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Course overview

Classical control theory is intrinsically linked to the frequency domain and the
s-plane. The main drawback of classical control theory is the difficulty to
apply it in Multi-Input Multi-Output (MIMO) systems. Rudolf Emil Kalman
(Hungarian-born American, May 19, 1930 — July 2, 2016) is one of the greatest
protagonist of modern control theory!. He has introduced the concept of state
as well as linear algebra and matrices in control theory. With this formalism
systems with multiple inputs and outputs could easily be treated.

The purpose of this lecture is to present an overview of modern control
theory. More specifically, the objectives are the following:

— to learn how to model dynamic systems in the state-space and the state-
space representation of transfer functions;

— to learn linear dynamical systems analysis in state-space: more specifically
to solve the time invariant state equation and to get some insight on
controllability, observability and stability;

— to learn state-space methods for observers and controllers design.

Assumed knowledge encompass linear algebra, Laplace transform and linear
ordinary differential equations (ODE)
This lecture is organized as follows:

— The first chapter focuses on the state-space representation as well as state-
space representation associated to system interconnection;

— The conversion from transfer functions to state-space representation is
presented in the second chapter. This is also called transfer function
realization;

— The analysis of linear dynamical systems is presented in the third chapter;
more specifically we will concentrate on the solution of the state equation
and present the notions of controllability, observability and stability;

— The fourth chapter is dedicated to observers design. This chapter focuses
on Luenberger observer, state observer for SISO systems in observable
canonical form, state observer for SISO systems in arbitrary state-space
representation and state observer for MIMO systems will be presented.

"http:/ /www.uta.edu/utari/acs/history.htm



— The fifth chapter is dedicated to observers and controllers design. As far
as observers and controllers are linked through the duality principle the
frame of this chapter will be similar to the previous chapter: state feedback
controller for SISO systems in controllable canonical form, state feedback
controller for SISO systems in arbitrary state-space representation, static
state feedback controller and static output feedback controller for MIMO
systems will be presented.
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Chapter 1

State-space representation

1.1 Introduction

This chapter focuses on the state-space representation as well as conversions
from state-space representation to transfer function. The state-space
representation associated to system interconnection is also presented.

The notion of state-space representation has been developed in the former
Soviet Union where control engineers preferred to manipulate differential
equations rather than transfer functions which originates in the United States
of America. The diffusion to the Western world of state-space representation
started after the first congress of the International Federation of Automatic
Control (IFAC) which took place in Moscow in 1960.

One of the interest of the state-space representation is that it enables to
generalize the analysis and control of Multi-Input Multi-Output (MIMO) linear
systems with the same formalism than Single-Input Single-Output (SISO) linear
systems.

Let’s start with an example. We consider a system described by the following
second-order linear differential equation with a damping ratio denoted m, an
undamped natural frequency wp and a static gain K :

1 dy(t)  2mdy(t)
wi  di? wo dt

+y(t) = Ku(t) (1.1)

Here y(t) denotes the output of the system whereas u(t) is its input. The
preceding relationship represents the input-ouput description of the system.

The transfer function is obtained thanks to the Laplace transform and
assuming that the initial conditions are zero (that is y(t) = ¢(t) = 0). We get:

L5?Y () + 225V (s) + Y (s) = KU (s)

0
CY(s) . Ku? (1.2)
< F(S) —U(s) T 52+2mwgs+w(2)

Now rather than computing the transfer function, let’s assume that we wish
to transform the preceding second order differential equation into a single first
order vector differential equation. To do that we introduce two new variables,
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say x1 and xo, which are defined for example as follows:

y(t) = Kwizy(t)
{ i1(t) = 962?01 (1-3)

Thanks to the new variables x1 and xo the second order differential equation
(1.1) can now be written as follows:

W = Kwg i = Kujs(1)
2

THD — Kl 14
= 4220 4 opnmy(t) + wizr (£) = ult)

The second equation of (1.3) and equation (1.4) form a system of two coupled
first order linear differential equations:

dzl(t) — 2o(t
{ dmdgt(t) 2(1) (1.5)

In is worth noticing that variables x1(¢) and x2(t) constitute a vector which

is denoted [ ilgg ]: this is the state vector. Equation (1.5) can be rewritten
2

in a vector form as follows:
d | zi(t) | 0 1 x1(t) 0
dt { za(t) | | —wd —2muw xo(t) Tl u(t) (1.6)
Furthermore using the first equation of (1.3) it is seen that the output y(t)

T (t)
T2 (t)

is related to the state vector [ } by the following relationship:

yt) = [ Kwg 0] [28 ] (L.7)

Equations (1.6) and (1.7) constitute the so called state-space representation

of the second order system model (1.4). This representation can be generalized
as follows:

{ i(t) = Az(t) + Bu(t) (1.8)

y(t) = Cz(t) + Duf(t)

The state-space representation is formed by a state vector and a state
equation. This representation enables to describe the dynamics of a linear
dynamical systems through n first order differential equations, where n is the
size of the state vector, or equivalently through a single first order vector
differential equation.

1.2 State and output equations

Any system that can be described by a finite number of n!* order linear
differential equations with constant coefficients, or any system that can be
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u() L x(1) L
/ \ [ N

—» B e+ J - C e

‘ \y/ |

Figure 1.1: Block diagram of a state-space representation

approximated by them, can be described using the following state-space
representation:

{ i(t) = Az(t) + Bu(t) (1.9)

y(t) = Cz(t) + Du(t)
Where:

— z(t) is the state vector, which is of dimension n. The number n of the
state vector components is called the order of the system;

— wu(t) is the input of the system;

— y(t) is the output of the system.

State vector z(t) can be defined as a set of variables such that their
knowledge at the initial time ¢g = 0, together with knowledge of system inputs
u(t) at t > 0 are sufficient to predict the future system state and output y(¢)
for all time ¢ > 0. B

Both equations in (1.9) have a name:

— Equation z(t) = Axz(t) + Bu(t) is named as the state equation;
— Equation y(t) = Cz(t) + Du(t) is named as the output equation.

The state equation and the output equation both constitute the state-space
representation of the system.

The block diagram corresponding to state-space representation (1.9) is
shown in Figure 1.1.

Furthermore matrices (A,B,C,D) which define the state-space
representation of the system are named as follows '

— A is the state matrix and relates how the current state affects the state
change #(t). This is a constant n X n square matrix where n is the size of
the state vector;

— B is the control matrix and determines how the system inputs u(t) affects
the state change; This is a constant n x m matrix where m is the number
of system inputs;

"https:/ /en.wikibooks.org/wiki/Control _Systems/State-Space_Equations
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— C s the output matrix and determines the relationship between the system
state z(t) and the system outputs y(¢). This is a constant p x n matrix
where p is the number of system outputs;

— D is the feedforward matrix and allows for the system input u(t) to affect
the system output y(t) directly. This is a constant p x m matrix.

1.3 From ordinary differential equations to
state-space representation

1.3.1 Brunovsky’s canonical form

Let’s consider a Single-Input Single-Output (SISO) dynamical system modelled
by the following input-output relationship, which is an n‘* order non-linear
time-invariant Ordinary Differential Equation (ODE):

n 2 n—1
ddgér(zw 7 (y(t)’ diftt)’ ddigt)"" ’ddtnzf(lt)’u(to 10

This is a time-invariant input-output relationship because time ¢ does not
explicitly appears in function g.

The usual way to get a state-space equation from the n'® order non-linear
time-invariant ordinary differential equation (1.10) is to choose the components

x1(t), - ,xy(t) of the state vector z(t) as follows:
] N (N
.’L’l(t) dz(ligtt)
.Ig(t) degt)
a(t) = : = (1.11)
‘Tn_]_(t) dn—QEJgt)
7 (1) a1y (1)
L dgn—1 .

Thus Equation (1.10) reads:

a1(t) z1(t)
o(t) z2(t)
i(t) = : = : = f(z(t),u(t) (112
Z'Unfl(t) xn,l(t)
T (t) i L g (@1, Tp-1,u(t)) i
Furthermore:
yt) =z (t)=[1 0 --- 0]z(t) (1.13)

This special non-linear state equation is called the Brunovsky’s canonical
form.



1.3. From ordinary differential equations to state-space representation 15

1.3.2 Linearization of non-linear time-invariant state-space
representation

More generally most of Multi-Input Multi-Output (MIMO) dynamical systems
can be modelled by a finite number of coupled non-linear first order ordinary
differential equations (ODE) as follows:

a(t) = f(z(t),u(t)) (1.14)

The Brunovsky’s canonical form may be used to obtain the first order
ordinary differential equations.

In the preceding state equation f is called a vector field. This is a time-
invariant state-space representation because time t does not explicitly appears
in the vector field f.

When the vector field f is non-linear there exists quite few mathematical
tools which enable to catch the intrinsic behavior of the system. Nevertheless
this situation radically changes when vector field f is linear both in the state z(t)
and in the control u(t). The good news is that it is quite simple to approximate
a non-linear model with a linear model around an equilibrium point.

We will first define what we mean by equilibrium point and then we will see
how to get a linear model from a non-linear model.

An equilibrium point is a constant value of the pair (z(t),u(t)), which will
be denoted (z,,u,), such that:

0= f(z.,u,) (1.15)

It is worth noticing that as soon as (z,,u.) is a constant value then we have
z,=0.

Then the linearization process consists in computing the Taylor expansion
of vector field f around the equilibrium point (z,,u,) and to stop it at order 1.
Using the fact that f (z,,u.) = 0 the linearization of a vector field f (z(t), u(t))
around the equilibrium point (z,, u,.) reads:

f(z,+dz,u, + ou) ~ Adz + Bou (1.16)

Where:
5£(t) = £(t) -z,
{ du(t) = u(t) —u, (1.17)

And where matrices A and B are constant matrices:

_ Of(z,u)
A= T |y, g=a, (1.18)
B = 6f(LE) ’
Ou u=u_,r=x

i) = &(t) — 0= &(t) — £, = ——— = — §i(t) (1.19)
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Thus the non-linear time-invariant state equation (1.14) turns to be a linear
time-invariant state equation:

dx(t) = Adx(t) + Bou(t) (1.20)

As far as the output equation is concerned we follow the same track. We
start with the following non-linear output equation:

y(t) = h(z(t),u(t)) (1.21)

Proceeding as to the state equation, we approximate the vector field h by
its Taylor expansion at order 1 around the equilibrium point (z.,u,):

y(t) = h(ze, u.) + h (0x(t) + z,, du(t) + u,) =y + Coéz + Ddu (1.22)

Where:
Y, = h(ze u) (1.23)
And where matrices C and D are constant matrices:
C — athﬂ)
02 y—u, 2=z, (1.24)
D — 8h{(9£:!) ’
U

U=Up, T=T

Let’s introduce the difference dy(t) as follows:

oy(t) = y(t) —y, (1.25)

Thus the non-linear output equation (1.21) turns to be a linear output
equation:

dy(t) = Cox(t) + Ddu(t) (1.26)

Consequently a non-linear time-invariant state representation:

a(t) = f (2(t), u(t))
{ y(t) = h(z(t),u(t)) (1.27)

can be approximated around an equilibrium point (z.,u.), defined by
0= f(z,.,u,), by the following linear time-invariant state-space representation:

{ 6i(t) = Adz(t) + Bou(t) (1.28)

dy(t) = Coz(t) + Ddu(t)

Nevertheless is worth noticing that the linearization process is an
approximation that is only valid around a region close to the equilibrium
point.

The § notation indicates that the approximation of the non-linear state-space
representation is made around an equilibrium point. This is usually omitted and
the previous state-space representation will be simply rewritten as follows:

{ &(t) = Az(t) + Bul(t)
y(t) = Cx(t) + Du(?)

(1.29)
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Example 1.1. Let’s consider a fictitious system whose dynamics reads:
d*y(t)
dt3
Find a non-linear state-space representation of this system with the
Brunovsky’s choice for the components of the state vector. Then linearize the
state-space representation around the equilibrium output y. = 0.
As far as the differential equation which describes the dynamics of the system
is of order 3, there are 3 components in the state vector:
1 (1)
z(t) = | za(t) (1.31)
3(t)

The Brunovsky’s canonical form is obtained by choosing the following
components for the state vector:

= cos(ii(t)) + €@ —tan(y(t)) + u(t) (1.30)

z1(t) Z/Et)

a(t) = | z2(t) | = | 9(t) (1.32)
z3(t) ii(t)
With this choice the dynamics of the system reads:
#1(t) 1 (t)
T9 (t) = l‘g(t)
$3(t) COS(.%‘g(zf)) + e3r2(t) _ tan(a:l(t)) + u(t) (1.33)

y(t) = 21(t)
The preceding relationships are of the form:
i(t) = f(z(t), u(t))
1.34
40 = ettty (30
Setting the equilibrium output to be yo = 0 leads to the following equilibrium
point T, :

Ye 0
Ye=0=a2,=| 9% | =| 0 (1.35)
Ye 0

Stmilarly the value of the control u. at the equilibrium point is obtained by
solving the following equation:

Ll = cos(jic) + €% — tan(ye) + ue
= 0 = cos(0) + e3*0 — tan(0) + ue (1.36)
= U = —2

Matrices A and B are constant matrices which are computed as follows:

, 0 1 0 0
A= Y = 0 0 1 =1 0
o e | — (1 +tan®(zqe))  3€37 —sin(ws.) -1
[ 0
_ ) _
— e k—Le 1

(1.37)

w O =

S = O
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Stmilarly matrices C and D are constant matrices which are computed as
follows:

c = %aew —[10 0]
e, (1.38)
D-— 6héi,g) —0

Consequently  the mnon-linear time-invariant  state  representation

dig?) = cos(ij(t)) + €3 — tan(y(t)) + u(t) can be approzimated around the

equiltbrium output y. = 0 by the following linear time-invariant state-space
representation:
0 10 0
dx(t) = Adx(t) +Bou(t)=| 0 0 1 |dz(t)+ | 0 | du(t)
13 0 1 (1.39)

Sy(t) = Coz(t) + Dou(t)=[1 0 0 ]dz(t)

The Scilab code to get the state matriz A around the equilibrium point (z, =
0,ue = —2) is the following:

function xdot = f(x,u)
xdot = zeros(3,1);
xdot (1) = x(2);

xdot(2) = x(3);
xdot(3) = cos(x(3)) + exp(3*x(2)) - tan(x(1)) + u;
endfunction

xe = zeros(3,1);

xe(3) = 0;

ue = -2;

disp(f(xe,ue), ’f(xe,ue)=’);
disp(numderivative(list(f,ue),xe),’df/dx=);

Example 1.2. We consider the following equations which represent the
dynamics of an aircraft considered as a point with constant mass®:

mV =T — D — mgsin(y)
mV4 = Lcos(¢) — mg cos(y)
mV cos(y)i) = Lsin(¢)

¢»=p

(1.40)

Where:
— V is the airspeed of the aircraft;
— 7 s the flight path angle;

— 1 s the heading;

2Etkin B., Dynamics of Atmospheric Flight, Dover Publications, 2005
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— ¢ 1is the bank angle;

— m is the mass (assumed constant) of the aircraft;

— T is the Thrust force applied by the engines on the aircraft model;
— D is the Drag force;

— g is the acceleration of gravity (g = 9.80665 m/s?);

— L 1is the Lift force;

¢ s the bank angle;
— p is the roll rate.

We will assume that the aircraft control vector w(t) has the following
components:

— The longitudinal load factor ng:

T—-D
Ny = (1.41)
mg
— The vertical load factor n,:
L
n, = — (1.42)
mg

— The roll rate p

Taking into account the components of the control vector u(t) the dynamics
of the aircraft model (1.40) reads as follows:

V = g (n. — sin(7))
5= & (n. cos(@) — cos(7))

) _ g sin(9) (1.43)
Y=V cos(n) =
¢=p
This is clearly a non-linear time-invariant state equation of the form:
&= f(z,u) (1.44)
Where: .
u=1[n n, p]

Let (z,,u,) be an equilibrium point defined by:

f(@e,u.) =0 (1.46)

The equilibrium point (or trim) for the aircraft model is obtained by

arbitrarily setting the values of state vector x, = [ Ve o ve Ve e ]T which
are airspeed, flight path angle, heading and bank angle, respectively. From that
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value of the state vector x, we get the value of the corresponding control vector

U, = [ Nge MNze Pe ]T by solving the following set of equations:

0= g (nace - Sin(’ye))

0= % (nze cos(¢e) — cos(7e))

e (1.47)
Ve cos(ve) ' %€

0=pe

We get:

Pe = 0
¢e =0
Npe = sg:((gi)) here ¢e = 0 = n.. = cos(e)

Nge = Sin(’)/e)

(1.48)

Let 0x(t) and 0x(t) be defined as follows:

z(t) = z, + oz(t)
{ u(t) = u, + du(?) (1.49)

The linearization of the vector field f around the equilibrium point (z,,u,)
reads:

Sz (t) + W Su(t) (1.50)

U=Up, X=T - U=Up, X=T

di(r) ~ )

Assuming a level flight (e = 0) we get the following expression of the state
vector at the equilibrium.:

Ve

’ye = 0
o= | (151)

(be:O

Thus the control vector at the equilibrium reads:

Nge = sin () =0

U, = | Nze =cos(ye) =1 (1.52)
Pe = 0
Consequently:

[ 0 —gcos(y) O 0

Of (z.) — 1% (nz cos(¢) — cos(7)) &sin(y) 0 —&n.sin(¢)

oz | _ B = g sin(¢)n g sin(¢)sin(v) 0 icos(d))n
U=l =L V2 cos(y) ' "# V cos?(y) z V cos(y) '7*
0 0 0 0

o oo o
o o ow
o oo o
ok o o

(1.53)

= I8

I
= |8
®

®
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And:
[ g 0 0
2 S A
“ U=l =L 0 V cos(v) 0 V= ‘/e
0 0 1 Y= =0
Ny = Nye = cos (Ve) =1 (1.54)
¢ = ¢e =0

oo ow
o ok o
—_ o oo

Finally using the fact that v = 0 = v = v, ¢ = 0 = I¢p = ¢ and
pe = 0= dp = p we get the following linear time-invariant state equation:

1% 0 —g 0 0 5V g 0 0 5n
1 o o0 o y 0 £ 0 v
59 0 00 & ||ow|T]o 0 of]™ (1.55)
p 0 00 O ¢ 00 1 P

Obuviously this is a state equation of the form dz(t) = Adx(t) + Bou(t).
It can be seen that the linear aireraft model can be decoupled into longitudinal
and lateral dynamics:

— Longitudinal linearized dynamics:

V] [0 —g][év g 0 ong
AR T P S A
— Lateral linearized dynamics:
i 9
S A1 A Y R

The previous equations show that:
— Airspeed variation is commanded by the longitudinal load factor ng;
— Flight path angle variation is commanded by the vertical load factor n,;

— Heading variation is commanded by the roll rate p.

1.4 From state-space representation to transfer
function

Let’s consider the state-space representation (1.9) with state vector z(t), input
vector u(t) and output vector y(t). The transfer function relates the relationship
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between the Laplace transform of the output vector, Y (s) = £ [y(¢)], and the
Laplace transform of the input vector, U(s) = L [u(t)], assuming no initial
condition, that is z(t)|,_o+ = 0. From (1.9) we get:

sX(s) =AX(s)+BU(s)

2(t)|j—or =0 = { Y (s) = CX(s) + DU(s) (1.58)

From the first equation of (1.58) we obtain the expression of the Laplace
transform of the state vector (be careful to multiply s by the identity matrix to
obtain a matrix with the same size than A ):

(sT— A)X(s) = BU(s) & X(s) = (sL - A)'BU(s)  (L59)

And using this result in the second equation of (1.58) leads to the expression
of the transfer function F(s) of the system:

Y (s) = CX(s) + DU(s) = (c (sI—A)"'B + D) U(s) == F(s)U(s) (1.60)
Where the transfer function F(s) of the system has the following expression:
F(s)=C(sI—A)"'B+D (1.61)

It is worth noticing that the denominator of the transfer function F(s) is
also the determinant of matrix sI — A. Indeed the inverse of sl — A is given by:

1

(s - A)™ = det(sI — A)

adj(sI — A) (1.62)
Where adj(sI — A) is the adjugate of matrix sl — A (that is the transpose of the
matrix of cofactors ?). Consequently, and assuming no pole-zero cancellation
between adj(sl — A) and det(sl — A), the eigenvalues of matrix A are also the
poles of the transfer function F(s).
From (1.62) it can be seen that the polynomials which form the numerator of
C (sI — A) ™' B have a degree which is strictly lower than the degree of det(sI—
A). Indeed the entry in the i row and j** column of the cofactor matrix of
sI — A (and thus the adjugate matrix) is formed by the determinant of the
submatrix formed by deleting the i*" row and j* column of matrix sI — A;
thus each determinant of those submatrices have a degree which is strictly lower
than the degree of det(sI— A). We say that C (sI — A)~' B is a strictly proper
rational matrix which means that:
lim C(sI-A)"'B=0 (1.63)
5§—00
In the general case of MIMO systems F(s) is a matrix of rational fractions:
the number of rows of F(s) is equal to the number of outputs of the system
(that is the size of the output vector y(t)) whereas the number of columns of
F(s) is equal to the number of inputs of the system (that is the size of the input
vector u(t)).

https://en.wikipedia.org/wiki/Invertible matrix



1.5. Zeros of a transfer function - Rosenbrock’s system matrix 23

1.5 Zeros of a transfer function - Rosenbrock’s system
matrix

Let R(s) be the so-called Rosenbrock’s system matrix, as proposed in 1967 by
Howard H. Rosenbrock?:

R(s) = [ SHEA _];3]

From the fact that transfer function F(s) reads F(s) = C (sl — A) "' B+ D,
the following relationship holds:

(1.64)

[—C(SHH—A)I NR(S) _[—C(S]I—A)l HHSH(_EA _1;3}

(1.65)
I
—C(s[—A)' 1
relationship holds:

Matrix { } is a square matrix for which the following

det ([ o (SHH_ RE ; ]) —1 (1.66)

Now assume that R(s) is a square matrix.  Using the property
det (XY) = det(X)det(Y), we get the following property for the
Rosenbrock’s system matrix R(s):

et (| pa-ayr 1 R0)=aa ([ 750 20 ])
~ det ([ o (SHH_ RE (]; D det (R(s)) = det (sT — A) det (F(s))
— det (R(s)) = det (s — A) det (F(s))

(1.67)
For SISO systems we have det (F(s)) = F(s) and consequently the preceding
property reduces as follows:

det (F(s)) = F(s) = F(s) = St (BL5))

~ det (sT— A) (1.68)

For non-square matrices, the Sylvester’s rank inequality states that if X is
am x n matrix and Y is a n X k matrix, then the following relationship holds:

rank (X) + rank (Y) — n < rank (XY) < min (rank (X),rank (Y)) (1.69)
For MIMO systems the transfer function between input ¢ and output j is

given by:
dot sI—A =,
¢ ct d;j

Fils) = det(sj]I —A) (1.70)

*https://en.wikipedia.org/wiki/Rosenbrock _system matrix
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where b; is the i*" column of B and QJT the j*" row of C.
Furthermore in the general case of MIMO linear time invariant systems, the
(transmission) zeros of a transfer function F(s) are defined as the values of s

such that the rank of the Rosenbrock’s system matrix R(s) = [ sl (_j A _I? ]

is lower than its normal rank, meaning that the rank of R(s) drops.
When R(s) is a square matrix this means that R(s) is not invertible; in such
a situation the (transmission) zeros are the values of s such that det (R(s)) = 0.
Furthermore when R(s) is a square matrix a (transmission) zero z in the
transfer function F(s) indicates that there exists non-zero input vectors w(t)
which produces a null output vector y(t). Let’s write the state vector z(t) and
input vector u(t) as follows where z is a (transmission) zero of the system:

Q(t) =z, ezt
{0 a

Imposing a null output vector y(t) we get from the state-space representation
(1.9):

{ z(t) = Az(t) + Bu(t) N { zage” = Azge® + Buge™ (1.72)

y(t) = Cz(t) + Du(t) 0 = Czye + Duge
That is:

(21 — A) zoe* — Buyge™ =0 sI—-A —-B Lo | 2t _
{ Czye*' + Duge® =0 < C D || u e =0 (1.73)

This relationship holds for a non-zero input vector u(t) = uge® and a
non-zero state vector z(t) = z,e** when the values of s are chosen such that
R(s) is not invertible (R(s) is assumed to be square); in such a situation the
(transmission) zeros are the values of s such that det (R(s)) = 0. We thus
retrieve Rosenbrock’s result.

Example 1.3. Let’s consider the following state-space representation:

i(t) = [ _17 _012 }x(t) + [ (1) }U(’f) (1.74)
yt)=[1 2]

From the identification with the general form of a state-space representation
(1.9) it is clear that D = 0. Furthermore we get the following expression for the
transfer function:

F(s) =C(sI—A)"'B

-t 2[R

s —12 1

(1 2)gdrm | 5 i ][] (179
S

:s2+713+12[1 2]|:1:|

_ 542

T 52475412
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It can be checked the denominator of the transfer function F(s) is also the
determinant of matriz sl — A.

s+7 12

det(sH—A)zdet([ . D:52+7s+12 (1.76)

Furthermore as far as F(s) is the transfer function of a SISO system it can
also be checked that its numerator of can be obtained thanks to the following
relationship:

s+7 12 -1

det([SH(_jA fb:det -1 s 0 =s5+2 (1.77)
1 2 0
Thus the only (transmission) zero for this system is s = —2.

1.6 Faddeev-Leverrier’s method to compute
(sT—A)"!

Let A be a n X n matrix with coefficients in R. Then matrix (sl — A)™',
which is called the resolvent of A, may be obtained by a method proposed by
D.K. Faddeev (Dmitrii Konstantinovitch Faddeev, 1907 - 1989, was a Russian
mathematician). This is a modification of a method proposed by U.J.J. Leverrier
(Urbain Jean Joseph Le Verrier, 1811 - 1877, was a French mathematician who
specialized in celestial mechanics and is best known for predicting the existence
and position of Neptune using only mathematics ®). The starting point of the
method is to relate the resolvent of matrix A to its characteristic polynomial
det (sI — A) through the following relationship:

N(s) B Fos" '+ F1s" 2+...+F,

[-A)*!= —
(s ) det (sI — A) st —dysnl — ... —d,

(1.78)

where the adjugate matrix N(s) is a polynomial matrix in s of degree n— 1 with
constant n x n coefficient matrices Fo,--- ,Fp_1.

The Faddeev-Leverrier’s method indicates that the n matrices Fjp and
coefficients dj, in (1.78) can be computed recursively as follows:

Fo=1
dy = tr (AF()) and F1 = AFy — d1
d2 = %tr (AFl) and F2 = AF1 — dQ]I

d, =  tr (AFy—1) and Fj, = AFj_y — 44l (1.79)

dp = 2 tr (AF,_1)

and det (sl — A) = s —dysvl — o —d,

®https://en.wikipedia.org/wiki/Urbain_Le_ Verrier
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To arrive at the Faddeev-Leverrier’s method we shall compare coefficients of

like powers of s in the following formula which is derived from (1.78):

(sSI—A) (Fos" '+ F1s" 24 -+ F, ) =1(s" —dis" ' — - —dy,) (1.80)

and obtain immediately that matrices Fy are given by:

Fo=1I
= AF, — d;I
Fy = AF; — dol

Fy = AF,_ | — dil

The rest of the proof can be found in the paper of Shui-Hung Hou ¢

Example 1.4. Compute the resolvent of matriz A where:

Sl

Matriz A 1s a 2 X 2 matriz. The Faddeev-Leverrier’s method gives:

Fo=1I
dy = tr (AF(]) = tr (A) =0 and Fi=AF,—-diI=A
do = 7’61“ AF1 —%tr( )

and det(sH—A) 2 d18—d2—82

Then:

. Fes+F; 1[s 1
[—A) 1= 2" — —
(=A== A 52[0 5] [

Ow=
V) vy
w"‘w"_‘
[E—'

Example 1.5. Compute the resolvent of matrizc A where:

a=lo 5]

Matriz A is a 2 X 2 matriz. The Faddeev-Leverrier’s method gives:

Fo=1
dl = tr (AF()) = —4 and F1 = AFO — dlﬂ =

dzzgtr(AFl):;trqg gD =5

and det (sl — A) = s> —dys —dy =s?>+4s—5= (s —1)(s +5)

5 2
0 -1

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

6Shui-Hung Hou, A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial

Algorithm, STAM Review, Vol. 40, No. 3 (Sep., 1998), pp. 706-709
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Then:
~1 _ Fos+F; _ 1 s+5 2
(BI-A)" =S =00 | 0 s—1 ]
. (1.87)
_ [ s—1 (5—1)1(s+5) ]
0 45

Example 1.6. Compute the resolvent of matriz A where:

0 1
A= [ 2 omu ] (1.88)

Matriz A is a 2 X 2 matriz. The Faddeev-Leverrier’s method gives:

Fo=1
d1 = tr (AFU) = —2mw0 and F1 = AFO — dl]I = 21?5;0 (1] :|
2 0 0 (1.89)
1 1 -
dy = 5tr (AFp) = 5tr ([ _47”(2‘)8 o2 }) = —w?
and det (sl — A) = 5% — dys — dy = 8% + 2mwps + w3
Then: . S
- S
(sI-A)" = gatia
B 1 s+ 2mwy 1 (1.90)
T 824 2mwostw? _WS S
|
Example 1.7. Compute the resolvent of matriz A where:
2 -1 0
A=]10 1 0 (1.91)
1 -1 1
Matriz A is a 3 x 3 matriz. The Faddeev-Leverrier’s method gives:
Fo=1
-2 -1 0
dy = tr (AF()) =4 and F1 = AFy — di1 = 0 -3 0
1 -1 -3
—4 1 0
dy = 1tr (AF;) = 5 tr 0 -3 0 =5
-1 1 -3
11 0 (1.92)
Fo = AF; — do]l = 0 20
-1 1 2
2 00
d3=3tr(AFy)=gtr| | 0 2 0 | | =2
0 0 2

and det (sT — A) = 53 — dys® — dgs — d3 = s® — 45> + 55 — 2
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Then:
-1 Fos?+Fis+F
(S]I o A) - Odet‘é_slll—z) ?
s2—2s+1 —s+1 0
= 83748214’5872 0 82 —3s+2 0
s—1 —s+1 2 —3s+2
(s—1)2 —(s—1) 0
= TP 0 (s=2)(s—1) 0
s—1 —(s—1) (s —2)(s—1)
1 —1 0
5—2 (s—1)(s—2)
= 0 = 0
1 —1 1
(s—1)(s—2) (s—1)(s—2) s—1
(1.93)
|

1.7 Matrix inversion lemma

Assuming that Aj; and Agy are invertible matrices, the inversion of a
partitioned matrix reads as follows:

[ A A ]_1 _ [ Q1 ~AA2Q ]
Ag Ay AL ANQ Q2 (1.94)
_ [ Qi —Q1A2A; ] .
—QaAn A Q2
where:
-1 —1
Qi = (A1 — ApASAy) ) (1.95)
Q2= (A — An A Ap)
We can check that:
[ A A | Q AL ALQ | _ [T 0] (1.96)
| As Ag || AL ALQ Q2 1l L0 I .
and that:
[ A A || Q ~QiApAy; ] _ [T 0] (1.97)
Ao Ag | | —QuAnATY Q2 ] Lo I .

Matrix inversion formula can be used to compute the resolvent of A, that
is matrix (s — A)~".
From the preceding relationships the matrix inversion lemma reads as

follows:

_ -1

(A1 — A12A221A21)
_ _ _ -1 _

= A FATADL (A — Ay AT AL) T An A (1.98)

In the particular case of upper triangular matrix where As; = 0, the
preceding relationships simplify as follows:

-1 _ _ _

[ All A12 :| _ [ A111 _A111A12A221

1.
0 Ao 0 A2_21 ( 99)
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Ues) o Y)

s B e

F(s) ——

Figure 1.2: Parallel interconnection of systems

1.8 Interconnection of systems

We will consider in the following the state-space representation resulting from
different systems interconnection. This will be useful to get the state-space
representation of complex models.

Lets consider two linear time-invariant system with transfer functions F(s)

and Fy(s) and state-space representations < C, D, > and <C—2‘D7>

&y(t) = Ay (t) + Biu (1) iy (t) = Aozo(t) + Boy(t)
{ yi(t) = Clzll(t) +D1£(t) and { gz(t) - cﬁj(t) +D2gz(t) (1.100)

The state vector attached to the interconnection of two systems, whatever
the type of interconnection, is the vector z(t) defined by:

z(t) = [ i;gg } (1.101)

The output of the interconnection is denoted y(f) whereas the input is
denoted u(t).

1.8.1 Parallel interconnection

Parallel interconnection is depicted on Figure 1.2. The transfer function F(s) of
the parallel interconnection between two systems with transfer function Fy(s)
and Fy(s) is:

F(S) = Fl(s) + FQ(S) (1.102)

Parallel interconnection is obtained when both systems have a common input
and by summing the outputs assuming that the dimension of the outputs fit:

ut) = uy (t) = uy(t)
{ y(t) = gll(t) + g;(t) (1.103)

The state-space representation of the parallel interconnection is the

A 0O B
(t) = [ 0 A ]x(t) * [ B, ]“(t) (1.104)
y(t)=[ C1 Cz ] z(t) + (D + Dg) u(t)

following:

13-
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U(s) Y(s)
—» F(5) » F(5) —

Figure 1.3: Series interconnection of systems

This result can also be easily retrieved by summing the realization of each
transfer function:

F(s) =Fi(s) +Fa(s)
=Cy(sT— A1) "By + Dy 4+ Ca (sl — Ay) ' By 4+ Dy

— (S]I_Al)_l 0 B1

=[C1 C2] [ 0 (sT— Ay || B + D1 + Dy
—1

o SH—Al 0 B1

_[Cl C2]|: 0 SH—A2:| |:B2:|+D1—|-D2

=[C Cy] <311— [ ‘%1 22 Dl [ g; ] +D; + Dy
(1.105)

The preceding relationship indicates that the realization of the sum Fq(s) 4+
F5(s) of two transfer functions is:

A; O B,
Fl(s) + FQ(S) = 0 A, B, (1.106)
Ci C,|D;+D,

1.8.2 Series interconnection

Series interconnection is depicted on Figure 1.3. The transfer function F(s) of
the series interconnection between two systems with transfer function F;(s) and
Fy(s) is:

F(s) =Fa(s)Fi(s) (1.107)

Series interconnection is obtained when the output of the first system enters
the second system as an input:

uy(t) =y, (t)
y(t) =y, (1) (1.108)
u(t) = uy(?)

The state-space representation of the series interconnection is the following:

15-

A 0 B
t) = { 32(131 Ay ]x(t) + [ B2]131 ]u(t) (1.109)
y(t) = [ D2C; Co Jz(t) + DoDyu(t)
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U(s) N Y(s)
_H/J>< | Fl(s)

L F,(s)

Figure 1.4: Feedback interconnection of systems

1.8.3 Feedback interconnection

Feedback interconnection is depicted on Figure 1.4. To get the transfer function
F(s) of the feedback interconnection between two systems with transfer function
F1(s) and Fy(s) we write the relationship between the Laplace transform Y (s)
of the output vector and the Laplace transform of input vector U(s):

Y(s) =Fi(s) (U(s) — Fa(s)Y(s))
< (I-Fi(s)Fa(s))

Y(s) =F1(s)U(s) (1.110)
& Y(s) = (I—Fi(s)Fa(s)) " Fi(s)U(s)
We finally get:
F(s) = (I— Fi(s)Fay(s)) " Fi(s) (1.111)

As depicted on Figure 1.4 feedback interconnection is obtained when the
output of the first system enters the second system as an input and by feeding
the first system by the difference between the system input u(t) and the output
of the second system (assuming that the dimension fit):

uy(t) = ut) —y,(t) & u(t) = u (t) +y,(t)
y(t) =y, () (1.112)
uy(t) =y, (1)

Thus the state-space representation of the feedback interconnection is the
following:

. B, — B;D;MD
50)= A2+ | g0 Bip DD, |10
. A —B{D;MC;, -B1Cy + BiDsMDCy
F= ByC; — BQDlDQMCl A; —BsD{Csy +BysD{D;MD;Co
M = (I + D;Dy) "

y(®)=M([ G ~DiCs |x(t) + Duu(t))

>

(1.113)
In the special case of an unity feedback we have:

Fy(s) =1« <é—z%> = <%KL2> (1.114)
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Thus the preceding relationships reduce as follows:

i(t) = Ajz(t) + [ B1 - BiK; ((])IJr D)~ Dy ] ult)
Af— [ A, - B1Ky (H(;i' D:K;) ' C, g ] (1.115)

y(t) = 1+ DiKs) " ([ C1 0 Ja(t) + Dyu(t))

It is clear from the preceding equation that the state vector of the system
reduces to its first component x;(¢). Thus the preceding state-space realization
reads:

iy (1) = (A1 BK; (I+DKy)~ cl) 2, () + (31 ~ BiK» (]I+D1)_1D1>g(t)

y(t) = (I+ Dy Ky) ™! (clg:1 ) + Dy ))
(1.116)



Chapter 2

Realization of transfer functions

2.1 Introduction

A realization of a transfer function F(s) consists in finding a state-space model
given the input-output description of the system through its transfer function.
More specifically we call realization of a transfer function F(s) any quadruplet
(A, B, C,D) such that:

F(s)=C(sI—A) 'B+D (2.1)

We said that a transfer function F(s) is realizable if F(s) is rational and
proper. The state-space representation of a transfer function F(s) is then:

{ i(t) = Az(t) + Bu(t)

y(t) = Cz(t) + Duf(t) (2.2)

This chapter focuses on canonical realizations of transfer functions that are
the controllable canonical form, the observable canonical form and the
diagonal (or modal) form. Realization of SISO (Single-Input Single Output),
SIMO  (Single-Input  Multiple-Outputs) and MIMO  (Multiple-Inputs
Multiple-Outputs) linear time invariant systems will be presented.

2.2 Non-unicity of state-space representation

2.2.1 Similarity transformations

Contrary to linear differential equation or transfer function which describe the
dynamics of a system in a single manner the state-space representation of a
system is not unique. Indeed they are several ways to choose the internal
variables which describe the dynamics of the system, that is the state vector
z(t), without changing the input-output representation of the system, that is
both the differential equation and the transfer function.

To be more specific let’s consider the state-space representation (2.2) with
state vector z(¢). Then choose a similarity transformation with an invertible
change of basis matrix P,, which defines a new state vector z,,(t) as follows:

2(t) = Ppz, (t) & z,(t) = P z(t) (2.3)



34 Chapter 2. Realization of transfer functions

Then take the time derivative of z,,(t):
&, (t) = Py &(t) (2.4)

The time derivative of z(t) is obtained thanks to (2.2). By replacing z(t) by
z, (t) we get:
i(t) = Az(t) + Bu(t) = APz, (t) + Bu(t) (2.5)

Thus we finally get:

z,(t) = P li(t) = P, 1 APz, (t) + P, 'Bu(t) (2.6)
y(t) = CPz, (t) + Du(?) |
We can match the preceding equations with the general form of a state-space
representation (2.2) by rewriting it as follows:

{ &, (1) = A ny(t) + Bru(t) (2.7)
y(t) = Cpz,,(t) + Du(t) '
Where:

A, =P AP,

B,=P,'B (2.8)

C,=CP,

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

Now let’s focus on the transfer function. With the new state vector z,,(t)
the transfer function F(s) has the following expression:

F(s)=Cp(sI—A,) 'B,+D (2.9)

Using the expressions of (2.8) to express A,, B, and C, as a function of
A, B and C we get:

F(s) = CP, (sI— P, 'AP,) "

P,'B+D (2.10)
Now use the fact that I = P;'P,, and that (XYZ)™' = Z7'Y1X"! (as
soon as matrices X, Y and Z are invertible) to get:
F(s) =CP, (sP,'P,—P;'AP,) 'P,'B+D
— CP, (P, (s1— A)P,) 'P,'B+D
=CP,P;!(sI-A)"'P,P;'B+D
=C(sI-A)'B+D

(2.11)

We obviously retrieve the expression of the transfer function F(s) given by
matrices (A,B,C,D). Thus the expression of the transfer function is
independent of the choice of the state vector.
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2.2.2 Inverse of a similarity transformation

Let vq,vs, -, v, be the n vectors which form matrix P,,:
Po=[v v - v, ] (2.12)

As far as matrix P,, is invertible vectors vy, vy, - - ,v,, are independent. Let
z(t) = Ppz, (t). Denoting by x,1, p2, - , Tnn the components of vector z,,(t)
we get:

Tn2
2,0 = | | = 2(t) = Pazy(t) = 21y + Tnovy + o B, (213)

Tnn

Thus the state vector z(t) can be decomposed along the components of the
change of basis matrix P,.
The inverse of the change of basis matrix P,, can be written in terms of rows

as follows:
Pl = wf (2.14)
wl]
Since P, 'P,, = I it follows that:
w:i;yl w?yz wiyn
plp, — | oot R A g (2.15)
whoy whvy - MTLQ
Hence the relationship between vectors w; and v, is the following:
wlv; = { (1) i z ;‘; (2.16)

2.3 Realization of SISO transfer function

We have seen that a given transfer function F(s) can be obtained by an infinity
number of state-space representations. We call realization of a transfer function
F(s) any quadruplet (A, B, C, D) such that:

F(s)=C(sI—A)'B+D (2.17)

The preceding relationship is usually written as follows:

F(s) = (%‘%) (2.18)
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We consider the following Single-Input Single-Output (SISO) transfer
function which is composed of the sum between a strictly proper rational
fraction and a constant value d:

Y(s) _

T = ) =5y +4 (2.19)

Where N(s) and D(s) are polynomials in s such that the degree of N(s) is
strictly lower than the degree of D(s):

{ D(s)=ag+ a5+ -4 ap_15" 1 +1x 5" (2.20)

N(s)=nog+ns—+--+np_15""

It is worth noticing that polynomial D(s) is assumed to be a monic
polynomial without loss of generally. This means that the leading coefficient
(that is the coefficient of s™) of D(s) is 1. Indeed D(s) is identified to
det (sI — A).

When identifying (2.19) with (2.17) we get:

d=D = lim F(s) (2.21)

S5—00

Thus all we need now is to find a triplet (A, B, C) such that:

N(s)

—C(sI—A)! .
D(S)—C(]I A" B (2.22)

2.3.1 Controllable canonical form

One solution of the realization problem is the following quadruplet:

[0 1 0 0
0 0 1 0
A= 0
0 0 0 1
L —@ —a1 —az - —Gp-1 |
0
0 (2.23)
B. =
. 1 -
C.= [ nNo N1 -+ Np-2 Np-1 }
D=d

The quadruplet (A, B¢, Ce,d) is called the controllable canonical form of
the SISO transfer function F(s).
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Alternatively the following realization is also called the controllable
canonical form of the SISO transfer function F(s). Compared with (2.23)
value 1 appears in the lower diagonal of the state matrix which is obtained by
choosing a similarity transformation with value 1 on the antidiagonal (or
counter diagonal):

0 0 O —ay
1 0 0 —aq
Aw=10 —ay
. 0 :
(0 - 0 1 —an |
S
. (2.24)
Bca —
0
- 0 -
Cea=[Nn-1 Nn—2 -+ n1 ng |
D=d

To get the realization (2.23) we start by expressing the output Y'(s) of SISO
system (2.19) as follows:
Uls)
D(s)

Y(s) = N(s)

(s) (2.25)

Now let’s focus on the following intermediate variable Z(s) which is defined
as follows:

U(s) U(s)
Z p—y p—y 2.2
() D(s) ap+ais+ags®+---+ap_15" 1 +s" (2:26)

That is:
a0Z(s) + a15Z(s) + a9s’Z(8) + -+ 4+ an_15""Z(s) + s"Z(s) = U(s) (2.27)
Then we define the components of the state vector z(t) as follows:

1 (t) := z(t)
xa(t) = @1 (t) = £(t)
x3(t) := do(t) = £(¢) (2.28)

T (t) 1= Ep_1(t) = 27 D(2)
Coming back in the time domain Equation (2.27) is rewritten as follows:

apz1(t) + a1z2(t) + agxs(t) + -+ - + ap—120(t) + n(t) = u(t)

& @ (t) = —apr1(t) — arxe(t) — agw3(t) — -+ — ap—12,(t) + u(t) (2.29)



38 Chapter 2. Realization of transfer functions

The intermediate variable Z(s) allows us to express the output Y(s) as
follows:

Y(s)=N(s)Z(s)+dU(s) = (no+ -+ +np_18""1) Z(s) +dU(s)  (2.30)
That is, coming back if the time domain:
y(t) = noz(t) + - 4+ np_12" V(@) + du(t) (2.31)

The use of the components of the state vector which have been previously
defined leads to the following expression of the output y(t):

y(t) = nox1(t) + - + np_12,(t) + du(t) (2.32)

By combining in vector form Equations (2.28), (2.29) and (2.32) we retrieve
the state-space representation (2.23).

Thus by ordering the numerator and the denominator of the transfer function
F(s) according to the increasing power of s and taking care that the leading
coefficient of the polynomial in the denominator is 1, the controllable canonical
form (2.23) of a SISO transfer function F(s) is immediate.

Example 2.1. Let’s consider the following transfer function:

(s+1)(s+2)  s*+3s+2
2(s+3)(s+4) 252+ 14s+24

F(s) = (2.33)
We are looking for the controllable canonical form of this transfer function.
First we have to set to 1 the leading coefficient of the polynomial which

appears in the denominator of the transfer function F(s). We get:

055+ 15s+1

F(s) =
) = T 275+ 12

(2.34)

Then we decompose F(s) as a sum between a strictly proper rational fraction
and a constant coefficient d. Constant coefficient d is obtained thanks to the
following relationship:

2
d= lim F(s) = lim 010541

=0.5 2.35
5500 5001 X §2 4+ 7s+ 12 ( )

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F(s):

N 0.552 + 1.55 + 1 —25—5
() _ prgy g 058 TS L5 72575 (2.36)
D(s) 1xs24+7s+12 2+ Ts+12
We finally get:
N —25—9
Py =Y g =% +0.5 (2.37)

D(s) 24+ T7s4+12 7
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Then we apply Equation (2.23) to get the controllable canonical form of F(s):
0 - 0 1
—ay | | —12 -7

} (2.38)

2.3.2 Poles and zeros of the transfer function

It is worth noticing that the numerator of the transfer function only depends on
matrices B and C whereas the denominator of the transfer function is built from
the characteristic polynomial coming from the eigenvalues of the state matrix
A.

As far as the transfer function does not depend on the state space realization
which is used, we can get this result by using the controllable canonical form.
Indeed we can check that transfer function C,. (sI — Ac)f1 B. has a denominator
which only depends on the state matrix A, whereas its numerator only depends
on C,., which provides the coefficients of the numerator:

* ok 0
1 * ok S
I-A)'B., =

(s ) det(sI—Ag) | @ @ 0
x % gL
: (2.39)

C S
=C,(s[-A)'B, =—°

(s ) det (s — Ao) |

n—1

S

More generally, the characteristic polynomial of the state matrix A sets
the denominator of the transfer function whereas the product B C sets the
coefficients of the numerator of a strictly proper transfer function (that is a
transfer function where D = 0). Consequently state matrix A sets the poles of
a transfer function whereas product B C sets its zeros.

2.3.3 Similarity transformation to controllable canonical form

We consider the following general state-space representation:

i(t) = Az(t) + Bu(t)
{ y(t) = Cz(t) + Du(?) (2.40)

where the size of the state vector z(t) is n.
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Use of the controllability matrix

The controllable canonical form (2.23) exists if and only if the following matrix
Q., which is called the controllability matrix, has full rank:

Q.=[B AB .- A"B] (2.41)

As soon as the characteristic polynomial of matrix A is computed the state
matrix A. as well as the control matrix B, corresponding to the controllable
canonical form are known. Thus the controllability matrix in the controllable
canonical basis, which will be denoted Q., can be computed as follows:

Qc=[B. AB, -+ A''B. ] (2.42)

At that point matrices A, and B, are known. The only matrix which need
to be computed is the output matrix C.. Let P, be the change of basis matrix
which defines the new state vector in the controllable canonical basis. From
(2.8) we get:

C.=CP, (2.43)

And:

_ —1
{ Ac=P; AP (2.44)

B.=P;!B

Using these two last equations within (2.42) and the fact that (P;lAPC)k =
PC_IAPC---PC_IAPC = Pc_lAk’Pc, we get the following expression of matrix

k—t;rrnes
Qcc:
Qe = [ B. AB. - A?_ch ]
= [ P;'B P_!AP.P;'B - (P;lAPC)"‘nglB}
= [P;'B P;'AB --- P;'A"'B] (2.45)
=P;![B AB .- A"'B]
= Pngc

We finally get:
Pl =Q.Q;' & P.=QQ; (2.46)
Furthermore the controllable canonical form (2.23) is obtained by the
following similarity transformation:

z(t) = Pex (t) & z,(t) = P a(t) (2.47)

Alternatively the constant nonsingular matrix P_ ! can be obtained through
the state matrix A and the last row QCT of the inverse of the controllability
matrix Q. as follows:

* q"
T
Ql=| i |apio]| % A (2.48)
C % C : .
qT qTAnfl

C —C
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To get this result we write from (2.8) the following similarity transformation:
A, =P 'AP. = AP' =P 'A (2.49)

Let’s denote det (sI — A) as follows:
det (sI — A) =s" + Un_18" V4 -+ ais+ag (2.50)

Thus the coefficients a; of the state matrix A, corresponding to the
controllable canonical form are known and matrix A, is written as follows:

0 1 0 0
0 0 . 0
A= . . 0 (2.51)
0 0 0 1
| —@ —a1p —az -+ —0ap-1 |
Furthermore let’s write the unknown matrix P! as follows:
ri
P l=| : (2.52)
7T

—n

Thus the rows of the unknown matrix P! can be obtained thanks to the
following similarity transformation:

] AP =P A
0 1 0 0
0o 0 1 0 ri r (2.53)
& 0 = A '
0 0 0 1 rk rkh
| —@ —a1 —az -+ —0np-1 |

Working out with the first n — 1" rows gives the following equations:

%:%A T A2
ra =15 A =1r7 A
oo (2.54)

rp =1, A=r]A"

Furthermore from (2.8) we get the relationship B, = P_.!B which is
rewritten as follows:

0
rT 0 B =0
P'B=B.,< | : |B=|:|a{" 2.55
c c %T (_) B0 (2.55)
- r’B=1
1 -n
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Combining (2.54) and (2.55) we get:

rTB=0
rIB=rTAB =0
: (2.56)
rI B=rIfA" 2B =0
r’B=rTA" B =1
These equations can in turn be written in matrix form as:
r{[B AB -+ A"2B A"'B|=[00 - 0 1] (2.57)
Let’s introduce the controllability matrix Q.:
Q.=[B AB - A"'B] (2.58)
Assuming that matrix Q. has full rank we get:
r{Q.=[00 - 0 1]erf=[00 - 0 1]Q," (2.59)

From the preceding equation it is clear that r! is the last row of the inverse
of the controllability matrix Q.. We will denote it QCT:

ri =gl (2.60)

Having the expression of r7 we can then go back to (2.54) and construct all
the rows of P_ L.

Example 2.2. We consider the following general state-space representation:

gt b .
where:
i
o [ i } (2.62)
C=[7 —4]
D=05

We are looking for the controllable canonical form of this state-space
representation.
First we build the controllability matriz Q. from (2.41):

2 -3 } (2.63)

Q=[B AB]:[4 —25
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To build matriz Q.. let’s compute det (sl — A):
det (sT — A) = s> + ays 4+ ag = 52 + 7s + 12 (2.64)

As soon as matriz A. is built from the denominator of the transfer function,
that is from det (sl — A), we get:

we[B AN ] e

Furthermore matriz B, is straightforward for the controllable canonical form:

B.= [ (1) } (2.66)
Thus we are in position to compute matric Qee :
0 1
Qcc = [ Bc Ach ] = [ 1 —7 :| (267)

Then we use (2.46) to build the similarity transformation:
2 —131[0 117"
_ -1 _ -
Pe =QQc _[4 —25H1 —7}

:[i _;QHIH (2.68)

-[5 3]

Alternatively we can use (2.48) to build the similarity transformation:

%=z { o } B { g*T ] (2.69)

T
-1 _ QC . -2 1
Pe = [qCTA ] - [ 15 —0.5 } (2.70)

Using the similarity relationships (2.8) we finally get the following
controllable canonical form of the state-space representation:

-2 1 285 —175 [ 1 2 0 1
—_p-1 — —
Ae =P APC_[1.5 —0.5“58.5 —35.5“3 4}_[—12 —7]
-2 1 2 0
—_pPlrp = —
S aarEninEn
C.=CP.=[7 —4] L2 =[-5 -2]
Cc Cc 3 4

(2.71)
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Tterative method

Equivalently change of basis matrix P, of the similarity transformation can be
obtained as follows:
Po=[c¢ e - ¢ (2.72)
where:
det (s — A) = s" 4+ a,_ 15" '+ -+ a5+ ag
¢, =B (2.73)
g =Ac 1 +aB Vn-1>2k>1

To get this result we write from (2.8) the following similarity transformation:
A.=P_'AP. = P.A, = AP, (2.74)

Let’s denote det (sI — A) as follows:
det (sI— A) =s" +a,_15" 1+ +ais+ag (2.75)

Thus the coefficients a; of the state matrix A, corresponding to the
controllable canonical form are known and matrix A, written as follows:

0 1 0 0
0 0 1 . 0
A= o (2.76)
0 0 0 1
| —a0 —a1 —az -+ —ap—1 |

Furthermore let’s write the unknown change of basis matrix P, as follows:
P.= [ c C oG ] (2.77)

Thus the columns of the unknown matrix P, can be obtained thanks to the
similarity transformation:

P.A. = AP,
[0 1 0 0 ]
0 0 1 0
0 0 0 1
L —d —a1 —az -+ —Gp-1 |
(2.78)
That is:
0 = aoc, + Acy
¢ = aic, + Ac —
.1 1S, 2 - 0=aopc, + Acy (2.79)
: e =Actage, Yn—-1>2k2>1

Cph_1 = an—1¢, + Ac,
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Furthermore from (2.8) we get the relationship B, = P_!B which is
rewritten as follows:

PB.=B& ¢ ¢ - ¢, || |=B=c¢

n

-B (2.80)

1

Combining the last equation of (2.79) with (2.80) gives the proposed result:

c, =B
{Ck:ACk+1+akB Yn—1>k>1 (2.81)

Example 2.3. We consider the following general state-space representation:

e s
where:
A= |5 ]
e [ i } (2.83)
C=[7 —4]
D=0.5

This is the same state-space representation than the one which has been used
in the previous example. We have seen that the similarity transformation which
leads to the controllable canonical form is the following:

_ -2 1
Pol = [ 1.5 —0.5 ] (284)

It is easy to compute matriz P, that is the inverse of P_1. We get the
following expression:

P, = [ :1)) i ] (2.85)

We will check the expression of matriz P, thanks to the iterative method
proposed in (2.73). We get:

det (sT — A) = s% + 7s + 12
2
e=B= [4} (2.86)

285 —175 ][ 2 2 1
CIZACQ+“1B:[58.5 —35.5“4]+7{4}:[3]
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Thus we fortunately retrieve the expression of matriz P.:

P.=[¢ cg]z[;i] (2.87)

2.3.4 Observable canonical form

Another solution of the realization problem is the following quadruplet:

[0 0 0 —ag |
1 0 0 —aq
Ao=10 1 0 —as
0 0 1 —anq
e T
n1 (2.88)
B, = :
Nip—2
L "n-1
Co=[0 0 0 1]
D=d

The quadruplet (A,, B,, Co, d) is called the observable canonical form of the
SISO transfer function F(s).

Alternatively the following realization is also called the observable
canonical form of the SISO transfer function F(s). Compared with (2.88)
value 1 appears in the upper diagonal of the state matrix which is obtained by
choosing a similarity transformation with value 1 on the antidiagonal (or
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counter diagonal):

( 0 1 0 0
0 0 1 0
Aoa = 0
0 0 0 1
| —@ —a1 —az - —Gp-1 |
i Np—1
o (2.89)
Boa =
ni
L "o
Cou=[10 - 0 0]
D=d

To get the realization (2.88) we start by expressing the output Y (s) of SISO
system (2.19) as follows:

Y(s) _ N(s)

U(s)  D(s)

+d< (Y(s)—dU(s)) D(s) = N(s)U(s) (2.90)
That is:

(ao + a1s +ags* + -+ + an_18" 1 +5") (Y(s) —dU(s))
= (no+m1s+-+n,_1s" ) U(s) (2.91)

Dividing by s™ we get:

<@+ ho = +---+a”_1+1)(Y(8)—dU(8))

no ni n2 Nn—1
= (37+sn—1 t ot )U(S) (2.92)

When regrouping the terms according the increasing power of % we obtain:

Y(s)=dU(s) + % (an—1U(8) — an—1Y(s)) + ;12 (an—2U(s) —an—2Y(s)) +

it Sin (aoU(s) — apY (s)) (2.93)

Where:
That is:

Y(S) = dU(S) + % <an—1U(3) — an—IY(S) + % <an_2U(S) — an_gY(s) ) -+

% ( o % (a0l (s) — a0 (s) )>)> (2.95)
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Then we define the Laplace transform of the components of the state vector
z(t) as follows:

2U(s) — a2Y (s) + Xa(s) (2.96)

So we get:

Y(s) = dU(s) + é(sXMs)) = dU(s) + Xn(s) (2.97)

Replacing Y (s) by X,,(s) and using the fact that «; = n; + da; Equation
(2.96) is rewritten as follows:

(sXi1(s) =agU(s) —ao (dU(s) + Xn(s))
= —apXn(s) +noU(s)
sXa(s) =a1U(s) —a1 (dU(s) + Xn(s)) + Xi(s)
= Xi(s) — a1 Xp(s) + nU(s)
sX3(s) = aaU(s) —az (dU(s) + Xn(s)) + Xa(s) (2.98)
= Xs5(s) — a2 Xy (s) + naU(s)

=
»

SXn(S). = ap—1U(s) = ap—1 (AU (s) + Xn(s)) + Xp-1(s)
= n_l(s) — an_an(s) + TLn_lU(S)

Coming back in the time domain we finally get:

21(t) = —apzn(t) + nou(t)
To(t) = x1(t) — arzy(t) + niu(t)
3(t) = w2(t) — agwn(t) + nou(t) (2.99)

() = T 1(t) — an_12n(t) + nn_1u(t)

And:
y(t) = xn(t) + du(t) (2.100)

The preceding equations written in vector form leads to the observable
canonical form of Equation (2.88).

Thus by ordering the numerator and the denominator of the transfer function
F(s) according to the increasing power of s and taking care that the leading
coefficient of the polynomial in the denominator is 1, the observable canonical
form (2.88) of a SISO transfer function F(s) is immediate.

Example 2.4. Let’s consider the following transfer function:

(s+1)(s+2) s2+3s+2
Fls) = _ 2.101
) = T3t a) 22 ds A (2.101)
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We are looking for the observable canonical form of this transfer function.
As in the preceding example we first set to 1 the leading coefficient of the
polynomial which appears in the denominator of the transfer function F(s). We
get:
055+ 15s+1

F —
) = T 2775+ 12

(2.102)

Then we decompose F(s) as a sum between a strictly proper rational fraction
and a constant coefficient d. Constant coefficient d is obtained thanks to the
following relationship:

, . 05s?+1.55+1
d= SIL%F(S> o slilgo 1 x 82 + 7s+ 12 =05 (2103)
Thus the strictly proper transfer function N(s)/D(s) is obtained by

subtracting d to F(s):

N(s) 0.5s% 4+ 1.5s + 1 —25—5
— F(s) —d — B P 2.104
D) 1@ 1x 8%+ 7s + 12 s2+7s + 12 (2.104)
We finally get:
N(s) —25—5
F(s) = == - 0. 2.1
() D(s) d 2+ 7s+12 +0:5 (2.105)

Then we apply Equation (2.88) to get the observable canonical form of F(s):

S b o el
B, = [ Z(l] } B [ :g} (2.106)
Co=[0 1]
D =05

2.3.5 Similarity transformation to observable canonical form

We consider the following general state-space representation:

{ i(t) = Az(t) + Bu(t) (2.107)

y(t) = Cz(t) + Du(t)

where the size of the state vector z(t) is n.
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Use of the observability matrix

The observable canonical form (2.88) exists if and only if the following matrix
Q,, which is called the observability matrix, has full rank:

C

CA
Qo = : (2.108)

CA™!

As soon as the characteristic polynomial of matrix A is computed the state
matrix A, as well as the output matrix C, corresponding to the observable
canonical form are known. Thus the observability matrix in the observable
canonical basis, which will be denoted Q,,, can be computed as follows:

Co
C.A,
Qoo = : (2.109)

C,A"1

At that point matrices A, and C, are known. The only matrix which need
to be computed is the control matrix B,. Let P, be the change of basis matrix
which defines the new state vector in the observable canonical basis. From (2.8)
we get:

B,=P,'B (2.110)
And:

_ —1
{ A, =P, AP, (2.111)

C,=CP,
Using these last two equations within (2.109) leads to the following
expression of matrix Q,:

C, CP,
C,A, CP,P,'AP,
Qoo = . = :
| CoAT! CP, (P,'AP,)""
[ CP, C (2.112)
CAP, CA
= . = . P,
| CA™'P, CAn-!
= QOPO
We finally get:
P,=Q,'Qu < P, =Q,'Q, (2.113)

Furthermore the observable canonical form (2.88) is obtained by the
following similarity transformation:

2(t) = Poz,(t) & z,(t) = P, a(t) (2.114)
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Alternatively the constant nonsingular matrix P, can be obtained through
the state matrix A and the last column q, of the inverse of the observability
matrix Q, as follows:

Ql=[* - x ¢ |=>P,=[q Ag - A"!qg | (2.115)
To get this result we write from (2.8) the following similarity transformation:
A,=P,'AP, < P,A, = AP, (2.116)

Let’s denote det (sI — A) as follows:

det (sT — A) = 5" 4+ ap_15" 1+ +ays+ ag (2.117)

Thus the coefficients a; of the state matrix A, corresponding to the
observable canonical form are known and matrix A, is written as follows:

[0 0 0 —ay |
1 0 0 —aq
Ao=10 1 0 " —a (2.118)
L 0 0 1 —Up—1 i

Furthermore let’s write the unknown matrix P, as follows:
Po=[c - ¢ ] (2.119)

Thus the columns of the unknown change of basis matrix P, can be obtained
thanks to the following similarity transformation:

P,A, = AP,
0 O 0 —ag
1 0 0 —aq
<:>[§1 Qn] 0 1 0 —a9 _A[Cl Qn]
0 0 1 —an1 |

(2.120)
Working out with the first n — 1** columns gives the following equations:

¢ = Acq

ca = Ac, = Ac
ST A (2.121)
=Ac, | =A"¢g

Cn
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Furthermore from (2.8) we get the relationship CP, = C,, which is rewritten
as follows:

Cp,=0C,
@C[Ql gn]:[o e 0 1}

Cc =0

Ccy, =0 (2.122)
A

Cec,_1=0

Cc, =1

Combining (2.121) and (2.122) we get:

Ccy =0

Ccy =CAc; =0
: (2.123)
Cc, 1 =CA" %¢c, =0
Cc, =CA" ¢, =1

These equations can in turn be written in matrix form as:

C 0
CA 0
g ¢ =1 (2.124)
CA"2
| CA™! ] 1

Let’s introduce the observability matrix Q,:

C

CA
Qo = : (2.125)

CAnfl

Assuming that matrix Q, has full rank we get:

0 0
0 0

Qo= |ea=Q"|: (2.126)

1 1

From the preceding equation it is clear that c¢; is the last column of the
inverse of the observability matrix Q,. We will denote it q,

(2.127)

Having the expression of ¢; we can then go back to (2.121) and construct
all the columns of P,,.
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Example 2.5. We consider the following general state-space representation:

{H e -
where:
A= m T
e [ i } (2.129)
C=[7 —4]
D=0.5

We are looking for the observable canonical form of this state-space
representation.
First we build the observability matriz Q, from (2.108):

C 7 —4
Qo = [ CA } - { 345 19.5 ] (2.130)
To build matriz Qo let’s compute det (sI — A):
det (s1 — A) = s> + ays 4+ ag = s> + 7s + 12 (2.131)

As soon as matriz A, is built from the denominator of the transfer function,
that is from det (sI — A), we gel:

2 I ) B

Furthermore matriz C, is straightforward for the observable canonical form:
Co=[0 1] (2.133)

Thus we are in position to compute matriz Qupo -

Qoo = { C(ojf&o ] = [ (1) _17 } (2.134)

Then we use (2.113) to build the similarity transformation:

e 7 =470 o1
Po =Q Q""_[—34.5 19.5] [1 —7}
oy [195 470 1
_1-5[34.5 7“1 —7}
-195 —-41[0 1
[—34.5 —7“1 —7}

-4 8.5
-7 145

(2.135)

win

Wi
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Alternatively we can use (2.115) to build the similarity transformation:
—-195 —4
-1 _2 _
Q _3[—34.5 —7]_[* 4, |

:qozﬁ{_ﬂ (2.136)

And:

(2.137)

-4 8.
P,— [ g 85]

2
o Aqo}:?)[—? 14.5

Using the similarity relationships (2.8) we finally get the following observable
canonical form of the state-space representation:

145 —85 ][ 285 —17.5 -4 85 0 —12
_p-! — 2 =
Ao=F APo=| 7 } [58.5 —35.5]3[—7 14.5} {1 —7 ]
145 —85 [ 2 -5
—Pplp — —
morene [ [R5
-4 85
_ - 472 =
Co=CP,=[7 4}3[_7 1405] [0 1]
(2.138)
L]

Iterative method

Equivalently the inverse of the change of basis matrix P, of the similarity
transformation can be obtained as follows:

Pl=1" (2.139)

o

where:
det (s — A) = s" +a,_15" 1+ +ai1s+ag
rl' =C (2.140)

zfzz{HA—i—akC Vn—-1>k>1

To get this result we write from (2.8) the following similarity transformation:

A,=P,'AP, < AP, =P, 'A (2.141)
Let’s denote det (sI — A) as follows:
det (sI— A) = 5"+ a,_ 15" 1+ +ais+ag (2.142)

Thus the coefficients a; of the state matrix A, corresponding to the
observable canonical form are known and matrix A, is written as follows:

[0 0 0 —ag
1 0 0 —aj

Ao=10 1 0 " —a (2.143)
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Furthermore let’s write the inverse of the unknown change of basis matrix
P, as follows:

(2.144)

Thus the columns of the unknown matrix P, can be obtained thanks to the
similarity transformation:
APl =P A

o

00 0 —ag
T T
10 0 " —a . .
_ L) L) (2.145)
<10 1 0 . —a = . |A
: r rl
0 0 1 —ap

That is:

—aor), =11 A

T T _ T

ri —airy, =r3 A o[ 0=r{A+ao]

: ri=ri  Atar] Vn-1>k>1

T T _ ,.T
Tho1— Gn-1Typ =TpA

(2.146)

Furthermore from (2.8) we get the relationship C, = CP,, which is rewritten
as follows:

cP;'=Ce[0 - 01]] P |=c=>L=cC (2.147)

o

Combining the last equation of (2.146) with (2.147) gives the proposed
result:

r, =C
{ ££Z££+1A—|—akc Vn—-1>k>1 (2.148)

Example 2.6. We consider the following general state-space representation:

2 (2.149)
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where:
28.5 —17.5
A= [ 58.5 —35.5 }
2
13"'[ 4 } (2.150)
C=[7 —4]
D=05

This is the same state-space representation than the one which has been used
in the previous example. We have seen that the similarity transformation which
leads to the controllable canonical form is the following:

2[ -4 85
Po=3 [ —7 145 } (2.151)

It is easy to compute matriz P; L, that is the inverse of P,. We get the

o 7
following expression:

Pl =

o

[ 14.5 -85 ] (2.152)

7 —4

We will check the expression of matriz P, thanks to the iterative method
proposed in (2.140). We get:

det (sl — A) = 52 + 7s + 12
ry=C=[7 —4]
28.5 —17.5
T _ T _ _
rf=rfA+aC=[7 —4] [ Fe5 355 } +7[7 —4]=[145 -85 ]
(2.153)
Thus we fortunately retrieve the expression of matriz P, t:
T
1| rp | | 145 -85
e[ ]o 1 215t
]

2.3.6 Diagonal (or modal) form

One particular useful canonical form is called the diagonal (Jordan) or modal
form. The diagonal form is obtained thanks to the partial fraction expansion of
transfer function F'(s). This is a diagonal representation of the state-space model
when all the poles of F'(s) are distinct; otherwise this is a Jordan representation.
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Transfer function with distinct poles

Assume for now that transfer function F(s) has distinct poles A;. Then the
partial fraction expansion of F(s) reads:

Y(s) _ F(s) = NGs) 4 g
N(s)_ d (2.155)
2811)\1+ T +...+si&n+d

Number r; is called the residue of transfer function F(s) in A;. When the
multiplicity of the pole (or eigenvalue) \; is 1 it is clear from the preceding
relationship that the residue r; can be obtained thanks to the following formula:

ri = (8 = X)F(8)] =y, (2.156)
Now we define constants b; and ¢; such that the product b;c; is equal to r;:
i = b; (2.157)

Consequently transfer function F'(s) can be written as follows:

c1 by co by cn by

Fls) = d 2.158
() 55— A1 s—)\2+ s—/\n+ ( )
Then we define the Laplace transform of the components
x1(t),xza(t), -+ ,x,(t) of the state vector z(t) as follows:
Xi(s) _ b
U(s) — s—\1
Xa(s) _ by
Ule) ™ = (2.159)
Xals) _ b,

U(S) 5—An

Using (2.159) transfer function F'(s) can be written as follows:

D s s R TRV
=Y (s) = 1 X1(8) + caXa(s) + -+ + cn Xn(s) + dU(s)
Coming back to the time domain we get;:
y(t) = crz1(t) + coxa(t) + - - - + cpzp(t) + du(t) (2.161)
Whereas in the time domain (2.159) reads:
5:61@) = Mz1(t) + bru(t)
'acg(t) = Aaxa(t) + bou(t) (2.162)

() = Anan(t) + bu(t)

Equations (2.162) and (2.161) lead to the following state-space
representation, which is called the diagonal (Jordan) or modal form:



58 Chapter 2. Realization of transfer functions

i(t) = Az(t) + Bul(t)
2.163
{ y(t) = Cr(t) + Duft) (2.163)
where: )
( A0 0
A 0 X
0
| 0 0 M\,
b
by (2.164)
B = .
L bn
C= [ c1 C2 Cn, ]
D=d

Example 2.7. Let’s consider the following transfer function:

(s+1)(s+2)  s*+3s+2

F(s) = _
) = )+ 27+ 145 1 24

(2.165)

We are looking for the diagonal form of this transfer function.
First we have to set to 1 the leading coefficient of the polynomial which
appears in the denominator of the transfer function F(s). We get:

_ 0.552 + 1.5s + 1

F(s) =
) = T e rms s 12

(2.166)

Then we decompose F(s) as a sum between a strictly proper rational fraction
and a constant coefficient d. Constant coefficient d is obtained thanks to the
following relationship:

, . 0552 +15s5+1
d=lm F(s) = lim = e~ 05 (2.167)

Thus the strictly proper transfer function N(s)/D(s) is obtained by
subtracting d to F(s):

N(s) 0.55% + 1.55 + 1 —25—5
_ I 05 = —— - 2.168
D(s) () 1xs2+7s+12 s+ T7s+ 12 ( )

The two poles of F(s) are —3 and —4. Thus the partial fraction expansion
of F(s) reads:

1 T2 r1 T2
 s+3 s+4 s+3 s+4

—05 (2.169)
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where the residues r1 and ro are:

r = (s+3)F(s)|,__, STt _ (2341(=3+42)

2(+4)  |y__3  2(-3+9) (
s 2.170)
541) (542 —441)(—442
rgzz(S—F4)PTSﬂs=f4(<;215-)S:_4::( izlgsr) ==
We finally get:
N(s) 1 -3
F(s) = =_- 4= ) 2.171
() D(s) s+3 s+4+05 (2.171)
Restdues r1 and ro are expressed for example as follows:
7”1:1:1><1261><b1
{ 7’2:—3:—3X1262Xb2 (2.172)

Then we apply Equation (2.164) to get the diagonal canonical form of F(s):
(o [x 0] [-3 0
A= n =10 4

B_[Z”_[—lzs} (2.173)

C:[cl CQ]:[I 1]

D=d=05

Similarity transformation to diagonal form

Assume that state matrix A has distinct eigenvalues A;. Starting from a

realization ( ‘é 5 ) let Py, be the change of basis matrix such that:

AL O 0
A= | 0N | =p;lAP,, (2.174)
0 0 An

We will denote P, as follows:
Pn=[v v - v,] (2.175)

It can be seen that vectors v, are the eigenvectors of matrix A. Indeed let

A; be an eigenvalue of A. Then:
AQ1 = )\121
: (2.176)

Av, = Ao,
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Writing this equation in vector form leads to the following relationship:

A0 0
(o vy - w, ] 9 Ao =Alv v - v, | (2177)
: " 0
0 - 0 A
That is:
A0 0
p,| O % " | =AP, (2.178)
0 0 An
Or equivalently:
A0 0
0 A =P, 'AP,, (2.179)
: i 0
0 --- 0 A\

The inverse of the change of basis matrix P,, can be written in terms of rows

as follows:
wi
T
w
pl=| 7’ (2.180)

T
n

g ...

It can be seen that vectors w; are the eigenvectors of matrix A”. Indeed
let \; be an eigenvalue of A, which is also an eigenvalue of AT as far as
det (sI — A) = det (sI — A)T = det (sI — AT). Then:

ATw; = \w; = wl' A = \w! (2.181)

Thus by multiplying by v; and using the fact that v, is an eigenvector of A,
that is ij = )\jyj, we get:

)\iw;fpgj = Q?ij = /\jwfyj = (N — )\j)MiTyj =0 (2.182)

Since \; # A\ Vi # j we finally get:
wiv; =0if i #j (2.183)

As far as w; and v; are defined to within a constant we impose QZTQ]' =
1if ¢ = 5. Consequently:

Lifi— i

QTU _ Irr=7

T, {Oifi;«éj (2.184)
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Transfer function with complex conjugate pair of poles

If some of the poles are complex so are the residues and so is the diagonal form.
This may be inconvenient. We will see hereafter how to retrieve real matrices
corresponding to the diagonal form.
Assume that A and A is a complex conjugate pair of poles of F(s):
T 1

Fls)= =5+ —5 (2.185)

Let « be the real part of the pole A and  its imaginary part:
A=a+jfer=a—jB (2.186)

According to the preceding section the state-space representation of F'(s) is
the following:

A — A0 [ a+jpB 0
Tl o0oN | 0 a—jpB
_ | b
B = [bl } (2.187)
Cm = [ 1 C1 ]
D=0
Where:
r1 =bicg =71 = 5151 (2.188)

It is clear that the diagonal form of transfer function F'(s) is complex. From
the preceding realization we get the following equations:

d1(t) = (o + jB) w1 (t) + bru(t)
{ io(t) = (a — jB) xa(t) + bru(t) (2.189)

We deduce from the preceding equation that the state components x1(t) and
x9(t) are complex conjugate. Let zr(t) be the real part of x;(t) and z(t) its
imaginary part:

z1(t) = xR(t) + jor(t) = x2(t) = 7T1(t) = zr(t) — jxr(t) (2.190)

Thus Equation (2.189) reads:

{ Er(t) + jar(t) = (a+jB) (xr(t) + jri(t) + biu(t) (2.191)

ip(t) —jir(t) = (o —jB) (xr(t) — jzr(t)) + bru(t)

We deduce two new equations from the two preceding equations as follows:
the first new equation is obtained by adding the two preceding equations and
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dividing the result by 2 whereas the second new equation is obtained by
subtracting the two preceding equations and dividing the result by 2j. We get:

{ #r(t) = awp(t) — By (t) + 2Eu(t)

:'E](t) = ﬁxR(t) + Oél'[(t) + %u(t) (2.192)

As far as the output y(t) is concerned we can express it as a function of the
new components zp(t) and x7(t) of the state vector:

y(t) =cazi(t) +az(t)
=C (%R(t) + j.f[(lf)) + 1 (J'R(t) — j.%'[(lf)) (2.193)
= (a1 + @) zr(l) +j(a —cr)zi(t)

Consequently the complex diagonal form in Equation (2.187) is rendered real
by using the real part and the imaginary part of the complex state component
which appear in the state vector rather than the complex state component and
its conjugate. Indeed Equations (2.192) and (2.193) lead to the following state-
space representation where matrices (A, By, Cpn, D) are real:

( B r a —,B
M_ﬁa]
i 51—551
Bn=|,7%
| b (2.194)

C,, = [ (Cl +51> j(Cl —El) ]

D=0

It can be seen that complex matrix A has the same determinant than the
real matrix A,,:

det(s]l—[at)jﬁ a_ojﬁ]>:det<sﬂ—[g _O[BD (2.195)

Example 2.8. Let’s consider the following transfer function:

s+2

F =
(5) $2—-25+5

(2.196)

The two poles of F(s) are \y = 1 +2j and \y = 1 — 2j. Thus the partial
fraction expansion of F(s) reads:

s+2 s+ 2 1 T

2 .
F(s) = = — = — where Ay =1+2
(s) T 2545 (5- (- S_)\1+s_/\1were 1 +2j
(2.197)
where the residues r1 and ro are:
3425 _ 2-3j

e e AF O, = | == 198

2= (s XMFO), = 5| 5, =5 =5 =T




2.3. Realization of SISO transfer function 63

We finally get:

- P 2—3j 2437
F(s) = = 4 4 2.199
= N e T Tsm-2) (2.189)

Residues r1 and ro are expressed for example as follows:

—2-3j _ ; 1 _
r = 4'—(2—3‘])XZ—01X{)1 2900
{7‘2:2—Z3J:(2+3j)><}1261><b1 (2.200)

Then we apply Equation (2.164) to get the diagonal canonical form of F(s):

A [N 0] _[a+is 0 J_[1+2 0
L0 M| 0 a—jB | 0 1—-2j
by 1
Bm:[bl}:i[J (2.201)

This complex diagonal form realization is rendered real by using (2.194):
Ja =B 1 -2
A=l =0 7
bi+b;
2

1
_ _ -1
B = bhy ] i [ 0 } (2.202)

For both realizations we can check that F(s) = Cp, (sI — Ap) ' By +D but
in the last realzation matrices (Ay,, By, Cpp, D) are real.

2.3.7 Algebraic and geometric multiplicity of an eigenvalue

The algebraic multiplicity n; of an eigenvalue A; of matrix A € R™ "™ is the
number of times \; appears as a root of the characteristic polynomial det(sI—A).
The geometric multiplicity q; of an eigenvalue \; of matrix A € R™*"™ is the
dimension of the kernel of \;I — A.
If for every eigenvalue of A the geometric multiplicity equals the algebraic
multiplicity, then matrix A is said to be diagonalizable
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Example 2.9. Let’s consider the following matrix:

A= [ (2) . ] (2.203)
We have:
det(sT — A) = (s — 2)? (2.204)

Consequently the algebraic multiplicity of eigenvalue A\ = 2 is ny = 2.
In order to get the geometric multiplicity of eigenvalue A1 we consider the
following matriz:

0 —3
MI— A= [ 0 0 } (2.205)

The dimension of the kernel of M1 — A is clearly 1. Consequently the
geometric multiplicity of eigenvalue \1 is g1 = 1.

2.3.8 Jordan form and generalized eigenvectors

Matrix A is not diagonalizable when there is at least one eigenvalue with a
geometric multiplicity (dimension of its eigenspace) which is strictly less than
its algebraic multiplicity. If for every eigenvalue of A the geometric multiplicity
equals the algebraic multiplicity then A is diagonalizable. If not, the diagonal
form of matrix A is replaced by its Jordan form which is achieved through the
so-called generalized eigenvectors.

A nonzero vector vy, which satisfies the following properties is called a
generalized eigenvector of A corresponding to eigenvalue \;:

WAL —
{ Ei B igkf?w i . (2.206)

It is clear that when k = 1 the preceding definition leads to the usual
definition of eigenvector.
It can be shown that:

ker ((A - )\i]l)k) C ker ((A - )\Z-]I)k“) (2.207)

Furthermore if A is an n x n matrix with an eigenvalue \; with algebraic
multiplicity n; then there is some integer v; < n; such that the following property
holds:

dim (ker (A — \1)7)) = n; (2.208)

The Jordan block J), of matrix A corresponding of eigenvalue A; with
algebraic multiplicity n; is the following n; x n; matrix:

[N 1 0 - 0]
0 AN 1 0
Iu=1| 1 (2.209)
Ao 1
0 0 A |
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To get the Jordan form of any n X n square matrix A with eigenvalues \;
with algebraic multiplicity n; we must compute the nullspace of (A — \;1)™ or
equivalently the nullspace of (A — \;I)" (in that situation there is no need to
know n;). Let v, ,,, be a vector which spans the nullspace of (A — \I)™ but

which does not belong to the nullspace of (A — \I)" 1

(A =AD" 0y, =0
L a2 2210

Then the following chain of vectors can be formed:

—Al,nl—l - (A Ai H) U)\ N
7)\1,n1—2 =(A-\ H)U)\ ni—1 = =(A-\ ]I) Uz ni

(2.211)
vy = (A— AD™ Uxini
Let Py, be the matrix formed by the chain of vectors [ Uy U ]
Then the Jordan form J of matrix A of order n corresponding is obtained as:
J =P AP where { P=[Py - Py ] (2.212)

Transfer function with multiple poles on the same location

Now assume that transfer function F'(s) has a pole A of multiplicity n. Partial
fraction expansion of F'(s) results in:
Y (s) r1 ro T'n

U(S) (S):S_)\+(S_A)2+"'+m+d (2213)

It is clear from the preceding relationship that the numbers r; Vn >4 > 1
can be obtained thanks to the following formula:

= dgnt (= AE() _ Ynzi21 (2.214)

Ty =

Number 7 is called the residue of transfer function F'(s) in .

Then we define the Laplace transform of the components z1(¢), -+, x,(t) of
the state vector z(t) as follows:
X; 1
is) _ Vin>i>1 (2.215)

U(s)  (s— \)n—itl

Using (2.215) transfer function F'(s) can be written as follows:

YE;; =F(s)=mn Un(()) + T2 X}L](l)( ) oy U(( )) +d
= Y(s) =11 Xn(s) +r2Xn_1(s) + - —|—rnX1( )+ dU(s)

(2.216)

Coming back to the time domain and rearranging the order of the state
vector components we get:

y(t) = rpxi(t) + roo1@a(t) + -+ - + rizn(t) + du(t) (2.217)
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The n components of the state vector z(t) defined by (2.215) reads:

Xi S) 1 .
U((s)) — (s—a)n—iFl V1i<i<n
Xn((s)) =
Ul(s s—
Xn— S X, (s
U(;)( - (5_1)\)2 = Xn_1(s) = si(/\) (2.218)
JIND A
Xa(s)  Xs(s)
)((]2(}); = (5_1;)%1 = Xo(s) - (%A
S 2(s
U = o = X1(8) = 355

Coming back in the time domain and reversing the order of the equations
we get:
:i:l(t) = )\xl(t) + .Tg(t)
T2 (t) = )\1‘2@) + 1‘3(t)
: (2.219)
ETn—1(t) = Azp_1(t) + zp(t)
T (t) = Azp(t) + u(t)
Equations (2.219) and (2.217) lead to the following state-space
representation, which is called the diagonal (Jordan) or modal form:

{560 ast) + But
y(t) = Cz(t) + Du(t)

Matrix A is a n X n square matrix, B is a vector with n rows and C is a

(2.220)

row with n columns:

A 1 0
A 0
- 1
K 0 A
n terms
[ 0 (2.221)
B=|:
0
|1
C:[Tn Tn—1 Tl]
D=d
\

Alternatively we can introduce polynomials Nj(s) and Na(s) defined as
follows:
r1 r2 Tn Ni(s)Na(s)

e S P VI e | i PPV (2222
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Then Pradin! has shown that equivalent diagonal form realizations of
i s

transfer function F'(s) are the following where A is a n X n square matrix, B a
vector with n rows and C a row with n columns

A 1 0
A = 0
: 1
| 0 0 A
n ;;ﬂms
L (2.223)
B= | 2 dzNa(s) Y
% %NZ(S)‘SZA
L N2(8)‘S A
2
C= Nl( )|3 A % %Nl(s)‘s:/\ % %Nl(s) s=\ ]
D=d

The preceding relationships can be extended to the general case where
transfer function F'(s) has poles A; with multiplicity n;

F(S) :ZZ%—F(SHQP—F—F(stL;)"z—Fd
=S o

—iy td

(2.224)
= z 11(57)%5) —I—d

Then it is shown in ! that a diagonal form realization of transfer function
F(s) is the following;:

Ay
A — Ay
B,
B- | B (2.225)
c=[C Cp -]
D=d

Matrix A; is a n; X n; square matrix, B; is a vector with n; rows and C; is
1
2000

i
Bernard Pradin, Automatique Linéaire - Systémes multivariables, Notes de cours INSA
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a row with n; columns:

i 1 0
A, = 0
: P |
0 0 X
n; terms
0
B, = |:
0
1
Ci=| rin, rig Til |
D=d
or equivalently:
X 1 0
A0
: 1
| 0 0 N
n; terms
2
B; = % dd? i2(s) .
% ENIQ(S)‘S:)\Z'
L Ni?(s)‘s:)\j
2
Ci=| Nu(s)lemn, 11 &Nu(s)|,_\, 2 aezNu(s)
D=d

(2.226)

(2.227)

Transfer function with multiple complex conjugate pair of poles on

the same location

If some of the poles are complex so are the residues and

so is the Jordan form.

This may be inconvenient. Assume that A and X is a complex conjugate pair of
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poles of F'(s) with multiplicity 3:

1 T2 "3
+ =+ = + = 2.228
s—=A (s=XN)?2 (s—=))3 ( )

Let a be the real part of the pole A and f its imaginary part:
A=a+jBerA=a—jB (2.229)

Using the result of the preceding section the Jordan form of transfer function
F(s) is the following:

TA 1 0/0 0 07
0 XN1/0 00
00 A0 OO
A=10 0[x 1 0
00 0[O0 X 1
L0 0 0/0 0 X |
0
0 (2.230)
1
B=1%
0
L 1]
C:[T;g To T1| T3 T2 ?1]
D=0

It is clear that the Jordan form of transfer function F(s) is complex. This
complex Jordan form is rendered real by using the real part and the imaginary
part of the complex state components which appear in the state vector rather
than the complex state components and its conjugate. This is the same kind of
trick which has been used in the section dealing with complex conjugate pair of
poles. The real state matrix A, is the following:

Jo I 0 _g
A,=| 0 J, T | whereJ, = [ g ] (2.231)
0 0 J, @

It can be seen that complex matrix A has the same determinant than the
following real matrix A,,:

det (sI — A) = det (sT — A,,) (2.232)
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2.4 Realization of SIMO transfer function

The acronym SIMO stands for Single-Input Multiple-Output. The transfer
function F(s) relates the relationship between the Laplace transform of the
output of the system, y(t), which is a vector, and the Laplace transform of the
input of the system, u(t), which is a scalar as in the SISO case. Thus in that
situation the transfer function becomes a vector. Let Y(s) = L [y(t)] and
U(s) = L[u(t)]. Thus we write:

Y (s) =F(s)U(s) (2.233)

As in the SISO case, the realization of a SIMO transfer function F(s) consists
in finding any quadruplet (A, B, C,D) such that:

F(s)=C(sI—A)'B+D (2.234)

We will consider in the following a SIMO system with p outputs. Thus Y (s)
is a vector of p rows and U(s) a scalar. Several kind of realizations are possible
which will be presented hereafter.

2.4.1 Generic procedure

In the SIMO case we can always write the transfer function F(s) as a vector
composed of p transfer functions of SISO systems:

Fi(s)
F(s) = : (2.235)
Fp(s)
If we realize Fj(s) by G d then one realization of F(s) is the
following:
A, 0 ---|B
0 )
([ A|B B A, | B,
Fi(s) = ( C. [ 4 > =F(s) = c o0 . 4 (2.236)
0
C, | dp
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To get the previous result we have to write F(s) as follows:

[ Fi(s) Ci(sI—A) "By +d,
F(s) =| : |= :
| Fy(s) C, (sl — Ap)"' By, +d,
Ci 0 - | [(sI—A)'B; dy
= o . : + |
: C, | L (sI— Ap)il B, dp
[c, o0 -] [ (sI—-A)™' 0 B, dy
=l o0 " 0 AR
B C || : (sT—A,)* By dp
[C; 0 -] (sSI— A1) 0 B d
= o . 0 : + :
i Cy | : (sI—Ap) By dp
(2.237)
From the preceding relationship we deduce the realization (2.236).
Example 2.10. Let’s consider the following SIMO transfer function:
s+1
F(s) = [ 25 +9 } (2.238)
s2+65+9

F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of colurmns of F(s).
We notice that F(s) is a strictly proper. Consequently:

d— [ 0 ] (2.239)

Then we write the transfer function Fg,(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial V(s):

[ s+1 ]
N(s) 5
F(s) := Fy = = 2.240
() :=Fonl®) = §5) = 246519 (2.240)
A realization of transfer function Fi(s) = % is for example the
controllable canonical form:
0 110
s+1
F =————= -9 6|1 2.241
18) = 36570 — (2.241)

Similarly a realization of transfer function Fy(s) = is for example

the controllable canonical form:

__ 5
52+65+9

5 0 110
F = = = -9 —-6]1 2.242
2(s) s2+6s+9 =070 ( )
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Applying the generic procedure we get a realization of the SIMO transfer
function F(s):

0O 1 0 010
-9 -6 0 0 |1
0 0 O 110
F(s) = 0 0 -9 —6l1 (2.243)
11 0 0|0
0 0 5 010
]
2.4.2 Controllable canonical form
We can also write the transfer function F(s) as follows:
dq
F(s) = Fyp(s) + =Fy(s) +d (2.244)
dp

where d is a constant vector and Fy,(s) a strictly proper transfer function:

{ hms—)oo o ( )= (2.245)
With the same argument than in the SISO case we have:
dq
D=d=| : (2.246)
dp
Then we have to find matrices (A, B, C) such that:
Fo(s)=C(sT—A)"'B (2.247)

To get the controllable canonical form we write the transfer function Fgp(s)
as the ratio between a polynomial vector N(s) with p rows and a polynomial
U(s):

Ni(s)

N N,
Pos) = o) L)
W(s) W(s)
Then we build for each SISO transfer function N;(s)/W¥(s) a controllable
realization (A., B, C;,0). Note that:

(2.248)

— Matrix A, is common to each realization because the denominator ¥(s)
of each transfer function N;(s)/¥(s) is the same. When we write ¥(s) as
follows:

U(s)=s"+a, 18" '+ +ars+ag (2.249)
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Then A, is a n X n square matrix:

0 1 0 0
0 0 1 0
A, = . . 0 (2.250)
0 0 0 1
| —G0 —a1 —a2 -+ —Gp_q |

— Vector B, is common to each realization because we use the controllable
canonical form of each SISO transfer function N;(s)/¥(s). This is a vector
vector with n rows:

B.— | (2.251)

— Each vector C; is dedicated to one output. This is a row vector with p
columns formed with the coefficients of polynomials N;(s).

Then the controllable canonical form of the SIMO transfer function F(s) is
the following:

(2.252)

Example 2.11. Let’s consider the following SIMO transfer function:

F(s) = [ % } (2.253)

s+2

F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of ¥(s), and one input, which is the number of columns of F(s).
We notice that F(s) is a strictly proper. Consequently:

d= 0 2.254
o] (2.254)

Then we write the transfer function Fg,(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial V(s):

ne _ oten] _[a0 ]

P = Fals) = G = G612 213532 (2:255)

Then matriz A, of the controllable canonical form of F(s) is obtained
thanks to the coefficients of the demominator ¥(s) whereas vector B, is set by
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the controllable canonical form:

(2.256)

Vector C. is obtained thanks to the coefficients of the polynomial vector N(s)

2 1
C.= [ 5 9 ] (2.257)
We finally get:
0 110
-2 =31
F(s) = 5 110 (2.258)
2 210
"
Example 2.12. Let’s consider the following SIMO transfer function:
s+1
F(s) = [ sZ+Gs+9 } (2.259)
5246549

F(s) is the transfer function of a system with p = 2 outputs, which is the
number of rows of F(s), and one input, which is the number of columns of F(s).
We notice that F(s) is a strictly proper. Consequently:

d— [ 0 ] (2.260)

Then we write the transfer function Fg,(s) := F(s) as the ratio between a
polynomial vector N(s) with p = 2 rows and a polynomial V(s):

ne |75
U(s) s2+6s5+9

F(s) :=Fg(s) = (2.261)

Then matriz A. of the controllable canonical form of F(s) is obtained
thanks to the coefficients of the demominator ¥(s) whereas vector B, is set by
the controllable canonical form:

0 1
S

et

Vector C. is obtained thanks to the coefficients of the polynomial vector N(s)

(2.262)

C. = [ é é ] (2.263)
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We finally get:

0 110
-9 —6]1

F(s) = | ——113 (2.264)
5 010

| |

2.5 Realization of MIMO transfer function

The acronym MIMO stands for Multi-Input Multiple-Output.

The transfer function F(s) relates the relationship between the Laplace
transform of the output of the system, which is a vector, and the Laplace
transform of the input of the system, which is also a vector in the MIMO case.
Due to the fact that the output y(¢) of the system and the input wu(t) of the
system are no more scalars but vectors it is not possible to express the ratio
between Y (s) = £ [y(t)] and U(s) = £ [u(t)]. Thus we write:

Y(s) = F(s)U(s) (2.265)

We will consider in the following a MIMO system with p outputs and m
inputs. Then Y (s) = £ [y(t)] is a vector of p rows, U(s) = L[u(t)] is a vector
of m rows and transfer function F(s) is a matrix with m columns and p rows.

As in the SIMO case, the realization of a MIMO transfer function F(s)
consists in finding any quadruplet (A, B, C,D) such that:

F(s)=C(sI—A)'B+D (2.266)

2.5.1 Generic procedure

In the MIMO case we can always write the transfer function F(s) as a matrix
composed of p x m transfer functions of SISO systems Fj;(s):

Fii(s) -+ Fin(s)
F(s) = : : (2.267)
Fpi(s) -+ Fpm(s)

The transfer function F(s) can be written as the sum of SIMO systerns:

FH(S)
F(s) = : [1 0 -~ 0]+
Fpi(s)

ot : [0 -+ 0 1] (2.268)
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That is:
F(s) =Fi(s)[1 0 -+ 0]+--+Fp(s)[0 - 0 1]
m 0 ... 0 1 0 ... 0 2.269
=>is1 Fi(s) [ e ( )
i-th column
Fli(S)
If we realize the SIMO system F;(s) = : in the i column of F(s)
Fpi(s)
A; | B; o . . .
by C 1D, then one realization of transfer function F(s) is the following:
F,L' S
Fi(s) = (s
= : -~ \Ci|D;
Fpi(s)
Ay O B, 0
~F)=| ° 0 (2.270)
: A, B,,
Cc, --- C, ‘ D, --- D,

The state-space representation of each SIMO transfer function F;(s) can
be obtained thanks to the controllable canonical form (2.252). The achieved
state-space representation is block diagonal but is not necessarily minimal (see
section 2.6).

To get this result we use the same kind of demonstration than the one which
has been to obtain the generic procedure seen in Equation (2.236). Indeed:

F(s) =Fi(s)[1 0 - 0]+-4+Fp(s)[0 -+ 0 1]
:[F1(8) Fm(s)]
=[Ci(sI-A) "B +D; -+ Cp(sl—A,) "B, +D, |
[ (sI—A))"'B; 0
=[Ci - Cp] 0 +[ Dy
: (sI— An) ' By,
[ (sI-A))' 0 B, 0
=[C -+ Cyn] 0 0
I : (sT—Ap)~" B,
(sSI— A1) 0O B, o0
=[G Cn | 0 0
(S]I—Am> Bm
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2.5.2 Controllable canonical form

In the MIMO case, transfer function F(s) can always be expanded as follows
where p X m constant matrices C;, i =1,--- ,n—1 and D are of the same size
than transfer function F(s) with m inputs and p outputs:

~ N(s) Cho1s" 1+ 4+ Cis+Co

= = D 2.272
U (s) 1 X s"4+ap15" 1+ +ais+ag * ( )

Following the same procedure than in the SISO case, and by denoting I,,, the
identity matrix of dimension m, the controllable canonical form of F(s) reads:

F(s) = <%§‘%> (2.273)

where:
o L, 0 0 ]
0 L, 0
A, = . 0
0 0 0 L,
L _aoﬂm —aily, —aly, - —ap—1ly, ]
0 ]
0 (2.274)
B, = :
0
. ]:[m -
Cc=[Co Ci1 -+ Cpy Cny |

Example 2.13. Let’s consider the following transfer function:

2 stl
F(s) = { 42 533 ] (2.275)
2 52

Let’s decompose F(s) as follows:

CREEINTH

5+2 s+2
[ 2(s+3) —2(s+2)
| s+3 5(s + 3) 0 1 (2.276)
- (s+2)(s+3) 0 0

[2 —2 6
S
1 5 3 15 0 1
] s2+55+6 1o o



78 Chapter 2. Realization of transfer functions

The system describe by transfer function F(s) has m = 2 inputs. Using
(2.274) leads to the following controllable canonical realization of F(s):

() } _ [ A.| B, } [ x(t) ] (2.277)

L y(t) C.| D ][ u(t)
where:
( [0 01 o0
0 0 0 1
Ac= -6 0 |-5 0
0 6|0 -5
[0 0
00
Be=197% (2.278)
0 1
(6 —4]|2 -2
Co=13 15|1 5 }
0 1
o-[0 ]
This result can be checked by using Equation (2.1).
]
2.5.3 Diagonal (or modal) form
As in the SIMO case we expand F(s) as follows:
F(s) =Fg(s)+D (2.279)

where D is a constant matrix and Fy,(s) a strictly proper transfer function:

limg oo F(s) =D
{ limg oo Fgp(s) =0 (2.280)
Then we have to find matrices (A, B, C) such that:
Fy(s)=C(sI—-A)"'B (2.281)

To get the diagonal (or modal) form we write the transfer function Fgp(s)
as the sum between rational fractions. Let A{,---, A, be the r distinct roots
of ¥(s) and n; the multiplicity of root A;. Then we get the following partial
fraction expansion of Fy,(s) where matrices R;; are constant:

Fop(s)=> Z . Ri)j (2.282)

i =1
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The diagonal (or modal) form of the MIMO transfer function F(s) is the
following:

J, 0 -..|B;
Fs)=| ° : (2.283)
. J, | B,
C, - C | D

Denoting by n; the multiplicity of the root A;, m the number of inputs of
the system and I, the identity matrix of size m x m, matrices J;, B; and C;
are defined as follows:

— The Jordan matrix J; is a (m x n;) X (m x n;) matrix with the following

expression:
N, L, O
= ° - (2.284)
S
0 - 00 NI,

n; termes M\l

It is worth noticing that matrix (sI — J;)~! reads:

(s =) (s=X) 2Ly -+ (s— X)) ",
_).\)1 oy \—ni+l
(sT—J,) ' = 9 (s — X)L, | (s AZ? I,
0 0 (s—X) 'Ly
(2.285)

0
B, = | ° 2.286
0 ( )
L
— C;is ap x (m x n;) matrix:
Ci=[ Ry, - Riz Ra | (2.287)

An alternative diagonal (or modal) form also exists. To get it first let’s focus
on the realization of the following p x m transfer function F;(s) with a pole A
of multiplicity <:
Iy, 0p: % (m—pi)
Ny O ) .
P—pi) Xpi (p—ps) X (m—pi)
: 2.288
G (2.288)

Fy(s) = O
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where I, is the identity matrix of dimension p; and 0,x,, the null matrix
with p rows and m columns.

Then we recall the inverse of the following n x n bidiagonal matrix:

A —1 0 A2 s
. —1
L= A ' =L = A
I | )\—2
0 A 0 A1

(2.289)

The alternative diagonal (or modal) form of F;(s) is then the following 2:

A ‘ [ Bi 01 x (m—p;) ]
O(p—p;) xnpi P
where A; is a (n x p;) X (n X p;) square matrix, B} (the transpose of B;) a
pi X (n X p;) matrix whose p; rows are built from row vector 0 0 --- 1 and
|
n terms
C; a p; X (n x p;) matrix whose p; rows are built from row vector 1 0 --- 0 :
N———
n terms
.
A1
J, O 0
0
A,=1]0 where J; =
1
Ji 0 0 A
pi terms
n terms
0 0 -+ 1 Oixn 1
—_———
n terms
BT = pi terms
O1xn 00 --- 1
—_———
L n terms -
1 0 -+ 0 Oixn 1
—_——
n terms
C;, = ) . pi terms
01xn .. 10 --- 0
—_——
L n terms -
(2.291)

Now let’s consider the following transfer function F;(s) where N;; is a
constant p X p; matrix, N;o a constant p; X m matrix and N;1 N is a p x m

2Toshiya Morisue, Minimal Realization of a Transfer Function Matrix with Multiple Poles,

Transactions of the Society of Instrument and Control Engineers, Volume 21 (1985) Issue 6
Pages 546-549
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constant matrix of rank p;:
Ni1Ni2  Nijlp Ny

Fils) = T = sy

where rank (N;;Nj2) = p; (2.292)

From the preceding realization it is clear that the alternative diagonal (or
modal) form of F;(s) is the following:

_ A; | BNy
Fi(s) = ( NaG T oo ) (2.203)

Finally let’s consider a p x m transfer function F(s) which has pole A with
multiplicity n and where R(s) is a matrix of polynomial of degree strictly lower
than n. The partial fraction expansion of F(s) reads:

F(s) = (Pf‘&))
= A oyt (2.294)

n R;
= 2im1 oy
Constant matrices R; are defined by:

1 dnfi "
i g V) . (2.295)

R, =
Let p; be the rank of constant matrix R;:
pi = rank (R;) (2.296)

Each term R,; can be expanded as a product of two constant matrices N;;
and N;2 where N;; is a p X p; matrix and Nj2 a p; X m matrix:

R; = N;1Nj» = Ny, Njp (2.297)

Then the alternative diagonal (or modal) form of the MIMO transfer function
F(s) is the following:

A1 0 s B1N12
F(s) = ZFi(s) +D = (_) h N o N (2.298)
i=1 . n niNn2
NGy -+ NuGC, D

This diagonal (or modal) form of F(s) is in general not minimal (see section
2.6).

2.6 Minimal realization

2.6.1 System’s dimension

Let’s start with an example and consider the following transfer functions:

Fi(s) = 31
2.299
{ Fy(s) = 32i§3+2 ( )
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From the preceding sections it can be seen that the controllable canonical
form of transfer functions Fi(s) and Fy(s) are the following:

Ao (o) - ()

(2.300)

It is clear that the dimension of state matrix A; is 1 and the dimension of
state matrix Ao is 2.
On the other hand it can be seen that the poles of transfer function F»(s)
are —1 and —2:
2 4+3s+2=(s+1)(s+2) (2.301)

Consequently F5(s) reads:

2 2 1
__s+2 s+t _ (2.302)
$2+3s+2 (s+1)(s+2) s+1

FQ(S)

Thus we finally get:
FQ(S) = F1 (8) (2303)

Despite the fact that Fy(s) = Fi(s) we have obtained two realizations with
different size of the state matrix. This usually appears when pole-zero
cancellation appears in the transfer function.

The order of a realization is the size of state matrix A. So in that example
the order of the realization of Fy(s) is greater than the order of the realization
of Fy(s).

This example can be extended to the general case where the dimension of
the state matrix A corresponding to the same transfer function F(s) may vary.
We said that a realization of a transfer function F(s) is minimal if there exists
no realization of lesser order whose transfer function is F(s).

For SISO systems it can be proven that a realization of transfer function F(s)
is minimal if and only if the two polynomials Cadj(sI — A)B and det(sI — A)
are coprime.

For MIMO systems it can be proven that a realization of transfer function
F(s) is minimal if and only if the characteristic polynomial of matrix A is equal
to the Least Common Multiple (LCM), or Greatest Common Factor (GCF), of
the denominators of all possible non zero minors (of all sizes) in F(s) 2.

We recall that minors or order k are the determinants of square sub-matrices
of dimension k. More precisely if F(s) is a p x m matrix then the minors of
order k are obtained by computing the determinant of all the square k x k
sub-matrices where p — k rows and m — k columns of F(s) have been deleted.

To find the Least Common Multiple (LCM) of two polynomials simply
factor each of the two polynomials completely. Then take the product of all
factors (common and not common), every factor being affected with its

*Mohammed Dahleh, Munther A. Dahleh, George Verghese, Lectures on Dynamic Systems
and Control, Massachuasetts Institute of Technology
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greatest exponent. Finally multiply the obtained polynomial by a constant to
obtain a monic polynomial.

Let ( é ]]:3) > be a minimal realization of a transfer function F(s). Then

the eigenvalues of A are identical to the poles of F(s). If the realization is not
minimal then the poles of F(s) are a subset of the eigenvalues of A. It can be
proven that Gilbert’s diagonal realization is a minimal realization.

Example 2.14. Let’s consider the following transfer function:
11
ORI

s+ s+l
A first realization of F(s) is obtained by writing a realization of each SISO
transfer function:

(2.304)

-1 10

-1 20

-2 0 1
F(s) = 110 3 (2.305)

1 0 1 000

0o 1 0 11]00

The characteristic polynomial of state matriz A is:
det(sT — A) = (s +1)3(s +2) (2.306)

Whereas the Least Common Multiple (LCM) of the denominators of all
possible non zero minors (of all sizes) in F(s) is the following:

den (mi11(s)) =s+1

den (mi2(s)) = s+ 2

den (ma1(s)) = s+ 1 = LCM = (s +1)*(s +2) (2.307)
den (ma2(s)) =s+1

den (F(s)) = (s +1)%(s + 2)

As far as det(sl — A) # LCM we conclude that the realization is not
minimal. Furthermore the characteristic polynomial of any state matriz of a
minimal realization shall be the LCM, that is here (s + 1)%(s + 2).

An other realization of F(s) can be obtained by writing F(s) in diagonal (or
modal) form as explained in section 2.5.5:

1 1 1 0
F(s)_s+1[2][10]+s+1[3}[01]
1 1
+S+2{0}[0 1] (2.308)
Then we get:
-1 10
-1 1
F(s) = -210 1 (2.309)
1 0 11]0 0
3 01]0 0
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Because F(s) has distinct roots we can also use for this example Gilbert’s
realization as explained in section 2.6.2:

1 1 1 10 1 01
F(s) = = —_— 2.31
(s) s+1R1+s+2R2 s—i—l[Q 3:|+S+2|:0 0] (2:310)

1 ‘ ‘
9 g is p1 = 2. Thus we write Ry = C1B;
where Cq is a p X p1 = 2 X 2 matriz and By is a p1 X m = 2 X 2 matriz.
We choose for example:

— The rank of matriz Ry =

(2.311)

1 . .
0 0 is po = 1. Thus we write Ro = CoBs
where Co is a p X pg = 2 X 1 maitriz and Bo is a po X m =1 X 2 matriz.
We choose for example:

— The rank of matriz Ry = [ 0

1
C2= [ 0 } (2.312)
By=I=[0 1]
Then we get:
-1 10
Ar 0 | By -1 0 1
F(s)=| 0 X |By | = -2]0 1 (2.313)
C; C;|D 1 0 100
2 3 0]00

For this example we get the same realization than (2.309).
With this realization we have det(sl — A) = LCM = (s + 1)?(s + 2). Thus
we conclude that this realization is minimal.

]
2.6.2 Gilbert’s minimal realization
Let’s write the p x m transfer function F(s) as follows:
F(s) =F,(s)+D (2.314)

where D is a constant matrix and Fyy(s) a strictly proper transfer function:

{ limyo0 F(s) =D (2.315)

lim 00 Fap(s) = 0
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We consider in that section MIMO systems in which the denominator
polynomial of the strictly proper transfer function Fy,(s) has distinct roots:

Fopls) =) - Ri}\i (2.316)

The residue R; can be obtained as:

R; = lim (s — X)) Fgp(s) = lim (s — \;) F(s) (2.317)

S—)Ai 8—>)\1'

Now let p; be the rank of R;:
pi = rank (R;) (2.318)

and write R; as follows where C; is a p X p; constant matrix and B; a p; x m
constant matrix:

R; = C;B; (2.319)

Then a realization of the transfer function F(s) is the following*:

A, 0 ... | B
Fs)=| © : (2.320)

: A, | By,

c, --- C,, ‘ D

where matrices A; = \;ll,; are diagonal matrices of size p;.
Moreover Gilbert’s realization is minimal with order n given by:

n=> pi (2.321)

2.6.3 Ho-Kalman algorithm

To get a minimal realization <C—m‘T> from a realization <T‘T> we

can use the Ho-Kalman algorithm which is described hereafter:

— Let r be the dimension of the state matrix A, which may not be minimal.
First compute the observability matrix Q, and the controllability matrix

Q. of the realization < é g >:

C
CA
Q= : (2.322)
CA™!
Q.=[B AB - A"'B]]

“Thomas Kailath, Linear Systems, Prentice-Hall, 1°* Edition
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The realization is minimal if and only if:

rank (Q,) = rank (Q.) (2.323)

In all situations the dimension n of the system is given by:

n = min (rank (Q,) , rank (Q.)) (2.324)

If the realization ( ‘é ]]3 ) is not minimal then compute the singular

value decomposition (svd) of the product Q,Qe:

Q,Q. =UxV’ (2.325)

Matrix ¥ is a rectangular diagonal matrix with non-negative real
coeflicients situated on its diagonal. The strictly positive coefficients of
3} are called the singular values of Q,Q.. The number of singular values
of Q,Q. (which are the strictly positive coefficients within the diagonal
of matrix X) is the dimension n of the system. Again note that n # r if

the realizatio A|lB is not minimal
r1z1nCD1nm1n1m.

Let 3, be the square diagonal matrix built from the n singular values
of Q,Q. (which are the non-zero coefficients within the diagonal matrix
¥)), U,, the matrix built from the n columns of U corresponding to the
aux n singular values and V,, the matrix built from the n columns of V
corresponding to the aux n singular values:

2, 0 VI
Q.Q.=Uxvi=[U, U] [ 0 =, ] [ vT } (2.326)
Matrices O,, and C,, are defined as follows:
O, = U, x>

O0nCn = U, X, VL where { (2.327)

C, = =/*VT
Then the state matrix A,,, of a minimal realization is obtained as follows:
A, =3,°U7 (Q,AQ,) V, 3,1/ (2.328)

Let m be the number of inputs of the system and p its number of outputs
and I, the identity matrix of size m. Matrix B,,, and C,, of the minimal
realization are obtained as follows:

I I
B,=C,| 0 | ==/*VT
: nl o (2.329)
0
Cn=[1, 0 - 0]0,=[1, 0 --- 0]U,=/?

— Matrix D is independent of the realization.



Chapter 3

Analysis of Linear Time
Invariant systems

3.1 Introduction

This chapter is dedicated to the analysis of linear dynamical systems. More
specifically we will concentrate on the solution of the state equation and we will
present the notions of controllability, observability and stability. Those notions
will enable the modal analysis of Linear Time Invariant (LTT) dynamical systems

3.2 Solving the time invariant state equation

We have seen that the state equation attached to a linear time invariant system
is the following:

() = Az(t) + Bu(t) (3.1)

The purpose of this section is to obtain the general solution of this linear
differential equation, which is actually a vector equation.

The solution of the non-homogeneous state equation &(t) = Ax(t) + Bu(t)
can be obtained by the Laplace transform. Indeed the Laplace transform of this
equation yields:

sX(s) —z(0) = AX(s)+BU(s) (3.2)

That is:
(sI—A)X(s) = z(0) + BU(s) (3.3)

Pre-multiplying both sides of this equation by (S]I—A)_1 leads to the
following equation:

X(s) = (sT— A) " 2(0) + (sI — A) "' BU(s) (3.4)

By taking the inverse Laplace transform of this equation we get the
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expression of the state vector z(t):
z(t) =LV [X(s)]
=L |(sI-A) " 2(0) + (sI - A)! BQ(S):| (3.5)
= L7V |(sT— A) | 2(0) + £ |(sT - A) "' BU(s)]

To inverse the preceding equation in the s domain and come back in the
time domain we will use the following properties of the Laplace transform:

— Convolution theorem: let z(¢) and y(t) be two causal scalar signals and
denote by X (s) and Y (s) their Laplace transforms, respectively. Then the
product X (s)Y(s) is the Laplace transform of the convolution between
x(t) and y(t) which is denoted by x(t) * y(t):

X(s)Y(s) = Lla(t) »y(0)] & L7 [X()Y ()] =2() #y(t)  (36)

Where: .
2(8) # y(t) = /O 2t — 1)y(r)dr (3.7)

This relationship is readily extended to the vector case where X(t) is a
matrix and y(t) a vector:

¢
L7HX(5)Y(s)] = X(t) * y(t) = / X(t —7)y(r)dr (3.8)
0
— Laplace transform of exponential matrix: in the scalar case we have seen
that: .
at] _ _ N1 -1 _ N\ o jat
ﬁ[e}_s—a (s—a) " &L [(s a) } e (3.9)

This relationship is readily extended to the vector case as follows:

L [eAt] =(sI-—A) e ! [(SH - A)_l} = Al (3.10)

Thus the inverse Laplace transform of Equation (3.5) leads to the expression
of the state vector z(¢) which solves the state equation (3.1):

z(t) = eAlz(0) + /0 t AT By(r)dr (3.11)

The solution z(t) of Equation (3.5) is often referred to as the state trajectory
or the system trajectory.
Exponential eA? is defined as the transition matrix ®(¢):

(1) = At (3.12)

In the more general case of time dependent linear differential equation of
the form &(t) = A(t)z(t) + B(t)u(t) the expression of the state vector is z(t) =
®(t,t9)z(0) + ftto ®(t,7)Bu(7r)dr where ®(t,t9) is also named the transition
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matrix (or Green’s matrix). In this case the transition matrix is a solution of
the homogeneous equation % = A(t)®(t,tg). In addition ®(¢,t) =1Vt
and ®(t,t9) = ¢(t)p~'(to) where ¢(t) is the solution of &(t) = A(t)z(t). For a
linear time invariant system the transition matrix ®(t,to) is ®(t,ty) = eAl—0):
as far as for the time invariant case the initial time ¢y is meaningless we can

choose tg = 0 and we retrieve ®(t) = eAt.

3.3 Output response

We have seen that the output vector y(t) of the state space representation is
obtained thanks to the output equation. Using the expression of the state vector
z(t) we get:

y(t) = Cuz(t) + Du(?)
—C (eA@(O) + [ eA(t_T)BQ(T)dT) + Du(t) (3.13)
= CePz(0) + f(f CeAU="Bu(r)dr + Duf(t)

— The term CeA'z(0) is called the zero-input response (or output) of the
system; this is the response of the system when there is no input signal
u(t) applied on the system;

— The term fg CeAU=T)Bu(7)dr 4+ Du(t) is called the zero-state output (or
response) of the system; this is the response of the system when there is
no initial condition z(0) applied on the system.

3.4 Impulse and unit step responses

The impulse response of a dynamical system is the zero-state output of the
system when the input signal w(¢) is the impulse d(¢) called the Dirac delta
function.

Setting in (3.13) the input signal u(¢) to the Dirac delta function 0(¢) and
putting the initial conditions z(0) to zero leads to the following expression of
the impulse response of the system:

y(t) = /0 t CeATIB(7)dr + DE(t) (3.14)

The term [} CeAl=TB§(r)dr can be expressed as the convolution between
the matrix Ce®'B and the input vector §(7). We get:

y(t) = CerB % §(t) + Di(t) (3.15)

Using the fact that the Dirac delta function §(¢) is the neutral element for
convolution we can write Ce'B * §(t) = CeA*B. Consequently the output
vector y(t), that is the impulse response of a linear time invariant system which
will be denoted h(t), can be expressed as follows:

y(t) := h(t) = CeA'B + Di(t) (3.16)
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The Laplace transform of the impulse response h(t) is defined to be the
transfer function F(s) of the system. Using the fact that the Laplace transform
of the Dirac delta function 6(t) is 1 we retrieve the following expression for the
transfer function F(s) of the linear system:

F(s)=L[h(t)]=C(sI—A)'B+D (3.17)

The unit step response is the response of the system to the unit step input.
Setting in (3.13) the input signal u(t) to u(tf) = 1 V¢ > 0 and putting the initial
conditions z(0) to zero leads to the following expression of the unit step response
of the system:

yt) = fot CeA-T)Bdr + D1
= CeA? fg G_ATdT> B+ D1

= CeAt —A‘le_AT‘tTZO) B+ D1
= CeAt (A‘1 — A_le_At) B + D1

(3.18)

Using the fact that eA*A~1 = A~leAt (which is easy to show using the
series expansion of eA?) and assuming that matrix A~! exists, we finally get the
following expression for the unit step response of the system:

y(t) = CA™! (A —~1)B + D1 (3.19)

3.5 Matrix exponential

3.5.1 Definition

Let A be a n xn square matrix. The matrix exponential is a n X n matrix which
is defined by analogy with the scalar exponential and its series as follows:

00 k
At _ (At)
e = Z k!
k=0

This calculus involves an infinity of terms and it is in general impossible to
compute it by hand except for some specific cases, for example if matrix A is
nilpotent.

A matrix A is nilpotent if there exists an integer k such that A*¥ = 0. The
smallest value of k is called the index of nilpotency (of the nilpotent matrix). In
this case the matrix exponential et can be computed directly from the series
expansion as the series terminates after a finite number of terms:

oo k
—1+ Y (‘A;:‘) (3.20)
k=1 ’

tkfl

= (3.21)

#
eAt:]I+At+A2§+---+A’“‘1

A necessary and sufficient condition for a n x n square matrix A to be
nilpotent is that its characteristic polynomial det (sl — A) is equal to s™:

AF =0 < det (s — A) = 5" where k <n (3.22)
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We recall that the minimal polynomial 74 (s) of a matrix A is the monic
polynomial (a monic polynomial is a polynomial in which the leading coefficient
(the nonzero coefficient of highest degree) is equal to 1) of least degree such
that m4(A) = 0. The minimal polynomial divides the characteristic polynomial
xA(s) :=det (s — A) of matrix A. Consequently its degree is lower or equal to
the order n of matrix A.

A matrix A is said to be cyclic if and only if its characteristic polynomial is
the same than its minimal polynomial.

Furthermore matrix A is diagonalizable if and only if its minimal
polynomial’s roots are all of multiplicity one.

The previous result to compute et when A is nilpotent can be generalized
to the case where the minimal polynomial 74(s) of A reads (s — A)*. Indeed
we get in this case:

ma(s)=(s— A=A -A)"=0 (3.23)

Thus matrix A — Al is nilpotent and we can write:

tkz—l
(k—1)!

2
(AN < g (A D)t (A= NP Dt (AT (3.24)

As soon as matrices A and Al commute the following relationship holds:

eATADE — o= MAL _y (AL _ oAt (A-ADE (3.25)

Thus as soon as m4(s) = (s — )\)k we finally get the following result:

(AL _
A 2 2 A
M T+ (A= AD)t+ (A= AD° = 4+ (A =AD" (3.26)
2! (k—1)!
01 S . .
Example 3.1. Let A = [ 0 0 ] The characteristic polynomial of A is:

det (sT — A) = det <[ 8 _Sl D s (3.27)

Consequently matriz A is nilpotent and et can be computed as follows:
101 5 |00
A‘[o o}ﬁ’A _[0 0}

1t
At _ _
=e¢ —]I—i—At—[O 1}

(3.28)
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3.5.2 Properties
The following properties hold ':

— Value at t = 0:
M, = =1 (3.29)
— Derivation: p
—eAt = AeAt = AtA (3.30)
dt
— Integration:
t
eAt = ]I+A/ eATdr (3.31)
0
— In general:
e(A+B)t 75 eAteBt 75 eBteAt (332)

Nevertheless if matrices A and B commute (meaning that AB = BA)
then:

e(A+B)t — eAteBt — eBteAt (333)

As far as the product AA commutes we have:
At AT _ A(t+T) _ AT At (3.34)
And thus setting 7 to —t we get:
(AT = At (3.35)
— Let A(A) be the eigenvalues of matrix A. Then:

A (eAl) = A (3.36)

— Let det (A) be the determinant of matrix A and tr (A) be the trace of
matrix A. Then:
det (eAt) = etr(A) (3.37)

Example 3.2. Let’s consider the following matrices A and B:

01
A=15o]
(3.38)
10
B=[5 7]
It is clear that A et B do not commute. Indeed:
0 0 01
AB—{0 0}7&BA—[0 O] (3.39)

"https://en.wikipedia.org/wiki/Matrix_exponential
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Consequently we expect that eAteBt £ eBteAt

preceding definitions and properties:

Al = { (1) | } (3.40)

. We will check it by using the

And:

k 0otk
(Bt)* = [ to 8 } = B =T+ T, B = [ g ]
(3.41)

kKl 0 1
t
Bt (& 0
e [O 1}
It is clear that:
t t t
At Bt _ | e 1 Bt At _ | € te
ee—[()l}yéee—[o 1] (3.42)

We can also easily check the following properties:

01
d At _ At _ At A _
dtet—Aet—etA—[O 0
t

0 (3.43)
deBt_BeBt_eBtB_|:e ]

dt 00

3.5.3 Computation of eA! thanks to the diagonal form of A

We will assume in that section that matrix A is diagonalizable or equivalently
that matrix A has linearly independent eigenvectors; this means that for all
eigenvalues \; of A the rank of matrix \;I — A is equal to the size of A minus
the multiplicity of ;.

Assuming that matrix A is diagonalizable then there exists a similarity
transformation such that:

M
A =PAP ! where A = (3.44)
A'n,

The change of basis matrix P, as well as its inverse P!, can be obtained as
follows:

— Let v; be the eigenvector of A corresponding to eigenvalue \;. As far as
the n xn matrix A is assumed to have n linearly independent eigenvectors

we can write:
AQ1 = )\121

: (3.45)
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— The preceding relationship can be written in a vector form as follows:

A1
A[vl yn]:[yl Qn] (3.46)
An

— Identifying the preceding equation with AP = PA we finally get
PZ[Q1 Uy Qn] (3.47)
— Furthermore let w; be the eigenvectors of matrix A"
ATMJ- = \jw; & Q?A = Ajwjr (3.48)
It can be seen that vectors w; et v, are orthogonal. Indeed:

Awl v, = wl Av; = wihv; < (A — Aj)wlv; =0 (3.49)

Thus imposing w! v; = 1 Vi, the inverse of matrix P is obtained as follows:

wf
T
w
wly, =1Vi=Pl=| 2 (3.50)
wy,
. 0ifj#i
T, _ :
Indeed using w; v, { Lif j =i we get:
T
w3
PP = . [ Uy YUy Uy, ]
| wl
[ wiv; wivy Wi Uy
| wivy wivy e wiv, (3.51)
| whvy whvy wyy v,
1 0 -0
0 1 0
0 0 1

t

Then, as soon as matrix A diagonalizable, eA? can be obtained thanks to

the following relationship :

i

n
A =PAP =) ] M (3.52)
=1
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The preceding relationship is easily obtained by using the series development
of the exponential:

PAPT Z (PAtP ip At P =P (i (it‘)k> P! (3.53)

k=0 =0 k=0

As far as the diagonal (or modal) matrix A is diagonal we get:

k
)\1 €>\1t
AF =
(At)F A etn!
=D he0 k-
Thus using the expression of P and P~!:
6>\1t
6At — PeAtP_l —P P—l
e)mt
o wl (3.55)
T
W3
Ant :
e Wl

We finally get:
Z ;e Z vl et (3.56)

Example 3.3. Compute e where A = { 12 ]

0 =5
Le characteristic polynomial of A reads:
det(sT—A)=det (| 571 72 )= (s=1)(s+5) (3.57)
- 0 s+5 a '
The two eigenvalues Ay = 1 and Ao = —5 of A are distinct. Since the size

of A is equal to the number of the distinct eigenvalues we conclude that matriz
A is diagonalizable.

V11

— Let v, = [U
12

have

] be the eigenvector of A corresponding to A1 = 1. We

1 2 V11 - V11
o S L]

v11 + 2U12 = V11 (3.58)
—dv12 = V12
=v12=0

Thus the expression of eigenvector v, is:

v, = [ ”81 ] (3.59)



96

Chapter 3. Analysis of Linear Time Invariant systems

— Let v, = v be the eigenvector of A corresponding to Ay = —5. We
2 g D g

V22
have:

1 2 V21 _ V21
o 5[] =[]

Vo1 + 2v99 = —bHugy
s { s o (3.60)
= 6va; + 2092 =0
& V92 = —3U91

Thus the expression of eigenvector vy is:
V21

= .61

m=| 2 (361

Let wy = [ wn ] be the eigenvector of AT corresponding to \y = 1. We

w12
have
1 0 w1l | w11
BRI Y

w11 = W11

3.62
2wy — dwiz = w2 (3.62)
= 2w11 — 6w12 =0
& w1 = 3w
Thus the expression of eigenvector wy is:
3w ]
wy = 3.63
w = | o (3.63
It is clear that wy and vy are orthogonal:
T V21
Wivy = | 3wz w =0 3.64
wfy = [ 3un wa ]| 2 (3.6
Let wy = [ 111)1)21 } be the eigenvector of AT corresponding to Ay = —5. We
22
have

1 0 w1 _ W21
BRI EaEE b

w91 = —5’[1)21 (365)
2w — dwaegy = —Ddwn
= w9 =0

Thus the expression of eigenvector wy 4s:

MF[ 0 } (3.66)

w22

It is clear that wy and v, are orthogonal:

wlv, =[0 wa ] [ ”61 } =0 (3.67)
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Finally vy, vy, wy and wy are chosen such that w{yl = ngQ =1. We can
chose for example:

v | 1 o Bwie | |1
o] [2]) e
And: )
. V21 . -3 . 0 . 0
o[- [Hmeme[8]-[2] e
Then applying Equation (3.52) we get:
A =30 v e
— Qlw{eAlt _I_wage)\gt
[ _1
= é }et[ 1 3]+ [ K ] e [0 1]
— 3 | et + 3 e 5t
10 0 0 1
[ ot %et _ 1,5t
= I 0 e—5t
We can check that eAt‘tZO =1L
n

3.5.4 Computation of ¢A! thanks to the Laplace transform

Computation of eA? can be done thanks to the Laplace transform. Denoting by
L the Laplace transform and by £~! the inverse Laplace transform we have the
following property which extends to the vector case a well-known result in the
scalar case:

LA = (sT— A) ! e el = £ [(sﬂ - A)_l] V>0 (3.71)

Matrix (s — A)~ ! is called the resolvent of matrix A. It can be computed
thanks to the Faddeev-Leverrier’s method for example (see section 1.6).

The inverse Laplace transform is taken for each term of the resolvent of
matrix A. We recall that the inverse Laplace transform of a strictly proper
rational fraction F'(s) (i.e. the degree of the denominator is strictly greater than
the degree of the denominator) can be obtained thanks to the Mellin-Fourier
integral.

The Mellin-Fourier integral reads:

gt) =L [F(s)]= Y Res[F(s)e™] vt >0 (3.72)
poles of F(s)

The residue Res [F (s)eSt] shall be computed around each pole of F(s).
Assuming that )\ is a pole of multiplicity ny then the residue of F(s) around
pole )\ is given by:

1 dm—1

Resg—y, [F(s)e®] = (g —1)! dsme—1

(5 — \p)™ F(s)e™ (3.73)

S=Ak
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Alternatively if resolvent of matrix A is decomposed as % where degree

of polynomial matrix N(s) is strictly lower than degree of polynomial ¥(s) =
[I:(s — Ax)™ then the use of Mellin-Fourier integral leads to the following

expression of eAt:

_ -1 _ N(s) _ N(s)
(I= A" =36 = Moo= . (574)
_ 1 dnk— ng N(s) st .
o Zk (npg=1)! ds™k~1 (5 = )™ w(s) © s=Xg
Example 3.4. Compute e where:
A= [ 8 é ] (3.75)

Here n = 2 and the Faddeev-Leverrier’s method (see section 1.6) reads:

Fo=1I

dy = tr (AFQ) =tr (A) =0 (md Fi=AF,—-diI=A
do = ftr (AF,) = %tr )
2

(A (3.76)
and det (SH —A)=s5"—dis— dg = 52

Thus:

» \I—lmw‘b—‘

(s]I—A)_1:1(F03+F1):812[81}:[(% } (3.77)

det (sI — A) 0 s

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matriz of A:

L7[5] =Res [(e] )= (1—11) fsll llsleSt 0 o =1 (3.78)
— 2—1 .
L [s%] Res [ : St] s=0 (2—11) jlsQ 182 512 e s—0 - 75681:‘5:0 =1

We finally get:
1 ¢
-[11] e

(o)) =]

Alternatively resolvent of matriz A can be decomposed as T(s) - Indeed we
have seen that:

Owl=

(sI—A) == [ s 1 ] (3.80)
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The use of Mellin-Fourier integral leads to the following expression of e®t

. -1 _ N(s)
(sI—A) = 0
dnk_l

= M =3 Gy e (8~ )™ e

S=Ak
o 1 d2—1 21 S 1
= D! 4718 52 [ 0 s ] et
s=0
_ [ s 1 } o5t
0 s s=0 (381)
:[1 O}Gm e 1]test
? é 01 b =
- [ IR
1t
0 1
|
Example 3.5. Compute et where:
11
A=t 1] o2

We have:

() I PN

Thus (sI—A)™' = \I/((j)) where W(s) = s(s — 1) has two roots, \i = 0 and
Ao =1, each of multiplicity 1: n; =no = 1.

The use of Mellin-Fourier integral leads to the following expression of e®t

B -1 _ N(s)
(sl —A) = 30

At _ 1 dmk—! &
= e =2 (nk—1)! ds™k—T (s = )" (

s:)\k

1 dlls 1
T (1-1)! dst—1%s(s—1) O 8—1

1 4!
+(1—1)! dsl—1 (S 1)5(5 1) |: 0 s—1 :| e (384)
. ] s=1

&) st 1|9 st

|:0 3—1:|6 _+5|:0 8—1:|e
s=0

—1], (11,

1 0 0

el —1
1

Example 3.6. Compute el where:

‘ -

—_

o O O
~

7
|

)

A:[l 2 ] (3.85)
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Here n = 2 and the Faddeev-Leverrier’s method (see section 1.6) reads:

Fo=1
5 2
d1 = tr (AF()) = —4 and F1 = AFO —dﬂI: |: :|
0 -1
- (3.86)
dzzétl‘(AFl):%tr<|: 0 5 :|> =5

and det (sl — A) =s? —dis—dy =s?>+4s—5= (s —1)(s +5)
Thus:

. s+ 5 2

(sT—A)"" = ormay Fos +F1) = sy | 51]
T, (3.87)
0 5

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matriz of A:

e [k =
LTz =™ (3.88)
£ 7(371)2(%5)} =2(ge' —ge™) = ge’ — g~

We finally get:

1 2 L 2
exp (|: :| t> — 1| s1 (s—l)l(s+5)
0 =5 0 5+5 (3.89)

t 1.t 1 -5t
_ | e 3 —3e
0 e ot

Alternatively resolvent of matriz A can be decomposed as E((j)) Indeed we
have seen that:

(sI-A)~" =

1 {s+5 2 ] (3.90)

(s—1)(s+5) 0 s—1
The use of Mellin-Fourier integral leads to the following expression of eAt:

_ AVl _ N(s)
(sl —A) = 30

At _ 1 dnk 1 . ny N(s) st
= € =2 G st 5 A e

1 S+5 2 P
= (s—1) (5—1)(s+5)[ 0 S_l]et

1 S + 5 2
+ (s+5) OGS 0 s 1

s=1

} “l . @

I
| —
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Example 3.7. Compute et where:

2 -1 0
A=|0 1 0 (3.92)
1 -1 1

1 —1

) s—2 (s—1)(s—2) 0
(sT—A) ' = (1) T ? (3.93)

(s—1)(s—2) (s—1)(s—2) s—1

Then we have to apply the Mellin-Fourier integral as well as the residue
theorem on each term of the resolvent matriz of A:

L—l i — 62t
£ =€ (3.94)
r-1 (371)1(372)} — o2t _ ot
We finally get:
o2t et —e2t 0
eAt = 0 et 0 (3.95)
e2t ot ot o2t ot

3.6 Stability

There are two different definitions of stability: internal stability and input-
output stability:

— A linear time-invariant system is internally stable if its the zero-input state
etz moves towards zero for any initial state xz;

— A linear time-invariant system is input-output stable if its zero-state
output is bounded for all bounded inputs; this type of stability is also
called Bounded-Input Bounded-Output (BIBO) stability.

We have seen in (3.13) that the output response y(t) of a linear time-invariant
system is the following:

t
y(t) = Celz, +/ CeATBuy(7)dr + Du(t) (3.96)
0

Assuming that matrix A is diagonalizable, we have seen in (3.52) that eA!
can be obtained thanks to the following relationship :

A =PAP =) "] M (3.97)
=1

Thus;
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— The zero-input state, which is obtained when u(t) = 0, has the following

expression:

n
a(t) = My =Y v M, (3.98)
=1

Consequently the zero-input state moves towards zero for any initial state
z( as soon as all the eigenvalues \; of matrix A are situated in the open
left-half plane (they have strictly negative real part). This means that a
linear time-invariant system is internally stable when all the eigenvalues
A; of matrix A are situated in the open left-half plane (i.e. they have
strictly negative real part).

The result which have been shown assuming that matrix A is
diagonalizable can be extended to the general case where matrix A is
not diagonalizable; in that situation this is the Jordan form of A which
leads to the same result concerning internal stability.

The zero-state output, which is obtained when z; = 0, has the following
expression:
y(t) = fg CeA=T)Bu(7)dr 4+ Du(t)

- = (CeA'B + D6(1)) * u(t) (3.99)

It can be shown that the zero-state output is bounded if and only all the
poles of each term of the transfer function F(s) are situated in the open
left-half plane (i.e. they have strictly negative real part):

F(s) = L [CeAB +Di(t)] =C(sI-A) 'B+D (3.100)

The two types of stability are related. Indeed:

— If a linear time invariant system is internally stable it is also input-output

(or BIBO) stable because all the poles of the transfer function F(s) are
eigenvalues of matrix A;

— Nevertheless the converse is not true since matrix A could have unstable

hidden modes which do not appear in the poles of F(s). Indeed there may
be pole-zero cancellation while computing F(s). Thus a system may be
BIBO stable even when some eigenvalues of A do not have negative real
part.

Example 3.8. Let’s consider the following realization:

(3.101)

Matriz A has a stable mode, which is —1, and an unstable mode, which is

1. Thus the system is not internally stable.
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When computing the transfer function of the system we can observe a pole
/ zero cancellation of the unstable mode:

F(s) =C(sI—A)'B+D

11 2101 _9

_ _ s+ 84— _

= 23]{0 siHo] 2 (3.102)
4

=4 _9

_sjikleJrQ

s+l

The pole of the transfer function F(s) is —1. Thus the system is BIBO stable
but not internally stable.

]
3.7 Controllability
3.7.1 Definition
Let’s consider the state trajectory z(t) of a linear time-invariant system:
t
z(t) = e, —I—/O AU Buy(r)dr (3.103)

Where A is a n X n real matrix and B is a n x m real matrix.

Controllability answers the question whether it is possible to control the
state vector z(t) through an appropriate choice of the input signal u(t).

More precisely an initial state z, is said controllable if and only if there
exists an input signal u(¢) which is able to move the state vector z(t) from an
initial state 2(0) = zq at ¢ = 0 to the origin x(tf) = 0 in a finite time t;. We
said that a system is controllable when any arbitrary initial state z, € R" is
controllable 2.

If the system is controllable then the input signal u(¢) which is able to move
the state vector z(t) from an initial state z(0) = x5 at t = 0 to the origin
z(tf) = 0 in a finite time ¢; reads™:

u(t) = —BTeA LD W (t5)eAY (3.104)

c

Where W (ty) is a symmetric matrix defined as follows:

ty
W.(tf) = / ATBBT A dr (3.105)
0

*https://en.wikibooks.org/wiki/Control _Systems/Controllability and Observability
33. Skogestad and I. Postlethwaite: Multivariable Feedback Control Analysis and design,
Wiley, 1996; 2005
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Indeed when z(ts) is computed with this control we get z(ty) = 0:

alty) =eArag+ fof AU Bu(r)dr
= eAtrg — [l Al —T)BBT AT (=) WL (t,)eAlr g, dr
= Ay, + ft?« cAVBBTATY dv) W L(ty)ehtr z,
= eAlrpy — (15 ATBBTA T dr ) Wl (t)eAl
= eAlrzg — Wt )W, (tp)eAt zy
=0

(3.106)

More generally one can verify that a particular input which achieves z(t;) =
Ty 1s given by?:

u(t) = —BTeA D WL (1) (A 2y — /) (3.107)

Consequently a system is controllable if and only if symmetric matrix W (ty)
is nonsingular for any t¢ > 0. Furthermore W(¢) is the solution of the following
differential equation:

d
AW, (t) + W (t)AT + BBT = —We(t) (3.108)

If all eigenvalues of matrix A have negative real parts (A is said to be
Hurwitz) then W, (t) tends towards a constant matrix as ¢ — oo. The
controllability Gramian W, is the following positive definite symmetric
matrix:

W, = / ATBBTeA Tdr (3.109)
0

It can be shown that W, is the unique solution of the following Lyapunov
equation:

AW.+W. AT +BBT =0 (3.110)

3.7.2 Use of the diagonal form: Gilbert’s criteria

Assuming that all eigenvalues are distinct, controllability property can be readily
analyzed by inspecting the null rows of the input matrix B as soon as we get
the modal (or diagonal) form of the state space representation.

Indeed we have seen in the the chapter dedicated to the state-space
representation that for a single input system matrices A and B of the state
equation &(t) = Az(t) + Bu(t) read as follows assuming that matrix A has n
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independent eigenvectors :

_)\1 0 0
A= 0 A2
S
0 -~~~ 0 M\,
- (3.111)
o
bo
B = .
_bn

Thus in the time domain the diagonal form of the state space representation
(t) = Az(t) + Bu(t) reads:

:i'1<t) = )\11131(25) + bﬂt(t)

@(t) = oo (t) + bau(t) (3.112)

() = Ann(t) + bru(t)

Consequently if at least one of the b;’s coefficients is zero then the state
component x;(t) is independent of the input signal w(t) and the state is
uncontrollable.

For multi inputs system with m inputs then matrix B has m columns and
the preceding analysis is readily extended to each column of matrix B assuming
that the state space representation is the diagonal form.

Gilbert’s controllability criteria (1963) states that a multi inputs system
with distinct eigenvalues is controllable if and only if each row of control matrix
B of the diagonal realization (all eigenvalues are distinct) has at least one non
zero element.

3.7.3 Popov-Belevitch-Hautus (PBH) test

There exists another test for controllability which is called the Popov-Belevitch-
Hautus (PBH) test.

Popov-Belevitch-Hautus (PBH) test indicates that a linear system is
controllable when the rank of matrix [ A-)\I B ] is equal to n for all
eigenvalues {\;} of matrix A.

A linear system is stabilizable when the rank of matrix [ A-)\I B ] is
equal to n for all unstable eigenvalues {\;} of matrix A.

Eigenvalues \; for which rank of matrix [ A-)\I B ] is not equal to n
are said uncontrollable.

Example 3.9. Let’s consider the following realization.:

(3.113)
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Matriz A has two modes, A1 = —1 and \o = 1.
Let’s apply the PBH test for Ay = —1:

0 10| —2
rank [ A — M1 | B | :rank{o 5| o ]:2 (3.114)
We conclude that the mode \y = —1 is controllable.
Let’s apply the PBH test for Ao = 1:
-2 10| -2
rank[Af)\QH‘B] :rank[ 0o ol o ]:1752 (3.115)
We conclude that the mode Ao = 1 is not controllable.
|
3.7.4 Kalman’s controllability rank condition
Let Q. be the controllability matrix. Matrix Q. is defined as follows:
Q.=[B AB .- A"'B] (3.116)

It can be shown that a linear system is controllable if and only if the rank of
the controllability matrix Q. is equal to n. This is the Kalman’s controllability
rank condition.

The sketch of the demonstration is the following:

— First we recall that the expression of the state vector x(t) at time t = t;
which solves the state equation (3.1) is:

ty
z(ty) = ez + / A=) Bu(r)dr (3.117)
0

As far as x4, ty and z(tf) are assumed to be known we rewrite the
preceding equation as follows:

tf
e AU g(ty) —zo = / e ATBu(r)dr (3.118)
0

— To continue the sketch of the proof we need the Cayley—Hamilton theorem.
Let xa(s) be the characteristic polynomial of the n x n matrix A. We
write the characteristic polynomial y 4(s) of matrix A as follows:

xa(s) :==det(sl — A) = s" + a,_18"" "+ +a1s + ag (3.119)

The Cayley—Hamilton theorem states that substituting matrix A for s in
the characteristic polynomial x 4(s) of matrix A results in the zero matrix
4.

XA(A)=0=A" +a, 1A" !+ a1 A +agl (3.120)

“https://en.wikipedia.org/wiki/Cayley-Hamilton _theorem
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From the preceding equation it is clear that we can express A™ as a
function of A* where 0 <k <n —1:

A" = —a, A" — o — a1 A — qgl (3.121)

More generally this relationship allows to replace a term of the form A™
where m > n by a linear combination of A* where 0 < k <n—1. When
we use this property to replace the terms A™ where m > n in the series
expansion of eAt we get the following relationship:

1 Ak¢k kik
Zk 0 k:' ZZ 0 Ak!t + Zo:n Ak:!t
A" = —ap_ lAn’l — - —a1A —apl (3.122)
A =30 70 a; At Ym > n

Consequently the series expansion of eA* can be cut so that no power of
matrix A greater that n appears in the series expansion:

n—1
=> wm()A* (3.123)
k=0

where ~i(t) are functions of time ¢. As far as det(sl — A) is equal to
zero when s = ); is an eigenvalue of matrix A the preceding matrix
relationship is also be obtained for all the eigenvalues of matrix A. We
obtain the following relationship which is satisfied by the functions ~(t):

n—1
= S (! (3.124)
k=0

— Using (3.123) and the fact that functions v (¢) are scalar functions (3.118)
is rewritten as follows:

e AMrz(ty) — zg Zfotf _ATBU(T)dT

= Z:é Aka T)Q(T)dT

Now let’s introduce vector w(tf) whose n  components
wo(ty),wi(ty), -, wn—1(ty) are defined as follows:

tr
wy(ty) = /0 Ye(=T)u(T)dr VO<k<n-1 (3.126)

Thus Equation (3.125) reads:

e Alig(ty) —zy =Y p_g AFB [o7 wi(ts)
wo(ty)
w1 (t
—[B AB .- A"B] 1(fp) (3.127)
wnfl(tf)

= Qew(ty)
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In order to be able to compute the expression of vector w(ty) and then
solving the integral equation in the input signal u(t), the controllability
matrix Q, shall be invertible; consequently the rank of the controllability
matrix Q. shall be equal to n. Thus we retrieve the Kalman’s
controllability rank condition.

Example 3.10. Let’s consider the following realization:

(3.128)

(3.129)

Consequently rank (Q.) = 1 # 2. We conclude that the system in not
controllable.

3.7.5 TUncontrollable mode

Following Bélanger® a state x, # 0 is uncontrollable if the zero-state output of
the system (i.e. the system’s response to the input signal u(¢) # 0 when the
initial state x is zero) is orthogonal to x; for all final time ¢ > 0 and all input
signal u(t). An uncontrollable state z; # 0 satisfies the following equation:

zl[B AB .- A"B]=0 (3.130)

Equivalently the pair (A, B) is uncontrollable if and only if there exists an
eigenvector w, of AT such that wiTB =0. If Q;TB = 0 then the mode \; (i.e.
the eigenvalue) corresponding to w; is called an uncontrollable mode.

Indeed if w, is an eigenvector of matrix AT corresponding to the mode (i.e.
the eigenvalue) \; then ATQZ- = \w,; & MZ-TA = Aiw?. Specializing z, to w;
Equation (3.130) reads:

0 =w/'[B AB -+ A"'B]
=w/'[B AB -+ \'"'B] (3.131)
—wB[1 A o N

Coupling wiTA = )\iwiT and wer = 0 leads to the Popov-Belevitch-Hautus
(PBH) test for controllability:

TA = vwl
{wiA—/\zwZ sw [A-NI B]=0 (3.132)

w/B =0
°P. Bélanger, Control EngineeControl Engineering: A Modern Approach, P. Bélanger,
Oxford University Press, 2005
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Example 3.11. Let’s consider the following realization:

(3.133)

Matriz A has two modes, Ay = —1 and Ao = 1. We have seen that the mode
A2 = 1 is not controllable. We will check that there no input signal u(t) which
s able to move towards zero an initial state x, which is set to the value of an
eigenvector of AT corresponding to the uncontrollable mode Ay = 1.

Let wy be an eigenvector of AT corresponding to the uncontrollable mode
Ao =1:

ATMQ = )\2@2 = —10 Wy = Woy (3134)
10 1
We expand wy as [ w21 } to get:
w22
-1 0 wWa1 w1 —W21 = W21
= = 3.135
{ 10 1 ] [ w2 ] [ Wa2 ] { 10w21 + w22 = w22 ( )
We finally get:
wo =0=wy = [ 0 } (3.136)
w22

Now let’s express the state vector x(t) assuming that the initial state x is
set to wy. We have:

z(t) =eMlzg+ fg A=) Bu(r)dr

0 n - —2
— LAt A(t—T)
e o ] —l—fo e [ 0 ]u(T)dT

(3.137)

Where:

—

_ o E(SH)M[SOl Slfl D (3.138)

1 10
— -1 3461 (s+£—1)
L s—1
[ et bet —5et
1o et

Consequently state vector x(t) reads:

ot) — [ ot 55 } [ o }

t o= (t=7) 5elt=7) _ 5e—(t=7) 9
—i—/o [ 0 o(t=7) }{ 0 :|U(T)Cl7' (3.139)
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That 1s:

z(t) = [ el _efe_t } wag + /0 t [ _26;)@_7) ]U(T)dT (3.140)

It is clear that for this specific initial state the input vector u(t) will not act
on the second component of x(t) whatever its expression. Consequently it will
not be possible to find a control u(t) which moves towards zero the initial state
vector o = wy: this state is uncontrollable and the system is said uncontrollable.

"

3.7.6 Stabilizability

A linear system is stabilizable if all unstable modes are controllable or
equivalently if all uncontrollable modes are stable.

3.8 Observability

3.8.1 Definition

Let’s consider the output response y(t) of a linear time-invariant system:

t
y(t) = CePlzy + / CeATBuy(7)dr + Du(t) (3.141)
0

Let’s define vector g(t) as follows:

g(t) = y(t) — /0 t CeAU"Bu(r)dr — Du(t) (3.142)

Thus we get:
CetMay = j(t) (3.143)

Observability answers the question whether it is possible to determine the
initial state z, through the observation of §(t), that is from the output signal
y(t) and the knowledge of the input signal u(t).
~ More precisely an initial state z, is observable if and only if the initial
state can be determined from () which is observed through the time interval
0 <t < ty, that is from the krf()wledge of the output signal y(¢) and the input
signal u(t) that are observed through the time interval 0 < t<t ¢- A system is
said to be observable when any arbitrary initial state z, € R" is observable.

If the system is observable then the value z, of the initial state can be
determined from signal g(¢) that has been observed through the time interval
0 <t <ty as follows: B

ty
20 = W3l(t)) / AT CT () dr (3.144)
o Y
Where W, (ty) is a symmetric matrix defined as follows:

ty
W, (tf) = / A TCTCeAdr (3.145)
0
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Indeed from Ce®'zy = g(t) we get:

CeAt%O =y(t) ;
= €A tCTCGAtQO — eA tch(t)

= ftf A TCTCeAdrg, = fo eATTCTg(T)dT (3.146)
<:>W(tf:L'0 ffATcT()dT
& zg =W, (ty) [17 A TCTy(r)dr

Consequently a system is observable if and only if symmetric matrix W (ty)
is nonsingular for any ¢y > 0. Furthermore W, (?) is the solution of the following
differential equation:

ATW, () + W, () A + CTC = %W ) (3.147)

If all eigenvalues of matrix A have negative real parts (A is said to be
Hurwitz) then W, (t) tends towards a constant matrix as ¢ — oo. The
observability Gramian W, is the following positive definite symmetric matrix:

oo
W,= [ A'"CcTCerdr (3.148)
0

It can be shown that W, is the unique solution of the following Lyapunov

equation:

ATW,+W,A+CTCc=0 (3.149)

3.8.2 Use of the diagonal form: Gilbert’s criteria

Assuming that all eigenvalues are distinct, observability property can be readily
analyzed by inspecting the null columns of the output matrix C as soon as we
get the modal (or diagonal) form of the state space representation.

Indeed we have seen in the the chapter dedicated to the state-space
representation that for a single output system matrix C of the output
equation y(t) = Czx(t) + Du(t) read as follows assuming that matrix A has n
independent eigenvectors :

A=]ca e - ¢ (3.150)

Thus in the time domain the diagonal form of the state space representation
y(t) = Cz(t) + Du(t) reads:

y(t) = c1x1(t) + cama(t) + - - - + cpwn(t) + Dult) (3.151)

Consequently if at least one of the ¢;’s coefficients is zero then the output
signal y(t) is independent of the state component z;(f) and the state is
unobservable.

For multi outputs system with p outputs then matrix C has p rows and the
preceding analysis is readily extended to each row of matrix C assuming that
the state space representation is the diagonal form.

Gilbert’s observability criteria (1963) states that a multi outputs system with
distinct eigenvalues is observable if and only if each column of output matrix
C of the diagonal realization (all eigenvalues are distinct) has at least one non
zero element.
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3.8.3 Popov-Belevitch-Hautus (PBH) test

There exists another test for observability which is called the Popov-Belevitch-
Hautus (PBH) test.
Popov-Belevitch-Hautus (PBH) test indicates that a linear system is
A -\
C

observable when the rank of matrix [ } is equal to n for all

eigenvalues {\;} of matrix A.

A linear system is detectable when the rank of matrix [ il ] is equal

C
to n for all unstable eigenvalues {\;} of matrix A.

- NI
C

Eigenvalues \; for which rank of matrix [ ] is not equal to n are

said unobservable.
If {\1,---, A} is the set of observables modes then it can be shown that
(s — A1) -+ (s — Ag) is an annihilating polynomial of CA':

(s=XM)-(s=XA)=81+a187 4+ +a1s+ag

= CA%+ay 1 CAT !+ +a;CA +a9C =0 (3.152)

Then we can use relationship y = Cz + Du to compute Q(Q) +ag—1 y(qfl) +
-+++a1y+aoy and finally obtain the input-output relationship between output
vector y and input vector w.

Example 3.12. Let’s consider the following realization:

A|B
Matriz A has two modes, Ay = —1 and Ay = 1.
Let’s apply the PBH test for A\ = —1:
0 0
rank[ A- Ml } —rank | 10 2 | =2 (3.154)
C
-2 0
We conclude that the mode \y = —1 is observable.
Let’s apply the PBH test for Ao = 1:
-2 0
rank [ A=Al ] =rank | 10 0 | =1#2 (3.155)
C -2 0

We conclude that the mode Ao = 1 is not observable.
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3.8.4 Kalman’s observability rank condition

Let Q, be the observability matrix. Matrix Q, is defined as follows:

C

CA
Qo = : (3.156)

Car
It can be shown that a linear system is observable if and only if the rank of
the observability matrix Q, is equal to n. This is the Kalman’s observability

rank condition.
The sketch of the demonstration is the following;:

— First we recall that the expression of the output vector y(t) at time ¢ with
respect to the state vector z(t) is:

y(t) = Cz(t) + Du(t) (3.157)

where z(t) solves the state equation (3.1):

t
z(t) = Ay, —i—/ AT Bu(r)dr (3.158)
0
Thus:
t
y(t) = Cerlzy+ C / AT Bu(r)dr + Du(t) (3.159)
B 0

Asfar as y(t), t and u(t) are assumed to be known we rewrite the preceding
equation as follows:

t
y(t) — C/ AT Bu(r)dr — Du(t) = CePa, (3.160)
0

— To continue the sketch of the proof we need the Cayley—Hamilton theorem.
As shown in (3.123) this theorem indicates that e®! can be written as
follows:

n—1
e = "y (t)A* (3.161)
k=0

where 7 (t) are functions of time ¢.

— Using (3.123) and the fact that functions 4 (t) are scalar functions Ce®tx,
reads:
CeAlzy = CYpZg (1) Az,
= 1= C(t)Arz, (3.162)
— (ZiZs wcar) a



Chapter 3. Analysis of Linear Time Invariant systems

Now let’s sample the time interval 0 < ¢ < t; into n values of time,
t1 = 0,t2,--- ,tp_1,t, = ty which are situated inside the time interval
0 <t <ty. Using (3.160) for each value t; of the time we get:

y(t1) Cftl eA=T)Buy(r)dr — Du(t)
y(t2) — C ft2 (t2=")Bu(7)dr — Du(ty)

y(tn) — C [ eAtn=DBu(7)dr — Du(t,)

Yo(t1) m(ta) Yn—1(t1) C
_ ( 2) ’Yl(.t2) Vn—%(tz) CA 2 (3.163)
o) i) - roaie) | | CA
That is:
y(t CﬁlA Bu(r)dr — Dul(t)
y(ts) — C ftz At 7(7-)d7-—Dg(t2) vew, (361
y(ta) — C )" (Alin=) Bu(7)dr — Du(ty,)
Where:
Yo(t) () Yn—1(t1)
v_ ’Yo(‘tQ) ’Yl(f?) %_%(h) (3.165)
Bolt) A1) - ma(tn)

In order to be able to compute the expression of vector z, from (3.164)
and assuming that matrix V is invertible (which is always the case when
all the eigenvalues of matrix A are distinct), the observability matrix Q,
shall be invertible; consequently the rank of the observability matrix Q,
shall be equal to n. Thus we retrieve the Kalman’s observability rank
condition.

Example 3.13. Let’s consider the following realization:

A|B
The observability matriz Q, reads:
[ C
QO - I CA :|
=2 0]
= -1 0 (3.167)
[ -2 0] [ 10 1 }
1 =20
2 0
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Consequently rank (Q,) = 1 # 2. We conclude that the system in not
observable.

3.8.5 TUnobservable mode

Following Bélanger® a state x; # 0 is said to be unobservable if the zero-input
response of the system (i.e. the system’s response to the initial condition z(0) =
2o # 0 when the input signal u(t) is zero) with z(0) = z; is zero V¢t > 0. An
unobservable state x; # 0 satisfies the following equation:

C
CA
- s=20 (3.168)

Z
CAn—l

Equivalently the pair (A, C) is unobservable if and only if there exists an
eigenvector v; of matrix A such that Cv;, = 0. If Cy; = 0 then the mode \; (i.e.
the eigenvalue) corresponding to v; is called an unobservable mode.

Indeed if v, is an eigenvector of matrix A corresponding to the mode (i.e.
the eigenvalue) \; then Av, = \jv,. Specializing z; to v; Equation (3.168) reads:

C C 1
CA C\i i
: v; = . u=| . |Cy=0 (3.169)
CA"! CAP ! APt

Coupling Av; = A\v; and Cuy; = 0 leads to the Popov-Belevitch-Hautus
(PBH) test for observability:

{Cvi:O @[ c }ui_o (3.170)

3.8.6 Detectability

A linear system is detectable if all unstable modes are observable or equivalently
if all unobservable modes are stable.

3.9 Interpretation of the diagonal (or modal)
decomposition
When the state matrix A is diagonalizable we have seen in (3.56) that eA* reads

as follows where v, is a right eigenvector corresponding to eigenvalue \; and w;
is a left eigenvector corresponding to the same eigenvalue \;:

)

n
A= vl M (3.171)
=1
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On the other hand we know from (3.13) that the output response of the
system can be expressed as follows:

y(t) = CeAlz(0) + / t CeATBuy(7)dr + Du(t) (3.172)
0

Gathering the two previous results leads to the following expression of the
output vector y(t) where it is worth noticing that w! z(0) is a scalar:

n n ¢
y(t) = Z Cu,eMit (MZTQ(O)) + Z Cvi/o eki(tiT)M;rBQ(T)dT
i=1 i=1

+Du(t) (3.173)

The product Cu; is called the direction in the output space associated with
eigenvalue )\;. From the preceding equation it is clear that if Cv;, = 0 then any
motion in the direction v; cannot be observed in the output y(t) and we say
that eigenvalue )\; is unobservable. ;

The product MZTB is called the direction in the input space associated with
eigenvalue \;. From the preceding equation we cannotice that if M?B = 0 the
control input u(t) cannot participate to the motion in the direction v; and we
say that eigenvalue \; is uncontrollable.

As a consequence the coupling between inputs, states and outputs is set by
the eigenvectors v; and MiT. It can be seen that those vectors also influence the
numerator of the transfer function F(s) which reads:

1 " Cyw!’B
F(s)=C(sI-A)" " B+D= ——— 4D 3.174
()= Clel =)' B+D =) HE2 (3.174)
Indeed let A be the diagonal form of the diagonalizable matrix A:

A1
A= (3.175)
An

We have seen that the change of basis matrix P as well as its inverse P~!
have the following expression:

P:[Q1 vy - Qn}

A =P AP where po1_ | %2 (3.176)

Using the fact that (XY)_1 = Y 'X~! for any two inversible square
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u() x () x (1) @ »()
B | —» P I j P [ » C >

Figure 3.1: Modal decomposition of a transfer function

matrices the transfer function F(s) reads:

F(s) =C(s[—A)"'B+D
=C(P(sI-P'AP)P ) 'B+D
=CP(sI-A)'P'B+D
=C(P(sI-P'AP)P ) 'B+D
=CP(sI—A)'P'B+D
-1 wiB
S*)\l wg‘B
=[Cy Cu, -+ Cu, | . +D
1 .
L 5—An MZB
.
S—A1
wlB
= [ Cyl 022 e Cyn ] 5_./\2 + D
w%:B
L s—x
(3.177)
We finally get:
n Co. TB
F(s) = Z% +D (3.178)

=1

Figure 3.1 presents the diagonal (or modal) decomposition of the transfer
function F(s) where z,,(t) is the state vector expressed in the diagonal (or
modal) basis and matrices A, P and P~! are defined as follows:

A1
A=
An
P=[v - v, ] (3.179)
T
wy
P! = ;
w?
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3.10 Duality principle

The concept of controllability and observability was introduced by American-
Hungarian engineer Rudolf E. Kalman for linear dynamic systems . Let’s
consider a system which is denoted Y. Then system Y p, which is the dual of
3., as defined as follows:

5= (%‘%) — S = dual (%) = (%‘%)T _ ( g; g; ) (3.180)

The duality principle indicates that:
— System X is observable if and only if system X p is controllable.
— System X is controllable if and only if system X p is observable.

Furthermore we cannotice that the observable canonical form is the dual of
the controllable canonical form.

3.11 Kalman decomposition

3.11.1 Controllable / uncontrollable decomposition

We recall that the controllability matrix Q. is defined as follows:
Q.=[B AB .- A"'B] (3.181)
Suppose that the system is not controllable, meaning that:
rank (Q.) =n. <n (3.182)

Let P,z be the following change of basis matrix which defines a new state
vector z;(t) as follows:

2(t) = Pecolt) © 20(t) = Prla(t) (3.183)

The first n. columns of P are chosen to be n, independent columns of Q.
whereas the remaining n — n. columns are arbitrarily chosen such that Pz is
invertible:

PcE:[Ql SRR MRS gn] (3.184)

=N

Then, according to the results in section 2.2, the state-space representation
involving the state vector z () reads:

{ Teo(t) = Acez oo (t) + Bezu(t)

y(t) = Ceezoo(t) + Duft) (3.185)

®R. E. Kalman, On the General Theory of Control Systems, Proceeding of the 1st IFAC
congress, Moscow 1960
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where:
A, A
_p-1 L c 12
A:=P_;AP.: [ 0 !c}

_ B 3.186
B = PcélB = Oc ( )

Ccé = CPCE = [ CC CE ]

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

The state vector z.;(t) can be split into vector z.(t), which represents the
controllable states, and vector x;(¢) which represents the uncontrollable states:

2o(t) = [ Ze(1) ] (3.187)

Furthermore, the reduced-order state equation of the controllable state
vector z,(t) is controllable and has the same transfer function than the full
state equation:

{ i.(t) = Acz,(t) + Beu(t) (3.188)

y(t) = Cez,(t) + Du(t)

3.11.2 Observable / unobservable decomposition

We recall that the observability matrix Q, is defined as follows:

C

CA
Qo = : (3.189)

CAnfl
Suppose that the system is not observable, meaning that:
rank (Q,) =no, < n (3.190)

Let P, be the following change of basis matrix which defines a new state
vector z,5(t) as follows:

2(t) = Pog pp(t)  ,5(t) = Pl z(t) (3.191)

The first n, rows of P are chosen to be n, independent rows of Q, whereas
the remaining n — n, rows are arbitrarily chosen such that P, is invertible:

Pl=| -0 (3.192)
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Then, according to the results in section 2.2, the state-space representation
involving the state vector z,;(t) reads:

At i o199
where:

Ay = PIAP,; = { AA;1 :5 ]

B, = P1B = [ EZ } (3.194)

Coachoa = [ CO 0 ]

It is worth noticing that the feedforward matrix D is independent of the
choice of the state vector.

The state vector z,5(t) can be split into vector z,(t), which represents the

observable states, and vector x;(t) which represents the unobservable states:
| z()
£06(75) T |: 6(t) :| (3195)

Furthermore, the reduced-order state equation of the observable state
vector z,(t) is observable and has the same transfer function than the full
state equation:

QO(t) o(t> + Boﬂ(t)
{ y(t) = Coz,(t) + Du(t) (3.196)

3.11.3 Canonical decomposition

Kalman decomposition is a state space representation which makes clear the
observable and controllable components of the system. More precisely any linear

A|B
system <F‘ﬁ> can be transformed by a similarity transformation as follows:

{ iy (t) = Agzg(t)+Bru(t)

y(t) = Cray(t) + Du(t) (3.197)

The Kalman decomposition expands as follows:

A Az Az Ay

Bc()
0 A—co 0 A24 BCO
( ‘éK ]?DK ) = 0 Asx A | O (3.198)
K 0 0 A,| O
C 0 D

CEO

oo o

co

This leads to the conclusion that”:

— Subsystem < éco ]?)Co > is both controllable and observable;
co
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Uts) [(s-h )N (s) N (s) X(s)
—_— | —— o | = .
D (s) (s-1) D.(s)

i

Figure 3.2: Example of uncontrollable mode through pole / zero cancellation in
series interconnection

Urs) N (s) (s-h)N(»)| I(s)

- o D -
(s ) D (5) D (s)

h J

Figure 3.3: Example of unobservable mode through pole / zero cancellation in
series interconnection

Acé A12 B06
— Subsystem 0 A, | B, is controllable;
0 C,| D
Aco A24 Bco
— Subsystem 0 A 0 is observable.
Cco CEO D

Practical cases of uncontrollability and unobservability may appear in
pole(s) / zero(s) cancellation in series interconnection as represented in Figure
3.2 and Figure 3.3.

In the special case where matrix A has distinct eigenvalues then matrices
A;j =0V i +# jand Kalman decomposition reduces as follows:

A, 0 0 0 |Bg
0 A, 0 0 |B,
( ‘éK ]?)K > = o o A; o0 | o0 (3.199)
K 0 0 0 Ai| O
0 C, 0 Cgp| D

Figure 3.4 represents the Kalman decomposition: there is no path, direct or
through a block, from the input to either of the uncontrollable blocks. Similarly
the unobservable blocks have no path to the output.

Ax | B
The new state representation <C—K‘?K> is obtained thanks to the
K

change of basis matrix Pg:

Ak =P APy

Bx =P.'B (3.200)
Ck = CPg
Let vy,vq,--- ,v, be the eigenvectors of matrix A and w;,w,, -+ ,w, be

the eigenvectors of matrix AT. The change of basis matrix P is an invertible
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o Rt A
P o J -
co \/+\/
‘ —
<o
T B X, (0 N
f \ . / \ \‘I
—» B, e .[ — > C_ e
: Al
<o
x(1) x_(1)
co co -
> .[ —
‘ A_ .
X0 X () A
co o' - ; - ™
™ J T w [T
\ AN
> D

Figure 3.4: Kalman decomposition in the special case where matrix A has
distinct eigenvalues
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matrix defined as follows:

Pyx=[uv; v, -+ v,] =[P Peo Pwx Po | (3.201)

Where”:

— P, is a matrix whose columns span the subspace of states which are both
controllable and unobservable: wiTB # 0 and Cy; = 0;

— P, is chosen so that the columns of [ P.s P ] are a basis for the
controllable subspace: w?B # 0 and Cuy; # 0;

— Pz is chosen so that the columns of [ P.; Pz ] are a basis for the
unobservable subspace: QZTB =0 and Cy, = 0;

— Pg, is chosen so that P is invertible: QZTB =0 and Cy; # 0.

It is worth noticing that some of those matrices may not exist. For example
if the system is both controllable and observable then Px = P,,; thus other
matrices do not exist. In addition Kalman decomposition is more than getting
a diagonal form for the state matrix A. When state matrix A is diagonal
observability and controllability have still to be checked thanks to the rank
condition test. Finally all realizations obtained from a transfer function are
both controllable and observable.

Example 3.14. Let’s consider the following realization:

(3.202)

Matriz A has a stable mode, which is —1, and an unstable mode, which is
1. When computing the transfer function of the system we can observe a pole /
zero cancellation of the unstable mode:

F(s) =C(sI—A)'B+D

11 10 _9
— [ — s+ s<—1 _
[23][0 ;HO} 2 (3.203)
-4 9
_ Thero
s+1

From PBH test it can be checked that mode —1 1is both controllable and
observable whereas mode 1 is observable but not controllable. Thus the system
15 not stabilizable.

Internal stability (which implies input-output stability, or BIBO stability) is
required in practice. This cannot be achieved unless the plant is both detectable
and stabilizable.

"https://en.wikipedia.org/wiki/Kalman _decomposition
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3.12 Minimal realization (again!)

We have seen that a realization of a transfer function F(s) is minimal if there
exists no realization of lesser order whose transfer function is F(s). The order

of a realization is the size of matrix A.

A realization is said to be minimal if and only if the realization is both
controllable and observable. Consequently a minimal realization of the transfer
function F(s) = C (s — A) "' B+ D is Cy, (s — Ay,) ' B, + D:

P = (&1p) = ()

Indeed:
[ sl — A05 —A12 —A13 _A14
—1 . 0 SH — Aco 0 —A24
(sT-A)"B = 0 0 sI-Am —Ay
i 0 0 0 sl — Az,
[ (sI— AC(—,)_1 * *
_ 0 (sT— Agp) ™" %
N 0 0 (SH — Aaa
i 0 0 0
i *
_ (SH - iAco)i1 B
N 0
I 0
And:
F(s) =C(sI—A)"'B+D
k
-1
—[0 Cop 0 C ]| T Aw) Bo
0
0

= Cu(sI—Ay) 'Bep+D

_ Aco B,
-\ C, | D

+D

-1

(3.204)

(3.205)

(3.206)

The number of states of a minimal realization can be evaluated by the rank

of the product of the observability and the controllability matrix .

8 Albertos P., Sala A., Multivariable Control Systems, Springer, p78



Chapter 4

Observer design

4.1 Introduction

The components of the state vector z may not be fully available as
measurements. Observers are used in order to estimate state variables of a
dynamical system, which will be denoted Z in the following, from the output

signal y(¢) and the input signal u(t) as depicted on Figure 4.1.

Several methods may be envisioned to reconstruct the state vector z(t) of a
system from the observation of its output signal y(¢) and the knowledge of the

input signal u(t):

— From the output equation y(t) = Cz(t) + Du(t) we can imagine to build
z(t) from the relationship z(t) = C™* (y(t) — Du(t)). Unfortunately this
relationship holds as soon as matrix C is square and invertible, which is

seldom the case;

— Assuming that the size of the state vector is n we may also imagine to take
the derivative of the output signal n — 1 times and use the state equation
z(t) = Az(t) + Bu(t) to get n equations where the state vector z(t) is
the unknown. Unfortunately this not possible in practice because each
derivative of an unsmoothed signal increases its noise ;

U(s)
—

Plant
X(s)

¥(s)

4*

L.

-

Observer

Figure 4.1: Observer principle

X(v)
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— We can also use a Luenberger observer which will be developed in the
next section. David Gilbert Luenberger, born in 1937 in Los Angeles, is
an American mathematical scientist'. The theory of full order observer
originated in the work of Luenberger in 1964.

This chapter focuses on observers design. More specifically Luenberger
observer, state observer for SISO systems in observable canonical form, state
observer for SISO systems in arbitrary state-space representation and state
observer for MIMO systems will be presented. We will also present
reduced-order observer design.

4.2 Luenberger observer

Consider the following state space representation where x(¢) denotes the state
vector, y(t) the measured output and wu(t) the control input:

{ i(t) = Az(t) + Bu(t) (4.1)

y(t) = Cz(t) + Du(t)

We assume that state vector z(¢) cannot be measured. The goal of the
observer is to estimate z(t) based on the observation y(¢). Luenberger observer
provides an estimation #(t) of the state vector z(t) through the following
differential equation where output signal y(¢) and input signal u(¢) are known
and where matrices F ., J and L have to be determined:

B(t) = Fa(t) + Ju(t) + Ly(t) (42)
The estimation error e(t) is defined as follows:
e(t) = x(t) — &(t) (4.3)
The time derivative of the estimation error reads:

é(t) = i(t) — a(t)
— Aux(t) + Bu(t) — Fi(t) — Ju(t) - Ly(t) (44

Thanks to the output equation y(t) = Cxz(t) + Du(t) and the relationship
£(t) = e(t) + &(t) we get:

e(t) = Ax(t) + Bu(t) — F2(t) — Ju(t) — L (Cz(t) + Du(t))
=(A—LC)z(t)+ (B—J —LD)u(t) — F&(t) (4.5)

=(A-LC)e(t)+ (B—J—-LD)u(t)+ (A—-LC—F)i(t)

As soon as the purpose of the observer is to move the estimation error e(t)
towards zero independently of control u(t) and true state vector z(t) we choose
matrices J and F as follows:

(4.6)

J=B-LD
F=A-LC

"https://en.wikipedia.org/wiki/David_Luenberger
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Thus the dynamics of the estimation error e(t) reduces to be:
&(t) = (A — LC) (1) (4.7)

In order that the estimation error e(t) moves towards zero, meaning that the
estimated state vector & becomes equal to the actual state vector z(t), matrix
L shall be chosen such that all the eigenvalues of A — LC are situated in the
left half plane.

With the expression of matrices J and F the dynamics of the Luenberger
observer can be written as follows:

2(t) =Fi(t) + Ju(t) + Ly(t)

= (A -LC)&(t) + (B — LD) u(t) + Ly(t) (4.8)
That is: ‘
2(t) = AZ(t) + Bu(t) + L (y(t) — §(t)) (4.9)
Where:
§(t) = Ci(t) + Du(t) (4.10)

Thus the dynamics of the Luenberger observer is the same than the dynamics
of the original system with the additional term L (y(¢) — §(¢)) where L is a gain
to be set. This additional term is proportional to the error y(t) — g(t). It
enables to drive the estimated state Z(t) towards its actual value z(t) when the
measured output y(t) deviates from the estimated output y(¢).

In order to coﬁlpute a state space representation and the transfer function
of the observer we first identify its input and output.

— As discussed previously the input vector u,(t) of the observer is composed
of the output y(t) of the plant whose state is estimated and its input u(t):

uy(t) = [ zg; ] (4.11)

— The output y_(?) of the observer is the estimated state vector Z(t) of the
plant:
y,(t) = 2(t) (4.12)

Consequently (4.9) and (4.10) can be organized to obtain a state space
representation of the observer:

(i) = Ai(t) + Bult

u(t) + L
= Ai(t) + Bu(t) + L — Du(t))
—(A-LCO)2(t)+ [L B-LD ] [38 ]
—(A-LC)i(t)+ [ L B—LD Ju,t) (4.13)

y (1) =2z(1)
- H@(t) + Ogo(t)
= Cobsi(t) + Dobsyo(t)
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u(t) B -
|
v | A< / Ao XD X()
— L L - ] |
' '
| A
‘ y(®)
<N
- D —>$><;4 C -

Figure 4.2: Block diagram of the state-space representation of an observer

Finally the transfer function of the observer, which is obviously a Multi-
Input Multi-Output (MIMO) system, reads:

G’obs(s) = Cobs (3]1 - lebs)—1 Bobs + Dobs

=(I[-(A-LC))"'[L B-LD ] (4.14)

The block diagram corresponding to state-space representation (4.9) is
shown in Figure 4.2.

In the following we will assume that the system is observable, or at least
detectable, such that it is possible to design a state observer.

4.3 State observer for SISO systems in observable
canonical form

Let ( é ]]g ) be an observable Single-Input Single-Output (SISO) linear time-

invariant system of order n and let x4_rc(s) be an imposed n'" order monic
polynomial (a monic polynomial is a polynomial in which the leading coefficient,
that is the nonzero coefficient of highest degree, is equal to 1). Polynomial
XA—rc(s) corresponds to the characteristic polynomial of matrix A — LC. It
is formed thanks to the predefined eigenvalues Ar1,---, Ar, assigned for the
dynamics of the observer:

XA—rc(s) =det (sl — (A —LC)) = (s —Ar1) - (s — An) (4.15)
When expanding the preceding product we get:

XA-ro(s) = 8"+ pu_18" "+ -+ p1s+po (4.16)

A|B
We begin with the case where the system realization (%) is the
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observable canonical form. Then matrices A, and C, are the following:

( [0 0 0 —ag
1 0 0 . -

As=10 1 0 "~ —a
A . (4.17)
_b 0 1 —a.n_l_

Co=[00 -+ 0 1]

Matrices B, and D will not be used.

Let L, be the observer gain matrix when the observable canonical form of
the system is used. For a SISO system this is a n x 1 matrix. Let L; be the
(scalar) component in the i** row of matrix Ly:

Ly
L, = : (4.18)
Ly,
Then matrix A, — L,C, reads:
[0 0 o0 —ag |
1 0 0 . - L
Ao-LCo =0 1 0 . —ay |—| * |[00 -0 1]
Lo Ly
i 0 0 1 —a.n_l |
[0 0 o0 —ap— Ly ]|
1 0 0 . —a—Ly
=10 1 0 . —ay—1Ls
i O 0 1 —an_1. — L, ]

(4.19)
Since this matrix still remains in the observable canonical form its
characteristic polynomial is readily written as follows:

Xa-rc(s) =det (A —LC)
= det (A, — L,C,) (4.20)
="+ (an—1+ Lp) s" 1+ + (a1 + L2) s + ap + L1

Identifying Equations (4.16) and (4.20) leads to the expression of each
component of the observer matrix Ly:

po = ap+ L1 Ly Po — ag

p1=a1+ Lo Lo p1— a1
) <L, = ) = . (4.21)

Pn—1 = an—1+ Ly Ly Pn—1 — Gn-—1
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4.4 State observer for SISO systems in arbitrary
state-space representation

When an arbitrary state-space representation is used the system has to be
converted into the observable canonical form via a similarity transformation.
Let P, be the matrix of the similarity transformation which enables to get the
observable canonical form. We get;:

B() = Po,(1) & 2,(t) = P, (1) (4.22)

We have seen in the chapter dedicated to Realization of transfer functions
that P, is a constant nonsingular change of basis matrix which is obtained
through the following relationship:

P, =Q, ' Qoo (4.23)
Where:
— Q, is the observability matrix in the actual basis:

C

CA
Qo = : (4.24)

CAn—l

— and Q,, the observability matrix expressed in the observable canonical
basis (which is readily obtained through det (sI — A)).

Thus the state equation of the observer (4.9) reads:

& P;li(t) = APy (1) + Bou(t) + Lo (y(t) — i(t) (4.25)
& i(t) = PoAP, i (t) + PoBou(t) + PoL, (y(t) — §(t))

That is:
z(t) = Az(t) + Bu(t) + L (y(t) — §(t)) (4.26)
Where:
L=P,L, (4.27)
And: .
A =P,A,P,
{ B—P,B, (4.28)
Example 4.1. Design an observer for the following plant:
. -1 0 1
I EURS PO
(4.29)

yt)=1[3 5]z
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As far as this is a modal (or diagonal) state space representation, plant’s
observability is readily checked by inspecting row of output matriz C: because
there is no null element in the output matriz C we conclude that the plant is
observable by applying Glilbert’s criteria.

The poles of the observer shall be chosen faster than the dynamics of the
plant, whose modes are —1 and —2. We choose (for example) to locate the poles
of the observer at \p1 = —10 and Apy = —20.

We will first design the observer assuming that we have the observable
canonical form of the SISO system. The observable canonical form is readily
obtained through det(sl — A):

det(sl —A) = (s+1)(s+2) =52 +3s+2:=5%+a1s+ap

:AO:[O 2} and Co=[0 1] (4.30)

1 -3
On the other hand the characteristic polynomial of the observer is formed
thanks to the predefined eigenvalues assigned for the dynamics of the observer:

xa-rc(s) = (s —Aw1) (s = Ar2) = (s +10) (s + 20)

= 524305+ 200 := 5%+ p1 s+ po (4.31)

Applying relationship (4.21) we get:
| L1 | | po—ao | _|[200—2 | | 198
Lo_ |: LQ :| N |:p1a1 N 30—-3 a 27 (432)
Now let’s compute the similarity transformation matriz P, which enables to
get the observable canonical form.

P, =Q,' Qoo (4.33)
Where:

— Qo is the observability matriz in the actual basis:

QOZ[CCA}: [335] [0150} :[_33 _‘30] (4.34)

—2

— and Qo the observability matriz expressed in the observable canonical basis

(which is readily obtained through det (sl — A)):

C, 0 L 0 1

Q"O:[COAO]: [0 1] [g :;2),} :{1—3] (4.35)

Thus:
3 5 0 1

—1
e E AN TN

:;51[‘;0 ‘35H(1’ _13} (4.36)
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We finally get:

1[5 —57[198 57
L_P0L°_15{—3 6 ][27}_{—28.8} (437)

4.5 Ackermann’s formula

Ackermann’s formula states that the observer gain matrix L of a SISO system

in arbitrary state-space representation can be obtained as the product between

the assigned characteristic polynomial ya_rc(s) of matrix A — LC evaluated
at matrix A and vector q,

L =xa-rc(A)g, (4.38)

To get this result we first recall that similarity transformation generates

equivalent state-space representations. Let P, be the matrix of the similarity

transformation which enables to get the observable canonical form. Starting
B

A
C|D
observable canonical form is obtained through the following relationships:

from a state-space representations < > in an arbitrary basis, the

A,=P,!AP,
B,=P,'B (4.39)
C,=CP,

Consequently matrix A, — L,C, reads:

A,-L,C, =P,'AP,-L,CP,
1 (4.40)
=P, (A-P,L,C)P,
This equation indicates that the observer gain matrix L in arbitrary state-
space representation reads:

L=P,L, (4.41)

We have seen in the chapter dedicated to Realization of transfer functions
that P, is a constant nonsingular change of basis matrix which is obtained
through the state matrix A and vector q,:

Po=[g, Ag, - A"g, | (4.42)

10

Vector ¢ is the last column of the inverse of the observability matrix Q,:

C

CA
Q;l — [ *  ee. X go] where Qo: . (443)

CAnfl
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Then we recall Cayley-Hamilton theorem. Let x4, (s) be the characteristic
polynomial of the n x n matrix A,. We write the characteristic polynomial
X4, (s) of matrix A, as follows:

xa,(s) :i=det(sl — Ay) = s" + ap_15" 4+ 4+ a5+ ag (4.44)

The Cayley—Hamilton theorem states that substituting matrix A, for s in
the characteristic polynomial y 4,(s) of matrix A, results in the zero matrix 2:

XA, (Ay) =0=A0 + an,lAg_l + v+ a1A, + agl (4.45)

Let xa—rc(s) be the characteristic polynomial of matrix A, — L,C,. We
have seen that when predefined eigenvalues Ap1,--- , Ap, are assigned for the
dynamics of the observer the characteristic polynomial of matrix A, — L,C,
reads:

XA-rc(s) =det (sl — (A, —L,C,))
= (5—>\L1)"‘(5_)\Ln) (4.46)
= 5"+ pu18" T+ pis+po

Substituting s for matrix A, leads to the following relationship:
Xa-rc(Ao) = AL 4+ pn 1A+ -+ prAg + pol (4.47)

Note that xa-rc(A,) is not equal to O because xa_rc(s) is not the
characteristic polynomial of matrix A,.
Thanks to Equation (4.21) and the relationship p; = a; + L; we get:

xA-1c(Ay) = A" 4 (ap_1 4+ Ly 1) AT ...
+ (a1 + L) Ao + (ag + Lo) T (4.48)

By subtracting Equations (4.45) to (4.48) we get:
XA-£0(Ap) = Ly 1Al + -+ LA, + Lol (4.49)

Let u be the vector defined by:

u=| . (4.50)

L, ATy = | (4.51)

o = O O

https://en.wikipedia.org/wiki/Cayley-Hamilton _theorem
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Thus multiplying Equation (4.49) by u leads to the following relationship:

Lo
Ly
XA-rc(Ag)u = : =L, (4.52)

Lnfl
Thus we get the expression of the observer matrix L, when we use the
observable canonical form.
We multiply Equation (4.52) by P, and wuse the fact that
Al = (P;lAPO)k = P, !A*P, to get the expression of the observer gain
matrix L in arbitrary state space representation:

L =P,L,
= POXA*LC(AO)Q
= xa-rc(PoAo)u
e b Apop ) (4.53)
= xa-Lc(PoAP, )
= xa-rc(A)P,

Because w is the vector defined by u = | .| | we get using (4.42):

Pou=gq, (4.54)
Consequently Equation (4.53) reduces to be the Ackermann’s formula (4.38):

L= xa-rc(A)g (4.55)

0

4.6 State observer for MIMO  systems -
Roppenecker’s formula

We have seen in Equation (4.7) that the dynamics of the estimation error e(t)
reads:
é(t) = (A —LC)e(t) (4.56)

The purpose of this section is to design the observer gain matrix L such
that the eigenvalues of matrix A — LC are assigned to predefined eigenvalues
AL1, ++ , ALp Where n is the size of matrix A.

Let Ak1, -+, Axn be n distinct specified eigenvalues of the closed loop state
matrix A — LC. Furthermore we assume that eigenvalues of matrix A do not
shift (meaning that they are different) the eigenvalues of the closed loop state
matrix A — LC. Then it can be shown that the transpose of the observer gain
matrix L can be computed as follows where P denotes parameter vectors:

L'=—[p - p, ) [wn o w, ] (4.57)
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Where vector wy; is related to parameter vector p, through the following

relationship:
[ AT —apl CT ] [ L ] —0 (4.58)
p;

This is the so-called Roppenecker’s formula to get the observer gain matrix
L.

To get this result we rewrite the dynamics of the estimation error e(t) as
follows:

e'(t) = (A-LC) T(t) & &"(t) = (AT - CTLT) T (#) (4.59)

Let w;,; be an eigenvector of matrix (A — LC)T. As far as (A — LC)” and
(A — LC) have the same eigenvalues, which are the predefined eigenvalues \p;,
we can write:

(AT —C"L") wy; = Apawy, (4.60)
The preceding equation can be written as follows:
(AT = Apil) wy; = C"L wy, (4.61)
That is:
wy; = (AT = Apl) " CTL w, (4.62)

Then we introduce n parameter vectors p, defined as follows;

p. =L w,, (4.63)

1

Each parameter vector p, is a p x 1 vector where p is the number of rows of
matrix C, that is the number of outputs of the system.
Using parameter vector p, Equation (4.62) reads:
-1
wr; =— (AT = apl) ~ CTp, (4.64)
Writing Equation (4.63) for the n distinct predefined eigenvalues
AL1, -, ALn leads to the following relationship:

[p, - p, ] =-L"[wy - wp, ] (4.65)

Finally the transpose of the observer gain matrix L can be computed as
follows:

L'=—[p - p, 1 [wy - wp ] (4.66)

We have retrieved the so-called Roppenecker’s formula to get the observer
gain matrix L.
It is worth noticing the following facts:

— Using equation (4.63) within Equation (4.61) it is clear that parameter
vectors p, shall satisfy the following relationship:

(AT = Apl)wy, = —CTp,

1

(4.67)
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That is:

[ AT — I CT ] [ wp“ ] -0 (4.68)
It is clear from the previous equation that each (n+p) x 1 vector
[ MpLi ] belong to the null-space of matrix [ AT — )\, 1 CT ] So once

)
any (n+p) x 1 vector which belongs to the null-space of matrix

[ AT — )\, I CT } has been found, its p bottom rows are used to form
vector parameter p.. In the MIMO case several possibilities are offered.

By taking the transpose of equation (4.68) we get the following expression:

A=Al
[ wi; PiT][ o ]20 (4.69)
A =gl

C } the key matrix used in the PBH

We recognize in matrix [

observability test;

If we wish to keep an eigenvalue \; of matrix A within the set of eigenvalues
of A —LC then Equation (4.61) is equal to zero because in that case w;;
is also an eigenvector of A:

Ai =i = (AT = Ap)wy; = —CTp, = (AT = AT wy; =0 (4.70)

Consequently we have to replace P, by 0 and w;,; by eigenvector w, of A
corresponding to \; in the Roppenecker’s formula (4.57);

If we chose a complex eigenvalue Ar; then its complex conjugate must also
be chosen. Let’s Ap;r and Ap;; be the real part and the imaginary part
of Ari, wr,p and wy,; be the real part and the imaginary part of w;, and
Pir and P be the real part and the imaginary part of p, respectively:

ALi = ALir + JALiI
Wri =Wrip + jWrir (4.71)
Py =P TPy
Then equation (4.68) reads:
(A" = Opir + AL 1) (wrip + jwrir) + CT (BiR + J'Qu> =0 (4.72)
Taking the complex conjugate of the preceding equation reads:
(AT — (Apir — jAin) L) (wrip — jwpi) + CT (&R — jQu) =0 (4.73)
Summing and subtracting Equations (4.72) and (4.73) reads:

{ (AT — ALiRH) WriRr + )‘LUMLU + CTBZ'R =

0
N 4.74
(AT = ALigD) wyir — ALirwrig + CTB” 0 (4.74)
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That is in vector form:

WriR
AT — \pigl ArLirl ct o Wrir |
=il AT — Asrl O cT Dir =0 (4'75)
Dy

In Equation (4.57) vectors p,, p? (where * denotes complex conjugate),
wy; and wy, are replaced by vectors p. ., p.,, wr;g and wy;y, respectively.

— In the SISO case the observer gain matrix L no more depends on parameter
vectors p.. Indeed is that case the observer gain matrix L is obtained as
follows:

L"=[1 - 1]

(AT~ er o (AT Ter | @)

To get this result we start by observing that in the SISO case parameter
vector are scalars; they will be denoted p;. Let vector [, be defined as
follows:

I =— (AT — A1) CT (4.77)

LY

Then Equation (4.57) reads:

L'=—[p ~ po)[lpn o Lopa ] (4.78)
Let’s rearrange the term [ LUpr - L,pn ]71 as follows:
D1 0 -
[11171 lnpn]il = [él én]
0 Dn
[ p1 01!
- (Lo L]
| 0 Pn
I Hz Di
H?ipi 0
= (Lo L]
Hl‘ n Pi
L 0 H?i1pz
(4.79)

Multiplying this expression by — [ P1 - Dn ] leads to the expression
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of LT:
L' =—[p o o[ p - Lpn ]
Hi#m 0
H?:1Pi 1
:_[pl pn] [él ln]_
Hi n Pi
0 _ Hlni1pz
== [ 1 1 ] [ b Ly }
(4.80)
Using the expression of vector [, = — (AT — )\LZ-H)_I CT provided by
Equation (4.77) we finally get:
L"=[1 - 1]
[ (AT -auDT'e” . (AT LD CT | (s

We conclude that in the SISO case the observer gain matrix L no more
depends on parameter vectors P,

4.7 Reduced-order observer

Consider the following state space representation where D = 0 and where z(t)
denotes the state vector, y(¢) the measured output and w(t) the control input:

{ (t) = Az(t) + Bu(t) (4.82)

y(t) = Cux(t)

We will show in this section how to derive an observer of reduced dimension
by exploiting the output equation y(t) = Cz(t).

Let p be the rank of matrix C. Then, from the output equation y(t) = Cz(t),
we can extract p linearly independent equations and then compute directly p
components of the state vector z(t). Assuming that n is the dimension of the
state vector, only the remaining n — r components of the state vector have to
be estimated and then the order of the observer can be reduced to n — r.

More precisely, since matrix C is of rank p, there exists a n x n
nonsingular matrix P such that the following relationship holds, where I,
denotes the identity matrix of size p and 0y, ,—p the p X (n — p) matrix of zeros:

CP=[1, Opnyp | (4.83)

] is nonsingular.

ala

Indeed, let C be a (n—p) x n matrix such that matrix [
Then a possible choice for P is the following:

P [ g ]1 (4.84)
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Hence, using (4.83), we can write:

y(t) =Cz(t) = CPP 'z(t) = [ I, Opn_p |z*(t) (4.85)

where:
z*(t) = P~ lz(t) & a(t) = Pz*(t) (4.86)

Hence, mapping the system in the new state vector z*(t) via the similarity
transformation P, we obtain the following state space representation:

{ &*(t) = P~1APz*(t) + P'Bu(t) (4.87)

y(t) = CPz*(t)

From the fact that CP = [ L, Opn—p ], it can be seen that the first p
components of the new state vector 2*(t) are equal to y(¢). Thus we can write:

CP=[1, 0pnp]=a"(t)= [ i((tg) ] (4.88)

As far as the p first components of the new state vector z*(t) are equal
to y(t), they are available through measurements and thus there is no need to
estimate those components. Consequently the reduced-order observer focuses
on the estimation of the remaining state vector z,.(t).

The state equation (4.87) can be written as follows:

o= 10 =8 Ak ][ 20 ]+ 5 o

yt)=[ I, Opnp | [ i((% ] = C*z*(t)

Let’s split matrix P as follows, where P is a n x p matrix and Py a nx (n—p)
matrix:

(4.89)

c 1!
P:{C} =[P1 Py ] (4.90)
Then we get:
A, Aj, ] 1 CAP; CAP,
=P AP =| —
[ A5, A5, CAP; CAP, (4.91)
BT | -1 CB '
B; | ~ | CB

To design an observer for z,.(t), we use the knowledge that an observer has
the same structure as the system plus the driving feedback term whose role is to
reduce the estimation error to zero®. Hence, an observer for z,.(t) reads:

2,(t) = A3y (t) + A%, (1) + Biu(t) + Ly (y(t) — §(t)) (4.92)

3Zoran Gajic, Introduction to Linear and Nonlinear Observers, Rutgers University,
https://www.ece.rutgers.edu/ gajic/
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Unfortunately, since y(t) = §(t), the difference y(t) —g(t) does not carry any
information about z,(t). Nevertheless, by taking the time derivative of y(t), w
get the first equation of (4.89) which carries information about z,(¢):

§(t) = Afyy(t) + Afyz, () + Biu(t)
= Aikﬁrl(lt) = g(1) 12A11g(t) _1]3@(25) (4.93)

Regarding yr(t) = Aj,z,.(t) as a wvirtual output of the reduced state
equation, the observer for z,.(t) finally reads:

{ B(0) = A0 + Ab, () + Biu(t) + L. (5,0 - ABs ) oy
b, () = §lt) — Afiy(t) — Biu()

T

Furthermore the dynamics of the error e, (t) = z,.(t) — Z,(t) reads as follows:

&y (t) =Zy (t) - @T (t)
= Ay y(t) + Asyz, (1) + Bu(t)
~ (Asiw(t) + A%, (1) + Bu(t) + Ly (y,() — Az, (1))
— (A}, — LAl e, (1)
(4.95)
Consequently, designing the observer gain L, such that the characteristic
polynomial of matrix A3, — L,Aj, is Hurwitz leads to the asymptotic
convergence of the estimates Z,(¢) towards z,(¢). Such a design is always
possible as soon as the pair (A%,, A},) is observable, which is a consequence of
the observability of the pair (A, C) (this can be shown using PBH test?).
Since it is not wise to use §(t) because in practice the differentiation process
introduces noise, we will estimate vector &, (t) rather than z,.(¢). Vector Z,, (%)
is defined as follows:

=Ty

By (1) 1= 2,(t) — Loy(t) (4.96)
From (4.94), we get the following observer for 2, ():

w(®) = &) = L)
= A;M An, (1) + B3u() + Lr (y,(t) — A%z, (1)) — Lyg(t)
= Ahyl0) ¢ < ,(0)+ Ly (1)) + Biu(?)

( Aily Blu( ) AT2 (@ry(t) + Lrg(t)))
yy(t) + Apyd,, (1) + Byu(t)

&>

(4.97)
where:
A, =A5 +ALL, — LA}, — LA}, L,
A, =A5 -L.Aj, (4.98)
B, = B} — L, B!
Assembling the previous results, the estimation of state vector z(t) finally
reads as follows where the dynamics of Z,,(t) is given by (4.97):

o y() (0
i) =PL(H)=P [ (1) } P [ ., (6) + Ley() (4.99)



Chapter 5

Controller design

5.1 Introduction

Controller enables to obtain stable systems which meet performances
specifications. In the case where the full state vector z(t) is available then
controller design involves state feedback. In the more usual case where only
some components of the state vector are available through the output vector
y(t) then controller design involves output feedback in association with a state
observer.

This chapter focuses on controllers design. More specifically state feedback
controller for SISO systems in controllable canonical form, state feedback
controller for SISO systems in arbitrary state-space representation, static state
feedback controller and static output feedback controller for MIMO systems

will be presented. We will also present controller with integral action.

5.2 Static state feedback controller

Consider the following state equation where z(t) denotes the state vector and
u(t) the control input:

i(t) = Az(t) + Bu(t) (5.1)

We will assume in the following that the full state vector z(¢) is available
for control.

Let r(t) be a reference input signal. A static state feedback (or full state)
controller computes the control input u(t) as a function of a state-feedback gain
K and a feedforward gain matrix H as follows:

u(t) = Hr(t) - Ke(!) (5.2)

Substituting the control law (5.2) into the state equation (5.1) of the system
yields:
i(t) = (A — BK) z(t) + BHz (1 (5.3)

— The purpose of the controller gain K is at least to assign the eigenvalues of
the closed-loop state matrix A — BK at predefined locations. For MIMO
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systems there are additional degrees of freedom which may be used for
others purposes like eigenstructure assignment;

— The purpose of the feedforward gain matrix H is to pick up the desired
final value such that the closed-loop system has no steady state error to
any constant value of the reference input r(t).

In steady state conditions we have &(t) = 0 and consequently (5.3) reads:

i(t)=0= z(t) = — (A — BK) ' BHr(¢) (5.4)

On the other hand, using (5.2) the output equation y(t) = Cz(t) + Duf(t)
reads:

{ Z(é; - (ffé% +D 113% = y(t) = (C — DK)z(t) + DHr(t)  (5.5)

Inserting (5.4) into (5.5) yields:

y(t) =—(C—DK) (A — BK) ' BHr(t) + DHr(t)
_ (D _ (C-DK) (A - BK)™ B> Hr () (56)

Then matrix H is computed such that the closed-loop system has no steady
state error to any constant value of the reference input r(¢). So imposing
y(t) = r(t) leads to the following expression of the feedforward gain matrix
H:

y(t) =r(t) = H= (D —(C-DK)(A-BK)™ B) (5.7)

In the usual case where matrix D is null the preceding relationship
simplifies as follows:

H=— (c (A - BK)™! B) (5.8)

We will see in section 5.7 that adding an integral action within the controller
is an alternative method which avoid the computation of feedforward gain matrix
H.

In the following we will assume that the system is controllable, or at least
stabilizable, such that it is possible to design a state feedback controller. Indeed
Wonham'! has shown that controllability of an open-loop system is equivalent
to the possibility of assigning an arbitrary set of poles to the transfer matrix
of the closed-loop system, formed by means of suitable linear feedback of the
state.

"Wonham W., On pole assignment in multi-input controllable linear systems, IEEE
Transactions on Automatic Control, vol. 12, no. 6, pp. 660-665, December 1967. doi:
10.1109/TAC.1967.1098739
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5.3 Control of SISO systems

5.3.1 State feedback controller in controllable canonical form

Let < é ]]g > be an controllable Single-Input Single-Output (SISO) linear

time-invariant system of order n and let xya_px(s) be an imposed nth order
monic polynomial (a monic polynomial is a polynomial in which the leading
coefficient, that is the nonzero coefficient of highest degree, is equal to 1).
Polynomial x4-pr(s) corresponds to the characteristic polynomial of matrix
A — BK. 1t is formed thanks to the predefined eigenvalues Ag,,- -, Ak
assigned for the dynamics of the controller:

n

XA-Bi(s) =det (sl — (A —BK)) = (s — Ag,) - (s — Ak,,) (5.9)
When expanding the preceding product we get:
XA—BK(S) :Sn+pn_18n_1 + -+ p1s+po (5.10)

A|B
We begin with the case where the system realization (%) is the

controllable canonical form. Then matrices A, and B, are the following:

0 1 0 0
0 0 | 0
A= 0
0 0 0 1
—ap —ar —a2 - —Qp-1
) ) (5.11)
0
0
B.= | :
0
L 1 a

Matrices C. and D will not be used.

Let K. be the controller gain matrix when the controllable canonical form
of the system is used. For a SISO system this is a 1 x n matrix. Let K; be the
(scalar) component in the i** row of matrix K.

Ko=[K - K] (5.12)

Using the duality principle we can infer that the expression of the state
feedback controller for SISO systems in controllable canonical form has the
following expression:

K.=Ll=[po—ao -+ pn-1—an_1 | (5.13)
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To check it just notice that when the controllable canonical form of the
system is used then matrix A, — B.K_ reads:

0 1 0 0 0
0 0 1 . 0 0
A.-BK, = .. . 0 - [Kl Kn]
0 0 0 1 0
B —ag —aj —ag -+ —Ap-1 ] L 1 i
[ 0 1 0 0 i
0 0 1 0
- .. - 0
0 0 0 1
| —ao— K1 —a1—Ke —ax— Kz -+ —ap1— Ky |
(5.14)

Since this matrix still remains in the controllable canonical form its
characteristic polynomial is readily written as follows:

XAfBK(S) = det (A — BK)
= det (A, — B.K,) (5.15)
=5"+ (an_ 1+ Kp)s" 1+ + (a1 + Ko) s +ag + Ky

Identifying Equations (5.10) and (5.15) leads to the expression of each
component of the controller matrix K:

po = ap + Ky

p1=a; + Ky K.
. <~

[ K, Ko K, ]
[ pPo—ap p1—ar - Pn—1 — an-1 ]

Pn—-1 = an-1+ K,
(5.16)

5.3.2 State feedback controller in arbitrary state-space
representation

When an arbitrary state-space representation is used the system has to be
converted into the controllable canonical form via a similarity transformation.
Let P, be the matrix of the similarity transformation which enables to get the
controllable canonical form. We get:

z(t) = Pex,(t) & z.(t) = P z(t) (5.17)

We have seen in the chapter dedicated to Realization of transfer functions
that P! is a constant nonsingular change of basis matrix which is obtained
through the following relationship:

P! =Q.Q." (5.18)

Where:
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— Q. is the controllability matrix in the actual basis:

Q.=[B AB --- A"'B | (5.19)

— and Q.. the controllability matrix expressed in the controllable canonical
basis (which is readily obtained through det (s — A)).

Thus the control law u(t) reads:

u(t) = ~Kez(t) + Hr(t) = ~K P z(t) + Hr(t) (5.20)

That is:
u(t) = —Kz(t) + Hr(t) (5.21)

Where:
K=K./P_! (5.22)

Example 5.1. Design a state feedback controller for the following unstable
plant:

i0=] gy |+ ] 5 ]ue

y(&)=[3 5 ]z@)

As far as this is a modal (or diagonal) state space representation, plant’s
controllability is readily checked by inspecting column of control matriz B:
because there is no null element in the control matriz B we conclude that the
plant is controllable by applying Gilbert’s criteria.

The poles of the controller shall be chosen to render the closed-loop stable
and to satisfy some specifications. We choose (for example) to locate the poles
of the controller at A\, = —1 and Ak, = —2.

We will first design the controller assuming that we have the controllable
canonical form of the SISO system. The controllable canonical form is readily
obtained through det(sl — A):

(5.23)

det(sl — A)=(s—1)(s—2) =5 —3s+2:=s+a;s+ap

éAc:[_OQ H andBc:[(l)] (5.24)

On the other hand the characteristic polynomial of the controller is formed
thanks to the predefined eigenvalues assigned for the dynamics of the controller:

XA-BK(8) = (5= Ak) (s = Ak,) = (s +1) (s +2)

=524+35+2:=5>+p1s+po (5.25)
Applying relationship (5.16) we get:
K. =[K Ky|]=[po—ao pr—a] (5.26)

[2—-2 3+3]=[0 6]
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Now let’s compute the inverse of the similarity transformation matriz Pt
which enables to get the controllable canonical form.

P! =Q.Q." (5.27)
Where:

— Q¢ s the controllability matriz in the actual basis:

Q.=[B AB]:[;H (5.28)

— and Q¢ the controllability matriz expressed in the controllable canonical
basis (which is readily obtained through det (sl — A)):

0 1
Qcc:[Bc ACBC]:|:1 3:| (529)
Thus: )
[0 1 1 17
-1 _ -1 _
P = QeQ. 7_1 3][2 4]
_a[0 ][ 4 -1 5.30
_2[1 3}_—2 1 (5.30)
_1 -2 1
21 =2 2 |

We finally get:

-2 1

_ L
K=KP;'= 1[0 6][_2 .

}:1[—12 12]=[-6 6] (531)

The feedforward gain matriz H is computed thanks to (5.7) (where D =0):

H=-— (c (A —BK)™ B) = —0.125 (5.32)

5.3.3 Ackermann’s formula

Ackermann’s formula states that the controller gain matrix K of a SISO system
in arbitrary state-space representation can be obtained as the product between
vector QCT and the assigned characteristic polynomial x 4—px(s) of matrix A —
KC evaluated at matrix A:

K = ¢ xa-Bx(A) (5.33)

To get this result we first recall that similarity transformation generates
equivalent state-space representations. Let P. be the matrix of the similarity
transformation which enables to get the controllable canonical form. Starting
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A B
C|D
controllable canonical form is obtained through the following relationships:

from a state-space representations ( in an arbitrary basis, the

A.=P_ AP,
B.=P.'B (5.34)
C.=CP,

Consequently matrix A, — B.K, reads:

A.-BXK. =P,'AP.-P.!'BK,

— P! (A-BK/P;!)P, (5-35)

This equation indicates that the controller gain matrix K in arbitrary state-
space representation reads:
K=K./P.]! (5.36)

We have seen in the chapter dedicated to Realization of transfer functions
that P! is a constant nonsingular change of basis matrix which is obtained
through the state matrix A and vector QCT :

T
4
— a'A

c

(5.37)

gZ‘ An—1
Vector QZ is the last row of the inverse of the controllability matrix Q.:

*

Ql=| ° | where Q. =[B AB .- A"B] (5.38)
k

T
c

q

Then we recall Cayley—Hamilton theorem. Let x4,(s) be the characteristic
polynomial of the n x n matrix A.. We write the characteristic polynomial
XA, (s) of matrix A, as follows:

xa,(8) i=det(sl — A.) = 8" + ay_18" "+ -+ ais+ag (5.39)

The Cayley—Hamilton theorem states that substituting matrix A, for s in
the characteristic polynomial y 4, (s) of matrix A, results in the zero matrix?:

XA, (A) =0=A"+a, A"+ FaiA. + agl (5.40)

Let xa—pBK(s) be the characteristic polynomial of matrix A, — B.K.. We
have seen that when predefined eigenvalues Ak, -, Ak, are assigned for the

https://en.wikipedia.org/wiki/Cayley-Hamilton _theorem
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dynamics of the controller the characteristic polynomial of matrix A, — B.K,

reads:
XA-Bk(s) =det (sl — (A, —B.K.))

= (S—)\Kl)'-'(s—)\Kn) (5.41)
= s" +pn_1sn_1 + -4+ p1s+po

Substituting s for matrix A, leads to the following relationship:
Xa-BK(Ac) = Al +po 1AL 4 -+ prAc + pol (5.42)

Note that xa-pr(Ac) is not equal to 0 because x4_px(s) is not the
characteristic polynomial of matrix A..
Thanks to Equation (5.16) and the relationship p; = a; + K; we get:

XA-BK(Ac) = Al + (an—1 + Kp1) A7+
+ (a1 + K1) Ac+ (ap + Ko) T (5.43)
By subtracting Equations (5.40) to (5.43) we get:
XA-BK(A) = Kn Al 4+ Ki A + Kol (5.44)
Due to the fact that coefficients K; are scalar we can equivalently write:
XA-BK(Ad) = AT Ky 1+ -+ AKy + 1K (5.45)
Let u” be the vector defined by:
u"'=[10 - 0] (5.46)
Due to the special form of matrix A, we have:
uw'Ac=[0 1 0 - ]
wAZ=[0 01 0 -]
: (5.47)
QTAQ*1: [0 - 0 1 ]
Thus multiplying Equation (5.45) by u” leads to the following relationship:
u'xapr(A)=[ Ko Ki -+ Ko ]=K. (5.48)

Thus we get the expression of the controller matrix K, when we use the
controllable canonical form.

We multiply Equation (5.48) by P_! and wuse the fact that
AF = (Pc_lAPc)k = P_'A*P, get the expression of the controller gain matrix
K in arbitrary state-space representation:

(5.49)
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Because u is the vector defined by u” = [ 1 0 --- 0 ] we get using (5.37):

TPl =47 (5.50)

=C

Consequently Equation (5.49) reduces to be the Ackermann’s formula (5.33):

K =q" xa Bx(A) (5.51)

5.3.4 Zeros of closed-loop transfer function

It is worth noticing that the zeros of the closed-loop transfer function are the
same than the zeros of the open-loop transfer function when state feedback is
used. In other words, state feedback K just changes the values poles of the
poles, the zeros remaining unchanged.

To get this result, we can use the controllable canonical form to compute
the closed-loop transfer function, C. (sl — A, + BcKc)f1 B_.H, and notice that
its numerator is independent of both state feedback gain K. and state matrix
A.. The coefficients which appear in the numerator of the closed-loop transfer
function come from product C.H when the controllable canonical form is used,
or CBH in general, whereas state feedback gain K., or K in general, only
appears in the denominator of the closed-loop transfer function:

* 1

I-A.+BK,) 'B L R

(sT—Ac+BcKe) B = det (sI — A, + B.K,) L

x o« g1
1

= C.(sI-A.+B.K,) 'B.H Ce " lm

Sl — =
¢ ¢ eme ¢ det (s — A, + B.K,) :
snfl
(5.52)

A practical use of this observation is that state feedback gain K can be used
to annihilate some zeros with negative real part (that are stable zeros).

5.4 Observer-based controller

5.4.1 Separation principle

We consider the following state-space representation of dimension n (that is the
size of state matrix A) where y(t) denotes the output vector and w(t) the input
vector:

{ L(t) = Az(t) + Bu(t) (5.53)

y(t) = Cz(t) + Du(t)
When the full state z(¢) cannot be measured then it is estimated thanks to

an observer. This leads to an observer-based controller whose dynamics reads
as follows:
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Figure 5.1: Block diagram of the observer-based controller

z(t) = Az(t) + Bu(t) + L (y(t) — (Cz(t) + Du(t)))
{ u(t) = Hr(t) — Ki(t) (5.54)

Gain matrices L, K and H are degrees of freedom which shall be set to
achieve some performance criteria.

The block diagram corresponding to the observer-based controller is shown
in Figure 5.1.

The estimation error e(t) is defined as follows:

e(t) = z(t) — (1) (5.55)

The time derivative of the estimation error reads:

= Ax(t) — Ai(t) — L (y(t) — Ci(t) — Du(t))

— Az(t) — A2(t) — L (Cz(t) + Du(t) — C2(t) — Du(t))  (5.56)
= Ae(t) — LCe(t)

=(A-LC)e(t)

Combining the dynamics of the state vector z(t) and of the estimation error
e(t), and using the fact that z(¢) = z(t) —e(t), yields to the following state-space
representation for the closed-loop system:

O] Al E0 ] B (5:5)
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where:
A - BK BK

Aa = 0 A - LC

(5.58)

Gain matrices L and K shall be chosen such that the eigenvalues of matrices
A — BK and A — LC are situated in the left half complex plane so that the
closed-loop system is asymptotically stable.

Furthermore it is worth noticing that matrix is block triangular.
Consequently we can write:

sI— A+ BK —BK
det(s]I—Ad)—det<{ 0 sH—A—l—LC})

=det(s[ — A+ BK)det (s - A+LC) (5.59)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A — BK, that is the state matrix of the
closed-loop system without the observer, and the eigenvalues of matrix A —LC,
that is the state matrix of the closed-loop system without the controller. This
result is known as the separation principle. As a consequence the observer
and the controller can be designed separately: the eigenvalues obtained thanks
to the controller gain K assuming full state feedback are independent of the
eigenvalues obtained thanks to the observer gain L assuming no controller.

Usually observer gain L is chosen such that the eigenvalues of matrix A—LC
are around 5 to 10 times faster than the eigenvalues of matrix A — BK, so that
the state estimation moves towards the actual state as early as possible.

Furthermore the reference input r(¢) has no influence on the dynamics of
the estimation error e(t). Consequently the feedforward gain matrix H is still
given by Equation (5.7).

5.4.2 Example

Design an output feedback controller for the following unstable plant:

0= g 5]z0+]} |

y(&)=[3 5 ]z@)

The poles of the controller shall be chosen to render the closed-loop stable
and to satisfy some specifications. We choose (for example) to locate the poles
of the controller at A\, = —1 and Ag, = —2.

First we check that is system is observable and controllable.

(5.60)

We have seen in example 5.1 how to design a state feedback controller. By
applying the separation principle the observer which estimates the state vector
Z(t) which will feed the controller can be designed separately from the controller.

We have obtained: [ ]
K=| -6 6
{ H=-0.125 (5.61)
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As mentioned the eigenvalues of the observer are chosen around 5 to 10
times faster than the eigenvalues achieved thanks to the controller. As far as
the closed-loop poles obtained thanks to the controller are located at Ag, = —1
and Ag, = —2 we choose (for example) to locate the poles of the observer at
)\Ll = —10 and )\LQ = —20.

As described in the chapter dedicated to Qbserver design, we first design
the observer assuming that we have the observable canonical form of the SISO
system. The observable canonical form is readily obtained through det(sI— A):

det(sl —A) = (s —1)(s —2) =52 —3s+2:=524+a1s+ap

:Aoz[o _Q}andco:[o 1] (5.62)

1 3

On the other hand the characteristic polynomial of the observer is formed
thanks to the predefined eigenvalues assigned for the dynamics of the observer:

XA—LC(S) = (S — )\Ll) (S — )\Lg) = (S + 10) (S + 20)

= 5243054200 := 5>+ p1 s+ po (5.63)

Applying relationship (4.21) we get:
| L1 | | po—ao | | 200-2 | | 198
welnl=lnen == lw ] e
Now let’s compute the similarity transformation matrix P, which enables
to get the observable canonical form.

P, =Q, ' Qo (5.65)
Where:
— Q, is the observability matrix in the actual basis:
3 5
C 3 5
Qo = [ } = 10 = [ ] (5.66)
CA [ 3 5 ] 0 2 3 10

— and Q,, the observability matrix expressed in the observable canonical
basis (which is readily obtained through det (sI — A)):

- )-8 3] e

Thus:

o[ 3]
]

We finally get:

L:POL0:115[—5 —5][198]:[—77] (5.69)
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R(s) a(s) Ufs) Y(s)
>

— > Cs)  |[—> Fs)

Figure 5.2: Unity feedback loop

5.4.3 Transfer function

Assuming D = 0, the transfer function of the observer-based controller can be
obtained by taking the Laplace transform (assuming no initial conditions) of its
state space representation:

2(t) = A&(t) + Bu(t) + L (y(t) — Ci(t))
st~ et (570
We get:
U(s) = C(s)X(s) (5.71)
Where:
C(s)=-K(sI—-A+BK+LC) 'L (5.72)

5.4.4 Algebraic controller design

We consider the unity feedback loop shown in Figure 5.2. The realization of the
plant transfer function F'(s) is assumed to be the following:

&, (t) = Az, (t) + Bu(t)
{ XA (5.73)

On the other hand, the realization of the controller transfer function C/(s)
is assumed to be the following, where gain matrices K and L are the design
parameters of the controller :

i,(t) = (A — BK — LC) z,(t) + Le(?)
|y~ Km0 o7
From Figure 5.2 we get the following relationships:
e(t) = ()—Q(t) r(t) — Cu,(t)
| i) = e 1)
Thus the state space realization of the unity feedback loop reads:
() = Az, (t) + BKz, (1)
i(t) = <A BK -~ LO)z,(t) + L (r(t) - Cz, (1) (5.76)
y(t) = Cuz, (1)
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That is:
o=l acmae |20 ][]0

Then the closed-loop state matrix A reads:

A BK ] (5.78)

Ad = [ ~LC A-BK-LC

The closed-loop eigenvalues are the roots of the characteristic polynomial
XA, (s) defined as follows:

sI—A —BK
XA, (s) = det (sl — Ay) = det ({ LC  s— A +BK 4 LC ]) (5.79)

Now we will use the fact that adding one column / row to another column
/ row does not change the value of the determinant. Thus adding the second
sI—A -BK

row to the first row of { LC sI-A+BK+LC

] leads to the following

expression of x4, (s):

sI—A+LC sI-A+LC }) (5.80)

Xaa () = det ([ LC  sI-A+BK{LC

Now subtracting the first column to the second column of

sI—A+LC sl= A4 LC ] leads to the following expression of

LC sl— A +BK+LC
XACZ(S):
sI— A+ LC 0
XA, (s) = det ([ LC s— A+ BK ]) (5.81)

It is worth noticing that matrix is block triangular. Consequently we can
write:

XA, (s) =det (s — Agy) =det (sl — A+ LC)det (sI — A + BK) (5.82)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A — BK, that is the state matrix of the
closed-loop system without the observer, and the eigenvalues of matrix A —LC,
that is the state matrix of the closed-loop system without the controller. This
result is known as the separation principle. As a consequence the observer
and the controller can be designed separately: the eigenvalues obtained thanks
to the controller gain K assuming full state feedback are independent of the
eigenvalues obtained thanks to the observer gain L assuming no controller.

It is worth noticing that the same result is achieved when the controller C(s)
is put in the feedback loop as shown in Figure 5.3.
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Figure 5.3: Feedback loop with C(s)

5.5 Control of MIMO systems

5.5.1 Frequency domain approach for state feedback

We consider the state-space representation (5.83) where the state vector z is of
dimension n (that is the size of state matrix A). In addition u(¢) denotes the
input vector. We will assume the following state feedback:

{ #(t) = Ax(t) + Bu(t)
u(t) = —Kaz(t) + Hr(t)

It can be shown that thanks to the Schur’s formula the closed-loop
characteristic polynomial det(sI — A + BK) reads as follows:

(5.83)

det (s — A + BK) = det (s — A) det(I + K®(s)B) (5.84)
where:
B(s)=(sI—A)"! (5.85)
Indeed we recall the Schur’s formula:
An Ap| _ _ —1
det |:A21 A22:| = det(Agg) det(AH A12A22 A21) (586)
= det(An) det(AQQ — A21A1_11A12)
Setting A= ‘i"l(s), Asy = —-K, Ajs =B and Ay =T we get:
det (s — A + BK) = det(®!(s) + BK)
—1
= det [(I’_Iés) ]]ﬂ
(5.87)

= det(AH) det(AQQ — AglAilAlg)
= det(®1(s)) det(I + K®(s)B)
= det (s — A) det(I + K®(s)B)

It is worth noticing that the same result can be obtained by using the
following properties of determinant:
det(]I + M1M2M3) = det(]I + MngMg) = det(]I + M2M3M1) and
det(MlMg) = det(Mng) . Indeed:

det (sl — A + BK) = det ((511 —A) (]1 +(sI— A BK))

= det (sT — A) det (I + ®(s)BK)
= det (sI — A)det (I + K®(s)B)
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Let D(s) = det(sl —A) be the determinant of ®(s), that is the
characteristic polynomial of the plant, and Ny (s) = adj(sl — A)B be the
adjugate matrix of sI — A times matrix B:

adj(sI-—A)B N,

B(s)B=(s—A)'B= Gl A) DE(SS)) (5.89)

Consequently (5.84) reads:
det (sI — A + BK) = det (D(s)I + KNy (s)) (5.90)

As soon as Mg, is a desired closed-loop eigenvalue then the following
relationship holds:

det (D(s)I + KNy(s))| =0 (5.91)

5:>\KZ~

Consequently it is desired that matrix D(s)I+ KNg/(s)|,_y, is singular.

Following Shieh & al.?, let w; # 0 be a vector of size m x 1, where m is the
number of columns of B (that is the size of the input vector u(t) of the plant),
and belonging to the kernel of matrix D(s)I + KNp(s)|,,, - Thus changing

s by Ak, we can write:
(D(Ak)I+KNy(Ak,))w; =0 (5.92)

Actually, vector w,; # 0 can be used as a design parameter.
In order to get gain K the preceding relationship is rewritten as follows:

KNol()‘Ki)gi - _D(AKi)gi (5'93)

This relationship does not lead to the value of gain K as soon as Ny (Ak, )w;
is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relationship for the n desired closed-
loop eigenvalues. We get:

K[og, v, J=—[p - p, ] (5.94)

Where vectors vy, and p, are given by:

Vg, = Nol(/\K-)Qi
i ¢ 5.95
{ p, = D(Ak,) w; (5.95)

We finally retrieve expression (5.136) of the static state feedback gain matrix
K:

—1
K=—[p - p,][ex, - vk, ] (5.96)
3L. S. Shieh, H. M. Dib and R. E. Yates, Sequential design of linear quadratic state

regulators via the optimal root-locus techniques, IEE Proceedings D - Control Theory and
Applications, vol. 135, no. 4, pp. 289-294, July 1988.
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5.5.2 Invariance of (transmission) zeros under state feedback

We consider the following system:

{ i(t) = Az(t) + Bu(t)

y(t) = Ca(t) + Du(t) (5.97)

We have seen in section 1.5 that the (transmission) zeros of the open-loop
transfer function F(s) = C (sI — A)"' B+ D are defined as the values of s such

that the rank of the Rosenbrock’s system matrix R(s) = [ SHEA _];3 ] is

lower than its normal rank, meaning that the rank of R(s) drops.
Now, assume that we apply the following feedback on the plant:

u(t) = —Kz(t) + Hr(t) (5.98)

Thus the closed-loop state space realization reads:

i(t) = (A — BK) z(t) + BHz(t)
{10 = (© D) 2to) £ DR 599
Thus the closed-loop transfer function G(s) reads:
G(s) = (C - DK) (sl - (A — BK)) ' BH + DH (5.100)

The (transmission) zeros of the closed-loop transfer function G(s) are defined
as the values of s such that the rank of the Rosenbrock’s system matrix Ry (s) is
lower than its normal rank, meaning that the rank of R(s) drops, where R(s)
is defined as follows:

sI— (A — BK) —BH] (5.101)

Ra(s) = [ (C-DK) DH

The Rosenbrock’s system matrix R(s) can be re-written as follows:

Ry (s) = [ SH(;A _]SB ] [ _HK SI ] = R(s) [ _HK I(; ] (5.102)

Thus, assuming that R(s) is a square matrix, we can write det (Ry(s)) =
det (R(s)) det (H), from which it follows that the (transmission) zeros of a plant
are invariant under state feedback.

5.6 Pre-filtering applied to SISO plants

We will assume hereafter the following state feedback control of a SISO plant:
&(t) = Az(t) + Bu(t)
u(t) = —Kz(t) +1,(t) (5.103)
z(t) = Nx(t)

As shown in Figure 5.4, the prefilter Cp¢(s) is a controller which is situated
outside the feedback loop.
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Figure 5.4: State feedback loop with prefilter

What is the purpose of the prefilter 7 Once the state feedback gain K is
designed, the eigenvalues of closed-loop state matrix A — BK are set, but not
the zeros of the closed-loop transfer function G(s):

Z(s)
Ry (s)

These zeros may cause undesirable overshoots in the transient response of
the closed-loop system. The purpose of the prefilter Cps(s) is to reduce or
eliminate such overshoots in the closed-loop system. Additionally the prefilter
may annihilate slow stable poles which sometimes cannot be shifted by the
controller.

We focus in Figure 5.4. Let N.(s) be the numerator of transfer function

Z(s)

G(s) = T () and D (s) its denominator:

G(s) = =N(sI-(A-BK)) 'B (5.104)

Z<S) _ Ncl(s>
Rps(s)  Dal(s)

Z(s) - : .
Ryps (5) has all its zeros with negative

G(s) =

(5.105)

We will assume that transfer function

real-parts, or equivalently that all the roots of N(s) are located in the left half
plane.

Prefilter C)¢(s) is designed such that its poles cancel the zeros of the closed-
loop system (i.e. the roots of Ng(s)). If there is no pole of the closed-loop
system to cancel, the numerator of the prefilter is set to be a constant K, ;. In
such a case the transfer function of the full system reads:

Z(s) Kyps
= 5.106
R(s)  Dg(s) ( )
As a consequence the transfer function of the prefilter reads:
K
Cpp(s) = 2L 5.107
pf( ) NCZ(S) ( )

Note that this is only possible because the roots of N (s) have negative
real-parts, meaning Cp¢(s) is stable.
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Figure 5.5: State feedback loop with prefilter inside the closed-loop

Usually constant K is set such that the static gain of % is unitary,
meaning that the position error is zero:
Y(s)
R(s) o pf a(0) ( )

Additionally the numerator of the prefilter may also cancel some slow stable
poles (poles in the left plane) of the closed-loop system when they are not placed
by the controller K. In this case, the numerator of the prefilter Cpf(s) is no
more a constant.

Equivalently, the pre-filter may be inserted inside the closed-loop, as shown
in Figure 5.5.

Figure 5.4 and 5.5 are equivalent as soon as the following relationship holds:

Ca(s)G(s)

Cor(5)G() = T 0 G (o) (5.109)

Finally, controller Cy(s) can be computed from Cp¢(s) as follows:

& Ca(s) = 7= gg)(é)pf(s) (5.110)

_ CQ(S)
14 Cy(s)G(s)

Cpy(s)

5.7 Control with integral action

We consider the state-space representation (5.111) where the state vector z is
of dimension n (that is the size of state matrix A). In addition z(¢) denotes the
output vector and wu(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):

{ i(t) = Az(t) + Bu(t) (5.111)

2(t) = Cz(t)

In some circumstances it may be helpful to use integral action in the
controller design. This can be achieved by adding to the state vector of the
state-space realization (5.111) the integral of the tracking error e;(t) which is
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defined as follows where T is a design matrix (usually T = I) and where r(¢) is
the reference input signal:

() = [ T(etr) -~ o) dr (5.112)
As far as the feedforward gain matrix D is zero (D = 0) we get:
&1(t) = T (=(t) — r(t)) = TCx(t) — Tr(t (5.113)

This leads to the following augmented state-space realization:

x(t A 0 x(t B 0

[él((t>) ] N [ TC 0 ] [61((75)) ] " [ 0 ]u(t)+ { -T ]T(t)
zt) ] _[C o z(t)

[el(t)]_[o H} {el(t)}

The regulation problem deals with the case where r(t) = 0. In that situation
the preceding augmented state-space realization has the same structure than the
state-space realization (5.111). Thus the same techniques may be applied for
the purpose of regulator design.

On the other hand the tracking problem deals with the case where r(t) # 0.
Let’s denote z,(t) the augmented state-space vector:

n(0 = | 20 (5.115)
Thus the augmented state-space realization (5.114) reads:

{ i4(t) = Ag((t) + Bau(t) + Er(t) (5.116)

&(t) = Cag(t)

5.7.1 Roppenecker’s formula
Roppenecker’s formula and Sylvester equation

We consider the following state-space representation where y(t) denotes the
measured output signal and u(t) the control input:

{ (t) = Az(t) + Bu(t) (5.117)

y(t) = Cux(t) + Du(?)

We will assume in the following that only the output vector y(t) is available
for control. -

Let r(t) be a reference input signal. A static output feedback controller
computes the control input u(t) as a function of a state-feedback gain K and a
feedforward gain matrix H as follows:

u(t) = —Ky(t) + Hr(t) (5.118)
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Using the output equation y(t) = Cxz(t) + Du(t) the control input u(t) can
be expressed as a function of the state vector z(t) and the reference input r(¢):

u(t) = —K (Cz(t) + Du(t)) + Hr(t) (5.119)

= u(t) = (I+ KD) ™' (-KCx(t) + Hr(t))

Substituting the control law (5.119) into the state equation (5.117) of the
system reads:

i(t) = Az(t)+B({+KD) ' (~KCz(t) + Hr(t))

= (A-B(I+KD)! KC) z(t) + B (I+ KD) ' Hr(t) (5.120)
We denote by A the closed-loop state matrix:
Ay=A-B(I+KD) 'KC (5.121)

It is worth noticing that in the special case where the feedforward gain
matrix D is zero (D = 0) and where the output matrix C is equal to identity
(C =1) then the static output feedback controller K reduces to be a static state
feedback controller.

Let Ak, -+, Ak, be n distinct specified eigenvalues of the closed-loop state
matrix A.. Furthermore we assume that eigenvalues of matrix A do not shift
(meaning that they are different) the eigenvalues Ak, of the closed-loop state
matrix Ay. Let vy be an eigenvector of the closed-loop state matrix Ay
corresponding to eigenvalue \g;:

(A _B(I+KD)™ Kc) Uk, = MKk, (5.122)
The preceding relationship can be rewritten as follows:
(A — g, D) vy, — B ([+KD) "KCuy, =0 (5.123)

Let’s P be the parameter vector which is actually the input direction

corresponding to eigenvector vy

p, = — (I+ KD) ' KCu, (5.124)

Combining Equations (5.123) and (5.124) leads to the following relationship:

[A—)gl B] {”K ] —0 (5.125)

From the preceding relationship it is clear that vector [ OK; ] belongs to

—1
the kernel of matrix [ A- gl B }

Writing  (5.125)  for all the distinct predefined eigenvalues
Ay = diag(Ak,,- -+, AKk,) of the closed-loop state matrix leads to the so-called
Sylvester matrix equation:

AV - VA, +BP =0 (5.126)
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Where matrices P and V are defined as follows:

_ _ -1
{P[pl gp}f (I+KD) 'KCV (5.127)
V = [ QKI .o QKP ]
It is clear that as soon as vy, = — (A — Ag, )7 Bp, then kernel equation

(5.125) is solved. Consequently matrices P and V satisfying Sylvester matrix
equation (5.126) are obtained as follows where m x r parameter matrix P is a
real matrix of rank m:

=| P P, ] where rank (P) =m
(5.128)
V = ngl Wpo }
Where:
_ T
W;=—(A-)\g]) 'B
There are p vectors p,t=1--,pto determine, each of size m, thus m x p
unknowns. Thus the number n of required eigenvalues Ag,, ¢ = 1,--- ,n shall
be such that m x p > n.
From the definition of matrix P given in (5.127) we get:
P=—(I+KD) 'KCV
& P=—(1+KD) 'KCV (5.130)

& (I+KD)P = —KCV
& K(CV +DP) = —P

Usually matrix CV + DP is not square. Consequently the static output
feedback gain K is obtained by taking the pseudo-inverse of matrix CV 4+ DP:

K = P (CV +DP)” ((CV + DP) (CV+DP)T>71 (5.131)

In the special case where matrix CV + DP is square and invertible the
preceding relationship reads:

K=-P(CV+DP)! (5.132)
Or equivalently:
K=-[p, - p,](Clog, - vg, |+D[p, - p, )7 (5.133)

The preceding relationship is the so-called Roppenecker’s formula? to get
the static output feedback gain matrix K.

1G. Roppenecker, On Parametric State Feedback Design, International Journal of Control,
Volume 43, 1986 - Issue 3
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Comments on Roppenecker’s formula

We recall that the n distinct eigenvalues Ak, of the closed-loop state matrix and
the corresponding eigenvectors vy are related to the parameter vectors P by
relationship (5.125) which is reported hereafter:

[A-)xI B] {%‘ ] =0 (5.134)

p;

It is worth noticing the following facts:

— From the relationship:

[A—-)gl B] [”Ki ] —0 (5.135)

It is clear that each (n 4+ m) x 1 vector [ Q;i ] belongs to the kernel of
L)

matrix [ A-)gl B ] So once any (n+ m) x 1 vector which belongs

to the kernel of matrix [ A — Ag,I B | has been found, its m bottom

rows are used to form vector parameter p,- In the MIMO case several

possibilities are offered.

— We recognize in matrix [ A-)Xgl B } the key matrix used in the PBH
controllability test;

— In the special case of state feedback where D = 0 and C = I then matrix
CV + DP = V where V is a square and invertible matrix. In that case
Equation (5.132) leads to the expression of the static state feedback gain

matrix K:
C=1 _ -1
{50 =K=Pvielp ] (uq - u )

(5.136)

— If we wish to keep an eigenvalue \; of matrix A within the set of eigenvalues
of the closed-loop state matrix A, then (A — A\g,I) Uk, is equal to zero
because in that case vy, is also an eigenvector of A:

Ak, =Xi = (A=A Doy, = —Bp, = (A=Al o, =0 (5.137)

Consequently we have to replace P by 0 and vy, by eigenvector v; of A
corresponding to \; in the Roppenecker’s formula (5.132);

— The static output feedback gain K satisfy the following relationship:

K (Cux, +Dp,) = -, (5.138)

1
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Indeed by combining Equations (5.125) and (5.138) we retrieve Equation
(5.122):

Avg, +Bp, = Ag,vg,
K (CQKL_ + Dgi> =-p,&p == (T+ KD)_1 KCQKi (5.139)

= (A ~B(I+KD)! KC) Uk, = AK.Uk,

Conversely we can write the preceding equation as follows:

_ Vk; —
[A- )Xl B [ _ (1+KD) ' KCuy. 0 (5.140)
Thus by defining parameter vector p. as p, = — (I+ KD)_1 KCug, we

retrieve K (CQKZ_ + Dgi) = —p, which is exactly Equation (5.138).

In the SISO case where D = 0 and C =1, that is where a state feedback
is assumed, the controller gain matrix K no more depends on parameter
vectors p.. Indeed is that case the controller gain matrix K is obtained as
follows:

K= [ 1 ... 1 }
[(A-Xg)'B - (A-X,D7'B]7' (5.141)
To get this result we start by observing that in the SISO case where D = 0

and C = [ parameter vector are scalars; they will be denoted p;. Let vector
K; be defined as follows:

K,=—(A-)gD)'B (5.142)

2

Then Equation (5.133) reads:
-1

K=—[p - po|[ Kt - K,pn] (5.143)
Let’s rearrange the term [ Kipr -+ K,pn ]71 as follows:
D1 0 -
[ Ky -~ Ko ] =|[E - K, ]
0 Dn
[ ;1 01!
_ : [ K, K, ]
| 0 Dn
i Hl Di
T w 0
- (K, - K, ]
Hi n Pi
L 0 Hlilpv
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Multiplying this expression by — [ P11 o Dn ] leads to the expression
of K:
-1
K =—[p - p || K - K,pn]
Hi;ﬁl pq 0
HZL:1 Pi 1
=—[pm - pn] K, - K, |
Hi?gnpi
0 _11_[?:11’1'
:7[1 1][51 Kn]
(5.145)
Using the expression of vector K; = — (A — Ag,I)"' B provided by

Equation (5.142) we finally get:

[(A-AgD)7'B - (A—Ag D) 'B] " (5.146)

We conclude that in the SISO case where D = 0 and C =1, that is where
a state feedback is assumed, the controller gain matrix K no more depends
on parameter vectors p;-

5.8 Solving general algebraic Riccati and Lyapunov
equations

The general algebraic Riccati equation reads as follows where all matrices are
square of dimension n X n:

AX +XB+C+XDX =0 (5.147)

Matrices A, B, C and D are known whereas matrix X has to be determined.

The general algebraic Lyapunov equation is obtained as a special case of the
algebraic Riccati by setting D = 0.

The general algebraic Riccati equation can be solved® by considering the
following 2n x 2n matrix H:

B D
H= { _C —A] (5.148)
Let the eigenvalues of matrix H be denoted A, ¢ = 1,---,2n, and the

corresponding eigenvectors be denoted v;. Furthermore let M be the 2n x 2n
matrix composed of all real eigenvectors of matrix H; for complex conjugate
eigenvectors, the corresponding columns of matrix M are changed into the real
and imaginary parts of such eigenvectors. Note that there are many ways to
form matrix M.

®Optimal Control of Singularly Perturbed Linear Systems with Applications: High
Accuracy Techniques, Z. Gajic and M. Lim, Marcel Dekker, New York, 2001
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Then we can write the following relationship:

(5.149)

HM =MA = [ M4 MQ][Al 0 ]

0 A,

Matrix M7 contains the n first columns of M whereas matrix My contains
the n last columns of M.
Matrices A1 and Ao are diagonal matrices formed by the eigenvalues of H
as soon as there are distinct; for eigenvalues with multiplicity greater than 1,
the corresponding part in matrix A represents the Jordan form.
Thus we have:
HM,; = M1 A4
{ HM, — MyAs (5.150)

We will focus our attention on the first equation and split matrix M; as
follows:

(5.151)

- [

\Y% EP

Using the expression of H in (5.148), the relationship HM; = M A reads
as follows:

BM;; + DM; = M1 A

HM; = MjA; =
! H { —CMi1; — AMy3 = M2 Ay

(5.152)

Assuming that matrix My is not singular, we can check that a solution X
of the general algebraic Riccati equation (5.147) reads:

X = MM} (5.153)

Indeed:

BM;; + DM, = M1 A
CMi; + AMyz = —Mj2A,
X = MM}
= AX +XB + C+ XDX =AM} M} + M;sM;B +C
+M2M DM ;M7
= (AM;2 + CMy;) M}
+M M (BMy; + DMyp) M}
= —MpA M + MMM A M}
=0
(5.154)
It is worth noticing that each selection of eigenvectors within matrix M;
leads to a new solution of the general algebraic Riccati equation (5.147).
Consequently the solution to the general algebraic Riccati equation (5.147) is
not unique. The same statement holds for different choice of matrix My and
the corresponding solution of (5.147) obtained from X = 1\/[211\/[2_21.
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5.9 Static output feedback

5.9.1 Partial eigenvalues assignment

We consider in this section the following linear dynamical system where
u(t) € R™, z(t) € R™ and y(t) € RP. Furthermore we assume that (A,B) is

controllable and that (A, C) is observable:

{ i(t) = Az(t) + Bu(t) (5.155)

Let’s consider a static output feedback where the control u(t) is proportional
to output y(t) through gain K as well as reference input r(t):

u(t) = —Ky(t) + Hr(t) (5.156)

Let A be the following diagonal matrix:

_ AP 0 Ap = dlag ()‘K1a e 7)‘Kp)
A= [ 0 A, } where { Anyp = diag (ic,r - A, (5.157)

It is assumed that A, and A,,_, are self-conjugate sets and that A contains
distinct eigenvalues. The problem considered is to find a real matrix K such
that the eigenvalues of A — BKC are those of the set A.

Brasch & Pearson'® have shown that the transfer function of the closed-loop
plant can be written as follows:

G(s) =C(sl- A+ BKC) 'BH
= (1+C(s1-A)'BK)  C(sI-A) 'BH (5.158)

—C(sI-A)'B (11+Kc (s]I—A)_lB) H

Then, given any set A, there exists a static output feedback gain K such
that the eigenvalues of A — BKC are precisely the elements of the set A,,.
Furthermore, in view of (5.158), the same methodology than in section 5.5.1
can be applied to compute K.

Let Ny (s) := adj(sI — A)B € R"™ ™ where adj (sl — A) stands for the
adjugate matrix of sl — A, and D(s) := det (sl — A) is the determinant of
sl — A, that is the characteristic polynomial of the plant :

adj (sl — A)B  Ny(s)

(sI—A)'B= Gt I A) D) (5.159)

Consequently, we get from (5.158) the expression of the characteristic
polynomial of the closed-loop transfer function G(s):

det (sI, — A + BKC) = det (D(s)L,, + KCN(s)) (5.160)

As soon as Mg, is a desired closed-loop eigenvalue then the following
relationship holds:

det (D(s)I, + KCNy(s))] =0 (5.161)

s=Ak;
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Consequently it is desired that matrix D(s)I + KCNy/(s)|,_,, is singular.

Following Shieh & al.®; let w, # 0 be a vector of size m x 1, where m is the
number of columns of B (that is the size of the input vector u(t) of the plant),
and belonging to the kernel of matrix D(s)I + KCN(s)|,_,, - Thus changing

s by Ak, we can write:

(DA, + KCNy(Ag,)) w; =0 (5.162)

Actually, vector w; # 0 € C™ is used as a design parameter.
In order to get gain K the preceding relationship is rewritten as follows:

KCN(Ak; )w; = —D(Ak; )w; (5.163)

This relationship does not lead to the value of gain K as soon as Ny (Mg, )w;
is a vector which is not invertible. Nevertheless assuming that n denotes the
order of state matrix A we can apply this relationship for the p closed-loop
eigenvalues given by A,. We get:

KC[ug, - v, J=—|2 1] (5.164)
Where vectors vy, and p, are given by:

{UKi:Nol()\Ki)wi Vi=1,---,p

p; = D(Ak;) w; (5.165)

We finally retrieve expression (5.136) of the static state feedback gain matrix
K to get the p closed-loop eigenvalues given by A,:

K=-P(CV)! (5.166)
where:
{ F=lDOwlus - DOm)a, | = {Bl BP} (5.167)
V= Noy(Ar,)w; - Na(Qr,)w, | :=[vg, - vk, |

As shown by Duan”, by duality (5.166) can be changed as follows:

K- -P(B7V)" (5.168)

Then relationship (5.167) still holds when vectors vy, and p, are defined as
follows where vector v; # 0 € CP is used as a design parameter:

Vg, = Ngz()‘Ki)Zi S 1
{ p, = D) v, Vi=1,---,m (5.169)

L. S. Shieh, H. M. Dib and R. E. Yates, Sequential design of linear quadratic state
regulators via the optimal root-locus techniques, IEE Proceedings D - Control Theory and
Applications, vol. 135, no. 4, pp. 289-294, July 1988.

"G. R. Duan, Parametric eigenstructure assignment via output feedback based on singular
value decompositions, Proceedings of the 40th IEEE Conference on Decision and Control (Cat.
No.01CH37228), Orlando, FL, USA, 2001, pp. 2665-2670 vol.3.




5.9. Static output feedback 169

where N¢(s) := adj (sI — AT) CT € R"*?, where adj (sI — AT) stands for
the adjugate matrix of sI — AT, and D%(s) := det (sI — A”) is the determinant
of sT — AT, that is the characteristic polynomial of the dual plant :

adj (s — AT)CT NY(s)
det (s — AT) ~ Dd(s)

(sT—-AT) T = (5.170)

Furthermore, and assuming that rank (B) = m and rank (C) = p, the
remaining n — p eigenvalues of the closed-loop matrix A — BKC can be
achieved by selecting parameter vectors w;, # 0 and v; # 0 such that the
following constraints hold:

T - _ gz#QGCmX17Z:177p
v; Njiw; = 0 where { v, A0eC j=ptl-.n (5.171)
where p x m matrix Nj; is defined as follows:
4 T
Nji = (NG Ok,)) NaO,) (5.172)

Matrices N (\g,) and Noi(Ak;) are defined in (5.159) and (5.170).
The last component of each parameter vectors as follows is set as follows:

— If the eigenvalue A, is real, the last component of parameter vectors w;
and v; is set to 1 ;

— If the eigenvalue Ak, and Ag; are complex conjugate, the last component
of parameter vectors w; and v, is set to 1+ j whereas the last component

of parameter vectors w; and v; is set to 1 — j;

— More generally, Duan’ has shown that to fulfill (5.171) parameter vectors
w,; and v; are real as soon as A, is real. But if Ag, and )\Kj are complex

conjugate, that is A\g, = E\Kj, then w; = W, and v, = ;.

Alexandridis & al.® have shown that given a set A of n eigenvalues \g, for
the closed-loop system, we have to determine p parameter vectors w; such that
there exits n — p parameter vectors v; which solve the set of bilinear algebraic
equations (5.171).

From (5.171) there is p x (n — p) equality constraints which shall be fulfilled.
On the other hand, p parameter vectors w; with m — 1 free parameters (the last
component is set) and n —p parameter vectors v; with p—1 free parameters (the
last component is set) have to be found. A necessary condition for constraints
(5.171) to be solvable is that the number of equations must be equal or less than

the sum of the free parameters:

px(n—p)<px(m-1)+(n—-p)x(p-1)cmxp=>n (5.173)

8A. T. Alexandridis and P. N. Paraskevopoulos, A new approach to eigenstructure
assignment by output feedback, IEEE Transactions on Automatic Control, vol. 41, no. 7,
pp- 1046-1050, July 1996
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Thus a necessary condition for this set to be solvable is that m x p > n.
However the condition m x p > n does not assure that a solution exists (it is
not a sufficient condition).

Furthermore, in the particular case where m +p > n + 1, parameter vectors
vj, j =p+1,---,n can be arbitrarily set. In that case the set of equations
(5.171) reduce to a linear system of algebraic equations with w,, i =1,--- ,p as
unknown parameters.

As mentioned by Duan’, an efficient manner to solve constraints (5.171) is
to use a Singular Value Decomposition (SVD) of matrices Nj; which reads as
follows:

((Nj =U;%; V]!
A, O
i = [ 0 0]
op 0 ... 0 (5.174)
0 ()] 0
Ay = S
0 0 0 o

where:

U; and V; are unitary matrices

o; ERT Vi=1,2,--- ,q

012092204 >0

¢ = min(m, p) assuming that Nj; has no eigenvalue equal to 0

(5.175)

In all cases, and assuming that w; and possibly v; have be chosen such that
det (CV) # 0, static output feedback K is computed thanks to (5.166).

5.9.2 Changing PID controller into static output feedback

We present hereafter some results provided by Zheng & al.? which transforms
a PID controller to static output feedback.
We consider the following linear time-invariant system:

{ i(t) = Az(t) + Bu(t)
y(t) = Cz(t)

And the following PID controller where matrices K,, K; and K  have to be
designed:

(5.176)

) = = (Kyel) + 6 [ etnar + Ko Ge0) G

where:
e(t) = y(t) —r(t) (5.178)

Let’s denote z,(t) the augmented state-space vector defined as follows:

N

°Zheng, F., Wang, Q.-G. & Lee, T. H. (2002). On the design of multivariable PID
controllers via LMI approach. Automatica 38, 517-526

Z,(t) =
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Thus:
£a(0) = Aaza(0)+ Bust) + | % | 200 (5.180)
where:
[aA
v % ]3 | iy

Furthermore, assuming that 7(¢) = 0, we have:

d
r(t)=0= ﬁe( ) = Ci(t) = CAz(t) + CBu(t) (5.182)
Using the definition of z,(t), the PID controller reads:

u(t) == (Kpe(t) + K fj e(r)dr + Ky Ge(t))
= -K,Cz(t) + K,Cr(t) — K; $e(t) — Kq (CAz(t) + CBu(t))
=-K,[C 0]z,(t)) ~K; [0 T]z,(t)—Kq[ CA 0 ]z,(t)

-K CBu(t) + K,Cr(t)

C

0
— [ Kp Kz Kd ] 0 I %(t)
CA 0

— K4CBu(t) + K,Cr(t)
(5.183)

We will assume that 14+ K;CB is invertible and define C, and K, as follows

CcC o0
C,= 0 I
CA 0 (5.184)
K,=(I+K,CB)"'[ K, K; Ky
Let I~{p, INCZ and IN(d be defined as follows:
Kp =TI+ KdCB) p
(5.185)

K; (]I + KdCB)

Assuming that Rp, I~{Z and Kd are known, gains K, K; and K, are obtained
as follows where it can be shown” that matrix I — CBKy is always invertible:
~ ~ N1
K, =K, (]1 - CBKd>
K, — (1+ K,CB)K, (5.186)
K, =(I+K;CB)K;

Thus the problem of PID controller design is changed into the following
static output feedback problem:

1,(t) = Aaz,(t) + Bau(t)
(5.187)

ya(t)— 2, ()
u(1) = Koy, (1) + (1 + K,CB) ' K, Cr(1)
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It is worth noticing that the same results are obtained, but without the
assumption that 7(¢) = 0, when a PI-D controller is used; for such a controller
the term multiplied by Ky is y(t) rather than e(t):

ut) = - (e + 6 [ eiar 4 Ka o) Gasy)

5.9.3 Adding integrators, controllability and observability
indexes

We consider the following controllable and observable state-space representation
where the state vector z is of dimension n (that is the size of state matrix A).
In addition y(¢) denotes the output vector and wu(t) the input vector. We will
assume that the feedforward gain matrix D is zero (D = 0):

Az(t) + Bu(t) (5.189)

—
< 18-
==
S—
[
Q
8
=
S~—

Brasch & Pearson'® have computed the number n; of integrators that can
be added to increase the size of the output vector:

n; = min(p. — 1,po — 1) (5.190)

where p. is the controllability index of the plant and p, the observability index
of the plant.
The controllability index p. of the plant is the smallest integers such that:

rank ([ B AB .- AP-"'B |) =n (5.191)

Similarly, the observability index p, of the augmented plant is the smallest
integers such that:
C
CA
. =n (5.192)

rank
CA.Z’O_1

The compensator in cascade with the plant will be taken to be n; integrations
of the component y;(t) = C;z(t) of the output vector y(t) of the plant:

T (t) = yi(t) = Cix(t)
: (5.193)
Tin, (t) = Tin,—1(t)

Furthermore the control u(t) of the augmented plant, that is the plant and
the n; integrators, will be taken to be the actual input u(t) of the plant and the

10p  Brasch and J. Pearson, Pole placement using dynamic compensators, IEEE
Transactions on Automatic Control, vol. 15, no. 1, pp. 34-43, February 1970.
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n; integrations of the output y;(¢) of the plant:

u(t)
u(t) = xﬂz(t) (5.194)
Lin, (t)

Then we define matrices A,,,, B, and C,,, of the augmented plant as follows
where 0y, is the null matrix of size n; and L,,; is the identity matrix of size n;:

A, 0
A= | o]
~[B,o
B, = o, } (5.195)
o= 541

Alternatively matrices A,,, B,, and C,, of the augmented plant can be
defined as follows where 0,y is the null matrix of size p X r and I, is the
identity matrix of size n;:

A o
A, = C 01xn,
Onifl n‘Hni—lsomfl 1
. gl (i (5.196)
e
[cio
o= 5]

The interest of the preceding state space representation of the augmented
plant is that its input vector w, () is the same than the input vector u(t) of the

actual plant :
u,, (t) = u(t) (5.197)

5.10 Mode decoupling

The purpose of this section is to provide an overview of the method for mode
decoupling.
5.10.1 Input-output decoupling

We consider the following state-space representation of a controllable and
observable system where u(t) € R™ denotes the control input, z(t) € R™ the
state vector and y(t) € RP the output vector:

{ ﬂy'c(t) = Az(t) + Bu(t) (5.198)



174 Chapter 5. Controller design

Let’s assume that u(t) can be split into [ u;(t) uy(t) ]T; similarly we
T

assume that y(¢) can be split into [ y, () y,(t) |". Thus the state-space
representation reads:

&(t)=Az(t)+ [ B1 By | [ uy (t) ]
BRI

The transfer function from wu,(¢) to y,(t) is obtained by setting uy(t) = 0
and assuming no initial condition. We get:

(5.199)

Fu,y,(s) = Co (sT— A) "' By (5.200)

Thus input u(¢) and output y,(¢) will be decoupled as soon as transfer
function Fy,y, (s) is null:

Fuiy(s) = Co(sI—A)"'B1 =0 (5.201)

From Neumann’s theory, it is known that the inverse M~! of a nonsingular
matrix M has the following series expansion as soon as the spectral radius of
the square matrix I — XM, that is the maximum moduli of its eigenvalues, is

lower than 111:
oo

M=) (I-XM)FX (5.202)
k=0
Setting X =Tand M =1— A we get:

I-A)"'= iAk (5.203)
k=0

This relationship can be related to the series expansion of (sl — A)_1 as
follows:

(sT—A)' = % <]1 - ‘;“)_1 = ii <‘?>k = i A;l (5.204)
k=0

k=1

Thus transfer function Fy,,,(s) reads:

B 0 Akl—1
Fuyy(s) =Co(sI—A) !By =) Cy B (5.205)

k=1

We conclude that transfer function Fy,,,(s) is null as soon as the following
relationship holds:

Fuy(s) =0s CAFB; =0 VE>0 (5.206)

" Joan-Josep Climent, Néstor Thome, Yimin Wei, A geometrical approach on generalized
inverses by Neumann-type series, Linear Algebra and its Applications 332-334 (2001) 533-540
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Let Q¢ be the following controllability matrix:
Qu=[B; AB; -+ A"'B ] (5.207)
Let Qo2 be the following observability matrix:

C,
C2A
Qo2 = . (5.208)

C2An—l

Then relationship (5.206) with Cayley-Hamilton theorem indicates that a
necessary and sufficient condition for u,(¢) to be decoupled of y, () is that the
controllable subspace of (A,Bj) is contained in the unobservable subspace of
(A, Cs3). Denoting by ker (Qo2) the kernel of Qu2 and by range (Q.1) the span
of Q.1, we shall have!?:

range (Qc1) C ker (Qo2) (5.209)

This condition is equivalent to the existence of an invertible change of basis
matrix P, which defines a new state vector z,,(t) as follows:

_ z,(t) = Apz,, (t) + Bhu(t)
z(t) =Pz, (t) &z, (t) =P lz(t) = Z,( n 5.210
) = Puza(0) & 1) = Pta(t) = { Lot~ Arf (5.210)
Where:
A, =P 1AP, = Aun 0
Ao Ag
o _ 0
B, = [ B, B, } where By = P.1B; = | ~ (5.211)
B2
C _ _
C, = 6; ] where Cy = CoP,, = [ Co O }

5.10.2 Eigenstructure assignment

We consider the following state-space representation of a controllable and
observable system where u(t) € R™ denotes the control input, z(f) € R™ the
state vector and y(t) € RP the output vector:

i(t) = A(t) + Bu(t
5.212
{4t = cxt o212
where A € R™*" B € R™*"™, C ¢ RP*",
When the control input u(t) is a state feedback we have:
u(t) = —Kaz(t) + Hr(t) (5.213)

121 uigi Glielmo and Martin Corless, On output feedback control of singularly perturbed
systems, Applied Mathematics and Computation Volume 217, Issue 3, 1 October 2010, Pages
1053-1070
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r(1) ] x, (1) x, (1) v(t)
J

Figure 5.6: Modal decomposition of a transfer function

Then the closed-loop system reads:

{ i(t) = (A — BK) z(t) + BHr(t) (5.214)

y(t) = Cux(t)

Similarly to the open-loop case the transfer function Gg(s) of the closed-
loop system when the control u(t) is —Kz(t) + Hr(t) reads:

Y(s) = Gr(s)R(s) (5.215)

Where:
Gk(s)=C(sl— (A —BK)) 'BH (5.216)

As in the open-loop case the transfer function Gg(s) of the closed-loop
system may be expressed as a function of the closed-loop eigenvalues A\, and
the left and right eigenvectors of matrix A—BK. Assuming that matrix A—BK
is diagonalizable we have:

" Cup wl BH
Gr(s) =) — fK (5.217)

=1

Figure 5.6 presents the modal decomposition of the transfer function where
z,,(t) is the state vector expressed in the modal basis and matrices A, P and
P! are defined as follows:

AK,
Ay =
AK,
P=[ S U ] (5.218)
Wk,
Pl=1] =
\ w,

Vector vy, is a right eigenvector corresponding to eigenvalue Ag;: it is a real
vector if the eigenvalue Ak, is real, a complex vector otherwise.

The components of the desired eigenvector vy can be used for decoupling.
Indeed we can see from the modal decomposition of the transfer function
provided in (5.217) that:
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— Mode Mg, will not appear in the j* component of the state vector z(t) if
the following relationship holds:

ﬁg&_ =0 (5.219)

where vector f;‘.F is a row vector which contains 1 on the j** column and
0 elsewhere:

T
. pr— L 1 ..
iy [ 0 0 ~~ 0 0] (5.220)
4tP column
For instance if vy, = [ * ok 0 % ]T where * represents unspecified

components then i]T = [ 0010 ] since:
v, =[x % 0« ] = Mo =[0 0 1 0Jug =0 (5.221)

— Mode Ag; will not appear in the 4t component of the output vector y(t)
if the following relationship holds:

LTCQKZ, =0 (5.222)

— Similarly mode Ak, will not be excited by the 4t component of the control
vector u(t) if the following relationship holds:

i;FKyKi =0 (5.223)

This relationship comes from the fact that the the control vector w(t) is
built from the state feedback —Kuz(t).

— Finally mode A, will not be excited by the 4t component of the reference
input r(t) if the following relationship holds:

wic BHuy [,=0 (5.224)

5.10.3 Design procedure

The following design procedure for mode decoupling and eigenstructure
assignment has been suggested by Chouaib and Pradin'3

— Assuming that state matrix A is of dimension n and that (A,B) is
controllable we define n closed-loop eigenvalues Ag,,- -, Ak, and define
which components of the output vector y(t) will be decoupled from
which eigenvalue. This leads to the expression of matrix CP where

coefficients 0 indicates a decoupling, 1 a coupling and * an unspecified

131, Chouaib and B. Pradin, On mode decoupling and minimum sensitivity
by eigenstructure assignment, Electrotechnical Conference, 1994. Proceedings., Tth
Mediterranean, Antalya, 1994, pp. 663-666 vol.2.
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component between the corresponding output and eigenvalue. From the
product CP we get the expression of i;[C which summarizes the

decoupling constraints on the j** component of the output vector y(t).
And the end of this step we defined n matrices S(Ag;,) as follows:

A-)l B

S()\Ki):[ e o (5.225)

Then compute matrix R(Ag,) whose columns constitute a basis of the
right null-space of S(A\g;):

S(Ak: ) R(Ak;) =0 (5.226)

It is worth noticing that matrix R(Ag,) can be obtained through a
singular value decomposition of matrix S(Ag,)!*. Indeed singular value
decomposition of matrix S(Ag,) leads to the following decomposition
where UUT =T and VVT =1

Ti1
S(\k,)=U o | VT (5.227)
Oin
oi1
Denoting 3 = we get:
Oin
SAk,)=U[= 0 ]VT
S SAg,)V=U[X 0] (5.228)
& S(g)V=[UZ 0|
Let v; 1,059, * ,Vj (nm) e the vectors which form matrix V:
V=[v, o vy, Yi(n+1) “° Yi(n+m) ] (5.229)
From (5.228) it is clear that the set of vectors v; (,11), "+ ¥ (nq-m) Satisfy
the following relationship:
SAk)v;,;=0Vj=n+1,- n+m (5.230)

Consequently matrix R(\g;) can be defined as follows:

ROAK) = [ Vint1) " i(nam) ] (5.231)

1P Kocsis, R. Fonod, Eigenstructure Decoupling in State Feedback Control Design, ATP
Journal plus, HMH s.r.0., 2012, ATP Journal plus, 2, pp.34-39. <hal-00847146>
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— Matrix R(\g; ) is then compatibly partitioned between matrix N(Ag,) and
matrix M(Ag,). Matrix N(Ag,) is built from the n first rows of R(Ag;):

R(\g,) = [ N(Ar,) ] (5.232)

Each vector mr; which belongs to the kernel of S(Ag,) is characterized by
a non zero parameter vector z, such that:

m; = R(k,) z = SOx ) R(Ak,) 2 = 0 (5.233)

As a consequence the right eigenvector vy, which constitutes the ith
column of matrix P, can be written as follows:

vk, = N(Ak,) z; (5.234)
Parameter vector z; may be used to minimize the sensitivity of the assigned
eigenvalues as it will be seen in the next section.

— Finally decompose matrix B as follows where Y is a non-singular matrix
and where U = [ Uy Uy } is an orthogonal matrix such that:

B=| U, Ul][g] (5.235)

One possible way to derive this decomposition is to use the singular value
decomposition of B:

B=U [ ? } vt (5.236)

Where X is a diagonal matrix formed by the rank(B) = m singular values
of B (matrix B is assumed to have full column rank) and where U and V
are orthogonal matrices (i.e. UTU =T and VIV =1).

Then we can define Y = XVT and suitably split U = [ Uy Uy } such
that Uy has m columns:

Y =%V’
5.237
{02t o) 237
Let A, be the diagonal matrix of the closed-loop eigenvalues:
MK,
Ay = (5.238)

AK,

As far as all eigenvectors vy which compose each column of matrix P
have been computed matrix K can be calculated by:

K=Y'UJ (A-PA,P ) (5.239)
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To get this result we write the closed-loop state matrix as follows:

A —BK =PA P! (5.240)

Then pre-multiplying the preceding equation by U7T, using the
decomposition of B and the fact that U is an orthogonal matrix (i.e.
UTU =1) we get:

UTPA,P7! =UT (A - BK)

=UTA - UTBK
=UTA - ‘0{ K (5.241)

_[ Y Y
“[ot]alo )
The first row of (5.241) reads:

Ul'PA,P ' =UlA - YK (5.249)
s K=Y'UJ (A-PA,P ) :
Furthermore the second row of (5.241) leads to the following necessary
and sufficient condition for pole assignment!'3:

U?P}‘ClP_l =UjA (5.243)
< U] (AP-PA,) =0

It is worth noticing that if a closed-loop eigenvalue A, is complex, then
its conjugate value, \g, is also a closed-loop eigenvalue. In order to
manipulate real matrices during the computations eigenvectors vy, and
Uk, in P are replaced by Re(vy,) and Im(v,) respectively:

[ vg, Vg, } — [ -+ Re(vg,) Im(vg,) } (5.244)

Furthermore eigenvalues Ak, and XIQ in the diagonal matrix A, are
replaced by Re(Ag,) and Im(Ag;,) as follows:

Re(Ax;)  Im(Ag;)
_Im(/\Ki) R’e()\Ki> (5.245)

Indeed from the relationships:

AleK. = )\K-QK-
—he TR 5.246

157, Kautsky, N. K. Nichols, P. Van Dooren, Robust pole assignment in linear state
feedback, International Journal of Control, Volume 41, 1985 - Issue 5
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We get by adding and subtracting the preceding equations:

{ Aa (v, +Tk,) = AUk, + Ak Tk,
A (UK - 6K) = )\KL-QKi — /\KL@KZ

c RG(UK ) = Re(Ag, VK, )
;‘{ AqTm(v,) = Im(Ak,vy,) (5247
@{ Re(vg,) = Re(Ak;) Re(vg,) — Im(Ak,) Im(vg, )
AaIm(vg,) = Re(Ak,) Im(vg, ) + Im(Ax;) Re(vg,)
That is:

Ay [ RG(QKZ.) Im(QKz‘) ]

_ Re(Ar,)  Im(Ax,)
- [ Re(ﬂKl—) Im(@KJ ] _Im(j\(Ki) Re(/\il) (5'248)

5.10.4 Example

Following an example provided by A. Fossard' we consider the following system:

@(t) = Az(t) + Bu(t)
5.249
{y@:cmw (5.249)
where: )
( 1 0 0
A=|10 1
0 1 1
[0 1
B-l1 o0 (5.250)
0 1
01 -1
\C_ 10 0

This system has m = 2 inputs, n = 3 states and p = 2 outputs and is both
controllable and observable. We wish to find a state feedback matrix K such
that the closed-loop eigenvalues are A\g, = —1, A\g, = —2, Ag, = —3.

Moreover it is desired that the first output yi(¢) of y(¢) is decoupled from
the first mode \g, whereas the second output yo(t) of y(t) is decoupled from
the last two modes Ak, Ak;. B

The decoupling specifications leads to the following expression of the product
CP where * represents unspecified components:

0 *= =
CP=C[ vy, uvg, UKg]:[* 0 0} (5.251)

Or equivalently for the first row of matrix C:

[0 1 —1]ug, =0=[1 0]Cu =flCuy, =0 (5.252)

16 A Fossard, Commande modale des systémes dynamiques, notes de cours, Sup’Aéro, 1994
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And for the second row of matrix C:

[1 0 0]ug,=0=[0 1]Cuy, =f,Cox, =0 (5.253)
[1 0 0]ug,=0=]0 1]CQK3:i2CQK3:O '
At the end of this step we define n = 3 matrices S(\g,) as follows:
2 0 0|0 1
A=A I B] |11 1|10
S(AKI)__ ff[c o (o1 201
0 1 -1]0 0
(3 0 0/0 1]
C[A=Xg,I B] |1 2 1)1 0
|1 0 0/{0 O |
4 0 0[{0 17
A=A I B] |1 3 1]10
S(AKS)__ fflc o 01 4]0 1
10 0/0 0|

Then we compute matrix R(Ag,) whose columns constitute a basis of the
right kernel of S(Ag;):

S(w)R (W) =S0w,) | iy~ | =0 (5.255)

Where matrix N(\g;,) is built from the n = 3 first rows of R(\g;).
We get:

[ —0.2970443 T
—0.1980295
] = | —0.1980295
0.6931033
| 0.5940885
0
0.5070926
R(\k,) = [ ﬂ“m ] = | —0.1690309 (5.256)
—0.8451543
0
0
0.3405026
R(\g,) = [ 11\\1/1(AK3) ] — | —0.0851257
—0.9363822
0

As far as each matrix R(Ag,) reduces here to be a vector we set the non
zero parameter vector z; to 1; as a consequence vector vy = N(Ak,)z; is set to
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[ —0.2970443 T
v, = N(g,) = | —0.1980295
—0.1980295 |
0 =
vk, = N(Ag,) = | 0.5070926 (5.257)
—0.1690309 |
0 =
vg, = N(i,) = | 0.3405026
| —0.0851257 |

Furthermore no update of vector vy, has to be considered because the
number of columns of N(Ag;) is equal to 1.
Finally a singular value decomposition of B is performed:

B :U[Z}VT

0
0.7071068 0 —0.7071068 ] [ 1.4142136 0
0 1
= 0 -1 0 0 1 [_1 0]
0.7071068 0  0.7071068 0 0
(5.258)

Then we define Y = V7 and suitably split U = [ Uy Uy ] such that
Uy has m = 2 columns:

Cwor | 14142136 0 0 11 [ 0 14142136
e e | IR B
0.7071068 0 (5.259)
Uy = 0 -1
0.7071068 0

Let A be the diagonal matrix of the closed-loop eigenvalues:

AK, -1
Ay = AK, = -2 (5.260)
MK -3

As far as all eigenvectors vy which compose each column of matrix P have
been computed matrix K can be calculated by:

(5.261)

K-—Y Ul (A B PACZP_I) _ [ —10.333333 6 13 ]

2 0 0

We can check that the product CP satisfy the decoupling specifications.
Indeed:

0 * =
CP =C|ug, vk, UKB]:[* 0 0}

0 —0.6761234 0.4256283
—0.2970443 0 0

(5.262)
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R(s) o .
—» | Uts) | X7s)
C(s) — - Fis)

Figure 5.7: Plant with dynamic compensator

5.11 Dynamical output feedback control

5.11.1 From dynamical output feedback to observer-based
control

Again we consider the state-space representation (5.263) where the state vector
z is of dimension n (that is the size of state matrix A). In addition y(¢) denotes
the output vector and u(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):

i(t) = Az(t) + Bu(?)

5.263
{4t = ot (5209

Following Radman!”, we assume that this system is controllable and

observable and is controlled as shown in Figure 5.7 by a dynamical output
feedback controller C(s) of dimension n. (that is the size of A.) whose state
space representation reads:

-

u(t) = Cez.(t) + Dcyg(t) + Depr(t)
Assuming that compensator C(s) has the same dimension than plant F(s),
that is n, = n, and from the following settings:

B, =L
B, =B
C.=-K (5.265)
D, =0
D, =1

cr

We get:
{ i.(t) = Acz,(t) + Ly(t) + Br(t) (5.266)

u(t) = —Kuz(t) +r(t)

'7G. Radman, Design of a dynamic compensator for complete pole-zero placement, The
Twentieth Southeastern Symposium on System Theory, Charlotte, NC, USA, 1988, pp. 176-
177
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From the second relationship we get r(t) = u(t) + Kz,(t). Thus the previous
state space representation reads:

é(;(t) + Bu(t) + Ly(t) (5.267)

Thus the dynamical output feedback controller C(s) can be seen as an
observer-based controller with gain K that uses z.(t) as an estimate of the
plant state z(t).

{ &.(t) = (Ac + BK)
u(t) = —Kaz.(t) +r

5.11.2 Dynamic compensator for pole placement

The following design which enables the placement of poles and zeros has been
proposed by Radman!”.

In this method the desired poles of the closed-loop are divided into two
groups of fast and slow modes. The slow poles are placed using state feedback
approach and the fast poles are placed using state estimation method.

We consider the dynamical output feedback controller (5.267) applied on
plant (5.263). Matrices A, L and K are degrees of freedom which shall be set
to achieve pole placement.

Using the same methodology than in section 5.4 we first compute the
estimation error e(t), which is defined as follows:

e(t) = z(t) — z.(t) (5.268)
The time derivative of the estimation error reads:

é(t) = a(t) — .(t)
— Au(t) + Butt) - (Ao + BK)z,(t) - Butt ~ Ly(t)  (5.269)
= Az(t) — (Ac + BK) z.(t) — LCx(1)
Using the fact that z.(t) = z(t) — e(t) we get:

é(t) =(A-LC)x(t) — (Ac + BK) (z(t) —e(t))

— (A —LC — (A, + BK)) 2(t) + (A, + BK) e(t) (5.270)

Combining the dynamics of the state vector x(¢) and of the estimation error
e(t) yields to the following state-space representation for the closed-loop system:

[i((;)) } N [ A—Lg:(]zlj+BK) Ac]—gi—I;K} [i((f)) ] + [ ]3 }r(t)
Then, setting A such that:

A.=A-LC-BK (5.272)

[i((f)) ] B [ A_OBK A Lo ] [i((f)) } + [ o ]r(t) (5.273)



186 Chapter 5. Controller design

Furthermore it is worth noticing that matrix is block triangular.
Consequently we can write:

det ([ A _OBK AIEIEC D = det (A — BK) det (A — LC) (5.274)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A — BK, that is the state matrix of the
closed-loop system without the observer, and the eigenvalues of matrix A —
LC, that is the state matrix of the closed-loop system without the controller.
As a consequence the observer and the controller can be designed separately:
the eigenvalues obtained thanks to the controller gain K assuming full state
feedback are independent of the eigenvalues obtained thanks to the observer
gain L assuming no controller.

Usually observer gain L is chosen such that the eigenvalues of matrix A—LC
are around 5 to 10 times faster than the eigenvalues of matrix A — BK, so that
the state estimation moves towards the actual state as early as possible.

To get the transfer function of the controller we take the Laplace transform
(assuming no initial conditions) of its state space representation:

i,(t) = Acz,(t) + Ly(t) + Br(t)
u(t) = —Kuz(t) +r(t) (5.275)
A.=A—-LC-BK

To get:
U(s) = C(s) [ 5,8 ] (5.276)

Where:
C(s)=-K(sI-A+BK+LC)'[B L|+[I 0] (5.277)

5.11.3 Dynamical output feedback

We now assume that plant F(s) is controlled by the dynamical output feedback
controller C(s) defined in (5.264) where n. # n (n. is the size of A.):
ic(t> = AC&c(t) + chﬂ(ﬂ + Bcrf(t) (5 278)
u(t) = Cezo(t) + Deyy(t) + Derr(t) '

It is worth noticing that we retrieve the static output feedback controller:
u(t) = Hr(t) — Key(t) (5.279)

When setting:
A.=B,=B,=C.=0
D., = -K. (5.280)
D, =H
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When the dynamical output feedback controller is of order n. < n the
design problem can be bring back to a static output feedback controller'® by
introducing a new control v(t) defined by:

o(t) = &.(t) (5.281)

and by considering the following augmented output vector ya(t), input vector
u,(t) and state vector z,(t):

_ [ oz ]

z,(t) = : z,(t) |
u,(t) = zg” (5.282)

HREON

| v = ;’C(t) |

Then the augmented equivalent open-loop system reads:
EIN IR .
x,(t 0 I ||zl

That is in a more compact form:

{ i, (1) = Auz, (t) + Bau, (t) (5.284)

8

Where: A o
A“::o 0}
Baz_](?)’ H (5.285)
=15 1]

It is worth noticing that the dynamical output feedback controller C(s)
defined in (5.264) becomes static in the augmented state-space:

[u(t) ] _ [ D, C. } [ y(t) } n { D, ]r(t) (5.286)

v(t) B, A. z.(t) B,
That is in a more compact form:
u,(t) = —Kay, (t) + Har(t) (5.287)
Where:
_ Dy Ce
ko ny X
(5.288)
H DCT
=[5

18y L. Syrmos, C. Abdallah, P. Dorato, Static Output Feedback: a Survey, Proceedings of
the 33rd IEEE Conference on Decision and Control, 1994
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Assuming that wu(t) is of dimension m, z(t) is of dimension n, z,(t) is of
dimension n. and y(t) is of dimension p we conclude that:

— A, is a square matrix of dimension (n + n.);
— B, is a matrix of size (n 4+ n.) X (m + n.);
— C, is a matrix of size (p + n¢.) X (n + n.);
— K, is a matrix of size (m + n.) X (p + ne);

If we wish to apply the Roppenecker’s formula (5.133) to set the static output
feedback gain K, so that n, predefined closed-loop eigenvalues are achieved, we
have to notice that matrix C,V, is a (p+n.) X n, matrix. Consequently matrix
C.V, is square and possibly invertible as soon as:

P+ ne=mny (5.289)

— In the case of state feedback we have n. = 0 and p = n thus the number
of eigenvalues which can be predefined is n, = n.

— In the case of output feedback the number n,, of eigenvalues which can be
predefined is obviously lower or equal to the size n + n. of the augmented
state matrix A,:

np <n+ne (5.290)

Assuming p + n. = n, so that C,V, is a square matrix we conclude that
there are n — p remaining eigenvalues whose location is not controlled through
output feedback.

Using the relationships u,(t) = —Kay (1) + Har(t) and y_(t) = Caz,(t) the
dynamics of the closed-loop system reads:

ia(t) = Aa&a(t) + Ba@a(t)
= Az, (t) + Bo (—Kay, (1) + Har (1)) (5.291)
= (Aa - BaKaCa)Qa(t) + BaHaf(t)

The product B,K,C, expands as follows:

~_[B 0o][ Dy C. C o
sxc, =)o 7o K]]G 7]

_[B o][DyC C.

-5 HHBCyC Ac] (5.292)

_ [ BD,C BC,

~ | B,C A

And consequently A, — B,K,C, reads:

(5.293)

A, _BK.C, [ A-BD,C -BC. }

~-B,C  —A,
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The transfer function G(s) of the closed-loop system between the output
vector y(t) and the reference input vector r(t) reads:

y(t) = G(s)r(t) (5.294)
Where:
G(s) =[C 0] (sI—(Aq— B.K.C,)) ' B,H,

[ BD
=[C 0](I—(Ay —B.K,Cyo))™! °r
[ J (sT = ( ) [ B, ] (5.295)
_[c o] sI- (A-BD,C) BC. | ' [BD,
- B.,C s+ A B,
5.12 Sensitivity to additive uncertainties
If Ak, is an eigenvalue of A — BKC then it can be shown that!®:
)Y BTwg vk CT
Moo = K (5.296)
K Wi Vg,

where wy, and vy, are the row and column eigenvectors of A — BKC
corresponding to Ag;.
Let A, be the closed-loop state matrix and assume that A is a

diagonalizable matrix:
A,;=A-BK (5.297)

Let P be the matrix which is composed by the right eigenvectors vy, of Ay
corresponding to eigenvalue A\g, and P~! be the matrix which is composed by
the left eigenvectors wy, of A corresponding to eigenvalue Ag;:

P=[uvg - vg,]

Wi, (5.298)
Pl=|

wi;

Let A,y + AA. be the perturbed state matrix subject to additive
uncertainties AA,. Then the Bauer—Fike theorem?? states that the variation
AMg, of the eigenvalues of the perturbed state matrix are bounded according
to the following relationship:

max |AXg,| < k(P) ||AA4]], (5.299)

where:
A,
P A, P = (5.300)
AK

n

19H. Sirisena, S. Choi, Pole placement in prescribed regions of the complex plane using
output feedback, IEEE Transactions on Automatic Control, 1975, Page(s):810 - 812
*Ohttps:/ /en.wikipedia.org/wiki/Bauer-Fike_theorem
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Coefficient x(P) is called the condition number of matrix P and is defined
as follows:

Amaz (PTP)
P)= ——————= 5.301
For a square invertible matrix P this reduces as follows:
K(P) =[P, [P, (5.302)

The induced matrix 2-norm ||P||, is defined as the largest singular value of
P, that is the root square of the largest eigenvalue of PP (or PPT); similarly
|AAl, is the largest singular value of AA.

According to the preceding equation, to guarantee a small variation of the
assigned poles against possible perturbations, one has to achieve a small
condition number x(P) of the eigenvector matrix.

To get this result we first rewrite the relationship which links the eigenvalue
Ak, and the corresponding right eigenvector vy, :

Aguvg, = Agvg, i=1,---,n (5.303)
Then the first order derivative of the preceding equation reads:

On the other hand the relationship which links the eigenvalue Ak, and the
corresponding left eigenvector vy, is the following:

Pre-multiplying (5.304) by Q%i and using (5.305) leads to the following
expression of d\;:

Wi AA U, +wie Aalug, = Agwie vy, + A wie, Avg,

& wit AA U, + A wi ATy, = A, wh, vg, + A wh-ATg, (5.306)

MT.AA X%

ﬂKiﬂKi

As far as the left and right eigenvectors are normalized such that w%b_ v, =1
we get:
Adg, = wi AA g, (5.307)

Be taking the norm of the preceding relationship we finally obtain:

2 ijfﬂQ 5 1AA, (5.308)

From the fact that HQKZ

Wk, » <Py [P, Vi we finally get:

max [AA| < £(P) [AAqll, where x(P) = [P, 1P, (5.309)

We have seen that the variation of each closed-loop eigenvalue is bounded
by the following relationship:

2 Hw%z 2 HAACZHQ (5.310)
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Thus in order to minimize the sensitivity of the assigned eigenvalues it could
be worth to minimize the following criteria:

J = Z‘Ji where J; = Hsz_ 5 Hw}}l 5 (5.311)
i
As far as Qﬂiym =1 criteria J; reads:
5= Newely Nk lly = ——— (5312
’ cos(yKi,wKi)
From the fact that Q};Z_Q K, = 0 Vi # j we conclude that vector wﬂi is

perpendicular to the subspace spanned by the vectors of matrix V; where:

Vi = [ QKl QKi—l QKHJ QKn ] (5313)

Thus J; can be interpreted as the inverse of the sinus of the angle between
vk, and V;. Minimizing the sensitivity of the eigenvalues of A, = A — BK to
perturbations can be done by choosing a set of eigenvectors vy so that each is
maximally orthogonal to the space spanned by the remaining vectors. In others
words eigenvectors vy, are shaped such that they are as orthogonal as possible to
the remaining eigenvectors, which consequently minimizes the condition number
of k(P) where P = [ vy, -+ g, |

Unfortunately this method, known as Kautsky et al. method?', cannot
handle complex eigenvalues in its original form, due to the need to update two
complex conjugate eigenvectors at the same time.

To overcome this difficulty we present hereafter the method proposed by
Byers et al.?!:

— Assuming that state matrix A is of dimension n and that (A,B) is
controllable we define n closed-loop eigenvalues A, ,--- , Ak, and define
n matrices S(Ag;,) as follows:

SAk,)=[ A=XgI B (5.314)

— Then compute matrix R(\g,) whose columns constitute a basis of the
right kernel of S(A\g;):
S(Ak,)R(A\k,) =0 (5.315)

For complex conjugate eigenvalues A\g, and Mg,, the corresponding
matrices R(\g,) and R(\g,) are also complex conjugate. They are
replaced by their real and imaginary part, Re(R(\g;)) and
Im (R(Xk,)), respectively.

Matrix R(Ag;) is a (n +m) X s; matrix, where s; = m unless Ak, is an
uncontrollable mode of the pair (A,B) in which case s; > m. In the
following we will assume that none of the Ag,’s is an uncontrollable mode
of the pair (A, B) and consequently s; = m.

2L A. Pandey, R. Schmid, T. Nguyen, Y. Yang, V. Sima and A. L. Tits, Performance Survey
of Robust Pole Placement Methods, 53rd IEEE Conference on Decision and Control, 2014.
Los Angeles
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— We denote Z the following nm X n block diagonal free parameters matrix
build from n blocks z(Ak,) of size m x 1.

2(Ak,) 0
7 - (5.316)
0 z2(Ak,)

For complex conjugate eigenvalues g, and A, the corresponding free
parameters matrices z(Ag;) and z(Ak;) shall be chosen to be equal:

2(Ak;) = 2(Ak;) (5.317)

— Let R(Z) be the following (n + m) x n matrix defined as the product
between matrix [ R(Ax,) -+ R(Mk,) | of size (n 4+ m) x mn and the
free parameters matrix Z of size nm x n:

R(Z)=[ R(Ak,) -~ R(\g,) | xZ (5.318)

Matrix R(Z) is then compatibly partitioned between matrix N(Z) and
matrix M(Z). Matrix N(Z) is a n X n matrix which is built from the n
first rows of R(Z):

R(Z) = [ N(Z) } (5.319)

— Then Schmid et al.?> have shown that for almost every choice of the
parameter matrix Z the rank of matrix N(Z) is equal to n as well as the
rank of matrix Z. Furthermore the m x n gain matrix K such that the
eigenvalues of Ay = A — BK read (Ak,, -, Ak, ) is given by:

K= -M(Z)N(Z)! (5.320)

Last but not least we have:

max| A, | < k(N(2)) |AAql, (5.321)

Coefficient k(N(Z)) is called the condition number of matrix N(Z) and is
defined as follows:

k(N(Z)) = [N(Z)[|, |[N(Z) 7Y, (5.322)

IN(Z)||, is the induced matrix 2-norm and is defined as the largest
singular value of N(Z); similarly ||AAl|, is the largest singular value of
AA,.

Consequently the free parameters matrix Z can be used to minimize the
sensitivity of the closed-loop state matrix A, to additive uncertainties.

22R. Schmid, P. Pandey, T. Nguyen, Robust Pole Placement With Moore’s Algorithm,
IEEE Trans. Automatic Control, 2014, 59(2), 500-505
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Appendix A

Refresher on linear algebra

A.1 Section overview

The purpose of this chapter is to review the main results in elementary linear
algebra. We will review vectors and matrices notions. This chapter ends with
the presentation of the notions of eigenvalues and eigenvectors. The content of
this chapter is mainly based on the material provided within the paper of Daniel
S. Stutts! and Gregory J. Hakim?.

A.2 Vectors

A.2.1 Definitions

A column vector, or simply a vector, is a set of numbers which are written in a
column form:

1

x2

(]
I
>

=

Tn

A row vector is a set of numbers which are written in a horizontal form. We
denote a row vector by ! where T denotes the transpose operation:

2l =21 20 - ] (A.2)

Vectors can represent the coordinate of a point within a space of dimension

"https:/ /www.researchgate.net/publication /242366881 Linear _Algebra_Primer
https://atmos.washington.edu/ hakim/591/LA _primer.pdf
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A.2.2 Vectors operations

— The sum (or subtraction) of two vectors proceed element-wise:

( B 1 T
T2
€r =
a : 1+ Y1
T2 + Y2
Y1 - :
Y2 Tn + Yn
y= . Y
L Yn |
— The sum (or subtraction) is:
— Commutative:
T+y=y+zx (A.4)
— Associative:
(z+y)+z=z+(y+2) (A.5)

— The sum (or subtraction) of two vectors which are not of the same size is
undefined.

— For vector subtraction, you have to replace + by — in the preceding
expressions.

— Multiplication of a vector z by a scalar ¢ is defined by the multiplication
of each number of the vector by c:

cx = _ (A.6)
Ty,

— The inner product (or dot product) ng of two vectors z and y of the same
size is obtained by multiplying each number element-wise:

x1
Z2

1=
I

In T
L = 2Ty =" ww; AT
" z'y Ty (A7)

Y2

<
I

Yn
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A.3 Matrices

A.3.1 Definitions

A n X m matrix is a rectangular array of numbers formed by n rows and m

columns:
ailr - Qim

A=| s (A8)
Qn1 - QGnm

Number a;; refers to the number which is situated on the it" row and the
4t column.

Matrix and vectors can be used to represent a system of equations in a
compact form:

a1171 + - ATy, = by
Ap1T1 + -+ QT = by
ail -+ Qaim X1 by (A9)
e z | =
Gpl - Anm Tm bm
S Az=0

— A square matrix is a matrix with the same number of rows and columns;

A diagonal matrix is a square matrix in which the numbers outside the
main diagonal are all zero;

— The identity matrix [ is a diagonal matrix having only ones along the main
diagonal:
1 0 --- 0

I= (A.10)

— The transpose of a matrix A has rows and columns which are interchanged:
the first row becomes the first column, the second row becomes the second
column and so on. The transpose of a matrix A is denoted AT:

air - Aim aii o Anl
A — = AT = (A.11)

anl - Gnm Qim **° Qpm

— A symmetric matrix is a square matrix that is equal to its transpose;

— The trace of a square matrix is the sum of its diagonal numbers:

tr (A) = i QAiq (A12)
i=1
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A.3.2 Matrix Operations

— The sum (or subtraction) of two matrices of the same size proceed element-

wise:
[ ail s Alm
A =
a1 +bin - aim +bim
I N S = A+B = .
bi1 -+ bim
B — a1l +bp1 - G+ bam
\ | b1 -+ bnm
(A13)

The sum (or subtraction) of two matrices which are not of the same size
is undefined.

The sum (or subtraction) of a matrix with a scalar is defined as the sum
(or subtraction) of each number of the matrix with the scalar:
air v Qim aip+c¢ -0 aimt+C

A= : : =A+tc= : : (A.14)
an1 - Qnm Gpl1+c¢C -+ Qpm +C

Multiplication of a matrix A by a scalar ¢ is defined by the multiplication
of each number of the matrix by ¢:

air - Aim cailp -0 Chim
A= ; : = cA = : : (A.15)
anl - Gnpm Canl -+ Clpm

If Ais an n x m matrix and B is an m X p matrix then the matriz
product AB is defined to be the n x p matrix for which the number on the
it" row and the j** column is obtained by taking the dot product of the
corresponding " row of the left matrix with the j** column of the right
matrix:

[ ailr o Qim Q{
A= =
| nl Anm Qz;
- b1y bip
B=| : o=l by ] (A.16)
bt o b
afb, -+ aib,
= AB = :
alby -+ alb,

— The k" power of a square matrix is obtained be multiplying k-times the

matrix:
AF=A...A (A.17)
N——

k-times
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A.3.3 Properties
For any matrices A, B and C the following hold:
- A+B=B+A
- (A+B)+C=A+(B+C)
—TA=AI=A
— (AB)C =A (BC)
— A(B+C)=AB+ AC
— A’=T1
— (AB)" =BTAT
— For any scalar ¢: cA = Ac

— But be careful, in general AB # BA

A.3.4 Determinant and inverse
The determinant of a square matrix is a scalar. If the matrix is not square its
determinant is undefined.

For of a 2 x 2 square matrix its determinant represents the area of the
parallelogram obtained by the vectors in the rows of the matrix:

A= |: @ a2 :| = det (A) = a11a22 — 210412 (A18)
a1 ag2

Let A be a square n x n matrix and A;; be the square (n — 1) x (n — 1)
submatrix obtained by removing the i** row and the j** column from A. Then
determinant of A may be obtained recursively by reduction to the 2 x 2 form
as follows:

det (A) = ay (1) det (Ayy)) = ai; (1) det (Ayj))  (A.19)
i=1 j=1

The inverse of a square matrix A is the matrix denoted A~! such that:
AATT=A"TA =1 (A.20)

A matrix that has no inverse is called singular.
The inverse of a matrix can be expressed by the following formula where
adj (A) is called the adjoint (or adjugate) matrix:

-1 _ adj (A)
~ det (A)

(A.21)

The number on the i** and j** column of the adjoint matrix adj(A) is the
cofactor of a;j. The cofactor of a;; is the determinant of the submatrix A;;
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obtained by removing the i*" row and the j** column from A multiplied by
(_1>i+j .
For of a 2 x 2 square matrix we get:

det (A) = ar1a22 — agi1a12
A _ |: ail a2 :| a2 —a12
az1 Q22 adj (A) =
i(A) [ 4y ay ] (A.22)
o1 | G2 —ap
= A T ariaz—a21a12 |: —a9] all :|

It can be shown that:

— If det (A) # 0 then A is nonsingular ;

— If any row or column of A is zero then det (A) =0 ;

— If two rows or columns of A are proportional then det (A) =0 ;
— det (AB) = det (A) det (B) ;

— det (AT) =det (A) ;

— det (Afl) = #(A) provided that A~ exists ;

— If A is a n x n matrix and c a scalar then det (cA) = ¢" det (A) ;
~ (AB)'=BlAT;
- (AT =(an)

Furthermore let A be of dimension n x n, B of dimension n x k, D of
dimension k x k and C of dimension k x n, then the Woodbury Formulae?
reads:

(A+BDC)! =A'-A"'B(D '+ CA'B)"'CA! (A.23)
DC(A +BDC)! =D !'+CA'B)"'CA! '

A.4 Eigenvalues and eigenvectors

A vector z is called a (right) eigenvector of matrix A if x is proportional to Az,
or equivalently in the same direction than Ax:

st = Ax (A.24)

In order for (A.24) to hold the following relationship shall be satisfied:
(sI—A)z=0 (A.25)

Relationship (A.25) holds for z # 0 as soon as the resolvent matrix ®(s) =
(sl — A)_1 is singular. For the resolvent matrix ®(s) to be singular we shall

have:
det (sl —A) =0 (A.26)

3Linear Algebra Primer Gregory J. Hakim, University of Washington, 2 January 2009 v2.0
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Assuming that A is of dimension n x n then the determinant det (s — A),
which is called the characteristic polynomial of A, is a polynomial of degree n.
Furthermore its n roots are called the eigenvalues of A and are usually denoted
>\1’ Ty )\n~
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Appendix B

Overview of Lagrangian
Mechanics

B.1 Euler-Lagrange equations

Euler-Lagrange equations is a useful technique to obtain the equations of motion
of mechanical systems. Fuler-Lagrange equations rely on the expressions of
the kinetic and potential energy of the system with respect to its generalized
coordinates q;, one for each degree of freedom of the system.

Euler-Lagrange equations read:

d (0L oL
i (5) 5 - @ 1

where:

— q; denotes a generalized coordinates of the system. Generalized coordinates
are composed by the set of minimum size of variables which allows to
determine unambiguously the configuration of the system. They are either
positions or angles. The number of generalized coordinates is equal to the
number of degrees of freedom of the system. We will denote ¢ the vector
of generalized coordinates: B

q= [Q17"' 7qn]T (B'2>

— The Lagrangian L denotes the difference between the kinetic energy, which
is denoted T'(q, q), and the potential energy, which is denoted V(g). The
kinetic energyif(q, q) depends on the generalized coordinates ¢ and also
on their derivatives ¢ whereas the potential energy V(q) is a function of
only the generalizedzoordinates q: -

L=T(q,q4) — V(g (B.3)

— For a rigid body with mass m and moment of inertia I the kinetic energy
T is obtained as the sum between the kinetic energy due to the linear
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velocity v of the body and its angular velocity w, both velocities being
expressed in an inertial frame:

1
To+ Zwllw (B.4)

It is worth noticing that the kinetic and the potential energy have to be
evaluated in an inertial frame.

— Assuming that a non-inertial frame is considered, let v” be the linear
velocity expressed in the non-inertial frame and w? the angular velocity
expressed in the non-inertial frame. In such a non-inertial frame the kinetic
energy T reads:

7=1m (vb>TQb 41 (gb)T T’ (B.5)

2

Denoting by 7 the vector of angles which allows to position the non-inertial
frame (body frame) with respect to the inertial frame (those are Euler
angles for example) and by Ré (Q) the rotation matrix from the non-
inertial frame (body frame) to the inertial frame, we have:

v = Rj (1) ! (B.5)

Similarly, denoting by w® the angular velocity in the non-inertial frame
and by w the angular velocity in the inertial frame, we have:

gb

Wn)w (B.7)

The relationship between w and w’, that is matrix W(n), is obtained by
developing each row of the following matrix equation:

d

dt

R;(n) = Rj(

n

) Q(w®) where

w:=1
wWi=[p q 1]

N (B.8)
Q(wb) = r 0 —p

—-q¢ p 0

Using the fact that a rotation matrix is an orthogonal matrix, meaning

that

(R} ()"

inertial frame reads as follows:

T

BO—

N[ N

m (") v+ 1 () T

m (R ()" ) (R ()" v) + 5 (Winw)" T (W(
mo’v + 3w W () T (W () w)

(Ri (g))T, the kinetic energy T expressed in the

n) w)

(B.9)
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Thus, the kinetic energy T expressed in the inertial frame is:

1 1
T = imyTQ + igTJ (ﬂ) w (B.10)

where the fictitious moment of inertia J (ﬂ) is defined by:

J (n) = W () IW(n) (B.11)

Finally, let Ip be the inertia matrix with respect to a point P of the rigid
body, yl}, the linear velocity of P expressed in the non-inertial frame, gl}g
its angular velocity expressed in the non-inertial frame and rpg the vector
between the rigid body centre of mass G and P. Then, denoting by x
the cross product between two vectors, the kinetic energy 1" of P reads as

follows!:
1 T 1 T T
e () s (o) o () () )

— @, represents the non-conservative generalized forces that are either forces
or torques that are external to the system or which cannot be obtained as
the derivative of a scalar potential function (that is a potential energy).
Generalized force Q; generates a movement, either a translation for a force
or a rotation for a torque, according to the direction of the generalized
coordinates g;.

Usually the kinetic energy T in an inertial frame reads as follows where
J(g) = J(¢)" > 0 is a symmetric positive definite matrix called the inertia
matriz:

ZJU 9)didj = 54" I(@)d (B.13)
t,j=1

Once developed, Euler-Lagrange equations (B.1) may be written as follows:

J(@)q+Clg, 9)q +D(@)q + G(g) = u (B.14)

— The term D(q)q corresponds to the non-conservative generalized forces,
usually damping forces. We recall that conservative generalized forces
can be obtained as 8‘57((;“) where V(g;) is a potential function. Such
conservative genemlizedz forces are taken into account within the
Lagrangian £ but not within the generalized forces @Q;. It can be shown
that damping forces are always dissipative:

q" (D(¢) +D(9)") g >0V #0 (B.15)

!Complete dynamic model of the Twin Rotor MIMO System (TRMS) with experimental
validation, Azamat Tastemirov, Andrea Lecchini-Visintini, Rafael M. Morales-Viviescas,
Control Engineering Practice 66 (2017) 89-98
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— The term C(q,q)q is the so called Coriolis (terms involving products

d:4j i # j) and centrifugal (terms involving products ¢?) forces matrix.

It is worth noticing that the k" row of matrix C(g,g), which will be
denoted ¢/ (g, q), can be obtained thanks to the following relationship:

et (q,9) = q"Sk(q)

aJ,(a) | (01, (@\T 93 (B.16)
Sk(Q)_%< (‘Sﬂi +( ggi> - 3qk>

where J;(q) is the k" column of matrix J(gq) and g, is the k" component
of vector q.

— The term G(q) corresponds to gravitational forces.

— The term u corresponds to the control vector of the system.

Assume now that the generalized coordinates g are not all independent but
subject to m constraints:

gil)=0  j=1,---,m (B.17)

Then the variations of dg; are not free but must obey to the following
relationships:

" dg;(q)
0q;

695(q) = 6¢; =0 j=1,.,m (B.18)

=1

In that situation the constraints (B.17) are associated with m Lagrange’s
multipliers A; and the Euler-Lagrange equations read:

gilq, -+ ,qn) =0 j=1,---,m
9g; ; B.19

B.2 Robot arm

Let’s consider Figure B.1 where a robot arm is depicted: w(t) is the torque
applied by a motor drive and y(t) is the angular position of the arm. In addition
we denote m the mass of the arm, [ the distance between the axis of the motor
and the centre of mass of the arm, b the viscous friction coefficient, I its inertia
and g the acceleration of gravity.

The generalized coordinates is chosen to be the angle ¢(t) = y(t). Indeed
the knowledge of the value of y(t) allows to determine unambiguously the
configuration of the system. It is worth noticing that the knowledge of the
coordinates of the centre of gravity of the arm also allows to determine
unambiguously the configuration of the system. Nevertheless the coordinates
of the centre of gravity form a vector of dimension 2 whereas the angle
q(t) = y(t) is a scalar of dimension 1. Consequently the coordinates of the
centre of gravity don’t constitute a set a minimum size.
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tit

mg
Figure B.1: Robot arm

The coordinates of the centre of gravity within the inertial frame read:
- xg(t) ] [ Isin(6(t)) }
OG(t) = = B.20
0= e ] = | ety (:20)

By taking the derivative we get the components of the velocity vector as well
as the square of its norm:

o(t) = %O@(t) _ [ ZZZ‘;);((;)) ] () () = 126 (B.21)

The kinetic energy 7' (g, ¢) and the potential energy V(q) read:

: 1 174 1 ) 174
V(g) = —mgl cos (0)
And the Lagrangian £ reads:
L=T(qq) — I FL R
=T(q,q)—Vi(q) = 2ml 0° + 2[9 + mgl cos (0) (B.23)
Consequently the partial derivatives have the following expression:
oL 2 )
oL _ I
gi — me )6 (B.24)
95 = —mglsin (0)

The non-conservative generalized forces (forces and torques) are here the
torque u(t) applied by the motor as well as the friction torque —kf which is
proportional to the angular velocity 6:

Q=u(t)— ko (B.25)

Applying the Euler-Lagrange equations (B.1) leads to the following dynamic
model of the robot arm:

d (9L oL __
E<ﬁ>_5@_Q , (B.26)
& (mi% + 1) + mglsin (0) = u(t) — ko
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Figure B.2: Inertial and body frames of a quadcopter

That is:
(ml? 4+ 1)0 + kO + mgl sin (0) = u(t) (B.27)

It is clear that the preceding equation can be written as J(¢)§ + D(q)q +
G(q) = Q (cf. (B.14)) where the term D(g)g corresponds to the friction torque
k0.

B.3 Quadrotor

The quadcopter structure is presented in Figure B.2. It shows angular velocities
w; and forces f; created by the four rotors, numbered from ¢ = 1 to ¢ = 4. Torque
direction is opposite to velocities w;.

B.3.1 Inertial frame and body frame

The following vectors will be used:

— &= [ T Yy z ]T is the vector whose components define the position of

the centre of gravity of the quadcopter in the inertial frame;

-n= [ ¢ 6 1 | isthe vector of so-called Euler angles whose components
define the orientation (attitude) of the quadcopter in the inertial frame:

]T

— The roll angle ¢ determines the angular position of the quadcopter
around the z-axis of the body frame;

— The pitch angle 6 determines the angular position of the quadcopter
around the y-axis of the body frame;

— The yaw angle 1 determines the angular position of the quadcopter
around the z-axis of the body frame.

— v = [p q T ]T is the vector whose components define the angular
velocities of the quadcopter in the body frame.
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B.3.2 Kinematic relationships

Let 2' be a vector expressed in the inertial frame, z® a vector expressed in the

body frame and Rf(ﬁ) the rotation matrix from the inertial frame to the body

frame: '
2’ = Rb(n)z’ (B.28)

The rotation matrix R?(n) is obtained by the multiplication of the rotation
matrix around 1, 6 and then ¢. Denoting ¢, = cos(z), s, = sin(x) and Ry the
rotation matrix dedicated to angle y we have:

R!(n) =RyRsRy

1 0 0 cg 0 —sp ¢y Sy 0
=10 ¢ s8¢ 0 1 O =Sy ¢y O
| 0 —s4 ¢y so 0 ¢y 0 0 1 (B.29)
i CoCy) CoSqyp —Sp
= | (5450 — Cosy) (S5¢S05p + CoCyp)  SpCo
L (Cosocy + 5g5y)  (cososy — Secy)  Coco

It is worth noticing that R?(ﬂ) is an orthogonal matrix. Consequently the
rotation matrix Rj(n) from the body frame to the inertial frame is obtained as
follows:

Rj(n) = (RMn) " = (RMn)"

CoCy) (8¢S@Cw — C¢S1/1) (C¢390¢ + S¢S¢) (B30)
= | ¢Sy (S¢S@S¢ + C¢C¢) (C¢S@S¢ — S¢C¢)
—Sp S¢pCo CyCh

The relationship between the angular velocities (p,q,r) of the quadcopter
in the body frame and the time derivative of the FEuler angles (¢,0,) is the
following:

P ¢ 0 0
v=|q|=|0|+Rs| 0 | +RsRy| O (B.31)
r 0 0 ¢
We finally get:
P 10 — sin(0) ¢
g | =10 -cos(¢p) sin(¢p)cosé 0 (B.32)
r 0 —sin(¢) cos(¢)cosd ¥
That is:
v=Wn)i (B.33)
where:
1 0 —sin(0)
W(n)= |0 cos(¢) sin(¢)cos(f) (B.34)

0 —sin(¢) cos(¢)cos(d)
It is worth noticing that the preceding relationship can be obtained from
the following equality which simply states that the time derivative of matrix
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Ri(g) can be seen as matrix Q(v) of the angular velocities in the body frame
expressed in the inertial frame:

0 —r ¢
CRi() = Ri) Q) where Q) = -0w) = | + 0 —p || (B3)
¢ p 0
Conversely we have:
i=W(n) v (B.36)
where:
1 sin(¢)tan(@) cos(¢)tan(6)
W) t=1]0 cos(¢) — sin(¢) B.37
@) 0 sin(¢) cos(¢) ( )
cos(0) cos(0)

B.3.3 Forces and torques

We will use the following notation:
— I, is the inertia moment of each rotor;

— d is the distance between the rotor and the centre of mass of the
quadcopter, that is the arm length basically;

— w; the angular velocity of the i** rotor;

— f; is the thrust force created by each rotor in the direction of the body
Zp-axis;

— () is the lift coefficient;
— (Y is the drag coefficient.

The non-conservative generalized forces (forces and torques) are the
following:

— Aerodynamic thrust force f; in the direction of the body zp-axis. This
force is the sum of each force coming from each rotor:

4 4
fe=>fi=) G} (B.38)
i=1 i=1

Let vector ﬂl be the thrust force created by all rotors in the inertial frame:

0 0
fL=Rim) | 0 | =Rj(®n) 0 (B.39)
ft Z?:l Cl w?

Where Rj(n) denotes the rotation matrix from the body frame to the
inertial frame.
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— Aerodynamic torque 7° expressed in the body frame. Vector 7° is the sum
of the following terms:
— Torque 7° coming from the aerodynamics actions coming from
propellers in the direction of the corresponding body frame angles:

o[ dCy (wi — w3)
To= | To | = dCp (w§ — w?) (B.40)
T Ca (—wi + w3 — w3 + wj)

— Torque 7°

, coming from the gyroscopic effect due to propeller rotation:

0 P 0
o=— L4 0 + 1 q | %I, 0
Zle Sgn(wi) Wi r Z?:l SQ”(%‘) Wi

I q (w1 — w2 + w3 — wy)
= | —Lp (w1 —w2+ws—ws)
I, (d)l — Wy + w3 — w4)
(B.41)
where sgn(w;) = +1 for counterclockwise propeller rotation and
sgn(w;) = —1 for clockwise propeller rotation.

We finally get:
r =rh+1h

dC (wi—w%) + 1, q (wl — Wy —|—w3—w4)
dC (wg —w%) — I p (w1 — wo + w3 — wy)
Cy (—w%%—w%—wg—i—wz + I, (@1—@2 +w3—w4)
(B.42)

It is worth noticing that terms which depends on I, come from the
gyroscopic effect due to propeller rotation and are usually omitted.

B.3.4 Generalized coordinates

The vector of generalized coordinates ¢ which will determine the configuration
of the quadcopter is a vector with six components which is defined as follows:

[z
£€=1vy
q= [ i ] where = ; (B.43)
n= 0
L ¥
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B.3.5 Inertia matrix

The quadcopter is assumed to have symmetric structure with four arms aligned
with the body z and y axes. Thus the inertia matrix I is diagonal and I, = I,;:

I, 0 0
I=| 0 I, 0 (B.44)
0 0 I

B.3.6 Kinetic energy

Because the inertia matrix is expressed in the body frame, vector v is naturally
chosen to express the rotational kinetic energy. Nevertheless the rotational
kinetic energy shall be expressed as a function of the chosen generalized
coordinates. Consequently we shall use the transformation matrix W (n) to get
7 from v and express the rotational kinetic energy as a function of the chosen
generalized coordinates. Consequently the kinetic energy T' (g, g) reads:

T (4.4)

1
275 5
T . .
= 3m& E+ 50" W(n)" TW ()i (B.45)
-1
where we use symmetric matrix J(7) defined as follows:
I(n) = W(n)" TW(n) = I(n)" (B.46)

From (B.34) and (B.44) matrix J(n) reads:

1 0 0 I, 0 O 1 0 —3Sp
J(n) = 0 cp —5¢ 0 I, 0O 0 ¢y SeCo
I Z S¢Co c¢08 0 0 I, _Img)g S¢ CyCh (B.AT)
= 0 chi + Izsé (Iy — I.) cys4co
| —Iuse (Iy — I.) cpsgco Izsg + Iysécg + Izc?bcg
Thus
1,

27
1 . . 2
+ §IZ (9sin¢—¢cosq§cos€) (B.48)
Kinetic energy T' (g, g) as a function of the chosen generalized coordinates
finally reads:
. 1 .9 .9 .9 1 i P 2
T(g,g) = im(x +y 4z ) +§Ix (¢f¢sm9)
1 . . 2 1 . . 2
+ §Iy (9 cos ¢ + 1 sin ¢ cos 9) + 51'2 (9 sin ¢ — 1) cos ¢ cos 6 (B.49)
It can be shown that the determinant of symmetric matrix J(1) reads as
follows and that this is a positive definite matrix V 6 # (2k+1)7/2, k =1,2,---:

det (J(1)) = L1y I, (cos(6))? (B.50)



B.3. Quadrotor 213

B.3.7 Potential energy

Potential energy V'(gq) a function of the chosen generalized coordinates reads:

Vig)=mgz=mg[0 0 1]¢ (B.51)

B.3.8 Lagrangian

Consequently Lagrangian £ reads:
£ =T(g4) -V
= gmé £+ 50" I i—mg[0 0 1]¢

S p)
= Sm (% + 2 + 22) + 3L, (6 — dsin0) (B.52)
. . 2 . . 2
+%Iy (Hcos¢+1/)sin¢0089) —|—%IZ <Osin¢—¢)cosqbcost9>
—-mgz

B.3.9 Euler-Lagrange equations
We have seen that the Lagrangian £ reads:
E:%m§T§+%;TJ(Q)Q—mg[ 00 1]¢ (B.53)
Since the Lagrangian £ containg no cross terms combining § with 7 the
Euler-Lagrange equations can be partitioned as follows:

— Fuler-Lagrange equations with respect to £ lead to the translational
equations of motion of the quadcopter. Aﬁplying the Euler-Lagrange
equations (B.1) and denoting by ﬁl the thrust force created by all rotors
in the inertial frame we get:

fi —d (oL _ oL
N (B.54)
el =mE+mg[0 0 1]T

From (B.39) we get the differential equations for the positional

accelerations:
) 1 0 0
= ER},(Q) 4O —gl| 0 (B.55)
Ei:l fi 1

— Euler-Lagrange equations with respect to 1 lead to the rotational equations
of motion of the quadcopter. Applying Euler-Lagrange equations (B.1)
and denoting by 7° the torque created by all rotors in the inertial frame

we get:
=& () — g (30" I(w) )
= 3+ i - 420 5 (B:30)
=J()ii+ <d‘2§") - %8(772;("))) i
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The preceding equation can be rewritten as follows where C(7,7) 1) is the
Coriolis and centrifugal forces matrix:

J(n)ij+ C(n, )i =7’ (B.57)

The expression of J(n) has been provided in (B.47) whereas the expression
of coeflicients Cj; of matrix C(n,7) are the following:

Ci1 Ci2 Cis
C(n,n) = | Cau C Ca3 (B.58)
C31 C3z Cs3
where
Ci1 =0

Cra = (I, — L)fcyss + Libey ((Iy S L)% -2 - Im)
Cis = (I, — I, )hcysyc2 + by ((1 S L)) - Iz)
)
)

83

Oy = (I, — I)0cgsy + %11.)00 ((I -1 )(5¢ - C¢>) +1 )
Cr = (1. — Iy)pcysy
Coz = (Iys3 + L¢3 — Ix) bsgcy
+deo (L = 1)(s3 — ) + L)
Cs1 = (Iy— IZ)¢C§5¢C¢
+5be (1, — 1)(3 - 53) — L)
Cyo = (I — I)0cysss0 + (Il‘ — Iysg, = Izcé) dsoco
+1cy ((Iy ~L)(E - s2) - Iz>
Cay = (I — L.)degsych + Libcysy — degsy (153 + L.c3)

(B.59)

It is worth noticing that the k™ row of matrix C(n,7)7, which will be

denoted ¢ (n,7), can be obtained thanks to the following relationship:

- 0L | (LT 83 (B.60)
Sk(n):;( ggi +< gg7> B ank>

where J;(n) is the k™ column of matrix J(n) and ny, is the k" component
of vector 7.

From (B.57) we get the differential equations for the angular accelerations:

i =J(m)~" (' = Cn, 1) 1) (B.61)
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B.3.10 Newton-Euler equations

Let o’ = Rg(ﬂ)g be the translational velocity vector expressed in the body frame

0 0
and f’ = 40 — R?(g)mg 0 | the external forces applied on the
Zi:1 fz 1

quadcopter expressed in the body frame. Applying Newton-Euler equations,
the translational and angular dynamics in the body frame of the rigid body
quadcopter reads as follows:

(5 [ alal[2]-[8) e

Where:
0 —r ¢
Q) =-Qw)’'=| r 0 —p (B.63)
—-q p 0

The preceding Newton-Euler equations are equivalent to equations (B.55)
and (B.61) obtained through the Euler-Lagrange formalism:

P = Rf(ﬂ)é 0 0
mi’ +mQ)e’ =" ) E=gRm | 0 | -g]|0
n=W(n) v i i 1
p=1"(z"- Q@)1 i =J(n)~" (' = C(n, 1))
(B.64)
Where
' =W(np'r (B.65)

The equivalence of the translational equations of motion is easily verified
thanks to the kinematics relationships.

As far as the Newton-Euler equations related to the rotational equations of
motion we get:

{ v=Wi(n)n
1o+ Q) Iy =1
_ { IV:‘W(U.M*'W(??)U . (B.66)

Multiplying both side by W(ﬂ)T leads to the equation of the rotational
equation of motion obtained through the Euler-Lagrange formalism:

W (n)"TW (1) i)
< J(n)i+ C(n,

Y TW () + W) Q) TW () i = W(n)'r"

2

S

+ (W
0=

\]

(B.67)

More generally the Newton-Euler equations for a point which is located to
(Az, Ay, A;) with respect to the center of mass of the rigid body with velocity
(up, vp,wp) in the body fixed axis (of course these components are the
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components of v°, that is the velocity of the center of mass when the center of
mass is considered, that is when A, = A, = A, = 0) reads as follows?:

2 2121382 S [2]-[5] o

Where:

( 0 —r ¢
Qu)=| r 0 -p
—-q p 0
0 -mA, mA
A=| mA, 0 —mA, (B.69)
| —mA mA 0
[0 —wp, w
V= wy 0 —u
) Up 0

B.3.11 Translational equations of motion with wind

The velocity of the quadcopter with respect to the inertial frame (the Farth)
is the sum of the velocity of the quadcopter with respect to the wind, which is
denoted R‘( )v®, and the wind velocity, which is denoted w. Denoting by £ the
position of the drone, we have:

£:=1v" =Rj(n’ +w (B.70)
where:
u
= | (B.71)
w

Rotation matrix Rj(n) is given by (B.30).

Taking the time derivative of the velocity in the inertial frame, v’, we get:
o' = Riv® + R} ()i’ + w (B.72)
From Newton’s translational equations of motion we have:
mi' =" f° (B.73)

Multiplying by RY(n) leads to the following relationship:

mRI ()it =RIm) > _fr=> f (B.74)
We get:
> = m(Rb( R}’ + 0"+ R (n)w)

.. B.75
& it = 2L RYpRj - RYn) (1)

2Barton J. Bacon and Irene M. Gregory, General Equations of Motion for a Damaged
Asymmetric Aircraft, NASA Langley Research Center, Hampton, VA, 23681
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where R?(Q)Ré := Q(v) has been seen previously. We finally get the
following equation of motion taking into account the wind component w reads:

b
ApYr i Qv)’ — RY(n)w (B.76)
m n
Furthermore the wind is assumed to be not a constant but dependent on time
t as well as on the quadcopter location § := [z, y, 2], So we have: w := w(t,§).
Taking into account the rule of chain derivative we have:

dw(t,)  Ow(t,§) 0
o T oE ot

it €) = (B.77)

Taking into account that the time derivative of the location of the quadcopter
is its velocity expressed in the inertial we have:

—*:yi:Ri yb+w B.78
b(ﬁ)

Thus (B.76) finally reads:

b dw(t, dw(t,
==L jaw) +aw)y - rio (P52 20) @)
where: 5

w(t, )
o) =Rl 5 Rl (B.50)

Of course, as soon as w = 0, we have Q(w) = 0 and we retrieve equation of
motion (B.62).

B.3.12 Small angle approximation of angular dynamics

The second equation of (B.62) represents the angular dynamics in the body
frame of the rigid body quadcopter:

I+ Qv) Iy =7°

sr=T"("- Q) L) (B:81)

We have seen that angular velocities in the inertial frame are expressed in
the body frame through the transformation matrix W (n)~!:

n=Wn v (B.82)

The derivative of (B.82) with respect to time of the preceding equation leads
to the expression of i:

dW(ﬂ)*1

7 v+ W) i (B.83)

ﬁ:
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According to (B.37) we have:

1 sin(¢)tan (0) cos(¢)tan(0)
Wit = [0 eos(@)  —sin(g)
a 0 sin (¢) cos (¢)
| ) cos (9) ) cos 6)
-0 ¢Ccd;89 + 9(57; 96% _ ¢scd;se (B84>
AW -1 . 0 6 .
e L
0 Pcy 0sgs9  Ocgsg . %
L co cz cz co

Small angle approximation of angular dynamics is obtained by setting Euler
angles vector 1 to zero within transformation matrix W(n) ™!, that is by setting
transformation matrix W(n)~! to identity matrix. As a consequence the time
derivative of the Euler angles 7 is approximated by the angular velocities v of
the quadcopter in the body frame:

. -1 .. . .
Q—Q:>W(ﬂ) ~l=igrr=n~v (B.85)
In addition thanks to this approximation 7/ = W (n)T7 ~ 7% and (B.81)

reads as follows, which is the small angle approximation of angular dynamics
(B.61):

i~ 17 (20— Q) i) (B.86)

B.3.13 Synthesis model

The synthesis model is a simplified model when compared to the validation
model (B.64). Synthesis model enables to design control laws in a linear time
invariant frame.

As far as the angular dynamics is concerned, since term €2(7) I is usually
small when compared to 7°, equation (B.86) can be reduced as follows, which
is basically the dynamics of a double integrator:

QI <’ =>ij~1'7" (B.87)



Appendix C

Singular perturbations and
hierarchical control

C.1 Block triangular and block diagonal forms

C.1.1 Block triangular form

Let’s consider the following dynamical system arbitrarily partitioned as follows:

Ty | A A 4 B,
H R v IR

y=Cz(t):=[ C; Cy] [2}

(C.1)

The preceding state space representation can be transformed into the
following block triangular form':

R v | A R 7 CR

i=lc. el

=
Where:
(Anoa e
and:
lelarar (c4

Matrix L is a solution of the following non-symmetric algebraic Riccati
equation:

LA —ApL —LApL+Ay =0 (C5)

!Multi-Time Scale Systems, A.J.Fossard, IFAC Proceedings, Volume 17, Issue 2, July
1984, Pages 1139-1144
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The corresponding similarity transformation is the following:

HEER IR R E

It is worth noticing that the following relationship holds as soon as square
matrices P11 and Poy are invertible:

o] [ eten o
Py Pao P, PyP;! Py

C.1.2 Block diagonal form

The block diagonal form is obtained by introducing an additional similarity

transformation:
I M x
1[50 ¥z) e
Ly } Ly 0 1 Zf

==l VI

We finally get the similarity transformation to the block diagonal form:

HEER R RS

Conversely:

=)-10 M (2] -1 (2] e

The preceding similarity transformation leads to the following block diagonal

8

form:
HE A
Zs 0 Arllz Brl (C.10)
Zg
y=[Cs Cy] o
Where:

A, = (]I — ML) A1 —MAy + (MA.22 + (ML — ]I) A12> L
Af = (A21 + LAH) M + (A22 + LA12) (H — LM)

B; =B; —MBf =B —M(LBl—I—Bg)
C;=CM+Cy=(C; —CoL)M + C,

(C.11)

Matrices By and Cj are still given by (C.4). Matrix L is still a solution of
the non-symmetric algebraic Riccati equation (C.5). Thus matrices A, and A
simplify as follows:

A, = (H — ML) A1 —MAy + (MAQQ + (ML — H) A12) L
=Aj; —ApL-M(LA; + Ay — AL —LAL)
= A — AL
A; = (A +LA1))M+ (Ag + LAyy) (I - LM)
= Ay +LAj>+ (A21 + LA — ApL — LA L)M
= Ay + LA

(C.12)
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Finally matrix M is a solution of the following Sylvester equation:

0 = ((I-ML)Ay — MAy)M + (MAg, + (ML — I) App) (LM — )
= ((H — ML) A11 — MA21 —+ (MAQQ + (ML — H) A12) L) M
—M (A2 +LAj2) + Aj
= (A;p —ApL)M — M (A + LAjpp) + A

(C.13)
To summarize, we finally achieve the following block diagonal form:
T, | | A — ApL 0 T
Ty N 0 Ass + LA Ty
B, - M (LB1 + Bg)
+ [ LB, + B, U (C.14)
x
Y= [ C; —CL (C;—CyL)M + Co ] [ ;; }
where matrices L and M solve the following equations:
{ LA;; —ApL —LApL+ Ay =0 (C.15)
(A;1 —ApL)M -~ M (A +LAjp) + A1 =0 '

C.1.3 Similarity transformation

In order to get matrices L and M, let x 4(s) be the characteristic polynomial of
matrix A:

xA(s) :=det(sl — A) = det <s]1 — { A A ]) (C.16)
As Ag
Let the n roots of x 4(s) be split into two sets: the first set contains ng roots,
A1, -+, An,, which are dedicated to the roots of the characteristic polynomial
of Ag, whereas the second set contains n — ng roots, which are dedicated to the
roots of the characteristic polynomial of A;. Then we can write:

xa(s) = xa;(s)xa,(s) (C.17)

Assuming that polynomials x,(s) and x4,(s) are coprime (no common
root), (n —ng) X ng matrix L and ng X (n — ny) matrix M can be obtained as
follows!:

{ L=-T8" (C.18)

M=U(V+LU)!
Matrices S, T, U and V belongs to the nullspace (or Kernel) of y4,(A)
and x4, (A) respectively (notice that in the characteristic polynomial the scalar

variable s has been replaced by the n x n state matrix A), each nullspace being
partitioned appropriately:

5| e an

[ } = ker (x4,(A)) (C.19)

<c
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Furthermore the similarity transformation to the block diagonal form reads

as follows!:
{5’31 } =P [ Ls } (C.20)
Lf
Where:

P .= [ jIL HI\EM}: { [i}s—l [g}(VJrLU)l} (C.21)

C.2 Singularly perturbed system

Dynamical system (C.1) is assumed to be stable. Let xa(s) be the characteristic
polynomial of state matrix A and A (x4(s)) the roots of x 4(s). Then dynamical
system (C.1) is said to be singularly perturbed if x 4(s) can be split as follows:

xa(s) = xa,(s)xa,(s)
where max (Re ()\ (XAf(s))))f<< min (Re (A (x4,(s)))) <0 (C.22)

Small number € is related to the value of ng which delimits the border
between the slow and the fast modes.
Let € > 0 be a small number which may be defined as follows:

max (Re ()\ (XAf (s))))
Alternatively, € may be defined as the minimum of I )‘\:”jr‘ﬂ, assuming that

the real part of the eigenvalues A; of the open loop state matrix A are sorted in
a descending manner.
Then state space representation (C.1) can be written as follows where € > 0

is a small number:
: ] " [ gl ] u>
2 ? (C.24)

I8

HEEEIEH

y=Cz(t):=[ C1 C; | [931]

Lo

[

The similarity transformation (C.9) is then changed as follows where small
number € > 0 is introduced?:

z, | | I-eML —-eM T
[xf}_[ L - H%] (€2
Conversely:
T | I eM T
AR R 2

2Jaw-Kuen Shiau & Der-Ming Ma, An autopilot design for the longitudinal dynamics
of a low-speed experimental UAV using two-time-scale cascade decomposition, Transactions-
Canadian Society for Mechanical Engineering, 2009 33(3):501-521, DOI: 10.1139/tcsme-2009-
0034
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Using result (C.14) where Ayg;, i = 1,2 is replaced by Kfi, 1 =1,2, By is
replaced by % and matrix M by eM we get:

z, ] | An—ApL 0 Zg
if N 0 % + LA Ly
_ By
+ By —eM (LBi Tt ) u (C.27)
LB; + %
o =f

Or equivalently, by multiplying the dynamics of z by e

T, | | A — AL 0 T
€xy | 0 Ay +eLAj Ty

B1 - MEZ - 6MLB1
+[ B, + LB, ] u (C.28)
y=[Ci—CL €(Ci—CL)M+C, | [;’j ]
= f

Similarly, using result (C.15) where Ag;, i = 1,2 is replaced by %, 1=1,2
and matrix M by eM we conclude that matrices L and M shall solve the
following equations:

= (C.29)

LA —A2L - LAL+ 421 — 0
(AH — AlgL) eM — eM (% + LA12) +Ao=0

Or equivalently, by multiplying the first equation by e:

(C.30)

eLAq1 — (522 + 6LA12) L+ Kgl =0
Ay,—M (AQQ + 6LA12) +e(A1 —ApL)M=0

C.3 Two-frequency-scale transfer function

From the block diagonal form (C.14) we compute the transfer function of the
system as follows:

F(s) =[Cy Cf]<3H_[1?)s :10])_1{3;} (C.31)
=C, (sl — Ag) "By + Cy (sI - Ap) "' By

In the preceding relationships we assume that the system is stable; in others
words all the eigenvalues of matrices A, and A have negative real part.

Furthermore, we will assume that matrix A contains the slow modes of the
system (that are the eigenvalues which are the closest to zero) whereas matrix
A contains the fast modes of the system (that are the eigenvalues which are
the most distant to zero). From a practical point of view, and assuming that
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the real part of the eigenvalues \; of A are sorted in a descending manner, the
value of ng which delimits the border between the slow and the fast modes can
be obtained by finding the minimum of P‘\i\%‘ll

The slow subsystem is obtained by setfing &y =01in (C.14). Physically, it
means that the fast components of the state vector have achieved the equilibrium

point well before the slow components of the state vector. We get from (C.14):

is :A—Sgs_'_BSE
zp:=0=Arz;+Bru (C.32)
y= ngs—i—Cfgf

Assuming that A;l exists, we get zy = —A;le u. Thus the preceding
relationships reduce as follows:

Ty = —AJ:leg = { ;S =5 1 (C.33)

The transfer function of the slow dynamics Fg(s) is then obtained by
taking the Laplace transform of the preceding relationships, assuming no
initial condition. We get;:

Fy(s) = Cs (s — A,) "' B, — C;A;'By (C.34)

The fast subsystem is obtained by setting z, = 0 in (C.14). Physically,
it means that the slow components of the state vector stay at the equilibrium
point while the fast components of the state vector are changing. We get from
(C.14):

{ if :Af£f+BfM

i,:=0=y=0Csz,+Crz;:=Cry (€39

The transfer function of the fast dynamics F(s) is then obtained by
taking the Laplace transform of the preceding relationships, assuming no
initial condition. We get:

Fs(s) = Cys (sl — Ay) ' By (C.36)

The so-called fast outputs are the outputs for which the Bode magnitude
plot of F¢(s) and F(s) match for high frequencies. In the time domain, the
impulse response of F¢(s) and F(s) match on the fast scale time.

Furthermore it can be noticed that the Bode magnitude and phase plots of
F;(s) and F(s) match pretty well for low frequencies, both for fast and for slow
outputs.

Finally the following property holds:

lim (sI— A,) ™" =0 = Fy(c0) = F;(0) = —C;A;'By (C.37)

§—00
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Example C.1. We consider the following state space representation, which
models the linearized longitudinal dynamics at a trimmed flight condition of a
jet liner. In the following, V, stands for the true airspeed, o the angle of
attack, 0 the pitch angle, q the pitch rate and 6. the elevator deflection:

Vp Vp
d | a Q
7l e | = A 0 + B, (C.38)
q q
Where:
[ —1.4900 x 1072 5.8649 —9.8059 —6.8000 x 102
A —3.0000 x 107* —1.5863 0.0000  9.7250 x 107!
- 0.0000 0.0000  0.0000 1.0000
0.0000 —4.9799  0.0000 —2.2514
[ —0.7137 (C.39)
—0.2886
B= 0.
| —23.6403
The eigenvalues of A are )\f,j\f = —1.919 4+ 2.1765, which are the fast

eigenvalues, and \g, Ay = —0.007 £ 0.0415, which are the slow eigenvalues.

Figure C.1 shows the Bode magnitude plot and the impulse response of the
fast outputs, that are o and q: it can be seen that the Bode magnitude plot of
F¢(s) and F(s) match for high frequencies. In the time domain, the impulse
response of Fr(s) and F(s) match on the fast scale time (here 5 seconds) .

On the other hand, Figure C.2 shows the Bode magnitude plot and the
impulse response of the slow outputs, that are V), and 0: contrary to the fast
outputs, the high frequencies Bode magnitude plot of F¢(s) and F(s) do not
match for high frequencies. The mismatch is also clear between the impulse
response of Fr(s) and F(s) on the fast scale time (here 5 seconds) .

Furthermore it can be noticed that the Bode magnitude and phase plots of
Fs(s) and F(s) match pretty well for low frequencies, both for fast and for slow
outputs.

C.4 Hierarchical state feedback of singularly
perturbed system

We consider hereafter the block diagonal form (C.14) where z, contains the slow
components of the state vector and z; the fast components of the state vector:

[ij]:[% ;Hx;}+[5ﬂu (C.40)

The control of the system is done by writing control u as follows where r is
the reference input :

8

u=-Kyz;—Koz,+r (C.41)
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This leads to the following closed loop dynamics:

is . A; - B.K; _Bst Ly B,
[if}_{ —B/K, Af_Bfo][xf}+{Bf}r (0.42)

We have seen in (C.27) that:
As=An—-ApL
Ay = Az LA = Ao teLAg
B, = B; — M (eLB; + B2) =
B; = LB, 4 B2 = dBi:B

¢B1—eM(e’LB1+B>) (C.43)

Thus the state matrix A of the closed loop system reads as follows:

As - BsKs _Bst :| — [ ;511 2&12 ] (C44)

Ad:[ ~-B/K, A;-B/K; Ay Ap

€ €

Then, assuming that 0 < e < 1 and that feedbacks Ky and K, maintain the
distinction between the slow and the fast modes (in other words the real part
of the closed loop eigenvalues shall be chosen with the same order of magnitude
than the open loop eigenvalues), the eigenvalues of A can be approximated as
follows?:

%

3 (%) 0 (&) (C.45)

~ A (Ay—BiKy)UA (Ao)

€ €

Where, assuming that matrix ;&22 is invertible:

Ay =Aq - A12112_211121 )
=A; - B,K; - B;K; (Ay — BsK;) " BfK; (C.46)
= A,—B, (1+K; (A; - B/K,) ' B) K,

The preceding relationship indicates that the closed loop eigenvalues are
obtained by the union of two sets:

— the set of the fast closed loop eigenvalues A\ (Ay—B;Ky¢). This
corresponds to put the feedback u = —Kyz; on the following fast
subsystem:

iy=Ajz;+Bru (C.47)

— the set of the slow closed loop eigenvalues A (K()). This corresponds to
put the feedback u = —K z, on the modified slow subsystem where input

matrix By is changed by input matrix B, defined hereafter:
is = AS ES + ]§s ﬂ
where ES = B, (H + Kf (Af — Bfo)il Bf)

®Hassan K. Khalil, On the robustness of output feedback control methods to modeling
errors, IEEE Transactions on Automatic Control, Vol. AC-26, April 1981, pp 524-526

(C.48)
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Coming back to the physical states z; and z, of the initial system (C.1), we
finally get:
u=-Kiz; -Kozy+r:=—-Kz+r (C.49)

Where:

K=[K K| =[K, K |P!

- [ K, Kf][ﬂ_ﬁvﬂ' _]?/1] (C.50)

The core of this result is the Schur complement, which is stated hereafter:

X1 X2 | _ - B
det ([ X1 Xoy }) = det (Xy2) det (X171 — X12X5; Xo1) (C.51)

The Schur complement applied to the closed loop state matrix A reads:

S]I — All —Alg

~ ~ —1 ~
A o A A
= det (sﬂ - 22) det [ sT— Ajp — Ay (d{ - 22) =211 (C52)
€

€ €

When e — 0, we can write sﬂ—% ~ —A2 Then result (C.45) is obtained

-
e—0
as follows:
det ([ Aay g Ao ])
_ B B -
~ det (S]I — %) det <S]I — A — A (_ A622> A621> (C.53)

— det (sT— A22) det (sT— Ay + ArpAz) As )

Example C.2. We extend example C.1 in order the achieve the following closed
loop eigenvalues:

A (C.54)

Aclfa;\clf =-14j
Acls; )\cls =—-0.01+ 001]

It is worth noticing that the choice of the closed loop eigenvalues maintain
the distinction between the slow and the fast modes (in other words the real
part of the closed loop eigenvalues have been be chosen with the same order of
magnitude than the open loop eigenvalues).

The block diagonal form of (C.39) is obtained with change of basis matriz
P set as follows:

1. 0. 0.0002809  —0.3419851
p_ 0. 1. 0.0000081 0.000029 (C.55)
| 9.8571029 —122755.35 0.0001549  —0.1884762 '

0.0076712 —97.760076 —0.0007962  0.9997888
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We get:
A, _ | —96.657765 119379.91}
77| —0.0752234 92.819752
B, _ | —35266.671 }
77| —51.728931 (C.56)
A | —96.700593 1204088.4} '
57 | —0.0077649 96.686006
B _ | —84994064 ]
[ 7° 7 | —0.0006476

Then state feedback gains Ky and K are set as follows:

— state feedback gain Ky is set such that the eigenvalues of Ay —B Ky are
equal to {Aeif, Mg} This leads to the following value of Ky :

K;=| —5.91356221 x 107° 7.58482289 x 1072 ] (C.57)

— state feedback gain K s set such that the eigenvalues of Ag — ]§SK5 are
equal to {Aus, Aeis} where By is defined as follows:

B, = B, (I1+ K/ (A; ~ B/K,) ' By) (C.58)

This leads to the following value of K:

K, = 277118412 x 107% 3.46250703 x 10" | (C.59)

State feedback gain K on the actual system is finally obtained as follows:

K =[K, K;|P!
= | —1.0198 x 107 1.5589 x 107! —3.4115 x 10~* 7.5792 x 1072 |
(C.60)
We check that the eigenvalues of A — BK of the whole system are close to
the expected eigenvalues {)\clf,j\clf, Aels, Aels +- Indeed:

A (A — BK) = {—0.99748 + 0.999305, —0.01045 + 0.00955; } (C.61)

C.5 Hierarchical output feedback of singularly
perturbed system

The hierarchical output feedback of a singularly perturbed system is shown in
Figure C.3 and Figure C.4:

— The fast subsystem is first controlled through fast controller Cy(s) as
shown in Figure C.3. Transfer function F¢(s) is given by (C.36):

F;(s) =Cy (s - Ap) ' By (C.62)
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Ris) < 7 Ufs) Y is)
— > Ff(S) '
N

o

C(s)

Figure C.3: Output feedback of the fast subsystem

F (s) f\“/\ ' Y (s)
—» F (s5) —h-+/ _}/}.—
Ris) Ao Uls) Y (s)
—..HF /_\ _;‘I ; » F(0) y
T CO) |e—

Figure C.4: Output feedback of the slow subsystem
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— The slow subsystem is then controlled through slow controller Cs(s) as
shown in Figure C.4. The fast controller C¢(s) is replaced by its low
frequency approximation Cy(0) whereas transfer function F4(s) is given
by (C.34). We split it into two parts:

Fs(s) = Fssp(s) + F(0)
Fysp(s) = C, (sT— Ay) ' By (C.63)
F(0) = —C;A;'By
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Appendix D

Introduction to fractional
systems

D.1 Pre-filtering

A prefilter Cp¢(s) is a controller which is situated outside the feedback loop as
shown in Figure D.1.

What is the purpose of the prefilter 7 Once the controller C(s) is designed
the poles of the feedback loop transfer function Riﬁ?)s) are set. Nevertheless the

numerator of this transfer function is not mastered and the zeros of RYJES(?S) may
D

cause undesirable overshoots in the transient response of the closed loop system.
The purpose of the prefilter Cp¢(s) is to reduce or eliminate such overshoots in
the closed loop system.

Let Ng(s) be the numerator of transfer function R};E“E)S) and D (s) its

denominator: ¥ (s) Na(s)
s)  Ng(s
For(s) ~ Dals) (b1

The prefilter Cpf(s) is then designed such that its poles cancel the zeros of
the closed loop system, that are the roots of N(s). Furthermore the numerator
of the prefilter is usually set to be a constant K,y such that the transfer function
of the full system reads:

Y (s) _ Kpy

R(s) ~ Dals) (b2
R(s) _ R (s) ' Uls)
ﬂh C(s) 4‘”’(» 8(5) C(s) ——(SL F(s)

Figure D.1: Feedback loop design with prefilter

Y(s)
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As a consequence the transfer function of the prefilter reads:

Corls) = 325 (0.3)

Usually constant K, is set such that the static gain of % is unitary,
meaning that the position error is zero:

Y(s)
R(s) | 4=

—1= K, = Dg(0) (D.4)

D.2 Design steps

The general scheme for the controlled system is provided in Figure D.1 where
Cps(s) is the transfer function of the prefilter.

The design philosophy is to set the transfer function C(s) of the controller
and the transfer function Cpr(s) of the prefilter in order to force the transfer
function of the full system to have the following expression where K,; is a
constant gain and Dg(s) a polynomial formed with the desired closed loop
poles:

Y(s) _ Kps
R(s)  Dgl(s)

The design steps of the control loop are the following:

(D.5)

— Design the controller C(s) such that transfer function of feedback loop
without prefiltering (Cpr(s) = 1) has the desired denominator De(s).
In other words controller C(s) is used to set the poles of the controlled
system.

— Design the prefilter Cp,¢(s) such that transfer function of the full system
does not have any zero:

Y(s) Ky
R(s)  Dg(s) (D-6)

In other words prefilter Cps(s) is used to shape the numerator of the
transfer function of the controlled system.

Example D.1. Consider a plant with the following transfer function:

1

o=

(D.7)

Obuviously the plant is not stable, indeed there is one pole at +2. In order to
stabilize the plant we decide to use the following PD controller (we do not use
an integral action because the plant F(s) has already an integral term):

C(s)=Kp+Kgs (D.8)
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Furthermore we set the targeted transfer function of the controlled system as
follows (see Figure D.1):
Y(s) 2
R(s) s2+55+2
The first step of the design is to set the values K}, and Kq of the PD controller
such that the denominator of the targeted transfer function is achieved. Transfer

(D.9)

function RYJES()S) (no prefilter here) reads:
Y(s) _ _CE)F(@)
Rpf(s) 1+C§§)i(§)
= Ky TRy sts(2) (D.10)
Kp-i-de

245 (Kq—2)+K,

The actual denominator will be equal to the targeted denominator as soon as
K, and K, are set as follows:

32+S(Kd—2)+Kp:sz+55+2:>{Kd:7 (D.11)
K,=2
Thus transfer function R’;ﬁl) (no prefilter here) reads:
Y(s) K,+ Kgs 2+7s
= = (D.12)
Ryp(s) s2+s(Kq—2)+K, s>+5s5+2
Taking now into account prefilter Cpr(s) transfer function % reads:
Y(s) Rpr(s) Y(s) 2+7s
= = —_ D.13
R(s) R(s) Rys(s) ps(5) $2+5s5+2 ( )
Thus transfer function of the controlled system will read }};Eg = m as
soon as prefilter Cpy(s) is set as follows:
Y (s) 2 2
Re)  Zassr2 =57, (D-14)
"

D.3 Pre-filtering design for non-minimum phase
feedback loop

Y(s)
: - ) : : By (5)
with positive real part. Such transfer functions with zeros in the right half plane

in the complex plane, that is with positive real part, are called non-minimum
phase transfer functions. As far as the denominator of the prefilter is set to
the numerator of the feedback loop transfer function this leads to an unstable
prefilter, which is not acceptable.

has zeros

Sometimes the numerator of the feedback loop transfer function
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Y(s)
Ryr(s

)f( )
dlzlgs) - # 0. Such

a transfer function can be decomposed as follows! where P,,,(s) is a minimum
phase transfer function:

Suppose that feedback loop transfer function P(s) = has a positive

real zero of order one at s = z > 0, that is P(z) = 0 and

f) Prp(s) (D.15)

z

P(s) = (1 -

Using remarkable identity 1 — 2% = (1 — 2) (1 + ), the term 1 — £ in the
preceding equation can be expanded using fractional powers of s as follows:

1=t = (1= (1+ (9"
s\1/4 s\1/4 s\1/2
(1= (") ()Y (D.16)
=(1-@") +O") @+ +©)")
That is:

SO ) e

k=0

where log,(M/2) is the base 2 logarithm of M/2 and M is any number
multiple of 2.
The positive real zero z can then be partially compensated through the

term Djy(s) = HZE%(M/Q) (1 + (§)Qk/M> which will appear in the denominator

z

of the transfer function of the prefilter. Indeed it can be shown! that Py;(s) =

<1 - (2)1/M> Ppp(s) has a weaker non-minimum phase zero at s = z than

P(s) = (1= 2) Puy(s).
The next step consists in approximating the state space fractional system
with the following transfer function Pf(s) which will appear in the prefilter:

1
Py(s) = : (D.18)
log, (M/2) (1 4 (§)2k/M>

—0

D.4 CRONE approximation of fractional derivative

CRONE (Commande Robuste d’Ordre Non-Entier: this is the French
abbreviation for Non Integer Order Robust Control which was introduced by
A. Oustaloup?) is a method which enables to approximate the infinite
dimension fractional filter s*, a; € (0,1), by a finite dimension rational

! Practical and efficient method for fractional-order unstable pole-zero cancellation in linear
feedback systems, Farshad Merrikh-Bayat, https://arxiv.org/abs/1207.6962
2A. Oustaloup - La commande CRONE, Hermes, 1991
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transfer function Gy, (s) which is provided as follows?:

s (D.19)

| * I (145
% & oy (s) = (:B) H;::; EH : 3

Wp,i

In order to obtain a good accuracy in a frequency range (Wmin,Wmaz), POles
and zeros are distributed in a broader frequency range (w4,wp) defined as a
function of (Win, Wmae) and an adjustment coefficient o which is often chosen
to o = 10:

WB = 0 Wnmax

WA — wrgin
w (1—ay)/(2N+1)

n= (ﬁ

= (s ) (D20)
wA

Wz,—N = \/ﬁwA

wp,i:(?wz,i i:—N,--',N

wz,i+1:nwp,i Z:_NaaN_l

We recall that as far as the approximated transfer function G, (s) of s* has
distinct real poles );, its partial fraction expansion reads:

o Gl = N 44
= o)) T d (D.21)
:811/\1—’_ 2 _+_+Sjrs\n+d

S—A2

Number r; is called the residue of transfer function G,,(s) in A;. When the
multiplicity of the pole (or eigenvalue) \; is 1 we have seen that residue r; can
be obtained thanks to the following formula:

ri = (8 = Xi)Gay(8)| 4=y, (D.22)

Now we define constants b; and ¢; such that the product b;c; is equal to r;:

This leads to the following state-space representation, which is called the
diagonal (Jordan) or modal form, corresponding to the approximation of s%::

£

B, u(t)
o (D.24)

A(t) = A, 2(1) +
~ Cy, 2(t) + Da, u(t)

s~ Gy, (s) { y(t) = DYult)

[

3Comparison between two approximation methods of state space fractional systems
Mansouri Rachid, Bettayeb Maamar, Djennoune Said, Signal Processing 91 (2011) 461-469



238 Appendix D. Introduction to fractional systems

where: )
A0 0
A = 0 Ao :
0
| 0 0 A,
by
by (D.25)
Bai = .
- bn
Cai:[cl cy - cn]
D,, =d

Similarly the Laplace transform of the fractional integration operator Z¢
is 7. The approximation of the fractional integration operation s~%¢ can be
obtained by exploiting the following equality®:

1 .
57% = — gl-a (D.26)
S
Because 0 < 1—a; < 1 assoon as o; € (0, 1), fractional integration operation
s17% can be approximated by a transfer function similar to (D.19). Then the
finite dimension rational model is multiplied by % which leads to a strictly proper

approximation % s17% of the fractional order integration operation s~

G1_a,(s) (D.27)

Because %31*0‘”‘ is a strictly proper transfer function, matrix D_,, is null.
The state space representation corresponding to the approximation of s~%

reads:

1 { £(t) = Aq, 2(t) + B_q, u(t) (D.28)

—a; o L .
s ~ G1-a,(s) : y(t) = Z%u(t) = C_q, 2(t)

D.5 State space fractional systems

Usually the state space model of an integer linear time invariant system is the
following:

{ ﬂy'c(t) = Az(t) + Bu(t) (D.29)

Where:

“A method for modelling and simulation of fractional systems, Thierry Poinot, Jean-
Claude Trigeassou, Signal Processing 83 (2003) 2319-2333
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u(t) . WO X(t) c A X0
T» — b‘.‘\'*\' : 4.» I TP —b\\-%—\ ; //;‘4»
e ‘ *
‘ A .
‘ » D

Figure D.2: Block diagram of a state-space representation

— z(t) is the state vector, which is of dimension n. The number n of the
state vector components is called the order of the system;

— wu(t) is the input of the system,;

— y(t) is the output of the system.

State vector z(t) can be defined as a set of variables such that their
knowledge at the initial time tg = 0, together with knowledge of system inputs
u(t) at t > 0 are sufficient to predict the future system state and output y(t)
for all time ¢ > 0. -

Both equations in (D.29) have a name:

— Equation &(t) = Az(t) + Bu(t) is named as the state equation;
— Equation y(t) = Cz(t) + Du(t) is named as the output equation.

The state equation and the output equation both constitute the state-space
representation of the system.

The block diagram corresponding to the state-space representation (D.29)
is shown in Figure D.2.

The corresponding transfer function of the model is given by:

G(s)=C(sI—A)'B+D (D.30)

State space representation (D.29) can be extended to fractional case as
follows®:

Dex(t) = Az(t) + Bu(?)
D.31
{0 2t o) (D31
where:
De(t) = [ DMy (t) - Doan(t) |” (D.32)
Denoting by [ax] the integer part of «j the Laplace transform of the
fractional Caputo derivative D¥xy(t) is®:
[og]—1 ;
1 d'zp(t
L[DY%xy(t)] = s** L [zx(t)] — Z s —i—1 xk( ) (D.33)
i=0 dit 1=

SW. Krajewski and U. Viaro, On the rational approximation of fractional order systems,
2011 16th International Conference on Methods & Models in Automation & Robotics,
Miedzyzdroje, 2011, pp. 132-136. doi: 10.1109/MMAR.2011.6031331
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If all fractional orders are multiples of the same real number o € (0,1)
(commensurate fractional-order systems), operator D%z (t) simplifies as follows:

Deg(t) = [ D1 (t) --- Dwn(t) " (D.34)

Example D.2. The following example presents a fractional state space
representation and its corresponding transfer function®:

D56, () 0 1 0 0
DIBz,(t) | =] 0 0 1 |z@)+ | 0 | u®)
DOy (t) —4 —20 -10 1 (D-35)
y(t)=[4 17 0]z
The corresponding transfer function is the following:
1.56 4
G(s) G (D.36)

T $346 1 1() 4269 1 90 5156 1 4

Denoting by y(t) the output of the system, it is worth noticing that the
components of the state vector are the following where y® (t) indicates the it
time derivative of y(t):

y(t)
a(t) = |y (1) (D.37)
y 269 (1)

Furthermore D% corresponds to the lower fractional derivative which
appears in the denominator of transfer function G(s) whereas the others terms,
D13 gnd DO namely, are obtained by subtracting the consecutive fractional
derivatives which appears in the denominator of transfer function G(s).

Last but not least the fractional exponents which appear in the numerator of
G(s) are the same than those which appear in its denominator.

D.6 Approximation of fractional systems based on
differentiation operator

The approximation of fractional systems based on differentiation operator is
obtained by coupling (D.31) and (D.24):

{ Dex(t) = Ax(t) + Bu(t)
L (D.38)
{ Dex(t) = Cqy

Block-diagonal matrices A, € REN+DmxCN+)n B ¢ REN+)mxn ¢
R™* N+ and D, € R™*™ are obtained from (D.24) as follows:

Ag:diag[ Ay, - Ag, }

B, = diag [ B, B., }
C, = diag [ Cai N O ] (D-39)
[ D,, - D,, }
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Equating the expression of D2z (t) in both equations of (D.38) yields to the
expression of the state space vector z(t) of the fractional model:

Az(t)+Bu(t) = Cyz(t)+Dyx(t)
sa(t) ~(A-D,)  (Caz(t) - Bu(t) (D.40)
~(A—Dy) ' Cuz(t) + (Do —A) ' Bu(t)

Finally the approximation of fractional system (D.38) based on
differentiation operator reads:

y(t) = Cpz(t) + Dpu(t)
Ap = Ag+ Bg (A Dg)il CQ
BD _ Ba (Da _ A)fl B (D41)
where SANTE 1
Cp=C(A-D,) C,
Dp=C(D,—A) 'B+D

D.7 Approximation of fractional systems based on
integration operator

The inspection of Figure D.2 shows that we may also choose the integral operator
input z(t) = fg w(T)dT as the state vector vector and write the corresponding
state space model using the integral function instead of the derivative one. This
yields to3:

(t) = A [Tw(r)dr + Bu(t)

(t) = C [y w(7)dT + Duf(t) (D.42)
(t) = Jyw(r)dr

The corresponding transfer function of the model then given by

RS

G@:Ci@—ADAB+D (D.43)

Denoting by Z% the fractional integration operator, state space
representation (D.42) can be extended to fractional case as follows?:

w(t) = AZ%w(t) + Bu(t)

y(t) = CI*w(t) + Du(t) (D.44)
z(t) = I%w(t)
where:
Tow(t) = [ T wi(t) - Tmwa(t) |* (D.45)

The approximation of fractional systems based on integration operator is
obtained by coupling (D.44) and (D.28):

{ w(t) = AZ*w(t) + Bu(?)

y(t) = CT%w(t) + Du(t)

{ 2(t) = Ay 2(t) + B_yw(t) (D.46)
z(t) = T%w(t) ~ C_q 2(t)
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2N+2).n><(2N+2)-n’ B—g c ]R(2N+2)-n><n

Block-diagonal matrices A_, € R( and

C_, € RMXCN+2)71 gre obtained from (D.28) as follows:

A_,=diag| Ao, -+ A, ]
B_,=diag| B_o, -+ B_g, | (D.47)
C_, = diag [ C_o, - C_q, ]

Using the expression of w(t) provided in the first equation of (D.46) within
the expression of 2(¢) in the third equation of (D.46) and using the
approximation Z%w(t) ~ C_, z(t) provided in the fourth equation yields:

w(t) = AZ%(t) + Bu(t)
S50 = Azl +Boul)
= A_oz(t) + B_o (AT%w(t) + Bu(t))
=A_oz(l)+ B_aAIa (t) + B_,Bul(t) (D.48)
~A_,z(t)+ B_oAC_, 2(t) + B_,Buf(t)

Ao+ B—gAC—,) 2(t) + B_aBu(t)

—

Finally the approximation of fractional system (D.46) based on integration
operator reads:
{ A(t) = Arz(t) + Bru(t)
y(t) = Crz(t) + Dyu(t)
A;=A_,+B_,AC_,

. (D.49)
where C;=CC._,
D;=D

Example D.3. Coming back to Figure D.1, let’s consider the following non-
minimum phase transfer function:
Y (s) 10s — 1

Pls) = R,¢(s) T 24 14s+1 (D-50)

It 1s clear that in order to obtain no static error, that is % = 1

s2+41.45+1"
we shall choose the prefilter Cp¢(s) as follows:
Y(s) _ _
R = A = P(ijpf(s) (D.51)

1
= Cpf(8) = 15,07 = 1=

Obviously Cpp(s) is not a stable system and this prefilter cannot be
implemented.

Alternatively we can write P(s) as follows where Pp,,(s) is a minimum phase
transfer function:

Py = (1-2) Pupls) = (1= ) s2+1_is+1 (D.52)

Then, choosing for example M = 4 we write:
_ 1/MY 1logy(M/2) 2k /M
1o = (1= ) M) I (1+ (™M)

= (1= ") (1+ @) (1+ (60 ™)
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From this decomposition prefilter Cpf(s) now reads:

Cpy(s) :( (7_1() 5& ()52

= 0251 (0. 1)0 25)(30 ()((%51) 5)
= 50.75-1,-(0.1)0'2580 5+( ) 1)0 50. 25+(() 1)0 75

(D.54)

The fractional state space representation corresponding to this transfer
function reads:

(1) 0 1 0 0
DYPy(t) | = 0 0 1 z(t)+ | 0 | u®)
D0’25§3(t) _(0.1)0.75 _(0_1)0‘5 _(0'1)0.25 1

y(t)=[ —(0.1)°™ 0 0]z
(D.55)
Figure D.3 shows Bode plots of the two approximating methods for fractional
prefilter Cp¢(s) with the following setting:

Wmin = 1072 (D56)

Figure D.4 shows the step response of the plant with the rational prefilter
Cpr(s): it can be seen that the non-minimum phase effect has been reduced but
the time response has been highly increased compared with the result obtained
with a static prefilter Cpp(s) = —1 which leads to % = —ﬁﬁ = —P(s)

]
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Figure D.3: Bode plots of approximated fractional prefilter Cp¢(s)
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Figure D.4: Step response with approximated fractional prefilter Cp¢(s)



