)).

3https://en.wikipedia.org/wiki/Invertible matrix
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1.5 Zeros of a transfer function - Rosenbrock’s system
matrix
Let R(s) be the so-called Rosenbrock’s system matrix, as proposed in 1967 by
Howard H. Rosenbrock?:
sI-A —-B
R(s) = [ C D ]

From the fact that transfer function F(s) reads F(s) = C (sl — A) ' B+ D,
the following relation holds:

(1.64)

[ —C(S]I]I— A (]; ] R(s)

[—C(S]IH—A)l gHSH(;A _1;3}
R

(1.65)
I

[ —C(sI-A)" 1

relation holds:
I 0
([ opa aye 0]) = "

Now assume that R(s) is a square matrix. = Using the property
det (XY) = det(X)det (Y), we get the following property for the

Rosenbrock’s system matrix R(s
sl—A —-B
)—det([ )

“f[ cw ]
]) det (R(s)) = det (sI — A) det (F(s))

= det ([ C
—C (sl
= det (R ( det (sI — A) det (F(s))

Matrix } is a square matrix for which the following

~—

(1.67)
For SISO systems we have det (F(s)) = F(s) and consequently the preceding
property reduces as follows:

det (R(s))

det (F(s) = F(s) = F(s) = 01— A)

(1.68)

For non-square matrices, the Sylvester’s rank inequality states that if X is
a m X n matrix and Y is a n X k matrix, then the following relation holds:

rank (X) + rank (Y) —n < rank (XY) < min (rank (X),rank (Y)) (1.69)

For MIMO systems the transfer function between input ¢ and output j is

given by:
dot sI—A =,
¢ Q]-T di;

Fijls) = det(sl — A)

(1.70)

*https://en.wikipedia.org/wiki/Rosenbrock _system matrix
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where b; is the i*" column of B and Q;; the j*" row of C.
Furthermore in the general case of MIMO linear time invariant systems, the
(transmission) zeros of a transfer function F(s) are defined as the values of s

such that the rank of the Rosenbrock’s system matrix R(s) = [ s 6 A _];3 ]

is lower than its normal rank, meaning that the rank of R(s) drops.
When R(s) is a square matrix this means that R(s) is not invertible; in such
a situation the (transmission) zeros are the values of s such that det (R(s)) = 0.
Furthermore when R(s) is a square matrix a (transmission) zero z in the
transfer function F(s) indicates that there exists non-zero input vectors w(t)
which produces a null output vector y(t). Let’s write the state vector z(t) and
input vector u(t) as follows where z is a (transmission) zero of the system:

z(t) = zoe™
{ a2 a7

Imposing a null output vector y(t) we get from the state-space representation
(1.9):

{ (t) = Azx(t) + Bu(t) - { zzge”t = Azge + Buyge (1.72)

y(t) = Cz(t) + Du(t) 0 = Czye + Duge
That is:

{ (21— A) zge® — Buyye* =0 <:>[(9I[—A —B] {xo
s=z

zt
Czye* + Duge™ =0 C D Ug } e =0 (173)

This relation holds for a non-zero input vector u(t) = uge® and a non-zero
state vector z(t) = xye** when the values of s are chosen such that R(s) is not
invertible (R(s) is assumed to be square); in such a situation the (transmission)
zeros are the values of s such that det (R(s)) = 0. We thus retrieve Rosenbrock’s
result.

Example 1.3. Let’s consider the following state-space representation:

i(t) = [ _17 _32 }w(t) + [ (1) }“(t) (1.74)
yt)=[1 2]zt

From the identification with the general form of a state-space representation
(1.9) it is clear that D = 0. Furthermore we get the following expression for the
transfer function:

F(s) =C(sI—A)'B

NNy

_ 1 s —12 1
=[1 2]S<S+7)+1‘2[13+7H0] (1.75)
_ 1 S
_32+7s+12[1 2]|:1:|
s+2

= $217s+12
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It can be checked the denominator of the transfer function F(s) is also the
determinant of matriz sl — A.

‘9:7 132 D — 24 Ts 412 (1.76)

det(sl — A) = det <[

Furthermore as far as F(s) is the transfer function of a SISO system it can

also be checked that its numerator of can be obtained thanks to the following
relation:

s+7 12 -1
det<[3H6A ?}):det -1 s 0 =s5+2 (1.77)
1 2 0
Thus the only (transmission) zero for this system is s = —2.

1.6 Faddeev-Leverrier’s method to get (sI — A)™"'

Let A be a n X n matrix with coefficients in R. Then matrix (sI — A)™',
which is called the resolvent of A, may be obtained by a method proposed by
D.K. Faddeev (Dmitrii Konstantinovitch Faddeev, 1907 - 1989, was a Russian
mathematician). This is a modification of a method proposed by U.J.J. Leverrier
(Urbain Jean Joseph Le Verrier, 1811 - 1877, was a French mathematician who
specialized in celestial mechanics and is best known for predicting the existence
and position of Neptune using only mathematics ®). The starting point of the
method is to relate the resolvent of matrix A to its characteristic polynomial
det (sI — A) through the following relation:

(S]I _ A)_l o N(S) o F()Sni1 + F18n72 +---+F,1

- = 1.78
det (sI — A) st —dysnl — ... —d, ( )

where the adjugate matrix N(s) is a polynomial matrix in s of degree n— 1 with
constant n x n coefficient matrices Fo,--- ,Fp_1.

The Faddeev-Leverrier’s method indicates that the n matrices Fjp and
coefficients dj, in (1.78) can be computed recursively as follows:

Fo=1I
d1 = tr (AF()) and F1 = AFO - dl]I
do = %tr (AFl) and F9 = AF; — dol

dp = tr (AF;_1) and Fj, = AFy ; — dil (1.79)

dy = 2 tr (AF,_1)

and det (sl — A) = s" —dys" 1 — - —d,

®https://en.wikipedia.org/wiki/Urbain _Le Verrier
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To arrive at the Faddeev-Leverrier’s method we shall compare coefficients of

like powers of s in the following formula which is derived from (1.78):

(sSI—A) (Fos" '+ F1s" 2+ 4+ Fypy) =1(s" —dis" ' =+ —dy) (1.80)

and obtain immediately that matrices Fy are given by:
Fo=1

Fi=AF)—di1
Fo=AF; —dol

Fp=AFi_1 —dil

The rest of the proof can be found in the paper of Shui-Hung Hou ©

Example 1.4. Compute the resolvent of matriz A where:

Stx

Matriz A is a 2 X 2 matriz. The Faddeev-Leverrier’s method gives:

Fo=1

dy = tr (AFQ) = tr (A) =0 (md Fi=AF,—-d;I=A
do = ftr AFl—%tr( )

and det(sH—A) 52 dls—alg—s2

Then:

(sI—A) =2~ —

Fos+ F4 1 s 1 .
det (sT—A) 52 B

Swl=
w wn
w""w"_‘
[

Example 1.5. Compute the resolvent of matrizc A where:

A=lo 5]

Matriz A 1s a 2 X 2 matriz. The Faddeev-Leverrier’s method gives:

Fo=1
dl =tr (AF()) = —4 and F1 = AFO - dﬂI =

dzzétl‘(AFl):%tl"<|:g g:|> =5

and det (sl — A) =52 —dis—dy =s?>+4s—5= (s —1)(s +5)

5 2
0 -1

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

6Shui-Hung Hou, A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial

Algorithm, STAM Review, Vol. 40, No. 3 (Sep., 1998), pp. 706-709
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Then:
-1 _ Fos+F;  _ 1 s+5 2
(sI—A) = deto(iu_zi) = G-1D(s15) [ 0 s—1
T2 (1.87)
— s—1 (371)1(s+5)
[ 0 ]
n
Example 1.6. Compute the resolvent of matriz A where:
0 1
A= [ —w? —2mu ] (1.88)
Matriz A is a 2 X 2 matriz. The Faddeev-Leverrier’s method gives:
Fo=1
di = tr (AFy) = —2muwo and F1 — AFy — ;T = | 20 1 }
—wy 0
2 0 ) (1.89)
_1 _ 1 0 _
and det (sT — A) = s — dys — dy = s + 2mwps + wd
Then: . PoiT
- S
(sI-A)" =i ay
B 1 s+ 2mwy 1 (1.90)
T 24+ 2mwostws _wg s
"
Example 1.7. Compute the resolvent of matriz A where:
2 -1 0
A=]0 1 0 (1.91)
1 -1 1
Matriz A is a 3 X 3 matriz. The Faddeev-Leverrier’s method gives:
Fo=1
-2 -1 0
dy = tr (AF()) =4 and F1 = AFy — dil = 0 -3 0
1 -1 =3
-4 1 0
dy = $tr (AF;) = Str 0 -3 0 =-5
-1 1 =3
L1 0 (1.92)
Fo=AF,—d=| 0 2 0
-1 1 2
2 00
d3=3tr(AFy) =3tr| | 0 2 0 | | =2
00 2

and det (sT — A) = 53 — dys® — dgs — d3 = % — 45> + 55 — 2
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Then:
-1 Fos?+Fs+F
(S]I - A> = OdetJ(rs]Ile) :
s*—2s5+1 —s+1 0
1
T P 4524552 0 5% — 35 +2 0
s—1 —s+1 s2—3s5+2
(s —1)? —(s—1) 0
s—1 —(s—1) (s —2)(s—1)
1 —1 0
s—2 (s—1)(s—2)
= 0 T 0
1 —1 1
(s—1)(s—2) (s—1)(s—2) s—1
(1.93)
]

1.7 Matrix inversion lemma

Assuming that Aj; and Agy are invertible matrices, the inversion of a
partitioned matrix reads as follows:

[ A A ]_1 _ [ Q: ~AA2Qo ]
Ag Ay —AL AnQy Q2 71 (1.94)
_ [ Q: —Q1A 1A, ]
— QA AT Q2
where: .,
Q1 = (A1 — ApAL Ay) X (1.95)
Q2 = (A — An A Ap)
We can check that:
(AL AR ][ Q ~ALARQ: | _ [T 0] (1.96)
L As Ag || AL AL Q2 1 L0 I ] .
and that:
(A A || Q —QiA1RAY | _ [T 0] (1.97)
L An Ay || —QuAn AL Q2 ] L0 T .

Matrix inversion formula can be used to compute the resolvent of A, that
is matrix (sI — A)~'.

From the preceding relations the matrix inversion lemma reads as follows:
- -1
(A1 — A12A221A21)
- _ _ -1 _
=AL AT AL (A — Ay AT A) Ay A (1.99)

In the particular case of upper triangular matrix where Ag; = 0, the
preceding relations simplify as follows:

-1 _ _ _
[ A11 A12 :| — |: A111 _A111A12A221

0 A ; A (1.99)
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U(s) o X6s)
| F(5) —[+ —n-»

F(s) —

Figure 1.2: Parallel interconnection of systems

1.8 Interconnection of systems

We will consider in the following the state-space representation resulting from
different systems interconnection. This will be useful to get the state-space
representation of complex models.

Lets consider two linear time-invariant system with transfer functions F(s)

. A B, A | B, .
and Fy(s) and state-space representations <C41‘D71> and < c, D, )

() = Az (t) + Bruy(t) B9(t) = Aozy(t) + Bouy(t)
{ 5, (6) = Cizy (1) + Dy (1) ™™ { Uo(#) = Caalt) + Doun(t) 100

The state vector attached to the interconnection of two systems, whatever
the type of interconnection, is the vector z(t) defined by:

z(t) = [ il(t) } (1.101)

The output of the interconnection is denoted y(t) whereas the input is
denoted u(t).

1.8.1 Parallel interconnection

Parallel interconnection is depicted on Figure 1.2. The transfer function F(s) of
the parallel interconnection between two systems with transfer function F(s)
and Fy(s) is:

F(s) =Fi(s) + Fa(s) (1.102)

Parallel interconnection is obtained when both systems have a common input
and by sumiing the outputs assuming that the dimension of the outputs fit:

u(t) = uy (1) = uy(t)
{ —y,(6) + 4, (1) (1.103)

The state-space representation of the parallel interconnection is the

following:

© - A O B

O=1% o e+ 5 |uw Lo
y(t)=[ C1 Cz ] z(t) + (D1 + D2) u(t)

5-
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U(s) Y(s)

Figure 1.3: Series interconnection of systems

This result can also be easily retrieved by summing the realization of each
transfer function:

F(s) :F1()+F2()
=Cy(sI— Ay~ B1+D1+CQ(SH—A2) 'B, + Dy

. S]I—Al 0 B1

_[c © [ (SH_A2)_1HB }+D1+D2
~1

. S]I—Al 0 B1

=[C C [ SH—A2:| [B2}+D1+D2
1

_ B,

_[Cl <3]I—|: 0 A2:|> |:B2:|—|-D1—|-D2

(1.105)
The preceding relation indicates that the realization of the sum F1(s)+Fa(s)
of two transfer functions is:

Al 0 B,
Fl(s) + FQ(S) = 0 A, B (1.106)
C; C;|D;+D,

1.8.2 Series interconnection

Series interconnection is depicted on Figure 1.3. The transfer function F(s) of
the series interconnection between two systems with transfer function Fy(s) and
FQ(S) 1S:

F(s) =Fa(s)Fi(s) (1.107)

Series interconnection is obtained when the output of the first system enters
the second system as an input:

uy(t) =y, (1)
y(t) = y,(t) (1.108)
u(t) = uy(?)

The state-space representation of the series interconnection is the following:

. A 0 B
&(t) = [ 32(131 Ay ]a:(t) * [ B2£)1 ]u(t) (1.109)
y(t) = [ D2C1 Cy | z(t) + DDiu(t)
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us) ¥(s)
—+ — F(5)
N -

L F,(5)

Figure 1.4: Feedback interconnection of systems

1.8.3 Feedback interconnection

Feedback interconnection is depicted on Figure 1.4. To get the transfer function
F(s) of the feedback interconnection between two systems with transfer function
Fi(s) and Fa(s) we write the relation between the Laplace transform Y (s) of
the output vector and the Laplace transform of input vector U(s):

Y(s) = Fi(s) (U(s) — Fa(s)Y(s))
(H—F1(8)F2(8 ) Y(s) = Fa(5)U(s) (1.110)
& Y(s) = (I-Fu(s)Fa(s)) ™ Fi(s)U(s)

We finally get:
F(s) = (I— Fi(s)Fa(s)) " Fi(s) (1.111)

As depicted on Figure 1.4 feedback interconnection is obtained when the
output of the first system enters the second system as an input and by feeding
the first system by the difference between the system input wu(¢) and the output
of the second system (assuming that the dimension fit):

uy (t) = u(t) — y,(t) & u(t) = uy (t) + y,(t)
y(t) =y, (t) (1.112)
uy(t) =y, (t)

Thus the state-space representation of the feedback interconnection is the
following:

2= A7+ | pb. _ pap DD, |40

A — |: A —B{DMC;, -B1Cy + BiDMDCy :|
F= B>,C; — B;D{D;MC; A, -B;DC; +ByD;D;MD;C,

M = (I+D;Dy)!

y(t) = M([ C, -DiC, | z(t) +D1u(t)>

(1.113)
In the special case of an unity feedback we have:

Fy(s) =1 & < éz gz ) = <%KL2> (1.114)
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Thus the preceding relations reduce as follows:

i(t) = Aga(t) + [ Bi ~ BiKz (I+D1)™" Dy ] u(?)
Ap= [ A1 —B1Ko (H(;r DK)"' Cy g ] (1.115)

y(t) = 1+ DiKs) " ([ C1 0 Ja(t) + Dau(t))

It is clear from the preceding equation that the state vector of the system
reduces to its first component z;(¢). Thus the preceding state-space realization
reads:

iy(t) = (A1 = BiKz (I+ DiKo) ' C1) (1) + (B1 = BiKa (I+ D1) ™' Dy ) u()

y(t) = (I+ Dy Ky) ™! (clx1 ) + Dyu( ))
(1.116)



Chapter 2

Realization of transfer functions

2.1 Introduction

A realization of a transfer function F(s) consists in finding a state-space model
given the input-output description of the system through its transfer function.
More specifically we call realization of a transfer function F(s) any quadruplet
(A, B, C,D) such that:

F(s)=C(sI—A)"'B+D (2.1)

We said that a transfer function F(s) is realizable if F(s) is rational and
proper. The state-space representation of a transfer function F(s) is then:

{ (1) = Az(t) + Bu(t)

y(t) = Cu(t) + Du(t) (2.2)

This chapter focuses on canonical realizations of transfer functions that are
the controllable canonical form, the observable canonical form and the
diagonal (or modal) form. Realization of SISO (Single-Input Single Output),
SIMO  (Single-Input  Multiple-Outputs) and MIMO (Multiple-Inputs
Multiple-Outputs) linear time invariant systems will be presented.

2.2 Non-unicity of state-space representation

2.2.1 Similarity transformations

Contrary to linear differential equation or transfer function which describe the
dynamics of a system in a single manner the state-space representation of a
system is not unique. Indeed they are several ways to choose the internal
variables which describe the dynamics of the system, that is the state vector
z(t), without changing the input-output representation of the system, that is
both the differential equation and the transfer function.

To be more specific let’s consider the state-space representation (2.2) with
state vector z(t). Then choose a similarity transformation with an invertible
change of basis matrix P,, which defines a new state vector z,,(¢) as follows:

z(t) = Ppz,(t) & z,(t) = P, z(t) (2.3)
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Then take the time derivative of z,,(¢):
&, (t) = P (1) (2.4)

The time derivative of z(t) is obtained thanks to (2.2). By replacing z(t) by
z,(t) we get:
(t) = Azx(t) + Bu(t) = APz, (t) + Bu(t) (2.5)

Thus we finally get:

{ynm PLli(t) = Py APy, () + Py Bult) 2.

t) = CP,z, (t) + Du(t)

We can match the preceding equations with the general form of a state-space
representation (2.2) by rewriting it as follows:

y(t) = Cnz, (t) + Du(?) '
Where:
A, =P AP,
B,=P,'B (2.8)
C, = CP,

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

Now let’s focus on the transfer function. With the new state vector z,,(t)
the transfer function F(s) has the following expression:

F(s)=C,(sI—A,) 'B,+D (2.9)

Using the expressions of (2.8) to express A,, B, and C, as a function of
A, B and C we get:

F(s) = CP, (sI - P, 'AP,) "

P,'B+D (2.10)
Now use the fact that T = P, 'P,, and that (XYZ)™ ' = Z~'Y~1X"! (as
soon as matrices X, Y and Z are invertible) to get:
F(s) = CP, (sP,'P,—P,;'AP,) 'P,'B+D
—CP, (P;'(sI-A)P,) 'P;'B+D
=CP,P;!(sI—A)'P,P;'B+D
=C(sI—A)'B+D

(2.11)

We obviously retrieve the expression of the transfer function F(s) given by
matrices (A,B,C,D). Thus the expression of the transfer function is
independent of the choice of the state vector.
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2.2.2 Inverse of a similarity transformation

Let vq,vq, - ,v,, be the n vectors which form matrix P,,:
Pn:[Ql CORE Qn] (2.12)
As far as matrix P,, is invertible vectors vy, vy, -+ ,v,, are independent. Let
z(t) = Ppz,(t). Denoting by zpn1,Zn2, - , Tny the components of vector z,,(t)
we get:
Tnl
Tn2
z,(t) = | . | = z(t) =Pnz,(t) = 2oy + Tn2y + -+ 2w, (2.13)
Tnn

Thus the state vector z(t) can be decomposed along the components of the
change of basis matrix P,.

The inverse of the change of basis matrix P,, can be written in terms of rows
as follows:

wi
wj
P l=1". (2.14)
w;,
Since P, 'P,, = I it follows that:
M%?l w?yz e wiyn
Wy V1 Wyly -+ WHY,
P.'P, = . . "=t (2.15)
wlv, wlv, - wlv,

Hence the relation between vectors w; and v; is the following:

wivj—{ Oifi#j (2.16)

2.3 Realization of SISO transfer function

We have seen that a given transfer function F(s) can be obtained by an infinity
number of state-space representations. We call realization of a transfer function
F(s) any quadruplet (A, B, C, D) such that:

F(s)=C(sI—A) 'B+D (2.17)

The preceding relation is usually written as follows:

F(s) = <%‘%> (2.18)
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We consider the following Single-Input Single-Output (SISO) transfer
function which is composed of the sum between a strictly proper rational
function and a constant value d:

Y
U(s) () D(s)

+d (2.19)

Where N(s) and D(s) are polynomials in s such that the degree of N(s) is
strictly lower than the degree of D(s):

— n—1 n
{ D(s)=apy+a1s+ -+ ap_1s +1xs (2.20)

N(s)=ng+mnis+---+mn,_ 15" "

It is worth noticing that polynomial D(s) is assumed to be a monic
polynomial without loss of generally. This means that the leading coefficient
(that is the coefficient of s™) of D(s) is 1. Indeed D(s) is identified to
det (sI — A).

When identifying (2.19) with (2.17) we get:

d=D = lim F(s) (2.21)

§—00

Thus all we need now is to find a triplet (A, B, C) such that:

N(s)

() = CGI-A)"'B (2.22)

2.3.1 Controllable canonical form

Let N(s) = Ni(s)Na(s). Then one solution of the realization problem is the
following quadruplet:

0 1 0 0
0 0 1 0
A, = 0
0 0 0 1
L a0 —a1 —az2 -+ —Aanp-1 |
N(s) = N1(s)Na(s) = : (2.23)
B.=T ' | w
|
(o)
1!
| N2(0) |
C.=[ m) MO MO
D=d
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where T is the following Toeplitz matrix:

[ 1 0 0
Ap—1 1 0
T=|4 5 ay 1 - 0 (2.24)

In the case where we choose Ni(s) := N(s) and Na(s) := 1 we get:

0 1 0 0
0 0 1 0
A= 0
0 0 1
L —ap —ai —a2 -+ —Qp-1 |
Ni(s) == N(s) [ 0] (2.25)
Na(s) =1 0 '
B.= | :
0
- 1 -
C.= [ ng ni Np—2 MNnp-1 }
D=d

The quadruplet (A, B¢, Ce, d) is called the controllable canonical form of
the SISO transfer function F(s).

Alternatively the following realization is also called the controllable
canonical form of the SISO transfer function F(s). Compared with (2.25)
value 1 appears in the lower diagonal of the state matrix which is obtained by
choosing a similarity transformation with value 1 on the antidiagonal (or
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counter diagonal):

0 0 O —ag
1 0 0 —ai
Aca: 0 —a2
L
T 1
2.2
: (2:26)
Bca: :
0
L 0
Cca:[nn—l Np—2 - M nO]
| D=d

To get the realization (2.25) we start by expressing the output Y (s) of SISO
system (2.19) as follows:

U(s)
D(s)

Y (s) = N(s) +dU(s) (2.27)

Now let’s focus on the following intermediate variable Z(s) which is defined
as follows:
Ul(s) U(s)

VA = = 2.28
() D(s) ap+ais+ass?+---+ap_18""+ s" (2:28)

That is:
a0Z(8) + a15Z(s) + a9s’Z(8) + -+ 4+ an_15""Z(s) + s"Z(s) = U(s) (2.29)

Then we define the components of the state vector z(t) as follows:

z1(t) = (1)
.%'Q(t) = il(t) = é(t)
z3(t) 1= da(t) = £(t) (2.30)

T (t) i= dp_1(t) = 20D (t)
Coming back in the time domain Equation (2.29) is rewritten as follows:

apr1(t) + a1za(t) + agxs(t) + -+ + an—12n(t) + @ (t) = u(t)

& in(t) = —agz1(t) — a122(t) — asas(t) — -+ — an_12n(t) + u(t) (2.31)
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The intermediate variable Z(s) allows us to express the output Y(s) as
follows:

Y(s) = N(s)Z(s) +dU(s) = (ng+ -+ +nn,_18" ) Z(s) +dU(s)  (2.32)
That is, coming back if the time domain:
y(t) = noz(t) + - 4+ np_12" (@) + du(t) (2.33)

The use of the components of the state vector which have been previously
defined leads to the following expression of the output y(t):

y(t) = noxi(t) + - - + np_12,(t) + du(t) (2.34)

By combining in vector form Equations (2.30), (2.31) and (2.34) we retrieve
the state-space representation (2.25).

Thus by ordering the numerator and the denominator of the transfer function
F(s) according to the increasing power of s and taking care that the leading
coefficient of the polynomial in the denominator is 1, the controllable canonical
form (2.25) of a SISO transfer function F(s) is immediate.

Example 2.1. Let’s consider the following transfer function:

(s+1)(s+2) s2+3s5+2

FO) = ) +a) ~ 294 145 1 24 (2:35)

We are looking for the controllable canonical form of this transfer function.
First we have to set to 1 the leading coefficient of the polynomial which
appears in the denominator of the transfer function F(s). We get:

_ 0.5s2 4+ 155+ 1

F(s) =
) = I 2 r7s s 12

(2.36)

Then we decompose F(s) as a sum between a strictly proper rational function
and a constant coefficient d. Constant coefficient d is obtained thanks to the
following relation:

B5s?+1.5s+1
d:limF(S)zlim05S+ sl

=0.5 2.37
5—00 s—>ool><82—|—78+12 ( )

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F(s):

N(s) 0.5s% + 1.55 + 1 —2s5—5
=F(s)—d= 5 —05= 55— (2.38)
D(s) I xs%+7Ts+ 12 5%+ Ts+12
We finally get:
N —25—5
F(s) = (s) td=—"2"2_105 (2.39)

D(s) s2+7s+12
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Then we apply Equation (2.25) to get the controllable canonical form of F(s):
0 o 1
—ay | | —12 -7

? } (2.40)

2.3.2 Poles and zeros of the transfer function

It is worth noticing that the numerator of the transfer function only depends on
matrices B and C whereas the denominator of the transfer function is built from
the characteristic polynomial coming from the eigenvalues of the state matrix
A.

As far as the transfer function does not depend on the state space realization
which is used, we can get this result by using the controllable canonical form.
Indeed we can check that transfer function C,. (sI — AC)_1 B, has a denominator
which only depends on the state matrix A, whereas its numerator only depends
on C,., which provides the coefficients of the numerator:

* % 1 0
1 X k0§ .
I-A)'B, = | —nr— :
(61~ Ac) det(sT—Ao) [ 1 1 0
* % st (2.41)
) .
C 5
=C.(sI-A)'B, =—°
(s ) det (s — A,)
Snfl

More generally, the characteristic polynomial of the state matrix A sets
the denominator of the transfer function whereas the product B C sets the
coefficients of the numerator of a strictly proper transfer function (that is a
transfer function where D = 0). Consequently state matrix A sets the poles of
a transfer function whereas product B C sets its zeros.

2.3.3 Similarity transformation to controllable canonical form

We consider the following general state-space representation:

i(t) = Ax(t) + Bu(t)
{ y(t) = Cz(t) + Duf(t) (2.42)

where the size of the state vector z(t) is n.
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Use of the controllability matrix

The controllable canonical form (2.25) exists if and only if the following matrix
Q., which is called the controllability matrix, has full rank:

Q.=[B AB .- A"B| (2.43)

As soon as the characteristic polynomial of matrix A is computed the state
matrix A. as well as the control matrix B, corresponding to the controllable
canonical form are known. Thus the controllability matrix in the controllable
canonical basis, which will be denoted Qc., can be computed as follows:

Qc=[B. AB. --- Al'B, | (2.44)

At that point matrices A. and B, are known. The only matrix which need
to be computed is the output matrix C.. Let P, be the change of basis matrix
which defines the new state vector in the controllable canonical basis. From
(2.8) we get:

C.=CP, (2.45)

And:

{ A.=P. AP,

B — Po1B (2.46)

Using these two last equations within (2.44) and the fact that (P;lAPc)k =
P_'AP...-P_'AP. = P_'A*P,, we get the following expression of matrix

k-times
Qcc:
Qcc = [ Bc Ach AZLich ]
= [ P,'B P;'APP,'B ... (P;'AP.)""" P;lB}
=[P;'B P,'AB - P_'A"'B] (2.47)
=P;![B AB .- A"'B]
= Pc_ch

We finally get:
P.'=Q.Q.' «P.=Q.Q.} (2.48)

Furthermore the controllable canonical form (2.25) is obtained by the
following similarity transformation:

z(t) = Pez,(t) & z,.(t) = P 'z(t) (2.49)

Alternatively the constant nonsingular matrix P, ! can be obtained through
the state matrix A and the last row QCT of the inverse of the controllability
matrix Q. as follows:

* q"
T
Q! S A (2.50)
(& % 4 : "
T qTAn—l
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To get this result we write from (2.8) the following similarity transformation:
A, =P 'AP. & A P! =P'A (2.51)

Let’s denote det (sI — A) as follows:
det (sT — A) = 8" 4+ ap_15" 1 4+ ays5+ ag (2.52)

Thus the coefficients a; of the state matrix A, corresponding to the
controllable canonical form are known and matrix A, is written as follows:

0 1 0 0
0 0 . 0
A= . ' 0 (2.53)
0 0 0 1
[ —ap —aip —az - —0p-1 |
Furthermore let’s write the unknown matrix P! as follows:
r{
P l=| : (2.54)
7T

In

Thus the rows of the unknown matrix P! can be obtained thanks to the
following similarity transformation:

AP ! =P A
[0 1 0 0 T
. T T
0 0 1 .. 0 ry r1
- . I R N (2.55)
0O 0 0 1 Ty, Ty,
L —a —a1 —az --° —0p-1 |

Working out with the first n — 1" rows gives the following equations:

rs =15 A=r1A
o ! (2.56)

T _,T _ 2T An—1
'n = zn—l‘A - KlA

Furthermore from (2.8) we get the relation B, = P_'B which is rewritten
as follows:

0 TR —
K{ 0 .fl B=0
P,'B=B.,< | : |B=|:|&{" (2.57)
T r, B=0
r 0 7
- r’B =1
1 r
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Combining (2.56) and (2.57) we get:

rTB=0
riB=rTAB =0
: (2.58)
rI B=rIfA" 2B =0
r’B=rTA" B =1
These equations can in turn be written in matrix form as:
ri[B AB -+ A"?B A"'B]=[00 - 0 1] (2.59)
Let’s introduce the controllability matrix Q.:
Q.=[B AB -+ A"'B] (2.60)
Assuming that matrix Q. has full rank we get:
r{Q.=[00 - 0 1]erf=[00 - 0 1]Q;" (2.61)

From the preceding equation it is clear that f{ is the last row of the inverse
of the controllability matrix Q.. We will denote it QZ:

ri =q" (2.62)

Having the expression of r7 we can then go back to (2.56) and construct all
the rows of P_1.

Example 2.2. We consider the following general state-space representation:

e B .
where:
A=
o [ i } (2.64)
C=[7 —4]
D=0.5

We are looking for the controllable canonical form of this state-space
representation.
First we build the controllability matriz Q. from (2.43):

2 -13 } (2.65)

Q.=[B AB]:[4 —25
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To build matriz Q. let’s compute det (sI — A):
det (sI — A) = s* + ays 4 ag = s> + 7s + 12 (2.66)

As soon as matriz A. is built from the denominator of the transfer function,
that is from det (sl — A), we get:

Ac= [ —ZO —1al ] - [ —22 —17 } (2.67)

Furthermore matrix B, is straightforward for the controllable canonical form:

B, = [ 2 } (2.68)

Thus we are in position to compute matriz Qee -

Q.=[B. AB,]= [ . ] (2.60)

Then we use (2.48) to build the similarity transformation:

—1
2 —-13][0 1
— -1 _
Pe =Q 00_{4 —25“1 —7}

4 =25 10
12
13 4
Alternatively we can use (2.50) to build the similarity transformation:

_ —25 13 *
=4 7 T )= 7] 2.11)
T

T
-1 _ QC . —2 1
P = [qZ’A ] - [ 1.5 —0.5 } (2.72)

Using the similarity relations (2.8) we finally get the following controllable
canonical form of the state-space representation:

—2 1 28.5 —17.5 1 2 0 1
_p-1 _ —
Ac=Pe APC_[15 —05“585 —355“3 4}_[—12 —7]
1 2
_p-1 _
i F e M
1 2
C.—CP.—[7 - [3 4] 2]

(2.73)
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Iterative method

Equivalently change of basis matrix P, of the similarity transformation can be
obtained as follows:
Po=[¢ ¢ - ¢ | (2.74)
where:
det (s — A) = s" 4+ a,_ 15" '+ -+ a5 +ag
¢, =B (2.75)
g =Ac 1 +aB Vn-1>2k>1

To get this result we write from (2.8) the following similarity transformation:
A.=P_'AP. = P.A. = AP, (2.76)

Let’s denote det (sI — A) as follows:
det (sI— A) =5"+a,_15" 1+ +as+ag (2.77)

Thus the coefficients a; of the state matrix A, corresponding to the
controllable canonical form are known and matrix A, written as follows:

0 1 0 0
0 0 1 0
A, = N N 0 (2.78)
0 0 0 1
| —ap —ap —az - —ap-1 |

Furthermore let’s write the unknown change of basis matrix P, as follows:
Po=[c¢ ¢ - ¢ (2.79)

Thus the columns of the unknown matrix P, can be obtained thanks to the
similarity transformation:

P.A.= AP,
[0 1 0 0 ]
0 0 1 0
“la o e ] o | =Ala e cn |
0 0 0 1
L —d0 —a1 —az -+ —Gp-1 |
(2.80)
That is:
0= aoc, + Agy
¢ = aic, + Ac =
; ne o | U= act+ Aa (2.81)
¢ =Acg g tage, Yn—-1>k>1

Qn—l - an—lgn + Agn
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Furthermore from (2.8) we get the relation B, = P, 'B which is rewritten
as follows:

1

Combining the last equation of (2.81) with (2.82) gives the proposed result:

¢, =B
{Ck:Ack+1+akB Yn—1>k>1 (2.83)

Example 2.3. We consider the following general state-space representation:

e e s
where:
A= |5 ]
e [ i } (2.85)
C=[7 —4]
D=0.5

This is the same state-space representation than the one which has been used
in the previous example. We have seen that the similarity transformation which
leads to the controllable canonical form is the following:

_ -2 1
Pl = [ 15 —0.5 ] (2.86)

It is easy to compute matriz P, that is the inverse of P71, We get the
following expression:

P, = [ ; i ] (2.87)

We will check the expression of matriz P, thanks to the iterative method
proposed in (2.75). We get:

det (s — A) = 52+ 7s + 12

C2:B:[ﬂ (2.88)

28.5 —17.571[ 2 2 1
Cl_AC2+alB_[58.5 —35.5“4]+7{4}_[3]
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Thus we fortunately retrieve the expression of matriz P.:

P.=[¢ 02]:[1 2] (2.89)

|
2.3.4 Observable canonical form
Another solution of the realization problem is the following quadruplet:
0 0 O —ag |
1 0 0 —ai
Ao=10 1 0 —ay
L O 0 1 —ap1 |
no T
711 (2.90)
B, = :
Np—2
L n—1 ]
C, = [ 0 0 01 ]
D=d

The quadruplet (A,, B,, C,, d) is called the observable canonical form of the
SISO transfer function F(s).

Alternatively the following realization is also called the observable
canonical form of the SISO transfer function F(s). Compared with (2.90)
value 1 appears in the upper diagonal of the state matrix which is obtained by
choosing a similarity transformation with value 1 on the antidiagonal (or
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counter diagonal):

0 1 0 0
0 0 1 0
Aoa = 0
0 0 0 1
L @ —a@1 —a2 -:* —Aap-—1 |
[ M1
o (2.91)
Boa =
ni
L "o
Cou=[10 - 0 0]
D=d

To get the realization (2.90) we start by expressing the output Y (s) of SISO
system (2.19) as follows:

Y(s) _ N(s)
U(s)  D(s)
That is:

+d< (Y(s)—dU(s)) D(s) = N(s)U(s) (2.92)

(ao + a1s +ags® + -+ + ap_18" 1 +5") (Y(s) —dU(s))
= (no+m1s+-+n,_15" ) U(s) (2.93)

Dividing by s™ we get:

ago aq a9 Ap—1
(;Jrsn_l i +1) (Y(s) —dU(s))
no ny n2 Np—1

:<7 +8n_2—|—---+ S

) Uls) (2.94)

s Sn—l
When regrouping the terms according the increasing power of % we obtain:

Y(s)=dU(s)+ é (an—1U(8) — an—1Y(s)) + ;12 (an—2U(s) —an—2Y(s)) +

- Sin (aoU(s) — apY (s)) (2.95)

Where:

That is:

Y(s)=dU(s) + % (anlU(S) —an—1Y(s) + é (oznfo(s) — ap_2Y (s) ) +

% ( - % (a0l (s) — ao¥ (s) )>>> (2.97)
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Then we define the Laplace transform of the components of the state vector
z(t) as follows:

sX3(s) = axU(s) — a2Y (s) + Xa(s) (2.98)

So we get:
Y(s) = dU(s) + %(an(s)) = dU(s) + Xn(s) (2.99)

Replacing Y (s) by X, (s) and using the fact that «; = n; + da; Equation
(2.98) is rewritten as follows:

( sX1(s) = apU(s) —ap (dU(s) + X,(9))
= —apXn(s) +noU(s)
sXo(s) =aqU(s) — a1 (dU(s) + Xn(s)) + X1(s)
= Xi1(s) — a1 Xn(s) + mU(s)
sX3(s) = aU(s) — a2 (dU(s) + Xn(s)) + Xa(s) (2.100)
= Xo(s) — a2 X (s) + naU(s)

SXn(s) = an1U(5) — an_1 (AU(5) + Xn(s)) + Xn_1(s)
= Xn-1(8) — an—1Xn(s) + nyp—1U(s)

Coming back in the time domain we finally get:

z1(t) = —apzy(t) + nou(t)
To(t) = x1(t) — ayzy(t) + nyu(t)
3(t) = wa(t) — agwn(t) + nou(t) (2.101)

() = T 1(t) — an_12m(t) + nn_1u(t)

And:
y(t) = xp(t) + du(t) (2.102)

The preceding equations written in vector form leads to the observable
canonical form of Equation (2.90).

Thus by ordering the numerator and the denominator of the transfer function
F(s) according to the increasing power of s and taking care that the leading
coefficient of the polynomial in the denominator is 1, the observable canonical
form (2.90) of a SISO transfer function F(s) is immediate.

Example 2.4. Let’s consider the following transfer function:

(s+1)(s+2)  s*+3s+2

F(s) = _
) = )£ 4) 27+ 145 1 24

(2.103)
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We are looking for the observable canonical form of this transfer function.
As in the preceding example we first set to 1 the leading coefficient of the
polynomial which appears in the denominator of the transfer function F(s). We
get:
0552415541
1 xs2+Ts+12

F(s) (2.104)

Then we decompose F'(s) as a sum between a strictly proper rational function
and a constant coefficient d. Constant coefficient d is obtained thanks to the
following relation:

, . 055+ 1.5s+1
i Jip ¥ = i P2 08 a0y

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F(s):

N(s) 0.552 +1.55+ 1 —25—5
D) T Ixs2+7s+ 12 s2+ s+ 12 (2.106)
We finally get:
N(s) —25—5
F(s) = d= : 2.1
() D(s) * s2+Ts+ 12 0.5 (2.107)

Then we apply Equation (2.90) to get the observable canonical form of F(s):

o2 3]0 )
Bo = [ Z? } - [ :g} (2.108)
Co=[0 1]

D =05

2.3.5 Similarity transformation to observable canonical form

We consider the following general state-space representation:

(2.109)

where the size of the state vector z(t) is n.
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Use of the observability matrix

The observable canonical form (2.90) exists if and only if the following matrix
Q,, which is called the observability matrix, has full rank:

C
CA
Qo = : (2.110)

CAnfl

As soon as the characteristic polynomial of matrix A is computed the state
matrix A, as well as the output matrix C, corresponding to the observable
canonical form are known. Thus the observability matrix in the observable
canonical basis, which will be denoted Q,,, can be computed as follows:

Co
CoA,
Qoo = : (2.111)

C,A"1

At that point matrices A, and C, are known. The only matrix which need
to be computed is the control matrix B,. Let P, be the change of basis matrix
which defines the new state vector in the observable canonical basis. From (2.8)
we get:

B,=P,'B (2.112)

And:

_p-1
{ Ao =P, AP, (2.113)

C,=CP,
Using these last two equations within (2.111) leads to the following
expression of matrix Q,:

[ C, Cp,
C,A, CP,P,'AP,
Qoo = : = :
| CoAS™! CP, (P;'AP,)"
- CP, C (2.114)
CAP, CA
= . = ) P,
i CAn—lPO CAn—l
=Q,P,
We finally get:
P, = Q;lQoo Aad Pgl = Q;}Qo (2115)

Furthermore the observable canonical form (2.90) is obtained by the
following similarity transformation:

z(t) = Poz,(t) & z,(t) = P, a(t) (2.116)
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Alternatively the constant nonsingular matrix P, can be obtained through

the state matrix A and the last column q, of the inverse of the observability
matrix Q, as follows:

[ % oo

Qfl

Aq, A”_lgo ] (2.117)

To get this result we write from (2.8) the following similarity transformation:

A,=P,'AP, & P,A, = AP, (2.118)

Let’s denote det (sI — A) as follows:
det (sT — A) = 8" + a,_15" ' +---+a1s+ag (2.119)

Thus the coefficients a; of the state matrix A, corresponding to the
observable canonical form are known and matrix A, is written as follows:

0 0 O —ag ]
1 0 0 —aq
Ao=10 1 0 —ay (2.120)
| 0 0 1 —Qp-1 |
Furthermore let’s write the unknown matrix P, as follows:
P,=| ¢ ¢, | (2.121)

Thus the columns of the unknown change of basis matrix P, can be obtained
thanks to the following similarity transformation:

P,A, = AP,
0 O 0 —ag |
1 0 0 —al
ela wllo 1 0 —ay | =Ala cn ]
L 0 0 I —ap—1 |

(2.122)

Working out with the first n — 1** columns gives the following equations:
¢ =Ag
c3 = Acy = A’c)

(2.123)
e =Ac, 1 = A" ¢
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Furthermore from (2.8) we get the relation CP, = C, which is rewritten as
follows:

cp,=0C,
<:>C[Ql gn]:[o e 0 1]

CQIZO

Cey, =0 (2.124)
AT

an_lzo

Cc, =1

Combining (2.123) and (2.124) we get:

CQQ = CAQl =0
: (2.125)
an—l = CAn_QQI =0
Cc, =CA" ¢, =1
These equations can in turn be written in matrix form as:
PO 0
CA 0
: c=1: (2.126)
CAan
| CA™! | 1]
Let’s introduce the observability matrix Q,:
C
CA
Qo = . (2.127)
CAnfl
Assuming that matrix Q, has full rank we get:
"0 F 0
0 0
Qe =|:|eaq=Q,"|: (2.128)
0 0
L 1 - - 1 -

From the preceding equation it is clear that c¢; is the last column of the
inverse of the observability matrix Q,. We will denote it g :

¢ i=q (2.129)

Having the expression of ¢; we can then go back to (2.123) and construct
all the columns of P,.
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Example 2.5. We consider the following general state-space representation:

(t) = Az(t) + Bu(t)
{ y(t) = Cz(t) + Duft) (2.130)
where:
( 28.5 —17.5
A= [ 58.5 —35.5 }
2
B= [ 1 } (2.131)
C=[7 —4]
D=05
We are looking for the observable canonical form of this state-space
representation.
First we build the observability matriz Q, from (2.110):
C 7 —4
Qo= [ CA } = { 345 195 ] (2.132)
To build matriz Qoo let’s compute det (sl — A):
det (sT — A) = s> + ays +ag = 52 + 7s + 12 (2.133)

As soon as matriz A, is built from the denominator of the transfer function,
that is from det (sl — A), we get:

A, = [ (1] :Z(l’ } = [ (1) __172 } (2.134)

Furthermore matriz C, is straightforward for the observable canonical form:
Co=[0 1] (2.135)

Thus we are in position to compute matriz Qg -

Qoo = [ C(j)&o ] = [ (1) _17 } (2.136)

Then we use (2.115) to build the similarity transformation:

7 a7 [o o1
Po =Q QOO‘[—34.5 19.5] [1 —7}
oy [195 470 1
_—1-5[34.5 7“1 —7}
~-195 —41[0 1
e ][0

-4 85
=7 14.5

(2.137)

Il
[SN]] )

wlho
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Alternatively we can use (2.117) to build the similarity transformation:
—-195 —4
-1 _ 2 _
Q01_3[—34.5 —7]_[* 4, |

:>qo:3[:i] (2.138)

N

2 —4 8.5] (2.139)

Po=1l4, Aqo}:?,[—? 14.5

Using the similarity relations (2.8) we finally get the following observable
canonical form of the state-space representation:

( 145 —85 ][ 285 —17.5 -4 85 0 —12
—_p-! - 2 =
Ao=F AP=1| 7 H58.5 35.5]3[7 14.5} [1 —7
145 —85 12 -5
—Pp-lp — —
i A b
-4 85
_ _ _4]2 =
Co,=CP,=[7 4}3{_7 14'5]_[0 1]
(2.140)
u

Iterative method

Equivalently the inverse of the change of basis matrix P, of the similarity
transformation can be obtained as follows:

Pl =

o

(2.141)

where:
det (s — A) = s" +a,_ 15" 1+ +ai1s+ag
r’'=C (2.142)

rl =T A+a,C Vn—1>k>1

To get this result we write from (2.8) the following similarity transformation:

A,=P,'AP, < AP, =P,'A (2.143)
Let’s denote det (sI — A) as follows:
det (sT — A) = 8" + a,_15" ' +---+a1s +ap (2.144)

Thus the coefficients a; of the state matrix A, corresponding to the
observable canonical form are known and matrix A, is written as follows:

"0 0 0 —ay
1 0 0 —ay
Ao=10 1 0 . —a (2.145)

0 0 1 —Qnp—1

|
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Furthermore let’s write the inverse of the unknown change of basis matrix
P, as follows:

(2.146)

Thus the columns of the unknown matrix P, can be obtained thanks to the
similarity transformation:

AP =P;'A

0 0 0 —ag
T T
1 0 0 . - o o
_ L) L) (2.147)
1o 1 0 " —a =1 A
r rl
| 0 0 1 —ap—1 |
That is:
—aory, =r{ A
i —airy =13 A 0=rTA+aprl
: f}f:zfﬂAJrakﬁf Vn—-1>k>1
Th_1 = ap-1rh =13 A

(2.148)

Furthermore from (2.8) we get the relation C, = CP, which is rewritten as

follows:

CP,'=Ce[0 -0 1]| . |=Cc=/T=C (2.149)

Combining the last equation of (2.148) with (2.149) gives the proposed
result:

rf=C
{ =T A+ aC ¥n—1>k>1 (2.150)

Example 2.6. We consider the following general state-space representation:

{ (t) = Az(t) + Bu(t) (2.151)
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where:
( 28.5 —17.5
A= [ 58.5 —35.5 }
2
13“'{ 4 } (2.152)
C=[7 —4]
| D=05

This is the same state-space representation than the one which has been used
in the previous example. We have seen that the similarity transformation which
leads to the controllable canonical form is the following:

27 -4 85
Po=3 [ 7 14.5} (2.153)

It is easy to compute matriz P; L, that is the inverse of P,. We get the

o 7
following expression:

Pl =

o

[ 14.5 -85 ] (2.154)

7 —4

We will check the expression of matriz P, thanks to the iterative method
proposed in (2.142). We get:

det (s — A) = 52 + 7s + 12
ry=C=[7 —4]
28.5 —17.5
rf=rfA+aC=[7 —4] [ R E 35K } +7[7 —4]=]145 -85 ]
(2.155)
Thus we fortunately retrieve the expression of matriz P, 1:
T
P, —[rg]—[ . 4 (2.156)
n

2.3.6 Diagonal (or modal) form

Omne particular useful canonical form is called the (block) diagonal or modal
form. The (block) diagonal form is obtained thanks to the partial fraction
expansion of transfer function F'(s). This is a diagonal representation of the
state-space model when all the poles of F(s) are distinct. Otherwise this is a
Jordan representation.
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Transfer function with distinct poles

Assume for now that transfer function F'(s) has distinct poles \;. Then the
partial fraction expansion of F(s) reads:

T = Fl) =5+

(2.157)

Number r; is called the residue of transfer function F(s) in A\;. When the
multiplicity of the pole (or eigenvalue) A; is 1 it is clear from the preceding
relation that the residue r; can be obtained thanks to the following formula:

ri = (s = M) F(s)]on, (2.158)
Now we define constants b; and ¢; such that the product b;c; is equal to r;:
i = Cib; (2.159)

Consequently transfer function F'(s) can be written as follows:

Cc1 bl (&) b2 Cn bn
F(s) = e d 2.1
(s) s—)\1+5f)\2+ +57>\n+ (2.160)
Then we define the Laplace transform of the components
x1(t), x2(t), -+ ,xp(t) of the state vector z(t) as follows:
Xi(s) _ b
U(s) — s—\
Xa(s) _ _b
Ule) = o=k (2.161)
Xn(s) _ _bn
U(s) = s—Xn
Using (2.161) transfer function F'(s) can be written as follows:
Y(s) _ P, S1C)) Xa(s) Xn(s)
v = Fls) =aqiy tagy + oy +d (2.162)
=Y (s) =1 X1(s) + caXa(s) + -+ e Xn(s) + dU(s)
Coming back to the time domain we get:
y(t) = crz1(t) + coxa(t) + - - - + cpzp(t) + du(t) (2.163)
Whereas in the time domain (2.161) reads:
:i'1<t) = )\11131(25) + bﬂt(t)
i‘g(t) = /\ng(t) + bgu(t)
, (2.164)

() = Anan(t) + bu(t)

Equations (2.164) and (2.163) lead to the following state-space
representation, which is called the diagonal or modal form:
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@(t) = Az(t) + Bu(t)
{ y(t) = Cz(t) + Du(t) (2.165)
where:
A 0 0
A — 0 Ao
S
L 0 0 A\
b
by (2.166)
B=| .
L bn
C = [ C1 C2 e Cn ]
D=d

Example 2.7. Let’s consider the following transfer function:

(s+1)(s+2) s +3s+2
F(s) = - 2.1
) = T3t 22 ds A (2.167)

We are looking for the diagonal form of this transfer function.
First we have to set to 1 the leading coefficient of the polynomial which
appears in the denominator of the transfer function F(s). We get:

05524155+ 1

F(s) —
) = T 275+ 12

(2.168)

Then we decompose F(s) as a sum between a strictly proper rational function
and a constant coefficient d. Constant coefficient d is obtained thanks to the
following relation:

5sZ 4+ 1. 1
d = lim F(s) = lim 225 F1o5+1
S—00 8—>001X82+73+12

0.5 (2.169)

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F(s):

N(s)
D(s)

05824+ 1.5s+1 —25—5
=F(s)—d= —05=— " 2.170
(5) 1xs2+7s+ 12 2+ T7s+12 (2.170)

The two poles of F(s) are —3 and —4. Thus the partial fraction expansion
of F(s) reads:

T1 T2 T1 )
= d =
s+ 3 S—|—4+ S+3+8+4

—0.5 (2.171)
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where the residues r1 and ro are:

_ (31(342)

r= (s+3)F(s)] =g g2 o3 2(-3T9)

2(s+4)

(2.172)
s41) (542 —4+41)(—442
ro = (s+4)F(s)]__y4 ( JQF(S)J(F:;)r )‘5:—4 = ;E_)4(+3)+ L — -
We finally get:
N(s) 1 -3
F(s) = d=—— 0.5 2.173
(5) D(s)+ S+3+S+4+ ( )
Residues r1 and ro are expressed for ezample as follows:
T1:1:1X1261Xb1
{ ro=—3=—-3X1=coXb (2'174)

Then we apply Equation (2.166) to get the diagonal canonical form of F(s):
[x 0] [-3 0
SRR

B:[zg}:[—l?,} (2.175)

C:[cl CQ]:[l 1]

Similarity transformation to diagonal form

Assume that state matrix A has distinct eigenvalues A;. Starting from a

A |B
realization (T‘T) let Py, be the change of basis matrix such that:

MO 0
A, = O A2 | =plAP,, (2.176)
0 0 A

We will denote P, as follows:
Po=[v v - v,] (2.177)

It can be seen that vectors v, are the eigenvectors of matrix A. Indeed let

A; be an eigenvalue of A. Then:
AQ1 = )\121
: (2.178)
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Writing this equation in vector form leads to the following relation:

A0 0
(o vy - w, ] 9 Az =Alv v, -+ v, | (2179)
S
0 0 A
That is:
A0 0
p,| " ™ | = AP, (2.180)
0 0 A\,
Or equivalently:
A0 0
0 A =P 'AP,, (2.181)
: 0
o --- 0 A\,

The inverse of the change of basis matrix P,, can be written in terms of rows

as follows:

wi

T
Wy

Pl = (2.182)

T
n

(ST

It can be seen that vectors w; are the eigenvectors of matrix A”. Indeed
let \; be an eigenvalue of A, which is also an eigenvalue of AT as far as
det (sT — A) = det (sI — A)" = det (sI — AT). Then:

ATw; = \w; = wl A = \w] (2.183)

Thus by multiplying by v; and using the fact that v; is an eigenvector of A,
that is Av; = Aju;, we get:

3¥5
Awlv; = wl Avy = \jwlv; = (A — \j) wlv; =0 (2.184)

Since A\; # \; Vi # j we finally get:
wlv; =0if i # j (2.185)
As far as w; and v; are defined to within a constant we impose Mgpgj =

1 if ¢ = 5. Consequently:
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Transfer function with complex conjugate pair of poles

If some of the poles are complex so are the residues and so is the diagonal form.
This may be inconvenient. We will see hereafter how to retrieve real matrices
corresponding to the diagonal form.

Assume that A and ) is a complex conjugate pair of poles of F(s):

F(s) = + = (2.187)
Let a be the real part of the pole A and f its imaginary part:
A=a+jBeA=a—jB (2.188)

According to the preceding section the state-space representation of F'(s) is
the following:

A0 | a+iB 0
Am_[o /\]_[ 0 a—jp
b1
Brm = [bl } (2.189)
Cm:[cl 61]
D=0

Where:
r=bic; =T =bicy (2.190)

It is clear that the diagonal form of transfer function F'(s) is complex. From
the preceding realization we get the following equations:

1(t) = (a +jB) z1(t) + bru(t)
{ @2(t) = (a = jB) wa(t) + bru(t) (2.191)

We deduce from the preceding equation that the state components x;(t) and
x9(t) are complex conjugate. Let zgr(t) be the real part of x1(t) and z(t) its
imaginary part:

21(t) = zr(t) + joi(t) = 22(t) = F1(t) = zR(t) — jzi(t) (2.192)

Thus Equation (2.191) reads:

{ ar(t) + jir(t) = (a+jB) (zr(t) + jer(t)) + bru(t) (2.193)

er(t) — jir(t) = (o —jB) (xr(t) — jei(t)) + bru(t)

We deduce two new equations from the two preceding equations as follows:
the first new equation is obtained by adding the two preceding equations and
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dividing the result by 2 whereas the second new equation is obtained by
subtracting the two preceding equations and dividing the result by 2j. We get:

{ #r(t) = azg(t) — By (t) + Bibiy(t)

i (t) = Brr(t) + oz () + HZtu(t) (2.194)

As far as the output y(t) is concerned we can express it as a function of the
new components xg(t) and z(t) of the state vector:

y(t) =11 (t) + 171 (t)
= c1(zr(t) + jzr(t)) + 1 (zr(t) — jor(t)) (2.195)
= (a1 +¢1)zp(t) +j(c1 — 1) xs(t)

Consequently the complex diagonal form in Equation (2.189) is rendered real
by using the real part and the imaginary part of the complex state component
which appear in the state vector rather than the complex state component and
its conjugate. Indeed Equations (2.194) and (2.195) lead to the following state-
space representation where matrices (A,,, By, Cp, D) are real:

| -8
a4 ]
[ bl—ggl
Bn= |, 2%
I blgjbl (2.196)

C,, = [ (01+51) j(cl—El) ]

| D=0

It can be seen that complex matrix A has the same determinant than the
real matrix A,,:

(1[40 0 T a2 F]) e

Example 2.8. Let’s consider the following transfer function.:

s+2

F(s)= —>"2
(5)= 32575

(2.198)

The two poles of F(s) are \y = 1+ 2§ and A\ = 1 — 2j. Thus the partial
fraction expansion of F(s) reads:

s+2 s+ 2 1 r

2 .
F(s) = = — = + — where Ay =1+ 2
() s2—2s+5 (S—)\l)(s—)\l) 55—\ s— M\ ! J
(2.199)
where the residues r1 and ro are:
3425 2—3j5

= (8 B Al)F(S”S:)\l - % s=A1 - Tj B TJ (2 200>

= (s M)F(s)| 5, = 22| =3 =2_p

S=A1
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We finally get:

" ry 2-3) 243)
Fls) — L2 I T 2.201
(5) s—M s—XN s—(014+2j) s—(1-29) ( )

Restdues r1 and ro are expressed for example as follows:

{ ri =231 = (2-3j) x
ro = 23 = (2 + 3j) x

=cC1 X bl
- 2.202
=c1 X b ( )

L N

Then we apply Equation (2.166) to get the diagonal canonical form of F(s):

(A _[M O] _[a+is 0 1425 0
0 N | 0 a—jB | 0 1-25
o bl —l ].
Bo= | ] =4 1] (2.203)

This complex diagonal form realization is rendered real by using (2.196):
Ja =] |1 -2
a5 = T

b1<551 L 1
B = - = =
= [ 0 } (2.204)

Con=[(a+e) jla-a)]=[4 6]

D=0

For both realizations we can check that F(s) = Cp, (sI — Ay) ' B+ D but
in the last realzation matrices (A, B, Cn, D) are real.

2.3.7 Algebraic and geometric multiplicity of an eigenvalue

The algebraic multiplicity n; of an eigenvalue \; of matrix A € R™ " is the
number of times \; appears as a root of the characteristic polynomial det(sI—A).
The geometric multiplicity ¢; of an eigenvalue \; of matrix A € R™*" is the
dimension of the kernel of \;I — A.
If for every eigenvalue of A the geometric multiplicity equals the algebraic
multiplicity, then matrix A is said to be diagonalizable.
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Example 2.9. Let’s consider the following matriz:

A= [ g ;’ ] (2.205)
We have:
det(sT — A) = (s — 2)? (2.206)

Consequently the algebraic multiplicity of eigenvalue A\ = 2 is n; = 2.
In order to get the geometric multiplicity of eigenvalue A1 we consider the
following matriz:
0 -3
I-A= 2.2
ni-a=|o 7] (2.207)
The dimension of the kernel of M1 — A is clearly 1. Consequently the
geometric multiplicity of eigenvalue A\ is g1 = 1.

2.3.8 Jordan form and generalized eigenvectors

Matrix A is not diagonalizable if there is at least one eigenvalue with
geometric multiplicity ¢; (dimension of its eigenspace) strictly less than its
algebraic multiplicity n;. Equivalently, if for every eigenvalue A; of A the
geometric multiplicity equals the algebraic multiplicity then A s
diagonalizable. If not, the diagonal form of matrix A is replaced by its Jordan
form which is achieved through the so-called generalized eigenvectors.

Indeed, any square matrix A is similar to the a block diagonal matrix
through an invertible matrix P:

Iy
AP =P (2.208)
J

P

where the Jordan block J, of matrix A corresponding to eigenvalue \; with
algebraic multiplicity n; is the following n; x n; matrix:

A 10 - 0
0 XN 1 0
= =\, +N (2.209)
A1
0 0 N |
n; terms

Matrix N is a nilpotent matrix. The number of 1 over the diagonal (the
superdiagonal) of Jy, (and N) is equal to the difference between the algebraic
multiplicity n; and the geometric multiplicity (dimension of its eigenspace) ¢; of
eigenvalue A;. When the algebraic multiplicity of eigenvalue J; is strictly greater
than its geometric multiplicity (dimension of its eigenspace), we said that ); is
degenerate.



68 Chapter 2. Realization of transfer functions

For example, assume that matrix A has one eigenvalue \; with algebraic
multiplicity n; = 3 and geometric multiplicity (dimension of its eigenspace)
equals to ¢; = 1. Then J\; is degenerate and matrix A is not diagonalizable. Its
Jordan form has n;—q; = 3—1 = 2 values 1 over its diagonal (the superdiagonal):

i
I, =

3

1 0 010
0 N 1 | =XNI3+NwhereN=|0 0 1 (2.210)
0 0 N 0 00

Then matrix P, which has to be found, reads:

P = [ Ux,,1 Un2 U3 ] <2'211)
and (2.208) reads:
Ao 10
A [ Uail Ux2 U3 ] = [ Uanil U2 88 ] 0 A 1 (2‘212)
0 0 N
Developing each column of the previous product leads to the following
relations:
Avy 1 =Ny (A=XNDuvy, ;=0
Avyo=vy11tNivy 0 &9 (A=XDuy, o =1y, (2.213)
Avy 3 =0y 2T AUy 3 (A =N wy, 3=y,

The first equality indicates that vy, ; belongs to the kernel of A — I, which
is also the kernel of \;T—A. Once v,, ; has been chosen, generalized eigenvectors
vy,2 and v, 5 shall be chosen such that (2.213) holds.

Alternatively, relation (2.213) indicates that as soon as vy, 5 # 0 is known,
then v, 5 and v, ; can be computed recursively as follows:

Uy 2= (A= ADuw,y, 5
& & 2.214
{ Uy, 1 = (A - N\I) U2 ( )

To get v,, 3, it is worth noticing that by multiplying the second equation of
(2.213) by A — A and the third equation of (2.213) by (A — \1)?, and using
the fact that (A — Al vy, = 0, we get:

(A=ADvy, ;=0 (A=ADvy, =0
(A-ND*vy ,=(A-XDuvy; =14 (A-\D’v,,=0 (2215
(A - )\iﬂ)gﬁ,\i,:& = (A - )‘iH)QQ/\i,Q (A - )\iﬂ)gﬂ/\i:} =0

From the relation (A — )\iﬂ)3y>\i73 = 0, it is clear that v, 3 # 0 belongs
to the nullspace of (A — )\i]I)S, where n; = 3 is the algebraic multiplicity of

eigenvalue \;. Moreover, as soon as matrix P shall be invertible, we shall have
vy, 2 7 0 and vy, | # 0. Thus, we get from (2.214):

Oy = (A= Ay, 5 #0
{ y)\i,l = (A - )\zﬂ) QAZHQ = (A — )\iH)QQki,S ?é Q (2216)
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More generally, to get the Jordan form of any n X n square matrix A with
eigenvalues \; with algebraic multiplicity n; we must compute the nullspace of
(A — \I)™ or equivalently the nullspace of (A — \1)™ (in that situation there
is no need to know n;). Let v, ,. be a vector which spans the nullspace of

(A — \I)™ but which does not belong to the nullspace of (A — M\I)™
{ » _ AZ:H) QA;’T” - (2.217)

Then the following chain of vectors can be formed:

yki,ni—l = (A - )\Z]I) y)\unL

(2.218)

: o
Or1 = (A =AD" wy

A nonzero vector v,. which satisfies the following properties is called a
generalized eigenvector of A corresponding to eigenvalue A;:

(A—-X\D"v, =0
‘ 2.219
It is clear that when k = 1 the preceding definition leads to the usual
definition of eigenvector.

It can be shown that:
ker ((A - m)’“) C ker ((A - m)’f“) (2.220)

Furthermore if A is an n x n matrix with an eigenvalue \; with algebraic
multiplicity n; then there is some integer v; < n; such that the following property
holds:

dim (ker (A — \0)7)) = ny (2.221)

Let Py, be the matrix formed by the chain of vectors [ Uy T Ui ]
Then the Jordan form J of matrix A of order n corresponding is obtained as:

P=[P, - Py |

J = P 'AP where {
P)‘i = [ U1 0 U ]

(2.222)

2.3.9 Transfer function with multiple poles on the same
location

Multiple real poles on the same location

Now assume that transfer function F'(s) has a pole A of multiplicity n. Partial
fraction expansion of F'(s) results in:

+o —"— 4 d (2.223)
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It is clear from the preceding relation that the numbers ; ¥V n >1¢ > 1 can
be obtained thanks to the following formula:

L e yrres)| wasiza (2.224)

r, —m —m—m 3
" (n—d)! dsni Y

Number 7 is called the residue of transfer function F'(s) in .
Then we define the Laplace transform of the components z(¢), -+ , x,(t) of
the state vector z(t) as follows:

XZ(S) _ 1

Tls) = sy Ynzizl (2.225)

Using (2.225) transfer function F'(s) can be written as follows:

10 = P = e 4

=Y (s) =r1Xn(s) +r2Xy-1(s) + - + 1, X1 (s) + dU(s)

(2.226)

Coming back to the time domain and rearranging the order of the state
vector components we get:

y(t) = rpz1(t) + rp—1z2(t) + - - + rizn(t) + du(t) (2.227)
The n components of the state vector z(t) defined by (2.225) reads:

X .
) — (S_A)lnﬂ'ﬂ Vi<i<n

¢ Xn(s) 1
)((](s) ()_ 5=
n—1(S 1
U = oz = Xn-1(s) = 555 (2.228)

B = ey = Xo(s) = 224
X1(s)

e = e = Xil(s) = 555

Coming back in the time domain and reversing the order of the equations
we get:
il(t) = )\.Z‘l(t) + .1‘2<t)
i:g (t) = )\xz(t) + .Tg(t)
: (2.229)
En—1(t) = Azp_1(t) + z(2)
En(t) = Az (t) + u(t)

Equations (2.229) and (2.227) lead to the following state-space
representation, which is called the diagonal (Jordan) or modal form:

Az(t) + Bu(t)

Cz(t) + Du(t) (2.230)

,_/H
< |5
—~~
S~
S—
[
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Matrix A is a n X n square matrix, B is a vector with n rows and C is a
row with n columns:

A1 0
A=
L 1
0 0 A
n terms
0 (2.231)
B =
0
1
C:[Tn m—1 - Tl]
D=d

Alternatively we can introduce polynomials Nj(s) and Na(s) defined as
follows:

F(s) = 725 (s g)? TG inA)n - N(lgjggf) (2252

Then Pradin! has shown that equivalent diagonal form realizations of

transfer function F'(s) are the following where A is a n X n square matrix, B a
vector with n rows and C a row with n columns:

A 1 0
A = 0
1
0 0 A
n terms
(2.233)
2
B=| o aelels)|
% disN2(s)‘s:)\
N2(8)|s:)\
2
C=| M@)ls § NG|y 3 M6 - ]
D=d

!Bernard Pradin, Automatique Linéaire - Systémes multivariables, Notes de cours INSA
2000
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The preceding relations can be extended to the general case where transfer
function F'(s) has poles A; with multiplicity n;:

F(s) =%, &3+ oy + + oy +d
=20 2t oy A (2.234)
- Z 11(5 )n,LS) + d

Then it is shown in ! that a diagonal form realization of transfer function
F(s) is the following:

Ay
A= As
B,
B_ | B (2.235)

Matrix A; is a n; X n; square matrix, B; is a vector with n; rows and C; is
a row with n; columns:

Ao 10
A=
1
0 0 N\
n; terms
0 (2.236)
B =|:
0
1
Ci= [ Tin; T2 Tl ]
D=d

or equivalently:
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i 1 0
A, = 0
: . . 1
0 -+ 0 XN
n; ?grms
1 d ar (
B, = o1 ds2tVi2 S) S=\s
% s i2(5)‘5—)\
Ni?(s)‘s—)\
C;=| Ni(s)l=y, AL
D=d

(2.237)

Multiple complex conjugate pair of poles on the same location

If some of the poles are complex so are the residues and so is the Jordan form.
This may be inconvenient. Assume that A and X is a complex conjugate pair of
poles of F'(s) with multiplicity 3:

Let a be the real part of the pole A and S its imaginary part:

A=a+jeA=a—jB (2.239)

Using the result of the preceding section the Jordan form of transfer function
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F(s) is the following;:

( A 1 0]0 0 017
0 XN 1/0 00
00 A0 00

A=1000[x 10
00 0[0 X 1
L0 0 0/0 0O X |
0
0 (2.240)
1

B=1%

0
L 1]
C:[T’g To T1| T3 T2 ?1]

D=0

It is clear that the Jordan form of transfer function F'(s) is complex. This
complex Jordan form is rendered real by using the real part and the imaginary
part of the complex state components which appear in the state vector rather
than the complex state components and its conjugate. This is the same kind of
trick which has been used in the section dealing with complex conjugate pair of
poles. The real state matrix A, is the following:

Jo 1 0 « 8
A,=| 0 Ju T | where Jab:[ﬁ | ] (2.241)
0 0 Ju

It can be seen that complex matrix A has the same determinant than the
following real matrix A,:

det (sl — A) =det (s — A,) (2.242)

2.4 Realization of SIMO transfer function

The acronym SIMO stands for Single-Input Multiple-Output. The transfer
function F(s) relates the relation between the Laplace transform of the output
of the system, y(¢), which is a vector, and the Laplace transform of the input
of the system, u(t), which is a scalar as in the SISO case. Thus in that
situation the transfer function becomes a vector. Let Y(s) = L [y(¢)] and
U(s) = L[u(t)]. Thus we write:

Y(s) =F(s)U(s) (2.243)

As in the SISO case, the realization of a SIMO transfer function F(s) consists
in finding any quadruplet (A, B, C,D) such that:

F(s)=C(sl—A)'B+D (2.244)
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We will consider in the following a SIMO system with p outputs. Thus Y (s)
is a vector of p rows and U(s) a scalar. Several kind of realizations are possible
which will be presented hereafter.

2.4.1 Generic procedure

In the SIMO case we can always write the transfer function F(s) as a vector
composed of p transfer functions of SISO systems:

F1 (8)
F(s) = : (2.245)
Fp(s)
If we realize Fj(s) by G T then one realization of F(s) is the
following:
A, 0 ---|B
0 .
[ A;|B; | o A, | B,
Fi(s) = < C, [ 4 ) = F(s) = c, 0 . 4 (2.246)
0 .
Cp | dp
To get the previous result we have to write F(s) as follows:
[ Fi(s) Ci(sI-Ay) "By +d;
F(s) = : = :
| Fp(s) Cp (sl — Ap)_l By +dp
Cl 0 [ (S]I—Al)_l B1 d1
=/ 0 . : + |
i C, | L (sI— Ap)il B, dp
= Ir -1
¢ o .- (sl —Ay) 0 B, dq
=l o0 0 +
i c, || : (sI—A,) " B, dp
_Cl 0 . (SH—Al) 0 ]31
=l o 0 N
L Cp | (sl —Ayp) B,
(2.247)
From the preceding relation we deduce the realization (2.246).
Example 2.10. Let’s consider the following SIMO transfer function:
s+1
F(s) = { s7+85+9 } (2.248)
s24+65+9
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F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).
We notice that F(s) is a strictly proper. Consequently:

d= [ 8 ] (2.249)

Then we write the transfer function Fgy(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial V(s):

[ s+1 ]
N(s) 5
F(s) :=F = = 2.250
(5) n(5) U(s) s2+6s+9 ( )
A realization of transfer function Fi(s) = % is for example the
controllable canonical form:
0 1]0
s+1
F =———=| -9 6|1 2.251
1(5) s2+6s+9 T 170 ( )

Similarly a realization of transfer function Fy(s) = is for example

the controllable canonical form:

__ 5
5246549

5 1

Fals) = 2 a0 -

(2.252)

o O
(=}
Ol O

0

Applying the generic procedure we get a realization of the SIMO transfer
function F(s):

01 0 010
-9 -6 0 0|1
0O 0 0 110
F(s) = 0 0 -9 —6l1 (2.253)
1 1 0 010
0 0 5 010
]
2.4.2 Controllable canonical form
We can also write the transfer function F(s) as follows:
dy
F(s)=Fg(s)+ | | =Fgp(s)+d (2.254)
dp

where d is a constant vector and Fy,(s) a strictly proper transfer function:

im0 Fyp(s) —0 (2.255)
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With the same argument than in the SISO case we have:

dq
D=d=| : (2.256)
dp
Then we have to find matrices (A, B, C) such that:
Fy(s)=C(sI—A)'B (2.257)

To get the controllable canonical form we write the transfer function Fgp(s)
as the ratio between a polynomial vector N(s) with p rows and a polynomial
U(s):

Ni(s)

N(s) Np(s)
F, = = 2.258
P(S) \IJ(S) \I/(S) ( )
Then we build for each SISO transfer function N;(s)/W¥(s) a controllable
realization (A., B., C;,0). Note that:

— Matrix A, is common to each realization because the denominator ¥(s)
of each transfer function N;(s)/¥(s) is the same. When we write ¥(s) as

follows:
U(s)=s"+ An_18" P+ -+ a1s+ ag (2.259)
Then A, is a n X n square matrix:
[0 1 0 0
0 0 1 0
A, = ) 0 (2.260)
0 0 0 1
L —a0 —a1 —az - —Gp-1 |

— Vector B, is common to each realization because we use the controllable
canonical form of each SISO transfer function N;(s)/W¥(s). This is a vector
vector with n rows:

B,— | : (2.261)

— Each vector C; is dedicated to one output. This is a row vector with p
columns formed with the coefficients of polynomials N;(s).

Then the controllable canonical form of the SIMO transfer function F(s) is
the following:

(2.262)
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Example 2.11. Let’s consider the following SIMO transfer function:

1
F(s) = [ spl } (2.263)
s+2
F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).
We notice that F(s) is a strictly proper. Consequently:

d= 0 2.264
K (2.264)

Then we write the transfer function Fg,(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial V(s):

oty ] ey
- CN(s) [ 2s+1) | | 2(s+1
Pl =Faols) = G = G612 213532 (2:265)

Then matriz A. of the controllable canonical form of F(s) is obtained
thanks to the coefficients of the demominator ¥(s) whereas vector B, is set by
the controllable canonical form:

(2.266)

Vector C. is obtained thanks to the coefficients of the polynomial vector N(s)

2 1
C.= [ 9 9 ] (2.267)
We finally get:
0 110
-2 =3 |1
F(s) = 5 110 (2.268)
2 2|0
L]
Example 2.12. Let’s consider the following SIMO transfer function:
s+1
F(s) = [ s%+05+9 } (2.269)
52+65+9

F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).
We notice that F(s) is a strictly proper. Consequently:

d— [ 0 ] (2.270)
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Then we write the transfer function Fg,(s) := F(s) as the ratio between a
polynomial vector N(s) with p =2 rows and a polynomial V(s):

3—1—1]

N(s 5
F(S) = Fsp(s) = \I/((S)) - SL +6s5+9

(2.271)

Then matriz A. of the controllable canonical form of F(s) is obtained
thanks to the coefficients of the demominator ¥(s) whereas vector B, is set by
the controllable canonical form:

(2.272)

Vector C. is obtained thanks to the coefficients of the polynomial vector N(s)

11
C.= [ 50 ] (2.273)
We finally get:

0 110

-9 —6|1
F(s) = 110 (2.274)

5 010
"

2.5 Realization of MIMO transfer function

The acronym MIMO stands for Multi-Input Multiple-Output.

The transfer function F(s) relates the relation between the Laplace
transform of the output of the system, which is a vector, and the Laplace
transform of the input of the system, which is also a vector in the MIMO case.
Due to the fact that the output y(¢) of the system and the input w(t) of the
system are no more scalars but vectors it is not possible to express the ratio
between Y (s) = L [y(t)] and U(s) = £ [u(t)]. Thus we write:

Y(s) = F(s)U(s) (2.275)

We will consider in the following a MIMO system with p outputs and m
inputs. Then Y (s) = L [y(t)] is a vector of p rows, U(s) = L [u(t)] is a vector
of m rows and transfer function F(s) is a matrix with m columns and p rows.

As in the SIMO case, the realization of a MIMO transfer function F(s)
consists in finding any quadruplet (A, B, C,D) such that:

F(s)=C(sl—A)'B+D (2.276)
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2.5.1 Generic procedure

In the MIMO case we can always write the transfer function F(s) as a matrix
composed of p x m transfer functions of SISO systems Fj;(s):

Fii(s) -+ Fin(s)
F(s) = : : (2.277)
Fpi(s) -+ Fpm(s)

The transfer function F(s) can be written as the sum of SIMO systems:

FH(S)
Fis)=| : |[[10 - 0]+
Fpi(s)
Flm(S)
+ : [0 0 1] (2.278)
Fpm(s)
That is:
F(s) =Fi(s)[1 0 -~ 0]+ +Fup(s)[0 -~ 0 1]
m 0 ... 0 1 0 ... 0 2.279
=it Fi(s) [ e ( )
i-th column
Fli(s)
If we realize the SIMO system F;(s) = : in the " column of F(s)
Fpi(s)
A; | B; o . . .
by ( C D, ) then one realization of transfer function F(s) is the following:
FM(S)
) ([ Ai| By
Fpi(s)
A1 0 B, 0
~F) =] ° 0 (2.280)
; A, B,,
Cc, --- C, ‘ D, --- D,

The state-space representation of each SIMO transfer function F;(s) can
be obtained thanks to the controllable canonical form (2.262). The achieved
state-space representation is block diagonal but is not necessarily minimal (see
section 2.6).

To get this result we use the same kind of demonstration than the one which
has been to obtain the generic procedure seen in Equation (2.246). Indeed:
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F(s) =Fi(s)[1 0 -+ 0]+ +Fu(s)[0 0 1]
= [ Fi(s) Fin(s) |
=[Ci(sI-A) "B +D; - Cp(sl—A,) "By, +D,, |
[ (sT—A;)"'B; 0
Sy el Cn | 0 +[ Dy
i : (sI—Ap) ‘B,
[ (sI—A))" 0 B, 0
=[G Cn | 0 0
I (sT—Ay)~? B,
—|—[ D; --- Dy, ]
(sSI— A1) 0O B, 0
=[C Cn | 0 0
(S]I—Am) Bm
—|—[ D, D,, ]
(2.281)

2.5.2 Controllable canonical form

In the MIMO case, transfer function F(s) can always be expanded as follows
where p X m constant matrices C;, i =1,--- ,n— 1 and D are of the same size
than transfer function F(s) with m inputs and p outputs:

N(s) Ch 15" '+ +Cys+ Cy
F(s) = D= D 2.282
(5) U(s) + 1X 8" +ap_18" 1+ ---+a1s+ag + (2.282)

Following the same procedure than in the SISO case, and by denoting I,,, the
identity matrix of dimension m, the controllable canonical form of F(s) reads:

w@=<g %) (2.283)

C
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where:

0 L, 0 0
0 0 L, 0
A, = 0
0 0 0 I
—aoly, —aily,  —aly, —ap—1ly
P
0 (2.284)
B. = :
0
L ]Im .
Cc=[Cy C; -+ Chy Cpq |
D = lim,_, F(s)
Example 2.13. Let’s consider the following transfer function:
2 s+l
F(s) = [ 512 513 ] (2.285)
s+2  s+2
Let’s decompose F(s) as follows:
2 -2
SREEINH
W2 52 00
[ 2(s+3) —2(s+2)
| s+3 5(s+3) 0 1 (2.286)
- (5+2)(s+3) 00
2 -2 N 6 —4
1 5 |73 15 0 1
= s2+55+6 + 00

The system described by transfer function F(s) has m = 2 inputs. Using
(2.284) leads to the following controllable canonical realization of F(s):

[;'c(t) } _ [ .g 1]3)c } [w(t) ] (2.287)
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where: ) ‘
0 0,1 0
0 0'0 1
Ac= —6 0 ,-5 0
0 —6'0 =5
[0 0
0 0
Be=11 7% (2.288)
01
[6 —4,2 -2
CC__3 15 1 5}
0 1
>-[0 o]

This result can be checked by using Equation (2.1).

2.5.3 Observable canonical form
A, | B,
C, | D,
computing the transpose of the controllable canonical form of its transpose,
that is the transpose of the controllable canonical form of F7(s):

FT(s) = C.(sI— A.) 'B.+ D := ( ’éc ];’)C )

T T
- F(s) = BY (s1 - A7) ' CT + DT = <ﬂﬁﬁgc = > - ( o1 B >

The observable canonical form < ) of F(s) can be obtained by

(2.289)
2.5.4 Diagonal (or modal) form
As in the SIMO case we expand F(s) as follows:
F(s) = Fy(s) + D (2.290)

where D is a constant matrix and Fyy(s) a strictly proper transfer function:

lims_,00 F(s) =D
{ lim,_o. Fop(s) = 0 (2.291)

Then we have to find matrices (A, B, C) such that:
Fy(s)=C(sI—-A)'B (2.292)

To get the diagonal (or modal) form we write the transfer function Fgp(s)
as the sum between rational functions. Let Ai,---, )\, be the r distinct roots
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of U(s) and n; the multiplicity of root A\;. Then we get the following partial
fraction expansion of Fy,(s) where matrices R;; are constant:

Fopls) =D Zl : 1—{1)]‘ (2.293)

The diagonal (or modal) form of the MIMO transfer function F(s) is the
following:

J, 0 -..|B;

Fo)=| © : (2.204)
. 1B
C, - C, | D

Denoting by n; the multiplicity of the root A;; m the number of inputs of
the system and I, the identity matrix of size m x m, matrices J;, B; and C;
are defined as follows:

— The Jordan matrix J; is a (m x n;) x (m X n;) matrix with the following

expression:
Nl L, O
P (2.295)
: I L,
o - 0 \NI,

n; termes X\l

It is worth noticing that matrix (sI — J;)~! reads:

(5= A) Ly (5= M) 2L -~ (s—X\) "L,
(sT—J;) ' = 0 (s— X)Ly, T (s =),
0 0 (=)
(2.296)

Bi—| ° (2.207)

— C;is a p x (m X n;) matrix:

Ci=[ R, -+ Riz Ri | (2.298)
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An alternative diagonal (or modal) form also exists. To get it first let’s focus
on the realization of the following p x m transfer function F;(s) with a pole A
of multiplicity i:

Ip; 0p;x(m—p;)
YN RN
FZ(S) = (p pz)XPz(S _(i)lpz)x( Pz) (2299)

where I, is the identity matrix of dimension p; and 0,x,, the null matrix
with p rows and m columns.

Then we recall the inverse of the following n x n bidiagonal matrix:

L= h =L = h (2.300)

The alternative diagonal (or modal) form of F;(s) is then the following 2:

A ‘ [ B; 0 x (m—p;) ]
Fi(s) = C; (2.301)
0p><m
O(p—pi)xnp;

where A; is a (n x p;) X (n X p;) square matrix, B} (the transpose of B;) a
pi X (n X p;) matrix whose p; rows are built from row vector 0 0 --- 1 and
—_—————

n terms

2Toshiya Morisue, Minimal Realization of a Transfer Function Matrix with Multiple Poles,
Transactions of the Society of Instrument and Control Engineers, Volume 21 (1985) Issue 6
Pages 546-549
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C; a p; X (n X p;) matrix whose p; rows are built from row vector 1 0 --- 0 :
N—————
n terms
p
1
3.0 A 0
. . 0
A= 0 . . where J; =
1
Ji 0 0 A
pi terms
n terms
[0 0 -+ 1 Oixn 1
~— ————
n terms
BiT: pi terms
O1xn o o0 --- 1
N —
L n terms i
[ 1 0 -+ 0 Oixn 1
N ——
n terms
C, = pi terms
01x», 10 --- 0
N —
L n terms i
(2.302)

Now let’s consider the following transfer function F;(s) where N;; is a
constant p X p; matrix, N;o a constant p; X m matrix and N;1 N2 is a p x m
constant matrix of rank p;:

NNz Nalp, N

- = : h k (N;1Nj2) = p; 2.303
EYL (5N where rank (N;;N;2) = p ( )

FZ(S) =

From the preceding realization it is clear that the alternative diagonal (or
modal) form of F;(s) is the following:

_ A; | BNy
Fi(s) = ( NG O ) (2.304)

Finally let’s consider a p x m transfer function F(s) which has pole A with
multiplicity n and where R(s) is a matrix of polynomial of degree strictly lower
than n. The partial fraction expansion of F(s) reads:

R(s
Fls) = (18{_&% R R
=5+ (s_i)z ot oA (2.305)
_ n R;
= 2ui=1 5y
Constant matrices R; are defined by:
1 dn—i
R; = (s —AN)"F(s) (2.306)

(n—1)! dsn—? Y
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Let p; be the rank of constant matrix R;:
pi = rank (R;) (2.307)

Each term R; can be expanded as a product of two constant matrices N;p
and N;o where N;; is a p X p; matrix and Nj2 a p; X m matrix:

R, = N;;Njy = Ny I, Njp (2.308)

Then the alternative diagonal (or modal) form of the MIMO transfer function
F(s) is the following:

A 0 oo B{N5
F(s)=> Fi(s)+D=| ° " : (2.309)
i=1 : A, B,,N,»
NGy -+ NG, D

This diagonal (or modal) form of F(s) is in general not minimal (see section
2.6).
2.6 Minimal realization

2.6.1 System’s dimension

Let’s start with an example and consider the following transfer functions:

Fi(s) = 51
5+ 2.310
{ Fy(s) = 52+—§52+2 ( )

From the preceding sections it can be seen that the controllable canonical
form of transfer functions Fi(s) and Fy(s) are the following:

(2.311)

It is clear that the dimension of state matrix A is 1 and the dimension of
state matrix Ay is 2.
On the other hand it can be seen that the poles of transfer function F»(s)
are —1 and —2:
2435 +2=(s+1)(s+2) (2.312)

Consequently F5(s) reads:

2 2 1
G il - (2.313)

F = =
) = e i DG s+l
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Thus we finally get:
Fy(s) = Fi(s) (2.314)

Despite the fact that Fy(s) = Fi(s) we have obtained two realizations with
different size of the state matrix. This usually appears when pole-zero
cancellation appears in the transfer function.

The order of a realization is the size of state matrix A. So in that example
the order of the realization of Fy(s) is greater than the order of the realization
of F} 1 (S) .

This example can be extended to the general case where the dimension of
the state matrix A corresponding to the same transfer function F(s) may vary.
We said that a realization of a transfer function F(s) is minimal if there exists
no realization of lesser order whose transfer function is F(s).

For SISO systems it can be proven that a realization of transfer function F(s)
is minimal if and only if the two polynomials C adj(sl — A)B and det(sI — A)
are coprime.

For MIMO systems it can be proven that a realization of transfer function
F(s) is minimal if and only if the characteristic polynomial of matrix A is equal
to the Least Common Multiple (LCM), or Greatest Common Factor (GCF), of
the denominators of all possible non zero minors (of all sizes) in F(s) 2.

We recall that minors or order k are the determinants of square sub-matrices
of dimension k. More precisely if F(s) is a p X m matrix then the minors of
order k are obtained by computing the determinant of all the square k x k
sub-matrices where p — k rows and m — k columns of F(s) have been deleted.

To find the Least Common Multiple (LCM) of two polynomials simply
factor each of the two polynomials completely. Then take the product of all
factors (common and not common), every factor being affected with its
greatest exponent. Finally multiply the obtained polynomial by a constant to
obtain a monic polynomial.

C|D
the eigenvalues of A are identical to the poles of F(s). If the realization is not
minimal then the poles of F(s) are a subset of the eigenvalues of A. It can be
proven that Gilbert’s diagonal realization is a minimal realization.

Let ( A B > be a minimal realization of a transfer function F(s). Then

Example 2.14. Let’s consider the following transfer function:

F(s) = { % ? ] (2.315)

s+1 s+1

A first realization of F(s) is obtained by writing a realization of each SISO

$Mohammed Dahleh, Munther A. Dahleh, George Verghese, Lectures on Dynamic Systems
and Control, Massachuasetts Institute of Technology
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transfer function:

-1 10

-1 2 0

-2 01
F(s) = 110 3 (2.316)

1 0 1 0|00

0 1 0 1 10 0

The characteristic polynomial of state matrix A is:

det(sI — A) = (s +1)3(s + 2) (2.317)

Whereas the Least Common Multiple (LCM) of the denominators of all
possible non zero minors (of all sizes) in F(s) is the following:

den (mi11(s)) =s+1

den (mi2(s)) = s+ 2

den (ma1(s)) = s +1 = LOM = (s +1)*(s +2) (2.318)
den (maa(s)) =s+1

den (F(s)) = (s +1)%(s + 2)

As far as det(sl — A) # LCM we conclude that the realization is not
minimal. Furthermore the characteristic polynomial of any state matriz of a
minimal realization shall be the LCM, that is here (s + 1)%(s + 2).

An other realization of F(s) can be obtained by writing F(s) in diagonal (or
modal) form as explained in section 2.5.4:

F(s)zsil[;][l 0]+S+11[g}[0 1]

! [H[o 1] (2.319)

P
Then we get:
-1 10
-1 0 1
F(s) = -210 1 (2.320)
10 11]00
2 3 0|00

Because F(s) has distinct roots we can also use for this example Gilbert’s
realization as explained in section 2.6.2:

1 1 1 10 1 01
F(s) — - L 2.321
(s) s+1R1+s+2R2 s+1[2 3}4—34—2[0 0] (2:321)

2 3

where Cq is a p X p1 = 2 X 2 matriz and By is a p1 X m = 2 X 2 matriz.

— The rank of matriz R; = [ 10 } is p1 = 2. Thus we write Ry = C1B;
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We choose for example:

(2.322)

01
0 0
where Co is a p X pa = 2 X 1 maitriz and Bo is a po X m = 1 X 2 matriz.
We choose for example:

— The rank of matriz Ro = [ 15 po = 1. Thus we write Ro = C2By

1
C2 = [ 0 } (2.323)
By=I=[0 1]
Then we get:
-1 10
Ay 0 | By -1 0 1
F(s)=| 0 X |By | = —210 1 (2.324)
C, C;|D 1 0 100
2 3 010 O

For this example we get the same realization than (2.320).
With this realization we have det(sl — A) = LCM = (s + 1)?(s +2). Thus
we conclude that this realization is minimal.

]
2.6.2 Gilbert’s minimal realization
Let’s write the p x m transfer function F(s) as follows:
F(s) =Fg(s)+D (2.325)

where D is a constant matrix and Fj,(s) a strictly proper transfer function:

{ limy o0 F(s) =D (2.326)

We consider in that section MIMO systems in which the denominator
polynomial of the strictly proper transfer function Fy,(s) has distinct roots:

Fop(s) =Y - I_{i)\i (2.327)

The residue R; can be obtained as:

R; = lim (s — X)) Fgp(s) = lim (s — \;) F(s) (2.328)

S—A; S—N;
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Now let p; be the rank of R;:
pi = rank (R;) (2.329)

and write R; as follows where C; is a p X p; constant matrix and B; a p; x m
constant matrix:

R; = C,B; (2.330)

Then a realization of the transfer function F(s) is the following*:

A, 0 ---|By
Fo)=| O : (2.331)
: A, | B,
C, - C,| D

where matrices A; = \;ll,; are diagonal matrices of size p;.
Moreover Gilbert’s realization is minimal with order n given by:

n=> pi (2.332)

2.6.3 Ho-Kalman algorithm

. o A, | By . A|B
To get a minimal realization (Tm‘T> from a realization (%) we

can use the Ho-Kalman algorithm which is described hereafter:

— Let r be the dimension of the state matrix A, which may not be minimal.
First compute the observability matrix Q, and the controllability matrix

Q. of the realization < é g ):

C
CA
Q= : (2.333)
CAr—l
Q.=[B AB .- A"'B]

The realization is minimal if and only if:

rank (Q,) = rank (Q.) (2.334)

In all situations the dimension n of the system is given by:

n = min (rank (Q,) , rank (Q.)) (2.335)

‘Thomas Kailath, Linear Systems, Prentice-Hall, 1! Edition
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o A . . .
— If the realization ( ) is not minimal then compute the singular

C|D
value decomposition (svd) of the product Q,Qe:

QOQC = UEVT (2336)

Matrix ¥ is a rectangular diagonal matrix with non-negative real
coeflicients situated on its diagonal. The strictly positive coefficients of
3} are called the singular values of Q,Q.. The number of singular values
of Q,Q. (which are the strictly positive coefficients within the diagonal
of matrix X) is the dimension n of the system. Again note that n # r if

the realizatio A|lB is not minimal
r1z1nCD1nm1n1m.

— Let 3, be the square diagonal matrix built from the n singular values
of QoQ. (which are the non-zero coefficients within the diagonal matrix
Y)), U,, the matrix built from the n columns of U corresponding to the
aux n singular values and V,, the matrix built from the n columns of V
corresponding to the aux n singular values:

3, 0 A\
Q.Q.=Uxvi=[U, U] [ 0 = ] [ VT } (2.337)
— Matrices O,, and C,, are defined as follows:
0, = U, x/?

O0nCr = U, B, VL where { (2.338)

C, = =/*vT
— Then the state matrix A,, of a minimal realization is obtained as follows:

A, =301 (Q,AQ.) V, =, /2 (2.339)
— Let m be the number of inputs of the system and p its number of outputs

and I,,, the identity matrix of size m. Matrix B,, and C,,, of the minimal
realization are obtained as follows:

I
I, ;
B,=C,| 0 | =x*vT|
: (2.340)
0
Cn=[L 0 - 0]0,=[L, 0 --- 0]U,=?

— Matrix D is independent of the realization.



Chapter 3

Analysis of Linear Time
Invariant systems

3.1 Introduction

This chapter is dedicated to the analysis of linear dynamical systems. More
specifically we will concentrate on the solution of the state equation and we will
present the notions of controllability, observability and stability. Those notions
will enable the modal analysis of Linear Time Invariant (LTT) dynamical systems

3.2 Solving the time invariant state equation

We have seen that the state equation attached to a linear time invariant system
is the following;:

i(t) = Ax(t) + Bu(t) (3.1)

The purpose of this section is to obtain the general solution of this linear
differential equation, which is actually a vector equation.

The solution of the non-homogeneous state equation z(t) = Az(t) + Bu(t)
can be obtained by the Laplace transform. Indeed the Laplace transform of this
equation yields:

sX(s) —z(0) = AX(s) + BU(s) (3.2)

That is:
(sT— A) X(s) = 2(0) + BU(s) (3.3)

Pre-multiplying both sides of this equation by (s]I—A)_1 leads to the
following equation:

X(s) = (s — A) ' z(0) + (s — A) "' BU(s) (3.4)

By taking the inverse Laplace transform of this equation we get the
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expression of the state vector z(t):

z(t) =L [X(s)]
= £ [(sT— A) 1 2(0) + (s~ A) " BU(s)] (3.5)

— £ [(sT— A)] 2(0) + £ [(sn A Bg(s)}
To inverse the preceding equation in the s domain and come back in the

time domain we will use the following properties of the Laplace transform:

— Convolution theorem: let x(t) and y(t) be two causal scalar signals and
denote by X (s) and Y (s) their Laplace transforms, respectively. Then the
product X (s)Y (s) is the Laplace transform of the convolution between
x(t) and y(t) which is denoted by x(t) * y(t):

X(s)Y (s) = L[z(t) * y(t)] & LT [X(5)Y (5)] = 2(t) * y(t) (3.6)

Where: .
x(t) xy(t) = /0 x(t — 7)y(r)dr (3.7)

This relation is readily extended to the vector case where X(¢) is a matrix
and y(t) a vector:

t
LUXEYE] = X0yt = [ Xe-ryndr  (38)
Y 0 Y
— Laplace transform of exponential matrix: in the scalar case we have seen
that: )
at] o o -1 -1 _ -1 _ pat
E[e}—s_a—(s a) & L [(s a) } e (3.9)

This relation is readily extended to the vector case as follows:

L[eA] = (sT—A) e L [(s}l - A)*l} = At (3.10)

Thus the inverse Laplace transform of Equation (3.5) leads to the expression
of the state vector z(¢) which solves the state equation (3.1):

z(t) = eAz(0) + /O t AT By(r)dr (3.11)

The solution z(t) of Equation (3.5) is often referred to as the state trajectory
or the system trajectory.
Exponential eA? is defined as the transition matrix ®(¢):

B(t) = el (3.12)

In the more general case of time dependent linear differential equation of
the form a:(t) A( )z(t) + B(t)u(t) the expression of the state vector is z(t) =
®(t,t0)x(0) + ft (t,7)Bu(7)dT where ®(t,to) is also named the transition
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matrix (or Green’s matrix). In this case the transition matrix is a solution of
the homogeneous equation % = A(t)®(t, tp). In addition ®(¢,t) =1Vt
and ®(t,t9) = ¢(t)p~ (to) where ¢(t) is the solution of &(t) = A(t)z(t). For a
linear time invariant system the transition matrix ®(t,tg) is ®(t, tg) = eAt—t0)
as far as for the time invariant case the initial time ¢y is meaningless we can
choose tg = 0 and we retrieve ®(t) = eAt.

3

3.3 Output response

We have seen that the output vector y(t) of the state-space representation is
obtained using the output equation. Using the expression of the state vector
z(t) we get:

y(t) = Cz(t) + Dul(t)
—C (eA@(o) + eA@*T)Bg(T)dT) + Du(t) (3.13)
= CeAz(0) + fg CeAt=T)Bu(1)dr + Du(t)

— The term CeA?z(0) is called the zero-input response (or output) of the
system; this is the response of the system when there is no input signal
u(t) applied on the system;

— The term fg CeAt=T)Bu(7)dr + Du(t) is called the zero-state output (or
response) of the system; this is the response of the system when there is
no initial condition z(0) applied on the system.

3.4 Impulse and unit step responses

The impulse response of a dynamical system is the zero-state output of the
system when the input signal wu(t) is the impulse 0(¢) called the Dirac delta
function.

Setting in (3.13) the input signal u(¢) to the Dirac delta function §(¢) and
putting the initial conditions z(0) to zero leads to the following expression of
the impulse response of the system:

t
y(t) = / CeATBE(1)dT + D4(t) (3.14)
0
The term |, L CeAlt-T)Bg (1)dT can be expressed as the convolution between
the matrix Ce”'B and the input vector §(7). We get:

y(t) = CeAB x §(t) + D(t) (3.15)

Using the fact that the Dirac delta function §(¢) is the neutral element for
convolution we can write Ce'B * §(t) = Ce*B. Consequently the output
vector y(t), that is the impulse response of a linear time invariant system which
will be denoted h(t), can be expressed as follows:

y(t) :== h(t) = CeA'B + D4 (t) (3.16)
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The Laplace transform of the impulse response h(t) is defined to be the
transfer function F(s) of the system. Using the fact that the Laplace transform
of the Dirac delta function §(¢) is 1 we retrieve the following expression for the
transfer function F(s) of the linear system:

F(s)=L[h(t)]=C(sI—A) 'B+D (3.17)

The unit step response is the response of the system to the unit step input.
Setting in (3.13) the input signal u(t) to u(t) = 1 V¢ > 0 and putting the initial
conditions z(0) to zero leads to the following expression of the unit step response
of the system:

y(t) = fg CeAl-TBdr + D1
— CeAl ([ e A7dr) B + D1

— CeAt (Al AL ) B+ D1
=CeM (A7l — A7 le"A) B+ D1

(3.18)

Using the fact that eA*A~1 = A~leAt (which is easy to show using the
series expansion of eA?) and assuming that matrix A~! exists, we finally get the
following expression for the unit step response of the system:

y(t) =CA™"' (A ~T) B+ D1 (3.19)

3.5 Matrix exponential

3.5.1 Definition

Let A be a nxn square matrix. The matrix exponential is a n X n matrix which
is defined by analogy with the scalar exponential and its series as follows:

00 k
At _ (At)
e = Z k!
k=0

This calculus involves an infinity of terms and it is in general impossible to
compute it by hand except for some specific cases, for example if matrix A is
nilpotent.

A matrix A is nilpotent if there exists an integer k such that A*¥ = 0. The
smallest value of k is called the index of nilpotency (of the nilpotent matrix). In
this case the matrix exponential eA? can be computed directly from the series
expansion as the series terminates after a finite number of terms:

(3.20)

(A
_]sz o
=1

tk:—l

2

At 2 k—1
=I4+At+A“—+-- -+ A" —
e + + o1 + + = 1)

(3.21)

A necessary and sufficient condition for a n X n square matrix A to be
nilpotent is that its characteristic polynomial det (s — A) is equal to s™:

AF =0 & det (s — A) = 5" where k < n (3.22)
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We recall that the minimal polynomial m4(s) of a matrix A is the monic
polynomial (a monic polynomial is a polynomial in which the leading coefficient
(the nonzero coefficient of highest degree) is equal to 1) of least degree such
that m4(A) = 0. The minimal polynomial divides the characteristic polynomial
xA(s) :=det (sI — A) of matrix A. Consequently its degree is lower or equal to
the order n of matrix A.

A matrix A is said to be cyclic if and only if its characteristic polynomial is
the same than its minimal polynomial.

Furthermore matrix A is diagonalizable if and only if its minimal
polynomial’s roots are all of multiplicity one.

The previous result to compute et when A is nilpotent can be generalized
to the case where the minimal polynomial 74(s) of A reads (s — A)*. Indeed
we get in this case:

Ta(s)=(s— A=A -A)=0 (3.23)

Thus matrix A — Al is nilpotent and we can write:

2 k—1
As soon as matrices A and Al commute the following relation holds:
o(A=XDE _ =Xt AL _ At _ Xt (A=At (3.25)

Thus as soon as mA(s) = (s — A\)* we finally get the following result:

AL _

M <H+(A—>\}I)t+(A—>\H)2t2+---+(A—)\]I)k1 t’H) (3.26)
2! (k—1)! '

01

Example 3.1. Let A = [ 00

]. The characteristic polynomial of A is:

det (sT — A) = det <[ g _51 D = 52 (3.27)

Consequently matriz A is nilpotent and et can be computed as follows:
101 s 10 0
A‘[o o}iA _[0 0}

1 ¢
At _ _
=e —I[JrAt—{O 1}

(3.28)
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3.5.2 Properties
The following properties hold!:

— Value at t = 0:
A,y =’ =1 (3.29)
— Derivation:
%eAt = AeAt = AtA (3.30)
— Integration:
At =T+ A /Ot eATdr (3.31)
— In general:
c(A+B)t L (At Bt 4 Bt At (3.32)

Nevertheless if matrices A and B commute (meaning that AB = BA)

then:
o(A+B)t _ LAt Bt _ Bt At (3.33)

As far as the product AA commutes we have:
CALAT _ JA(tHT) _ AT AL (3.34)
And thus setting 7 to —t we get:
(eA) = A (3.35)
— Let A(A) be the eigenvalues of matrix A. Then:
A (eAt) = A (3.36)

— Let det (A) be the determinant of matrix A and tr (A) be the trace of
matrix A. Then:
det (eAt) = (A (3.37)

Example 3.2. Let’s consider the following matrices A and B:

01
A=150]
(3.38)
10
B=[5 0]
It is clear that A et B do not commute. Indeed:
0 0 01
AB—[0 0}7&BA—[0 0] (3.39)

"https://en.wikipedia.org/wiki/Matrix _exponential
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Consequently we expect that eAteBt £ eBteAt. We will check it by using the
preceding definitions and properties:

At _ 1 t
et = { 01 (3.40)
And:
k ootk
Bof= |0 OBy @ 1D O
0 0 : 0 1
‘ (3.41)
eB— |V
0 1
It is clear that:
t toat
At Bt _ | € T Bt At _ | € te
ee—[()l};éee —[0 1] (3.42)
We can also easily check the following properties:
jteAt—AeAt—eAtA—[g (1)
et 0 (3.43)
(;lteBt:BeBt:eBtB:[O O:|
"

At

3.5.3 Computation of ¢*' using the diagonal form of A

We will assume in that section that matrix A is diagonalizable or equivalently
that matrix A has linearly independent eigenvectors; this means that for all
eigenvalues A\; of A the rank of matrix A\;I — A is equal to the size of A minus
the multiplicity of \;.

Assuming that matrix A is diagonalizable then there exists a similarity
transformation such that:

A1
A = PAP ! where A = (3.44)
An

The change of basis matrix P, as well as its inverse P!, can be obtained as
follows:

— Let v; be the eigenvector of A corresponding to eigenvalue \;. As far as
the n xn matrix A is assumed to have n linearly independent eigenvectors
we can write:

AQ1 = )\121
: (3.45)
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— The preceding relation can be written in a vector form as follows:
A1
Alv .ooov, ]=]u .. v, ] (3.46)
An
— Identifying the preceding equation with AP = PA we finally get
P:[Ql Vg v yn] (3.47)

— Furthermore let w; be the eigenvectors of matrix A"
T T T
It can be seen that vectors w; et v; are orthogonal. Indeed:

Awlv; = wl Av; = wlhv; & (A = \j) wlv; =0

R 3.49
iw?yi:OSlj#z ( )

Thus imposing w! v; = 1 Vi, the inverse of matrix P is obtained as follows:

w{
T 1 wg
wiv, =1Vi=P " = : (3.50)
wh
. 0ifj #i
T, _ .
Indeed using w; v, { Lif j =i we get:
T
wy
Plp = ) [21 vy - Qn]
L w)
[ wiv, wiv, - wlv,
wiv, wlvy, - wlv,
= . . . (3.51)
L whoy wlvy - wlv,
1 0 0
0 1 0
0 0 1
At

Then, as soon as matrix A diagonalizable, e”* can be obtained using the

following relation :
n

eAl = PeAlPL = Zyiyzre/\it (3.52)
1=1
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The preceding relation is easily obtained by using the series development of
the exponential:

L & (PAPY P AnfP! 2 (ADF
ePAtPlzz(k'):Z(lsl:P Z(k') P! (3.53)
k=0 ' k=0 ' k=0

As far as the diagonal (or modal) matrix A is diagonal we get:

k
)\1 €>\1t
AF =
)‘n Ant
At o (A e
e =2 k0 H
Thus using the expression of P and P~!:
e/\lt
eAt — PeAtP_l - P . P!
6/\nt
e w] (3.55)
T
Wy
Ant :
e w?
We finally get:
n n
A=yl =3 gl M (3.56)
i=1 i=1
At 1 2
Example 3.3. Compute e** where A = 0 —5 |
Le characteristic polynomial of A reads:
det (s — A) = det s—1 =2 =(s—1)(s+5) (3.57)
N 0 s+5 N '
The two eigenvalues Ay = 1 and Ao = —5 of A are distinct. Since the size

of A is equal to the number of the distinct eigenvalues we conclude that matriz
A is diagonalizable.

— Let v, = [ o1l ] be the eigenvector of A corresponding to A1 = 1. We

V12
have
1 2 V11 _ V11
o S]]

v11 + 21]12 = V11 (3.58)
—dU12 = V12
=v12=0

Thus the expression of eigenvector vy is:

v, = { ”(1)1 ] (3.59)
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— Let vy, = [ 21 } be the eigenvector of A corresponding to Ao = —5. We

V92
have:

1 2 V921 _ V21
RS IEA Rt by

Vo1 + 2099 = —5v1
& { o (3.60)
= 6v21 + 2v29 =0
& V22 = —3v91

Thus the expression of eigenvector vy is:
_ v21

Vg = [ 3y ] (3.61)

Let wy = [ wn ] be the eigenvector of AT corresponding to \y = 1. We

w12
have
1 0 w11 o w11
2 5[ )= ]

w11 = w11

3.62
2wi1 — dSwiz = wi2 (3.62)
= 2wi1 — 6w =0
< w11 = 3wz
Thus the expression of eigenvector wy is:
3wi2
wy = 3.63
w = | 2] (3.63
It is clear that wy and vy are orthogonal:
v
wivy = [ 3wz wig ] [ _32;21 } =0 (3.64)

Let wy = [ 21 } be the eigenvector of AT corresponding to Ay = —5. We

w22
have
1 0 wor | w1
BRI E el

w21 — —5w21 (3.65)
2w91 — Dwey = —dwogy
= wo; =0

Thus the expression of eigenvector wq is:

wQZ[ 0 } (3.66)

w22

It 1s clear that wy and vy are orthogonal:

wlvy =0 wy ] [ ”(1)1 } =0 (3.67)
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Finally vy, vy, wy and wy are chosen such that wr{gl = QEFQQ =1. We can
chose for example:

o V11 o 1 o 3w12 o 1
[ ]-[] e [3]-[}] e
And: .
o V21 . -3 . 0 . 0
o[ ][] m[ L)1) oo
Then applying Equation (3.52) we get:
A =30 v e
= Ulw{e)‘lt + vowd er2t
I _1
= Het[l §}+[ 13:|6_5t[0 1]
— 3 | et + 3 e 5t
0 0 0 1
i et %et _ %67515
“lo e ot
We can check that eAt‘t:O =1I.
"

At

3.5.4 Computation of e¢*' using the Jordan form of A

In that section we will assume that the algebraic multiplicity n; of an eigenvalue
A; of matrix A € R™ "™, that is the number of times that \; appears as a
root of the characteristic polynomial det(sl — A), is not equal (actually strictly
greater) to its geometric multiplicity q;, that is the dimension of the kernel of
Al — A In that situation eigenvalue ); is said to be degenerate and matrix A
is not diagonalizable. Nevertheless, a block-diagonal form A of matrix A can
be achieved using its Jordan form:

A_[]g H (3.71)

As in the previous section, it can be shown that:
eAl = Peltpt (3.72)

where:

(3.73)
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— Matrix D is a diagonal matrix which is build form the non-degenerate
eigenvalues of A. It has been seen in the previous section how to get eP*
in that case;

— Matrix J is a block-diagonal matrix build from Jordan blocks J;:
J. 0 et 0
J=|10 . . |=2d=] 0 . . (3.74)

Jz o X e.]it

Each Jordan blocks J; corresponds to a degenerate eigenvalue A;.

We will see hereafter how to compute eJit.

— Assume that \; is a real eigenvalue, \; € R. Then the Jordan block
J; corresponding to A; is a square matrix of order n; with the following
structure (note the the number of 1 over the diagonal is equal to n; — ¢;):

PYE| 0
0
J; = = )\iﬂni + N (3.75)
o o .1
0 0 0 XN

Matrix N is a nilpotent matrix of order n; which obviously commutes with
A\ill,,. Consequently, i reads:

oJit — oAilln;t Nt

o eJit — it <Hni + N% 4+ Nl (Z:i_—f)!)

(3.76)

— Alternatively, if \; is a complex valued eigenvalue, then \; reads a+ jb. In
that case, the complex conjugate of A; is also an eigenvalue of A. In that
case, the Jordan block J; corresponding to \; and its complex conjugate
value is a square matrix of order 2n; with the following structure:

A; 1 0
a b
0 Ai:[—b a}
J;, = ol 1 0 (3.77)
0o o0 . I H:[O 1]
0O 0 0 A;

The Jordan block can be rewritten as follows:

T |

Ji = alap, + +N (3.78)

| ]
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Matrix N is a nilpotent matrix of order 2 n; and the exponential of matrix

J; reads:
R(bt)
eJit — pat . <H2m + N% N Nni—l (57__11),)
R(bt)
(3.79)
where matrix R(bt) is the following rotation matrix:
{ 0 bt }
| =bt 0| _ | cos(bt) sin(bt)
R(bt) =e N [ —sin(bt) cos(bt) (3.80)
Example 3.4. Compute e’ where matriz J reads as follows:
1 1
[ 1) o
Matriz J is a Jordan matriz. Then e’ is computed as follows:
10 0 1
J_[01}+[00}_H2+N (3.82)

As far as nilpotent N commute with identity matriz and that the index of
nilpotency of matriz N is 2 we can write:

k k
[ t 0 } { 0 t }
0 t 00
_ 00 2-1
ZI{::O k! Zk—O k! (383)
[ et et 0 1t
-l e feemo- [ ][0 1]
o [ et tel
10 €
"
Example 3.5. Compute e where matriz A reads as follows:
2 00
A=]0 11 (3.84)
0 01

Matriz A is block diagonal:

A:[lg H (3.85)
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where:
D=2
11 (3.86)
Lo
As far as A is block diagonal, et is computed as follows:
ePt 0
M= [ 0 ] (3.87)

Using the result of the preceding example, we get:

oDt — o2t
It et te (3.88)
0 €
Thus:
et 0
A= 0 e te (3.89)
0 0 €

3.5.5 Dunford (or Jordan—Chevalley) decomposition

Dunford (or Jordan—Chevalley) decomposition (Nelson Dunford was an
American mathematician (1906 - 1986)) states that for any matrix A with real
coefficients there exists a unique pair of a diagonalizable matrix D and a
nilpotent matrix N which commutes with D such that:

A =D+ N and DN = ND (3.90)

Note that a necessary and sufficient condition for an endomorphism A in a
vector space of dimension n to be nilpotent is that its characteristic polynomial
det (A — A) be equal to ™.

Taking the exponential of the Dunford decomposition we get the following

result since matrices N and D commute:
eAt — e(D“rN)t — eDteNt (391)

Denoting k the index of nilpotency of matrix N the previous expression becomes:

k—1 i
eAl = Dt (]I + Z (l\j't) ) (3.92)

=1

Nilpotent matrix N is null when the dimension of the eigenspace generated
by each eigenvalue of A is equal to the multiplicity of the eigenvalue or
equivalently when all the roots of the minimal polynomial of A have
multiplicity 1.

Note that we can write the following relation:

ePteNt — Dt 4 Dt (eNt —1) (3.93)
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As far as matrix N is nilpotent, its spectrum is {0}. Therefore the spectrum
of eN' is {1}. We therefore deduce that matrix eP? (eN* —I) is also a nilpotent
matrix.

Let xa(A) := det (A — A) be the characteristic polynomial of matrix A.
Then Dunford decomposition is obtained from the partial fraction expansion
of the inverse of its characteristic polynomial x4(\). Let A; be the eigenvalues
of A, n; the multiplicity of A\; and r the number of distinct eigenvalues of A.
Then?:

<

b

=
I

[T (A =)™ -
1 r n; a;, T n; Qi (A=)
= a0 die1 (Zk:l (,\_,\kz.)k) = i1 ( k=1 k()\f)\ii)"i )

Setting U;(\) := 1%, a;k(A— ;)" * where U;(\) is a polynomial of degree
n; — 1, we get:

(3.94)

L _y G
xa(d) Z (A= M) (3.95)

Then multiplying by xa(A) = [T;_; (A — Xi)™ it comes:

1=> UMW ][ =" =Y AN (3.96)
i=1 i#j i=1

Then it can be shown that:

D=> AP(A)and N=A-D (3.97)
i=1
Example 3.6. Let A be the following matriz:
1 01
A= -1 21 (3.98)
1 -1 1

The characteristic polynomial of A reads as follows:
xA(A) :=det A\[— A) = (A= 1)%(A—2) (3.99)

The eigenvalues of A are A\ = 1 with multiplicity n1 = 2 and Ao = 2 with
multiplicity no = 1. Let’s perform the product:

1 -1 -1
(A—MI)(A—Xl3)=|1 -1 —1 | +#0 (3.100)
0 0 0

Therefore (A—1)(A—2) is not an annihilating polynomial of A. The minimal
polynomial of A is therefore the characteristic polynomial (A — 1)2(\ —2). As
the minimal polynomial does not have all its simple roots the matriz A is not

2Alaeddine Ben Rhouma. Autour de la décomposition de Dunford réelle ou complexe.
Théorie spectrale et méthodes effectives. 2013. hal-00844141
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diagonalizable. We will use the Dunford decomposition to write A in the form
A =D + N where D is diagonalizable and where N is nilpotent and commudtes
with D.

First we compute the partial fraction expansion of X%(A):

I 1 1 L Ui(N) Ua(N)
D S B EA s R s s i e S L)
where:
{ g;g; _ ;A (3.102)
Then multiplying by xa(A) = (A — 1)2(\ — 2) we get:
2
1= TN A= 2)™ = Pi(A) + Po(N) (3.103)
i=1 i#j
where: PN = —AGA— 2)
{ P;(A) _ (N 1y (3.104)

We deduce that:
D =XMPi(A)+ X P(A)

= —A(A - 2I3) + 2(A — I3)2

(3.105)
2 -1 0
= 1
1 -1 1
Let’s compute the product (D — A\iI3)(D — Aoll3). We gel:
(D — MI3)(D — \ols) = 0 (3.106)

Consequently (A — 1)(A — 2) is an annihilating polynomial of D. As all
the roots of the annihilating polynomial of D have multiplicity 1, matriz D is
diagonalizable. Then nilpotent matriz N is obtained as follows:

-1 1 1
N=A-D=| -1 1 1 (3.107)
00
We can check that N commutes with D:
-1 1 1
ND=DN=| -1 1 1 (3.108)
0O 0 O

Consequently taking into account that N? = 0 we finally get:

eAt = DTN _ DENE _ Dt (1, | Ny) (3.109)
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At

3.5.6 Computation of ¢*' using the Laplace transform

Computation of eA* can be done using the Laplace transform. Denoting by £
the Laplace transform and by £7! the inverse Laplace transform we have the
following property which extends to the vector case a well-known result in the
scalar case:

LA = (sT— A) e el =L [(SH - A)*l} Vit>0 (3.110)

Matrix (s — A)~ ! is called the resolvent of matrix A. It can be computed
using the Faddeev-Leverrier’s method for example (see section 1.6).

The inverse Laplace transform is taken for each term of the resolvent of
matrix A. We recall that the inverse Laplace transform of a strictly proper
rational function F'(s) (i.e. the degree of the denominator is strictly greater
than the degree of the denominator) can be obtained using the Mellin-Fourier
integral.

The Mellin-Fourier integral reads:

gt) =L [F(s)]= > Res[F(s)e™] vt >0 (3.111)
poles of F(s)

The residue Res [F(s)e®] shall be computed around each pole of F(s).
Assuming that A is a pole of multiplicity ng then the residue of F(s) around
pole A\ is given by:

1 dre—1

Ress—y, [F(S)ESt] - (ng — 1) ds™—1

(5 — Ap)™ F(s)e (3.112)

S=Ag

(s

Alternatively if resolvent of matrix A is decomposed as % where degree

of polynomial matrix N(s) is strictly lower than degree of polynomial ¥(s) =

[I:(s — Ax)™ then the use of Mellin-Fourier integral leads to the following

expression of et

- -1 _ N(s) _ N(s)
=2k (nkl—l)! js"kk—l (5= )™ ‘If((j)) e 5=k
Example 3.7. Compute et where:
A= [ 8 (1) ] (3.114)

Here n = 2 and the Faddeev-Leverrier’s method (see section 1.6) reads:

Fo=1I

dl =tr (AFo) =tr (A) =0 (md F1 == AFO - dl]l =A (3 115)

dg—itr(AFl —%tr( ) ’
and det (sT — A) = s% — dys — d2 = 52
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Thus:

1

1
¥ ] (3.116)

det (sI — A)

Owl=

(sT—A)™' = (F08+F1):812[8 H:[

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matriz of A:

= GSt‘ =1

L7 [3] =Res [} St]s 0~ (1—11)! %5%6“ =0

L~ 1 [s%] Res [ 1 St] s=0 - (2_11)[ ;;2__11 82312 68t

3.117
= teSt’szo =t ( )

s=0

We finally get:

w((L3) e[ ][] e

Alternatively resolvent of matriz A can be decomposed as 1;((5)) Indeed we

have seen that:

(sT—A)"' = S% [ g i ] (3.119)

The use of Mellin-Fourier integral leads to the following expression of €At

_ -1 _ N(s)
(sT—A) = 30 y
= et = Zk (nkl_l)! C;in%—l (s — >\k:) ((j)) st

S=Ag
2—1 s 1
= (211)' e [ 0 s ] et
s=0
_ i |: s 1 :| CSt
0 s s=0 (3.120)
:|:1O:|68t + N test
0 1 s=0 0 s=0
10 n 01 ;
101 0 0
1t
01
|
Example 3.8. Compute et where:
11
A= [ 9 0 ] (3.121)

We have:

a5 ) s L]

Thus (sI— A)™' = 13((5)) where W(s) = s(s — 1) has two roots, \y = 0 and

Ao =1, each of multiplicity 1: n; = ng = 1.




3.5. Matrix exponential 111

The use of Mellin-Fourier integral leads to the following expression of e®t:

(sI—A)™' = N(s)

T(s)
At _ 1 dnk—! N(s) st
= e = Zk (ne—1D)! ds"k—T (S — )\k)nk (s e’ .
. 1 qi-1 1 S ]. t
= -1 dsT195(s-1) [ 0 s—1 ] e’ .
s=

1 qi-1 1 S 1
T a8~ Vi [ 0 s—1 ] et
s=

S 1 ot 1] s 1 st
{0 8—1:|e +s[o s—1]°

‘ -

[y

S—

s=0 s=1
o 1] [ ]
“lo 1 00|[°
B el el —1
|0 1
]
Example 3.9. Compute e where:
1 2
A= [ 0 5 ] (3.124)
Here n = 2 and the Faddeev-Leverrier’s method (see section 1.6) reads:
Fo=1I
5 2
dy = tr (AFO) =—4and F1 = AFy — dil =
0 -1
- (3.125)
do = %tl‘(AFl) = %tr ([ 0 5 :|> =5
and det (sl — A) =52 —d1s —dy = s> +45 -5 = (s —1)(s +5)
Thus:
-1 1 o 1 S + 5 2
(sT = A)"" = gpr-ay Fos + F1) = o555 [ 0 s-1 ]
12 (3.126)
& (sI-A) = [ 561 (S*%ﬁ)
s+5

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matriz of A:

Efl 1| et

L1 =0 (3.127)

L:—l
We finally get:

1 2
(3 41) <[ ]
B 0 5+5 (3.128)
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N(s)

Alternatively resolvent of matriz A can be decomposed as T(s) - Indeed we
have seen that:
_ 1 s+5 2
I-A) = —— 3.129
(s ) (s—l)(s—&—i’)){ 0 3—1] ( )

The use of Mellin-Fourier integral leads to the following expression of e®t:

(sT—A)™ =3

TU(s)
np—1 ng N(s) g
> M= Dty e (0 WM S
_ 1 s+ 5 2 st
=(s—1) G-1)(s+5) { 0 s—1 } € _

s+5 2 s
+(S+5>(Sl)1(s+5)|: 0 :|et

1 1 0 —41
— 3 st 3 st
od]el o ]l
t o1t [ _le-st =
-1 ¢ 3 ~3
% el ]
_ [ ot %et_%efSt }
0 e—5t
]
Example 3.10. Compute et where:
2 -1 0
A=]10 1 0 (3.131)
1 -1 1
From the Faddeev-Leverrier’s method (see section 1.6) we get:
1 —1
5—2 (s—1)(s—2) 0
(sI—A)' = 0 — 0 (3.132)
1 —1 1

(s—1)(s—2) (s—1)(s—2) s—1

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matriz of A:

£—1 5| = 621&
L L] =e (3.133)
—1 1 _ 2
£ 7(5_1)(3_2)} ==
We finally get:

o2t et —e2t
Al = 0 et 0 (3.134)

e2l _ ot ot o2t ot
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3.6 Stability

There are two different definitions of stability: internal stability and input-
output stability:

— A linear time-invariant system is internally stable if its the zero-input
state eAtz, moves towards zero for any initial state z,. This is a basic
requirement for feedback system. Indeed interconnected systems may be
subject to some nonzero initial conditions and some (possibly small) errors
and it is not acceptable from a practical point of view that such nonzero
initial conditions lead to unbounded signals in the closed-loop system.

— A linear time-invariant system is input-output stable if its zero-state
output is bounded for all bounded inputs. This type of stability is also
called Bounded-Input Bounded-Output (BIBO) stability. Bounded-Input
Bounded-Output (BIBO) stability guarantees that all signals in a system
are bounded provided that the input signals (at any locations) are
bounded.

We have seen in (3.13) that the output response y(t) of a linear time-invariant
system is the following:

t
y(t) = Cerlzy + / CeATBuy()dr + Du(t) (3.135)
0

Assuming that matrix A is diagonalizable, we have seen in (3.52) that eA?
can be obtained using the following relation :

A =PAPT =) "] M (3.136)

w;
i=1
Thus;

— The zero-input state, which is obtained when u(¢) = 0, has the following

expression:
n

a(t) = My =Y vl M, (3.137)
=1

Consequently the zero-input state moves towards zero for any initial state
z, as soon as all the eigenvalues \; of matrix A are situated in the open
left-half plane (they have strictly negative real part). This means that a
linear time-invariant system is internally stable when all the eigenvalues
A; of matrix A are situated in the open left-half plane (i.e. they have
strictly negative real part).

The result which have been shown assuming that matrix A is
diagonalizable can be extended to the general case where matrix A is
not diagonalizable; in that situation this is the Jordan form of A which
leads to the same result concerning internal stability.



114 Chapter 3. Analysis of Linear Time Invariant systems

— The zero-state output, which is obtained when z; = 0, has the following
expression:

yt) = f(f CeA=T)Bu(7)dr 4+ Du(t) (3.138)

= (CeA'B + D6(1)) * u(t) ’
It can be shown that the zero-state output is bounded if and only all the
poles of each term of the transfer function F(s) are situated in the open

left-half plane (i.e. they have strictly negative real part):
F(s) = L[CeAMB +Di(t)] =C(sI-A)"'B+D (3.139)

The two types of stability are related. Indeed:

— If a linear time invariant system is internally stable it is also input-output
(or BIBO) stable because all the poles of the transfer function F(s) are
eigenvalues of matrix A;

— Nevertheless the converse is not true since matrix A could have unstable
hidden modes which do not appear in the poles of F(s). Indeed there may
be pole-zero cancellation while computing F(s). Thus a system may be
BIBO stable even when some eigenvalues of A do not have negative real
part.

Example 3.11. Let’s consider the following realization:

(3.140)

Matriz A has a stable mode, which is —1, and an unstable mode, which is
1. Thus the system is not internally stable.

When computing the transfer function of the system we can observe a pole
/ zero cancellation of the unstable mode:

F(s) =C(sI—A)'B+D

L 10 _9
N s+ s2—1 _

M [l | I EE
-2

__ —2s5+42

s+l

The pole of the transfer function F(s) is —1. Thus the system is BIBO stable
but not internally stable.

3.7 Controllability

3.7.1 Definition

Let’s consider the state trajectory z(t) of a linear time-invariant system:

t
z(t) = eAlzy + / AT By(r)dr (3.142)
0
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Where A is a n x n real matrix and B is a n x m real matrix.

Controllability answers the question whether it is possible to control the
state vector z(t) through an appropriate choice of the input signal u(t).

More precisely an initial state z, is said controllable if and only if there
exists an input signal u(¢) which is able to move the state vector z(¢) from an
initial state 2(0) = z4 at ¢t = 0 to the origin z(ty) = 0 in a finite time t;. We
said that a system is controllable when any arbitrary initial state z; € R" is
controllable 2.

If the system is controllable then the input signal u(¢) which is able to move
the state vector z(t) from an initial state z(0) = z, at t = 0 to the origin
z(ty) =0 in a finite time ¢; reads*:

u(t) = —BTeA LD WL (t5)eAY (3.143)
Where W,(ty) is a symmetric matrix defined as follows:
tr
W.(tf) = / ATBBT A dr (3.144)
0
Indeed when z(ts) is computed with this control we get z(t;) = 0:
z(ty) =eAtrzy+ [ A=) Bu(r)dr
= eAtrg, — fotf Altr—T) BBT AT (t5—7) WL (ts)eAlr g dr
— Aty + ([} ABBTA dv) W (tg)eAt
— eAthO — fotf €ATBBT€ATT dT) W;l(tf)eAtf Ty

= Mg — We(t) W (ty)et" 1
=0

(3.145)

More generally one can verify that a particular input which achieves z(ty) =
Ty 1s given by*:

u(t) = —BTeAT (1) W, L(ty) (eAtf Ty —zp) (3.146)

Consequently a system is controllable if and only if symmetric matrix W (ty)
is nonsingular for any ¢ > 0. Furthermore W(?) is the solution of the following
differential equation:

d
AW, (t) + W (t)AT + BBT = S Welt) (3.147)

If all eigenvalues of matrix A have negative real parts (A is said to be
Hurwitz) then W,(t) tends towards a constant matrix as ¢ — oo. The
controllability Gramian W, is the following positive definite symmetric
matrix:

W, = / ATBBTeA Tdr (3.148)
0

It can be shown that W, is the unique solution of the following Lyapunov
equation:
AW, + W AT + BBT =0 (3.149)
®https://en.wikibooks.org/wiki/Control _Systems/Controllability and_Observability

3. Skogestad and I. Postlethwaite: Multivariable Feedback Control Analysis and design,
Wiley, 1996; 2005
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3.7.2 Kalman’s controllability rank condition

Let Q. be the controllability matrix. Matrix Q. is defined as follows:
Q.=[B AB .- A"'B] (3.150)

It can be shown that a linear system is controllable if and only if the rank of
the controllability matrix Q. is equal to n. This is the Kalman’s controllability
rank condition.

The sketch of the demonstration is the following;:

— First we recall that the expression of the state vector z(t) at time t = t;
which solves the state equation (3.1) is:

ty
z(ty) = ez + / A=) Bu(r)dr (3.151)
0

As far as x4, ty and z(tf) are assumed to be known we rewrite the
preceding equation as follows:

tr
e A x(ty) —zy = / e ATBu(7)dr (3.152)
0

— To continue the sketch of the proof we need the Cayley—Hamilton theorem.
Let xa(s) be the characteristic polynomial of the n x n matrix A. We
write the characteristic polynomial y 4(s) of matrix A as follows:

xa(s) :=det(sl — A) =s" + 18"+ 4 a1s+ ao (3.153)

The Cayley—Hamilton theorem states that substituting matrix A for s in
the characteristic polynomial x 4(s) of matrix A results in the zero matrix
5.

xA(A)=0=A"+a, A"+ a1 A +agl (3.154)

From the preceding equation it is clear that we can express A" as a
function of A* where 0 <k <n —1:

A" = —q, (A" — . g A —agl (3.155)

More generally this relation allows to replace a term of the form A" where
m > n by a linear combination of AF where 0 < k < n — 1. When we
use this property to replace the terms A™ where m > n in the series
expansion of eA? we get the following relation:

Atk —1 Ak¢k kyk
A = 220:0 % = ZZ:O AT!t + lein Ak!t
A" = —a, (A" — .. — a1 A — qgl (3.156)
A" =" A Ym >0

Shttps://en.wikipedia.org/wiki/Cayley-Hamilton _theorem
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Consequently the series expansion of €A can be cut so that no power of
matrix A greater that n appears in the series expansion:

n—1
A= "y (t)A* (3.157)
k=0

where v (t) are functions of time ¢t. As far as det(sl — A) is equal to zero
when s = A; is an eigenvalue of matrix A the preceding matrix relation
is also be obtained for all the eigenvalues of matrix A. We obtain the
following relation which is satisfied by the functions ~x(t):

n—1
NP = (A (3.158)
k=0

— Using (3.157) and the fact that functions 7, (t) are scalar functions (3.152)
is rewritten as follows:

e_Atfg(tf) —zy = f(ff e_ATBy(T)dT
= [3F Srg (~T)A*Bu(r)dr
= 5020 Jo! (=) AFBu(r)dr
= Y020 ARB [ y(—7)u(r)dr

(3.159)

Now let’s introduce vector w(ty) whose mn  components
wo(ty),wi(ty), -+ ,wn—1(ty) are defined as follows:

ty
we(ts) = /0 (=P )u(r)dr YO0 <k <n—1 (3.160)

Thus Equation (3.159) reads:

eAa(ty) —zy = YpZg AFB fo7 wi(ty)
wo(ty)
wi(ty
=[B AB - A"'B] , (3.161)
wy—1(ty)
= ch(tf)

In order to be able to compute the expression of vector w(ty) and then
solving the integral equation in the input signal u(t), the controllability
matrix Q, shall be invertible; consequently the rank of the controllability
matrix Q. shall be equal to n. Thus we retrieve the Kalman’s
controllability rank condition.

Example 3.12. Let’s consider the following realization:

(3.162)
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The controllability matriz Q. reads:

(B |AB |
| -2 -1 10 -2
_[0[0 1][0]] (3.163)
-2 2
-7
Consequently rank (Q.) = 1 # 2. We conclude that the system in not
controllable.

Q.

3.7.3 Use of the diagonal form: Gilbert’s criteria

Assuming that all eigenvalues are distinct, controllability property can be readily
analyzed by inspecting the null rows of the input matrix B,, as soon as we get
the modal (or diagonal) form of the state-space representation.

Indeed we have seen in the the chapter dedicated to the state-space
representation that for a single input system matrices A, and B,, of the state
equation &(t) = Apz(t) + Bhu(t) read as follows assuming that matrix A,
has n independent eigenvectors :

( AL O 0
A, = 0 Mo
-
L0 - 0 N\,
(3.164)
a8
by
Bm: .
_bn

Thus in the time domain the diagonal form of the state-space representation
z(t) = Anz(t) + Bu(t) reads:

:i'1<t) = )\11131(25) + bﬂt(t)

i‘g(t) = /\Q.Ig(t) + bgu(t)
. (3.165)

() = Anan(t) + bu(t)

Gilbert’s controllability criteria (1963) states that a multi inputs system
with distinct eigenvalues is controllable if and only if each row of control matrix
B,,, of the diagonal realization (all eigenvalues are distinct) has at least one non
zero element.

Indeed if at least one of the b;’s coefficients is zero then the state component
x;(t) is independent of the input signal u(¢) and the state is uncontrollable.
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Alternatively, if we apply Kalman’s controllability rank condition in the
modal basis we get:

A1
A, =
An
by DA oo DA
by bodg - DboAZT?
= Qem :[Bm AnBy - quile]: . . .
by bpdn - bpAnTE
(3.166)
Then it can be seen that Qgp, is full rank as soon as b; #0Vi=1,--- ,n.

For multi inputs system with m inputs then matrix B has m columns and
the preceding analysis is readily extended to each column of matrix B assuming
that the state-space representation is the diagonal form.

3.7.4 Popov-Belevitch-Hautus (PBH) test

There exists another test for controllability which is called the Popov-Belevitch-
Hautus (PBH) test.

Popov-Belevitch-Hautus (PBH) test indicates that a linear system is
controllable when the rank of matrix [ A-X\I B ] is equal to n for all
eigenvalues {\;} of matrix A.

A linear system is stabilizable when the rank of matrix [ A-)\I B ] is
equal to n for all unstable eigenvalues {\;} of matrix A.

Eigenvalues \; for which rank of matrix [ A-)\I B ] is not equal to n
are said uncontrollable.

Equivalently, an eigenvalue ); is controllable® if all its corresponding left
eigenvectors w; (i.e. w; # 0 such that w! A = \w!) satisfy w! B # 0.

Example 3.13. Let’s consider the following realization:

(3.167)
Matriz A has two modes, Ay = —1 and Xy = 1.
Let’s apply the PBH test for Ay = —1:
0 10| -2
rank [ A — M1 | B | —rank[o 9 | o ]—2 (3.168)
We conclude that the mode A\ = —1 is controllable.
Let’s apply the PBH test for Ao = 1:
-2 10| -2
rank[A—)\QH‘B] :rank[ 0o ol o ]:1752 (3.169)

6Antsaklis P. J. and Michel A. N., A Linear Systems Primer, Birkhduser Boston,
Boston,MA, 2007
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We conclude that the mode Ao = 1 is not controllable.

3.7.5 Uncontrollable mode

Following Bélanger” a state x, # 0 is uncontrollable if the zero-state output of
the system (i.e. the system’s response to the input signal u(t) # 0 when the
initial state x, is zero) is orthogonal to z; for all final time ¢y > 0 and all input
signal u(t). An uncontrollable state z; # 0 satisfies the following equation:

zl[B AB .- A"IB]=0 (3.170)

Equivalently the pair (A, B) is uncontrollable if and only if there exists an
eigenvector w, of AT such that QiTB =0. If MZ-TB = 0 then the mode \; (i.e.
the eigenvalue) corresponding to w; is called an uncontrollable mode.

Indeed if w; is an eigenvector of matrix A” corresponding to the mode (i.e.
the eigenvalue) \; then ATMZ» = \w; & Q;TA = )\Z@ZT. Specializing z; to w;
Equation (3.170) reads:

0 =w/'[B AB .- A"'B]
=w/[B AB -+ A'"'B] (3.171)
—w!B[1 A - N

Coupling M;TFA = )\zy;fp and MZTB = 0 leads to the Popov-Belevitch-Hautus
(PBH) test for controllability:
{ wl A = \w! T

B0 | Fw [A-N B]=0 (3.172)

1

Example 3.14. Let’s consider the following realization:

(3.173)

Maitriz A has two modes, Ay = —1 and Ao = 1. We have seen that the mode
A2 = 1 is not controllable. We will check that there no input signal u(t) which
15 able to move towards zero an initial state x, which is set to the value of an
eigenvector of AT corresponding to the uncontrollable mode Ao = 1.

Let wy be an eigenvector of AT corresponding to the uncontrollable mode
Ay =1:
-1 0

Alw, = hawp & { 10 1

] Wy = Wy (3.174)
We expand wy as [ 521 } to get:
22
-1 0 wa1 w1 —Wa21 = W21
= = 3.175
[ 10 1 ] [ Wa2 ] [ wa2 ] { 10w21 + w22 = w22 ( )

"P. Bélanger, Control EngineeControl Engineering: A Modern Approach, P. Bélanger,
Oxford University Press, 2005
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We finally get:

w9 = 0= Wy = |: w22 :| (3176)

Now let’s express the state vector x(t) assuming that the initial state x is
set to wy. We have:

z(t) =eMlxy+ fg AT Bu(r)dr

0 n - —2
At A(t—7)
e o ] + fye [ 0 ]u(T)dT

Where:
eAt =71 [(s]l - A)_l}

[ s+1 —10 17"
0 s—1

a1 _ 1 s—1 10
=L ((s+1)(s—1) [ 0 s+1 D (3.178)

1 10
—r-1 sJOrl (s—i—%—l) ]
L s—1
[ et bet —5et
| 0 et

Consequently state vector x(t) reads:

() = [ e; 5e ;t5e*t } { w(; }

t 6_(t_7—) 56(t_7) _ 56_(t_T) )
+/0 [ 0 ot=7) }{ 0 }U(T)dr (3.179)

z(t) = [ el je_t } wag + /O t [ _26;)“_7) ]U(T)dT (3.180)

It is clear that for this specific initial state the input vector u(t) will not act
on the second component of x(t) whatever its expression. Consequently it will
not be possible to find a control u(t) which moves towards zero the initial state
vector o = wy: this state is uncontrollable and the system is said uncontrollable.

3.7.6 Stabilizability

A linear system is stabilizable if all unstable modes are controllable or
equivalently if all uncontrollable modes are stable.
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3.8 Observability

3.8.1 Definition

Let’s consider the output response y(t) of a linear time-invariant system:
t
y(t) = CeAly, +/ CeA="Bu(r)dr + Du(t) (3.181)
N 0

Let’s define vector g(t) as follows:

t
g(t) = y(t) — / CeATBu(r)dr — Du(t) (3.182)
0
Thus we get:
Celay = j(t) (3.183)

Observability answers the question whether it is possible to determine the
initial state z, through the observation of g(t), that is from the output signal
y(t) and the knowledge of the input signal u(t).
~ More precisely an initial state z, is observable if and only if the initial
state can be determined from () which is observed through the time interval
0 <t < ty, that is from the knowledge of the output signal y(t) and the input
signal u(t) that are observed through the time interval 0 <t <t;. A system is
said to be observable when any arbitrary initial state x, € R" is observable.

If the system is observable then the value x, of the initial state can be
determined from signal §(t) that has been observed through the time interval
0 <t <ty as follows: B

o

ty
Ty = w—l(tf)/ A TCTg(r)dr (3.184)
0
Where W, (tf) is a symmetric matrix defined as follows:
Y ATr T A
W, (ty) :/ e TCH Ce™dr (3.185)
0

Indeed from Ce®lz = §(t) we get:

Cetlzy = y(t)

= eATtCTCeAtQO = eATtCTg(t)

= 3 ATTCTCeAT Ty = [ ATTCTy(7)dr (3.186)
< W, (ty)zy = fgf eATTCTg(T)dT

&y =W, (ty) o' A TCTg(r)dr

Consequently a system is observable if and only if symmetric matrix W(ts)
is nonsingular for any ¢y > 0. Furthermore W, (¢) is the solution of the following
differential equation:

d

ATW,(t) + W,(t)A + CTC = T Wolt) (3.187)
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If all eigenvalues of matrix A have negative real parts (A is said to be
Hurwitz) then W,(t) tends towards a constant matrix as ¢ — oo. The
observability Gramian W, is the following positive definite symmetric matrix:

oo
W,= [ eA7cTcerdr (3.188)
0

It can be shown that W, is the unique solution of the following Lyapunov
equation:

ATW,+W,A+CTCc=0 (3.189)

3.8.2 Kalman’s observability rank condition
Let Qo be the observability matrix. Matrix Q, is defined as follows:

C

CA
Qo = : (3.190)

CAnfl

It can be shown that a linear system is observable if and only if the rank of
the observability matrix Q, is equal to n. This is the Kalman’s observability
rank condition.

The sketch of the demonstration is the following;:

— First we recall that the expression of the output vector y(t) at time ¢ with
respect to the state vector z(t) is:

y(t) = Cx(t) + Du(t) (3.191)
where z(t) solves the state equation (3.1):
z(t) = eMlay + /0 t AT Bu(r)dr (3.192)
Thus:
y(t) = CePlzy + C /0 t AT Bu(r)dr + Du(t) (3.193)

Asfar as y(t), t and u(t) are assumed to be known we rewrite the preceding
equation as follows:

t
y(t) — C / AT Bu(r)dr — Du(t) = CePa, (3.194)
0

— To continue the sketch of the proof we need the Cayley—Hamilton theorem.
As shown in (3.157) this theorem indicates that eA! can be written as
follows:

n—1
e = "y (t)A* (3.195)
k=0

where () are functions of time ¢.
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— Using (3.157) and the fact that functions 44 (t) are scalar functions Ce®?

reads:
CeAtEO = Czk Q'Yk(t)AkQO
= 12y C(t) Al (3.196)
— (ZiZd wncAr) o

Now let’s sample the time interval 0 < ¢ < t; into n values of time,
t1 = 0,t2,--- ,tp—1,t, = t;y which are situated inside the time interval
0 <t <ty. Using (3.194) for each value t; of the time we get:

( — C [{' A= Buy(r)dr — Dult1)

Y
y(ta Cf” Alt2=7)Bu(7)dr — Du(ts)

y(t,) — C [y eAltn ?>Bg(7)dT—D@(tn)

yo(t1) m(t1) -+ An—1(t1) 7 C
( 2) mlt2) - ym-1(t2) CA
= . : : : zo (3.197)
’YO(‘tn) ’Yl(.tn) oo Ypo1(ty) | | CANTL
That is:
y(tr) = C Jo" e Bu(r)dr — Du(ty)
b eAlt u(T)dr — Du
ute) =G : Bulr)dr = Dultz) =VQoz,  (3.198)
Cf Altn—T Bu( )dT — Du(t,)
Where:
Yo(t1) m(t) -+ A—1(t1)
Yo(t2) 7(t2) - Fn-1(t2)
V=1 . L : (3.199)
Yo(tn) 7(tn) -+ Yn-1(ts)

In order to be able to compute the expression of vector z, from (3.198)
and assuming that matrix V is invertible (which is always the case when
all the eigenvalues of matrix A are distinct), the observability matrix Q,
shall be invertible; consequently the rank of the observability matrix Q,
shall be equal to n. Thus we retrieve the Kalman’s observability rank
condition.

Example 3.15. Let’s consider the following realization:

(3.200)




3.8. Observability 125

The observability matriz Q, reads:

Q@ =] ca |
2 0]
= [_20][3 (” (3.201)
-1 0]

Consequently rank (Q,) = 1 # 2. We conclude that the system in not
observable.

3.8.3 Use of the diagonal form: Gilbert’s criteria

Assuming that all eigenvalues are distinct, observability property can be readily
analyzed by inspecting the null columns of the output matrix C as soon as we
get the modal (or diagonal) form of the state-space representation.

Indeed we have seen in the the chapter dedicated to the state-space
representation that for a single output system matrix C,, of the output
equation y(t) = C,, z(t) + Du(t) read as follows assuming that state matrix A
has n independent eigenvectors :

Cn=[c1 ¢ - cn| (3.202)

Thus in the time domain the diagonal form of the state-space representation
y(t) = Cp, z(t) + Du(t) reads:

y(t) = crx1(t) + caa(t) + - - - + cnn(t) + Du(t) (3.203)

Gilbert’s observability criteria (1963) states that a system with distinct
eigenvalues is observable if and only if each column of output matrix C of the
diagonal realization (all eigenvalues are distinct) has at least one non zero
element.

Indeed if at least one of the ¢;’s coefficients is zero then the output signal
y(t) is independent of the state component x;(¢) and the state is unobservable.

Alternatively, if we apply Kalman’s observability rank condition in the modal
basis we get:

A1
A, =
L An
[ C, c1 e Cn (3.204)
CLA,, 1M Tt CnAn
= Qom = . = . . .
| C, At aXtt o e A — 1

Then it can be seen that Q,, is full rank as soon as ¢; Z0Vi=1,--- ,n.
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For multi outputs system with p outputs then matrix C,, has p rows and
the preceding analysis is readily extended to each row of matrix C,, assuming
that the state-space representation is the diagonal form.

3.8.4 Input-output differential equation and observable modes

Assume that the modal basis is used and let C,,, be as follows:

Cn=1[c " ¢ 0 - 0] (3.205)

It is clear from the Gilbert’s criteria that {Ay,---,\;} forms the set of
observable modes.
Furthermore, the following relation holds:

Co (A — M) - (A, = AJ) =0 (3.206)
Indeed:
Cn (Am— M) (Ap — A
" 0 - -
A2 — A
2 1 Aot — Ag
=C,, ... 0
L An — A1 | L
- 0 -
0
= 0 0
[ C 2 0] Qg1
L Qpn |
=0
(3.207)
This completes the proof. |
Coming back to any state space representation, (3.206) reads:
A, =P AP
{ C,, = CP =CA-NI)---(A-X\I)=0 (3.208)

Furthemore, (A — MI)--- (A — Aj) can be developed as follows:
(A-MD) - (A=2\D) =A% a, 1 AT+ +a; A+agl  (3.209)

where coefficients a; are the coefficients of the polynomial obtained from the
observable modes:

(s=M)--(s=A)=s"+ag 158+ +a s+ag (3.210)
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Thus (3.208) reads as follows, where {A1,---, A} is the set of observable
modes:

(s=XM)- - (s=A)=81+a187 4+ +a1s+ag

:>CAq—i_a(I*lCAqil+"'+LL10A+CLOC:0 (3211)

In other words, (s — A1) -+ (s — ;) is an annihilating polynomial of CA".

Finally we can wuse relation y = Cz + Du to compute
y@ + (g—1 gl 4+ 4 a1y + apy and finally obtain the input-output
relation between output vector y and input vector u. Indeed, this expression
will exhibit the term (CA?+ a1 CAY™' + .- +4a; CA+agC)z, which is
zero from (3.211).

3.8.5 Popov-Belevitch-Hautus (PBH) test

There exists another test for observability which is called the Popov-Belevitch-
Hautus (PBH) test.

Popov-Belevitch-Hautus (PBH) test indicates that a linear system is
A—\I

C } is equal to n for all

observable when the rank of matrix [

eigenvalues {\;} of matrix A.

A linear system is detectable when the rank of matrix [ ‘ ] is equal

C
to n for all unstable eigenvalues {\;} of matrix A.

— Nl
C

Eigenvalues \; for which rank of matrix [ ] is not equal to n are

said unobservable.
Equivalently, an eigenvalue )\; is observable® if all its corresponding right
eigenvectors v; (i.e. v; # 0 such that Av; = \;v;) satisfy Cuv; # 0.

Example 3.16. Let’s consider the following realization:

A B
(T‘—> = (3.212)
Maitriz A has two modes, Ay = —1 and Xy = 1.
Let’s apply the PBH test for A\ = —1:
0 0
rank [ A— Al } =rank | 10 2 | =2 (3.213)
C
-2 0
We conclude that the mode Ay = —1 is observable.
Let’s apply the PBH test for Ao = 1:
-2 0
rank [ A=l ] —rank | 10 0 | =1#2 (3.214)
C -2 0

8 Antsaklis P. J. and Michel A. N., A Linear Systems Primer, Birkhduser Boston,
Boston,MA, 2007
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We conclude that the mode Ao = 1 is not observable.

3.8.6 TUnobservable mode

Following Bélanger” a state x; # 0 is said to be unobservable if the zero-input
response of the system (i.e. the system’s response to the initial condition z(0) =
zo # 0 when the input signal u(t) is zero) with z(0) = z; is zero V¢t > 0. An
unobservable state x; # 0 satisfies the following equation:

C
CA
;=0 (3.215)

CAn—l

Equivalently the pair (A, C) is unobservable if and only if there exists an
eigenvector v; of matrix A such that Cv; = 0. If Cy; = 0 then the mode \; (i.e.
the eigenvalue) corresponding to v; is called an unobservable mode.

Indeed if v, is an eigenvector of matrix A corresponding to the mode (i.e.
the eigenvalue) \; then Av;, = \jv,. Specializing z; to v; Equation (3.215) reads:

C C 1
CA C\i i
: v, = : v = : Cu, =0 (3.216)
CA"! cAr ! At

Coupling Av; = \v; and Cuy; = 0 leads to the Popov-Belevitch-Hautus
(PBH) test for observability:

v, =0 (3.217)

3.8.7 Detectability

A linear system is detectable if all unstable modes are observable or equivalently
if all unobservable modes are stable.

3.8.8 Additional observability topic: relation between linear
differential equation and state-space representation

We consider hereafter a SISO system which is described by the following linear
differential equation where m < n,:

dy(t dmeLy(t dmoy(t
apy(t) + a1 ?il(t ) +- Fan,—1 dtnﬂ ) Qn, dtzt() ) =
du(t) d™Lu(t) d™u(t)
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As far as m < n,, the state-space representation of (3.218) is the following:

i(t) = Ax(t) + Bu(t
3.219
1 3io)— catr (3:219)
Now, we will see what is the constraint on state matrix A to retrieve the

linear differential equation from the state-space representation. First, we will
compute the derivatives of output y(¢):

g(t) = Ci(t) = CAz(t) + CBu(t)
ii(t) = CA2x(t) + CABu(t) + CBu(t) = CA%z(t) + C (ABu(t) + Bu(t))

dtk—1—1

LU0 — CAba(t) + C (T ABL )
(3.220)

"y (t) which appears in the linear

dtk

Thus, the linear combination » ;% ay
differential equation (3.218) reads:

Mo

No k 7
Z ax? dtk )oY (CA’“ +C<ZA1 ddt; 1“(;5))) (3.221)

k=0

We conclude that the linear combination )2, ak%,gt) can be written as a
linear combination of input u(t) and its derivatives as in the linear differential
equation (3.218) as soon as state vector x(¢) no more appears in this the linear
combination. Thus the following relation must hold:

» a,CAF=0&C (Z akAk) =0 (3.222)

k=0 k=0
It can be shown that polynomial )2 ax s* is the polynomial corresponding

to the observable modes of the system:

No No

Z ay, s* = H (s—Xi) where {A,---, A\, } observable modes (3.223)
k=0 i=1

3.9 Interpretation of the diagonal (or modal)
decomposition

When the state matrix A is diagonalizable we have seen in (3.56) that e? reads
as follows where v, is a right eigenvector corresponding to eigenvalue A\; and w;
is a left eigenvector corresponding to the same eigenvalue \;:

n
A=Y vl e (3.224)
i=1
On the other hand we know from (3.13) that the output response of the
system can be expressed as follows:

y(t) = Cera(0) + / t CeA="Bu(r)dr + Du(t) (3.225)
0
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Gathering the two previous results leads to the following expression of the
output vector y(t) where it is worth noticing that w! z(0) is a scalar:

n n t
= Z Cyiekit (MZTE(O)) + Z CQZ- / e/\i(t*T)wiTBg(T)dT
i=1 i=1 0

+Du(t) (3.226)

The product Cu;, is called the direction in the output space associated with
eigenvalue A;. From the preceding equation it is clear that if Cv, = 0 then any
motion in the direction v; cannot be observed in the output y(t) and we say
that eigenvalue J\; is unobservable. a

The product QZTB is called the direction in the input space associated with
eigenvalue \;. From the preceding equation we cannotice that if wiTB = 0 the
control input u(t) cannot participate to the motion in the direction v; and we
say that eigenvalue )\; is uncontrollable.

As a consequence the Coupling between inputs, states and outputs is set by
the eigenvectors v; and w . It can be seen that those vectors also influence the
numerator of the transfer function F(s) which reads:

F(s)= C(sI— A)"'B+D = 2 Cow/ (3.227)

Indeed let A be the diagonal form of the diagonalizable matrix A:

A1
A= (3.228)
An

We have seen that the change of basis matrix P as well as its inverse P!
have the following expression:

P:[Ql vy e Qn}

A = P 'AP where Wy (3.229)

Using the fact that (XY)™' = Y'X~! for any two inversible square
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u(t)

P!

i 0

x (1) ()
I T P » C g

Figure 3.1: Modal decomposition of a transfer function

matrices the transfer function F(s) reads:

We finally get:

(SH —

Cvw!B
F(s)=Y —+~ 1D

(sI—A)"'B+D
(P(sI—PAP)P!) 'B+D
P(sI—A)"'P'B+D
(P(sI—P*AP)P1) 'B+D
P(sI—A) 'P'B+D

S*)\l igB
Cu,, | . | +D

L S—An wTB

Cu, | = +D

(3.230)

n

3.231
25N (3.231)

Figure 3.1 presents the diagonal (or modal) decomposition of the transfer
function F(s) where z,,(t) is the state vector expressed in the diagonal (or
modal) basis and matrices A, P and P~! are defined as follows:

A1

w

I
S
S
|

(3.232)
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3.10 Duality principle

The concept of controllability and observability was introduced by American-
Hungarian engineer Rudolf E. Kalman for linear dynamic systems . Let’s
consider a system which is denoted Y. Then system > p, which is the dual of
>, as defined as follows:

5 = (%‘%) = %p = dual (T) = (%‘%)T = ( ‘g‘i gi > (3.233)

The duality principle indicates that:
— System X is observable if and only if system X p is controllable.
— System X is controllable if and only if system > p is observable.

Furthermore we cannotice that the observable canonical form is the dual of
the controllable canonical form.

3.11 Kalman decomposition

3.11.1 Controllable / uncontrollable decomposition

We recall that the controllability matrix Q. is defined as follows:
Q.=[B AB --- A"'B ] (3.234)
Suppose that the system is not controllable, meaning that:
rank (Q¢) =n. <n (3.235)

Let P,z be the following change of basis matrix which defines a new state
vector z.;(t) as follows:

z(t) = Peezeo(t) © zea(t) = Pc_ali(t) (3.236)

The first n. columns of P are chosen to be n,. independent columns of Q.
whereas the remaining n — n. columns are arbitrarily chosen such that P; is

invertible:
Ne

PcE:[Ql g, 4, gn] (3.237)

Then, according to the results in section 2.2, the state-space representation
involving the state vector x;(t) reads:

Zop(t) = Acez (1) + Bezu(t)
{ y(t) = Ceezs(t) + Du(t) (3.238)

°R. E. Kalman, On the General Theory of Control Systems, Proceeding of the 1st IFAC
congress, Moscow 1960
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where:

A, A
= = _,1 F— ¢ 12
Ai:=P;AP;: [ 0 A, }

B = P'B = [ Be } (3.239)

CCE = CPCE = |: Cc CE ]

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

The state vector z.:(t) can be split into vector z.(¢), which represents the
controllable states, and vector x;(t) which represents the uncontrollable states:

2o(t) = [ xgg ] (3.240)

Furthermore, the reduced-order state equation of the controllable state
vector z,(t) is controllable and has the same transfer function than the full
state equation:

{ i,(t) = Acz.(t) + Beu(t) (3.241)

y(t) = Cez,(t) + Du(?)

3.11.2 Observable / unobservable decomposition

We recall that the observability matrix Q, is defined as follows:

C

CA
Q, = : (3.242)

CAn—l
Suppose that the system is not observable, meaning that:
rank (Q,) =no <n (3.243)

Let P,s be the following change of basis matrix which defines a new state
vector z,5(t) as follows:

2(t) = Pog pp(t) & ,5(t) = Pl z(t) (3.244)

The first n, rows of P;al are chosen to be n, independent rows of Q, whereas
the remaining n — n, rows are arbitrarily chosen such that P,; is invertible:

Pif1 = |- = Bo_ _ (3245)
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Then, according to the results in section 2.2, the state-space representation
involving the state vector z,;(t) reads:

Z *( ) oox ) + Boou(t)
90 3.246
{ywz Cootoo(t) + Du(?) (3.246)
where:
_ pl | Ay O
Ays=P_;AP, = [ Ay A,
B, (3.247)

By = Po_alB = [ B,
CO() = CP05 = |: CO 0 j|
It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

The state vector z,5(t) can be split into vector z,(t), which represents the
observable states, and vector z,(t) which represents the unobservable states:

z,5(t) = {xo(t) } (3.248)

Qa(t)

Furthermore, the reduced-order state equation of the observable state
vector z,(t) is observable and has the same transfer function than the full
state equation:

(1) = Aoz, (1) + Bou(t)
{ y(t) = Coz,y(t) + Du(t) (3.249)
3.11.3 Canonical decomposition

Kalman decomposition is a state-space representation which makes clear the
observable and controllable components of the system. More precisely any linear

A|B
system <T‘ﬁ> can be transformed by a similarity transformation as follows:

{ Tr(t) = Agzg(t) +Brul(t)

y(t) = Crag(t) + Duf(t) (3.250)

The Kalman decomposition expands as follows:

Ais A Az Ay

Bcé
0 Aco 0 A24 Bco

(AK Br > = 0 Ay Ag| O (3.251)
Cx| D 0 A, | 0O
C D

co

oo o

This leads to the conclusion that!?:

— Subsystem ( éco ]?)CO ) is both controllable and observable;
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Uts) [(s-r )N (5) N (s) Xrs)
- _' — - = —_—
D (s) (s-2) D (s)

h J

Figure 3.2: Example of uncontrollable mode through pole / zero cancellation in
series interconnection

Urs) N (s) (sk)N(s)| Xis)

B\ i e
(s-1,) D,(5) D)

h J

Figure 3.3: Example of unobservable mode through pole / zero cancellation in
series interconnection

Ac5 A12 Bcé
— Subsystem 0 A, | B., is controllable;
0 C. D
Aco A24 Bco
— Subsystem 0 A 0 is observable.
Cco CEO D

Practical cases of uncontrollability and unobservability may appear in
pole(s) / zero(s) cancellation in series interconnection as represented in Figure
3.2 and Figure 3.3.

In the special case where matrix A has distinct eigenvalues then matrices
A;; =0V #jand Kalman decomposition reduces as follows:

A; 0 0 0 |Bg

0 A, 0 0 [Bg,
< ‘éK ]?)K ) = o 0 Az O] o0 (3.252)
K 0 0 0 Ag,l| o
0 Co, 0 Cg,| D

co

Figure 3.4 represents the Kalman decomposition: there is no path, direct or
through a block, from the input to either of the uncontrollable blocks. Similarly
the unobservable blocks have no path to the output.

The new state representation ( éK PS( > is obtained using the change
K

of basis matrix Pg:
A = P}IAPK

Bx =P.'B (3.253)
Ckg =CPg
Let vy,vq,---,v, be the eigenvectors of matrix A and w;,w,, - ,w, be

the eigenvectors of matrix A”. The change of basis matrix P is an invertible
matrix defined as follows:

Pr = [ Uy Uy o Uy ] = [ P Po Pz Po ] (3254)
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uo et
B_. |t J .
co \/+\/
| Acﬁ <J
/\- ) ‘/\ XCO(D xcn ([) A< J"VV/\\\ J_(I)
| B o J Y C ‘;+\/\ e
co "\\\/ + \ /“ co > /+ J}/,“
! |
| A e
«_‘:a( f) ’XE(U
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co | +\ |
‘ N
<o ‘J
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Figure 3.4: Kalman decomposition in the special case where matrix A has
distinct eigenvalues
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Where!0:

— P is a matrix whose columns span the subspace of states which are both
controllable and unobservable: QZTB # 0 and Cy; = 0;

— P, is chosen so that the columns of [ P.; P ] are a basis for the
controllable subspace: MZTB # 0 and Cu; # 0;

— Pz is chosen so that the columns of [ P.; Pz ] are a basis for the
unobservable subspace: QZTB =0 and Cy, = 0;

— P4, is chosen so that Pg is invertible: QZTB =0 and Cy; # 0.

It is worth noticing that some of those matrices may not exist. For
example if the system is both controllable and observable then Px = P,; thus
other matrices do not exist. In addition Kalman decomposition is more than
getting a diagonal form for the state matrix A. When state matrix A is
diagonal observability and controllability have still to be checked using the
rank condition test. Finally all realizations obtained from a transfer function
are both controllable and observable.

Example 3.17. Let’s consider the following realization:

(3.255)

Matriz A has a stable mode, which is —1, and an unstable mode, which is
1. When computing the transfer function of the system we can observe a pole /
zero cancellation of the unstable mode:

F(s) =C(sI—A)'B+D
oA ][ 2
— | — s+ 54— _
[23][0 HHO} ? (3.256)
-4 _9
_ i
s+1

From PBH test it can be checked that mode —1 1is both controllable and
observable whereas mode 1 is observable but not controllable. Thus the system
1is not stabilizable.

Internal stability (which implies input-output stability, or BIBO stability) is
required in practice. This cannot be achieved unless the plant is both detectable
and stabilizable.

Ohttps://en.wikipedia.org/wiki/Kalman _decomposition
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3.12 Minimal realization (again!)

We have seen that a realization of a transfer function F(s) is minimal if there
exists no realization of lesser order whose transfer function is F(s). The order
of a realization is the size of matrix A.

A realization is said to be minimal if and only if the realization is both
controllable and observable. Consequently a minimal realization of the transfer
function F(s) = C (sl — A) "B+ D is Ce, (sI — A) ' By, + D:

A|B Ao | Beo
o= (A1B) - (a0 -
Indeed:
[ sI— Az —Ai —As Ay ][ Be
1 B 0 sI— A 0 —Aoy Beo
(SH N A) B = 0 0 sl — AE() —A34 0
0 0 0 sl—Ag 0
[ (sI — AC(;)f1 * * *
_ 0 (sT — Agp) ™t * *
N 0 0 (SH — Aga)_l *
i 0 0 0 (sI— Agy) ™"
[ *
] (sT—A) ' B
N 0
I 0
(3.258)
And:
F(s) =C(sI—A)"'B+D
*
-1
=[0 C, 0 Cg | (SH_ABO) Beo | L p
o (3.259)

= C,o (5]1 - ACO)_I B, +D
— ACO BCO
Co| D
The number of states of a minimal realization can be evaluated by the rank
of the product of the observability and the controllability matrix .

1 Albertos P., Sala A., Multivariable Control Systems, Springer, p78



Chapter 4

Observer design

4.1 Introduction

The components of the state vector z may not be fully available as
measurements. Observers are used in order to estimate state variables of a
dynamical system, which will be denoted Z in the following, from the output
signal y(t) and the input signal u(t) as depicted on Figure 4.1.

Several methods may be envisioned to reconstruct the state vector z(t) of a
system from the observation of its output signal y(¢) and the knowledge of the
input signal u(t): -

— From the output equation y(t) = Cxz(t) + Du(t) we can imagine to build
z(t) from the relation z(t) = C~! (y(t) — Du(t)). Unfortunately this
relation holds as soon as matrix C is square and invertible, which is seldom
the case;

— Assuming that the size of the state vector is n we may also imagine to take
the derivative of the output signal n — 1 times and use the state equation
z(t) = Az(t) + Bu(t) to get n equations where the state vector z(t) is
the unknown. Unfortunately this not possible in practice because each
derivative of an unsmoothed signal increases its noise ;

U(s) Plant ¥(s)
X(s)

L, X

Observer —»

-

Figure 4.1: Observer principle
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— We can also use a Luenberger observer which will be developed in the
next section. David Gilbert Luenberger, born in 1937 in Los Angeles, is
an American mathematical scientist'. The theory of full order observer
originated in the work of Luenberger in 1964.

This chapter focuses on observers design. More specifically Luenberger
observer, state observer for SISO systems in observable canonical form, state
observer for SISO systems in arbitrary state-space representation and state
observer for MIMO systems will be presented. We will also present
reduced-order observer design.

4.2 Luenberger observer

4.2.1 State observer

Consider the following state space representation where z(t) denotes the state
vector, y(t) the measured output and u(t) the control input:

{ i(t) = Az(t) + Bu(t) (4.1)

y(t) = Cx(t) + Du(t)

We assume that state vector z(¢) cannot be measured. The purpose of the
state observer is to estimate x(¢) based on the measured output y(t).
Luenberger observer provides an estimation Z(t) of the state vector z(t)
through the following differential equation where output signal y(¢) and input
signal u(t) are known and where matrices F, J and L have to be determined:

b(t) = Fa(t) + Ju(t) + Ly() (4.2)
The estimation error e(t) is defined as follows:
e(t) = z(t) — (1) (4.3)
The time derivative of the estimation error reads:

é(t) =a(t) —a(t)
— Az(t) + Bu(t) — Fi(t) - Ju(t) — Ly(t (4:4)

Thanks to the output equation y(t) = Cxz(t) +Du(t) and the relation z(t) =
e(t) + z(t) we get:

£(t) = Ax(t)+ Bu(t) ~ Fi(r) ~ Jult) ~ L (Cx(t) + Dutt)
= (A—LO)a(t) + (B I~ LD)ult) — Fa(y (4.5)
— (A-LC)e(t) + (B D)u(t) + (A~ LC - F) &(1)

As soon as the purpose of the observer is to move the estimation error e(t)
towards zero independently of control u(¢) and true state vector z(t) we choose
matrices J and F as follows:

"https://en.wikipedia.org/wiki/David_Luenberger
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J=B-LD
{ F=A-LC (46)
Thus the dynamics of the estimation error e(t) reduces to be:
&(t) = (A - LC) e(t) (4.7)

In order that the estimation error e(t) moves towards zero, meaning that the
estimated state vector Z becomes equal to the actual state vector z(t), matrix
L shall be chosen such that all the eigenvalues of A — LC are situated in the
left half plane.

With the expression of matrices J and F the dynamics of the Luenberger
observer can be written as follows:

(t) =Fi(t) + Ju(t) + Ly(t)

— (A~LC)a(t) + (B — LD)u(t) + Ly(t (48)
That is: '
2(t) = AZ(t) + Bu(t) + L (y(t) — 9(t)) (4.9)
Where:
9(t) = CZ(t) + Du(t) (4.10)

Thus the dynamics of the Luenberger observer is the same than the dynamics
of the original system with the additional term L (y(t) — §(t)) where L is a gain
to be set. This additional term is proportional to the error y(t) — g(t). It
enables to drive the estimated state Z(t) towards its actual value z(t) when the
measured output y(t) deviates from the estimated output 4(¢).

In order to compute a state space representation and the transfer function
of the observer we first identify its input and output.

— As discussed previously the input vector u,(t) of the observer is composed
of the output y(t) of the plant whose state is estimated and its input u(t):

uy(t) = [ () ] (4.11)

— The output y_(?) of the observer is the estimated state vector Z(t) of the
plant:

y,(t) = Z(t) (4.12)

Consequently (4.9) and (4.10) can be organized to obtain a state space
representation of the observer:

2(t) = A&(t)+ Bu(t) + L (y(t) — §(t))
= Az(t) + Bu(t) + L (y(t) — Ci(t) — Du(t))
—(A-LC)i(t)+[L B-LD ] [58 ]
—(A-LC)2(t)+ [ L B—LD Ju,() (4.13)
= Aobsj(t) + BobSQo(t)
y (t) = i(t)

= L2(t) + Ou,(t)

L = CopsZ(t) + Dobsﬂo(t)
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Figure 4.2: Block diagram of the state-space representation of an observer

It is worth noticing that the state matrix of the observer reads (A — LC).
Setting the eigenvalues of (A — LC) through the observer gain L is equivalent
by duality to set the eigenvalues of matrix (A — LC)T = AT — CTK through
the state feedback gain K. Observer gain L is related to state feedback K as

follows:
L:=K’ (4.14)

Finally the transfer function of the observer, which is obviously a Multi-
Input Multi-Output (MIMO) system, reads:

G’obs(s) = Cobs (3]1 - lebs)—1 Bobs + Dobs

=(I[-(A-LC))"'[L B-LD ] (4.15)

The block diagram corresponding to state-space representation (4.9) is
shown in Figure 4.2.

In the following we will assume that the system is observable, or at least
detectable, such that it is possible to design a state observer.

4.2.2 Estimating output derivative

Assume that the plant has no feedforward matrix (D = 0) and that the following
state observer has been designed:

D=0=i(t)=(A-LC)i(t)+ [ L B] Hg;] (4.16)
We wish to estimate the derivative g(t) of the actual output y(t) of the plant
from the output Z(¢) of the observer. We get:

y(t) = Cz(t) = y(t) = Ci()
= C(Az(t) + Bu(?)) (4.17)
— CAz(t) + CBu(t)

We finally get: .
y(t) = CAz(t) + CBu(t) (4.18)
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4.2.3 Output observer

Consider the following state space representation where x(¢) denotes the state
vector, y(t) the measured output, z(¢) the performance output and wu(t) the
control input:

i(t) = Az(t) + Bu(t)
y(t) = Ca(t) (4.19)
2(t) = Ta(?)

We assume that the performance output z(¢) cannot be measured. The
purpose of the output observer is to estimate the performance output z(¢) based
on the measured output y(¢). Luenberger observer provides an estimation Z(t)
of the performance output z(t) through the following differential equation where
output signal y(¢) and input signal u(t) are known and where matrices F, J and
L have to be determined:
£(t) = F£(t) + TBu(t) + Ly(t) (4.20)

The estimation error e(t) is defined as follows:
e(t) = z(t) — 2(t) (4.21)

Thanks to equation z(t) = Tx(t) and the relation z(t) = e(t) + 2(¢) the time
derivative of the estimation error reads:

e(t) = z(t) — ()
= T (Az(t) + Buft]) — F£(t) — TBuft] — Ly(t)
= TAz(t) — F2(t) — Ly(t) (4.22)
= TAz(t) — F (2(t) — e(t)) — Ly(?)
= (TA —FT — LC) z(t) + Fe(t)

)_
)_

Thus, as soon as the following relation holds:
LC=TA -FT (4.23)

We get:
6(t) = Fe(t) = e(t) = ¥ (0) (4.24)

In addition, if F is stable, we get:

lim e(t) =0 (4.25)

t—o0

Moreover, if we wish to estimate the state vector z(t) through 2(¢) and the
actual output y(¢) we can use matrices My and My such that:

Z(t) = Mq2(t) + May(t)
= M (z(t) —e(t)) + May(t) (4.26)
= (MiT + M3C) z(t) — Me(t)

Then choosing M; and Mj such that:

M, T +M,yC =1 (4.27)
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We get:
L(t) = a(t) — Mae(t) (4.28)
And, thanks to (4.25):
Tim &(t) = 2(t) (4.29)

Matrices M1 and My can be computed as follows assuming that matrix

[ g ] is full rank?:

(4.30)

71
C

(M) |

If matrix T is full rank, then we can choose My = 0. Then we get for the
dynamics of the estimator Z(t) of state z(¢):

A(t) = FA(t) + TBu(t) + Ly(t)

y(t) = Cu(t)

(1) = Tl 3
= (t) = T14(t) = T~ (FT2(t) + TBu(t) + Ly(t))

We finally retrieve the expression of the state observer by using (4.23).
Indeed, for the general case where T # I we get:

FT=TA -LC=i(t) =T ' ((TA-LC)i(t) + TBu(t) + Ly(t))
= Ai(t) + Bu(t) + T7'L (y(t) — C2(t))
(4.32)

4.3 State observer for SISO systems in observable
canonical form

Let < é ]]3 > be an observable Single-Input Single-Output (SISO) linear time-

invariant system of order n and let xya—rc(s) be an imposed nt" order monic
polynomial (a monic polynomial is a polynomial in which the leading coefficient,
that is the nonzero coefficient of highest degree, is equal to 1). Polynomial
XA—rc(s) corresponds to the characteristic polynomial of matrix A — LC. It
is formed thanks to the predefined eigenvalues Apq1,---, Ar, assigned for the
dynamics of the observer:

XAa—rc(s) =det (sl — (A —LC)) = (s —Ar1)--- (s — An) (4.33)
When expanding the preceding product we get:

XA—LC(S) =s"+ pnflsn_l + -+ p1s+po (4.34)

’Daniel Alazard, Pierre Apkarian, Christelle Cumer, Gilles Ferreres, Michel Gauvrit,
Robustesse et Commande Optimale, Cepadues, 1999
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We begin with the case where the system realization ( jé g ) is the

observable canonical form. Then matrices A, and C, are the following;:

0 0 0 —ag
1 0 0 . -
Ao=10 1 0 . —a
, (4.35)
L0 0 1 —an1 |
Co=[0 0 0 1]

Matrices B, and D will not be used.

Let L, be the observer gain matrix when the observable canonical form of
the system is used. For a SISO system this is a n x 1 matrix. Let L; be the
(scalar) component in the i** row of matrix L,:

Ly
Lo = (436)
Ly
Then matrix A, — L,C, reads:
[0 0 O —ag ]
1 0 0 —aq L1
Ao=LCo =|0 1 0 . —ay |~ P |[0O0 0 1]
: . Ly,
L 0 0 I —ap—1 |
0 0 O —ag — Ly ]
1 0 0 . —a1 — Lo
= 0 1 0 . —a — Lg
L 0 0 1 —Aan-1 — Ln _

(4.37)
Since this matrix still remains in the observable canonical form its
characteristic polynomial is readily written as follows:

Xa—rc(s) =det (A —LC)
— det (A, — L,C,) (4.38)
="+ (an—1+ Lpn) s" L+ + (a1 + L2) s + ap + Ly

Identifying Equations (4.34) and (4.38) leads to the expression of each
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component of the observer matrix Ly:

po = agp + Ly Ly Po — ag

p1=a1+ Lo Lo p1— a1

: eL,=| . | = , (4.39)
Pn—1 = Gp_1+ Ly Ly, Pn—1 — Qp—1

4.4 State observer for SISO systems in arbitrary
state-space representation

When an arbitrary state-space representation is used the system has to be
converted into the observable canonical form via a similarity transformation.
Let P, be the matrix of the similarity transformation which enables to get the
observable canonical form. We get;:

B(t) = Poi,(t) & &,(t) = P, &(t) (4.40)

We have seen in the chapter dedicated to Realization of transfer functions
that P, is a constant nonsingular change of basis matrix which is obtained
through the following relation:

Po = QO_IQOO (441)
Where:
— Q) is the observability matrix in the actual basis:

C
CA
Qo = : (4.42)

CAn—l

— and Q,, the observability matrix expressed in the observable canonical
basis (which is readily obtained through det (s — A)).

Thus the state equation of the observer (4.9) reads:

& Pla(t) = AP, () + Bou(t) + Lo (y(t) — §(t)) (4.43)

& &(t) = PoA P, (1) + PoBou(t) + PoL, (y(t) — (1))
That is: ‘
z(t) = Az(t) + Bu(t) + L (y(t) — 9(1)) (4.44)
Where:
L=P,L, (4.45)
And:

_ —1
{ A =PoA.P, (4.46)

B=P,B,
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Example 4.1. Design an observer for the following plant:

s =| 5 O e+ | 4 |u

yt) =13 5]z(®)

As far as this is a modal (or diagonal) state space representation, plant’s
observability is readily checked by inspecting row of output matrix C: because
there is mo null element in the output matriz C we conclude that the plant is
observable by applying Glilbert’s criteria.

The poles of the observer shall be chosen faster than the dynamics of the
plant, whose modes are —1 and —2. We choose (for example) to locate the poles
of the observer at A1 = —10 and Apo = —20.

We will first design the observer assuming that we have the observable

canonical form of the SISO system. The observable canonical form is readily
obtained through det(sl — A):

(4.47)

det(sl — A) = (s+1)(s+2) =52 +3s+2:=5%+a1s+ap

0 -2
:>AO—[1 _3}andCO—[O 1}

(4.48)

On the other hand the characteristic polynomial of the observer is formed
thanks to the predefined eigenvalues assigned for the dynamics of the observer:

Xa-rc(s) = (s = A1) (s — Ar2) = (5 +10) (s + 20)

= 524305+ 200 := 5%+ p1 s+ po (4.49)

Applying relation (4.39) we get:
. L1 . Po — aop o 200 — 2 o 198
o[- (][]

Now let’s compute the similarity transformation matriz P, which enables to
get the observable canonical form.

P, = Q,'Qu (4.51)
Where:

— Qo is the observability matriz in the actual basis:

C 3 > 3 5

QO:[CA}: [3 5] {_01 _02} :{—3 —10] (4.52)

— and Qo the observability matriz expressed in the observable canonical basis
(which is readily obtained through det (sl — A)):

C, 0 1

e[ &) [t ) e
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Thus: )
- 3 5 ][0 1
Po _QOIQ""_[—zJ, —10] [1 —3}
0 1
G 15

i[5 -5
T -3 6
We finally get:

175 —57[198 57
LP0L"15[—3 6 ][27}[—28.8} (4.55)

—-10 -5
15 3 3

-5 5

3 —6

4.5 Ackermann’s formula

Ackermann’s formula states that the observer gain matrix L of a SISO system
in arbitrary state-space representation can be obtained as the product between
the assigned characteristic polynomial x4_rc(s) of matrix A — LC evaluated
at matrix A and vector q,

L =xa-rc(A)g (4.56)

=0

To get this result we first recall that similarity transformation generates
equivalent state-space representations. Let P, be the matrix of the similarity

transformation which enables to get the observable canonical form. Starting
B

C|D
observable canonical form is obtained through the following relations:

from a state-space representations in an arbitrary basis, the

A, =P;lAP,
B, =P;!B (4.57)
C, =CP,

Consequently matrix A, — L,C, reads:

A,-L,C, =P,'AP,-L,CP,
21 (4.58)
=P, (A-P,L,C)P,
This equation indicates that the observer gain matrix L in arbitrary state-
space representation reads:

L=P,L, (4.59)

We have seen in the chapter dedicated to Realization of transfer functions
that P, is a constant nonsingular change of basis matrix which is obtained
through the state matrix A and vector ¢ :

Po:[q

=0

Ag, - A”’lgo ] (4.60)
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Vector ¢ is the last column of the inverse of the observability matrix Q,:

C

CA
Q,'=[* -~ * g ] where Q,= . (4.61)

CAnfl

Then we recall Cayley-Hamilton theorem. Let x4,(s) be the characteristic
polynomial of the n x n matrix A,. We write the characteristic polynomial
X4, (s) of matrix A, as follows:

xa,(8) :=det(sl — Ay) = 8" +ap_15" '+ -+ a5+ ag (4.62)

The Cayley—Hamilton theorem states that substituting matrix A, for s in
the characteristic polynomial y 4, (s) of matrix A, results in the zero matrix *:

XA, (Ao) =0=A"4a, 1A" 4+ 4 a1 A, + aol (4.63)

Let xa—rc(s) be the characteristic polynomial of matrix A, — L,C,. We
have seen that when predefined eigenvalues Apq,---,Ap, are assigned for the
dynamics of the observer the characteristic polynomial of matrix A, — L,C,
reads:

XA—LC(S) = det (S]I — (AO — LOCO))
= (S—)\Ll)”-(s—ALn) (4.64)
="+ pp1s" T+ pis+ o

Substituting s for matrix A, leads to the following relation:
Xa-10(Ao) = AJ +pu1 Ay 4+ prAy + pol (4.65)

Note that x4-rc(A,) is not equal to 0 because xa_rc(s) is not the
characteristic polynomial of matrix A,.
Thanks to Equation (4.39) and the relation p; = a; + L; we get:

XA—LC(AO) = AZ + (anfl + Ln,l) AZ_I + ..
+ (a1 + L1) Ay + (a0 + Lo) T (4.66)

By subtracting Equations (4.63) to (4.66) we get:
XA-£C(Ao) = Ly 1Al + -+ LiA, + Lol (4.67)

Let u be the vector defined by:

u= (4.68)

®https://en.wikipedia.org/wiki/Cayley-Hamilton _theorem
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Due to the special form of matrix A, we have:

0 8 0
1 .
Aju= | |, Au=| 1|, - Arlu=|" (4.69)
0 0
1

Thus multiplying Equation (4.67) by u leads to the following relation:

Ly
XA-Lo(Ag)u = : =L, (4.70)

Ln—l
Thus we get the expression of the observer matrix L, when we use the

observable canonical form.
We multiply Equation (4.70) by P, and wuse the fact that

Al = (P;lAPo)k = P;'A*P, to get the expression of the observer gain
matrix L in arbitrary state space representation:

L =PJL,
= POXA*LC(AO)Q
= XA—LC(P A )
= xa-1c(PoA P, 1P,)u
= xa-Lc(PoA P, )P
= xa-rc(A)P,

(4.71)

Because w is the vector defined by u = | . | we get using (4.60):

Pou = 9q, (472)
Consequently Equation (4.71) reduces to be the Ackermann’s formula (4.56):

L= xa-rc(A)g (4.73)

0

4.6 State observer for MIMO  systems -
Roppenecker’s formula

We have seen in Equation (4.7) that the dynamics of the estimation error e(t)
reads:
é(t) = (A — LC) e(t) (4.74)

The purpose of this section is to design the observer gain matrix L such
that the eigenvalues of matrix A — LC are assigned to predefined eigenvalues
AL1,**+ , ALp Where n is the size of matrix A.
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Let Ak1, -+, Axn be n distinct specified eigenvalues of the closed loop state
matrix A — LC. Furthermore we assume that eigenvalues of matrix A do not
shift (meaning that they are different) the eigenvalues of the closed loop state
matrix A — LC. Then it can be shown that the transpose of the observer gain
matrix L can be computed as follows where P denotes parameter vectors:

L' =—[p - p ) [wn - wy, ] (4.75)

Where vector wy; is related to parameter vector p, through the following
relation:

[ AT -\, 1 CT ] [ L ] —0 (4.76)
Lt
This is the so-called Roppenecker’s formula to get the observer gain matrix
L.
To get this result we rewrite the dynamics of the estimation error e(t) as
follows:

ef(t) = (A-LC) e (t) & (1) = (AT — CTLT) " (1) (4.77)

Let w;,; be an eigenvector of matrix (A — LC)T. As far as (A — LC)” and
(A — LC) have the same eigenvalues, which are the predefined eigenvalues \p;,
we can write:

(AT = CTL) wy; = Anawy, (4.78)
The preceding equation can be written as follows:
(AT = \pil) wy, = CTL w,, (4.79)
That is:
wr; = (AT - )‘Liﬂ)il C'L"w,, (4.80)

Then we introduce n parameter vectors P defined as follows;

p, = -LTw,, (4.81)

1

Each parameter vector P is a p x 1 vector where p is the number of rows of
matrix C, that is the number of outputs of the system.
Using parameter vector p, Equation (4.80) reads:

-1

wp; =— (AT —xLd) C'p, (4.82)

Writing Equation (4.81) for the n distinct predefined -eigenvalues
AL1L, -+ 5 ALn leads to the following relation:

[721 Bn]:_LT[QLl MLn] (4.83)

Finally the transpose of the observer gain matrix L can be computed as
follows:
L'=—[p - p ) [wy - w, ] (4.84)
We have retrieved the so-called Roppenecker’s formula to get the observer
gain matrix L.

It is worth noticing the following facts:
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— Using equation (4.81) within Equation (4.79) it is clear that parameter

vectors p. shall satisfy the following relation:
(AT = Apl) wp; = ~CTp, (4.85)

That is:
[ AT — I CT ] [ L ] -0 (4.86)
£
It is clear from the previous equation that each (n+p) x 1 vector
[ pr ] belong to the null-space of matrix [ AT — )1 CT ] So once

Lt
any (n+p) x 1 vector which belongs to the null-space of matrix

[ AT —\p,I CT } has been found, its p bottom rows are used to form
vector parameter p.. In the MIMO case several possibilities are offered.

By taking the transpose of equation (4.86) we get the following expression:

A -\l
[ wii p?][ o ]zo (4.87)
We recognize in matrix [ A _C)\Li]l } the key matrix used in the PBH

observability test;

If we wish to keep an eigenvalue A; of matrix A within the set of eigenvalues
of A —LC then Equation (4.79) is equal to zero because in that case wy;
is also an eigenvector of A:

Ai =i = (AT = Apl)wy; = —C'p, = (AT = Al) wy; =0 (4.88)

Consequently we have to replace p, by 0 and wy; by eigenvector w; of A
corresponding to \; in the Roppenecker’s formula (4.75);

If we chose a complex eigenvalue Ap; then its complex conjugate must also
be chosen. Let’s A\r;r and Ap;; be the real part and the imaginary part
of Ari, wr,;p and wy,; be the real part and the imaginary part of w;, and
Pir and p. . be the real part and the imaginary part of P respectively:

ALi = ALiR + JALiT
Wr; = Wr;R ijLu (4.89)
P, =Pip TP
Then equation (4.86) reads:
(AT — Apir + jAnin) L) (wrig + jwp) + CT (&R +jgu) =0 (4.90)

Taking the complex conjugate of the preceding equation reads:

(AT = (Apir — jALin) 1) (wrig — jwrir) + CT (&R - j&[> =0 (4.91)
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Summing and subtracting Equations (4.90) and (4.91) reads:

{ (AT = ALirl) wpp + Avirwpr + CTp,p =0 (4.92)
(AT = ApigD) wyir — ALirwrig + CTQH =0 '
That is in vector form:
WriRr
AT — \pigl ArLirl ct o Wrir |
[ —Arirl AT — gl 0 CT P | 0 (4.93)
Dy

In Equation (4.75) vectors p,, p7 (where * denotes complex conjugate),
wr; and w7, are replaced by vectors p, ., p,;; wr;r and wp;;, respectively.

— In the SISO case the observer gain matrix L no more depends on parameter
vectors p.. Indeed is that case the observer gain matrix L is obtained as
follows:

L"=[1 - 1]

[(AT-auD~' e o (AT-a) e | ey

To get this result we start by observing that in the SISO case parameter
vector are scalars; they will be denoted p;. Let vector [; be defined as
follows:

I, =— (AT — D) T (4.95)

=1

Then Equation (4.75) reads:

L=—[p - pa][lpr - Lpn ] (4.96)
Let’s rearrange the term [ LUpr - L,pn ]_1 as follows:
D1 0 -
[Lpr - Lpa ] =L - L]
0 Pn
[ m 01"
= (Lo 1, ]
| 0 Pn
i Hz Di
H?ipz‘ 0
= . (4 o L]
Hi n Pi
L 0 H:Li1p1
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Multiplying this expression by — [ pP1 o Dn ] leads to the expression
of LT:
-1
LT Z—[pl o Dn } [ Lpt - Lpn ]
Hi;ﬂ pi 0
H;l:l Di .
=—[pm - pu] (L L]
Hi;tnpi
0 1 H?:l Di
=-[1 Ll - L]
(4.98)
Using the expression of vector [, = — (AT — )\Li}l)fl CT provided by

Equation (4.95) we finally get:

L"=[1 - 1]

[ (AT —)\Ll]l)_l cr ... (AT - /\Ln]l)_l cr ] (4.99)

We conclude that in the SISO case the observer gain matrix L no more
depends on parameter vectors P,

4.7 Reduced-order observer

Consider the following state space representation where D = 0 and where z(t)
denotes the state vector, y(¢) the measured output and u(t) the control input:

{ i(t) = Ax(t) + Bu(t) (4.100)

y(t) = Cux(t)

We will show in this section how to derive an observer of reduced dimension
by exploiting the output equation y(t) = Cz(t).

Let p be the rank of matrix C. Then, from the output equation y(t) = Cz(t),
we can extract p linearly independent equations and then compute directly p
components of the state vector z(¢). Assuming that n is the dimension of the
state vector, only the remaining n — r components of the state vector have to
be estimated and then the order of the observer can be reduced to n — r.

More precigely, since matrix C is of rank p, there exists a n x n nonsingular
matrix P such that the following relation holds, where I, denotes the identity
matrix of size p and 0, ,_, the p X (n — p) matrix of zeros:

CP=[1, Oppyp | (4.101)

] is nonsingular.

ala

Indeed, let C be a (n— p) x n matrix such that matrix [
Then a possible choice for P is the following:

p_ [ c ]_1 (4.102)
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Hence, using (4.101), we can write:

y(t) = Ca(t) = CPP~'x(t) = [ L, Opn—p ] z*(t) (4.103)

where:

2 (t) =P~ a(t) & a(t) = Pa*(t) (4.104)

Hence, mapping the system in the new state vector z*(t) via the similarity
transformation P, we obtain the following state space representation:

{ i*(t) = P~ APz*(t) + P~ 'Bu(t) (4.105)

y(t) = CPz*(t)

From the fact that CP = [ L, Opn—p ], it can be seen that the first p
components of the new state vector z*(t) are equal to y(t). Thus we can write:

CP=[1, 0,,,]=z= [ i(ft)) ] (4.106)

As far as the p first components of the new state vector z*(t) are equal
to y(t), they are available through measurements and thus there is no need to
estimate those components. Consequently the reduced-order observer focuses
on the estimation of the remaining state vector z,.(t).

The state equation (4.105) can be written as follows:

= | 2o [ =LA A2 [+ [ |

v =1 0y || 20 =)

Let’s split matrix P as follows, where Py is a nx p matrix and Py a nx (n—p)

|-

(4.107)

matrix: .
p-| ¢ ) =[Py Py ] (4.108)
C
Then we get:
A7, A, ] 1 [ CAP; CAP,
=PAP=| & —
[ A3, A3, CAP; CAP; (4.109)
BT | P-1B — CB ’
B; | ~ | CB

To design an observer for z,.(t), we use the knowledge that an observer has
the same structure as the system plus the driving feedback term whose role is to
reduce the estimation error to zero*. Hence, an observer for z,.(t) reads:

2,(t) = Ay y(t) + A%, () + Biu(t) + Ly (y(t) — §(1)) (4.110)

“Zoran Gajic, Introduction to Linear and Nonmlinear Observers, Rutgers University,
https://www.ece.rutgers.edu/~gajic/
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Unfortunately, since y(t) = g(t), the difference y(¢) —g(t) does not carry any
information about z,(t). Nevertheless, by taking the time derivative of y(t), w
get the first equation of (4.107) which carries information about z,.(¢):

Ale( )+ Aoz, (1) + Biu(t)
= Afyz, (1) = y(t) — Aly(t) — Biu(?)

Regarding y (t) = Aflz,(t) as a virtual output of the reduced state
equation, the observer for z,.(t) finally reads:

{ B (1) = Agu(t) + AR, () + Bju() + L (1,) ~ A2 (0) (4110
v, () = i(t) — Afyy(t) - Biu)

Furthermore the dynamics of the error e, (t) = z,(t) — Z,(t) reads as follows:
[ (t) =Z, (t> - iw(t)
= A y(t) + Abyz, (1) + Biu(t)
— (A5 + A%y, (1) + Bju(t) + L, (y,(t) - ALz, (1))
= (A —LrATy) e, (1)

|-

S
~

~—
I

(4.111)

(4.113)
Consequently, designing the observer gain L, such that the characteristic
polynomial of matrix A3, — L,Aj, is Hurwitz leads to the asymptotic
convergence of the estimates z,(t) towards z,(¢). Such a design is always
possible as soon as the pair (A%,, A},) is observable, which is a consequence of
the observability of the pair (A, C) (this can be shown using PBH test*).
Since it is not wise to use ¢(t) because in practice the differentiation process
introduces noise, we will estimate vector ,., (t) rather than z,(t). Vector 2, (t)
is defined as follows:

TY

2,,(t) = 2,(t) — Lyy(?) (4.114)
From (4.112), we get the following observer for Z,.,(#):

() + Asyi, (6) + Biu(t) + Lo (y,(6) — ALa, (1) — Lot
() + Ay (&, (t) + Ley(t)) + Biu(t)

+L ( Ahy( ) — B1Q(t) — Al (@ry(t) + Lrg(t)))

yy () + Aryd,, (t) + Byu(t)

(4.115)

where:
A, =A% +A%L, — LA}, — L. A},L,
A=A —-L.Aj, (4.116)
B, =Bj-L,B]

Assembling the previous results, the estimation of state vector z(t) finally
reads as follows where the dynamics of Z,,(t) is given by (4.115):

et _p | Y@ y(t)
x(t)—Px(t)—P[ir()} P[ L6+ Loyt (4.117)
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Controller design

5.1 Introduction

Controller enables to obtain stable systems which meet performances
specifications. In the case where the full state vector z(t) is available then
controller design involves state feedback. In the more usual case where only
some components of the state vector are available through the output vector
y(t) then controller design involves output feedback in association with a state
observer.

This chapter focuses on controllers design. More specifically state feedback
controller for SISO systems in controllable canonical form, state feedback
controller for SISO systems in arbitrary state-space representation, static state
feedback controller and static output feedback controller for MIMO systems
will be presented. We will also present controller with integral action.

5.2 Static state feedback controller

Consider the following state equation where x(¢) denotes the state vector and
u(t) the control input:

&(t) = Az(t) + Bu(t) (5.1)

We will assume in the following that the full state vector z(t) is available
for control.

Let r(t) be a reference input signal. A static state feedback (or full state)
controller computes the control input u(t) as a function of a state-feedback gain
K and a feedforward gain matrix H as follows:

u(t) = Hr(t) — Kz(t) (5.2)

Substituting the control law (5.2) into the state equation (5.1) of the system
yields:
i(t) = (A — BK) 2(t) + BHz () (53)

— The purpose of the controller gain K is at least to assign the eigenvalues of
the closed-loop state matrix A — BK at predefined locations. For MIMO
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systems there are additional degrees of freedom which may be used for
others purposes like eigenstructure assignment;

— The purpose of the feedforward gain matrix H is to pick up the desired
final value such that the closed-loop system has no steady state error to
any constant value of the reference input r(t).

In steady state conditions we have &(t) = 0 and consequently (5.3) reads:

i(t) = 0= z(t) = — (A — BK) "' BHz(t) (5.4)

On the other hand, using (5.2) the output equation y(t) = Cx(t) + Du(t)
reads:

{ Z(@ _ Cfé% ; Iﬁ% = y(t) = (C~DK)z(t) + DHr(t) (5.5)

Inserting (5.4) into (5.5) yields:

y(t) =—-(C-DK) (A - BK) ' BHr(t) + DHr(t)
- (D ~ (C-DK)(A - BK)™" B) Hr () (56)

Then matrix H is computed such that the closed-loop system has no steady
state error to any constant value of the reference input r(¢). So imposing
y(t) = r(t) leads to the following expression of the feedforward gain matrix
H:

y(t) =r(t) = H= (D ~ (C-DK) (A - BK) ! B) (5.7)

In the usual case where matrix D is null the preceding relation simplifies
as follows:

H=— (C (A - BK)™! B) (5.8)

We will see in section 5.5 that adding an integral action within the controller
is an alternative method which avoid the computation of feedforward gain matrix
H.

In the following we will assume that the system is controllable, or at least
stabilizable, such that it is possible to design a state feedback controller. Indeed
Wonham! has shown that controllability of an open-loop system is equivalent
to the possibility of assigning an arbitrary set of poles to the transfer matrix
of the closed-loop system, formed by means of suitable linear feedback of the
state.

"Wonham W., On pole assignment in multi-input controllable linear systems, IEEE
Transactions on Automatic Control, vol. 12, no. 6, pp. 660-665, December 1967. doi:
10.1109/TAC.1967.1098739
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5.3 Control of SISO systems

5.3.1 State feedback controller in controllable canonical form

A|B
Let <F‘T) be an controllable Single-Input Single-Output (SISO) linear

time-invariant system of order n and let xa_px(s) be an imposed n'* order
monic polynomial (a monic polynomial is a polynomial in which the leading
coefficient, that is the nonzero coefficient of highest degree, is equal to 1).
Polynomial xa—px(s) corresponds to the characteristic polynomial of matrix
A — BK. It is formed thanks to the predefined eigenvalues Ag,, -, Ak,
assigned for the dynamics of the controller:

XA-BK(s) =det (sl — (A —BK)) = (s — Ag,) - (s — Ak,,) (5.9)
When expanding the preceding product we get:
XA-BK(5) = 8" + pn_15" " 4+ + prs+po (5.10)

We begin with the case where the system realization ( é ]]?) > is the

controllable canonical form. Then matrices A, and B, are the following:

[0 1 0 0 1
0 0 1 0
A, = 0
0 0 0 1
L a0 —a1 —az2 --- —Aapn-1 |
(5.11)
0]
0
B. = :
0
_1_.

Matrices C. and D will not be used.

Let K. be the controller gain matrix when the controllable canonical form
of the system is used. For a SISO system this is a 1 x n matrix. Let K; be the
(scalar) component in the i" row of matrix K.:

Ko=[K - K] (5.12)

Using the duality principle we can infer that the expression of the state
feedback controller for SISO systems in controllable canonical form has the
following expression:

K.=L!=[po—ao -+ po1—an1 ] (5.13)
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To check it just notice that when the controllable canonical form of the
system is used then matrix A, — B.K_ reads:

0 1 0

0 0
o 0 1 . 0 0
A.-BK. = . . 0 - [Kl Ky, ]
0 0 0 1 0
| —ap —ap —az -+ —Ap-1 | | 1]
[ 0 1 0 0 i
0 0 1 0
- . ‘. 0
0 0 0 1
| —a0— K1 —a1 — Ky —ax— K3 -+ —ap-1 — Ky |
(5.14)

Since this matrix still remains in the controllable canonical form its
characteristic polynomial is readily written as follows:

XAfBK(S) = det (A — BK)
= det (A, — B.K,) (5.15)
="+ (an—1+ Kp) s" L+ 4 (a1 + K2) s +ag + K3

Identifying Equations (5.10) and (5.15) leads to the expression of each
component of the controller matrix K:

po = ap + K3
p1=a; + Ky K. =[ K Koy - K, ]
: = =[ ppo—ap pr—ai - Pp_i—an-1
Pn—-1 = an-1+ K,
(5.16)

5.3.2 State feedback controller in arbitrary state-space
representation

When an arbitrary state-space representation is used the system has to be
converted into the controllable canonical form via a similarity transformation.
Let P, be the matrix of the similarity transformation which enables to get the
controllable canonical form. We get:

2(t) = Pex,(t) & z,(t) = P z(t) (5.17)

We have seen in the chapter dedicated to Realization of transfer functions
that P_! is a constant nonsingular change of basis matrix which is obtained
through the following relation:

Pl =Q.Q." (5.18)
Where:
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— Q. is the controllability matrix in the actual basis:

Q.=[B AB .- A"!B] (5.19)

— and Q. the controllability matrix expressed in the controllable canonical
basis (which is readily obtained through det (sI — A)).

Thus the control law u(t) reads:

u(t) = —Kez,(t) + Hr(t) = —K:P_ 'z(t) + Hr(t) (5.20)

That is:
u(t) = —Kz(t) + Hr(t) (5.21)

Where:
K=K./P_! (5.22)

Example 5.1. Design a state feedback controller for the following unstable

plant;
i(t) = H g]x(tH [ ;]u(t)

y(t) = [ 3 5 ]g(t)

As far as this is a modal (or diagonal) state space representation, plant’s
controllability is readily checked by inspecting column of control matriz B:
because there is no null element in the control matriz B we conclude that the
plant is controllable by applying Gilbert’s criteria.

The poles of the controller shall be chosen to render the closed-loop stable
and to satisfy some specifications. We choose (for example) to locate the poles
of the controller at A\, = —1 and A\, = —2.

We will first design the controller assuming that we have the conirollable
canonical form of the SISO system. The controllable canonical form is readily
obtained through det(sl — A):

(5.23)

det(sl —A) = (s —1)(s —2) =52 —3s+2:=5%+a1s+ap

:Acz[_OQ H andBC:[(l)] (5.24)

On the other hand the characteristic polynomial of the controller is formed
thanks to the predefined eigenvalues assigned for the dynamics of the controller:

Xa-BK(s) = (s =Ar,) (s = Ary) = (s +1) (s +2)

=52 4+3s5+2:=52+pis+po (5.25)
Applying relation (5.16) we get:
K. =[ K Ky|=[po—ap p1—ay | (5.26)

[2-2 3+3]=[0 6]
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Now let’s compute the inverse of the similarity transformation matriz Pt
which enables to get the controllable canonical form.

P! =Q.Q." (5.27)
Where:

— Q¢ is the controllability matriz in the actual basis:

Q.=[B AB]Z[;H (5.28)

— and Q. the controllability matriz expressed in the controllable canonical
basis (which is readily obtained through det (sI — A)):

0 1
Qcc:[Bc Ach]:|:1 3:| (5.29)
Thus: )
[0 1 1 1]
-1 _ -1 _
P = QeeQc __1 3][2 4]
1 0 1] 4 =1 5.30
_2[1 3] -2 1 (5.30)
_1 -2 1
21 =2 2 |

We finally get:
K:chglzé[o 6][_2 1}:;[—12 12]=[-6 6] (531)

The feedforward gain matriz H is computed thanks to (5.7) (where D =0):

H=— (c (A —BK)™! B) = —0.125 (5.32)

5.3.3 Ackermann’s formula

Ackermann’s formula states that the controller gain matrix K of a SISO system
in arbitrary state-space representation can be obtained as the product between
vector QZ and the assigned characteristic polynomial y4—px(s) of matrix A —
KC evaluated at matrix A:

K = ¢ xa BK(A) (5.33)

To get this result we first recall that similarity transformation generates
equivalent state-space representations. Let P. be the matrix of the similarity
transformation which enables to get the controllable canonical form. Starting
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B
C|D
controllable canonical form is obtained through the following relations:

from a state-space representations in an arbitrary basis, the

A.=P_ AP,
B.=P,'B (5.34)
C.=CP,

Consequently matrix A, — B.K, reads:

A.-B.XK, =P;'AP.-P.!'BK,

=P,! (A-BK.P )P, (5.35)

This equation indicates that the controller gain matrix K in arbitrary state-
space representation reads:
K=K./P.! (5.36)

We have seen in the chapter dedicated to Realization of transfer functions
that P! is a constant nonsingular change of basis matrix which is obtained
through the state matrix A and vector QCT :

T
q
P! ng

c

(5.37)
Q(T;Anfl
Vector QCT is the last row of the inverse of the controllability matrix Q.:

*

Q. l=| - where Q.=[B AB .- A" 'B] (5.38)

*
qT

=C

Then we recall Cayley-Hamilton theorem. Let x4,(s) be the characteristic
polynomial of the n x n matrix A.. We write the characteristic polynomial
XA, (s) of matrix A, as follows:

xa,(8) :=det(sT — A.) = 8" + ap_15"" ' 4+ +ars +ag (5.39)

The Cayley—Hamilton theorem states that substituting matrix A, for s in
the characteristic polynomial y 4, (s) of matrix A, results in the zero matrix?:

XA, (A) =0=A"+a, A"+ F a1 A+ agl (5.40)

Let xa—pk(s) be the characteristic polynomial of matrix A. — B.K.. We
have seen that when predefined eigenvalues Ag,,--- , Ak, are assigned for the

*https://en.wikipedia.org/wiki/Cayley-Hamilton _theorem
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dynamics of the controller the characteristic polynomial of matrix A, — B K,

reads:
XA-Bk(s) =det (sl — (A, —B.K,))

=(s—Mg,) (s —Ak,) (5.41)
= 8" 4+ pu_18" 4+ -+ P15+ po

Substituting s for matrix A, leads to the following relation:
XA-BK(Ac) = Al + pp 1 AL+ -+ prAc + pol (5.42)

Note that xa—pr(A.) is not equal to O because xa_px(s) is not the
characteristic polynomial of matrix A..
Thanks to Equation (5.16) and the relation p; = a; + K; we get:

XA-BK(Ae) = Al + (an—1 + K1) A7+
+ (a1 + K1) Ac+ (a0 + Ko) I (5.43)
By subtracting Equations (5.40) to (5.43) we get:
xa-Br(A) = Ky 1AM 4o+ KA+ Kol (5.44)
Due to the fact that coefficients K; are scalar we can equivalently write:
Xa-Br(Ad) = AV K, 1+ + ALKy +1K, (5.45)
Let u” be the vector defined by:
u"'=[10 - 0] (5.46)
Due to the special form of matrix A, we have:
w'Ac=[0 1 0 -+ ]
uTA2=[0 0 1 0 -]
: (5.47)
QTA’;*: [0 -~ 0 1 ]
Thus multiplying Equation (5.45) by u” leads to the following relation:
u'xa-pr(Ac)=[ Ko K1 -+ Kni1]=K. (5.48)

Thus we get the expression of the controller matrix K, when we use the
controllable canonical form.
We multiply Equation (5.48) by P_.! and use the fact that

AF = (Pc_lAPc)k = P_'AFP, get the expression of the controller gain matrix

(&
K in arbitrary state-space representation:

(5.49)
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Because u is the vector defined by u! = [ 10 -+ 0 ] we get using (5.37):

WP =¢r (5.50)

= C e

Consequently Equation (5.49) reduces to be the Ackermann’s formula (5.33):

K = ¢ xa-Bx(A) (5.51)

5.3.4 Invariance of (transmission) zeros under state feedback

It is worth noticing that the zeros of the closed-loop transfer function are the
same than the zeros of the open-loop transfer function when state feedback is
used. In other words, state feedback K just changes the values poles of the
poles, the zeros remaining unchanged.

To get this result, we can use the controllable canonical form to compute
the closed-loop transfer function, C. (sl — A, + BCKC)_1 B.H, and notice that
its numerator is independent of both state feedback gain K. and state matrix
A.. When the controllable canonical form is used, it is clear that coeflicients
which appear in the numerator of the closed-loop transfer function come from
product C.H and from the last column of the adjugate of the closed-loop state

matrix, which is [ 1 s - st ]T:

* % 1 0
1 E S 3 S :
I-A,+B.K,) 'B, = :
(I=ActBK) Be=| G0 GI—A. +BK) | : © 0
%k Sn—l 1

1

C. s

C.(sl-—A.+BK.) 'B.H=
= Cels +B.K.) dot (sI — A, + B.K,)

Consequently state feedback gain K., or K in general, does not affect the
numerator of the closed-loop transfer function. A practical use of this
observation is that state feedback gain K can NOT be used to change zeros
location in a state feedback loop.

5.4 Static state feedback controller

5.4.1 Roppenecker’s formula

We consider the following state-space representation where y(t) € RP denotes
the measured output signal and u(t) € R™ the control input:

{ i(t) = Az(t) + Bu(t) (5.53)

y(t) = Cz(t) + Du(t)
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We will assume in the following that only the output vector y(¢) is available
for control. B

Let r(t) be a reference input signal. A static output feedback controller
computes the control input u(t) as a function of a state-feedback gain K and a
feedforward gain matrix H as follows:

u(t) = —Ky(t) + Hr(t) (5.54)

Using the output equation y(t) = Cz(t) + Du(t) the control input w(t) can
be expressed as a function of the state vector z(t) and the reference input r(¢):

u(t) = —K (Cz(t) + Du(t)) + Hr(?)

— u(t) = (I+ KD)™' (—KCuz(t) + Hr(t)) (5.55)

Substituting the control law (5.55) into the state equation (5.53) of the
system reads:

i(t) = Az(t)+B(I+KD) ' (~KCz(t) + Hr(t))

= (A ~-B(I+KD) "' KC) z(t) + B (I+ KD) ' Hr(t) (5.56)
We denote by A the closed-loop state matrix:
Ay=A-B(I+KD) 'KC (5.57)

It is worth noticing that in the special case where the feedforward gain
matrix D is zero (D = 0) and where the output matrix C is equal to identity
(C =1) then the static output feedback controller K reduces to be a static state
feedback controller.

Let Ax,, -, AKk, be n distinct specified eigenvalues of the closed-loop state
matrix A.. Furthermore we assume that eigenvalues of matrix A do not shift
(meaning that they are different) the eigenvalues Ak, of the closed-loop state
matrix Ag. Let vy, be an eigenvector of the closed-loop state matrix Ay
corresponding to eigenvalue A\g;:

(A _B(I+KD)™ Kc) Ure, = Ak Uk, (5.58)
The preceding relation can be rewritten as follows:
(A —Xg,D)vg, —B(I+KD) 'KCuy, =0 (5.59)

Let’s p. be the parameter vector which is actually the input direction
corresponding to eigenvector vy

p, = — (I+KD) ' KCuy, (5.60)

Combining Equations (5.59) and (5.60) leads to the following relation:

[A—)gI B] {’”K ] —0 (5.61)

e
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From (5.61) it is clear that vector { Q}fi } belongs to the kernel of matrix
£

[A-)gI B |:

[vﬁ' } eN([A-xl BJ) (5.62)

1
Assuming that the rank of matrix A — Ak, I is n, matrix [ A-)gl B } is
of rank n. For a system with m inputs, B has m columns and (5.61) represents

o system with n linearly independant equations and n + m unknowns { OK; } .
Thus we can choose arbitrary m unknowns. In the following, we will assume that
p. is arbitrarily chosen. Nevertheless, in general, the m unknowns parameters
can be split indifferently either on vy or P,

Writing  (5.61) for all the distinct predefined eigenvalues

Ay = diag(Ay,- -, Mk,) of the closed-loop state matrix gives:

[ A~ g, B][Ugi]:o

P, (5.63)
& Avg, — Vg, Ak, —I—Bgi =0 Vi=1,---,n
This leads to the so-called Sylvester matrix equation:
AV - VA,+BP =0 (5.64)
Where matrices P and V are defined as follows:
P:[ }:_]1 KD) ' KCV
It is clear that as soon as vy, = — (A — )\K,L.]I)_l Bp, then kernel equation

(5.61) is solved. Consequently matrices P and V satisfying Sylvester matrix
equation (5.64) are obtained as follows where m x r parameter matrix P is a
real matrix of rank m:

=|Dp D, ] where rank (P) =m
(5.66)
V = ‘A[]_B1 et Wpo :|
Where:
_ T
Bz’ - [ bir - Pim ] (567)
W;=—(A- )\ ]) 'B
There are p vectors p,t=1--,pto determine, each of size m, thus m x p
unknowns. Thus the number n of required eigenvalues A\g,, @ = 1,--- ,n shall
be such that m x p > n.
From the definition of matrix P given in (5.65) we get:
P=—-(I+KD) 'KCV
& P=—(1+KD) 'KCV (5.68)

& (I+KD)P = —KCV
& K(CV+DP)=-P
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Usually matrix CV + DP is not square. Consequently the static output
feedback gain K is obtained by taking the pseudo-inverse (CV + DP)Jr of matrix
CV + DP:

K = —P(CV +DP)!
-1
where (CV 4+ DP)" := (CV + DP)” ((CV +DP) (CV + DP)T)

(5.69)
In the special case where matrix CV + DP is square and invertible the
preceding relation reads:

K=-P(CV+DP) ! (5.70)
Or equivalently:

K=-[p, - p,](Clog, - vk, |+D[p, . p, )7 (5.71)

—n

The preceding relation is the so-called Roppenecker’s formula® to get the
static output feedback gain matrix K.

5.4.2 Comments on Roppenecker’s formula

We recall that the n distinct eigenvalues Ag;, of the closed-loop state matrix and
the corresponding eigenvectors vy are related to the parameter vectors P by
relation (5.61) which is reported hereafter:

[A—)gl B] {UP; ] —0 (5.72)

It is worth noticing the following facts:

— From the relation:

[A- )l B] [”Ki ] —0 (5.73)

It is clear that each (n 4+ m) x 1 vector [ y;(i ] belongs to the kernel of
L)

matrix [ A — Ag,I B ]. So once any (n+ m) x 1 vector which belongs

to the kernel of matrix [ A-)\gI B ] has been found, its m bottom

rows are used to form vector parameter p,. In the MIMO case several

possibilities are offered.

— We recognize in matrix [ A — Ag,I B | the key matrix used in the PBH
controllability test;

3G. Roppenecker, On Parametric State Feedback Design, International Journal of Control,
Volume 43, 1986 - Issue 3
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— In the special case of state feedback where D = 0 and C =1 then matrix
CV 4+ DP =V where V is a square and invertible matrix. In that case
Equation (5.70) leads to the expression of the static state feedback gain

matrix K:
C=1I _ -1
{50 =K=Pvielp 5] (uq - )

(5.74)

— If we wish to keep an eigenvalue \; of matrix A within the set of eigenvalues
of the closed-loop state matrix Ay then (A — Ak, I) v, is equal to zero
because in that case vy, is also an eigenvector of A:

Ak, = Ai = (A=A vk, = —Bp, = (A = Al vk, =0 (5.75)

Consequently we have to replace p. by 0 and vy, by eigenvector v; of A
corresponding to \; in the Roppenecker’s formula (5.70);

— The static output feedback gain K satisfy the following relation:

K (Cym + D&) =—p

2

(5.76)

Indeed by combining Equations (5.61) and (5.76) we retrieve Equation
(5.58):

Avg, + Bp, = Ak, vk,
K (CQKi + DBL‘) =-p, & p =- (I+ KD)_1 KCQKZ_ (5.77)
= (A ~B(I+KD)! KC) Ui, = KU,

Conversely we can write the preceding equation as follows:

v
A-)gl B —Ki - _
[ AK; ] [ — (I +KD) ' KCuy, u (5:78)
Thus by defining parameter vector p, as p, = — (I + KD)™* KCuy, we
retrieve K (CQKl. + Dﬂi) = —p, which is exactly Equation (5.76).
— In the SISO case where D = 0 and C = I, that is where a state feedback
is assumed, the controller gain matrix K no more depends on parameter

vectors p.. Indeed is that case the controller gain matrix K is obtained as
follows:

K=[1 - 1]
[(A-X,D7'B -+ (A-Ag,)7'B " (5.79)
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To get this result we start by observing that in the SISO case where D = 0
and C = [ parameter vector are scalars; they will be denoted p;. Let vector
K; be defined as follows:

K,=—(A-)gI)'B (5.80)

1

Then Equation (5.71) reads:

1

K=—[p -~ po ][ Kipt - Kppn ] (5.81)
Let’s rearrange the term [ Kipr -+ K,pn ]71 as follows:
-1
P1 0
-1
[Kﬂ?l Knpn] — [Kl Kn}
0 Pn
- -1
p1 0
= (K o K, ]
L 0 Pn
[ Hi¢1pi
H?:1 Di O
-1
Hi;enpz‘
| 0 jyi
(5.82)
Multiplying this expression by — [ pP1 ot Dn ] leads to the expression
of K:
K =—[p - p]J[EKipr - Kpnl]
H¢¢1pi 0
H?:1pi )
=—[» - pa] [ K, - K, ]
Hi;,snpi
0 711_1?:1 Di
:_[1 1][K1 Kn}
(5.83)
Using the expression of vector K; = —(A — Ag,I)"' B provided by
Equation (5.80) we finally get:
K=[1 1]
[(A- 2 D'B - (A-A,D)'B]7 (5.80)

We conclude that in the SISO case where D = 0 and C =1, that is where
a state feedback is assumed, the controller gain matrix K no more depends
on parameter vectors ;-
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5.4.3 Solving Sylvester equation

The Sylvester equation reads as follows where A € R"*" B € R™*™ C €
R™™ and X € R™*™ is the sought-after solution:

AX+XB+C=0 (5.85)

Following Peter Benner*, Sylvester equation (5.85) has a unique solution if
and only if 4+ 3 # 0 for all & € 0(A) and 8 € o(B), where o(Z) denotes the
spectrum of the matrix Z. In particular, this property holds for stable Sylvester
equations, where both o(A) and o(B) lie in the open left half plane. The anti-
stable case, where 0(A) and o(B) are contained in the open right half plane, is
trivially turned into a stable one by multiplying (5.85) by —1. Furthermore, the
unique solution X of a stable Sylvester equation can be found from the block
upper triangular matrix H as follows?:

(5.86)

0 -B

If—[A C ]éi@mMH)+MMJ—[3 ?}

We recall that if H = PJP~! is a Jordan decomposition of H with
diag(J) = diag()\;) then sign(H) is defined as follows:

H=PJP ! = sign(H) = Psign(J) P~ = Pdiag (sign(\;)) P~* (5.87)

For a scalar complex variable A, the sign function is defined as follows:

N -

Alternatively, the unique solution of a stable Sylvester matrix equation (5.85)
can be computed as follows®:

X = / eAt CePldt (5.89)
0

5.4.4 Solving general algebraic Riccati and Lyapunov equations

The general algebraic Riccati equation reads as follows where all matrices are
square of dimension n X n:

AX +XB + C+ XDX =0 (5.90)

Matrices A, B, C and D are known whereas matrix X has to be determined.
The general algebraic Lyapunov equation is obtained as a special case of the
algebraic Riccati by setting D = 0.

‘Peter Benner, Factorized Solution of Sylvester Equations with Applications in Control,
January 2004

5Zeyad Abdel Aziz Al-Zhour, New techniques for solving some matrix and matrix
differential equations, Ain Shams Engineering Journal (2015) 6, 347-354
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The general algebraic Riccati equation can be solved® by considering the
following 2n x 2n matrix H:

B D
no[B D] s
Let the eigenvalues of matrix H be denoted Aj, ¢ = 1,---,2n, and the

corresponding eigenvectors be denoted v,. Furthermore let M be the 2n x 2n
matrix composed of all real eigenvectors of matrix H; for complex conjugate
eigenvectors, the corresponding columns of matrix M are changed into the real
and imaginary parts of such eigenvectors. Note that there are many ways to
form matrix M.

Then we can write the following relation:

(5.92)

HM:NM:[Mlhb}{% &]

Matrix M7 contains the n first columns of M whereas matrix My contains
the n last columns of M.

Matrices A1 and Ao are diagonal matrices formed by the eigenvalues of H
as soon as there are distinct; for eigenvalues with multiplicity greater than 1,
the corresponding part in matrix A represents the Jordan form.

Thus we have:

{ HM,; = M Ay (5.93)

HM, = MA,

We will focus our attention on the first equation and split matrix M; as
follows:

(5.94)

| My
SN

Using the expression of H in (5.91), the relation HM; = MjA; reads as
follows:
BM11 + DM12 = M11A1

9.95
—CMi; — AMyp = MpAy (5.95)

HM; =M A = {

Assuming that matrix Mj; is not singular, we can check that a solution X
of the general algebraic Riccati equation (5.90) reads:

X = M;pM! (5.96)

60Optimal Control of Singularly Perturbed Linear Systems with Applications: High
Accuracy Techniques, Z. Gajic and M. Lim, Marcel Dekker, New York, 2001
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Indeed:

BM;; + DMy = M1 Ay
CMi; + AMyy = —MipAy
X = MpM;}!
= AX +XB + C+XDX = AMpM;! +M;sM'B +C
+MoM;; DM oM}
= (AMy, + CMy;) M}
+M2Mj}' (BMy; + DMy2) M}
= —MpA M + MM "M A M}
=0
(5.97)
It is worth noticing that each selection of eigenvectors within matrix M;
leads to a new solution of the general algebraic Riccati equation (5.90).
Consequently the solution to the general algebraic Riccati equation (5.90) is
not unique. The same statement holds for different choice of matrix My and
the corresponding solution of (5.90) obtained from X = My M,

5.5 Control with integral action

5.5.1 Adding an integrator in the state-space realization

We consider the state-space representation (5.98) where the state vector z is of
dimension n (that is the size of state matrix A). In addition y(t) denotes the
output vector and wu(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):

Az(t) + Bu(t) (5.98)

—
< I8
==
— =
Il
Q
8
=
N—

In some circumstances it may be helpful to use integral action in the
controller design. This can be achieved by adding to the state vector of the
state-space realization (5.98) the integral of the tracking error e;(¢) which is
defined as follows where T is a design matrix (usually T = II) and where r(¢) is
the reference input signal:

t
)= [ T (r) ~ylr) r (599
As far as the feedforward gain matrix D is zero (D = 0) we get:
&4(t) = T (z(t) - y(1)) = Ta(t) — TCx(t) (5.100)
This leads to the following augmented state-space realization:
z(t) | A 0 z(t) B 0
o ] =L re o] [ ] |6 w0+ 20

yt)=[C 0] [ ZI((?)

(5.101)
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The regulation problem deals with the case where r(t) = 0. In that situation
the preceding augmented state-space realization has the same structure than the
state-space realization (5.98). Thus the same techniques may be applied for the
purpose of regulator design.

On the other hand the tracking problem deals with the case where r(¢) # 0.
Let’s denote z,(t) the augmented state-space vector:

2, (t) = [ z(t) } (5.102)
Thus the augmented state-space realization (5.101) reads:

{ b, (t) = Aaz,(t) + Bau(t) + Er(?) (5.103)

t) = Caz,(t)

< |8

Let the control u(t) be chosen as follows (here pre-filter gain doesn’t exists):

z(t
u() = ~Kaza(t) = - [K, %] || =0 -Kiat G0y
€r

Obviously, term K, represents the proportional gain of the controller whereas
term K; represents the integral gain of the controller.

The state space equation of closed-loop system is obtained by setting u(t) =
—Koz,(t) = -K,z(t) — K;e;(t) in (5.101):

(4[20] = - Bz + B
B A-BK, -BK][z(#)] [0
N { -TC 0 ] [ez(t)} " H r(t) (5.105)
w0 =[e o] |7
er(t) =T [} (r(r) —y(1)) dr

The corresponding bloc diagram is shown in Figure 5.1 where
Do(s) = (sI— Ag) L.

5.5.2 Proof of the cancellation of the steady state error through
integral augmentation

In order to proof that integrator cancels the steady state error when r(t) is a
step input, let us compute the final value of the error e(t) using the final value
theorem where s denotes the Laplace variable:

lim e(t) = lim sE(s) (5.106)

t—00 s—0
When r(t) is a step input with amplitude one, we have:

r(t)=1Y¢>0= R(s) = - (5.107)

S
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X(s)
) . U(s) l Y(s)
ﬂ(}@» T 1s Lol TK Kl = B | » & (s) > [CO]

- X(s)

5

X(s) Y(s)

R() //———.. . E( } e > U() )_(()
s X”i s K | 5[ 8 ls{o s Elcoale
I L K |a—

Figure 5.1: Plant augmented with integrator

Using the feedback u = —K,x, the dynamics of the closed-loop system is:

B = (Ao~ Bz, + ] o)
-7 (0= o a[;])
=T (r(t) - [C 0]z,)
Using the Laplace transform, and denoting by I the identity matrix, we get:

X,(6) = (51~ Ao+ BK,) |2 R 5109

E(s) =T (B(s) - [C 0] X,(s))
Inserting (5.107) in (5.109) we get:
1|0\ 1
E(s)=T(I-[C 0] (sI—A,+B.K,) Tl ) (5.110)
s
Then the final value theorem (5.106) takes the following expression:

limy oo e(t) = limg SE(S)
s B B -1 1|0
Cmer (110 ol a s [Y) oy

7 <H —[C 0] (~A, +B.K,)™" [r(f)D

Let us focus on the inverse of the matrix —A, + B,K,. First we write K,
as K, = [Kp Ki}, where K, and K; represents respectively the proportional

and the integral gains. Then using (5.101) we get:

[-A o] | [B . _ [-A+BK, BK;
—A, +BK, = {TC 0} +M K, K _[ TC 0 ] (5.112)
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Assuming that X is a square invertible matrix, it can be shown that the

inverse of the matrix [ is the following:

Y
Z 0

X Y| 0 Y (ZY)™!
[z 0] YT (yy™) N w

where XY (ZY) ' + YW =0 (5.113)

Thus:
-1
1 _ [-A+BK, BK,
(—Aa+BaKa) - |: TC 0 :|
0 BK; (TCBK;) !
= —1
(BK;)” (BKZ- (BKZ-)T) W
(5.114)
And:
1[0] [0 BK;(TCBK;) '] [0
(_Aa+BaK) _T_ - |:* W T
_ [BK;(TCBK;)'T
N WT (5.115)
B i [o] _ BK,; (TCBK;) ' T
= [c oAt B) T g] [0 o][ Bl

= CBK, (TCBK;) ' T

Consequently, using (5.115) in (5.111), the final value of the error e(t)
becomes:

limysoce(t) =T (H —[C 0] (-A.+B.K,) " m)

=T (]1 — CBK, (TCBK;)"! T)
— T - TCBK, (TCBK;) ' T
—T-T

=0

(5.116)

As a consequence, the integrator allows to cancel the steady state error
whatever the input step r(t).

5.6 Observer-based controller

5.6.1 Separation principle

We consider the following state-space representation of dimension n (that is the
size of state matrix A) where y(t) denotes the output vector and w(t) the input
vector:

{ (t) = Az(t) + Bu(t) (5.117)

y(t) = Cz(t) + Du(t)



5.6. Observer-based controller 177
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Figure 5.2: Block diagram of the observer-based controller

When the full state z(t) cannot be measured then it is estimated thanks to
an observer. This leads to an observer-based controller with inputs y(¢) and
u(t). The output of the observer-based controller will be denoted w,(t). Tts
dynamics reads as follows:

{ i(t() Az(t) + Bu(t) + L (y(t) — (CL(t) + Du(?))) (5.118)
u,(t

) = Ki(1)

Gain matrices L, K and H are degrees of freedom which shall be set to
achieve some performance criteria.

The block diagram corresponding to the observer-based controller is shown
in Figure 5.2.

The estimation error e(t) is defined as follows:

e(t) = z(t) — 2(t) (5.119)

— Ax(t) - Ai(t) - L (y(t) — Ca(t) - Du(t))

= Az(t) — Az(t) — L (Cx(t) + Du(t) — Cz(t) — Du(t)) (5.120)
= Ae(t) — LCe(t)

=(A-LC)e(t)

Combining the dynamics of the state vector z(t) in (5.117) and dynamics of
the estimation error e(t), and using the fact that z(¢) = z(¢t) — e(t), yields to
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the following state-space representation for the closed-loop system:

[ z((i)) ] = Ad [ i(t) ] * [ s ]T(t) (5.121)

where:

A-BK BK } (5.122)

Ad:[ 0 A-LC

Gain matrices L and K shall be chosen such that the eigenvalues of matrices
A — BK and A — LC are situated in the left half complex plane so that the
closed-loop system is asymptotically stable.
Furthermore it is worth noticing that matrix is block triangular.
Consequently we can write:
sI - A+ BK —BK
det(sH—Acl):det<{ 0 SH—A—I—LC:|)

= det (sI — A + BK) det (s — A + LC) (5.123)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A — BK, that is the state matrix of the
closed-loop system without the observer, and the eigenvalues of matrix A —LC,
that is the state matrix of the closed-loop system without the controller. This
result is known as the separation principle. As a consequence the observer
and the controller can be designed separately: the eigenvalues obtained thanks
to the controller gain K assuming full state feedback are independent of the
eigenvalues obtained thanks to the observer gain L assuming no controller.

Gain matrices L and K shall be chosen such that the eigenvalues of matrices
A — BK and A — LC are situated in the left half complex plane so that the
closed-loop system is asymptotically stable.

Usually observer gain L is chosen such that the eigenvalues of matrix A—LC
are around 5 to 10 times faster than the eigenvalues of matrix A — BK, so that
the state estimation moves towards the actual state as early as possible.

Furthermore the reference input r(¢) has no influence on the dynamics of
the estimation error e(t). Consequently the feedforward gain matrix H is still
given by Equation (5.7).

5.6.2 Example
Design an output feedback controller for the following unstable plant:
: 1 1
s =[5 5 ]a0+] ]
(5.124)
yt) =13 5]a(t)

The poles of the controller shall be chosen to render the closed-loop stable
and to satisfy some specifications. We choose (for example) to locate the poles
of the controller at A\g, = —1 and Ag, = —2.
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First we check that is system is observable and controllable.

We have seen in example 5.1 how to design a state feedback controller. By
applying the separation principle the observer which estimates the state vector
Z(t) which will feed the controller can be designed separately from the controller.

We have obtained: [ ]
K=| -6 6
{ H=-0.125 (5.125)

As mentioned the eigenvalues of the observer are chosen around 5 to 10
times faster than the eigenvalues achieved thanks to the controller. As far as
the closed-loop poles obtained thanks to the controller are located at A, = —1
and Ag, = —2 we choose (for example) to locate the poles of the observer at
)\Ll = —10 and )\Lg = —20.

As described in the chapter dedicated to Observer design, we first design
the observer assuming that we have the observable canonical form of the SISO
system. The observable canonical form is readily obtained through det(sI— A):

det(sl —A)=(s—1)(s—2) =52 —3s+2:=52+a1s+agp

0 -2
1 3]andCO:[O 1]

A (5.126)

On the other hand the characteristic polynomial of the observer is formed
thanks to the predefined eigenvalues assigned for the dynamics of the observer:

Xa—rc(s) =(s—Ar1) (s — Ar2) = (s +10) (s + 20)

=52+ 3054 200 := 52+ p1 s+ po (5.127)

Applying relation (4.39) we get:
| La | _|po—ao | _|200—2| | 198
Lo_[L2]_[p1—a1]_[304_3}—[33] (5.128)

Now let’s compute the similarity transformation matrix P, which enables
to get the observable canonical form.

P, =Q, ' Qoo (5.129)
Where:

— Q, is the observability matrix in the actual basis:

C 5 > 3 5

Q":[CA]: [3 5] [ég] :[3 10] (5.130)

— and Q,, the observability matrix expressed in the observable canonical
basis (which is readily obtained through det (sI — A)):

1
C, 0 0 1

Qooz[COAo}z [0 1] [(1)—32] =[13] (5.131)
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Thus: .
3 5] [0 1
—_0O-1 _
Po _QOQOO_{B 10] [1 3}
4 [0 -57[0 1 5 139
RS [ -3 3 |1 3 (5.132)
1| =5 =5
=4 .
We finally get:
1] -5 -5 198 =77
L_PoLo_w[ 36 ][33]_[52.8] (5.133)

5.6.3 Feedback controller

It is possible to avoid the need to feed the observer (5.118) with control wu(t).
In the alternative design presented hereafter, the output-based controller is feed
by the output y(t) of the plant to be controlled. The counterpart of this design
is that the estimation Z(t) of the state vector of the plant is now not provided
by the output-based controller. The output of the output-based controller will
be denoted u,(t). Its dynamics reads as follows:

{ i.(t) = (A = BK) z.(t) + L (y(t) — (C — DK) z.(t))

u,(t) = Kz, (1) (5.134)

The block diagram corresponding to the observer-based controller is shown
in Figure 5.3.

By combining the dynamics of the plant (5.117) and the dynamics of the
output-based controller (5.134), we get the dynamics of the closed-loop system,
which reads as follows:

(=Bl [ 50Ty 0] TR

where the closed-loop state matrix A reads:

A —BK ]

Ad = [ LC A-BK-LC (5.136)

The closed-loop eigenvalues are the roots of the characteristic polynomial
XA, (s) defined as follows:

sI—A BK
XA, (s) =det (sI — Ay) = det <[ LC s—A+BK+LC }) (5.137)
Now we will use the fact that adding one column / row to another column /

row does not change the value of the determinant. Thus subtracting the second
sI—A BK

row to the first row of [ _LC sl—A+BK+LC

] leads to the following
expression of x4, (s):

sI— A+LC —sI+ A —-LC }) (5.138)

XA, (8) = det ({ _LC sI— A+ BK+LC
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Output-based controller

0 ~$<;_> L —>/4>\/ A f 0
\ {_ \+Y/
? A
L la-BK

ot

Figure 5.3: Block diagram of the output-based controller

Now adding the first column to the second column of
sI—A+LC —sI+ A - LC
-LC sI-—A+BK+ LC

XAq(8):

] leads to the following expression of

o (s) = det s - A+ LC 0
t -LC sI— A+ BK

Furthermore it is worth noticing that matrix is block triangular.
Consequently we can write:

(5.139)

det(sH—Acl):det<[8H_A+BK -BK D

0 sI— A+ LC
= det (s — A + BK) det (sI — A + LC) (5.140)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A — BK, that is the state matrix of the
closed-loop system assuming L = 0, and the eigenvalues of matrix A — LC,
that is the state matrix of the closed-loop system assuming K = 0. This result
is known (again) as the separation principle. As a consequence, gains K and
L can be designed separately: the eigenvalues obtained thanks to the gain K
assuming L = 0 are independent of the eigenvalues obtained thanks to the gain
L assuming assuming K = 0.

Furthermore the reference input r(¢) has no influence on the dynamics of
the closed-loop. Consequently matrix H is still given by Equation (5.7).

Consequently, the block diagram in Figure 5.3 is equivalent to the block
diagram in Figure 5.4 where the controller C(s) is put in the feedback loop.
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Ris) /o els)=Us) Y(s)
—":. + ] L Fr s) — >
\, ‘& \;
Urs) T C(s) -
Figure 5.4: Feedback loop with C(s)
Ris) /<~ efs) Urs) Y(s)
—>+/ L) —» F(s) "

Figure 5.5: Unity feedback loop

Assuming that D = 0, the transfer function of the output-based controller
can be obtained by taking the Laplace transform (assuming no initial conditions)
of its state space representation:

i,(t) = (A — BK) z,(t) + L (y(t) — Cu,(t))
{ (1) = Kz, (1 (5-14D)
We get:
U,(s) = C(s)Y (s) (5.142)
Where:
C(s)=K(sI—A+BK+LC) 'L (5.143)

5.6.4 Unity feedback loop

We consider now the unity feedback loop shown in Figure 5.5. The realization
of the plant transfer function F'(s) is assumed to be the following:

On the other hand, the realization of the controller transfer function C(s)
is assumed to be the following, where gain matrices K and L are the design
parameters of the controller :

|5-

{ (t) = (A —BK —LC) z.(t) + Le(t)
u(t) = Kz (t)

To get the transfer function of the controller we take the Laplace transform
(assuming no initial conditions) of its state space representation (5.145). We

(5.145)
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(5.146)

get:
(5.147)

Where:
C(s)=K(s—A+BK+LC) 'L

In order to get the closed-loop realization, we get the following relations

from Figure 5.5 :
e(t) =r(t) —y(t) = r(t) — Ca(t)
{ u(t) = Kgc(t)g (5.148)

Thus the state space realization of the unity feedback loop reads:
(5.149)

(t) = Ax(t) + BKz, (1)
() = (A~ BK - LC) z,(t) + L (r(t) - Ca(t))

Xz

{y@m@

That is:
BK

A

~| -LC A-BK-LC ] [ o +[g =) (5.150)

a(t)
z.(t)
- x(t)
g(t)—[C 0] [%(t)}
It is worth noticing that the following relations hold:
p-l A BK P, — A - BK BK
1 | _LC A—-BK-LC | '™ 0 A -LC
Pl = [ ro } (5.151)
I I
where
P, — I O
HES!
Let § ) be another state vector defined as follows:
z(t)
. ] (5.152)

[i@]‘ﬂg@ﬁ_Pf[cw

Then state space representation (5.150) becomes:
BK 110
Pig,(0)+ P | ] | )

A
“LC A-BK-LC
[O]T(t)

() =Py
- [ A_OBK A]ilic ]51(t> Tl
&) =[C 0P (H)=[C 0]&(®) 559
5.153

Y
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Using the fact that the state space matrix is now block triangular, the
characteristic polynomial x 4,,(s) of the unity feedback loop reads as follows:

X4, (s) =det <s]1— [ A OBK A]EI;C ])
:det< sl — A+ BK -BK }) (5.154)
0 sI-A+LC
=det (s[ — A+ LC)det (s — A + BK)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A — BK, that is the state matrix of the
closed-loop system assuming L = 0, and the eigenvalues of matrix A — LC,
that is the state matrix of the closed-loop system assuming K = 0. This result
is known (again) as the separation principle. As a consequence, gains K and
L can be designed separately: the eigenvalues obtained thanks to the gain K
assuming L = 0 are independent of the eigenvalues obtained thanks to the gain
L assuming assuming K = 0.

As far as the closed-loop transfer function G(s) is concerned, we get from
(5.153):

o <1 o[V 252 ])

s — A +BK ~BK “To
=1cC o}{ 0 sI[—A+LC} [L} (5.155)
B (sT— A+BK) ™' X (s) 0
=lc 0}{ 0 (sH—A+LC)—1HL]
where:
X(s) = (s — A +BK) 'BK (s - A + LC)* (5.156)
We finally get:
G(s) =CX(s)L (5.157)

—(c(s1-A+BK)"' B) (K (sI- A+LC) "' L)

The preceding relation indicates that the closed-loop transfer function G(s)
can be seen as the series interconnection between transfer functions Gi(s) and

GQ(S):

Gi(s)=C (s—A+BK) 'B

Gy(s) =K (sT-A+LC) 'L (5.158)

G(s) = Gi(s) Ga(s) where {

Similar results can be obtained through the following alternative relation:

p-1| A BK p._|A-LC 0
2 | .-LC A-BK-LC | 27| -LC A-BK
P, = [ g H (5.159)
where T _I
P, =
0 I
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5.7 Static output feedback controller

5.7.1 Partial eigenvalues assignment

We consider in this section the following linear dynamical system where
u(t) € R™, z(t) € R™ and y(t) € RP. Furthermore we assume that (A,B) is

controllable and that (A, C) is observable:

Az(t) + Bu(t) (5.160)

—
< 18-
=
S—
1]
Q
8
=
N~—

Let’s consider a static output feedback where the control u(t) is proportional
to output y(t) through gain K as well as reference input r(t):

u(t) = —Ky(t) + Hr(t) (5.161)

Let A be the following diagonal matrix:

o Ap 0 Ap:diag ()‘KN"' ,)\Kp)
A= [ 0 A, } where { An_p = diag (i, rn - A, (5.162)

It is assumed that A, and A,,_, are self-conjugate sets and that A contains
distinct eigenvalues. The problem considered is to find a real matrix K such
that the eigenvalues of A — BKC are those of the set A.

Brasch & Pearson'! have shown that the transfer function of the closed-loop
plant can be written as follows:

G(s) =C(sl- A+ BKC) 'BH
_ (]I+C(sH—A)_IBK)AC(SH—A)_IBH (5.163)
=C(sI-A)"'B (11 +KC(sT—A)7! B>_1 H

Then, given any set A, there exists a static output feedback gain K such
that the eigenvalues of A — BKC are precisely the elements of the set A,,.
Furthermore, in view of (5.163), the same methodology than in section 5.12.2
can be applied to compute K.

Let Ny (s) := adj(sI — A)B € R™™, where adj (sl — A) stands for the
adjugate matrix of sl — A, and D(s) := det (sl — A) is the determinant of
sl — A, that is the characteristic polynomial of the open-loop plant :

adj (sl - A)B  Ngy(s)

(sT-A)"B= det (sT—A) = D(s)

(5.164)

Consequently, we get from (5.163) the expression of the characteristic
polynomial of the closed-loop transfer function G(s):

det (sI, — A + BKC) = det (D(s)],,, + KCN(s)) (5.165)

As soon as Ak, is a desired closed-loop eigenvalue then the following relation
holds:

det (D(s)L, + KCNy(s))| =0 (5.166)

s=AK;
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Consequently it is desired that matrix D(s)I + KCNy(s)|,_,, is singular.
Following Shieh & al.”, let w, # 0 be a vector of size m x 1, whére m is the
number of columns of B (that is the size of the input vector u(t) of the plant),
belonging to the kernel of matrix D(s)I + KCNOl(s)|8:/\Ki. Thus changing s
by Ak, we can write:

(D(Ak;)In + KCNy (k) w; = 0 (5.167)

Actually, vector w; # 0 € C™ is used as a design parameter.
In order to get gain K the preceding relation is rewritten as follows:

KCNy(Ak,)w; = —D(Ak,)w; (5.168)

This relation does not lead to the value of gain K as soon as Ny(Ax, )w; is a
vector which is not invertible. Nevertheless assuming that n denotes the order
of state matrix A we can apply this relation for the p closed-loop eigenvalues
given by A,. We get:

KC[ vy, - ng}:—[gl Bp] (5.169)
Where vectors vy, and p. are given by:
Vg, = Nol()‘Ki)Qi S 1
{ p. = DOk, w, Vi=1,---,p (5.170)

We finally retrieve expression (5.74) of the static state feedback gain matrix
K to get the p closed-loop eigenvalues given by A,:

K=-P(CV)! (5.171)
where:
V= Nu(Ag,)w; - Noz()\Kp)g ] = v, o vk, |

As shown by Duan®, by duality (5.171) can be changed as follows:

K=-P(B7V)" (5.173)

Then relation (5.172) still holds when vectors v, and p, are defined as
follows where vector v; # 0 € CP is used as a design parameter:

VK, = Ngl(AKz’)Zi =1 ...
{ p = D)y, TR o

"L. S. Shieh, H. M. Dib and R. E. Yates, Sequential design of linear quadratic state
regulators via the optimal root-locus techniques, IEE Proceedings D - Control Theory and
Applications, vol. 135, no. 4, pp. 289-294, July 1988.

8G. R. Duan, Parametric eigenstructure assignment via output feedback based on singular
value decompositions, Proceedings of the 40th IEEE Conference on Decision and Control (Cat.
No.01CH37228), Orlando, FL, USA, 2001, pp. 2665-2670 vol.3.
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where Ngl(s) := adj (s]I — AT) CT € R™*P_ where ad] (s]l — AT) stands for
the adjugate matrix of sT— AT, and D%(s) := det (s]I — AT) is the determinant
of sT — AT that is the characteristic polynomial of the dual plant :

adj (sI — AT) CT ~ NY(s)
det (s — AT) ~ Dd(s)

(sT—AT) ' CT = (5.175)

Furthermore, and assuming that rank (B) = m and rank (C) = p, the
remaining n — p eigenvalues of the closed-loop matrix A — BKC can be
achieved by selecting parameter vectors w; # 0 and 12 # 0 such that the
following constraints hold:

TN.. — gi?éQe(Cle?Z.:L"'ap
v; Nj; w; = 0 where { v, A0eC! j=ptl - n (5.176)
where p x m matrix Nj; is defined as follows:
4 T
Nji = (NiOk,)) NaAx,) (5.177)

Matrices N4 (Ak,) and Ny(Ag,) are defined in (5.164) and (5.175).
The last component of each parameter vectors as follows is set as follows:

— If the eigenvalue A, is real, the last component of parameter vectors w;
and v; is set to 1 ;

— If the eigenvalue A, and Af; are complex conjugate, the last component
of parameter vectors w; and v, is set to 1 + j whereas the last component

of parameter vectors w; and v; is set to 1 — 7;

— More generally, Duan® has shown that to fulfill (5.176) parameter vectors
w; and v, are real as soon as A, is real. But if Ak, and )\Kj are complex

conjugate, that is Ak, = 5‘K7‘7 then w; = w; and v, = ;.

Alexandridis & al.? have shown that given a set A of n eigenvalues \g, for
the closed-loop system, we have to determine p parameter vectors w; such that
there exits n — p parameter vectors v, which solve the set of bilinear algebraic
equations (5.176).

From (5.176) there is p x (n — p) equality constraints which shall be fulfilled.
On the other hand, p parameter vectors w; with m — 1 free parameters (the last
component is set) and n—p parameter vectors v, with p—1 free parameters (the
last component is set) have to be found. A necessary condition for constraints
(5.176) to be solvable is that the number of equations must be equal or less than
the sum of the free parameters:

px(n—p)<px(m—-1)+n—-p)x(p—1)mxp>n (5.178)

°A. T. Alexandridis and P. N. Paraskevopoulos, A new approach to eigenstructure
assignment by output feedback, IEEE Transactions on Automatic Control, vol. 41, no. 7,
pp- 1046-1050, July 1996
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Thus a necessary condition for this set to be solvable is that m x p > n.
However the condition m x p > n does not assure that a solution exists (it is
not a sufficient condition).

Furthermore, in the particular case where m +p > n + 1, parameter vectors
vj, j =p+1,---,n can be arbitrarily set. In that case the set of equations
(5.176) reduce to a linear system of algebraic equations with w,, i =1,--- ,p as
unknown parameters.

As mentioned by Duan®, an efficient manner to solve constraints (5.176) is
to use a Singular Value Decomposition (SVD) of matrices Nj; which reads as
follows:

Nji = U;3; VY
A, O
ji = [ 0 0]
01 0 N 0 (5179)
0 o9 0
Ag = .
0 0 0 o

where:

U; and V; are unitary matrices

o, ERT Vi=1,2,--- ,¢q

0'120'22'-'20'q>0

g = min(m, p) assuming that N; has no eigenvalue equal to 0

(5.180)

In all cases, and assuming that w; and possibly v; have be chosen such that
det (CV) # 0, static output feedback K is computed thanks to (5.171).

5.7.2 Changing PID controller into static output feedback

We present hereafter some results provided by Zheng & al.'® which transforms
a PID controller to static output feedback.
We consider the following linear time-invariant system:

{ i(t) = Ax(t) + Bu(t)
y(t) = Cu(t)

And the following PID controller where matrices K,, K; and K  have to be
designed:

(5.181)

¢ d
u(t) = — <Kp e(t) + K,/ e(r)dr + Kq dte(t)) (5.182)
0
where:
e(t) = y(t) —r(t) (5.183)
Let’s denote z,(t) the augmented state-space vector defined as follows:
(t)
t) = 184
rlt) = | e | (5,184

%Zheng, F., Wang, Q.-G. & Lee, T. H. (2002). On the design of multivariable PID
controllers via LMI approach. Automatica 38, 517-526
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Thus:
£a(0) = Auza(©)+ Buu) + | % |20 (5.185)
where:
SR
(5.186)
B, = B
=[]
Furthermore, assuming that 7(¢) = 0, we have:
d
r(t)=0= £6( ) = Ci(t) = CAz(t) + CBu(t) (5.187)

Using the definition of z,(¢), the PID controller reads:

u(t) :—(er(t +K; [l e(r)dr + Ky Le ())
—K,Cz(t) + K,Cr(t) — KiZe(t) — Kq (CAz(t) + CBu(t))
=-K,[C 0]z,(t) ~K; [0 T]z,(t)—Kq[ CA 0 ]z,(t)
_K,CBu(t) + K,Cr(1)

CcC o0
-[K, Ki Kg|| 0 T |z,(t)—KsCBu(t)+K,Cr(t)
CA 0
(5.188)
We will assume that I+ K,;CB is invertible and define C, and K, as follows:
CcC o0
C, = 0o I
CA 0 (5.189)

K,=(I+K,CB)"'[ K, K; Kg]
Let I~{p, I~{Z and I~{d be defined as follows:

K, = (I+K,CB)'K,
K; = (I +K4CB)~ K (5.190)
K, = (I+K,CB)™*

Assuming that I~(p, Rz and Kd are known, gains K, K; and K are obtained
as follows where it can be shown!? that matrix I — CBKj is always invertible:

~ ~ —1
K, - K, (]1 _ CBKd>
K, = (1+ K,CB)K, (5.191)
K, = (I + K,CB)K;

Thus the problem of PID controller design is changed into the following
static output feedback problem:

T, (t) = Aazy(t) + Bau(?)
y,(t) = Caz,(t) (5.192)
u(t) = —Kaya@f) (I+K4CB) ' K,Cr(1)
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It is worth noticing that the same results are obtained, but without the
assumption that 7(¢) = 0, when a PI-D controller is used; for such a controller
the term multiplied by Ky is y(t) rather than e(t):

ult) = = (Kyelt) +16 [ elrar + K S0 (5.193)

5.7.3 Adding integrators, controllability and observability
indexes

We consider the following controllable and observable state-space representation
where the state vector z is of dimension n (that is the size of state matrix A).
In addition y(t) denotes the output vector and w(t) the input vector. We will
assume that the feedforward gain matrix D is zero (D = 0):

Az(t) + Bu(t) (5.194)

—
< |18
-
S—
[
Q
S
S
S~—

Brasch & Pearson'! have computed the number n; of integrators that can
be added to increase the size of the output vector:

n; = min(p. — 1,p, — 1) (5.195)

where p. is the controllability index of the plant and p, the observability index
of the plant.
The controllability index p. of the plant is the smallest integers such that:

rank ([ B AB --- AP B ])=n (5.196)

Similarly, the observability index p, of the augmented plant is the smallest
integers such that:
C

CA
rank ) =n (5.197)

cAre

The compensator in cascade with the plant will be taken to be n; integrations
of the component y;(t) = C;z(t) of the output vector y(t) of the plant:

Ti1(t) = yi(t) = Cux(t)
; (5.198)
jfi,ni (t) = xi,m—l(t)

Furthermore the control u(t) of the augmented plant, that is the plant and
the n; integrators, will be taken to be the actual input w(t) of the plant and the

1F. Brasch and J. Pearson, Pole placement using dynamic compensators, IEEE
Transactions on Automatic Control, vol. 15, no. 1, pp. 34-43, February 1970.



5.8. Dynamical output feedback controller 191

n; integrations of the output y;(¢) of the plant:

u(t) = : (5.199)
Lin, (t>

Then we define matrices A,,,, B, and C,,, of the augmented plant as follows
where 0y, is the null matrix of size n; and [, is the identity matrix of size n;:

(A, 0O
A= | o]
[B,o
B, = o, } (5.200)
-C‘ 0
o= 541

Alternatively matrices A,,;, B,, and C,, of the augmented plant can be
defined as follows where 0y, is the null matrix of size p x r and I, is the
identity matrix of size n;:

' 5.201
Bn:[B] ( )
v 0
[cio
o= 5]

The interest of the preceding state space representation of the augmented
plant is that its input vector u,, (f) is the same than the input vector u(t) of the
actual plant :

(1) = u(t) (5.202)

5.8 Dynamical output feedback controller

5.8.1 From dynamical output feedback to observer-based
control

Again we consider the state-space representation (5.203) where the state vector
z is of dimension n (that is the size of state matrix A). In addition y(¢) denotes
the output vector and u(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):

(5.203)

—

< 18
=
N—
Il
>

I8 18
=
N—
+
ve}
I
—~
£
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R(s) . )
—> | Uts) | Xs)
Crs) — Fis)

Figure 5.6: Plant with dynamic compensator

Following Radman'?, we assume that this system is controllable and

observable and is controlled as shown in Figure 5.6 by a dynamical output
feedback controller C(s) of dimension n. (that is the size of A.) whose state
space representation reads:

-

) = Acz(t) + chy(t) + Berr(t)

{ u(t) = Cez (t) + Deyy(t) + Derr(t) (5.204)

Assuming that compensator C(s) has the same dimension than plant F(s),
that is n, = n, and from the following settings:

B, =L
B, =B
C.=-K (5.205)
D, =0
D, =1

We get:

{ &, (t) = Acz,(t) (5.206)

From the second relation we get r(¢) = u(t) + Kz.(t). Thus the previous
state space representation reads:

i.(t) = (Ac+ BK) z.(t) + Bu(t) + Ly(t)
{ u(t) = —Ka(t) + r(t) . (5.207)

Thus the dynamical output feedback controller C(s) can be seen as an
observer-based controller with gain K that uses z.(t) as an estimate of the
plant state z(t).

5.8.2 Dynamical output feedback

We now assume that plant F(s) is controlled by the dynamical output feedback
controller C(s) defined in (5.204) where n. # n (n. is the size of A.):

12GQ. Radman, Design of a dynamic compensator for complete pole-zero placement, The
Twentieth Southeastern Symposium on System Theory, Charlotte, NC, USA, 1988, pp. 176-
177
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{ o(t) = Aci,(t) + Beyy(t) + Berr(?) (5.208)

Q(t) = CC@c(t) + Dcyy(t) + Dcrf(t)

It is worth noticing that we retrieve the static output feedback controller:
u(t) = Hr(t) — Key(t) (5.209)

When setting:
A.=B,, =B, =C.=0
D., = -K. (5.210)
D, =H

When the dynamical output feedback controller is of order n. < n the
design problem can be bring back to a static output feedback controller'® by
introducing a new control v(t) defined by:

v(t) = z.(t) (5.211)

and by considering the following augmented output vector ya(t), input vector
u,(t) and state vector z,(t):

[z
z,(t) = : w((:(;) :|
u(t
Ua,(t) = I ’U((t)) :| (5212)
_ | oyt
L ga(t) - I L;(t) :l

Then the augmented equivalent open-loop system reads:
i) ] _[A 0] ) B 07 ul
%(}ﬁ% Eﬁ &%}j%[ - ] [U(t)] (5.213)

That is in a more compact form:

{ gty Z ety * P (5211)
Where: ( -
Lo o]
Ba= ]3 H (5.215)
c-[2 ¢]

13y .L. Syrmos, C. Abdallah, P. Dorato, Static Output Feedback: a Survey, Proceedings of
the 33rd IEEE Conference on Decision and Control, 1994
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It is worth noticing that the dynamical output feedback controller C(s)
defined in (5.204) becomes static in the augmented state-space:

[58 ] - [ ]1:3)23 } { wc((t)) } + { ]r(t) (5.216)

That is in a more compact form:

u,(t) = —Kay (t) + Har(t) (5.217)
Where:
D., C
K, = — { ey Ce ]
By A (5.218)
H _ DC'I‘
=[5

Assuming that u(t) is of dimension m, x(t) is of dimension n, z.(t) is of
dimension n. and y(t) is of dimension p we conclude that:

— A, is a square matrix of dimension (n + n.);
— B, is a matrix of size (n + n¢) X (m + n¢);
— C, is a matrix of size (p + n.) X (n 4 ne);
— K, is a matrix of size (m + n.) X (p + ne);

If we wish to apply the Roppenecker’s formula (5.71) to set the static output
feedback gain K, so that n, predefined closed-loop eigenvalues are achieved, we
have to notice that matrix C,V is a (p+n.) X np matrix. Consequently matrix
C,V, is square and possibly invertible as soon as:

D+ ne=np (5.219)

— In the case of state feedback we have n, = 0 and p = n thus the number
of eigenvalues which can be predefined is n, = n.

— In the case of output feedback the number n), of eigenvalues which can be
predefined is obviously lower or equal to the size n + n. of the augmented
state matrix Ag:

np <n+ne (5.220)

Assuming p + n. = n, so that C,V, is a square matrix we conclude that
there are n — p remaining eigenvalues whose location is not controlled through
output feedback.

Using the relations u,(t) = —Kay, () + Hor(t) and y (1) = Caz,4(t) the
dynamics of the closed-loop system reads:

ia(t) = Aaza@) + Baﬂa(t)

= Az, (t) + Bo (—Kay, (1) + Har (1)) (5.221)
= (A, —B.K,C,)z,(t) + BiH,r(t)
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The product B,K,C, expands as follows:

~[B o0o][Dg C. C o
Bxc, =[5 ][ mr X][6 7]

B o][]DyC C.

_[B 0] Dwc <] 52
_ | BD,C BC,
~ | ByC A,

And consequently A, — B,K,C, reads:

A, - BK,C, — [ A -BD,C -BC. }

B0 A (5.223)

The transfer function G(s) of the closed-loop system between the output
vector y(t) and the reference input vector r(t) reads:

y(t) = G(s)r(t) (5.224)

Where:
G(s) =[C 0](sI— (A, - B.K,C,) ' B.H,

B - B 1| BD,,

=[C 0] (sl - (As — B,KaC,)) [ B., ] (5.225)
¢ oj[f-a-BDL0) BC | TrED,

= chc s]I—I—AC Bcr

5.9 Mode decoupling controller

5.9.1 Eigenstructure assignment

We consider the following state-space representation of a controllable and
observable system where u(t) € R™ denotes the control input, x(t) € R™ the
state vector and y(t) € RP the output vector:

{ L(t) = Az(t) + Bu(t) (5.226)

where A € R™*" B € R"*™ C ¢ RP*",
Assume the following state feedback control:

u(t) = —Kuz(t) +r(t) (5.227)
Then the closed-loop system reads:

{ i(t) = (A — BK)z(t) + Br(t)
y(t) = Cux(t)

Similarly to the open-loop case the transfer function Gg(s) of the closed-
loop system when the control u(t) is —Kz(t) + r(t) reads:

(5.228)

Y(s) = Gr(s)R(s) (5.229)
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£(1) R () x, (1) x()
' ': | I I S Yl R

N

cl

Figure 5.7: Modal decomposition of a transfer function

Where:
Gi(s)=C(sl— (A-BK)) 'B (5.230)

As in the open-loop case the transfer function Gg(s) of the closed-loop
system may be expressed as a function of the closed-loop eigenvalues Ag, and
the left and right eigenvectors of matrix A—BK. Assuming that matrix A—BK
is diagonalizable we have:

G " v Wi

i=1

Figure 5.7 presents the modal decomposition of the transfer function where
z,,(t) is the state vector expressed in the modal basis and where matrices A,
P and P! are defined as follows:

K,
Ay =
K,
A -BK=PA, P ' where { P=[uvg - vg, | (5.232)
wie,
P l=P= :
Mﬂ"l

Vector vy, is a right eigenvector corresponding to eigenvalue Ag;: it is a real
vector if the eigenvalue A, is real, a complex vector otherwise.

The components of the desired eigenvector vy can be used for decoupling.
Indeed we can see from the modal decomposition of the transfer function
provided in (5.231) that:

— Mode Mg, will not appear in the j* component of output vector y(t) if
the following relation holds where ng represents the j** row of C:

Tog, =0 (5.233)

— Alternatively mode Mg, will not be excited by the 4t component of
control vector u(t) if the following relation holds where b; represents the

4% column of B:
wic by =0 (5.234)
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5.9.2 Design procedure

We consider the following state-space representation of a controllable and
observable system where u(t) € R™ denotes the control input, z(t) € R™ the
state vector and y(t) € RP the output vector:

(pzigp o
where A € R™", B € R™*™ C ¢ RP*".
Assume the following state feedback control:
u(t) = —Kuz(t) + r(t) (5.236)
Then the closed-loop system reads:
{ ;Cg)) - éAx(t)BK):v(t) + Br(t) (5.237)

The following design procedure for mode decoupling and eigenstructure
assignment has been suggested by Chouaib and Pradin'!

— Assuming that state matrix A is of order n and that (A, B) is controllable,

we define n closed-loop eigenvalues Ak, , -, Ak, . Thus for each closed-
loop eigenvalue Ak, and denoting v, the corresponding eigenvector, we
shall have:

(A -BK)uvg, = Agvg, < [ Ak, ]—A B ] [ DK } =0 (5.238)

— Furthermore assume that mode A, shall not appear in the §t" component
of output vector y(t). Then the following relation shall hold where QJT

represents the j** row of C:

v =0 (5.239)

Matrix S; is then defined as follows:

M, I-A B .
SZ—[ Q? 0] i=1,---,n (5.240)
— Then compute matrix Ng, whose columns constitute a basis of the right
null-space of S;:

SiNs, =0 (5.241)

It is worth noticing that matrix Ng, can be obtained through a singular
value decomposition of matrix S;'°. Indeed singular value decomposition

1. Chouaib and B. Pradin, On mode decoupling and minimum sensitivity
by eigenstructure assignment, Electrotechnical Conference, 1994. Proceedings., Tth
Mediterranean, Antalya, 1994, pp. 663-666 vol.2.

5P, Kocsis, R. Fonod, Eigenstructure Decoupling in State Feedback Control Design, ATP
Journal plus, HMH s.r.o., 2012, ATP Journal plus, 2, pp.34-39. <hal-00847146>
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of matrix S; leads to the following decomposition where UiU? =TI and
ViVZ»T =1I

031
S, =U; o | V& (5.242)
Oin
031
Denoting 3; = we get:
Oin
S, =U, [ 0]V!
5.243
Let v;1,0;9," " ;U pym De the vectors which form matrix V;:
V= [ Vi1 0 Yin Yint1 0 Yintm ] (5.244)
From (5.243) it is clear that the set of vectors v, ,, 1, ,0; ;1 satisfy
the following relation:
Consequently matrix Ng, can be defined as follows:
Nsi = [ Yint1 °° Yintm } (5246)

— Matrix Ng, is then compatibly partitioned between matrix N(Ag,) and

matrix M(Ag,). Matrix N(Ag,) is built from the n first rows of Ng;:

Ns, = [ N(A,) ] (5.247)

Each vector m; which belongs to the kernel of S; is characterized by a non
zero parameter vector z; such that:

z; #0 ) _

As a consequence the right eigenvector vy, which constitutes the ith
column of matrix P, can be written as follows:

v, = N(Ag,) z; (5.249)

Parameter vector z; may be used to minimize the sensitivity of the assigned
eigenvalues as it will be seen in the next section.
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— Finally decompose matrix B as follows where Y is a non-singular matrix
and where U; = [ U, U, ] is an orthogonal matrix such that:

B=[U, Ul}[z] (5.250)

One possible way to derive this decomposition is to use the singular value
decomposition of B:

B=U [ ? } vt (5.251)

Where X is a diagonal matrix formed by the rank(B) = m singular values
of B (matrix B is assumed to have full column rank) and where U and V
are orthogonal matrices (i.e. UTU =T and VIV =1).

Then we can define Y = VT and suitably split U = [ Uy Uy } such
that Uy has m columns:

Y=2VT
{ U — [ Uy U ] (5.252)
Let A, be the diagonal matrix of the closed-loop eigenvalues:
MK,
Ag = - (5.253)

AK,

As far as all eigenvectors vy, which compose each column of matrix P
have been computed matrix K can be calculated by:

K=Y'Ul (A-PA,P ) (5.254)

Furthermore the sufficient condition for pole assignment reads as follows'¢:

UTPA P ' =UTA < UT (AP -PA,) =0 (5.255)

To get those results we write the closed-loop state matrix as follows:
A —BK =PA P! (5.256)
Then pre-multiplying the preceding equation by U7T, using the

decomposition of B and the fact that U is an orthogonal matrix (i.e.
UTU =1) we get:

UTPA, P! =TUT (A - BK)

=UTA - UTBK
:UTA[SOK]K (5.257)

u? Y
= A — K
[ U’ 0
167, Kautsky, N. K. Nichols, P. Van Dooren, Robust pole assignment in linear state
feedback, International Journal of Control, Volume 41, 1985 - Issue 5
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The first row of (5.257) reads:

UlPAP ' =U[A- YKo K=Y"'Ul (A-PA,P!) (5258)

Furthermore the second row of (5.257) leads to the following necessary
and sufficient condition for pole assignment:

UTPA P~ = UTA & UT (AP - PA,) =0 (5.259)

This completes the proof. |

It is worth noticing that if a closed-loop eigenvalue A, is complex, then its
conjugate value, A, is also a closed-loop eigenvalue. In order to manipulate
real matrices during the computations, eigenvectors vy. and v corresponding
to complex conjugate eigenvalues are replaced by Re(vg,) and Im(vg,)
respectively:

[ vg, Ty, } N [ RG(QKJ Im(QKi) } (5.260)

Furthermore eigenvalues Ak, and X}Q in the diagonal matrix A are replaced
by Re(Ag,) and Im(Ag,) as follows:

Re()\Ki) Im()\KI)
“Tm(Ae) Re() (5.261)

Indeed from the relations:

AleKi = /\KiQKi
{ AaUk, = Ak, Tk, (5.262)

We get by adding and subtracting the preceding equations:

{ Ay (QKl- +@Ki) = )\KZ-Q}Q +EK71@K1'
Acl (UK _EK) = )\K UK — )\KZ@KZ

| A e =
ﬁ{ a Re(vg,) = Re(Ak;) Re(vg,) — Im(Ag; ) Im (v, )
AaIm(vg,) = Re(Ax;) Im(ug; ) + Im(Ak; ) Re(vg,)
That is:
Ay [ Re(yKi> Im(yKi) ]
_ Re(Ax,)  Im(Ax,)
= [ Re(vg,) Im(vg,) | —Im(fm) Re(AZ) (5.264)
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5.9.3 Example

Following an example provided by A. Fossard!” we consider the following system:

Az(t) + Bu(t)

z(t) =
= 5.265
{ y(t) = Cx(t) ( )
where:
( 1 0 0
A= 1 01
(011
[0 1
U (5.266)
1 0 1
(1 1 -1
=111 o

This system has m = 2 inputs, n = 3 states and p = 2 outputs and is both
controllable and observable. We wish to find a state feedback matrix K such
that the closed-loop eigenvalues are as follows:

Ak, = —3
My = =3+ 4j (5.267)
ks = Aty = —3 — 4

Moreover it is desired that the first output y1(¢) of y(¢) is decoupled from
the first mode \g, whereas the second output yo(t) of y(t) is decoupled from
the last two modes Ak, , Ak,. -

The decoupling specifications leads to the following expression of the product

CP where * represents unspecified components:

CP=C| vy, uvg, UK3]2|:2 ; ;} (5.268)
For the first row of matrix C we get:
[1 1 -1 g, =0 clog, =0 (5.269)
And for the second row of matrix C:
[ 1 10 ]QKQ :Oéggym =0
{ [1 1 O]QK3:0<:>QQTQK3:0 (5.270)

17A. Fossard, Commande modale des systémes dynamiques, notes de cours, Sup’Aéro, 1994
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At the end of this step we define n = 3 matrices S; as follows:

30 0,01
C[A-XgI B] [ 12 1110
S(AKl)_ I Q{ 0 ] - 797177257:707}7
|1 1 -1'0 0
[4—4j 0 0 ,0 17
A-)gI B 1 3—-45 1 110
S(Ak>) d 0]~ 0 1 4-45,0 1
1 1 6”:6’6’_
(4445 0O 0 ,0 17
S(/\K):{A—AKSH B]: 1 3+4j 1 10
3 ot 0 0 1 4445,0 1
{ 1 0 '0 0

(5.271)

Then we compute matrix Ng, whose columns constitute a basis of the right
kernel of S;:

. _ Q. NO‘Kz) _
SiNg, = S; [ Mrg) } —0 (5.272)
We get:
[ —0.2581989
0
N = | aport) | = | zozssioss
K 0.5163978
0.7745967

[ —0.0970284 — 0.09711435 ]
N(\x,) 0.0970284 + 0.09711435
Ns, = [ M ] = | —0.0970177 — 0.1213821; (5.273)
—0.4854962 + 0.3152674 5
| 0.7765709 + 0.0003433; |
[ —0.0970284 + 0.09711435 ]
N(\x,) 0.0970284 — 0.09711435
Ny = | o) | = [ coosro17 4 n.2issa;

—0.4854962 — 0.31526745
0.7765709 — 0.00034335

As far as each matrix Ng, reduces here to be a column vector we set the
non zero parameter vector z; to 1; as a consequence vector vy, = N(Ak,)z;
is set to N(Ag,). Thus matrix eigenvector vy is built from the n = 3 first
rows of Ng,. In order to manipulate real matrices during the computations,
eigenvectors vy and Uy, corresponding to complex conjugate eigenvalues are



5.9. Mode decoupling controller 203

replaced by Re(vy,) and Im(vy, ) respectively:

[ —0.2581989 T
QKl = N()\Kl) = 0

| —0.2581989 |
[ —0.0970284 T
vg, = N(Ag,) = | 0.0970284 (5.274)
| —0.0970177 |
[ —0.0971143 T

Vi, = N(Ag;) = | 0.0971143

| | —0.1213821 |

Eigenvectors vy, compose each column of matrix P. We get:

—0.2581989 —0.0970284 —0.0971143
P= [ Vi, Vi, Uk, ] = 0 0.0970284  0.0971143
—0.2581989 —0.0970177 —0.1213821
(5.275)
Finally a singular value decomposition of B is performed:

B :U[Z}VT

0
0.7071068 0 —0.7071068 | [ 1.4142136 0
0 1
= 0 -1 0 0 1 [_1 0]
0.7071068 0  0.7071068 0 0
(5.276)

Then we define Y = V7 and suitably split U = [ Uy U, ] such that
Uy has m = 2 columns:

Cwor [ 14142136 0] 0 1] [ 0 14142136
i R | T R
0.7071068 0 (5.277)
U = 0 -1
0.7071068 0

Let A, be the diagonal matrix of the closed-loop eigenvalues:

MK, -3
Ay = AK, = —-3+4y (5.278)
A K, —3—4j

Then state feedback gain K is calculated as follows:

=31 7 33 ]

11T -1
K=Y"'U; (A-PA,4P ):[ 45 5 a9

(5.279)

We can check that the product CP satisfy the decoupling specifications.
Indeed:

CP :C[QKl VK, QKs]

0 0.0970177 0.1213821 | | 0 * = (5.280)
—0.2581989 0 0 T lx 00



204 Chapter 5. Controller design

5.10 Sensitivity to additive uncertainties

5.10.1 Sensitivity analysis

Let A, be the closed-loop state matrix and assume that A is a diagonalizable
matrix:

A,=A-BK (5.281)

Let P be the matrix which is composed by the right eigenvectors vy, of Ay
corresponding to eigenvalue g, and P~! be the matrix which is composed by
the left eigenvectors wy, of A corresponding to eigenvalue Ag;:

P:[QKl QK"]
T
Wk, (5.282)
Pl=1]
Mﬂ'ﬂ

Let A+ AA be the perturbed state matrix subject to additive uncertainties
AA. Then the Bauer-Fike theorem'® states that the variation AMg, of the
eigenvalues of the perturbed state matrix are bounded according to the following
relation:

m?X|A)‘K¢| < k(P)||AA], (5.283)

where:
Ak,
P 'A, P = (5.284)

AK.

n

Coefficient x(P) is called the condition number of matrix P and is defined
as follows:

Amaz (PTP)
K(P) =} ———— 5.285
For a square invertible matrix P this reduces as follows:
w(P) = [P, [P, (5.286)

The induced matrix 2-norm ||P||, is defined as the largest singular value of
P, that is the root square of the largest eigenvalue of PP (or PPT).

According to (5.283), to guarantee a small variation of the assigned poles
against possible perturbations AA, one has to achieve a small condition number
k(P) of the eigenvector matrix.

To get this result we first rewrite the relation which links the eigenvalue Ag;
and the corresponding right eigenvector vy, :

Agvg, = Agvg, i=1,---,n (5.287)

¥https://en.wikipedia.org/wiki/Bauer-Fike theorem
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Then the first order derivative of the preceding equation reads:

On the other hand the relation which links the eigenvalue Ak, and the
corresponding left eigenvector vy, is the following:

Pre-multiplying (5.288) by Qﬁi and using (5.289) leads to the following
expression of dAg;:

As far as the left and right eigenvectors are normalized such that w%ﬁ_ v, =1
we get:
Ak, = wic, AAvy. (5.291)

Be taking the norm of the preceding relation we finally obtain:

o |k, [l 1AA], (5.292)

From the fact that HQKZ_ H2 Hyﬂl

, <Pl HP_1H2 V i we finally get:

max [AXg,| < k(P)[|AA[, where x(P) = |P||, [P, (5.293)

5.10.2 Robust placement method

We have seen that the variation of each closed-loop eigenvalue is bounded by
the following relation:

o[k [l 1A, (5.294)

Thus in order to minimize the sensitivity of the assigned eigenvalues it could
be worth to minimize the following criteria:

J = J; where J; = ||ug, ||, wk, ||, (5.295)
i
As far as Qﬂiym =1 criteria J; reads:
T = el Ik ly = ——— (5.296)
cos(yKi,gKi)
From the fact that M};Z_Q K, = 0 Vi # j we conclude that vector yﬂi is

perpendicular to the subspace spanned by the vectors of matrix V; where:

Vi=[og, - Uk, Uk, o Uk, | (5.297)
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Thus J; can be interpreted as the inverse of the sinus of the angle between
vk, and V;. Minimizing the sensitivity of the eigenvalues of Ay = A — BK to
perturbations can be done by choosing a set of eigenvectors vy so that each is
maximally orthogonal to the space spanned by the remaining vectors. In others
words eigenvectors vy, are shaped such that they are as orthogonal as possible to
the remaining eigenvectors, which consequently minimizes the condition number
of K(P) where P = [ vy, -+ ug, |

Unfortunately this method, known as Kautsky et al. method'?, cannot
handle complex eigenvalues in its original form, due to the need to update two
complex conjugate eigenvectors at the same time.

To overcome this difficulty we present hereafter the method proposed by
Byers et al.'9:

— Assuming that state matrix A is of dimension n and that (A,B) is
controllable we define n closed-loop eigenvalues A, ,--- , Ak, and define
n matrices S; as follows:

Si=[ A-Agl B] (5.208)

— Then compute matrix Ng, whose columns constitute a basis of the right
kernel of S;:

SiNg, =0 (5.299)

For complex conjugate eigenvalues Ay, and Mg,, the corresponding
matrices Ng, and Ng, are also complex conjugates. They are replaced by
their real and imaginary part, Re (Ng,) and I'm (Ng,), respectively.

Matrix Ng, is a (n + m) x s; matrix, where s; = m unless \g, is an
uncontrollable mode of the pair (A,B) in which case s; > m. In the
following we will assume that none of the A\g,’s is an uncontrollable mode
of the pair (A, B) and consequently s; = m.

— We denote Z the following nm x n block diagonal free parameters matrix
build from n blocks z(Ag, ) of size m x 1.

g()‘fﬁ)
7 — (5.300)

2(Ak,)

o

()

For complex conjugate eigenvalues g, and Ag,, the corresponding free
parameters matrices z(Ak,) and z(Ag,) shall be chosen to be equal:

2(Ak;) = z(Ak,) (5.301)

19A. Pandey, R. Schmid, T. Nguyen, Y. Yang, V. Sima and A. L. Tits, Performance Survey
of Robust Pole Placement Methods, 53rd IEEE Conference on Decision and Control, 2014.
Los Angeles
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— Let R(Z) be the following (n + m) x n matrix defined as the product
between matrix [ Ng, .-+ Ng, | of size (n + m) x nm and the free
parameters matrix Z of size nm X n:

R(Z) = [ Ns, -+ Ng, ] X Z (5.302)

Matrix R(Z) is then compatibly partitioned between matrix N(Z) and
matrix M(Z). Matrix N(Z) is a n X n matrix which is built from the n
first rows of R(Z):

R(Z) = [ N(Z) } (5.303)

— Then Schmid et al.?® have shown that for almost every choice of the
parameter matrix Z the rank of matrix N(Z) is equal to n as well as the
rank of matrix Z. Furthermore the m X n gain matrix K such that the
eigenvalues of Ay = A — BK read (Ag,, -, Ak, ) is given by:

K= -M(Z)N(Z)™* (5.304)

Last but not least we have:

max [AAg;| < £(N(Z)) [[AA]], (5.305)

Coefficient k(N(Z)) is called the condition number of matrix N(Z) and is
defined as follows:

K(N(Z)) = IN(Z)], |N(Z)71, (5.306)

IN(Z)||, is the induced matrix 2-norm and is defined as the largest
singular value of N(Z); similarly ||AA[|, is the largest singular value of
AA.

Consequently the free parameters matrix Z can be used to minimize the
sensitivity of the closed-loop state matrix A, to additive uncertainties.

5.10.3 Lyapunov approach

Assume that the closed-loop dynamics reads as follows, where the state matrix
A is asymptotically stable:

i(t) = (Ag + AA) z(t) (5.307)

Denoting opmaz (X) the maximum singular value of X = X7 > 0 and
Omin (X) the minimum singular value of X, it is known?! that the closed-loop
remains asymptotically stable for all AA such that:

Omin (Q1/2)
Omazx (Q_I/QP)

20R. Schmid, P. Pandey, T. Nguyen, Robust Pole Placement With Moore’s Algorithm,
IEEE Trans. Automatic Control, 2014, 59(2), 500-505

'Horng-Giou Chen, Kuang-Wei Han, Improved quantitative measures of robustness for
multivariable systems, IEEE Transactions on Automatic Control, 1994, Volume: 39, Issue: 4

Omaz (AA) < (5.308)
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where Q = QT > 0 and where P = P” > 0 is the solution of the following
Lyapunov equation:
ATP +PA,+2Q =0 (5.309)

Thus, the smaller the two-norm of P is, the more robustly stable the closed-
loop system will be to unstructured parametric variations.
Moreover, the bound is maximum when matrix Q = I is assigned in the
Lyapunov equation.
To get this result, let V(x) the following candidate Lyapunov function where
P =PT >0
V(z)=zTPz >0V z#0 (5.310)

The sufficient condition for stability reads:

dV(z)

<0 5.311
at = ( )
where:
W) _dlpy  ,Tpd
dt T dt = = d%
=((Ag+AA)z) Pz +2"P((Ay+AA)2)

T(Ag+AA)TPr+2TP (Ay+AA)z (5.312)
T(ALP + PAy)z + 2" (AATP + PAA) z
T(ALP+PA,) z+ 22" AATP2

I
I8 18 18

Because A is asymptotically stable, we have 27 (AZZP + PAd) x < 0. This
inequality is rewritten as equality (5.309) as follows:

ATP + PA, = —2Q (5.313)
Thus the sufficient condition for robust stability becomes:

—22TQz +22TAATP2 <0

o 2T AATPz < 27Qu (5.314)

Because Q = Q7 > 0, we have Q = Q'/2Q'/2 where Q'/2 = (Q1/2)T > 0.
Making the slight modification z = (Q*1/2Q1/2) x, the preceding inequality is
equivalently rewritten as follows:

2TAATPz = 2T AATP (Q’WQW) z< (ng)T (leg) (5.315)
The preceding inequality is equivalently given by:
(Qq/zPAA&)T (Ql/zz) < (Ql/zg)T (Ql/@) (5.316)
Then a sufficient condition for stability can be given as:

HQ‘”QPAAgH < HQW&H (5.317)



5.10. Sensitivity to additive uncertainties 209

Knowing that:
HQ_l/QPAAQH < Ormas (Q_1/2P> IAA 2| (5.318)
and
|Q22 = oin (@) Il (5.319)

Then (5.317) is sufficiently justified when the following inequality holds,
which complete the proof:

Omar (Q7P) [AA2] < oin (@) Izl (5.320)

5.10.4 Eigenvalues derivatives

Assume that the closed-loop dynamics reads as follows:
(t) = (A — BKC) z(t) (5.321)

The eigenvalues Ak, and corresponding right and left eigenvectors, vy, and
wp, respectively, are given by the solutions of the following equations:

{ (~Ax, [+ A —BKC)ug, =0 (5.322)

wie (—A; 1+ A —BKC) =0

Differentiating the first equation of (5.322) with respect to K reads:
Ok, n 0(A —BKC) Ovg,
0K

=0 (5.323)

9K 9K > Vg, + (_)\Ki]l + A — BKC)

This equation is now multiplied by Q}}i and the second term is then zero
because of the second equation of (5.322):

Ok, 0 (A — BKC)
T K;
_ I = .324
Finally if A, is an eigenvalue of A — BKC then it can be shown that?2:
Mk,  Blwgvi CT
Ki _ _ Ut (5.325)

where wpy. and vy, are the row and column eigenvectors of A — BKC
corresponding to Ag;.
More generally, for differential equations of the form:

Mz + Ci+Dz=u (5.326)

the eigenvalues Ak, and corresponding right and left eigenvectors, vy, and wy,

respectively, are given by the solutions of the following equations?3:

(M M+ CAg, +D) vy, =0

wi. (Mg M+ Chg, +D) =0

22H. Sirisena, S. Choi, Pole placement in prescribed regions of the complex plane using
output feedback, IEEE Transactions on Automatic Control, 1975, Page(s):810 - 812

Z3Michael Tan Friswell and Sondipon Adhikari, Derivatives of complex eigenvectors using
Nelson’s method, ATAA Journal 38:2355-2357, January 2000, DOI:10.2514/3.14688

(5.327)
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5.11 Input-output decoupling control

5.11.1 Necessary and sufficient condition

We consider the following state-space representation of a controllable and
observable square system where wu(t) € R™ denotes the control input,
z(t) € R™ the state vector and y(t) € RP, p = m the output vector (which has
the same size that control input w(t)):

{ &(t) = Ax(t) + But) e dim (y(t)) = dim (u(t) (5.328)

Let’s assume that w(¢) can be split into [ u;(t) uy(t) ]T; similarly we

)
assume that y(¢) can be split into [ y, (1) y,() ]T. Thus the state-space
representation reads:

(5.329)

The transfer function from wu,(¢) to y,(t) is obtained by setting uy(t) = 0
and assuming no initial condition. We get:

Fuyy(s) = Cy (sI— A)"' By (5.330)

Thus input u,(¢) and output y,(¢) will be decoupled as soon as transfer
function Fy, , (s) is null:

Fuiys(s) = Ca (sl — A)_l B, =0 (5.331)

This condition is equivalent to the existence of an invertible change of basis
matrix P which defines a new state vector £(t) as follows:

2(t) = PE() & £(t) = P la(t) = { j((?) e Bull)  (5.332)
where:
A-piap. | A1 O ]
Az Ay
B=P! [ B: Bs ] = [ ]§1 ]§2 } Where]§1:P_1B1: { ]§021 ]
=[&]r= g] where G = P = [ €y 0

(5.333)
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Indeed:

CQ (SH—A)—I B1 = -1

C, (sPP'—A) By

— Cy (P (sl - P7'AP)P~}) ' B,

— CyP (s1— P'AP) ' P!B,
0

@}

s 0] (s1- A)fl [ ]~3021 ] (5.334)
0

Ca 0] [ (st- &) "B

This completes the proof. |

Moreover, from Neumann’s theory, it is known that the inverse M~! of a
nonsingular matrix M has the following series expansion as soon as the
spectral radius of the square matrix I — XM, that is the maximum moduli of
its eigenvalues, is lower than 1%4:

o]
= (I-XMm)" (5.335)
k=0

Setting X =T and M =1— A we get:

o
=) AF (5.336)
k=0

This relation can be related to the series expansion of (sl — A)_1 as follows:

1 AN D T /AN & AR
I-A) ' == (1-2 == =) = 5.337
(s ) 3< s) skZ::()(s) ; sk ( )

Thus transfer function Fy,,,(s) reads:

Ak—l

Fui(s) = Co(sI— A)7'Bi =) Co——By (5.338)
k=1

We conclude that transfer function Fy,,(s) is null as soon as the following
relation holds:

Fup(s) =0& CAPB; =0 VE>0 (5.339)
Let Q.1 be the following controllability matrix:
ch = [ B, AB1 AnilBl ] (5340)
Let Qo2 be the following observability matrix:
Cs
CoA
Qo2 = : (5.341)
CQAnfl

24 Joan-Josep Climent, Néstor Thome, Yimin Wei, A geometrical approach on generalized
inverses by Neumann-type series, Linear Algebra and its Applications 332-334 (2001) 533-540
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Then relation (5.339) with Cayley-Hamilton theorem indicates that a
necessary and sufficient condition for u,(t) to be decoupled from y,(¢) is that
the controllable subspace of (A, Bj) is contained in the unobservable subspace
of (A, Cs). Denoting ker (Q,2) the kernel of Q.2 and by range (Q.1) the span
of Q.1, we shall have®>:

range (Qc1) C ker (Qo2) (5.342)

5.11.2 Relative degree

In this section, we consider the input-output decoupling of the following square
system:

{ (t) = Axlt) + Bult) - ) oo gim (y(t)) = dim (u(t)) (5.343)

We will assume that the input vector u(t) and the output vector y(t) are of
dimension m and we denote g;fp the i*" row of output matrix C:

o
dim (y(t)) = dim (u(t)) =m = C:= | : (5.344)
n
Let y1(t) be the first component of y(t):
y1(t) = cf z(t) (5.345)
The first time derivative of y; () reads
d T T T
(1) = cri(t) = c1 Az(t) + ¢ Bu(?) (5.346)

We compute the time derivative of y1(¢) until some components of the input
vector u(t) explicitly appears in the time derivative. Let 71 > 1 be the lowest
order of the derivative such that QlTA”_lB £ 0:

dn

dtm y1(t) = cF A"z (t) + T AT T Bu(t) where ¢TATTIB #£0, 1 > 1 (5.347)

More generally, let r; > 1 be the lowest order of the derivative of the "
component of the output vector y(t) such that some components of the input
vector u(t) explicitly appears in the time derivative. Then for i = 1,--- ,m, the
corresponding r; is such that:

dr
ﬁyi(t) = Q?Arig(t) +Q;TFA”_1BQ(t) where QZTA”_lB #£0, 1, >1 (5.348)

?5Luigi Glielmo and Martin Corless, On output feedback control of singularly perturbed
systems, Applied Mathematics and Computation Volume 217, Issue 3, 1 October 2010, Pages
1053-1070
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Equations (5.347) and (5.348) are written in vector form fori =1,--- ,m as
follows:
™ @) AT i AnT
: = z(t) + Bu(t) (5.349)
| L enar dhr

or, equivalently:

T TAn
T A* =
O "
: = A*z(t) + B*u(t) where = QCT,)I/LjArlfl (5.350)
()
v (¢) B — . |B
{ i Q%Arm_l

Coefficients r; are called relative degrees of output y;(¢). For SISO systems,
the relative degree corresponds to the difference between the degree of the
denominator and the degree of the numerator of the transfer function.

5.11.3 Falb-Wolovich decoupling method

Falb-Wolovich decoupling method was published in 196726, Assume that we
desire to set the transfer function between Y;(s) and its commanded value Y, ()

as follows where A; ., @ = 1,--- ,7; represents the 7; desired closed-loop poles of
the transfer function:
Yi(s) (=Ai1) - (= Ain) ,
= : -t where i1 =1,---,m 5.351
V() (5 An) (5~ i) (350

Once the closed-loop transfer function ;?((88)) is developed we get:

Yi(s) a;,0 _ %0

— = 5.352
Ye(s) s aip,—18 T 4o F a1 s+ aip ®i(s) ( )

Note that closed-loop transfer function ;,:i_((ss)) has a unity static feedback
gain; Z
Yi(s)
=1 (5.353)
}/C’L(S) s=0
Then we define matrix A* as follows:
o p1(A)
A= : (5.354)
§%¢m(A)
where qSl(A) = A" + Qg r—1 Ari—l o4 a; 1 A+ a;,0 I

26p, Falb, W. Wolovich, Decoupling in the design and synthesis of multivariable control
systems, IEEE Transactions on Automatic Control, December 1967



214 Chapter 5. Controller design

Assuming that B* in (5.350) is non-singular, control vector u(t) is chosen as
follows:

K := (B*) ' A~
1) = —Ka(t) + Hr(f) wh o
ult) = ~Ka(t) + He(t) where § py gayr
am,0
(5.355)
Then the closed-loop transfer function reads:
a1,0
#1(s)
G(s)=C(sI— A +BK) 'BH := - (5.356)
am,0
¢m,(3)
Indeed, coming back in the time domain, (5.352) reads:
yz(m(t) + @1 yz-(rﬁl)(t) + o+ ain 9it) + aioyit) = aioyi. (1)
< Z/zm)(t) = —Qir—1 yzm_l)(t) — = a1 Yi(t) — aiovit) + aio yi ()
(5.357)

On the other hand, we have seen in (5.349) that the r* time derivative of
the i'" output y;(t) reads:

(1) = T ATz (t) + T AT Bu(t) (5.358)

When the control u(t) = —Kuz(t) + Hr(t) is applied we get:

oy (1) = (FA" — FATTIBK) a(t) + ¢f AT BHr (t) (5.359)
Yer (1)

Setting r(t) := : , where y, (t) denotes the commanded value for
yCm (t)

the " output %;(t), and comparing the targeted differential equation (5.357)
with the actual differential equation (5.359), we conclude that decoupling control

yields the following conditions®7:

Wiri—1 yz(rifl) (t)+ -+ a1 7i(t) + a; 0 yi(t) = Qz'T (Am—lBK _ Ari) z(t)

QiTArrlBH = [0 ... 0 aio o --- 0]
—~—
ith column
(5.360)
Using the fact that ¢/ A771B =0 Vj < r; we get:
TATB =0V <ri= oy (t) =T AIx(t) Vi <r (5.361)

2"Eric Ostertag, Mono- and Multivariable Control and Estimation, Springer, 2011
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Thus the first equality of (5.360) reads:

i1 6] AT a(t) + -+ ain cf Ax(t) + aio el z(t) = ¢ (ATTTBK — A™) z(t)
=4 QZ-T ((Zi77«i_1Ari_1 +---+ (IZ‘71A + awﬂ) x t) = QzT (ATi_lBK — A”) @(t)
(5.362)
This equality shall hold whatever the value of the state vector x(¢). Thus

we finally get:

QZT (ai,ri—lATi—l +--tai 1A+ ai701[) = QZT (Am—lBK _ A”)
&l (AT 4 aip, AT 4 a1 A+ aiol) = ¢ A7TBK

where qbZ(A) = A"+ Qi r;—1 Ari—l + -4 ain A+ a0 I
Applying the same process for each output component y;(t), i = 1,--- ,m,
CTArl—l
G
and assuming that B* := : B is non-singular, yields:
Q%Armfl
cf1(A) cfAn!
A* = : = : BK := B*K
_ o (5.364)
Qm(bm(A) QmA "

&K= (B! A*

Finally, let us focus on the second of (5.360). Applying the same constraint
for each output component y;(t), ¢ = 1,--- ,m, and assuming again that B* is
non-singular, yields:

Al aip
: BH =
cn AT Gm.0 (5.365)
at,o
& H:= (B!
Am,0
This completes the proof. |

5.11.4 Zeros and zero dynamics

Note that det (sI — A + BK) has n eigenvalues whereas r = Y ;" | r; eigenvalues
have been set through the choice of polynomials ¢;(s), @ = 1,---,m. Thus
n —r eigenvalues have disappear due to pole-zero cancellation in the closed-loop
transfer function G(s).

In the general case, let B be a n x m matrix and C be a p x n matrix. Then:

— The values of s which drops the normal rank of [ sI-A —-B ] are called
the input-decoupling zeros. Then it can be seen that input-decoupling
zeros are also eigenvalues of state matrix A. In addition, if ); is such an
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input-decoupling zero, then rank ([ NI-A —-B ]) < n and thus there
exists an 1 x n vector QZT # 0 such that:

rank([ NI-A —-B ]) <n<< Jw; #0 s.t. w;[[ NI-A —-B ] =0
(5.366)

This however implies that \; is an uncontrollable eigenvalue of state matrix
A, and wiT the corresponding left eigenvector.

— Conversely, the values of s which drops the normal rank of [ SH(_jA ]

are called the output-decoupling zeros. Then it can be seen that output-

decoupling zeros are also eigenvalues of state matrix A. In addition, if
. . AMI—A

A; is such an output-decoupling zero, then rank ( ’ C ]) < n and

thus there exists an n x 1 vector v; # 0 such that:

rank<[ )\iHCTA }) <n< Ju; #0 s.t. [ )\i]ICTA }UZT:O, (5.367)

This however implies that A; is an unobservable eigenvalue of state matrix
A, and v, the corresponding right eigenvector.

There are eigenvalues of state matrix A which are both uncontrollable and
unobservable. These uncontrollable and unobservable eigenvalues of state
matrix A are called input-output-decoupling zeros.

In order to exhibit the dynamics of zeros, we consider the following change
of coordinates:

&, =T AT g where { T (5.368)

1
j=1m

Those r = >_" | r; coordinates are completed by choosing n — r coordinates
2}, such that:

2z = QZ@ such that Q;‘:B =0fork=1,---,n—7r (5.369)
From the preceding relation, it is clean that Py belongs to the kernel of B”:

B'p =0fork=1,--- ,n—r (5.370)

Then we get the following state vector [ % ] of size n, which linearly depends

on state vector z as follows where the coordinate transformation matrix P is
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square and non-singular:

[ &1 ] [ iQFFiF ]
1,2 aA
_ glfl,, - gff%f{ii -
R S
C
HE AR
£ m, Em
gm,rm - Cf%ﬁf”ﬁ ,1 -
21 E?
L2 | LB,

Then the state space representation (5.343) becomes :

E1_xlé).n
S|=A|>|+B
x:P[ﬂ: {Zl [z i (5.372)
- y=C¢
where: _ B
A—PlAp.= | An Aw
Az Ay
5 _polg_ [ B ] (5.373)
0
C=cP=[C o]
Then we get:
21
zi=| 0 | =AnE+An:z (5.374)
én—r

The zero dynamics is represented by the eigenvalues of the (n —7) x (n—1)
square matrix Ago. It is worth noticing that the closed loop will be stable as
soon as all the input-output-decoupling zeros (that are the eigenvalues of matrix
Ag9) have negative real part.

5.12 Frequency domain approach

5.12.1 Hsu-Chen theorem

We consider the following state-space representation of a controllable and
observable system where u(t) € R™ denotes the control input, z(t) € R™ the
state vector and y(t) € RP the output vector:

{ i(t) = Ax(t) + Bu(t)
y

(1) = Czlt) 5:379)
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where A € R™*" B € R"*™ C € RP*"™.
Assume the following state feedback control:

u(t) = —Ka(t) + Hr(t) (5.376)

Then the closed-loop system reads:

{ :;((:)) - éi(;)BK) z(t) + BHr(t) (5.377)
The Hsu-Chen theorem?® states that the following relation holds:
|det (sT — A + BK) = det (sT — A) det (I + K®(s)B)| (5.378)
where:
B(s)=(sI—A)! (5.379)

Hsu-Chen theorem is an application of the Sylvester’s determinant theorem??

which states that the following relation holds assuming that M; is an m x n
matrix and My an n X m matrix (so that M; and My have dimensions allowing
them to be multiplied in either order forming a square matrix):

det (Hm + MlMg) = det (Hn + M2M1> (5.380)

Sylvester’s determinant theorem may be proven using the Schur’s formula,
which is recalled hereafter:

dot ([An A12]> = det(Ag) det(Aq; — A12A2_21A21)

Ao A (5.381)
= det(An) det(AQQ — A21A;11A12)
I, —M;
Thus if M = [Mz I, ] , we get
I, —M; _
det (M) = det ([Mg L, }) = det(L,, + M;My) (5.382)

= det(]ln + Mng)

In addition, for square matrices M3 and My of equal size, the determinant
of the matrix product equals the product of their determinants:

det (M3My) = det (M3) det (My) (5.383)
Then we get:

det (s — A + BK) = det ((sI[ ~A) (H +(sI—A)"! BK))

= det ((sI — A) (I+ ®(s)BK)) (5.384)
= det (sI — A) det (I + ®(s)BK)
=det (sI — A)det (I+ K®(s)B)

28Pole-shifting techniques for multivariable feedback systems, Retallack D.G., MacFarlane
A.G.J., Proceedings of the Institution of Electrical Engineers, 1970
2https://en.wikipedia.org/wiki/Determinant
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We finally get the Hsu-Chen theorem (5.378). [
Furthermore, let F(s) be the transfer function of the plant and G(s) the
closed-loop transfer function:

{ F(s) =C(sT—A)"'B (5.385)

G(s)=C(sl— A +BK) 'BH

Then Wang®® has shown that the closed-loop transfer function G(s) is
related to the transfer function of the plant F(s) through the following
relation:

1
G(s) = F(s) (]1 LK (sI—A)! B) H (5.386)

Indeed, we can write:

(5.387)
Then, notice that (®(s) + BK) ™! (I+BK® !(s)) = ®'(s). Thus we get:

(]1 ~K(®'(s) + BK) B> [+ K®(s)B) =1
where ®(s) = (sI— A)~" (5.388)

This completes the proof. |
Furthermore from Equations (5.385) and (5.386) we can write:
_ adj (sI — A)
F(s)=C(s[-A)'B=C————~
(s) = C(sT - A) det (sI — A)

adj (sI — A + BK) BH
det (sI — A + BK) (5.389)
adj (]1 LK (sI-A)! B)

G(s)=C(sl— A+BK) 'BH=C

B —1
(]I+K(5H_A) 1B> T et (H+K(5H_A)_1B>

\

Thus Equation (5.386) reads as follows:

: -1
adj(s]— A+ BK) o adj(s]— A) ad3(]1—|—K(s]I—A) B)H

det (s — A + BK) det (s — A) " et (T+ K (sT — A) ! B)
(5.390)

39Decoupling Control, Qing-Guo Wang, Springer, 2003
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When identifying the denominator of this relation, we retrieve the Hsu-Chen
theorem (5.378).

Finally Equation (5.387) indicates that closed-loop transfer function G(s)
is equivalent to the transfer function of the plant F(s) serially driven by the
following controller:

C(s) = (]I—K(s]I—AJrBK)_lB)H (5.391)

This controller can be represented by the following state space equations:

y (t) = —Kuz,(t) + Hr(t) (5.392)

Ze

5.12.2 Output-based controller

We consider the state-space representation (5.393) where the state vector z is
of dimension n (that is the size of state matrix A) and where u(t) denotes the
input vector:

{ (t) = Az(t) + Bu(t) (5.393)

y(t) = Cu(t) + Du(?)

As in section 5.6.3, we will assume the following output feedback controller
(5.134):

{ z.(t) = (A -BK)z.(t)+ L (Q(t) —(C-DK) L:(t)) (5.394)

(t) = Kz.(t)

We have seen in section 5.6.3 that the characteristic polynomial x4, (s) of
the closed-loop reads:

sI— A BK
XA, (s) —det(s]I—Acz)—det<[ “LC sl—A +BK +LC ])

= det (s — A + BK) det (s — A + LC)
(5.395)
Furthermore from the Hsu-Chen theorem (5.378) the following relation
holds:

det (s — A + BK) = det (sT — A) det (I + K®(s)B) (5.396)

Let D(s) = det(sl—A) be the determinant of ®(s), that is the
characteristic polynomial of the open-loop plant, and N, (s) = adj (s — A)B
be the adjugate matrix of sl — A times matrix B:

adj (sl — A)B _ Nyi(s)
det (sT—A) =~ D(s)

P(s)B=(sI—A) 'B= (5.397)

Consequently (5.378) reads:

det (sT — A + BK) = det (D(s)I + KNy (s)) (5.398)
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As soon as A\, is a desired closed-loop eigenvalue then the following relation
holds:

det (D(s)I + KNy (s))| =0 (5.399)

8:>\KZ~
Consequently it is desired that matrix D(s)I+ KNg(s)|,_y, is singular.

Following Shieh & al.3!, let w; # 0 be a vector of size m x 1, where m is the
number of columns of B (that is the size of the input vector u(t) of the plant),
belonging to the kernel of matrix D(s)I+ KNy (s)|,_,, - Thus changing s by
Ak, we can write: Z

(D(AKz)H + KNol(AKi)) W; = 0 (5400)

Actually, vector w; # 0 can be used as a design parameter.

Alternatively, when making the parallel that \; is an eigenvalue of matrix
A as soon as det (sl — A)[,_, = 0, we conclude that D(Ag;) is an eigenvalue
of matrix —KN,(Ak;), and thus w; is an eigenvector of —KN(Ax;)
corresponding to the eigenvalue D(\g;). This remark can be extended to the
output feedback case where N, (s) = Cadj (s — A) B.

In order to get gain K the preceding relation is rewritten as follows:

KN (Ak,)w; = =D(Ak, Jw; (5.401)

This relation does not lead to the value of gain K as soon as Ny (\g,)w;
is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relation for the n desired closed-loop
eigenvalues. We get:

K[uve, - vg, ]==[p - p,] (5.402)

Where vectors vy, and p, are given by:

Vg, = NOZ(AK')Qi
i i 5.403
{ p. = DAk, w, (5.403)

We finally get the following static state feedback gain matrix K:

K=-[p, - pJloe, ~ vg, ] (5.404)

This is also the so-called Roppenecker’s formula which has been developed
in (5.74).

Note that for complex conjugate eigenvalues we have Ak, = Ag,,, and
Vg, = Ug,,,- Thus, assuming that ¢ = 1 and multiplying both of left sides of
equation K [ Vi, Uk, Uk, “° ] = — [ Py Py Py o ] by the following
nonsingular matrix M will not alter the calculation of K:

0.5 —0.5j
M = 0.5 0.55 (5.405)
0 | I

31L. S. Shieh, H. M. Dib and R. E. Yates, Sequential design of linear quadratic state
regulators via the optimal root-locus techniques, IEE Proceedings D - Control Theory and
Applications, vol. 135, no. 4, pp. 289-294, July 1988.
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Then in this case (5.404) reads:
-1

(5.406)
A similar result can be achieved with det (sl — A 4+ LC). Indeed from the
Hsu-Chen theorem (5.378) we get:

K =—[ Re(p,) Im(p) py --- ][ Relvg,) Im(ug,) vk,

det (s — A+ LC) =det ((s]l — A+ LC)T)

= det (sI — AT + CTL") (5.407)
= det (sI — AT) det(I + L ®'(s)C”)
where:
&' (s) = (sT— A7) (5.408)

Let D(s) = det (sI — AT) = det (sl — A) be the determinant of ®/(s), that
is the characteristic polynomial of the open-loop plant, and
N/,(s) = adj (sl — AT) CT be the adjugate matrix of sl — AT times matrix

T
C

adj (s — AT)CT NI (s)

&' (s)CT = (s1— AT) ' T = = 5.409
(s) (s ) det (sl — AT) D(s) (5.409)

Consequently (5.407) reads:
det (sI — A + LC) = det (D(s)I + LTN;(s)) (5.410)

As soon as Ar, is a desired closed-loop eigenvalue then the following relation
holds:

det (D(s)I + L"N/,(s))] =0 (5.411)

s=Ap;,

Consequently it is desired that matrix D(s)I + LTNQZ(S)}S:)\LZ_ is singular.

Let w) # 0 be a vector of size p x 1, where p is the number of rows of C (that is
the size of the output vector y(t) of the plant), belonging to the kernel of matrix

D(s)I + LTNgl(s)‘S . Thus changing s by Ar, we can write:

=A
(DOL)I+ LNy (AL,)) o =0 (5.412)

Actually, vector w) # 0 can be used as a design parameter.
In order to get gain L the preceding relation is rewritten as follows:

LN, (AL)w; = =D(AL, )] (5.413)

This relation does not lead to the value of gain L as soon as Ny (A, )w!
is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relation for the n desired closed-loop
eigenvalues. We get:

L' vy, o v, == - 1] (5.414)

I3
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Where vectors vy, and p' are given by:

{ vy, = No(ArL,) wj

P = D(\r,) ! (5.415)

We finally get the following static observer gain matrix L, which is equivalent
to (5.404) but dedicated to observer design:

L=—[p -~ ¢ ] [v, - v, ] (5.416)

5.12.3 Invariance of (transmission) zeros under state feedback

We consider the following system:

{mw:Aaw+Bmw

y(t) = Cz(t) + Dul(t) (5.417)

We have seen in section 1.5 that the (transmission) zeros of the open-loop
transfer function F(s) = C (sI — A)"' B+ D are defined as the values of s such
that the rank of the Rosenbrock’s system matrix R(s) = [ SH(_jA _];3 ] is
lower than its normal rank, meaning that the rank of R(s) drops.

Now, assume that we apply the following feedback on the plant:

u(t) = —Kz(t) + Hr(t) (5.418)

Thus the closed-loop state space realization reads:

i(t) = (A — BK) z(t) + BHr(t)
{0 =(C DK 2t Dis (o419
Thus the closed-loop transfer function G(s) reads:
G(s) = (C —DK) (sl — (A —BK)) ' BH + DH (5.420)

The (transmission) zeros of the closed-loop transfer function G(s) are defined
as the values of s such that the rank of the Rosenbrock’s system matrix Ry (s) is
lower than its normal rank, meaning that the rank of R(s) drops, where R(s)
is defined as follows:

sl— (A-BK) —-BH ] (5.421)

Ra(s) = [ (C-DK) DH

The Rosenbrock’s system matrix R(s) can be re-written as follows:

ra)= | Th D Kk B]ore| k on| e

Thus, assuming that R(s) is a square matrix, we can write det (Rg(s)) =
det (R(s)) det (H), from which it follows that the (transmission) zeros of a plant
are invariant under state feedback.
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5.12.4 Matrix fraction description of a transfer function
Right matrix fraction description

Given any transfer function F(s), the right matrix fraction description of F(s)
reads as follows where Fry(s) and Frp(s) are stable transfer functions:

F(s) = Fpn(s)Fpp(s) (5.423)

Stable transfer functions Fry(s) and Frp(s) are such that there exist two
stable transfer functions X g(s) and Y r(s) such that the following relation holds:

YR(S)FRD(S) + XR(S)FRN(S) =1 Vs (5.424)

To get a matrix fraction description, consider a minimal realization of
transfer function F(s):

F(s)=C(s[—A) 'B+D:= (%‘%) (5.425)

Then stable transfer functions Fry(s) and Frp(s) reads as follows where
K is chosen such that A — BK has all its eigenvalues with negative real part3?:

A-BK|B
Frn(s) = ( C-DK D)

Funto = (AZEE 2

Furthermore, stable transfer functions Xpg(s) and Yg(s) reads as follows
where L is chosen such that A — LC has all its eigenvalues with negative real
part:

(5.426)

A-LC|L
Rl = K 10 (5.427)
A-LC|B-LD )
Yr(s):= K :

If A is a n x n matrix, B a n x m matrix and C a p x n matrix, then Fry(s)
is a p x m matrix and Frp(s) is a square m x m matrix. In addition, Xg(s) is
a m x p matrix and Yg(s) is a square m X m matrix.

Left matrix fraction description

Similarly the left matrix fraction description of F(s) reads as follows where
Frn(s) and Frp(s) are stable transfer functions:

F(s) = F; 5 (s)Frn(s) (5.428)

Stable transfer functions Fyn(s) and Frp(s) are such that there exist two
stable transfer functions X, (s) and Y (s) such that the following relation holds:

Fip(s)YL(s) —Frn(s)Xp(s) =1 Vs (5.429)

32Fortuna L., Frasca M., Optimal and Robust Control, CRC Press, 2012
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It can be shown that stable transfer functions Frn(s) and Frp(s) reads as
follows where K is chosen such that A —BK has all its eigenvalues with negative
real part:

A-LC B-LD
FLN(S) = < C D >

Frp(s) = (A:(?C?>

Furthermore, stable transfer functions Xy (s) and Y (s) reads as follows
where L is chosen such that A — LC has all its eigenvalues with negative real
part:

(5.430)

X, (s) = (ABKL>

“K |0
A-BK | L
Yils) = ( C-DK ]1)

The preceding relations can be rewritten in a shorter form as follows?

[ Frp(s) Xi(s) ] _ [ -K } (I-Ag) ' [B L]+ [ 0 ] (5.432)

(5.431)

3.

Frn(s) Yr(s) Cx o
and:
Yals) —Xr() | _|[ K _ -1 I o
[ Fon(s) Fip(s) |~ | —c |CT-AD T [BL L]+ oy
(5.433)
where:
Ax =A-BK
Afz A-LC (5.434)
B, =B-LD

The above functions constitute a doubly coprime factorization of F(s),
meaning that:

Yr(s) —Xgr(s) ] [ Frp(s) Xr(s) _| 1o }
—FLN(S) FLD(S) FRN(S) YL(S) 01 (5 435)
N |: FRD(S) XL(S) :| |: YR(S) —XR(S) :| |: I 0 :| ’
FRN(S) YL(S) —FLN(S) FLD(S) 0 I

5.12.5 Youla parameterization of all stabilizing controllers

We consider the model reference feedback loop shown in Figure 5.8, where F(s),
C(s) and C,¢(s) are the plant, feedback controller and prefilter, respectively3*.

Let:
F(s) = Fan(s)Fpp(s) = Fp(s)FLn(s) (5.436)

3%Ruth Curtain, George Weiss and Martin Weiss, Coprime Factorization for Regular Linear
Systems, Automatica. Vol. 32. No. 11, pp. 1519-1531, 1996

34 Two-degree-of-freedom Optimal Flight Control System Design, Chih - Min Lin & Jiann -
Min Wu, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan December
1996
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R(s) . R /6) .-"'Awm-_“\\‘-«, Uts) Y(s)
el Oy P_..+/\/\ il
— Crs)

Figure 5.8: Feedback loop with two-degree of freedom

where the pairs (Fgry(s), Frp(s)) and (Frn(s), Frp(s)) constitute any left
and right coprime, proper, stable, rational decomposition of F(s). We have seen
in (5.426) and (5.430) how to get Frn(s), Frp(s), Frn(s), Frp(s) from a
minimal realization of transfer function F(s).

Then Youla & al.3® have shown in 1976 that the class of controllers that
make the closed-loop system internally stable is given as follows where Q(s) and
Qps(s) are arbitrary compatibly dimensioned real rational matrices analytic in
Re(s) > 0 (i.e. stable):

C(s) = (Yr(s)+Q(s)Frn(s) " (Xr(s) + Q(s)FLp(s))
= (X1(s) + Frp(5)Q(s)) (YL(s) + Fry(s)Q(s)) "
and (5.437)
Cpr(s) = (Yr(s) + Q(s)Frn(s) " Qpr(s)
= Qps(s) (Yr(s) + Frn(s)Q(s) ™"

5.12.6 Frequency domain representation of state feedback loop

The material of this section comes from the work of P. Hippe3®.
We consider the following linear, time-invariant MIMO systems where z(t) €
R™, y(t) € RP and u(t) € R™:

{ (t) = Az(t) + Bu(t) (5.438)

2(t) = Nz(?)
Figure 5.9 shows the linear state feedback loop in the time domain where:
u(t) = —ug(t) +r(t) = —Kz(t) + r(t) (5.439)

Reference input r(¢) € RP shall be multipliable by an appropriate pre-filter
gain H for zero steady-state tracking error, but it will have no consequences on
the following results.

Based on the right polynomial matrix fraction description (see Section C.1.6)
of the open loop transfer function F(s) which reads F(s) = Fpy(s)Fgp(s),

3%Youla, D. C., Bongiomo, J. J., Jr., and Jabr, H. A., Modem Wiener-Hopf design of
optimal controllers; Part 1: the single-input-output case, IEEE Transaction on Automatic
Control, vol. AC-21, Feb. 1976, pp.3-13

36Hippe P., Parameterization of the full-order compensator in the frequency domain,
International Journal of Control, Volume 48- Issue 4, 1988
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o) < o u(t) A X x(0) z()
. p{:+ —» B —» ></: > I > N —»
\ \

/
- /

u ()

\ K - |

Figure 5.9: State feedback loop in the time domain

r(s) 4/ u(s) B x.(s) z(s)
— +/\_ \/—p FRD (s) > FRN(S) E——
u(s)

— D.(5) -

Figure 5.10: State feedback loop in the frequency domain

the state feedback loop in the time domain in Figure 5.9 can be equivalently
represented by the state feedback loop in the frequency domain in Figure 5.10
where D¢ (s) is a m x m polynomial matrix.

From Figure 5.9, we get the following relation between wy (¢) and wu(t) :

up(s) = K (s — A)~! Bu(s) (5.440)

On the other hand, from Figure 5.10, we get the following relation between
uc(t) and w(t) :
uc(s) = De(s)F b (s)uls) (5.441)

Because both control loops exhibit the same input-output behavior, the
following relation holds:

ug(s) = uc(s) = K(sl— A)"'B = Dc(s)Fh(s) (5.442)

Similarly, from Figure 5.9 and Figure 5.10, we get the following expressions
for z(s) and z(s) :

sz(s) = Az(s) + B (r(s) — KJU( )
< x(s)=(sl— A+ BK)™ Br( )
zo(s) ZFE)(S)( (s) = Dc(s)ze(s))
& (I+Fyp(s)Da(s) zo(s) = Frp(s)r(s)
< (Frp(s) +Dc(s)) zo(s) = r(s)
& z0(s) = (Frp(s) + De(s) ™' r(s)

(5.443)



228 Chapter 5. Controller design

Then, by identifying the output z(s) in Figure 5.9 and Figure 5.10, we get:

{ z(s) = Nz(s) = N (sl - A + BK) ™' Br(s) (5.444)

2(s) = Frn(8)zo(s) = Fra(s) (Frp(s) + De(s) ' r(s)

The relation z(s) = Fgy(s) (Frp(s) +Dec(s)) ' r(s) indicates that the
(transmission) zeros are invariant under state feedback.

Moreover, because both control loops exhibit the same input-output
behavior, the following relation holds:

N (sl — A+ BK) 'B = Fgy(s) (Frp(s) + Do(s) ™! (5.445)
Let the closed-loop polynomial matrix D(s) be defined as follows:
D (s) = Frp(s) + Dc(s) (5.446)

Then the previous equation reads:

N (sl — A + BK) ' B = Fpy(s)D;'(s) (5.447)

Furthermore, using this relation in (5.442) leads to the following relation:

T+ K (sl —A)"'B=D,(s)Frh(s) (5.448)

Furthermore, the following relations hold®® where T'.(-) denotes the highest
column-degree coefficient matrix and J.,(-) denotes the it" column degree.

| (Dcl(s)) I, (F_l (3))

Matrix D (s) contains exactly the same number of free parameters than the
state feedback matrix K.

5.12.7 Pre-filtering applied to SISO plants

We will assume hereafter the following state feedback control of a SISO plant:

2(t) = Az(t) + Bu(t)
u(t) = —Kz(t) + 1, (t) (5.450)
2(t) = Nx(t)

As shown in Figure 5.11, the pre-filter Cp,¢(s) is a controller which is situated
outside the feedback loop.

What is the purpose of the pre-filter 7 Once the state feedback gain K is
designed, the eigenvalues of closed-loop state matrix A — BK are set, but not
the zeros of the closed-loop transfer function G(s):

G(s) = —N(sI-(A-BK)) 'B (5.451)
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r(t) r 0 < u A X x(0 20
— Cpl(s) —bll></.l—-' B —{+ ._... J T s N L»

Figure 5.11: State feedback loop with pre-filter

These zeros may cause undesirable overshoots in the transient response of
the closed-loop system. The purpose of the pre-filter Cp(s) is to reduce or
eliminate such overshoots in the closed-loop system. Additionally the pre-filter
may annihilate slow stable poles which sometimes cannot be shifted by the
controller.

We focus in Figure 5.11. Let N (s) be the numerator of transfer function

G(s) = Ri(f(l) and D (s) its denominator:

Z(S) _ Ncl(s)
Rpf(s)  Dal(s)

e has all its zeros with negative

real-parts, or equivalently that all the roots of N (s) are located in the left half
plane.

Pre-filter C)¢(s) is designed such that its poles cancel the zeros of the closed-
loop system (i.e. the roots of Ny (s)). If there is no pole of the closed-loop system
to cancel, the numerator of the pre-filter is set to be a constant K,¢. In such a
case the transfer function of the full system reads:

Z(s) _ Ky

G(s) = (5.452)

We will assume that transfer function

= 5.453
R(s)  Dgy(s) ( )
As a consequence the transfer function of the pre-filter reads:
K
Cpy(s) = —2L 5.454
Pf( ) Ncl(s) ( )

Note that this is only possible because the roots of N (s) have negative
real-parts, meaning Cp¢(s) is stable.

Usually constant Kpr is set such that the static gain of ggz% is unitary,
meaning that the position error is zero:
Y(s)
1=K =D.(0 5.455
R(s) o pf «(0) ( )

Additionally the numerator of the pre-filter may also cancel some slow stable
poles (poles in the left plane) of the closed-loop system when they are not placed
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Figure 5.12: State feedback loop with pre-filter inside the closed-loop

by the controller K. In this case, the numerator of the pre-filter Cp¢(s) is no
more a constant.
Equivalently, the pre-filter may be inserted inside the closed-loop, as shown

in Figure 5.12.
Figure 5.11 and 5.12 are equivalent as soon as the following relation holds:

CQ(S)G(S)

Cos(8)G(8) = T2 516 () (5.456)
Finally, controller Cy(s) can be computed from Cp¢(s) as follows:
Cs(s) Cpr(s)
C =—=—" & C = 5.457
()= G mae ¢ @ (5:457)

1= G(s)Cpy(s)
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Appendix A

Refresher on linear algebra

A.1 Section overview

The purpose of this chapter is to review the main results in elementary linear
algebra. We will review vectors and matrices notions. This chapter ends with
the presentation of the notions of eigenvalues and eigenvectors. The content of
this chapter is mainly based on the material provided within the paper of Daniel
S. Stutts' and Gregory J. Hakim?.

A.2 Vectors

A.2.1 Definitions

A column vector, or simply a vector, is a set of numbers which are written in a
column form:

I
L2

Tn

A row vector is a set of numbers which are written in a horizontal form. We
denote a row vector by ! where T denotes the transpose operation:

e’ =21 2 - ] (A.2)

Vectors can represent the coordinate of a point within a space of dimension

"https:/ /www.researchgate.net/publication/242366881 Linear _Algebra_Primer
*https://atmos.washington.edu/ hakim/591/LA _primer.pdf
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A.2.2 Vectors operations

— The sum (or subtraction) of two vectors proceed element-wise:

T
x2
xTr =
- : 1+
T2 + Y2
Y1 - :
y= y.2 Tn + Yn
L Yn |
— The sum (or subtraction) is:
— Commutative:
zty=y+z (A4)
— Associative:
(z+y +z=2+Hy+2) (A.5)

— The sum (or subtraction) of two vectors which are not of the same size is
undefined.

— For vector subtraction, you have to replace + by — in the preceding
expressions.

— Multiplication of a vector x by a scalar ¢ is defined by the multiplication
of each number of the vector by c:

CT1
CT2

cr = , (A.6)
CTn

— The inner product (or dot product) z''y of two vectors z and y of the same
size is obtained by multiplying each number element-wise:

( )
x2

1=
I

Y1
Y2

<
I

Yn
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A.3 Matrices

A.3.1 Definitions

A n X m matrix is a rectangular array of numbers formed by n rows and m
columns:
air - Qim
A= z (A8)
anl  °° Qnm

Number a;; refers to the number which is situated on the ith row and the
4t column.

Matrix and vectors can be used to represent a system of equations in a
compact form:

a11z1 + - ATy, = by
Ap1T1 + QT = by
ail -+ Qaim 1 by (A9)
& =
Gnp1 - Qnm Tm bm
S Az=0

— A square matrix is a matrix with the same number of rows and columns;

— A diagonal matrix is a square matrix in which the numbers outside the
main diagonal are all zero;

— The identity matrix I is a diagonal matrix having only ones along the main
diagonal:
1 0 --- 0

I= (A.10)

— The transpose of a matrix A has rows and columns which are interchanged:
the first row becomes the first column, the second row becomes the second
column and so on. The transpose of a matrix A is denoted AT:

ail o Qim air - Ganl
A= ; =AT=]| : : (A.11)
an1 -+ OGnm Aim " Gpm
— A symmetric matrix is a square matrix that is equal to its transpose;

— The trace of a square matrix is the sum of its diagonal numbers:

i=1
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A.3.2 DMatrix Operations

— The sum (or subtraction) of two matrices of the same size proceed element-

wise:

[ ail A1m

A= :

a1 + b a1m + bim
__anl Tt OGnm = A+B =
bi1 -+ bim :

B — : an1 + bn1 Apm + bum

| bnl bnm

(A.13)

The sum (or subtraction) of two matrices which are not of the same size
is undefined.

The sum (or subtraction) of a matrix with a scalar is defined as the sum
(or subtraction) of each number of the matrix with the scalar:
ail +c¢ a1m +C

ai a1m

anl Gnpm an1 +c¢ Gnm + €
Multiplication of a matrix A by a scalar ¢ is defined by the multiplication

of each number of the matrix by c:

Ca11 CQ1m

a1 A1m

= cA = (A.15)

Can1 Clpm,

Gnl Apm,
If Ais an n x m matrix and B is an m X p matrix then the matriz
product AB is defined to be the n x p matrix for which the number on the
it" row and the j* column is obtained by taking the dot product of the
corresponding i*" row of the left matrix with the j** column of the right

matrix:

[ an a1m af
A= : =1 :
L Onl anm Qg
[ b1 bip
B=| : L= b, | (A.16)
L bm1 bmp
atb, -+ afb,
= AB = :
alb al'b,
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— The k" power of a square matrix is obtained be multiplying k-times the
matrix:

AF=A.. A (A.17)
——

k-times

A.3.3 Properties
For any matrices A, B and C the following hold:
- A+B=B+A
- (A+B)+C=A+(B+C)
— TA=AI=A
- (AB)C = A (BC)
— AB+C)=AB+ AC
— A’=T1
— (AB)T = BTAT
— For any scalar ¢: cA = Ac

— But be careful, in general AB # BA

A.3.4 Determinant and inverse

The determinant of a square matrix is a scalar. If the matrix is not square its
determinant is undefined.

For of a 2 x 2 square matrix its determinant represents the area of the
parallelogram obtained by the vectors in the rows of the matrix:

A= |: @ a2 :| = det (A) = a11a22 — 210412 (A18)
a1 ag2

Let A be a square n x n matrix and A;; be the square (n — 1) x (n — 1)
submatrix obtained by removing the i** row and the j** column from A. Then
determinant of A may be obtained recursively by reduction to the 2 x 2 form
as follows:

det (A) = Zn:aij ((—1)i+j det (A”)) = Zn:ai]’ ((—1)i+j det (A”)) (Alg)
i=1 j=1

The inverse of a square matrix A is the matrix denoted A~! such that:
AA ' =ATA =1 (A.20)

A matrix that has no inverse is called singular.
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The inverse of a matrix can be expressed by the following formula where
adj (A) is called the adjoint (or adjugate) matrix:

-1 _ adj (A)
det (A)

(A.21)

The number on the i** and j** column of the adjoint matrix adj(A) is the
cofactor of a;;. The cofactor of a;; is the determinant of the submatrix A;
obtained by removing the i*" row and the j** column from A multiplied by
(_1)i+j .

For of a 2 x 2 square matrix we get:

det (A) = a11a22 — as1a12
A | @ a2 _
o odj (A) = a22 a12
—as1  ay (A.22)
o1 | G2 —O1
= AT = Gam—aan [ —as a1

It can be shown that:

— If det (A) # 0 then A is nonsingular ;

— If any row or column of A is zero then det (A) =0 ;

— If two rows or columns of A are proportional then det (A) =0 ;
— det (AB) = det (A) det (B) ;

— det (AT) =det (A) ;

— det (Afl) = #(A) provided that A~ exists ;

— If A is a n x n matrix and c¢ a scalar then det (cA) = ¢" det (A) ;
— (AB)'=B!A!;

(A =@

Furthermore let A be of dimension n x n, B of dimension n x k, D of

dimension k x k and C of dimension k x n, then the Woodbury Formulae?
reads:

{ (A+BDC)! =A"'-A"'B(D'+CA'B)"'CA!
DC

(A+BDC)"! =(D'+CA'B)"'CA™! (A.23)

3Linear Algebra Primer Gregory J. Hakim, University of Washington, 2 January 2009 v2.0
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A.4 Eigenvalues and eigenvectors

A vector z is called a (right) eigenvector of matrix A if z is proportional to Az,
or equivalently in the same direction than Ax:

st =Ax (A.24)

In order for (A.24) to hold the following relation shall be satisfied:
(sI—A)z=0 (A.25)

Relation (A.25) holds for  # 0 as soon as the resolvent matrix ®(s) =
(sI — A)™! is singular. For the resolvent matrix ®(s) to be singular we shall

have:
det (sI—A)=0 (A.26)

Assuming that A is of dimension n x n then the determinant det (sl — A),
which is called the characteristic polynomial of A, is a polynomial of degree n.
Furthermore its n roots are called the eigenvalues of A and are usually denoted
ALy An.
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Appendix B

Overview of Lagrangian
Mechanics

B.1 Euler-Lagrange equations

Euler-Lagrange equations is a useful technique to obtain the equations of motion
of mechanical systems. Fuler-Lagrange equations rely on the expressions of
the kinetic and potential energy of the system with respect to its generalized
coordinates q;, one for each degree of freedom of the system.

Euler-Lagrange equations read:

d (0L oL
4 (aq) -G (B.1)

where:

q; denotes a generalized coordinates of the system. Generalized coordinates
are composed by the set of minimum size of variables which allows to
determine unambiguously the configuration of the system. They are either
positions or angles. The number of generalized coordinates is equal to the
number of degrees of freedom of the system. We will denote g the vector
of generalized coordinates: B

g=la, - ,qn]" (B.2)

The Lagrangian L denotes the difference between the kinetic energy, which
is denoted T'(q, q), and the potential energy, which is denoted V' (g). The
kinetic energy T(q,¢) depends on the generalized coordinates ¢ and also
on their derivatives ¢ whereas the potential energy V(q) is a function of
only the generalizedzoordinates q: B

L=T(g,9) V() (B.3)

The kinetic energy T'(q, ) of a rigid body is defined as follows, where P
is any point of the rigid body B:

70.0) = 5 [[[ oPI"u(P)dm (8.4
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We recall that the velocity vector v(P) of any material point P of a rigid
body can be expressed as the sum of the velocity v of its center of mass
and the cross product between the angular velocity vector w, which is
independent of P, of the rigid body with respect to its center of mass and
the relative position vector z(P) of P with respect to the center of mass
of the body:

v(P) =v+w x Z(P) (B.5)

Substituting for v(P) in the expression of T'(¢, ¢) and expanding, we get:

T(q.9) QIHB v+wxEP) (v+wxE(P)) dm
=3 fffB TQ"‘ (w x x(P))T (w x Z(P)) (B.6)
+20" (w x Z(P)) dm

;///Bvaud fv U///dm_ (B.7)

and, by definition of the center of mass:

fofB (wxz(P))dm =

However:

Moreover the following relation holds:

(w x Z(P)" (w x Z(P)) = ((Z(P)TE(P)) w — (Z(P)Tw) E(P))" w (B.9)

We finally get:

Tig.q) =bmo"u+ 5 ([ffs (EP)EHP)) w -~ @P)w)HP))" dm)
= gmuT v+ 5 ([ff5 (EP)TEP)) w — (Z(P)'w) Z(P)) dm)” w
(B.10)
Hence, we obtain the Kodnig decomposition:
T(q,9) = %myTer %ETQ (B.11)

where H is the angular momentum of the rigid body relatively to its center
of mass:

(Z(P)Tw) Z(P)) dm
dm

= [[[5 (EP)TZ(P))

= [J]5 @(P) x w x Z(P)

(B.12)

Finally, the angular momentum H can expressed as the product between
the angular velocity w and the moment of inertia I = I” of the rigid body
relatively to its center of mass:

H=1Iw (B.13)
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Thus, for a rigid body with mass m and moment of inertia I the kinetic
energy T'(q,q) is obtained as the sum between the kinetic energy due to
the velocity v of the center of mass of the body and its angular velocity
w, both velocities being expressed in an inertial frame:

wi'lw (B.14)

Moment of inertia I is a positive definite matrix. Matrix I shall be
computed with respect to the point O corresponding to the origin of the
frame chosen for the generalized coordinates q. Denoting by x, y and z
the coordinates of an element of mass dm with respect to the point O,
the moment of inertia I reads as follows:

[ Ix _I:By _Irz
I = _Ia:y Iy _Iyz
L _Ixz _Iyz Iz
[ [(*+2%)dm  — [zydm — [x2zdm (B.15)
= —[zydm  [(2®+2%)dm - [yzdm
| —Jzzdm —[yzdm  [(2? +y*)dm
=I">0

Quantities I, I, and I, are called moments of inertia with respect to the
x, y and z axis,respectively whereas quantities I,,, I, and I, are called
products of inertia.

Huygens-Steiner theorem gives the moment of inertia Ip at any point P
of a solid of mass m given its moment of inertia I defined at a point O:

xp (Y3 +23) —zpyp —xpzp
OP=| yp =I=Ip+m —Tpyp (:r%g—i-z]%) —Yypzp
zZp —xpzp —ypzp (2% +yd)
(B.16)

It is worth noticing that the kinetic and the potential energy have to be
evaluated in an inertial frame.

Assuming that a non-inertial frame is considered, let v® be the linear
velocity expressed in the non-inertial frame and v the angular velocity
expressed in the non-inertial frame. In such a non-inertial frame the kinetic
energy 1'(q,q) reads:

1 T, o1
ﬂ%@zfmﬁﬂ o'+ - Ty (B.17)

Denoting by 7 the vector of angles which allows to position the non-inertial
frame (body frame) with respect to the inertial frame (those are Euler
angles for example) and by Rf) (Q) the rotation matrix from the non-
inertial frame (body frame) to the inertial frame, we have:

v=Rj (n) vb (B.18)
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Similarly, denoting by v the angular velocity in the non-inertial frame and
by w the angular velocity in the inertial frame, we have:

V=W (B.19)

The relation between w and v, that is matrix W(n), is obtained by
developing each row of the following matrix equation:

w:=7
T
d._ . . vi=[p q 7]
ZRi(1) = Rj(n) Q1) where L (B.20)
Qu)=| r 0 -p
\ —-q P 0

Let w be a vector with coordinates [ a b c ]T_ Using the fact that
Q(v) is an antisymmetric (or skew-symmetric) matrix, we get the following
relation:

P 0 —-r ¢ [ a
v=|q |=Quw =| r 0 -p b
r —q p 0 | ¢
0 —c D (B.21)
= — c 0 —a q
—b 0O | |Lr
=-Quw)v

Using the fact that a rotation matrix is an orthogonal matrix, meaning
that (R} (g))fl = (R} (Q))T, the kinetic energy T'(q, ) expressed in the
inertial frame reads as follows:

. T
T(g,q) =im @) v+iw)" Iy

—im (R ) v) (Rm) ) +5 (W) T(Wh)w)
= gmuTv + 3w W (n) T (W(n)w)
(B.22)
Thus, the kinetic energy T'(g, ¢) expressed in the inertial frame is:
T(q,q) = %mgTy%— %QTJ (ﬂ) w (B.23)
where the fictitious moment of inertia J (Q) is defined by:
J(n) =W (n)IW(n) (B.24)

Finally, let Ip be the inertia matrix with respect to a point P of the rigid
body, QII’; the linear velocity of P expressed in the non-inertial frame, vp
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its angular velocity expressed in the non-inertial frame and rpg the vector
between the rigid body centre of mass G and P. Then, denoting by x the
cross product between two vectors, the kinetic energy T'(q, ) of P reads
as follows': o

N b T b 1 T b7

T(q,q) = ;™M (QP) vp+ 5 (vp)” Ipvp+m (213) (vp X rpg) (B.25)

— @Q; represents the non-conservative generalized forces that are either forces
or torques that are external to the system or which cannot be obtained as
the derivative of a scalar potential function (that is a potential energy).
Generalized force Q; generates a movement, either a translation for a force
or a rotation for a torque, according to the direction of the generalized
coordinates g;.

— The chain rule may be used to get the following relation:

d (0L oL oL d oL
— - — = = = — —q; — B.2
(dt (6@) aq) U= or <£ 4 aq) (8.26)

Consequently, assuming that Lagrangian L£ does not explicitly depends
on time (%—’f = 0) and that no non-conservative generalized forces acts on
the system (Q; = 0), then the quantity £ — ¢; % is a first integral of the

system:

oL
9L — oL
ot = L — §; — = constant B.27
{ G20 =c-as, (B.27)

The kinetic energy T'(q, ¢) can always be expressed as follows where M(q) =
M(q)T > 0 is a positive definite matrix:

T(q,q) = —q" M(q) g where Mi(q) = MT(g) >0 (B.28)

Using the preceding relation for the kinetic energy, it can be shown that:

=M(q)i+C(g:9) g (B.29)

d <8T(M)> - GT;ZJJ) D

dt\ g

Matrix C(q, ¢)q is the so-called Coriolis (terms involving products ¢; ¢; i #
j) and centrifugal (terms involving products ¢?) forces matrix. It is worth
noticing that the k™ row of matrix C(q, ¢), which will be denoted ¢} (¢, ¢), can

be obtained thanks to the following relation:

et (4,4) = 4" Sk(9)

OM,(q) = (OMy(9)\L  oM(q) (B.30)
sug) = (242 + (242)" - 219)

!Complete dynamic model of the Twin Rotor MIMO System (TRMS) with experimental
validation, Azamat Tastemirov, Andrea Lecchini-Visintini, Rafael M. Morales-Viviescas,
Control Engineering Practice 66 (2017) 89-98
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where M (g) is the k™" column of matrix M(q) and gy, is the k' component
of vector ¢. Terms of matrix C(g, ¢) are called Christoffel symbols.

Once developed, Euler-Lagrange equations (B.1) can then be written as
follows:

M(q)q + C(g, )i + G(q) = D(g, ¢, u) (B.31)

— The term G(gq) corresponds to conservative forces We recall that

conservative generalized forces can be obtained as gq’) where V(g;) is a
potential function. Such conservative generalized forces are taken into
account within the Lagrangian £ but not within the generalized forces

Q.

— The term D(q, ¢, u) corresponds to the non-conservative generalized forces.
The term u corresponds to the control vector of the system.

— External forces due to dissipation are encompassed within the term
D(q,q,u). They are of the for 8;(?) F(q) is the Rayleigh

dissipation function which by definition satisfies?:

0 F(q
q" 8.@ >0 (B.32)
q

It is worth noticing that damping forces are always dissipative.

— The system is said to be passive when the following relation holds 2

Passivity < %M(g) —2C(g,§) = P where P = —P” (B.33)

Assume now that the generalized coordinates ¢ are not all independent but
subject to m holonomic constraints (nonholonomic constraints are of the form
9i(¢,q) = 0):

9i(q) =0 j=1,---,m (B.34)

Then the variations of dg; are not free but must obey to the following
relations:

395(q Za% =0 j=1,--.,m (B.35)

In that situation the constraints (B.34) are associated with m Lagrange’s
multipliers A; and the Euler-Lagrange equations read:

(B.36)

d .
i) e g

2Passivity-based Control of Euler-Lagrange Systems, Romeo Ortega, Antonio Loria, Per
Johan Nicklasson and Hebertt Sira-Ramirez, Springer, 1998
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mg

Figure B.1: Robot arm

The term 27;1 )\j% corresponds to the internal generalized force QVZ related

to the constraints on component g; of the generalized coordinates vector:

~ Og;
Qi=) N 8(2 (B.37)

A generalization of the Euler-Lagrange equations taking into account the
constraints on the components of the generalized coordinates vector are the

Boltzmann-Hamel equations?.

B.2 Robot arm

Let’s consider Figure B.1 where a robot arm is depicted: w(t) is the torque
applied by a motor drive and y(t) is the angular position of the arm. In addition
we denote m the mass of the arm, [ the distance between the axis of the motor
and the centre of mass of the arm, b the viscous friction coefficient, I its inertia
and g the acceleration of gravity.

The generalized coordinates is chosen to be the angle ¢(t) = y(t). Indeed
the knowledge of the value of y(t) allows to determine unambiguously the
configuration of the system. It is worth noticing that the knowledge of the
coordinates of the centre of gravity of the arm also allows to determine
unambiguously the configuration of the system. Nevertheless the coordinates
of the centre of gravity form a vector of dimension 2 whereas the angle
q(t) = y(t) is a scalar of dimension 1. Consequently the coordinates of the
centre of gravity don’t constitute a set a minimum size.

The coordinates of the centre of gravity within the inertial frame read:

woo- (][ ] o

3Jonathan M. Cameron and Wayne Book, Modeling Mechanisms with Nonholonomic
Joints Using the Botzmann-Hamel Equations, The International Journal of Robotics Research,
February 1997 16(1):47-59, DOI:10.1177/027836499701600104
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By taking the derivative we get the components of the velocity vector as well
as the square of its norm:

d - _[lécos(&)

10 sin(6) ] = v(t)"u(t) = 16 (B.39)

The kinetic energy 7' (g, ¢) and the potential energy V(q) read:

N1 T 172 _ 1,.12092 | 1742
T (q,q) = smu(t)’ v(t) + 5107 = 3ml°0° + 510 (B.40)
V(q) = —mgl cos (0)
And the Lagrangian £ reads:
. Looge 1.5
L=T(q,q¢) —V(g) = iml 0 + 519 + mgl cos (6) (B.41)
Consequently the partial derivatives have the following expression:
oL _ 2 ]
2 (ml +.I)9 (B.42)
%5 = —mglsin (0)

The non-conservative generalized forces (forces and torques) are here the
torque u(t) applied by the motor as well as the friction torque —k€f which is
proportional to the angular velocity 6:

Q = u(t) — kb (B.43)

Applying the Euler-Lagrange equations (B.1) leads to the following dynamic
model of the robot arm:

d (9L OL
4 (ae) -9 _q (B.44)
That is:
(ml% 4+ 1)6 4+ mgl sin (0) = u(t) — k6 (B.45)

It is clear that the preceding equation can be written as
M(q)§+ C(q,9)q + G(q) = D(q, ¢, u) (cf. (B.31)) where C(q,¢) = 0 and where
the term D(q, ¢, u) := u(t) — kf represents the generalized force encompassing

control u and friction torque k6@, which is a non conservative force.

B.3 Quadrotor

The quadcopter structure is presented in Figure B.2. It shows angular velocities
w; and forces f; created by the four rotors, numbered from i = 1 to ¢ = 4. Torque
direction is opposite to velocities w;.
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Figure B.2: Inertial and body frames of a quadcopter

B.3.1 Inertial frame and body frame

The following vectors will be used:

- &= [ xT Yy z ]T is the vector whose components define the position of
the centre of gravity of the quadcopter in the inertial frame;

- n= [ ¢ 0 Y ]T is the vector of so-called Euler angles whose components
define the orientation (attitude) of the quadcopter in the inertial frame:

— The roll angle ¢ determines the angular position of the quadcopter
around the z-axis of the body frame;

— The pitch angle 6 determines the angular position of the quadcopter
around the y-axis of the body frame;

— The yaw angle ¢ determines the angular position of the quadcopter
around the z-axis of the body frame.

— v = [p q T ]T is the vector whose components define the angular
velocities of the quadcopter in the body frame.

B.3.2 Direct Cosine Matrix (DCM) and kinematic relations

Let z' be a vector expressed in the inertial frame, z® a vector expressed in the

body frame and Rg’(g) the rotation matrix, also called Direct Cosine Matrix
(DCM), from the inertial frame to the body frame:

2’ =Rl(n)z’ (B.46)
Rotation matrix R%(n) is obtained by the multiplication of the rotation

matrices around Euler angles, namely yaw angle v, pitch angle 6 and then roll
angle ¢, respectively. Denoting ¢, = cos(z), s, = sin(x) and R, the rotation
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matrix dedicated to angle y we get:

R)(n) =RsReRy

1 0 0 cg 0 —sp cy Sy 0

=10 ¢ 84 0 1 0 =Sy ¢y O

| 0 —s4 ¢4 se. 0 ¢y 0 0 1 (B.AT)
i Cocy CoSy —38g

= | (5pS0Cy — CoSy) (SpS0Sy + CoCy)  SpCo

| (cosocy +5959)  (Cososy — 5¢Cy)  Coco

It is worth noticing that R%(n) is an orthogonal matrix. Consequently the
rotation matrix R} (n) from the body frame to the inertial frame is obtained as
follows:

Ri(n) = (RY(n) " = (Rin)"

cocy  (Spsocy — CoSy)  (cpsocy + 545y) (B.43)
= | oSy (S¢50Sy + CoCy) (C4S0Sy — SpCy)
—Sp S4Co CpCo

The relation between the angular velocities (p, q,r) in the body frame and
the time derivative of the Euler angles (¢, 0, ) is the following:

p ¢ 0 0
vi=q|=|0|+Ry| 8 | +RyRp| O (B.49)
T 0 0 w
We finally get:
P 1 0 —sin(6) ¢
g | =10 cos(p) sin(¢)cosh 0 (B.50)
r 0 —sin(¢) cos(¢)cosé ¥
That is:
v =W (B.51)
where:
)
n:=16 (B.52)
(G
and:
10 — sin(0)
W(n)=| 0 cos(¢) sin(¢)cos(d) (B.53)

0 —sin(¢) cos(¢)cos(d)

It is worth noticing that the preceding relation can be obtained from the
following equality which simply states that the time derivative of matrix Ry(n)
can be seen as matrix €2(v) of the angular velocities in the body frame expressed
in the inertial frame:

9Rin) = Ri(n) Q) where Q) = QW) = | 0 —p |] (B54)
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Conversely we have:

i=W(n) v (B.55)
where:
1 sin(¢)tan(f) cos(¢)tan(6)
W) t=1]0 cos(9) — sin(¢) (B.56)
- 0 sin(¢) cos(¢)
cos(0) cos(h)

B.3.3 Forces and torques
We will use the following notation:
— I, is the inertia moment of each rotor;

— d 1s the distance between the rotor and the centre of mass of the
quadcopter, that is the arm length basically;

— wj the angular velocity of the i** rotor;

— f; is the thrust force created by each rotor in the direction of the body
Zp-axis;

— () is the lift coefficient;

— (Y is the drag coefficient.

The non-conservative generalized forces (forces and torques) are the
following:

— Aerodynamic thrust force f; in the direction of the body zp-axis. This
force is the sum of each force coming from each rotor:

4 4
=Y _fi=)Y Cuw (B.57)
=1 =1

Let vector i; be the thrust force created by all rotors in the inertial frame:

0 0
fL=Rim) | 0 | =Rj(®n) 0 (B.58)
ft Z?:l Cl wi2

Where Rj(n) denotes the rotation matrix from the body frame to the
inertial frame.

— Aerodynamic torque 7° expressed in the body frame. Vector 7° is the sum
of the following terms:

b coming from the aerodynamics actions coming from

propellers in the direction of the corresponding body frame angles:
Té dC; (wz — w%)

=7 |= dCp (wi — w?) (B.59)
T Ca (—wi +wj — wi +wj)

— Torque T



252 Appendix B. Overview of Lagrangian Mechanics

— Torque zg coming from the gyroscopic effect due to propeller rotation:
0 P 0
o= (L& 0 +|q|xL 0
4 4
> iy Sgn(wi) w r > iy Sgn(wi) w
I q (w1 — w2 + w3 — wy)
= | —Lp (w1 — w2+ w3 —wy)

I (W — wo +ws — wy)

(B.60)
where sgn(w;) = +1 for counterclockwise propeller rotation and
sgn(w;) = —1 for clockwise propeller rotation.

We finally get:
=+
dCy (wi —w3) + rq (w1 — wa + w3 — wy)
= dCl (wd—w%) I p (w1 —wa + w3 — wy)
Cd( w? + w3 7w3 +w ) I, (W —wy + w3 — wy)
(B.61)

It is worth noticing that terms which depends on I, come from the
gyroscopic effect due to propeller rotation and are usually omitted.

B.3.4 Generalized coordinates

The vector of generalized coordinates ¢ which will determine the configuration
of the quadcopter is a vector with six components which is defined as follows:

|

[
I

(B.62)

S I

] where =

|3
I

B.3.5 Inertia matrix

The quadcopter is assumed to have symmetric structure with four arms aligned
with the body z and y axes. Thus the inertia matrix I is diagonal and I, = I,;:

I,
I=| 0 (B.63)
0

ol o
So o

B.3.6 Kinetic energy

Because the inertia matrix is expressed in the body frame, vector v is naturally
chosen to express the rotational kinetic energy. Nevertheless the rotational
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kinetic energy shall be expressed as a function of the chosen generalized
coordinates. Consequently we shall use the transformation matrix W(n) to get
i) from v and express the rotational kinetic energy as a function of the chosen
generalized coordinates. Consequently the kinetic energy T’ (g, g) reads:

N
S

[a—

IR

T(¢.9) =

3

|
D= N—= D=
[ L [P [

3

(B.64)

e R
[Py e oy
+ + +
N[ D= N[—=

~
z
]
. S~—

S
L)
z
]
N—r
]

= 13
N

[

—

&)

~—

13

where we use symmetric matrix J(n) defined as follows:
I(n)=W(n)"'ITW(n) =J(@n" (B.65)

From (B.53) and (B.63) matrix J(n) reads:

[ 1 0 0 0 0 1 0 —Sg
Jn) = 0 Cop  —S¢ 0 I, 0O 0 ¢y SeCo
B —50 S4Co ChCh 0 0 I, 0 —s¢ cecy
I, 0 —1I;s¢
= 0 chi + 1283, (Iy — I.) cpseco
| —Iuse (Iy — I.) cpseco Ixsg + Iys%cz + Izcécg

&

(B.66)

thJ(Q)ﬁ: %Ix (qb— @Z}sinQ)z + %Iy (9cos¢+¢sin¢)cos0>2
+ %IZ (ésingﬁ - ¢cos¢c059)2 (B.67)

Kinetic energy T' (g, g) as a function of the chosen generalized coordinates
finally reads:

1 1 . . 2
T(g.q) = gm (& +3° +2) + 5L, (qﬁ—wsin@)

1 . . 2 1 A . 2
+ §Iy (9 cos ¢ + 1 sin ¢ cos 9) + §IZ (9 sin ¢ — 1) cos ¢ cos 0) (B.68)

It can be shown that the determinant of symmetric matrix J(1) reads as
follows and that this is a positive definite matrix V 0 # (2k+1)7/2, k=1,2,---:

det (J(n)) = L1, I, (cos(0))” (B.69)
B.3.7 Potential energy
Potential energy V'(gq) a function of the chosen generalized coordinates reads:

Vig)=mgz=mg[0 0 1]¢ (B.70)
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B.3.8 Lagrangian

Consequently Lagrangian £ reads:

£ =T(g4) -V
=gmé E+37" I —mg[0 0 1]¢

. P)
=Lim (i2+ 9% + 22) + L1, (¢ - wsine) (B.71)
—I—%Iy (9608(;5 + ¢sin¢cos€>2 + %IZ <ésin¢ — Ll}cosgbcosH)Q
—-mgz

B.3.9 Euler-Lagrange equations

We have seen that the Lagrangian £ reads:
1 .. 1. .
L=ome &+on Imp—mg[0 0 1]¢ (B.72)

Since the Lagrangian £ containg no cross terms combining § with 7 the
Euler-Lagrange equations can be partitioned as follows:

— FEuler-Lagrange equations with respect to £ lead to the translational
equations of motion of the quadcopter. Applying the Euler-Lagrange
equations (B.1) and denoting by i; the thrust force created by all rotors
in the inertial frame we get:

fi —_d[oL) _ oL
AN A (B.73)
e fl =m{+mg[0 0 1]T

From (B.58) we get the differential equations for the positional

accelerations:
.. 1 . 0 0
{= ERE(Q) 40 —g| 0 (B.74)
21‘:1 fz 1

— Euler-Lagrange equations with respect to 1 lead to the rotational equations
of motion of the quadcopter. Applying Euler-Lagrange equations (B.1)
and denoting by 7° the torque created by all rotors in the inertial frame
we get:

=& (I ) - & Gi" In)n)
dJ(@m) . 1073 ) B.75
=3+ i - 420 5 (B7)
dJ(r a(nTJ
i (S ),

The preceding equation can be rewritten as follows where C(7,17) 7 is the
Coriolis and centrifugal forces matrix:

I(m)iy+ Cln, i) =1 (B.76)
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The expression of J(n) has been provided in (B.66) whereas the expression
of coefficients Cj; of matrix C(n,7) are the following:

Ci1 Ci2 Ci3
Cn,i) =] Ca Co (a3 (B.77)
C31 O3 Cs
where
( Ci1 =0
Cra = (Iy = L)egsy + §ibeq (I, = L)(s3 = 2) — I,
I

(I, — I.)
(L. = I )bessach + bbeo (1, — L. ><s¢, — )~ 1)
Cy = (I, — Iy)96¢8¢ + 21/169 (( -1 ) C¢) + Ix>
(I — 1)

Cos = (Iysé-i-f 2Cg — 1. )1/}5909
+§¢CG (( z = Iy)(5¢ - C¢) + Iw)

C31 =1y — Iz)wcg%cd,
+10c ((Iy —L)(E - s2) - Ix>

Cs = (I, — I)0cysss9 + <Ix — Iysi - Izci) Vsgcy
+%$ce ((Iy — IZ)(cg5 — s%) - Iz)

Cs3 = (I, — Iz)d)c(bs(bcg + I,Ocgsg — cgsy (Iysé + Izcé)

(B.78)

\

It is worth noticing that the k" row of matrix C(n,7), which will be
denoted ¢} (n, 1), can be obtained thanks to the following relation:

cF(n,h) = 7" Sk(n)
aJ,(n) | (0L, m\T 23 (B.79)
Sk(ﬁ) 2 < gr] + ( §ﬂ7 ) B 877;: >

where J;,(n) is the k' column of matrix J(n) and 7, is the k™ component
of vector 7.

From (B.76) we get the differential equations for the angular accelerations:

i=J(m) "' (' — C(n. ) M) (B.80)

B.3.10 Newton-Euler equations

Let v* = Rg’(ﬂ)é be the translational velocity vector expressed in the body

frame and f° the external forces applied on the quadcopter expressed in the
body frame:
0 0
o= 0 —R(n)mg | 0 (B.81)
Sici fi 1
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Applying Newton-Euler equations, the translational and angular dynamics
in the body frame of the rigid body quadcopter reads as follows:

(3 2)[) (8 il [2)-[5] o

Where:

0 -r
Quv)=-Qv)'=| r 0 —qp (B.83)
—-q p 0

The preceding Newton-Euler equations are equivalent to equations (B.74)
and (B.80) obtained through the Euler-Lagrange formalism:

o’ = R(n)é 0 0
m +mQv) v’ = f° N £=1Ri(n 0 -9 0
=W 'v DYy’ 1
v=1"(r" - Qv Iv) =3 (' - C(n,1) M)
(B.84)
Where:
' =W(n' (B.85)

The equivalence of the translational equations of motion is easily verified
thanks to the kinematics relations.

As far as the Newton-Euler equations related to the rotational equations of
motion we get:

{ v=W(n)n

10+ 9T =1"

N v=Wmi+Wn)i (B.86)
(W) i+ W) + Q) IW@m 7 =7

Multiplying both side by W(Q)T leads to the equation of the rotational
equation of motion obtained through the Euler-Lagrange formalism:

W (7)TTW (1)

i
< J(n)i+ C(n,

+ (W(Q)TI W)+ W(n)'w) IW(Q)) =W
nn=r1'

(B.87)

More generally the Newton-Euler equations for a point which is located to

(Az, Ay, A;) with respect to the center of mass of the rigid body with velocity

(up,vp,wp) in the body fixed axis (of course these components are the

components of v’ that is the velocity of the center of mass when the center of

mass is considered, that is when A, = A, = A, = 0) reads as follows?:

(2 ]2 (582 ] [2)-[2] o

“Barton J. Bacon and Irene M. Gregory, General Equations of Motion for a Damaged
Asymmetric Aircraft, NASA Langley Research Center, Hampton, VA, 23681
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Where:
( 0 —r ¢

Qu)=| r 0 -p

L-¢ » O
0 -mA, mA,

A=| mA, 0 —mA, (B.89)
| —mA, mA, 0
[0 —w, v

V= Wy 0 —Up
) 0

B.3.11 Translational equations of motion with wind

The velocity of the quadcopter with respect to the inertial frame (the Farth)
is the sum of the velocity of the quadcopter with respect to the wind, which is
denoted RZ( )v®, and the wind velocity, which is denoted w. Denoting by £ the
position of the drone, we have:

£:=1v' =Rj(n" +w (B.90)
where:
u
W= o (B.91)
w

Rotation matrix Rj(n) is given by (B.48).

Taking the time derivative of the velocity in the inertial frame, v, we get:
o' =Ry’ + Ri ()i’ + w (B.92)
From Newton’s translational equations of motion we have:

mi' =" f (B.93)

Multiplying by Rb( ) leads to the following relation:

mRY (e’ =Ry D> fr=>f° (B.94)

We get:
> 0 =mR2n)Rj’ + o + R (n))

. B.95
sl = Ef — Rl (n)Rjp’ — Rl (n)w (B-95)

where Rf(ﬂ)}:{i = Q(v) has been seen previously. We finally get the
following equation of motion taking into account the wind component w reads:

b
==L _oup - Rl (8.96)

m
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Furthermore the wind is assumed to be not a constant but dependent on time
t as well as on the quadcopter location § := [z, y, Z]T. So we have: w := w(t,§).
Taking into account the rule of chain derivative we have:

dw(t,§)  dw(t,€)
w(t,§) = wét§)+ wéf)af

(B.97)

Taking into account that the time derivative of the location of the quadcopter
is its velocity expressed in the inertial we have:

0 . :
%k =R (B.95)
Thus (B.96) finally reads:
i Ow(t,§)  Ow(t§)
o= R Q) + Qw)) " - Rg(ﬂ) ( ot + o€ w) (B.99)
where: du(t. )
0(w) = Rin) =5~ Rin) (B.100)

Of course, as soon as w = 0, we have Q(w) = 0 and we retrieve equation of
motion (B.82).

B.3.12 Small angle approximation of angular dynamics

The second equation of (B.82) represents the angular dynamics in the body
frame of the rigid body quadcopter:

Iy 4+ Q) Iy = 1t
sp=I1 (Ib - Q(v) Ig)

We have seen that angular velocities in the inertial frame are expressed in
the body frame through the transformation matrix W(ﬂ)*lz

(B.101)

=W v (B.102)

The derivative of (B.102) with respect to time of the preceding equation
leads to the expression of i)

= ——— v+ W) i (B.103)

1 sin(¢)tan (0) cos(¢)tan (9)
W)l = |0 cos(@)  —sin(9)
- 0 sin (¢) cos (¢)
L - cos () ) cos (0)
0 ¢cc(/;se + % 96% _ ¢sc¢;s(; (B104)
AW ()1 : .
=T =0 sy ey
0 % + 95;259 0(:2259 . %
0 0
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e, o —*t e

Figure B.3: Electrical model of a DC motor

Small angle approximation of angular dynamics is obtained by setting Euler
angles vector 7 to zero within transformation matrix W (n)~!, that is by setting
transformation matrix W (n)~! to identity matrix. As a consequence the time
derivative of the Euler angles 7 is approximated by the angular velocities v of
the quadcopter in the body frame:

n=0=Whn) 'ml=ij~v=0~v (B.105)

In addition thanks to this approximation 7 = W(n)" 7% ~ 7 and (B.101)
reads as follows, which is the small angle approximation of angular dynamics
(B.80):

i~ 17 (2 - Qi) 1) (B.106)

B.3.13 Synthesis model

The synthesis model is a simplified model when compared to the validation
model (B.84). Synthesis model enables to design control laws in a linear time
invariant frame.

As far as the angular dynamics is concerned, since term (7)) I) is usually
small when compared to 7°, equation (B.106) can be reduced as follows, which
is basically the dynamics of a double integrator:

QpIn< = i~T "7 (B.107)

B.3.14 BLDC motor with ESC and propeller

Miniature BrushLess Direct Current (BLDC) motors are commonly used on
small UAV. Such motor converts the electrical power to a torque on its output
shaft at a specific angular speed w,,".

A model of DC Motor Plant is shown in Figure B.3. Let:

— U, be the motor input voltage;

SR. Martinez-Alvarado, F. J. Ruiz-Sanchez, A. Sanchez-Orta and O. Garcia-Salazar,
Dynamic response of BLDC-thruster for small scale Quadrotors under aerodynamic load
torque, 2014 IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC), 2014, pp. 1-6, doi: 10.1109/ROPEC.2014.7036341.
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— 1 be the armature current;

— 7 be the motor internal resistance;

— L be the motor internal inductance;

— e be the back ElectroMotive Force (EMF).

From Figure B.3, the electrical model of a DC motor reads:

L%:um—ri—e (B.108)

On the other hand, the mechanical model of a DC motor reads:

7 d;m I (B.109)

where:
— Wy, Is motor angular speed;

— Tm is the motor torque;

T4 is the motor load;
— J is the propeller inertia.

The motor load 74 is described as follows, where kp is the aerodynamic
torque coeflicient which depends on the drag of the propeller:

Td:kDWm \wm\ (B.llO)

Assuming that the BLDC motor is powered by an Electronic Speed Control
(ESC) device, the coupling between the electrical model and the mechanical
model appears through the following expression of angular speed wy, and motor
torque 7, as a function of the ElectroMotive Force (EMF) e and the constant
armature current i:

o (B.111)

{ wm = ky e

The proportionality constant ky is the motor’s speed constant while kr is
the torque constant.

Finally, when all those relations are merged, we get the following dynamics
model for a DC motor equipped with a propeller:

di _ i Wm
{Ldt—um ri—

B.112
J Lem — ki — kp wm wnl (B.112)

When the motor internal inductance L is neglected, the first equation
simplifies as follows:

Lr0= uy it om (B.113)
ky
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With this simplification, the second equation becomes:

bR T e IR el (B11)
r dt r
We finally get:
% m—%wm—%jwm ]wm|+kjvum (B.115)
where: 1 o (B.116)
T kydJr '

Multiplying by 7 the nonlinear differential equation (B.115), and assuming
that time constant 7 is small, we get the fact that the motor angular speed wy,
is proportional to the motor input voltage wup,:

T%O:}wm%k‘vum (B.ll?)

Alternatively nonlinear differential equation (B.115) can be linearized
around an equilibrium point (Wpe, Ume):

0= _%wme - kTDwme ‘wme’ + kTV Ume
dwp, = Adwy, + B duy, where OWm = Wm — Wme
U, = U, — Ume
(B.118)
Finally, assuming that the electrical power e: related to the back
ElectroMotive Force (EMF) is fully converted into mechanical power 7., wpm,
we have:
€l = Tm Wm (B.119)

Using the coupling equations (B.111) we get k7 = ﬁ Indeed:

wm = ky e . wil 1
{Tm:kTi ?el—mem@W—kT%jkT—g (B.120)

Thanks to the ESC, the motor input voltage u,, is related to the commanded
Pulse Width Modulation (PWM) dp € [0, 1] by the following relation, where Vj
is a constant supply voltage:

Uy, = 0p Vs (B.121)

To summarize, a BLDC motor with its ESC is characterized by the following
4 constants: the motor’s speed constant ky-, the supply voltage Vs, the constant
current passing through the windings ¢ and the winding resistance 7.
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Appendix C

Linear Algebraic Method for
Control System Design

C.1 Matrix polynomial fraction

C.1.1 Greatest Common Divisor of two polynomials

The greatest common divisor (frequently abbreviated as GCD) of two
polynomials N(s) and ¥(s) is a monic polynomial (a monic polynomial is a
polynomial in which the nonzero coefficient of highest degree (also called the
leading coefficient) is equal to 1) of the highest possible degree that is a factor
of both N(s) and ¥(s).

The greatest common divisor (GCD) of two polynomials N(s) and ¥(s) can
be obtained through the Euclidean algorithm: this consists in making repeated
Euclidean division (according to the descending power of s) and to use the
following results: the Euclidean division of N(s) by ¥(s) such that deg (¥(s)) <
deg (N (s)) provides a quotient Q(s) and a remainder R(s) such that:

Then:

{ GCD (N(s),¥(s)) = GCD (¥(s), R(s)) (C.2)

GCD (¥(s),R(s)) = GCD (¥(s), AR(s))
where A is a non-zero scalar.
The greatest common divisor (GCD) is then the last non-zero remainder
divided by the its leading coefficient (we recall that GCD is a monic polynomial
by convention).

Example C.1. Let N(s) and V(s) be the following polynomials:

N(s)=s3+6s2+115+6 (C.3)
U(s)=s>+4s>+5—6 ’
Because N(s) and U(s) have the same degree, we can write:
— 3 2 _ 2
N(s) =s+4s*+5s—6+ (25 + 10s + 12) ()

= W(s) + 2s% 4+ 10s + 12 = ¥U(s) + R(s)
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and:

GCD (N(s),¥(s)) =GCD (¥(s),R(s))

= GCD (¥(s),25% + 10s + 12) (C5)
Then we make the Euclidean division of W(s) by 2s% + 10s + 12:
s +4s2 45 —6]2s2+10s+ 12
—(s3  +5s* +6s) 35— 3
g S (C.6)
—(—s?> —bs —6)
0

Here the last non-zero remainder is s +5s46, which is a monic polynomial.
We finally get:
GCD (N(s),¥(s)) = s>+ 5546 (C.7)

Finally we can write:

N(s) = s34+ 652 +11s+6
= (s41) (s* 4+ 5s+6)
= (s+1) x GCD (N(s),¥(s))

U(s) =s>+4s2+5—6
=(s—1)(s*+5s+6)
| =(s—1)x GCD (N(s),¥(s))

Those relations clearly show that GCD (N (s), ¥(s)) is a factor of both N(s) and
U(s).

C.1.2 Smith form of polynomial matrix

First, let’s define unimodular polynomial matrix: a square polynomial matrix
U(s) is unimodular as soon as its inverse is also a polynomial matrix.
Equivalently a square polynomial matrix U(s) is unimodular if and only if its
determinant is a nonzero constant independent of s.

Example C.2. Consider the following square polynomial matriz U(s):

Uls) = [ 0 H (C.9)

It is clear that det (U(s)) = 3. Thus the determinant of U(s) is a nonzero
constant independent of s. As a consequence U(s) as an unimodular polynomial
matriz and its inverse is also a polynomial matrix:

Ui :é [ —252+3 _sl } (C.10)
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Smith form is a canonical form for polynomial matrices. Let N(s) be a pxm
polynomial matrix. Smith’s theorem states that any polynomial matrix N(s)
can be written as follows:

S(s) = V(s)N(s)W(s) (C.11)
where:
— S(s) is a quasi-diagonal polynomial matrix;
— Square matrices V(s) and W(s) are unimodular polynomial matrices;

— The dimension of matrix V(s) is p X p whereas the dimension of matrix
W(s) is m x m.

Matrices N(s) and S(s) are said to be equivalent.

Quasi-diagonal matrix S(s) has the following expression, where r is the
normal rank of N(s) (the normal rank of the polynomial matrix N(s) is the
rank of the matrix for almost every value of s).

s1(s) 0
S(s) = " O (C.12)
0 TO 0

Monic polynomials sg(s) are invariant factors of N(s). A monic polynomial
is a polynomial in which the coefficient of highest degree (also called the leading
coefficient) is equal to 1. Furthermore s(s) divides sg41(s)Vk=1,...,r — 1

Sk(s)| skr1(s)Vk=1,...,r—1 (C.13)

Elementary row and column operations are used to transform N(s) into its
Smith form S(s). The three elementary operations for a polynomial matrix are:

— Multiplying a row or column by a constant;
— Interchanging two rows or two columns; and

— Adding a polynomial multiple of a row or column to another row or
column.

The sequences, which are not unique, of elementary row and column
operations are the following:

1. By performing suitable row and column swaps, put the polynomial with
the lowest degree in first row and first column. Let aq1(s) be this
polynomial;

2. By Euclidean division expand each polynomial in the first row as follows
where deg (r;(s)) < deg (a11(s)):

a1j(s) = a11(s)g;(s) +r;(s) (C.14)
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Then subtract g¢;j(s) times the first column from column j and perform
suitable row and column swaps to put the polynomial with the lowest
degree in first row and first column. This is to be repeated until all
elements of the first row are divisible by a11(s);

3. Subtract the appropriate multiple of the first column from columns j where
7 > 1to get 0 in the first row and columns j > 1;

4. Proceed with the same type of elementary operations, but operating on
rows rather than columns;

5. Once finalized, the process yields to the following matrix where s1(s) # 0
is a monic polynomial:

si(s) 0 -+ 0
0

C.15
N (s) (C.15)

0
If Ni(s) = 0 the process stops. Otherwise the sequence of elementary

row and column operations shall continue over Ny (s) to produce another
diagonal element.

From an algorithmic point of view, matrices V(s) and W(s) are initialized
to identity matrix with an appropriate dimension and are put left and right to
N(s). Then the sequence of elementary operations on row (matrix V(s)) and
column (matrix W (s)) are applied until matrix S(s) is achieved.

Alternatively the expression of S(s), that is the Smith canonical form of
polynomial matrix N(s), can be obtained through all minors of size k of N(s)

as follows: let Py(s) =1 and define Py(s), k =1,...,r as the greatest common
divisor (GCD) of all minors of size k of N(s). Then:
15160
sk(s) = ————, k=1,...,r C.16

Minors of size k of a matrix are the determinants of the square submatrices of
size k. Let N(s) be a p x m matrix. Then minors of size k are the determinants
of all the k x k square submatrices obtained from N(s) by deleting p — k rows

and m — k columns. There are a total of < ]]Z ) X ( TIZ = k!(;’ik)! X k!(nTik)!
minors of size k within N(s), where & < min(p, m).
Example C.3. Let N(s) be the following polynomial matriz:
B 4 —(s+2)
N(s) = [ 2s+2) —0.5 } (C.17)

The normal rank of N(s) is 2. Thus the Smith form of N(s) reads:

S(s):[sl(s) 0 ] (C.18)
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In order to get the Smith form of N(s) and express S(s) as V(s)N(s)W(s)
we apply the sequences of elementary row and column operations (which are not
unique) described in Table C.1.

Sequence V(s) (on rows) N(s) W(s) (on columns)
(o 7] [aehn O ] [ 7]
me I [ 2y T3] (6 1]
22t B/t [ 3] [ 262 05+ (e ] [o O]
oy 12 —2(s +2)11 [ e ] { (1) 70.5+(s+2>;’/2: S } [ Lot/ ]
T2 < 212 { 7(1/:32) 5 } [ cl) 52+25+3 ] [ 0 (S+12>/4 ]

Table C.1: Smith form of N(s)

We can check that S(s) = V(s)N(s)W(s) where V(s) and W(s) are

unimodular polynomaial matrices:

S(S):[(ll 82+23+3]:[(1) (s+1)0(3+3)
V(s) = [ . ] = det (V(s)) = 1

Wi(s) = [ LA } ~ det (W(s)) = 1

(C.19)

Alternatively the expression of S(s), that is the Smith form of polynomial
matriz N(s), can be obtained through all minors of size k of N(s).

— We start with:
Py(s)=1 (C.20)

— Minors of size 1 of N(s) are the following:
4, —(s+2), 2(s+2), =05 (C.21)

Thus the greatest common divisor (GCD) of all minors of size 1 of N(s)
1s —0.5. Because this is not a monic polynomial, we divide it by its leading
coefficient, that is —0.5 here. We get:

Pi(s) =1 (C.22)

— The minor of size 2 of N(s) is the following:

det 4 _(_5+2) = —2+42(5+2)2=2(s>+4s+3) (C.23)
([2(s+2) 0.5 D

Thus the greatest common divisor (GCD) of all minors of size 2 of N(s)
is 2(s? 4+ 4s + 3). Because this is not a monic polynomial, we divide it by
its leading coefficient, that is 2 here. We get:

Py(s) = s* 4+ 45+ 3 (C.24)
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We finally get:

_ Pi(s) _
_ Pk(s) _ 81(8)_ Po(s =1
S & N EIEES B TP

The Smith form of N(s) is thus the following matriz S(s):

S(S)—{&és) 32(23)}_“) 32+23+3}_H (8+1)0(8+3)

(C.26)
n
Example C.4. Let N(s) be the following polynomial matriz' :
1 -1
N(s)=| s>+s—4 2s>—5—8 (C.27)
s?—4 25 — 8
The normal rank of N(s) is 2. Thus the Smith form of N(s) reads:
si(s) 0
S(s) = 0  sa(s) (C.28)
0 0

In order to get the Smith form of N(s) and express S(s) as V(s)N(s)W(s)
we apply the sequences of elementary row and column operations (which are not
unique) described in Table C.2.

We can check that S(s) = V(s)N(s)W(s) where V(s) and W(s) are

unimodular polynomial matrices:

1 0
S(s)=1]0 s*—4
0 0
1/3 0 0
V(s)=| —s/3 1/3 0 | =det(V(s)) =1 (C.29)
s -1 1
Wi(s) = [ _21 1 } = det (W(s)) = 3

Alternatively the expression of S(s), that is the Smith form of polynomial
matriz N(s), can be obtained through all minors of size k of N(s).

— We start with:
Py(s)=1 (C.30)
— Minors of size 1 of N(s) are the following:
1, -1, s°4+s—4, 22 —s—8, s2—4, 252 -8 (C.31)

Thus the greatest common divisor (GCD) of all minors of size 1 of N(s)
18:

Pi(s)=1 (C.32)
! Multivariable Feedback Design (Addison-Wesley) J.M. Maciejowski (1989)
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Sequence V(s) (on rows) N(s) W(s) (on columns)
1 0 0 1 -1 10
01 0 s2+s5—4 252 -5-38 {0 1]
0 0 1 52 —4 252 — 8
(1 0 0] 1 0 L1
Co < Co+ 1 010 s24+s—4 3s2—-12 [0 1]
0 0 1 52— 4 352 — 12
(1 0 0] 3 0 5 1
c1 ¢ 3c1 — ¢o 01 0 3s 3s2-12 11
(0 0 1| 0 3s2—12
1 00 3 0 ] 5 1
T9 ¢ T9 — ST —-s 1 0 0 3s2-—12 1
0 0 1 0 3s2-12
1/3 0 0 1 0 S
r1 < 11/3 -s 1 0 0 3s2-—12 11
0 0 1 0 3s?2-12
1/3 0 0 1 0
) 2 1
T3 < T3 — 19 —S 1 0 0 3s7—12 11
s -1 1 o o0 |
1/3 0 0 10 .
ro + 13/3 —-s/3 1/3 0 0 s2—4 101
S -1 1 0 0
Table C.2: Smith form of N(s)
— Minors of size 2 of N(s) are the following:
1 -1 9
det({SQ—l-s—éL 282—5—8:|>_3S - 12
1 -1
det { | o 4 92 g )= 352 — 12 (C.33)
s24+s5—4 252 —5-8
det([ ;{_4 952 _ 8 ]) :3(332—12)

Thus the greatest common divisor (GCD) of all minors of size 2 of N(s)
is 35> — 12. Because this is nol a monic polynomial, we divide it by its

leading coefficient, that is 3 here. We get:

_ 3812,

Py(s) 3 s —4

We finally get:

_ Pi(s)

Py (s s1(s) = o) — L
owle) = Pkk1<)s>’ - { s6) = B

The Smith form of N(s) is thus the following matriz S(s):

si(s) 0 1 0
S(s) = 0 sa(s) | =0 s2—4
0 0 0 0

(C.34)

(C.35)

(C.36)
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C.1.3 Smith-McMillan form of transfer matrix

The Smith-McMillan form of a transfer matrix can be used to generalize the
notion of poles and zeros of a transfer matrix with multiple inputs and/or
outputs.

We consider the following transfer matrix F(s) where N(s) is a polynomial
matrix and W(s) is a polynomial which is actually the least common multiple
of the denominators of all the elements in F(s)):

N(s)
F(s) = C.37
=30 (©37)
We will assume that % is proper, meaning that all the polynomials which
appear in N(s) have a degree lower or equal to the degree of ¥(s):
lim F(s) < oo (C.38)
S§—00
Using the Smith form (C.12) of polynomial matrix N(s) we get:
s1(s) 0
S(s) =
sr(s) O
O --- 0 0
s)
S(s) _ :
= =
V(s) ()
v O
0 -~ 0 0
Matrix 3((‘2)) is called the Smith-McMillan form of transfer matrix F(s): this

is a quasi-diagonal matrix of rational functions which may possibly simplify. Let

;‘((‘;)) be the rational functions obtained after simplification of each element of
S(s)

quasi-diagonal matrix () Then the Smith-McMillan form of transfer matrix
F(s) reads:

€1(s)
¢11(5) 0
S(s) . :
= : : (C.40)
U(s) er(s)
( sy O
0 ... 0 0

Polynomials ex(s) and 9y (s) are coprime. Furthermore ey (s) divides ex11(s)
and ¥g41(s) divides g (s)VE=1,...,r — 1

ex(s) [ ensa(s) B )
wﬂﬂ@zmw>}Vk—L~wr . (C.41)
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Example C.5. Let F(s) be the following transfer matriz:

—1

(s _2($+2) (82+21)(8+;)
F(s) =1 &% D) ()
T s+l
1 —1 (C.42)
1
:m 32+S—4 282—3—8
s2—4 252 -8

_ N(s)
U(s)

The Smith form of polynomial matriz N(s) which appears in the numerator
of transfer matriz ¥ (s) has been achieved in a previous example. Thus the
Smith-McMillan form of transfer matriz ¥ (s) reads as follows where we can
notice some simplifications in the rational functions within the quasi-diagonal
matriz 32‘3 :

“ 1 0
S(s 2
T —eieey | 0 5T 4
0 0
1
(s+1)(s+2) ( 2)0( 2
= 0 GIDGY) (C.43)
0 0
— 1 0
(s+1)(s+2) _2
= 0 sl }
0 0
"
Example C.6. Let F(s) := % be the following transfer matriz:
2 sl 1 2(s+3) (s+1)(s+2)
F — | s+2 s+3 |- - C.44
= B -y | V1) Tty Y] om

Let N(s) be the following polynomial matriz:

[ 2(s43) (s+1)(s+2) | [25+6 s*+3s+2
N(s)_[ s+3 5(s +3) ]—[s—FS 55—|—15] (C45)

The normal rank of N(s) is 2. Thus the Smith form of N(s) reads:

S(s) = [ Slés) 32?5) ] (C.46)

In order to get the Smith form of N(s) and express S(s) as V(s)N(s)W(s)
we apply the sequences of elementary row and column operations (which are not
unique) described in Table C.3.
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Séquence V(s) (lignes) N(s) ‘W (s) (colonnes)
1 0 25+6 s2 +3s+2 1 0
0o 1 s+3 5s 4 15 0 1
0.5 0 s+3 s2/24+1.5s+1 1 0
1 T1/2 [ 0 1] [5+3 55+ 15 ] [o 1]
) 05 0 s+3 s2/24 155 +1 1 0
R [70.5 1] { 0 752/2+3\)s+141| [0 1]
0.5 0 s+ 3 1 —0.5s
e 05ee [ o 0] [ _SQ/QHSHM] B
0.5 0 s+ 3 —0.55 1
c2 > c1 —05 1 2/2+3 55+ 14 1 0
ro < p(s)ry —rg 0.5 0 1 s+3 —0.5s 1
p(s) = —s2/2 + 3.55 + 14 —0.2552 +1.75s + 7.5 —1 0 (—s2/2+43.55+ 14)(s +3) 1 0
0.5 0 1 0 —0.55s —s2/2—1.5s—1
2 ¢ (s 4 3)e1 — e [ —0.2552 + 1.755 + 7.5 —1 [ 0 (s2/2—3.55 — 14)(s + 3) ] [ s+3 ]
o e 0.5 0 1 0 —0.5s —s2—3s—2
2 2 —0.2552 4 1.75s + 7.5 —1 0 (s2—7s—28)(s+3) 1 2(s + 3)

Table C.3: Forme de Smith de N(s)

We can check that S(s) =
unimodular polynomaial matrices:

V(s)N(s)W (s) where V(s) and W(s) are

([ S(s) = [ ! 0 }
0 (s2—7s—28)(s+3)
0.5 0
—0.25s2 +1.75s + 7.5 —1

—0.55 —s% —3s—
Wi(s) = [ 0o 2(8+33) 2 } — det (W(s)) = 2

} = det (V(s)) = —0.5 (C.47)

Alternatively the expression of S(s), that is the Smith form of polynomial
matriz N(s), can be obtained through all minors of size k of N(s):

— We start with:

Py(s) =1 (C.48)
— Minors of size 1 of N(s) are the following:

2(s+3), (s+1)(s+2), s+3, 5(s+3) (C.49)
Thus the greatest common divisor (GCD) of all minors of size 1 of N(s)
- Pi(s) =1 (C.50)

— The only minor of size 2 of N(s) is the following:
det (N(s)) = det ([ Q(SSJj?,S) - ;?fg ? D (C.51)

=10(s +3)2 — (s + 1)(s + 2)(s + 3)

Thus the greatest common divisor (GCD) of all minors of size 2 is
obviously det (N(s)) = 10(s + 3)% — (s + 1)(s + 2)(s + 3) is 35> — 12.
Because this is mnot a monic polynomial, we divide it by its leading
coefficient, that is —1 here. We get:

Py(s) = (s +1)(s +2)(s +3) — 10(s + 3)? (C.52)
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We finally get:

sk(s) = Pffgz)]; k=1,2
si(s) = g =1 (C.53)
- (5

S(s) = [ 81(()8) 32(25) } - [ (1) (8—1—1)(8—1—2)(8:)'3) —10(s +3)” ]

1
10 (s2—T7s—28)(s+3) }
(C.54)
Consequently the Smith-McMillan form of transfer matriz ¥(s) is obtained
when dividing polynomial matriz S(s) by polynomial ¥(s) = (s + 2)(s + 3):

S(s) 1 1 0
() T (sHD6H3) | 0 (82— Ts — 28)(s + 3)

== N
:! ’ OS 327328] (C.55)
s+2
_ [ a0
0
| |

C.1.4 System dimension, poles and zeros

As soon as the Smith-McMillan form (C.40) of transfer matrix F(s) is obtained,
the following results can be applied:

— System dimension n is obtained as the sum of the degrees of invariant
factors ¥y (s):

,
n=>_deg(¢(s)) (C.56)
k=1
— The characteristic polynomial of the system is defined as follows:

xals) = [T v(s) (C.57)
k=1

— Poles of F(s) are the roots of polynomial x4(s) = [[j_; ¥x(s);
— Transmission zeros of F(s) are the roots of polynomial [],_; x(s);

— Poles and zeros at infinity are obtained by evaluating poles and zeros of

the Smith-McMillan form of transfer matrix F (1) := §((88)) where d(s) is
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the least common multiple of all elements of F (1) and where V(s) and
W (s) are some unimodular matrices?:

N(s) = V(s)S(s)W(s)

s1(s) 0
1) .— N(s)
F(s) T d(s) = §(s) =
sr(s) O
0 . 0 0
$1(s)
511(3) 0
=F (L) = V(5)59W(s) = V(s) v W
(S 0
er(s)
0 o O
(C.58)

Polynomials e(s) and 1 (s) are coprime. Since si(s) divides sgpi1(s),
k=1,---,r—1, polynomial 9 (s) divides ¢g4+1(s) and exy1(s) divides
ep(s)Vk=1,....,r—1:

Vr(s) | Yrt1(s) } Vk=1,...,r—1 (C.59)

exv1(s) [ er(s)

Furthermore we said that F(s) has a pole at infinity with multiplicity v,
if s =0 is a root of [[,_; ex(s) with multiplicity 1. Similarly, we said
that F(s) has a zero at infinity with multiplicity v, if s = 0 is a root of
[T ¥x(s) with multiplicity v..

Example C.7. Let F(s) be the following transfer matriz:

2 stl
F(s) = [ Rl ] (C.60)
s+2 s+2

We have already seen that the Smith-McMillan form of transfer matriz F(s)
reads as follows:

e1(s) 1
S(s) _ [ RO ] _ [ (+2)(53) 0 ] (C.61)

2_7g—
w0 e LT e

=

Consequently we have the following results:

— System dimension n is obtained as the sum of the degrees of invariant

factors ;(s):
n=> deg(¥i(s) =2+1=3 (C.62)
i=1

System dimension n is the dimension of a minimal state-space realization

of F(s);

2Juan C. Zuniga-Anaya, Structural Properties of Polynomial and Rational Matrices, a
Survey, Mathematica Aeterna, Vol. 1, 2011, no. 06, 361 - 403
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— The characteristic polynomial of the system is defined as follows:

xa(s) =[] wi(s) = (s +2)%(s +3) (C.63)
=1

— Poles of F(s) are the roots of polynomials 1;(s), that are here —2, with
multiplicity 2, and —3;

— Transmission of F(s) are the roots of polynomials €;(s), , that are here the
roots of s> — 7s — 28.

]
C.1.5 Transfer matrix realization
We start with the following relation:
Y(s) = F(s)U(s) (C.64)
where:
— N(s)
Fls) = 3¢ = F(s) = V7 1(s) S(s) W(s) (C.65)
S(s) = V(s)N(s)W(s) U(s)

For a system with p outputs and m inputs, we split the square unimodular
polynomial matrices V(s) (of dimension p x p) and W (s) (of dimension m x m)

as follows:
V)= [wls) o vy(s) ]
wi (s) (C.66)
Wol(s)=|
wi(s)
Then we get:

(o) =3 25 el (©6)

Let F;(s) be the following multiple-input multiple-output elementary
transfer matrix of dimension p x m:

Pi(s) = 5 vl () (69

Let A; be a companion matrix of polynomial ¥;(s). Then the characteristic
polynomial of A; is 1;(s):

det (sI — A;) = ¥i(s) (C.69)
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Using the results dedicated to state-space realizations of transfer functions,
we can achieve the following realization of F;(s):

Fis) = #3 u(o)ul () = Ci(61-A) 1B+ Dy =

(1) = Azy(t) + Biu(t)
@{%®:Cm@+DMﬂ

For example matrix A; could be a block diagonal Jordan matrix. Then
matrices C; and B; are constant matrices of dimension p x n; and n; x m,
respectively, where n; is the degree of polynomial v;(s). Constant matrices C;
and B; shall be computed such that:

(sT—Ay) ' = W = C;adj (s — Ay) B; = i(s) v;(s)w? (s) (C.71)

Furthermore D; = lims_o Fi(s). Other realizations will be presented in
Section C.1.6.

A realization of F(s) is then obtained by aggregating the realizations of all
elementary transfer matrices F;(s):

A,y 0
Ay

A=

0 A,

[ By (C.72)
B=| :

_BT
C=[C - C,]
D:ZiDi

This minimal realization is a generalization of Gilbert’s method.

Example C.8. Let F(s) be the following transfer matriz:

1 —1
(s—zl)(s+2) (s+21)(s+2)

F(S) — s“+s—4 25°—s—8
(S+£+2) (s+215)£s4+2)
s+1 s+1
1 1 (C.73)
— 1 2 2
= m S —; s—4 2s ; s—8
s°—4 2s5% — 8
_ N(s)

T U(s)

We have seen in a previous example that the Smith- McMillan form of transfer
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matriz F(s) reads as follows:
F(s) =V L(s)5SWi(s)
1 0
:V*1(5)7(8+1)1(5+2) 8 520—4 W-1(s)
1 0 (C.74)
(s+1)(s+2) - MT(S)
~[n0) ue) w@]] 70 BErs
= mm(sm{@ + %QQ(S)Mg(S)
where:
1/3 0 O 3 00
V(s)=| —s/3 1/3 0 | =V (s):=] vi(s) wvy(s) wvs(s) ]=]3s 3 0
S -1 1 0 3 1
_| 21 gy [wi(s) ] _[1/3 ~1/3
W= [ 21w [0 - [
(C.75)
Then we get:
1 -1 0 0
1 5—2
Fls)=————= 1| 5 —s 1 2 C.76
() (s+1)(s+2) 0 0 s+1] ., o ( )

of

Let F(s) = F1(s) + Fa(s) where the elementary transfer matrices F1(s) and
Fy(s) read as follows:

-1 1 -1
— 1 _ 1
Fl(S) = m s —S8 = ¥ 1 -1 1
0 0
0 0 0 0
Fao(s)= 22| 1 2 :(1 s%) 1 2
1 2 1 2

(C.77)

Elementary transfer matrices ¥1(s) and Fa(s) are such that all the factors

1

S, are 3 X 2 matrices with rank n; = 1. Those matrices can then be written

as the product between two constant matrices C; and B; of dimension 3 x 1 and
1 % 2, respectively:

0
Fo(s)=s7 | -3 |[1 2]+ |1
-3 ] 1

(C.78)

The realization of F1(s) and Fa(s) using block diagonal Jordan form is then
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the following:

-1 0|1 -1
0 —-2|1 -1
Fl(s)—<él ]1?)1>_ 1 —1]0 0
1 1
-1 20 0
0 00 0 (C.79)

A minimal realization of F(s) is then obtained by aggregating the realizations
of all elementary transfer matrices F;(s):

( -1 010
S E AR
? 0 0 -1
1 -1
B:[Bl}: 1 -1
Bl 17
1 —-1.,0 (C.80)
C=[C C|=|-1 2 -3
0 0 -3
00
D=Y,D,=|1 1
2 2
]

C.1.6 Polynomial matrix fraction description (P-MFD)

Polynomial Matrix Fraction Description (P-MFD) is an alternative method to
state space representation. It generalizes the notion of numerator and
denominator for MIMO (Multiple-Input Multiple-Output) transfer matrices.

A right polynomial matrix fraction description of transfer matrix F(s) of
dimension p x m reads as follows where Fry(s) is a polynomial matrix of
dimension p x m and Fgrp(s) is a square polynomial matrix of dimension
m X m:

F(s) = Frn(s)Fpp(s) (C.81)

Similarly, a left polynomial matrix fraction description of transfer matrix
F(s) of dimension p x m reads as follows where Fyp(s) is a square polynomial
matrix of dimension p X p and Fpy(s) is a polynomial matrix of dimension
p X m:

F(s) =Fp(s)FLn(s) (C.82)

We have seen that transfer matrix F(s) can be decomposed as follows:

F(s) = 5 o S(s) o
{N(S> Vs w-i(s) ~ T VIO W) (C83)
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Matrix %‘3 is the Smith-McMillan form of transfer matrix F(s): this is a
quasi-diagonal matrix of rational functions which may possibly simplify.

Furthermore S(s) is a polynomial matrix of dimension p x m and ¥(s) is a

ei(s
Yi(s)
this quasi-diagonal matrix. Then matrix % has the following expression:
€1(s)
e 0
S " :
(s) _ : : (C.84)
\II(S) er(s) 0
¥r(s)
O --- 0 0

Let Dy, (s) and Dy,,(s) be the following square polynomial matrices, build
from polynomials 1;(s) and of dimension p x p and m x m respectively (those
2 matrices just differ by the number of 1 on their diagonal), and N, (s) the
following polynomial matrix build from polynomials €;(s) and of dimension p x
m:

v,(s) = diag (Y1(s),- -+ ,¥r(s),1,---,1) : p X p square matrix
w,,(s) = diag (¥1(s), - - ,wr( ) -+ ,1) 1 m x m square matrix
€pm(s)—diag(gl(s), -, en(s), 0,--- ,0) : p x m matrix
(C.85)
Matrix % of dimension p X m can then be expressed in 2 different ways:
20 = Nepw (IDRL () = DI, (9 (C.56)

By carrying these expressions in (C.83), transfer function F(s) is then
written as follows:

F(s) =V L(s)3SWL(s)
=V )Napm(s)DQ}n(s)W_l(s) (C.87)
= V7 !(5)Dg, (s)Ne,,, ()W (s)

By identifying (C.87) to (C.81) we get the following expression of the right
polynomial matrix fraction description of transfer matrix F(s):

F(s) :FRN( )F5p(s)
= V(s em(s) v (5)WL(s)
= V~1(s)N,,,.(s) (W(s)Duy,,(s)) " (C.88)
N { Frn(s) =V 1(s)Ng,,.(s)
Frp(s) = W(s)Dy, (s)

Similarly, by identifying (C.87) to (C.82) we get the following expression of
the left polynomial matrix fraction description of transfer matrix F(s):

F(s) =Fip(s)Frn(s)
= V71 (s)Dy, (NG, (s W' (s)
= (Dy,(s)V(s)) ' N.,,.(s)W~(s) (C.89)
N { Frp(s) =Dy, (s)V(s)
Frn(s) =N, . (s)W™1(s)

Epm
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Note that V(s) and W(s) are unimodular polynomial matrices. Therefore
V~1(s) and W~1(s) are also unimodular polynomial matrices and matrices
Frn(s), Frp(s), Frn(s) and Fpp(s) are polynomial matrices.

Consider now the following linear and time invariant system with m inputs
and p outputs:

(C.90)

—N
< 18
I
\g‘? \g
_|_
vs)
N

Once the Smith-McMillan form of this system is obtained, the right
polynomial matrix fraction description of F(s) leads to the following
realization of the system in the controllable canonical form:

F(s) =Frn(s)Fgrp(s)

= (Np_1s" P4+ + Nys+ Np) (Iyps" + Dypys™ '+ -+ Dys + DO)’1

_ -1 L Ac Bc
=C.(sI-A,) " B.:= ( Co [0y
(C.91)
where:
i Om ]Im Om Om i
0., 0,, I,
A, =
L
L —Do —D1 —Drfl J (C92)
F o,
B, = |
O
L I
C.=[Nog Ny -+ N, |

Similarly, the left polynomial matrix fraction description of F(s) leads to
the following realization of the system in the observable canonical form:

F(S) = FZE(S)FLN(S)
= (Ips"+Dy_1s" 1+ -+ Dys+ DO)’1 (Ny—1s" 14+ 4+ Nys + No)
_ o -1 o Ao Bo
=C,(sl—A,) B, := ( Co [ Oy
(C.93)
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where:
[ 0,, O,, - 0, —-Dg ]
]Im Om Om _Dl
A, =
L O0m -+ Hm _Dr—l |
© N, (C.94)
Ny
Bo = .
L Nr—l
Co=[0, - 0, L]

Example C.9. We consider (again) the following transfer matriz F(s):

1 —1
(s+1)(s+2) (s+1)(s+2)

_ s24s—4 252—5—8
F(s) = (s+f3£§+2) G5+ D(s+2) (C.95)
s+1 s+1

Here the number of outputs p of the system is equal to 3 whereas the number
of inputs m of the system is equal to 2.

We have seen in a previous example that the Smith-McMillan form of the
transfer matriz F(s) is the following:

F(s) =V l(s) 3 Wl(s)

1 0
:V_l(S)m |: 0 82 —4 ] W_l(S)

0
o fmem 0] (C.96)
=V (s) 0 = | W(s)
0 0
= V_l(s)Nspm (s)D;; (s)W_l(s)
— V_l(s)D;; (S)ngm (s W_l(s)
where:
1 0
N.,..(s) 0 52]
0 O
D, (s) = (s+1)0(5+2) 8—?_1 (C.o7)
(s+1)(s+2) 0 0
Dy, (s) = 0 s+1 0
L 0 0 1
and.:
1/3 0 0 3 00
V(s)=| —s/3 1/3 0 Vis)=|3s 3 0
s -1 1] & 0 3 1 (C.98)
1/3 -1

Wis) = { —21 1 ] Ws) = [ 1/3 2/?),3 }
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Then the right polynomial matriz fraction description of F(s) reads as
follows:

F(s) = Fry(s)Fpp(s)

3 0
Fry(s) =V 1(s)N,,,.(s)=| 3s 3s—6
where 0 35s—6 (C.99)

252 +6s+4 s+1
Frp(s) = W(s)Dy,,(s) = —s2—-35s—2 s+1

And the left polynomial matriz fraction description of F(s) reads as follows:

F(s) = F1p(s)FLy(s)

( s2/3+s5+2/3 0 0
Fip(s) =Dy, (s)V(s)= | —s*/3—35/3 s/3+1/3 0
s -1 1
where 1/3 _1/3
Fin(s) =N, ()W l(s) = | —2/3+5/3 2/3s—4/3
\ 0 0
(C.100)

C.1.7 Right and left coprimeness

Consider two polynomial matrices D(s) and N(s) with the same number of
columns. A square polynomial matrix R(s) is called a common right divisor of
D(s) and N(s) if there exists polynomial matrices D(s) and N(s) such that:

Ro]-[Rlme

Assume D(s) and N(s) have both m columns and such that the sum of their
rows is greater of equal to m. Then the following statements are equivalent?:

— D(s) and N(s) are right coprime, meaning that the greatest common
right divisor of D(s) and N(s) is an unimodular matrix. We will see in
section C.1.8 how to compute the greatest common right divisor of two
polynomials matrices.

— There exists polynomial matrices X(s) and Y (s) which solve the following
Bezout identity:
X(s)D(s) +Y(s)N(s) =1, (C.102)

— For any complex number s:

rank ([ 1]318 D =m (C.103)

8Panos J. Antsaklis, Anthony N. Michel, A Linear Systems Primer, Birkhiuser Boston
2007, https://doi.org/10.1007/978-0-8176-4661-5
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— The Smith form of [ 1]\318 ] is [ Hg } .

Assume now D(s) and N(s) have both p rows and such that the sum of their
columns is greater of equal to p. Then the following statements are equivalent:

— D(s) and N(s) are left coprime, meaning that the greatest common left
divisor of D(s) and N(s) is an unimodular matrix.

— There exists polynomial matrices X(s) and Y (s) which solve the following
Bezout identity:
D(s)X(s) + N(s)Y(s) =1, (C.104)

— For any complex number s:

rank ([ D(s) N(s) |)=p (C.105)

The Smith form of [ D(s) N(s) |is [, 0 ].

C.1.8 Hermite form and applications
Greatest Common Right Divisor (GCD)

The row Hermite form of a matrix, initially discovered by Charles Hermite

(1822-1901) in 1851 for the domain of integers, is an upper triangular matrix

that has the added constraints that the diagonals have the largest degrees in
each column.

Let D(s) and N(s) be two polynomial matrices with the same number of

_ | D(s)

columns and P(s) := [ N(s)

by the following algorithm®:

} . The row Hermite form of P(s) can be computed

1. In the first column of P(s) use row interchange to bring to the first row a
lowest-degree entry among nonzero first-column entries;

2. Multiply the first row by a real number so that the first column entry
mi.1(s) is monic, meaning that the coefficient corresponding to the highest
degree monomial is 1;

3. For each entry m;(s) below the first row in the first column, use
polynomial division to write the following relation where each remainder
ri1(s) is such that deg(r;1(s)) < deg(mi,1(s)):

mia(s) = qi(s)mi1(s) +rii(s), @i>2 (C.106)

If mii(s) = 0 we set ¢;(s) = ri1(s) = 0. If deg(mii(s)) = 0 then
deg(my,1(s)) =0 and r;1(s) = 0.

‘Rugh W. J., Linear System Theory, Prentice Hall, 1992
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4. For i > 2, add to the i*"-row the product between —¢;(s) and the first
row, that is the product —g;(s) m1,1(s). The resulting entries in the first
column, below the first row, are polynomials 72 1(s), -+, "p4m,1(s), all of
which having degrees less than deg(mq 1(s)).

5. Repeat the preceding steps until all entries of the first column are zero
except the first entry. Since the degrees of the entries below the first entry
are lowered by at least one in each iteration, a finite number of operations
is required.

Next, proceed with the second column of P(s) and repeat the above steps
while ignoring the first row. This results in a monic, nonzero entry mga(s),
with all entries below it are zero.

If mq 2(s) does not have lower degree than mg 2(s), then polynomial division
of my2(s) by ma2(s) as in step 4 replaces m2(s) by a polynomial of degree
less than deg(ma2(s)).

Next repeat the process for the third column of P(s), while ignoring the
first two rows. Continuing until the last column of P(s) yields to the so-called
1]\318 ], where U(s) is an
unimodular polynomial matrix (meaning that det (U(s)) = constant):

ool 2%

det (U(s)) = constant

row Hermite form of polynomial matrix P(s) = [

(C.107)

Polynomial matrix R(s) is the Greatest Common Right Divisor (GCD) of
polynomial matrices N(s) and D(s).

Polynomial matrix fraction description

The results presented in section 5.12.4 lead to a matrix fraction description of
F(s), where Nrr(s), Drr(s), Xr(s) and Yg(s) are rational matrices.

To achieve a polynomial matrix description of F(s), first write F(s) as
follows:

F(s) = N(s)D!(s) where D(s) = diag (¥U(s),--- , ¥U(s)) (C.108)

where N(s) is a p x m polynomial matrix, D(s) a m x m diagonal polynomial
matrix and ¥(s) a polynomial.
From the row Hermite form (see Section C.1.8) of polynomial matrix P(s) =
D(s)
R
polynomial matrix (meaning that det (U(s)) = constant):

o[ 201"

] , we get relation (C.107) where U(s) is a (p+m) X (p+m) unimodular

(C.109)
det (U(s)) = constant
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Then U(s) is partitioned as follows, where Uyi(s) is a m x m polynomial
matrix and Usz(s) a p X p polynomial matrix:

U11 (S) U12 (8)

U(S) - U21 (S) UQQ(S)

(C.110)

Matrix Uga(s) is square and invertible. Then the left coprime polynomial
matrix description of F(s) reads:

F(s) = —Us, (5)U(s) (C.111)

Indeed, from (C.107) we have:

Uii(s) Uia(s) ] [ D(s) ] _ [ R(s) ]
Usi(s) Ua(s) | | N(s) 0
=>U21( )D(s) + Uza(s)N(s) =0

F(s) = N(s)D7!(s) = =Uj; (s)Uai(s)

With V(s) = U™1(s) we get the following relation where V11(s) is a m x m
polynomial matrix and Vaa(s) a p X p polynomial matrix:

(C.112)

V11 (S) V12(S)

Vorls) Vasls) (C.113)

Matrix Vii(s) is square and invertible. Then the right coprime polynomial
matrix description of F(s) reads:

F(s) = Va1(s) V] (s) (C.114)

Indeed we have:

(s Vii(s) Via(s R(s) D(s) = V11(s)R(s)
L = v |17 | = N —von
5 = (S) V21$ R f( —V21() 1()
(C.115)
Furthermore, as far as V(s) = U~!(s), the following relation, known as

Bézout identity, holds:

[ty va ) [vaie) vaml=[o 1]

With the same kind of work on the columns of the achieved row Hermite
form, matrix R(s) can be diagonalized. Then we get the following relation where
matrices U(s) (rows operations) and W (s) (columns operations) are unimodular
and diag(p;(s)) is a diagonal polynomial matrix:

Uls) { D(s) ]W@) _ [ d“”g(gi(s)) ] (C.117)
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Example C.10. We consider the following transfer function:
o s -

s2—s—1
Loy
(s2=s—1)
Fis)=| " " (C.118)
s s2—s—1
L 0 5271571 .

It is clear that F(s) can be written as follows:

0 3
(s2—s—1) s(s—1)

_ 1
F(s) = 2 (s7=s—1) | 5(s2 —s5—1) s%(s—1)
0 s
0 53
| (s*=s—=1) s(s—1) s2(s2 —s5—1) 0 -
T os(s2—s5-1) s*s—1) 0 s2(s?—s—1)
0 s
(C.119)
Then we seek the row Hermite form of P(s) := [ 1[\)18) } where:
[ S2(sP—s—1) 0
D(s) = { 0 s3(s? —s—1) ]
3
0 § (C.120)

(s2—s—1) s(s—1)
s(s2—s—1) s*s—1)
0 52

N(s) =

Following the algorithm proposed by Rugh®, the row Hermite form of P(s)
can be computed step by step as shown in Table C.4 for the first column.

Then we proceed with the second column while ignoring the first row, as
shown in Table C.5.

Finally matriz U(s) is partitioned as follows, where Uy1(s) is a m x m
polynomial matriz and Usa(s) is a p X p polynomial matriz:

00,0 1 0 0
00,0 0 O 1
B T S T e Un(s) | Unals)
US)I=11 010 =2 0 (- Uni(s)  Unls) | (©12Y
00,0 —s 1 0
L0 110 0 0 —(s*—s—1)
Matriz Ugy(s) is a square invertible polynomial matriz. The left coprime

polynomial matriz description of F(s) reads:

F(s) = —Ug) (s)Uai(s) = —

oo o
[
C,JCIJ

o oo
—

[V2)

<

[Va)

SN—
oo~ o
N e N =)

(C.122)
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Table C.4: Row Hermite form of P(s): process with the first column
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Table C.5: Row Hermite form of P(s): process with the second column
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Opération (colonne ou ligne) U(s) P(s) W (s)
ro o0 0 1 0 7 (s2—s—1) s(s—1)
0 0 o0 0 0 1 0 o2
0 0 1 0 0 —s 0 0 1 0
1 0 0 —s2 0 (s2 —s) 0 0 0o 1 }
0O 0 O —s 1 0 0
Lo 1 o 0 0 —(s2—-s—1) | 0 0
ro 0 0 1 0 0 7 [ (s2—s—1) 1
0o 0 o0 0 0 1 0 o2
0o 0 1 0 0 —s 0 0 1 -1
cg < c2 — c1 1 0 o _s2 0 (5275) 0 0 0 1 }
0 0 0 —s 1 0 0
Lo 1 o 0 0 —(s2—-s—1) | 0 0
ro 0 0 1 0 0 1 (s2—s—1)
0o 0 o0 0 0 1 52 0
0o 0 1 0 0 —s 0 0 -1 1
c2 7 c1 1 0 0 -s2 0 (s2 — s) 0 0 1 0 }
0O 0 o0 —s 1 0 0
Lo 1 o 0 0 —(s2—-s—1) | L o 0
[0 0 0 T 0 0 7 r 1 2 _s_1
0 0 0 -—s* 0 1 0 _3(2(52 _s_>1)
2 0 0 1 0 0 —s 0 0 -1 1
T2 T2 st 1 0 0 —s2 0 (s2 = s) 0 0 1 0}
0 0 0 -s 1 0 0
Lo 1 o 0 0 —(s2-s-1) | L o 0
[0 0 0 T 0 0 r 1
0 0 0 —-s2 o 1 0 —s2(s2—s—1) )
Py 0 0 1 0 0 —s 0 0 —1 s — s
cgcx— (s —s—1)c1 1 0 0 —s2 o0 (2 — 5) 0 0 [ 1 —52+s+1):|
00 0 —-s 1 0 0
0 1 o0 0 0 —(s2-s-1) | L o 0 _

Table C.6: Getting the Smith-McMillan form from the row Hermite for

[s2  s—s> 10 10 0]

0 —1—s+s*,0 0 0 1
o s 11000 (C-123)
T 0 0 0 0 0

s 0 0010

0 1 0 0 0 0]

Matriz V11(s) is a square invertible polynomial matriz. The right coprime
polynomial matriz description of F(s) reads as follows:

S §— S

0 —1—s+s (C.124)

SO »w V= O
— o O W

With the same kind of work on the columns of the achieved row Hermite
form, matriz R(s) can be diagonalized. Starting with Table C.5, rows operations
(matriz U(s)) and columns operations (matrizc W(s)) on P(s) are presented in
Table C.6.

Then we get the following relation where matrices U(s) (rows operations)
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and W (s) (columns operations) are unimodular:

Us) [ o }W@) _ { diag (p(s)) }

(s 0
000 1 0 0 s2(s? —s—1) 0
000 —s* 0 1 0 s2(s? —s—1)
o001 0 0 —s 0 |
1 00 —s2 0 (s? —s) (s2—5—1) s(s—1) 1
000 —s 1 0 s(s?2 —s—1) s2(s—1)
010 0 0 —(s2—s5-1) 0 52
1 0
0 —s*(s?2—s—1)
o 0
o0 0
0 0
0 0
(C.125)
]

C.1.9 DMcMillan degree, poles and zeros of a transfer function

From the left and right coprime polynomial matrix descriptions of F(s) reads,
the following properties hold*:

— The determinant of Vi;(s) is equal to the determinant of Usga(s) times a
constant c:

det (V11(s)) = cdet (Uaa(s)), ¢ = constant (C.126)

— The degree of det (V11(s)) (or det (Uaz(s))) is called the McMillan degree
of F(s). This degree equals the dimension of any minimal realization of
F(s).

— The poles of F(s) are either the roots of det (V11(s)) = 0 or the roots of
det (UQQ(S)) =0.

— The zeros of F(s) are the values of s for which the rank of either Vo;(s)
or Usg;(s) drops below its normal rank.

C.1.10 Column reduced and row reduced polynomial matrix

Let D(s) a square p X p polynomial matrix and denote its column degree by
{dc;}. Then we can write the following relation, where T'. is a constant matrix
and Dg(s) a polynomial matrix with column degrees strictly lower than those
of D(s):

D(s) — ]_"C diag (Sdcl’ .. ’sdcp) + DQ(S) (0127)

Matrix T'; is called the highest column degree coefficient matrix, or the
leading column coefficient matrix, of D(s).

s*—s
—s24+5+1)
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By definition®, a square nonsingular polynomial matrix is column reduced if
and only if its leading column coefficient matrix I'. is nonsingular, or
equivalently if:

det (T'c) # 0 < deg det (D(s)) = zp: de; (C.128)
i=1

The example provided by Kailath® will give an insight. Let D(s) be the
following polynomial matrix:

D(s) — [ (s+1)%(s+2)? —(s+1)*(s+2) ]

0 s+2
1 =17[s* 0
_[0 0 Ho 33] (C.129)
653 + 1352+ 125 +4 —4s> — 55— 2
+[ 0 s+ 2 ]

Then the leading column coefficient matrix T'. of D(s) reads:

T, = [ (1) _01 } (C.130)

The column coefficient matrix I'. is singular, thus D(s) is not column reduced
and deg det (D(s)) =5 # Y ?_, de; =4+ 3.

Similarly, a square nonsingular polynomial matrix is row reduced if and only
if the matrix formed by its row leading coefficients is nonsingular. Coming back
to polynomial matrix D(s) in (C.129), its leading row coefficient matrix I',
reads:

10
T, = [ 01 } (C.131)

We can see that D(s) is row reduced. Indeed denoting by dr; the row degree

of D(s) we have:

2
det (T;) # 0 < deg det (D(s)) =5=) dri=4+1 (C.132)
i=1

Elementary row / column operations can be used to make a polynomial
matrix column reduced or row reduced. For example, putting in the first column
of D(s) in (C.129) the sum between its first column and polynomial (s+2) times
its second column leads to the following matrix:

0 —(s+1)%(s+2)

¢ ¢+ (5+2)cy = De(s) = (s +2)? 512

(C.133)

5J. Ruiz-Leon, F. Kraffer, A. Castellanos and V. L. E. Ramos, Column reduced proper
rational matrices, 1999 European Control Conference (ECC), 1999, pp. 936-941, doi:
10.23919/ECC.1999.7099427.

SKailath T., Linear Systems, Prentice Hall, Englewood Cliffs, N.J., 1980
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Matrix D, (s). Indeed the highest column degree coefficient matrix of D, (s)
reads:

0 -1
fo[0 0] 128

Because T’ is nonsingular, D¢.(s) is column reduced and the following
relation holds:

p
det (T) # 0 deg det (Dep(s)) =5= Y de; =2+3 (C.135)
=1

Furthermore, it can be shown® that transfer function N(s)D~!(s) where
D(s) is column reduced is strictly proper (proper) if and only if each column of
N(s) has a degree less than (less than or equal to) the degree of the
corresponding column of D(s).

C.1.11 Row index of transfer matrix

The row index v of a transfer matrix F(s) is the largest row degree of Dy (s)
in any left coprime factorization of F(s) = Dp(s) ! Np(s) with Dy(s) row
reduced.

Alternatively row index v is also equal to the observability index of any

irreducible realization of F(s) = C(sI—A)"'B+ D := < jé g ) To be

more specific, let QZT be the i*" row of C. Then the observability matrix Q, can
be written explicitly as follows:

Qo = = : (C.136)

T An—1
L QPA .

Let v; be the number of the linearly independent rows associated with QJT

in Q,. In other words rows (ng, QJTA, cee QJTAl’J'*l ) are linearly
independent and ngA”J'“Vi > 0 are linearly dependent. Then if Q, has rank
n we have E§:1 vj = n and v = max (vi,--- ,vp) is called the observability
indet.

A similar definition exists for controllability index based on the columns of
the controllability matrix Q..
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C.1.12 Flat outputs

Let F(s) = (sT — A) "' B (here the output matrix C has been set to the identity
matrix: C = I) and consider the right polynomial matrix fraction description
(C.81) of transfer matrix F(s):

X(s) = F(s)U(s) = Frn(s)Fzp(s)U(s) (C.137)
By introducing vector £(s) , we can write:
N(S)f(s) (0138)

{ X(s) =Frn(s)€
U(s) = Frp(s)§(s)

Matrices Fry(s) and Frp(s) are polynomial maytrices. Thus the preceding
relation states that state vector z(¢) and control vector u(t) can be expressed as
a function of vector {(¢) and its derivatives: vector {(t) is called vector of flat
outputs7.

Interestingly, when flat vector is used, the system dynamics can be obtained
without integrating differential equations, just differentiations.

C.2 1ICD controllers

C.2.1 Controller structure

ICD stands for Individual Control Channel. ICD controllers are also named
reversed frame normalizing controllers after Hung & MacFarlane in 19828, In
the ICD framework, which is basically the Smith-McMillan form of the transfer
matrix, SISO techniques can be used to control MIMO systems.

We consider the following transfer matrix F(s) where N(s) is a p x m
polynomial matrix and W(s) is a polynomial which is actually the least
common multiple of the denominators of all the elements in F(s)):

(C.139)

We have seen in Section C.1.2 that matrix N(s) is equivalent to matrix S(s),
where polynomial S(s) is called the Smith form N(s):
S(s) = V(s)N(s)W(s) & N(s) = V1(5)S(s)W1(s) (C.140)
Moreover:

— S(s) is a p x m quasi-diagonal polynomial matrix:

s1(s) 0
S(s) = " 0 (C.141)
0 - 0 o0

7J. Lévine, D.V. Nguyen, Flat output characterization for linear systems using polynomial
matrices, Systems & Control Letters 48 (2003) 69 - 75

8Y.S. Hung & A.G.J. MacFarlane, Multivariable Feedback: A Quasi-Classical Approach,
Lecture Notes in Control and Information Sciences, vol 40. Springer, Berlin, 1982
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— Square matrices V(s) and W (s) are unimodular polynomial matrices;

— The dimension of matrix V(s) is p X p whereas the dimension of matrix
W(s) is m x m.

Dividing polynomial matrix N(s) by polynomial ¥(s) we get:

F(s) = 3 =V I(5) 53 W1(5) = VI(s)Fs(s)W1(s)  (C.142)

Matrix Fg(s) := 3((‘3 is called the Smith-McMillan form of transfer matrix

F(s): this is a quasi-diagonal matrix of rational functions which may possibly

simplify. Let Zj((ss)) be the rational functions obtained after simplification of each

element of quasi-diagonal matrix % Then the Smith-McMillan form Fg(s)

of transfer matrix F(s) reads:

s1(8) €1(s)
70 0 71(5) 0

S(s)

Fs(s) = - -

‘1’ Sr(S r(S

z i o 4 o
0 0 0 0 - 0 0

(C.143)

The polynomials e(s) and ¥y(s) are coprime. Furthermore ei(s) divides
er(s)(s) and Yy41(s) divides g (s)VE=1,...,r — 1

51(5)] s11(5) B i
Yry1(s) \J;pk(s) } Vk=1,...,r—1 (C.144)

We present hereafter some results presented by Mohsenizadeh & al.”.

We consider Figure C.1 where F(s) is a MIMO plant with m inputs and p
outputs, and C(s) a MIMO controller with p inputs and m outputs:

The main idea is to change the actual control loop in the top of Figure C.1
by an equivalent control loop using the Smith-McMillan form Fg(s) of plant
F(s), as shown in the bottom of Figure C.1. The connection between C(s) and
Cs(s) is obtained through the square unimodular polynomial matrices V(s)
and W (s):

F(s) = V7 1(5)Fs(s)W™(s) = C(s) = W(s)Cg(s)V(s) (C.145)

A controller defined by (C.145) is called SVD controller or reversed-frame
normalizing controller.

°Daniel N. Mohsenizadeh, Lee H. Keel and Shankar P. Bhattacharyya, Multivariable
Controller Synthesis using SISO Design Methods, 2015 IEEE 54th Annual Conference on
Decision and Control (CDC), December 15-18, 2015. Osaka, Japan
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Ris) /O efs) Uts) Is)
—{ A — Cys) > Frs) >
Grs) [
1, Gs)
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— Is) > +> S —w Cus) » Iy > 1) -

Figure C.1: Equivalent control loops with MIMO controller C(s)

C.2.2 Closed loop transfer function

We will assume that Cg(s) is a quasi-diagonal m X p controller with transfer
functions C1(s), - - - , Cr(s), where r is the number of non-zero terms in the Smith
form S(s) of N(s). Then, denoting by n¢, (s) the numerator of transfer function
Cs, (s) and by dc¢, (s) its denominator, we get:

[ ney (s)
dci(s) 0
Cs, (s) = no(s) Cs(s) = : (C.146)
dck(s) ZLF)) 0
cr (s
i 0 e 0 0 ]

Thanks to the definition (C.145) of controller C(s), the product F(s)C(s)
reads as follows:

F(s) :Vﬁl(S)FS(S)Wil(s) )C(s) = V(s s s s
{ C(s) = W(s)Cs(s)V(s) T ERCE) E VRS Cs )\(f((} 1)47)

Then we can use this result to compute the closed-loop transfer function:

Y(s) = F(s)C(s) (B(s) — ¥ (s))

= (I+ F(s)C(s)) Y (5) = F(s)C(s)R(s) (C.148)
We finally get:
Y(s) =(I+F(s)C(s))" ( )C(s)R(s)
— (I4+ V~1(s)Fs(s)Cs(s)V(s)) " F(s)C(s)R(s)
= (V7Y(s) (T+ Fs(s)Cs(s)) V(s)) " F(s)C(s)R(s) (C.149)
=V~1(s) @+ Fg(s)Cs(s)) ' Fs(s)Cs(s)V(s)R(s)

= G(s)L(s)
Thus the closed-loop transfer matrix G(s) reads:

G(s) =V~!(s)(I+Fg(s)Cs(s)) " Fs(s)Cs(s)V(s)
=V 1(5)Gg(s)V(s) (C.150)
where Gg(s) = (I+ Fg(s)Cs(s)) ™ Fs(s)Cs(s)
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This equivalence between closed-loop transfer matrix G(s) and Gg(s) is
represented in Figure C.1.

C.2.3 Proper controller

Let wy,(s) be the column polynomial vectors of unimodular of matrix W(s) and
U} (s) be the row polynomial vectors of unimodular of matrices V(s). Then we
get:

W(s) := [ @,(s) w,(s) |
o (s)

V(s) := ; (C.151)
) (s)

= C(s) = W(5)Cs(s)V(s) = Xy Wi(s)T (5)Cs,. ()

In order to achieve a proper transfer matrix C(s) for the actual MIMO
controller, the relative degree of each transfer function Cg, (s), rdeg (Cg, (s)),
shall be chosen such that @, (s)ot (s)Cs, (s) is proper:

rdeg (Cs, (s)) such that lims ety ()05 (5)Cs,(s) < 0o Yk =1,--- 7
(C.152)
From relation (C.150), it is clear that the characteristic polynomial of T 4
F(s)C(s) is equal to the characteristic polynomial of I+ Fg(s)Cg(s). Then

we use the assumption (C.146) that Cg(s) is a quasi-diagonal controller with

transfer functions Cg, (s) = Zg’“ 8
k

[ e1(s) ney (s)
01() Ao () 0

Fs(s)Cs(s) =

er(s) ney(s)

Pr(s) de,.(s)

e1(s)ney (s)
R OL RO 0

=1+ Fs(s)Cs(s) =

Pr(s)de,. (s)
0 o 0
Y1(s) dcy (s)
P1(s) doy (s)+e1(s) ney (s)

1 + er(s) nCr(S) O
H -

= (I+Fg(s)Cs(s)) " = bo(5) do(5)
B (3)do, (5) 20 (5) ncy (5)
0 0

(C.153)
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We finally get:

Gs(s) = (I+Fg(s)Cs(s)) ' Fg(s)Cs(s)
e1(s) ncy () 0
P1(s) dey (s)+e1(s) ney (s)

er(s) noy (s)
¥r(s) doy. (s)+er(s) no, (s)
0 e 0 0

(C.154)
Then the poles of Gg(s), which are also the poles of G(s) because matrix
V(s) is unimodular, are the roots of the following polynomial x(s):

r

xa(s) = [ (Wr(s) dey (s) + ex(s) ney () (C.155)

k=1

The interest in this expression is that each elementary transfer function

Cs,.(s) = ng((z)) is used to set the roots of each polynomial vy(s)dc, (s) +
k

ek(s)nc,(s), k = 1,--- ,r under the constraint (C.152). Assume that ty(s)

is a polynomial of degree nj and that polynomial e (s) has a degree lower or

equal to ng. Then denoting by my the degree of polynomial dc, (s) and by

my, — rdeg (Cg, (s)) the degree of polynomial ng, (s):

deg (ex(s)) < deg (Yi(s)) = ng
deg (dc, (s)) := my (C.156)
deg (nc, (s)) = my — rdeg (Cs, (5))

Polynomials dc, (s) and ne, (s) have a total of
my + 1+ (my —rdeg (Cs,(s)) + 1) = 2my, — rdeg (Cs, (s)) + 2 coefficients to
be determined. On the other hand, and with the assumptions that we made,
polynomial ¢(s)dc, (s) + €x(s) ne,(s) is a polynomial of degree ng + my
which has ng + myg + 1 coefficients. Thus the number of known coefficients,
ng + my + 1, will be equal to the number of coefficients to be determined,
2my, — rdeg (Cs, (s)) + 2, as soon as the following equality holds:

ng+mg+1 =2my —rdeg (Cs, (s)) + 2

s
1
=my =ng+rdeg(Cs,(s)) —1 (C.157)

Furthermore we have:
deg (Yi(s) dc, (s) + er(s) ne, (s)) = np+my = 2n,+rdeg (Cg, (s))—1 (C.158)

In other words, as soon as a polynomial of degree 2n; + rdeg (Cg, (s)) — 1
is provided, the coefficients of this polynomial can be identified with the
coefficients of polynomial v (s)dc, (s) + ex(s)nc,(s), where dc, (s) is a
polynomial of degree my; and ne(s) a polynomial of degree
my, — rdeg (Cg, (s))-

Once each elementary transfer function Cg, (s) = ngé37 k=1,---,r, of
k

Cs(s) have been set, the actual controller C(s) is obtained thanks to (C.145).
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C.2.4 Decoupling

It is worth noticing that for square systems with p inputs and p outputs, input-
output decoupling can be achieved through the following setting, provided that
the relative degree condition (C.152) is satisfied and that each open loop transfer
function Fg,(S) is stable (in order to ensure internal stability):

Fs,(S) Cs,(s) = Fs,;(S) Cs;(s) Vi,j (C.159)
Indeed, in this situation Fg(s)Cg(s) is a p X p square matrix:
Gs, (3)
G, (s)
Fg(s)Cg(s) =
(5)Cs(s) (C.160)
(S)Cs, (5) G5
Fs.(S)Cs. (s .
Gs,(s) = 1+%si(5) élsl.(s) Vi

Furthermore the closed-loop transfer matrix G(s) is also a p X p square
matrix. From (C.150) we get:

G(s) =V7(s)Gs(s)V(s)

GS1 (S)
_v-1(s) G, (s) | V(s) (C.161)
Gsp(s)

Thus it is clear that if Fyg,(S)Cs,(s) = Fs,(5)Cs;(s) Vi,j then
Gs,(s) = Gg,(s) Vi,j. Then provided than the relative degree condition
(C.152) is satisfied, we achieve decoupling control:

Gsl (S)
L. _ GS1 (S)
Gs,(s) =Gs;(s) Vi,j = G(s) =V L(s) . Vi(s)
GSl (3)
1

1

— G, (5)V(s) Vi(s)
1
= Gs,(s) V71(s)T, V(s)
- GS1 (5) HP
(C.162)

Furthermore let rdeg (Cs, (s)) be the relative degree of controller Cg, (s)
such that (C.152) holds and let rdeg (Fs, (s)) be the relative degree of transfer
function Fg,(s). Denoting r = max (rdeg(Cs,(s)) + rdeg (Fs,(s))), the
relation Fy,(S)Cs,(s) = Fs,(S)Cs;(s) Vi,j implies that rdeg (Cs,(s)) shall
be chosen such that the following relation holds:

rdeg (Cs, (s)) =r —rdeg (Fs,(s)) (C.163)
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R(s) | \ N Urs) Y(s)
S R RN ey I O > : j
- !
T — Cus -
G(s) 4
:| [ Gs('s)
R(s) AN Y(s)
—» (s) 3=:‘.+>\‘ — C (s) —> F(s) —| 17 (s) —

Figure C.2: Equivalent control loops with MIMO two-degree-of-freedom control
loop

C.2.5 Two-degree-of-freedom control loop

Consider the configuration shown in Figure C.2 where F(s) is the plant transfer
function and Cj(s) and Ca(s) two controllers. This feedback loop is called a
two-degree-of-freedom control loop. From Figure C.2 control u(s) reads:

u(s) = Ci(s)r(s) — Cg(s)g(s) (C.164)

The relation between the output y(s) and the reference input r(s) reads:

y(s) = F(s) F(s) (Ci(s)r(s) — Ca(s) y(s))
= (I+F(s)C ( )) y(s) = F(s)Cu(s) r(s) (C.165)
& y(s) = (L+F(s)Ca(s)) " F(s)Cu(s)r(s)
Thus the closed loop transfer function G(s) reads as follows:
G(s) = (14 F(s)Cy(s)) " F(s)Ci(s) (C.166)

Now as in section C.2.1, plant transfer function F(s) and controllers transfer
function Ci(s) and Ca(s) are written as follows, where Cg, (s) and Cg,(s) are
quasi-diagonal transfer functions:

P =V RseW ) = { ol T WISV caon

Then the closed-loop transfer matrix G(s) becomes:
Cs,(5) ™' Fs(s)Cs, (s)V(s)
)

Fs(s)Cs, (s)

G(s) =V~ () (I +Fs(s)
=V~ 1(5)Gs(s) V(s
where Gg(s) = (I+ Fg(s)Cs,(s)) "

(C.168)
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The equivalent two-degree-of-freedom  control loop using the
Smith-McMillan form Fg(s) of plant F(s) is shown in the bottom of Figure
C.2. The connection between C;(s) and Cg,(s) is obtained through the square
unimodular polynomial matrices V(s) and W (s):

C.3 Matrix polynomials and solvents of A\-matrices

C.3.1 Latent roots and latent vectors

We present hereafter some results provided by Yaici & al.'. Let’s consider
the following r-degree, mth order monic matrix polynomials D(X) where A is a
complex number and D; € R™*™:

D(A) =ILp A" + Dy A -+ DA+ Dy (C.169)
A latent root A; of D is a complex number satisfying:
det (D (X\;)) =0 (C.170)

Matrix polynomials D(A) has at most m x r latent roots. In the following
we will assume that matrix polynomials D(A) has exactly m x r latent roots
{1, "+, Amxr}, including multiplicity.

A right latent vector corresponding to ); is a vector v; € R™*! belonging to
the kernel of D(\;):

=0 (C.171)

Similarly, a left latent vector is a row vector w; € R™*! belonging to the
kernel of D()\;)7:

D) w; =0 wf D) =0" (C.172)

1 = —1

C.3.2 Right and left solvents

A right solvent of D()) is a square matrix R € R™*™ gatisfying:

R"+D, R+ + DR +Dg = 0,5 (C.173)
Similarly, a left solvent of D(\) is a square matrix L € R"™*"™ satisfying:
L'+ L7 'D, 1+ +LD; + Dy = 0,5 (C.174)

Assume that D(A) have m linearly independent right latent vectors
{vi,v9, - ,v,,} and m linearly independent left latent vectors
{wy,wy, -+ ,w,,} corresponding to latent roots {A\1,Aa, -+, A}. Let V be
the m x m matrix whose columns are the m linearly independent right latent

0Malika Yaici and Kamel Hariche, On Solvents of Matrix Polynomials, International
Journal of Modeling and Optimization, Vol. 4, No. 4, August 2014
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vectors v, and W its inverse whose rows are the m linearly independent left
latent vectors w;:

( V:[Ql vy - Qm]
wf
S wg’ (C.175)
ul

Then the following m x m matrices R and L are right and left solvents of
D(\), respectively:

M

R = Vdiag (A1, , Am) V!
where diag (A1, , \p) :=

L=W ldiag(\1, -, An) W

(C.176)
It can be shown that:

— Solvents of A-matrices D(\) do not always exist.

— If R is a right solvent of D(\) then there exists a A-matrix Q(X) of degree
r — 1 such that D(\) = Q()\) (AL, — R).

— If L is a left solvent of D(A) then there exists a A\-matrix S(A) of degree
r — 1 such that D(\) = (AL, — L) S(\).

— Generalized right or left eigenvectors of a right or left solvent are the
generalized latent vectors of D(A).

C.3.3 Block Vandermonde matrices

Let split the set of m x r latent roots, including multiplicity, of D(\) into r
sets corresponding to m latent roots. For each set of m latent roots, let R;, i =
1,---,r and L;, i = 1,--- ,r be right and left solvents of D()), respectively.
We denote A (R;) the set of eigenvalues of right solvent R; and X (L;) the set of
eigenvalues of left solvent L;. A complete set of right solvents and left solvents
is obtained if we can find r right solvents and r left solvents such that:

{ U::l)‘(Ri) = {)‘b"' 7)‘m><7"} (0'177)

ngl A (Ll) = {)\17 Ty, )\mxr}

Furthermore the following block Vandermonde matrices Vi and Vi are
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non-singulars:

[, I, - I
R, R, --- R,
Vi = ) . )
erf1 R’Lfl o R;":_l
Sl - (C.178)
L, Lo --- Lg—l
V= . )
| 1, L, L1

C.3.4 Modal form based on right solvents

Now consider the following linear time invariant realization with m inputs and
p outputs:

{ £=Az+Bu (C.179)

y=Cz

The corresponding state space equation in block controller form is the
following:

F(s) =C(sI—A)'B

= (N, 18" 4+ + Nys+ No) (Lns” + D, 18" L +---+Dys+Dg) "

_ -1 L Ac Bc
=C.(sI-—A,) " B.:= < Co [0y
(C.180)
where:
" 0, L, O, 0, ]
0, 0, L,
A, =
I
—Do -Di - —Dy1 (C.181)
F 0,
B.=|
O
L ]Im
CC:[NO Ny - Nr—l}

Using the transformation z,, = V r 2, where V is a non-singular right block
Vandermonde matrix, we get the following modal form based on a complete set
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of right solvents:

Rl Om
» 0, Ry 0,
{ &, = Az, + By . A, =V,AVp= ' o
y=Cmz 0m On -+ R,
B,, = V;'B.
Cp =C. Vg

It is worth noticing that:

— The state matrix A,, is block diagonal.

— Input matrix B, is the last block column of VI_%I.

— The i block column of C,, is Cy,, = No+NR;+NoRZ? 4+ - -+ N, ;R L.

This leads to the following block partial fraction expansion of F(s) where
B, is i'" block row of B, :

F(s) = Cp (ST — Ap) "By = > Cpy, (I, — Ri) ' By, (C.183)
=1

C.3.5 Modal form based on left solvents
Similarly, the state space equation in block observer form is the following:

F(s) =C(sI—A)"'B
= (Lps"+Dy_1s" 1+ -+ Dys+ Do)’1 (Ny—1s" 14+ 4+ Nys + No)

_ -1 o Ao Bo
=C,(s[—A,) " B, := < Co [ Oy
(C.184)
where:
[ 0,, O,, 0,, —-Dg ]
L, O 0,, —-D;
A, =
L Om e I[m _Dr—l i
F R (C.185)
N,
Bo - .
| Nr—l
Co:[om e Oy Hm}

Using the transformation z,,, = VZI z, where V[, is a non-singular left block
Vandermonde matrix, we get the following modal form based on a complete set
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of left solvents:

{ m i Bt where

Cnz

I |8
I

It is worth noticing that:

Ly
An=VAV =]
0m
B, =V.B,
Cn =C,V;!

— The state matrix A,, is block diagonal.

— Qutput matrix C,, is the last block row of Vgl.

— The i*" block row of By, is By, = No + L;Ny +L?Ny + - + LI 'N,_1.

This leads to the following block partial fraction expansion of F(s) where

C,, is i block column of C,, :

F(s) = Cp (ST = Ap) "B = Cpy, (sIyy — Li) ' By, (C.187)

=1



Appendix D

Singular perturbations and
hierarchical control

D.1 Block triangular and block-diagonal forms

D.1.1 Block triangular form

Let’s consider the following dynamical system arbitrarily partitioned as follows:

A | A Ap zy B,
HIR S v RS E

(D.1)

The preceding state space representation can be transformed into the
following block triangular form':

HE R
Ly 0 Ay Ly By (D.2)
_ x
y-[c @] D
Where:
A=A - ApL
D.3
{ Ar= Az + LA (D-3)
and:
Bf =LB; + By
{ C, =C; — CL (D-4)

Matrix L is a solution of the following non-symmetric algebraic Riccati
equation:

LA —ApL —-LAL+A5 =0 (D.5)

!Multi-Time Scale Systems, A.J.Fossard, IFAC Proceedings, Volume 17, Issue 2, July
1984, Pages 1139-1144



306 Appendix D. Singular perturbations and hierarchical control

The corresponding similarity transformation is the following:

L1 | _ I o £y z; | _ | I O Ly
EllaElE L TR e
It is worth noticing that the following relation holds as soon as square
matrices P1; and P9y are invertible:

o] [ eten o
Poy1 Pao P, PPy Py

D.1.2 Block-diagonal form

The block-diagonal form is obtained by introducing an additional similarity
transformation:

Gl Y=L TE] e

We finally get the similarity transformation to the block-diagonal form:

L]l YIS -5 S5 ] oo

Conversely:

5=l P lal=0= R oo

The preceding similarity transformation leads to the following block-diagonal

8

form:
HEEPAI R
£ 0 A; s Byl (D.10)
y=[c o) %
where
|:As 0 ]:Pl[An AH]P I M
0 Af Ao Ay P:|:—L ]I—LM:|
B; __ p-1 B,
AN po= [ M
[C; Cfl=[Ci Cy|P

A, = (H — ML) A1 —MAy + (MAQQ + (ML — H) A12) L
Ar= (A2 +LA; ;)M + (A + LAy, (I - LM)
B, :Bl—MBf =B, —M(LBl—I—Bg)
C;=C,M+ Cy = (C; — C:L)M + Cy
(D.11)
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Matrices By and Cj are still given by (D.4). Matrix L is still a solution of
the non-symmetric algebraic Riccati equation (D.5). Thus matrices A; and Ay
simplify as follows:

A, = (H — ML) A1 —MAy + (MAQQ + (ML . ]I) A12) L
=A; —ApL-M(LA;; + Ay — ApL —LAL)
= A - ApL

Af = (A21 + LA11) M + (A22 + LA12) (]1 — LM)
= Ao +LAj2+ (A21 + LA;; — AL — LA L)M
=Ax»+LAp

(D.12)

Finally matrix M is a solution of the following Sylvester equation:

0 =((I-ML)A;; — MAg) M+ (MAg; + (ML — 1) Ajp) (LM — 1)
= ((H — ML) A1 — MAy + (MAQQ + (ML — H) A12) L) M
—M (A2 +LAj) + Ap
= (A1 —ApL)M — M (A +LA2) + Ay

(D.13)
To summarize, we finally achieve the following block-diagonal form:
T, | | A — ApL 0 [z,
Ty N 0 Az + LA | | zy
B - M (LB1 + Bg)
+ { LB, + B, U (D.14)
y=[Ci—CL (Ci=CL)M+C, ]| °* ]
B L =f
where matrices L and M solve the following equations:
LA;; — ApL —LApL+ Ay =0
(D.15)
(A1 —ApL)M —-M(Ax +LAj) +A;2=0

It is useful to note that L = 0 when As; = 0 and M = 0 when A5 = 0.

D.1.3 Similarity transformation

In order to get matrices L and M, let x 4(s) be the characteristic polynomial of
matrix A:
Ay A
xa(s) := det(sI — A) = det <s]1 - [ 1A ]) (D.16)
Ao Ay
Let the n roots of x 4(s) be split into two sets: the first set contains ng roots,
A1, -+, An,, which are dedicated to the roots of the characteristic polynomial

of A, whereas the second set contains n — ng roots, which are dedicated to the
roots of the characteristic polynomial of Ay. Then we can write:

xa(s) = xa;(8)xa,(s) (D.17)
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Assuming that polynomials x,(s) and x4,(s) are coprime (no common
root), (n —ng) X ns matrix L and ng X (n — ny) matrix M can be obtained as
follows!:

{ L=-Ts™ (D.18)

M=U(V+LU)!

Matrices S, T, U and V belongs to the nullspace (or Kernel) of x4,(A)
and x4, (A) respectively (notice that in the characteristic polynomial the scalar
variable s has been replaced by the n x n state matrix A ), each nullspace being
partitioned appropriately:

| e a)
[ g } = ker (x4,(A))

Furthermore the similarity transformation to the block-diagonal form reads

as follows!:
Ll —p | ®s (D.20)
Ly

(D.19)

Where:

o[ | [[3] (¥ | o

-L T-1LM T Vv

Let n, be the size of state vector z, and n; be the size of state vector Ty
Then L is an ny X ng matrix whereas M is an ng X ny matrix.

D.2 Two-stage design for eigenvalue placement of
block-diagonal systems

We consider hereafter the following block-diagonal state space representation
(D.14) of a system:

[if]:[% ;H;ﬂ+{§;}u (D.22)

As=Ap — AL

Af = Aoy + LA1o

B, =B; — M(LBl + Bg)
B;=LB; + B>

The block diagram representation corresponding to this block diagonal state
space representation is shown in Figure D.1.

Following Phillips?, the steps of the design dedicated to eigenvalue placement
are the following:

where:

(D.23)

2R. Phillips, A two-stage design of linear feedback controls, IEEE Transactions
on Automatic Control, vol. 25, mno. 6, pp. 1220-1223, December 1980, doi:
10.1109/TAC.1980.1102548.
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_/ N X . (t) .\_’S (1)
~» B VAN, > .[ >
uft) T A <
AN E x (1)
- Bf - + /+\ | J. e
T Af !

Figure D.1: Block diagram representation of a block diagonal system

— In the first stage of the design a state feedback gain Ky is set to place the
eigenvalues of Ay — ByK/ at desired location:

x

u=u,~[0 Kf][x;]

ig _ As _Bst L Bs
j[“"’f]_[ 0 Af—Bfo} [xf}Jr[Bf}us (D-24)

— Then transformation (D.9) is applied where it is worth noticing that L = 0
because the block at location (2, 1) in the closed-loop state matrix is zero:

=]-[ F)E][5]-[ F)(z] om

3

We get:
Es _ [ ]:[ _M | AS _BSKf H M Es
Ef - | 0 I | 0 A;-BsKy 0 I Ef
I —M B,
Lo 18]
_[1 -Mm A; AM - B,K; Z,
0 1 0 A;-B/K; I
+[BS—MBf}u8
L By
_ [ Ay AM-M(A; - B/Ky) - BK; Z,
0 A; - B/K; Ty
+[BS—MBf}S
By
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Matrix M is then defined as a solution of the following Lyapunov equation,
as seen in (D.15):

AM-M(A; - BfK;) - B;K; =0 (D.27)

We finally get, using (D.27):

i A, 0 z B, — MBy
L — =8 $ D.2
[Ef] {0 Af—Bfowa]Jr[ By ]us (D-28)

Then in the second stage of the design a state feedback gain Kj is set to
place the eigenvalues of Ag — (Bs — MBf) K at desired location:

u=r— | K, o][ﬂ

Ly
S| | = Ay { s } + [ B, — MBy ] r (D.29)
Ly Ly By
where:
- [As—(Bs—l\N/IBf>KS 0 ]
Acl =
—BiKs_ Ay~ BrKy (D.30)
_ [ A,-B,K, + MB/K, 0
~B/K, A;—B/K;

The preceding relation indicates that the closed-loop eigenvalues are
obtained by the union of two sets: the set of the fast closed-loop
eigenvalues A (Ay —BfKy) and the set of the slow closed-loop

eigenvalues A (As - B,K; + MBst>:
A(Ad) = A(A; - B/K;)UA(A, - BK,+MB/K,)  (D31)

The control law is finally obtained by taking into account the control
obtained during the first stage into the control obtained during the first
stage. Using (D.9) we get the control K corresponding to state vector

[« oF ]
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where:

K - | K, K;-KM | P!
I- ML —M}
L I
| Ko(I-ML) + (K; - K,M)L ~K,M +K; ~ K,M |
(D.33)

| K. Kf—KSMH

According to (D.30) and (D.9), the closed-loop state matrix Ay
corresponding to state vector [ng QQT ]T reads Ay = P 1A, P where
matrix P is defined as follows:

St )
::g _ﬁwH LI lﬂ D31
_ ]I—(ML+M)L _<M]1+M>H2]
-#[]

Example D.1. We consider the following state space representation, which
models the linearized longitudinal dynamics at a trimmed flight condition of a
jet liner. In the following, V, stands for the true airspeed, o the angle of
attack, 0 the pitch angle, q the pitch rate and . the elevator deflection:

Vb Vb
d a «
= 0 =A P +B6. (D.35)
q q
Where:
( [ —1.4900 x 1072  5.8649 —9.8059 —6.8000 x 1072
A — | —3:0000 x 107% —1.5863 0.0000  9.7250 x 107!
- 0.0000 0.0000  0.0000 1.0000
0.0000 —4.9799  0.0000 —92.2514
[ —0.7137 (D-36)
—0.2886
B = 0.
| —23.6403

The eigenvalues of A are {Af, A = —1.919 £ 2.1765}, which are the fast
eigenvalues, and {\g, \s = —7.293 x 1073 £4.108 x 10725}, which are the slow
eigenvalues.
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The block-diagonal form of (D.36) is obtained with the similarity
transformation P defined in (D.21):

1.000 0.000 2.809 x 107% —3.420 x 10!

0.000 1.000 8.122 x 1076  2.900 x 1075

—9.857 —1.228 x 10°  1.549 x 107% —1.885 x 1071
—7.671 x 1073 —9.776 x 10! —7.962 x 10~* 9.998 x 10~*

(D.37)
We get:
( [ —96.657765 119379.91
| —0.0752234 92.819752 ]

| —35434.23 |
| —51.859333 |
| 96.643387  1203739.2
| —0.0077603 —96.657974 ]
| —8.4969422 |
| 0.0007172

Assume that we wish to achieve the following closed-loop eigenvalues:

(D.38)

B, =

{ Ale7)\clf =-1 :II.] (D39)

>\clsa )‘cls =—-0.01 £ 001]

It is worth noticing that the choice of the closed-loop eigenvalues maintain
the distinction between the slow and the fast modes.
Then state feedback gains Ky and K are set as follows:

— State feedback gain Ky is set such that the eigenvalues of Ay —B;K; are
equal to {Neif, Aag}. This leads to the following value of K :

K;=[ —5914 x107° 7.585 x 1072 | (D.40)

— Matriz M is then defined as the solution of Lyapunov equation (D.27).
We get: s s
M(A;-B/Ky)—-AM+B,K;=0
NV [ 4.255 x 1073 —5.301 (D.41)
—3.454 x 1077 4.304 x 1074

— In the second stage, state feedback gain K, is set such that the
eigenvalues of Ay — (BS — MBf) K, are equal to { s, Aets}. This leads
to the following value of Kg:

K, =[2291 %1073 2.865 x 10" | (D.42)

State feedback gain K for the actual system is finally obtained according to
(D.33):

K — [ K, K; - K,M } p-!
=| —1.011x107° 1.559 x 1071 —2.923 x 107* 7.562 x 1072 |
(D.43)
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We check that the eigenvalues of A — BK of the whole system are ezactly
the expected eigenvalues {Acif, Acifs Actss Aels } -

D.3 Singularly perturbed system

D.3.1 Linear system

Dynamical system (D.1) is assumed to be stable. Let x 4(s) be the characteristic
polynomial of state matrix A and A (xa(s)) the roots of x4(s). Then dynamical
system (D.1) is said to be singularly perturbed if x 4(s) can be split as follows:

xa(s) = xa;(s)xa,(s)
where max (Re (A (XAf(S))))f<< i (Re (A (x4 (5)))) < 0 (D.44)

Small number € is related to the value of ng which delimits the border
between the slow and the fast modes.
Let € > 0 be a small number which may be defined as follows:

_ min(Re(\(ea, () _ D.15)

max (Re ()\ (XAf (5))))

Alternatively, ¢ may be defined as the minimum of I )‘\ e T assuming that
the real part of the eigenvalues A; of the open loop state matrlx A are sorted in
a descending manner.

Let A be a state matrix. The corresponding state vector can re-ordered
using the following permutation matrix T where e

whose it" entry is 1:

is an elementary row vector

- QZ—; -
T
T=| & where e =1[0,---,0, 1 ,0,---,0] (D.46)
Erpsin ~~~
. ith column
o7

L Z=rp .

Since T is a permutation matrix we have T=! = TT. Assume that 2 =Tz
corresponds to the following state space representation where € > 0 is a small
number, Ay is an ng X ns matrix and Age is an (n — ng) X (n — ng) matrix:

A A
- & =TATTZ + TBu = A;j A;j u
z=Tzx =
y=[Ci C |TTZ:=| C £

(D.A7)
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Following Ighalil?’, the system possesses a two-time scale property if the
eigenvalues of A can then be approximated as follows:

A(I&) :—A([éi {if]) zA(%)UA(KO) (D.48)

€ €

where, assuming that matrix % is invertible:

€ €

-1 ~
~ - (A A - .
Ag=Ap—Ap ( 22) 22 A - ApAGAy (D.49)

The core of this result is the Schur’s formula, which is stated hereafter:

X X2 | _ - .
det <[ Xoi Xy }) = det (Xa2) det (X171 — X12X5, X21) (D.50)

The Schur’s formula applied to the closed-loop state matrix A reads:

Ao An) A
= det (S]I - ) det | sT— Ay — Ay (s]l - 22) =21 (D.51)
€ €

When € — 0, we can write sl— %

~ (D.48) is obtained
e—0
as follows:
sl— Ay A
o ([ A H—AD
~ 1 ~
~ _ Ay _ _ A22 Ao
~ det (SH P ) det <$]I A11 A12 ( ) P ) (D52)
= det (51— A22) det (sT— Ayy + ArpAg A21)
~ 1 ~
= det (S]I - %) det <s]I - A11 + A12 (AQQ) Afl)

This completes the proof. |

Assuming that system possesses a two-time scale property and that % is
not singular, a recursive determination of L and M can be obtained from (D.15)
as follows:

~ _1 — — ~
L1 = (%) (LkAll — LiApLy + (%))

% _ _ / .1 (D.53)
My = ((Au — A12L> My, — MyLA12 + A12> (%)

3Hassan K. Khalil, On the robustness of output feedback control methods to modeling
errors, IEEE Transactions on Automatic Control, Vol. AC-26, April 1981, pp 524-526
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where:

Lo = (M) A2 = Ay Ay

(D.54)

Usually, matrices Ly and My are sufficient to approximate matrices L and
M, respectively? . Then the similarity transformation P defined in (D.21) can
be approximated as follows:

p |1 M [ 1 o
T | -L I-LM | | =Ly I

pi _|I-ML -M] _[I -M
L I 0 I

(D.55)

Consequently the block diagonal state space representation (D.10) can be
approximated as follows where € > 0 is a small number:

Ty | A — AL 0 zg
Ty - 0 % Ly
5 B
4| Br—Mo=2 ] Y (D.56)
B, u

€

Q%[él—ézLo 62}[%}

The state equation equivalently reads as follows:
-l A 5]
Ty 0 Ay Ty

{ A, = A — AL { B,=B; - MOQ
N and ~ €

i -
Ap==2 By =2

B, u (D.57)
B

f

where:

(D.58)

State vector z, is related to the slow variables of the system whereas state
vector z ¢ is related to the fast variables of the system and the two-time scale
property (D.48) can be rewritten as follows:

A(sI— Ay ) ~ A xa(s))

~ D.59
A S]I—Af) ~ A (xa; () ( )

The two-stage design method for eigenvalue placement presented in Section
D.2 can also be applied. Matrix M defined in (D.27) is now approximated as
follows:

M~ B.K; (& ~B/K,) (D.60)

*Fu-Chuang Chen & Hassan K. Khalil, Two-Time-Scale Longitudinal Control Of Airplanes
Using Singular Perturbation, Journal of Guidance Control and Dynamics, 1990, vol. 13, pp.
952-960
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Finally, the state feedback gain which achieves approximate eigenvalue
placement of of A — BK is obtained from (D.33) as follows:

K :[f(s Kf— }
:[f{s H _MO} (D.61)
:[Ks Kf—Ks<M+MOH

The state feedback gain K corresponding to state vector z is then obtained
as follows: N
K=KT (D.62)

Example D.2. We consider example D.1 where we can check that the two-time
scale property (D.48) is satisfied with the following permutation matriz T :

0010
1000
T=|, 0 01 (D.63)

0100

Matriz T indicates that the third and the first components of the state vector
are the slow variables, that are pitch angle 0 and true airspeed V,, whereas the
fourth and the second components of the state vector are the fast variables, that
are pitch rate q and angle of attack a.

We get:
0.000 0.000 | 1.000 0.000
—9.806 —1.490 x 1072 ' —6.800 x 1072  5.865
T
= SRS e S D.64
A =TAT 0.000 0.000 T 90951 —4.980 (D.64)
0.000 —3.000 x 10~* "' 9.725 x 10~} —1.586
And thus

A= K- Auto= | 0 ST
Ap=An— [ 9. 72_52x25110 1 :411.222 }
B, =B, - M5Bz = [ _1.g302i6101 }
By = [ —_22.;;3664;1100*11 }

We check that the two-time scale property (D.48) is satisfied. Indeed:

(D.65)

A (2&) —{ —1.919+£2.176j, —7.203x 1073 +£4.108x 10-2j }  (D.66)
and:
A(A2)Ur(Ag) = { —1.919+2175) }
U{ —7.691 x 107° £4.101 x 1025 } (D.67)

zA(A)

Then state feedback gains Kf and Rs are then set as follows:
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— State feedback gain I~{f is set such that the eigenvalues of Af — ﬁff{f are
equal to {Aay, ;\le}. This leads to the following value of Kj:

K;=[ 7584 %1072 1.556 x 107! ] (D.68)

— Matriz M is then approzimated by (D.60). We get:

~ o - -1 o 1 9
M ~ —B,K; (Af_Bfo> :[ 5.822 x 10~1 5.836 x 10

—2.295 2.301 x 101
(D.69)

— In the second stage, state feedback gain K, is set such that the

eigenvalues of A, — (BS — M§f> K, are equal to {Ajs, Aets . This leads
to the following value of I~{S:

K, = -2203x107* —9.077 x 1070 ] (D.70)

State feedback gain K for the actual system is finally obtained according to
(D.61):
R - [R B K, (VM) ]
=] —-2203x107* —9.077 x 107% 7.564 x 1072 1.558 x 10! |
o (D.71)
We check that the eigenvalues of A — BK of the whole system are close to
the expected eigenvalues {Acif, Aeif, Aclss Aels )

A (QA} - ﬁﬁ) = { —1.000 £ 1.001j, —9.277 x 1073 + 1.675 x 1072 }
(D.72)
The state feedback gain K corresponding to state vector x is then obtained
as follows:

K =KT
=[ —9.077x 107 1.558 x 1071 —2.203 x 107* 7.564 x 1072 |
(D.73)
This state feedback gain has to be compared with state feedback gain
obtained in (D.43) to achieve ezact eigenvalue placement: the exact eigenvalue
placement is achieved by manipulating o state vector of dimension 4 whereas
the approzimate eigenvalue placement is achieved by manipulating 2 state
vectors of dimension 2, which leads to simpler computations.

D.3.2 Nonlinear system

Nonlinear singularly perturbed systems, also known as two-timescale systems,
are described by ordinary differential equation of the form:

{ iy = f(zg 2y €) (D.74)

ng = g(&s,ﬁf, 6)
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where z, € R" are the slow states, z; € R"/ the fast states, 0 <e < 1isa
small parameter responsible for the timescale separation between slow and fast
dynamics, and f and g are smooth vector fields. For € > 0 we can define a new
time parameter 7 = ¢/e and obtain an equivalent system to (D.74) of the form:

T =

A |+

= { %is = 6f(§sa§f76) (D.75)
Ly = g(£s7£f7€)

In the study of slow-fast systems, two reduced subsystems are defined by
taking the limit e — 0 of (D.74) and (D.75). By doing so we obtain the DAE
(Differential Algebraic Equation) and the Layer Equation, which read®:

. d _
DAE: { &, = flzs,24,0) Layer Equation: { ddT% J
0=g(z,, z4,0) s =gz, z4,0)
(D.76)

The critical manifold M associated to the two-timescale systems (D.74) is
defined as:
M ={(2erzpe) €R™T | g(zye, g, 0) = 0} (D.77)

Note that M is the phase-space of the DAE and the set of equilibrium
points of the Layer Equation®. We say that M is Normally Hyperbolic if every
point in M is a hyperbolic equilibrium point of the reduced dynamics %g §=

g(gs,gf,(]).
D.4 Two-frequency-scale transfer function

We consider hereafter the following block-diagonal state space representation
(D.14) of a system:

i;]:[%s :inﬁJr[g;]u (D.78)
SN

From this block-diagonal form we get the following transfer function of the
system as follows:

F(s) =[G, Cf]<SH_[%s Xf])l[g;} (D.79)
= C,(sI— Ay) "By + Cy (sT— Ap) ' By

In the preceding relations we assume that the system is stable; in others
words all the eigenvalues of matrices A, and A, have negative real part.

Furthermore, we will assume that matrix A contains the slow modes of the
system (that are the eigenvalues which are the closest to zero) whereas matrix
A contains the fast modes of the system (that are the eigenvalues which are

SHildeberto Jardon-Kojakhmetov & Jacquelien M.A. Scherpen, Stabilization of slow-fast
control systems: the non-hyperbolic case, https://doi.org/10.48550/arXiv.1710.01629
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the most distant to zero). From a practical point of view, and assuming that
the real part of the eigenvalues \; of A are sorted in a descending manner, the
value of ng which delimits the border between the slow and the fast modes can
be obtained by finding the minimum of %

The slow subsystem is obtained by setging iy =0in (D.14). Physically, it
means that the fast components of the state vector have achieved the equilibrium

point well before the slow components of the state vector. We get from (D.14):

ig :Asgs—i_BSE
if =0= Afgf +Bru (D.80)
y=Csz,+Cyruay

Assuming that A;l exists, we get z, = —A;le u. Thus the preceding
relations reduce as follows:

‘,‘B - AS gs + BS Q
y=C,z,—C;A;'Bsu (D-81)

The transfer function of the slow dynamics F(s) is then obtained by taking
the Laplace transform of the preceding relations, assuming no initial condition.
We get:

Fy(s) = Cs (s — A,) "' B, — C;A;'By (D.82)

The fast subsystem is obtained by setting z, = 0 in (D.14). Physically,
it means that the slow components of the state vector stay at the equilibrium

point while the fast components of the state vector are changing. We get from
(D.14):

{ ¢y =Aszs+Bru

2,:=0=y=Cs2,+Cyay:=Cjruay (D.83)

The transfer function of the fast dynamics Ff(s) is then obtained by taking
the Laplace transform of the preceding relations, assuming no initial condition.
We get:

Fs(s) = Cy (sl — Ay)" ' By (D.84)

The so-called fast outputs are the outputs for which the Bode magnitude
plot of F¢(s) and F(s) match for high frequencies. In the time domain, the
impulse response of F¢(s) and F(s) match on the fast scale time.

Furthermore it can be noticed that the Bode magnitude and phase plots of
F;(s) and F(s) match pretty well for low frequencies, both for fast and for slow
outputs.

Finally the following property holds:

lim (sI— A,)7" = 0= Fy(c0) = Fs(0) = ~CsA; "By (D.85)
Example D.3. We use again example D.1. Figure D.2 shows the Bode
magnitude plot and the impulse response of the fast outputs, that are o and q:
it can be seen that the Bode magnitude plot of F¢(s) and F(s) match for high
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Figure D.4: Block diagonal system in the Laplace domain

frequencies. In the time domain, the impulse response of F¢(s) and F(s)
match on the fast scale time (here 5 seconds) .

On the other hand, Figure D.3 shows the Bode magnitude plot and the
impulse response of the slow outputs, that are V), and 0: contrary to the fast
outputs, the high frequencies Bode magnitude plot of F¢(s) and F(s) do not
match for high frequencies. The mismatch is also clear between the impulse
response of Fr(s) and F(s) on the fast scale time (here 5 seconds) .

Furthermore it can be noticed that the Bode magnitude and phase plots of
Fs(s) and F(s) match pretty well for low frequencies, both for fast and for slow
outpuls.

D.5 Hierarchical output feedback of singularly
perturbed system

We consider hereafter the following block-diagonal state space representation

(D.14) of a system:
A, O T n B,
0 Ay ]lz B; | *

(D.86)

— z4(t) represents the slow components of the state vector;
-z f(t) represents fast components of the state vector;
— y,(?) is a slow output vector;

- yf(t) is a fast output vector.

Let F(s) be the transfer function of the plant:

Y.(5) ] _
[ o | =Feue (D.87)
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Figure D.5: Hierarchical output feedback of a singularly perturbed system
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Figure D.6: Control of the fast subsystem

The transfer function F(s) expands as follows:

o =[5 &) ([ X ) [3]

S ERA | s RV -
We finally get:
[;/féz)) ] - [ gf i?f((g E; ]U(S) (D.89)

where:

B,(s) = (s[—A,)!
Lo Ay (B-80)

The corresponding block diagram representation is shown in Figure D.4
where transfer function Cjy®y(s)Bjs corresponds to the fast subsystem
whereas transfer function C; ®(s) B corresponds to the slow subsystem.

The hierarchical output feedback of a singularly perturbed system is shown
in Figure D.5 and uses results presented in Section D.4. It consists in splitting
the control into two control loops:
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C() |e—
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Figure D.7: Control of the slow subsystem

— In the first stage, the fast subsystem is first controlled through the fast
controller Ct(s) as shown in Figure D.6.

— In the second stage, the slow subsystem is then controlled through the
slow controller Cy(s) as shown in Figure D.7. The fast controller C(s)
is replaced by its low frequency approximation C;(0) as well as transfer
function Cj;®¢(s)By, which is replaced by its low frequency
approximation Cj;®(0)By. Following Figure D.7, the open loop
transfer function between Y;(s) and Us(s) reads:

U(s) =Us(s) = Cr(s)Cr@s(s)BrU(s)
= U(s) = (I+Cy(s)Cs®y(s)By) ™" Us(s)
(]H‘Cf( )Cf ®(0)By)"" Us(s) (D.91)

0
= Yi(s) = Cs®s(s)Bs U(s)
®(s) B (]I +C(0)Cy @4(0)By) ™" Us(s)

22

Thus, in the SISO case all is working as if transfer function C; ®4(s) By is
feedback with static gain Cy(0)Cs ®(0) By, as shown in Figure D.8

A similar approach can be applied when the fast controller Cf(s) and the
slow controller C4(s) are placed in the direct path rather than the feedback
path.

D.6 Weierstrass decomposition and descriptor system

If det (sE — A) = c¢[[}Z, (s — A\;), where ¢ # 0 is a constant and where E and
A are n x n square matrices, and if A € C is such that AE — A is non-singular,
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Figure D.8: Equivalent control of the slow subsystem

A

C.$(0)B,

than it can be shown that®:
det (SE — A) =c[[}E, (s — i)

= det (5T~ (\E— A) 7 B) =57 [T% (5 - s (D.92)
The following relation also holds:
()\E—A)flA =A ()\E—A)’lE—]I (D.93)

Furthermore let ng < rp. Then it can be shown that range (S) +range (F) =
™ and range (ES) + range (AF) = R", where:

S —ker(H ((/\E A) E—ﬁ]l))

F = ker <<()\E At E)" e, . (()\E “A)'E- ﬁ]l))
(D.94)

Note that if matrices E and A are real-valued, the preceding relations reduce
as follows where Re (X) designates the real part of matrix X:

S =ker (Re (H:‘L:Sl <()‘E ~A)'E- ﬁH)))

F =ker (Re ((()\E —-A)"! E) o [LZ.. <<)‘E ~A)'E- pese H)
(D.95)
Thus V 2 € R”, we can write:
z:=Sz,+Fz; =[S F][xs]VwER" (D.96)
Ly

Let J5 and J¢ be the restriction of (AE — A)"'E to S and F, respectively:

{ J,:=ST(AE-—A)'ES (D.97)

Jp=FTOE-A)"!

6Cobb, J.D. Global analyticity of a geometric decomposition for linear singularly
perturbed systems. Circuits Systems and Signal Process 5, 139-152 (1986).
https://doi.org/10.1007/BF01600192



D.6. Weierstrass decomposition and descriptor system 325

Then the following relations hold:

det (sI —Js) = [[;=, (3 - ﬁ)

(D.98)
det (1= 3p) = T4 (5~ 55
Now consider the following descriptor system:
E: = Az + Bu
{ y=Cz (D.99)

From the Weierstrass decomposition theorem, it can be shown that there
exists an invertible matrix M such that this system has the following canonical
form”:

z
w8 F][xf]
I,, O
ME[S F}:|: 0 Af:| T :ASQS'FBSQ
| A 0 & Afif :gf+Bf@ (D.100)
MA[S F]_|: 0 I[nns:| Yy :CSQS—i_Cf&f
B;
MB:[Bf
L C[s F]=[C. ¢
where :
M=[ES AF | (D.101)

Furthermore the following relations hold:

det (sln, — As) = [;2 (s = \)

det (sAp — 1T, _p,) = det (M)det ([ S F |)[T7Z, 1 (s — i)

det (M) det ([ S F ])det (sE — A) = det (sI,, — Ag)det (sAy —T,,_p,)
(D.102)

Matrix Ay can alternatively be obtained as:

Ar=(\Js— H)_l Jy (D.103)

Moreover matrix A is nilpotent if det (sE — A) has degree n,, that is when
rE = ng. Assuming that A is nilpotent, matrix (sE — A)~!is a rational matrix
with Laurent series expansion at infinity given by®:

(SE—A)' =513 Ls

D.104
:L—hsh_l+"'+L—150“|’L08_1+L18_2—|—"' ( )

"Thomas Berger, On Differential-Algebraic Control Systems, 2013, PhD thesis

8L. Moysis, 1. Kafetzis and N. P. Karampetakis, Reachability and controllability of
discrete time descriptor systems using the Weierstrass decomposition, 2018 5th International
Conference on Control, Decision and Information Technologies (CoDIT), 2018, pp. 379-384,
doi: 10.1109/CoDIT.2018.8394863
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where h < rank(E) — deg (det (sE — A)) + 1 is the index of nilpotency of the
pair (E, A) and:

{ ’;5 0 0 ] M Vi>0
L; = 0 ”‘T(‘; (D.105)
|: 0 Af11:|M Z:—h,"',—l

If matrix Jg is built from the slowest eigenvalues of state matrix A and
matrix Jy is built from the fastest eigenvalues of state matrix A, then matrices
A corresponds to the state matrix of the slowest modes of the system whereas
matrix Ay encompasses its fastest modes. Matrix A ¢ can then be seen as a small
valued matrix and can be written as Ay := € Ayy. When small parameter e is
set to zero, the following singularly perturbed system is obtained:

is :Asﬂs"‘Bsﬂ
AfZZEAf() = eAfoif zgf—kag
y =Cszs+Cray
is :AS£S+BSQ
e=0 = 0 =z;+Bju

y =Csz,+ Crry

(D.106)

Example D.4. We consider the linearized longitudinal dynamics at a trimmed
flight condition of a jet liner presented in Example D.1. To get the descriptor
form of (D.99), we simply set E :=1y. Then applying (D.95) with A = 1, and
choosing ng = 2, we get the following expression of matrices S, F and M:

0.9882059 —0.1531309
—0.0000781  0.0000203
—0.1531309 —0.9882056
0.0000547  —0.0008144
0.1210859 —0.6715563
0.4109715 —0.5249282
F= 0.0734018 —0.378629 (D-107)
0.9005847  0.3606974
0.9880751  —0.9410508 —0.1533847  0.3090902
—0.1530286  0.7444567 —0.9880101 —0.2386219
0.0000682  0.3446454  0.0001831 —0.2264441

0.0000549  0.7795729  —0.0000278 0.04285

Then:
A — [ 1.4688616  9.5785097 ]
s —0.2276681 —1.4834483 (D.108)
A, — —0.0622709 —0.262707 )
! [ 0.3589769 —0.3937903 ]
We can check that:
det (sAy —1) =det(M)det ([ S F |)(s—Af)(s—Af)
=1+ 0.4560613s + 0.11882745> (D.109)

det (sI — Ag) = (s—Xs) (s — As)
= 0.0017408 + 0.0145867s + s2
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Appendix E

Carleman linearization

E.1 Reduced Kronecker product

Let z := [ Tl 0 Xp ]T € R". We will denote g[k] the k" reduced Kronecker

product of z. Denoting by ® the reduced Kronecker product, vectors z[l e R?
and z[2 € RM("+t1)/2 gre defined as follows!:

U
U
2 = 2@z (E.1)
2 2 2 1T
= [leaxlea"'71:1:671)1:27332:637'”aJ:ana"') Ty, ]
~ ~—~
n terms n—1 terms 1 term

In this way we define:

2= 202® - Bz (E.2)
—_—

k times

K] are the wunitary monomials which appears in the

K]

The components of =
development of polynomial (x1+---+xn)k. The size of vector zl

( n+k—1 >  (ntk—1)!
k = o=

Example E.1. Assume that x = [ T1 T9 ]T. Then (x1 + :1:2)3 = :U:f+3:r%:n2+
3z123 + 3. Thus the unitary monomials which appears in the development of
polynomial (1 + x2)* are (3

is

3, 2229, 1173, x%) and consequently:

3
Ly

2
z = [ " } Y (E.3)
T2 1Ty

3
L

!S. Irving and C. Joaquin, On stabilization of non linear systems by using
Carleman linearization and periodic systems theory, 8th International Conference on
Electrical Engineering, Computing Science and Automatic Control, 2011, pp. 1-6, doi:
10.1109/ICEEE.2011.6106597.
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The size of vector 2B s 4 = %

Note that (Az)® (Bz) = (A®B) 2zl In order to express the product
A®B in terms of A and B, we will use the Kronecker product ® (not the reduced
one !). Let ® be the Kronecker product between matrices A = (a;;) € RP*?
and B € R"™*%. Then?:

ail B ... Q1q B
A®B:= : : (E.4)
aprB -+ ape B
Furthermore let Q and Q the matrices such that:

{ Qz®z)=zdzr
Q(z0z) =z®z

The product A@B can be written using A and B as follows:
ARB=Q(A®B)Q (E.6)

Example E.2. Assume that x = [ 1 T ]T. Then:

wnzma = ([o |2 Ds([m 2] [2)

| a1 + a2 ] ~ { bi1 1 + bi2 22
| a21 a1 +axnx ba1 w1 + b2 T2
[ (@11 @1 + a1z 2) (b1 21 + bia ) |
= | (a11 21+ a12x2) (ba1 x1 + bag x2) (E.7)
| (a21 1 + ago x2) (bo1 x1 + bz x2) |
[ a11b11 a1 b12 +a12bin aipbis | z?
= | a11ba1 a1 ba +ai2bar a2 by T1 T2
| a21b21 ag1 bay +aznbar a2 b | 3
= (A@B) zl?

Consequently:

N a11b11 a11bi2 +ai2bir a2 bz
A®B = | a11ba1 ai1be +aiabar ai2bo (E.8)
a1 ba1  ao1 bag + asn b1 ag2 bao

On the other hand we have:

(10 0 1 22
0100 ?? = | 2129
241 2
Qz®z) =2z - L0000 2 2 (£9)
Q(z0z) =20z 1.0 0 2 a? '
01 0 1 T
01 0 iz = :rlsc2
x% 221
L Lo 01 22

?Kathrin Schacke, On the Kronecker Product, August 1, 2013
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It can be checked that:

AZB=Q(A®B)Q (E.10)

E.2 Taylor series expansion of any continuous vector
field

Let f(z) be a continuous vector field. The N** order approximation of this
vector field around any point z, can be achieved through the following Taylor

series expansion®:

(z — z)™ (E.11)

IT=I

N
flz)~ f(§0)+2% o /W
k=1~

Assuming that where z € R”, each column of 9 formally corresponds to each
term of the development of the following expression:

of af \*
<8$1++8xn> (E.12)

We recall that the second partial derivative %g;j is obtained as follows:

% f o [ 0f

Schwarz’s theorem states that if the second derivatives are continuous, the
expression for the second partial derivative is unaffected by which variable the
partial derivative is taken with respect to first and which is taken second?:

0% f 0% f
al‘iaxj N al'jal‘l (E.14)

The higher order partial derivatives are obtained by successive
differentiation.

3N. Hashemian and A. Armaou, Fast Moving Horizon Estimation of Nonlinear Processes
via Carleman Linearization, 2015 American Control Conference, Palmer House Hilton, July
1-3, 2015. Chicago, IL, USA

“https://en.wikipedia.org/wiki/Partial _derivative
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Example E.3. Assume that © = [ T, T9 ]T, then we get:

k=1 :x[l}:g:[xl 1‘2]
(S ) =+
— o= 2L 2L |
k=2 :>x[2]:§<§g:[x% T1T2 T ]T
i(%ﬂ%z QZ%Jr?affgxﬁg% (E.15)
s ofP = &F 258 2]
2

~ T
]®g:[x:{’ x%xz azlx% x%]

+3 500+ 54

3
af ) 6f
é(aT«l"'a* +3

T2 812 835 01 Oz2
B _ [ 8f B3f *f  f
= 8f - a:? 3 Bx% Oxo 0z 8x% 8&;%

Consequently, the third order approzimation of f (x) around any point x,
reads as follows:

fl@) = f(zo) + i g 0fW] ., (2 —z0)"

- of  of Ty — T10
Nf@o)Jr{aTcl am]m:%[ }

T2 — X20
2f o f 8 (@1~ a10)
+ar [ 922 20m0m  oa2 } (z1 = z10) (72 . 20)
- (22 — x20)
(z1 — 210)°
41 [ Pf 3 B3f 8% } (21 — w10)® (w2 — 20)
3| 0a3 azf 8302 Oy 0x3 O3 e=z, | (21— z10) (w2 — xgo)z
(2 — 229)°
(E.16)
|
E.3 Time derivative
To get time derivative of reduced Kronecker product, the product rule holds:
d d -~ ~ -
y7 2l = P L (E.17)
Example E.4. Assume that x = [ T1 o }T, Then expanding definition (E.1)
we get:
( . [ a':lxl i
L~ 1 |~ | 1 :
$®33=[. ]@[ ]: T1T2
2 2 ToT
L 22 (E.18)
. 11
~ . I ~ I .
96®3?=[ ]@[ ]: T1T2
T2 xI9 .
| 272 |
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It can be checked that:

d d ZE% d B B _ 21J1i1
— ol = — | 2y | = — 2@z = i®z + 2®& = | T182 + T2dn (E.19)
dt dt 22 dt 9 g
2 22
|
Now assume that:
N1 N2
=Y Apzl 4 u ) Bzl (E.20)
k=1 k=0
Then it can be shown thant:
d N1 N2
%QU] — Z Ajy g[kﬂfl] +u Z Bk i[kﬂfl] (E.21)
k=1 k=0

where Ay = Ay and, for j > 1, Ay, is obtained by summing j terms, each
term being formed through j — 1 reduced Kronecker product:

Ajp = A QL® QL +[,0A(R,® - R, + - + [,0L,& - @A, (E.22)
—_——
7j—1 times
Notation for By is likewise.

Similar to (E.6), Ajj is related to the Kronecker product ® through the
following relation:

Ay =Q; (AxQp) R, ®--- @1,
—_——

j—1 times
E.2
+1, 2 (AkQp) ®L, @ T, + --- (E.23)

ot (@@L, @ (ArQk))) Qrrjot

where n is the size of vector z and where matrices Q;, Qi and Qkﬂ,l are
such that: ‘
®£...®£):£U]

Q;(z
[ ——
Jj times [ ]
. — plk
Qr(z®@z---®z)=2z (F.24)
- k tim@s
Qk+j71§[k+]71} — (&@&@&)
_—
\ k+j—1 times

Example E.5. Assume that © = [ T1 T9 ]T and that:

. a a x a1 r1 +ai2x
i=Ajz= 11 a12 1| 1171 12 T2 (E.25)
a1 a2 T2 a1 T1 + a2 2
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Then we have:

3 2
xy 3T1T1

3 x%xg d g | 2z12281 —|—.’L‘%j}2
175 dt 521 + 2212202

3 3z

(E.26)

Using the relation © = A1 x we get:
[ 323 (a11 1 + a12 T2)
L8 | 20122 (a11 21 + a1z x2) + o3 (ag1 x1 + a2 T2)
- 73 (a11 1 + a12 ¥2) + 22172 (ag) 1 + agn x2)
372 (a9 o1 + age T2)
3&11$§’ + 3(112:1321‘%
aglx? + 2(111:6%%2 + 2(112.1:1%% + aggl'%xg
algmg + anxlx% + 2&211’%1‘2 + 2&22171%‘% (E27)
L 3&221‘% + 3a21x1x§
I 3&11 3&12 0 0
a1 2ai1 + a2 2a12 0 3]
0 2a21 a1l +2a2  ai
L 0 0 3a21 3a22
= Ag; 2zl

It can be checked that matriz Az, can be computed as follows:

A3 =Q3 | (A1Q) L @+ ® (A1Q1) @+ ® 1 ® (A1Q1) | Q3
———

3—1 times

(E.28)
where matrices Q1, Qs and Qg are such that:
Qz=z=Q =10 (E.29)
and:
p _
3
= B .= | T1*2
Q(zezez)=z": 122
14+3—1 times i l’%
}
TiT2
22 (E.30)
2
Qszl = (z@z®z): 2222
1+3—1 times :C1$22
x1222
| 223
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We get:
1 000000 O
Q 01000000
57100010000
00000001
T1 0 0 07
010 0
010 0 (E.31)
~ 00 10
QBW=1010 0
00 10
00 10
00 0 1|
| |

E.4 Carleman linearization of nonlinear system affine
in control

We consider the following nonlinear system affine in the control vector u € R™:

&= f@+) 9@y (E.32)
j=1

Let v = [ 2T T ]T. Then (E.32) reads:

|

Assuming that h (v) is a continuous vector field, the N*" order approximation
of the vector field h (v) around any point v, is achieved through the following
Taylor series expansion according to (E.11):

} =& =h(uv) (E.33)

SIS

&= h(v)~h(v)+ ikl, onl \H sul (E.34)
k=1 - e
where:
5v:=v—ve={fb:2j:=[§ﬂ (E.35)
Because the vector field h(v) := h(z,u) is affine in the control u, terms

in factors of dulfl in (E.34) are null Yk > 1. Thus (E.34) can be rewritten as
follows:

N m N
i~ h(v,)+ Z Ay, 6zl + Z du; Z Byj; Szl (E.36)
i=1 j=1 i=0
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Furthermore, as far as z, is a constant vector, we have:

i=0i+4i, =0k (E.37)

Thus, the (E.36) reads:
5k ~ h(v,) + Z Ay ozl + Z Ju; Z By;; 6zl (E.38)

Carleman linearization has been introduced by Torsten Carleman in 19325,
The common use of Carleman linearization consists in approximating a nonlinear
state equation by a finite dimensional polynomial model. Following Minisini &
al.% the original state vector z € R™ is extended by repeated application of the
Kronecker product to itself to give the following extended state vector z:

- P _
(1] =
gi[g] 0xRox
2= N = where 6z ==z —z, (E.39)
L N  times .

Furthermore we can use (E.21) to write:

7 5£U[k] = ZAk i g Zéu] ZBk Sglithl] (E.40)

j=1 =0

When the series is truncated to its first N terms we get:

N—k+1 N—k+1
51‘[k Z Ay 2l 1]+25uj Z Byij Sl (E.41)
Finally, assuming that v, is an equilibrium point, that is h(v,) = 0,

Carleman linearization of order N > 1 leads to the following bilinear state

SApplication de la théorie des équations intégrales linéaires aux systémes
d’équations différentielles mnon linéaires. Acta Math. 59 63 - 87, 1932.
https://doi.org/10.1007/BF (02546499

6J. Minisini, A. Rauh, and E. P. Hofer, Carleman Linearization for Approximate Solutions
of Nonlinear Control Problems: Part 1 - Theory. In F. L. Chernousko, G. V. Kostin, and
V. V. Saurin, editors, Advances in Mechanics: Dynamics and Control: Proc. of the 14th
International Workshop on Dynamics and Control, 2007, Moscow-Zvenigorod, Russia, 2008.
Nauka
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space representation around the equilibrium point v, := (z,,u,):

Ay Ay - Al 5z By
0 Ay - Aoy Szl?] 0
z = : : : . +| . |du
0 0 o AnN (@[N} 0
[ Bii Bz -+ By | (1]
Bs1 B -+ Bon oz (£.42)
Szl
$SPdu | O Baoo Bav ||
. . . . .[N}
0 0 - Bywn | oz
=Az+Bou+> M 0u;Bjz
ozl
In practice components of the extended state vector z := : are
Szl

eliminated if they do not appear in the right hand side of the expression of Z.

Example E.6. We consider the following single input nonlinear system model:

T = fx:f + 1.5 m% —0.521 + 29 (E.43)
.fg = —X1 —T2U '
x 1
With v = [ w ] = | ma | we get the following expression:
U
_ 3 2 _
b= h(w) where h (1) { 23 +1.522 — 0521 + 29 ] (E.44)
—X1 — T2U

We can see that h(0) = 0. Thus v, = (z,,ue) = (0,0) is an equilibrium
point. The second order linearization of the wvector field h(v) around the
equilibrium point v, = 0 reads:

2 2
. N | K Lo k
p=h@)~h,)+ Y 2 ohl - ool =37 — ol 1‘22% sul¥l (E.45)
k=1 k=1
where:
Q[l] = [ 1T T2 U ]T
322432, —-05 1 0
[1] - 1 1
Oh 1= [ -1 T } L (E.46)
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and:
Qp] ::[ x% 12 IT1U $% o U u2 ]T
ahm‘ | =6x1+3 0 0 0O 0 O
=0 0 000 -1 0]|_, (E.47)
[3000 0 0 o
10000 -1 0
Then we get:
2
h(v) =Y m 8h[k]‘yzye Sulk]
[—05 1 0} gil
~ 2
-1 00 Su
C T
5$1$2
+1300000 0x1 ou
210000 —10 613 (E.48)
0xo Ou
du?

- >
L[ 05 1][da ], 1[3 00 62’3;
Tlo-1 0 ||édz| 2|0 0 0 L2

dxs
0 0 0x1
ou [0 —0.5 ] [ 5y ]

Thus around the considered equilibrium point the following approzimation

holds:

0o -1 0

1 3 00 2] 0 0 (1]
—1-2[0 0 0]5$ +5u[0 _0'5]5x (E.49)

[ §aq ] Ch()~ [ -0.5 1 ] 5l

Furthermore, the time derivative of 6212 reads as follows;

Sx3
6z =4 | Sy 62,
5x3
25$15i1
= 5$15$2%—5$15$2
25$25i2

(E.50)
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Then using the approzimation (E.49) we get:

2011 (—0.5(53:1 + dxzo + 1.551:%)
(—0.5(51’1 + 0xz9 + 1.5(53:%) dxo + dx1 (—dx1 — 0.50udx2)
209 (—0x1 — 0.56udxs)
—6x2 4 26w10z2 + 3023
—53:% — 0.50z10x9 + 53:% + 1.553:%53:2 — 0.50udx10x
—20x1019 — 5u51‘%

5112l

%

Q

-1 2 0 0 O 0
~| -1 -05 1|0z +6u|l0 —05 0 |ozl®
| 0 -2 0 0o 0 -1
363
+ | 1.502%0z5
—20x109
(E.51)
Limiting the approzimation to the terms involving 6z'2 we get:
-1 2 0 0 O 0
b~ | =1 —05 1 |6zP +6u| 0 —05 0 |6z (E.52)
0 -2 0 0o o0 -1

Finally order 2 Carlerman linearization s obtained by merging relations

(E.49) and (E.52):
05 1,15 0 0
0 0

5ill -1 0,0 0 0 5211
|

0 0/-1 —05 1

0 00 -2 0
0 0 0 0 0
02050 0 0 4 r s
0 0 !0 —05 0 =
0 0 10 0 -1

| |

E.5 Application to mechanical systems

We consider systems described by the following differential equation where N
is the generalized coordinates vector, M(q) is a positive definite (and thus
symmetric) matrix known as the inertia matrix, C(g, ¢) is the matrix of terms
generated by centrifugal and Coriolis forces, G(q) is the vector of conservative
forces, H is a constant matrix and u the control vector:

Mi(q) g+ Cl(g,9) ¢+ G(q) = Hu (E.54)
Let z be the following state vector:

=[2]-]

] (E.55)

[ESTRESN
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Thus (E.54) can be written as follows:

Lo

o [ 5 ] - [ M) (Clay, ) 2y + Gley)) ] ’ [ SSURE ] .

Or, more generally:
. Z; _ Zo 0
e [iz } B [ [z, 2) } * { g(z9) ] C (E.57)

flzy,29) == _M_1(£2> (C(zy,x9) 2o + G(27))
{ 9(22)3::hdgl(£2)11 (E.58)

where:

Let (2., u,) be an equilibrium point. Then zy, = 2, := 0 and the following
equality holds:

0= f(z1.,0) +9(0) u, (E.59)
Let v = [ T T ]T. Then the second equation of (E.57) reads:
z .
v= [ u } = &y = f(21,29) +g(a2) u =N (v) (E.60)

Assuming that & (v) is a continuous vector field, the ¢! order approximation
of the vector field around any equilibrium point v, is achieved through the
following Taylor series expansion according to (E.11):

q
. 1 ,
h(v,) =0= iy =h()~) :H Onl¥! . Sulk] (E.61)
k=1 - e
where:
z—z, | _ | oz
50'_0_?)6_[11—%}'_[(%} (E.62)

Now the results of section E.4 can be applied. Indeed, notice that vector
field h (v) := h (z,u) is affine in the control u. Thus terms in factors of dul* are
null Vk > 1 and (E.61) can be rewritten as follows:

N m N
iy~ Y Ay ozl +) " 6u; > Bl (E.63)
i=1 j=1 =0

Then (E.57) can be approximated as follows around any equilibrium point:

. 6@1 o _ 5@2 "
o= [ Oy } a [ Sy Aozl 4+ 370 buy S By al! ] (E.64)
where:
oz | _ |z,
(5]-[rx)

Finally formalism of section E.4 can be applied and leads to Carleman
linearization of the form (E.42).
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E.6 Control law for bilinear systems

E.6.1 Linear state feedback

We present hereafter the results provided by I. Sanchez and J. Collado”. This
method considers the following time invariant bilinear system where state vector
z € R™, control u € R™, A € R"™" and B; € R™™:

i=Az+Bou+ (Z a:iBi> w (E.66)
=1

Then a locally asymptotically stabilizing linear time invariant state feedback
gain where K € R™*" reads:
u=Kzx (E.67)

Let R a positive definite matrix such that some positive definite matrix
T € R™" the following inequality holds:

n T n

=1 =1
where:
(i @B)' T (T «iBi)
=([B1 -~ By |z) ' T([B1 - B, |z) (E.69)
— T ([Bl .. Bn}TT[Bl BnDg

Then state feedback gain K is such that for some positive definite matrix
Q € R™™ there exists a positive definite matrix P which is solution of the
following matrix equation:

0=(A+BK)"P+P(A+BK)+K'RK+PT'P+Q (E.70)

In the case where K = —R ™! Bg P then P is the positive definite matrix
which is solution of the following algebraic Riccati equation:

K=-R'BfP=0=A"P+PA-P(BR'Bf - T HP+Q (E71)

To get this result’, we start with the following candidate Lyapunov function
V (z) where P is a positive definite matrix:

V(z)=z"Pz (E.72)
Then setting u = K and using (E.66), the time derivative of V (z) reads:
V(z) =i"Pz+2"Pi
(Az+BoKz+ (X", 2B;) Kz) Pz
+2"P (Az+BoKz+ (XL, #/B;) Kz)) (E.73)
Z7 (AT P + KTBIP + KT (X", ;B;)" P) z
+2T (PA+PBK+P (3, 2:B)K)z

1. Sanchez and J. Collado, On a construction of a non-linear control law for non-linear
systems through Carleman Bilinearization, 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 4024-4029, doi: 10.1109/CDC.2010.5717625.



342 Appendix E. Carleman linearization

Let vector v be defined as follows:

v = (Zn: xiBZ) Kz (E.74)
i=1

Then the time derivative of V (z) reads:

V(z) =27 (ATP+K'BIP)z+1"Pz
+27 (PA + PBoK) z + 2" Pu (B.75)
= 2" (A +BoK)"P+P(A+BoK)) z + 27 P

On the other hand, we can write:

(Pz —To)" T (Pz—~Tv) = (z'P —o'T) (T 'Pz - v)

=2"PT 'Pz — 22" Py + 0T Ty (E-76)

Thus:
22" Py = 2" PT Pz + 0" Tv — (Pz — To)" T™! (Pz — To) (E.77)
Then V (z) becomes:

V(z) =a" ((A+BK)"P+P(A+BK)+PT'P)z
— (Pz — To)" T~} (Pz — Tv)
+v!'Tv
— 2" ((A+BoK)" P+ P (A +BoK) + PT'P + K'RK) 2

— (Pz — To)" T~} (Pz — Tv)
+vT Ty — 2" KTRKz
(E.78)
Finally using (E.68) we get the following inequality:

n T n
v Ty = 2TKT <Z xiBi> T (Z a:iB,) Kz < 2’ K'TRKz (E.79)
=1 i=1

Thus v Tv— 2T KTRKz < 0 and V (z) < 0Vz # 0 as soon as the following
equality holds where Q € R™*" is some positive definite matrix:

(A+BK)"P+P(A+BK)+K'RK+PT'P=-Q<0 (E.80)
This completes the proof. |

E.6.2 Quadratic state feedback

Consider the following bilinear system where state vector x € R™, control u €
R™ A € R™" By € R"™™ and B; € R"*" Vj > 0:

i=Az+Bou+ (> uBj|z (E.81)
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Let By be split as follows where b, represents the 4t column of By:

By = [ by ‘ ‘Qmo ] (E.82)

Following Gutman®, assume that there exists a positive definite matrix P =

PT > 0 such that in the set {g | zT (ATP + PA) x > O} the following relation

holds:
(byo+B1z2)" Pz

: #£0 (E.83)
(bno + Bmz)" Pz
Then there exists an « > 0 such that following control will stabilize the bilinear
system (E.81):
T .
uj = —o (QjO—Fng) Pz j=1,---,m (E.84)
Thanks to this control, the closed loop reads:

t=Az+Bou+ (ZEL uij) z

+ 271w bjo + (ZTzl uij) z (E.85)
+2 00 (bjo +Bjz) uj .

—a > (bjo+Bjz) (bj+Bjz) Pz

&

|
> > P>
1B I8

]

Then the following candidate Lyapunov function V' (z) where P is a positive
definite matrix is introduced:

V(z)=2"Pz (E.86)
Then the time derivative of V (z) reads:

V(z) =i"Pz+2"Pi

T
Az—a ST (bo+Brz) (bo+By2)” Pr) Pa
+z2TP (Az -« Z;n:l (Qjo + B, z) (bjO +B; Q)T Pi)

I
S

(E.87)
=z (ATP+PA)z
202" P (S, (b + Bjz) (b + Bj2)") Pa
— T (ATP +PA)z—2a Y7, (a7 P (b + B, z))
Alternatively, we can write:
V(z)=2" (A"P+PA-PW()P)z (E.88)
where:
W(z)=2a [ 3 (bjo+Bjz) (bjo+Bjz)" (E.89)
j=1

8P.-O. Gutman, Stabilizing controllers for bilinear systems, IEEE Transactions on
Automatic Control, 1981, Volume: 26, Issue: 4
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E.6.3 Optimal control

We consider the following the following time invariant single input bilinear
system where state vector z € R”, control u € R™, A € R"*" and B; € R™*!:

n
@ = AQ-F Bo@-ﬁ- (Z I‘ZB1> u (E.QO)
i=1

We also consider the following cost function to be minimized where Q is a
semi-definite matrix and R a positive definite matrix:

J(u) = ;/OOO (z"Qz + v"Ru) dt (E.91)

Denoting A the costate variable, the Hamiltonian H related to this optimal
control problem reads:

H:

N

(z"Qz + u"Ru) + AT (Aaz +Bou+ (Z miB,-) u> (E.92)

i=1

. . . . . " OH __
The optimal control is determined by necessary optimality condition e =0

We get:

OH T - T
aZL_OﬁRU‘i‘BU/\‘F(;xiBi)/\_O (E.93)
Thus we get:
=-R (BT nox; BT
=-R7(Bo+>_;z:B;)" A
Furthermore costate variable )\ satisfies %—I; = —A. We get:
9 — A= Qu+(AT+[B - B, ] u)r=-A
e A =—Q@—(AT+[B1 - By ]TQ)A (E-95)
——Qz-A"A-u[B; - B, " A

Control u in (E.94) is then inserted into state equation (E.90) and costate
equation (E.95). In order to stay in close proximity to the Riccati approach in
the linear-quadratic optimization, those equations are written in the same form
as in the linear case, namely?:

Ag—ﬁR_lf’)TA

{”? £-B7 (E.96)
A=-Qz—AA

°E. Hofer and B. Tibken, An iterative method for the finite-time bilinear quadratic control
problem, J. Optim. Theory Applications, vol. 57, pp. 41 1-427, 1988
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where:

_:&Z] = AZJ — % [(BJR_lBg + BOR_lB?) A i Z,] — 17 ceen
Q= Q- 32T (BRBI +BRBI )X ij=1,.n o
(Bo + (X0 2:Bi)) R (Bo + (X1, :By)”

(=B RB] +BoR (S, 2:B))

Then an iteration procedure in close proximity to the Riccati approach can
be used to get the control.
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Appendix F

Introduction to fractional
systems

F.1 Pre-filtering

A prefilter Cp¢(s) is a controller which is situated outside the feedback loop as
shown in Figure F.1.

What is the purpose of the prefilter 7 Once the controller C(s) is designed
the poles of the feedback loop transfer function RYJSS()S) are set. Nevertheless the
’ Y (s)
. . . Ry¢(s
cause undesirable overshoots in the transient response of the closed loop system.
The purpose of the prefilter Cp¢(s) is to reduce or eliminate such overshoots in

the closed loop system.

numerator of this transfer function is not mastered and the zeros of y may

Let Ng(s) be the numerator of transfer function Ryﬁl) and Dg(s) its
D

denominator: (5 (5
Y (s . Ncl S
Ror(s) ~ Duls) (F.1)

The prefilter Cpf(s) is then designed such that its poles cancel the zeros of
the closed loop system, that are the roots of Ny(s). Furthermore the numerator
of the prefilter is usually set to be a constant K),; such that the transfer function
of the full system reads:

Y (s) Kpy

R(s) ~ Duls) (F-2)

R(s)

R (s . oy
Cpf(s) pf_(s) e(s) Uls)

Cs)  [—> F©

Figure F.1: Feedback loop design with prefilter

Y(s)
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As a consequence the transfer function of the prefilter reads:

Corl) = 325 F.3

Usually constant K, is set such that the static gain of égz) is unitary,

meaning that the position error is zero:

—

Y (s)
R(S) s=0

=1= Kpf = DCZ(O) (F4)

F.2 Design steps

The general scheme for the controlled system is provided in Figure F.1 where
Cypy(s) is the transfer function of the prefilter.

The design philosophy is to set the transfer function C(s) of the controller
and the transfer function Cpr(s) of the prefilter in order to force the transfer
function of the full system to have the following expression where K, is a
constant gain and D.(s) a polynomial formed with the desired closed loop
poles:

Y(s) Ky

R(s) ~ Duls) (-5)

The design steps of the control loop are the following:

— Design the controller C(s) such that transfer function of feedback loop
without prefiltering (Cpr(s) = 1) has the desired denominator Dg(s).
In other words controller C(s) is used to set the poles of the controlled
system.

— Design the prefilter Cpf(s) such that transfer function of the full system
does not have any zero:

Y(S) _ Kpf
R(s) ~ Duls) (-6)

In other words prefilter Cpr(s) is used to shape the numerator of the
transfer function of the controlled system.

Example F.1. Consider a plant with the following transfer function:

1

Fls) = s(s—2)

(F.7)

Obuiously the plant is not stable, indeed there is one pole at +2. In order to
stabilize the plant we decide to use the following PD controller (we do not use
an integral action because the plant F(s) has already an integral term):

Cs)=K,+Kgs (F.8)
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Furthermore we set the targeted transfer function of the controlled system as

follows (see Figure F.1):
Y 2
() _ (F.9)
R(s) s>+5s+2
The first step of the design is to set the values K}, and Kq of the PD controller
such that the denominator of the targeted transfer function is achieved. Transfer

function Riﬁl) (no prefilter here) reads:
Y(s) _ _C(3)F(s)
Ry (s) 1+C§?)i(§) .
= K1k, 5-‘1-;1(5—2) (F.10)
o Kp—l-KdS

T s2+s(Ka—2)+ K,

The actual denominator will be equal to the targeted denominator as soon as
K, and K, are set as follows:

82+5(Kd—2)+K232+5s+2:>{§di; (F.11)
=
Thus transfer function RY;?)S) (no prefilter here) reads:
P
Y (s) K,+ Kgs 24+ 7s
= = (F.12)
Ry(s) s?2+s(Kqg—2)+K, s*+5s5+2
Taking now into account prefilter Cps(s) transfer function % reads:
Y(s) Ryr(s) Y(s) 24 7s
= 22/ = Cpp(8) 55 (F.13)
R(s) R(s) Ry¢(s) s2+5s+2
Thus transfer function of the controlled system will read ggz; = m as
soon as prefilter Cp¢(s) is set as follows:
Y (s) 2 2
— =C = F.14
R(s) s2+5s+2 ps(s) 24 7s ( )
]

F.3 Pre-filtering design for non-minimum phase
feedback loop

Sometimes the numerator of the feedback loop transfer function RY;S)S) has zeros
P

with positive real part. Such transfer functions with zeros in the right half plane
in the complex plane, that is with positive real part, are called non-minimum
phase transfer functions. As far as the denominator of the prefilter is set to
the numerator of the feedback loop transfer function this leads to an unstable
prefilter, which is not acceptable.
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Suppose that feedback loop transfer function G(s) = RYJES)S) has a positive
P
real zero of order one at s = z > 0, that is G(z) = 0 and %&s) # 0. Such
S=z

a transfer function can be decomposed as follows! where Gy,p(s) is a minimum
phase transfer function:

G(s) = (1 - g) Gp(5) (F.15)

Using remarkable identity 1 — 2% = (1 — 2) (1 + ), the term 1 — £ in the
preceding equation can be expanded using fractional powers of s as follows:

-2 =(1-(9)") 1+ ()"
= 1_(2)1/8 1+(§)1/8 1+(§)1/4 <1+(§)1/2)
That is:

()T e

where log,(M/2) is the base 2 logarithm of M/2 and M is any number
multiple of 2.
The positive real zero z can then be partially compensated through the

k
term Dj(s) = LOE%(M/D <1 + (2)2 /M) which will appear in the denominator

of the transfer function of the prefilter. Indeed it can be shown! that Gj;(s) =

z
G(s) = (1= 2) Gmp(s).
The next step consists in approximating the state space fractional system
with the following transfer function G¢(s) which will appear in the prefilter:
Gy(s) -
5= g, (M)2) 2% /M
3 (1 (")

<1 - (ﬁ)l/M> Gmp(s) has a weaker non-minimum phase zero at s = z than

(F.18)
k=0

F.4 Mathematical Definitions of Fractional Integral
and Derivative

The most encountered definition of the fractional integral is called Riemann-
Liouville (RL) fractional integral and is defined as follows where ¢ € RT is the
order of integral and I'(q) is the Gamma function?:

D 9a(t) = ply Jo, (t = 7) T a(7) dr

!Farshad Merrikh-Bayat, Practical and efficient method for fractional-order unstable pole-
zero cancellation in linear feedback systems, https://arxiv.org/abs/1207.6962

’Fujio Ikeda & Shigehiro Toyama (2009) A Frequency Domain Approach for Robust
Control Design by Fractional Calculus, SICE Journal of Control, Measurement, and System
Integration, 2:3, 162-167, DOI: 10.9746/jcmsi.2.162
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The above expression is used to define the fractional derivative as follows,
where m € N satisfies m — 1 < g < m:

o (D7) = nnf_q)ﬂw / (t=7)" ¢ a(r)dr (F.20)

The Laplace transform of the Riemann-Liouville (RL) fractional
derivative/integral under zero initial conditions for the order ¢ is given by:

X(s) = Lz(t)] = L [DT2(t)] = sT9X (s) (F.21)

Dix(t) :=

F.5 CRONE approximation of fractional derivative

CRONE (Commande Robuste d’Ordre Non-Entier: this is the French
abbreviation for Non Integer Order Robust Control which was introduced by
A. Oustaloup?) is a method which enables to approximate the infinite
dimension fractional filter s*, a; € (0,1), by the following finite dimension
rational transfer function Gy, (s)*:

o x Gt = (L) E z El ¥ g

wWB
In order to obtain a good accuracy in a frequency range (Wmin,Wmaz), POles
and zeros are distributed in a broader frequency range (w4,wp) defined as a
function of (Wpin, Wmae) and an adjustment coefficient o which is often chosen
to o = 10:

(F.22)

P
WB = 0 Wnax

Uszn

:( (1—a;)/(2N+1)

5= (7>az/(2N+1) (F.23)

wziﬂznwm i:—N,"-,N—l

We recall that as far as the approximated transfer function G, (s) of s“ has
distinct real poles );, its partial fraction expansion reads:

sY Gy, (s) = ggg +d

_ N(s)
~ GG
= S—A1 + S—Ao +-

(F.24)

Number 7; is called the residue of transfer function G,,(s) in A;. When the
multiplicity of the pole (or eigenvalue) \; is 1 we have seen that residue r; can
be obtained thanks to the following formula:

r, = (5 - )\i)Gai (8)|5:)\i (F25)

3A. Oustaloup - La commande CRONE, Hermes, 1991
*Mansouri Rachid, Bettayeb Maamar & Djennoune Said, Comparison between two
approximation methods of state space fractional systems Signal Processing 91 (2011) 461-469
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Now we define constants b; and ¢; such that the product b;c; is equal to r;:
T, = bi C; (FQG)

This leads to the following state-space representation, which is called the
diagonal (Jordan) or modal form, corresponding to the approximation of s%:

@ A A1) = Aqg, 2(t) + B, ul(t)
1~ Gails) : { y(t) = Du(t) ~ Ca, 2(t) + Da, u(t) (F.27)
where:
X 0 0
Ao, = 0 Ao
SRR
L0 0 An
by
by (F.28)
Bai = .
L bn
Cy, = [ cL Cy -+ Cp ]
D,, =d

Similarly the Laplace transform of the fractional integration operator Z¢i
is 7. The approximation of the fractional integration operation s~ can be
obtained by exploiting the following equality®:

o1 .
57 = _ glma (F.29)
Because 0 < 1—q; < 1lassoonas «a; € (0, 1), fractional integration operation

s17% can be approximated by a transfer function similar to (F.22). Then the
finite dimension rational model is multiplied by % which leads to a strictly proper

approximation % s17% of the fractional order integration operation s~
1 -1
5% = — g7 2 Gy, () (F.30)
S S
Because %31*0‘”‘ is a strictly proper transfer function, matrix D_,, is null.
The state space representation corresponding to the approximation of s~
reads:
PR | 2(t) = A_q, 2(t) + B_g, u(t)
« ol Q; & [e%
i =G (8) i i F.31
S p G1-a,(s) { y(t) = I%u(t) ~ C_q, 2(1) (F.31)

SThierry Poinot & Jean-Claude Trigeassou, A method for modelling and simulation of
fractional systems, Signal Processing 83 (2003) 2319-2333
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uw [ T MO=x(0) 0 [ AT O
e I I
. | -
‘ | A .
> D

Figure F.2: Block diagram of a state-space representation

F.6 State space fractional systems

Usually the state space model of an integer linear time invariant system is the
following:

{ i(t) = Az(t) + Bu(t) (F.32)

y(t) = Cz(t) + Duf(t)
Where:

— z(t) is the state vector, which is of dimension n. The number n of the
state vector components is called the order of the system;

— wu(t) is the input of the system,;

— y(t) is the output of the system.

State vector z(t) can be defined as a set of variables such that their
knowledge at the initial time tg = 0, together with knowledge of system inputs
wu(t) at t > 0 are sufficient to predict the future system state and output y(¢)
for all time ¢t > 0. B

Both equations in (F.32) have a name:

— Equation &(t) = Az(t) + Bu(t) is named as the state equation;
— Equation y(t) = Cz(t) + Du(t) is named as the output equation.

The state equation and the output equation both constitute the state-space
representation of the system.

The block diagram corresponding to the state-space representation (F.32) is
shown in Figure F.2.

The corresponding transfer function of the model is given by:

G(s)=C(sI—A)'B+D (F.33)
State space representation (F.32) can be extended to fractional case as

follows®:

{ D2z (t) = Az(t) + Bu(t) (F.34)

y(t) = Cx(t) + Du(t)

SW. Krajewski & U. Viaro, On the rational approximation of fractional order systems,
2011 16th International Conference on Methods & Models in Automation & Robotics,
Miedzyzdroje, 2011, pp. 132-136. doi: 10.1109/MMAR.2011.6031331
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where:
T

Dog(t) = [ DUay(t) -+ DUa(t) | (F.35)

Denoting by [ay] the integer part of «j the Laplace transform of the

fractional Caputo derivative D% xy(t) is’:
[ag]—1 ;
i1 d'zp(t)
D%z (t)] = s t)] — i1 : F.
£ ao)] = 57 L lan(0] = 3 il e

If all fractional orders are multiples of the same real number v € (0,1)
(commensurate fractional-order systems), operator D%z (t) simplifies as follows:

Dex(t) = [ DOy (t) - Dwn(t) |" (F.37)

Example F.2. The following example presents a fractional state space
representation and its corresponding transfer function®:

D156z, (1) 0 1 0 0
DMBr,t) | = 0 0 1 |z@®)+ ] 0 |u®
DO g4 (t) -4 —20 -10 1 (F.38)
y®)=[4 1 0]zt
The corresponding transfer function is the following:
1.56 4
Gls) = S (F.39)

83.46 + 10 5269 + 2051'56 +4

Denoting by y(t) the output of the system, it is worth noticing that the
components of the state vector are the following where y® (t) indicates the it
time derivative of y(t):

y(t)
x(t) = | y20(1) (F.40)
y 289 (1)

Furthermore D% corresponds to the lower fractional derivative which
appears in the denominator of transfer function G(s) whereas the others terms,
D13 gnd DO namely, are obtained by subtracting the consecutive fractional
derivatives which appears in the denominator of transfer function G(s).

Last but not least the fractional exponents which appear in the numerator of
G(s) are the same than those which appear in its denominator.

F.7 Approximation of fractional systems based on
differentiation operator

The approximation of fractional systems based on differentiation operator is
obtained by coupling (F.34) and (F.27):
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Ax(t) + Bu(t)

{D (t) =
(t) = Cz(t) + Du(t)

)
{ 5(t) = A z(t) + Baz(t)
D2(1) ~ Co 2(1) + D (!

(F.41)

Block-diagonal matrices A, € REN+Dnx@N+1)n B ¢ REN+)nxn ¢
RN+ and D, € R™™ are obtained from (F.27) as follows:

A, = diag [ Ag, A, |
B, = diag [ B, B., }
C, = diag | Cai Ca, | (F.42)
D, = diag [ D, D., ]

Equating the expression of D%z () in both equations of (F.41) yields to the
expression of the state space vector z(t) of the fractional model:

Az(t)+Bu(t) ~C,z(t)+Dyx(t)
() ~(A-D,)  (Caz(t) - Bult)) (F.43)
~ (A —D,)  Cuz(t)+ (Do —A) ' Bu(t)

Finally the approximation of fractional system (F.41) based on
differentiation operator reads:

{ £(t) = Apz(t) + Bpu(t)
y(t) » Cpz(t) + Dpu(t)
Ap=A,+B, (A Da)_l C,

where Bp = ( ) ) (A
Cy-C(a-D,)"
Dp=C(D,-A)" B +D

F.8 Approximation of fractional systems based on
integration operator
The inspectlon of Flgure F.2 shows that we may also choose the integral operator

input (¢ fo T)dT as the state vector vector and write the corresponding
state space model using the integral function instead of the derivative one. This

yields to*:
w =A fo T)dT + Bu(t)
g =C fo dT + Du(t) (F.45)
x(t fo

The corresponding transfer function of the model then given by

G(s) = c% <H—AH>1B+D (F.46)

S
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Denoting by Z% the fractional integration operator, state space
representation (F.45) can be extended to fractional case as follows®*:

w(t) = AT%w(t) + Bu(t)

y(t) = CI%w(t) + Du(t) (F.47)
z(t) = Tow(t)
where:
Tew(t) = [ Twni(t) - Tw,(t) ]T (F.48)

The approximation of fractional systems based on integration operator is
obtained by coupling (F.47) and (F.31):

{ w(t) = AZ%w(t) + Bu(?)
y(t) C w(t) + Du(t)
{ (()) Ao z(t) + B_gw(t)

(F.49)

Tw(t) ~ C_q 2(2)

Block-diagonal matrices A_, € RCN+T2)nx@N+2)n B ¢ REN+2)mxn 454
C_, € RGN+ are obtained from (F.31) as follows:

A_, =diag [ A_,, -+ A_,, }
B_,=diag| B_o, -+ B_g, | (F.50)
C_, = diag [ C_oy - C_q, ]

Using the expression of w(t) provided in the first equation of (F.49) within
the expression of Z(¢) in the third equation of (F.49) and using the
approximation 7%w(t) ~ C_4 2(t) provided in the fourth equation yields:

w(t) = AZ%w(t) + Bu(t)
=2(t) =A_,z(t)+ B_a w(t)
=A_ Qé(t) a (AZ%w(t) + Bu(t)) (F.51)
=A_,z(t)+ B_aAIa (t) + B_oBul(t) '
~A_,z(t)+ B_yAC_, 2(t) + B_,Buf(t)

A_o+B_,AC ,)z(t) + B_4Bu(t)

I
—

Finally the approximation of fractional system (F.49) based on integration
operator reads:
{ £(t) = Arz(t) + Bru(?)
y(t) = Crz(t) + Dru(?)
A;=A ,+B ,AC_,

IB-B.B (F.52)
where C/=CC._,
D;=D

Example F.3. Coming back to Figure F.1, we consider the following non-
minimum phase transfer function:
Y (s) 10s — 1

Gls) = R,¢(s) T 24 14s+1 (F.53)
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Y(s) 1

It s clear that in order to obtain no static error, that is R(s) = 914571

we shall choose the prefilter Cp(s) as follows:

Y(s) 1 1 ~1

R(s) s>+ 1lds+1 G(5)Cps(s) = Cpp(s) = o —7 = T— =

(F.54)

Obviously Cpp(s) is not a stable system and this prefilter cannot be
implemented.

Alternatively we can write G(s) as follows where G,y (s) is a minimum phase
transfer function:

s s —1
Gls) = (1 N 2) Gmp(s) = (1 N 07) $2+ 1ds+1 (F.55)
Then, choosing for example M = 4 we write:
s s \1/M logy (M s \2F/M
- =(1- ()Y ) ) /2)<+(m) / ) (F.56)
s 10.25 s 10.25 s \0.5 ‘
= (1- (1) ><1+(ﬁ) ><1+(ﬁ) )
From this decomposition prefilter Cpr(s) now reads:
Cpf(S) = OQ?Q"’ >>
e 25+( 1)0 250(3%15+(50 105 (F'57)
—(0.1)%-75

= 50-75+(O.1)0-2530 5+(0 1) 50-25+(0.1)0-75

The fractional state space representation corresponding to this transfer
function reads:

DOy (t) 0 1 0 0
DO, (t) | = 0 0 1 z(t)+ | 0 | u(t)
DO g4(t) —(0.1)°7  —(0.1)°5  —(0.1)** 1

y(t) = [ ~(01°7 0 0]z
(F.58)
Figure F.3 shows Bode plots of the two approzimating methods for fractional
prefilter Cpr(s) with the following setting:

N =4
Winin = 1072 (F.59)
Wmaz = 102

Figure F.4 shows the step response of the plant with the rational prefilter
Cpf(s): it can be seen that the non-minimum phase effect has been reduced but
the time response has been highly increased compared with the result obtained

with a static prefilter Cpp(s) = —1 which leads to }1:38 = —ﬁﬁ = —G(s)
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Figure F.4: Step response with approximated fractional prefilter Cpz(s)
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Figure F.3: Bode plots of approximated fractional prefilter Cp(s)
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