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AN OVERVIEW OF THE CLASSIFICATION OF SPHERICAL

AND COMPLEXITY-ONE VARIETIES

RONAN TERPEREAU

Abstract. These notes, in which we give an overview of the combinatorial classification of spherical and

complexity-one varieties, correspond to a 3h mini-course given by the author for the workshop ”Arc schemes
and algebraic group actions” held in Paris from December 2 to December 4, 2019.
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Motivation. One wishes to classify combinatorially (with discrete objects) algebraic varieties en-
dowed with connected reductive group actions. There are two distinct parts in such a classification:
First one classifies these varieties up to equivariant birational transformations (which is basically
what the MMP does in the classical setting, i.e. when there is no group actions), and then one
classifies all the varieties equivariantly isomorphic to a given model.

The general approach for the second part of this classification is due to Luna-Vust [LV83] (for the
quasi-homogeneous case) and to Timashev [Tim97] (for the general case); see also [Tim11, § 12]. If
one considers varieties of complexity ≥ 2 (in the sense of Definition 3.1) it seems hopeless to aim
at a full solution accessible to practice (for both parts of the classification). On the other hand, for
varieties of complexity ≤ 1 there is an explicit combinatorial description, at least for the second
part of the classification (and for both parts for varieties of complexity zero).

The goal of these notes is to present very briefly how this combinatorial classification works, and
to give some representative examples in order to illustrate the practicality of this approach. We do
not aim at giving a full and rigorous survey of this very broad and active topic.

Notation and convention. For simplicity we work over the field of complex numbers C, but
most of the theory is valid over any algebraically closed field.

We fix once and for all a triple (G,B, T ), where G is a connected reductive algebraic group (e.g.
a torus or a classical group), B ⊆ G is a Borel subgroup, and T ⊆ B is a maximal torus. We denote
by R and S ⊆ R the set of roots and simple roots respectively corresponding to the root system
associated with the triple (G,B, T ).

We denote by X a normal G-variety (always assumed to be reduced and irreducible) with an
open orbit G/H. This means that we (implicitly) fix a base-point x ∈ X such that G ·x is an open
orbit of X and StabG(x) = H.

Date: January 21, 2021.
The author is grateful to Kevin Langlois for his comments on a former version of these notes.
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1. Lecture 1: horospherical varieties

Horospherical varieties form a subclass of spherical varieties whose combinatorial description is
more accessible than the general case. Classical examples of horospherical varieties are given by
toric varieties, flag varieties, and the odd symplectic Grassmannians.

Many difficult problems of algebraic geometry were solved for horospherical varieties (among
other varieties) such as the classification of Fano varieties [Pas08], the Mukai conjecture [Pas10],
the (Log)-MMP [Pas15, Pas18], the stringy invariants [BM13], Kähler geometry questions [Delb,
DH, Dela], the quantum cohomology [GPPS], the cohomology of line bundles [BD], the equivariant
real structures [MJT], etc.

1.1. Horospherical homogeneous spaces.

Definition 1.1. Let H be an algebraic subgroup of G; it is called horospherical if it contains a
maximal unipotent subgroup of G.

Remark 1.2. It follows from Bruhat decomposition that horospherical subgroups are spherical.

Example 1.3. Some examples of horospherical homogeneous spaces:

(1) Tori

(2) Flag varieties

(3) A2 \ {0} ' SL2 /U for the usual SL2-action

(4) Take G = SL4, and let Li : T → Gm, (t1, t2, t3, t4) 7→ ti, where i ∈ {1, 2, 3, 4}. The simple
roots of (G,B, T ) are α1 = L1 − L2, α2 = L2 − L3, and α3 = L3 − L4. Let P ⊆ G be the
standard parabolic subgroup associated with {α2}, and let H be the kernel of the character

χ = L1 + L4 : P → Gm. Then H =


t ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 t−1

 is a horospherical subgroup of G.

Proposition 1.4. ([Pas08, § 2]) If H is a horospherical subgroup of G, then P = NG(H) is a
parabolic subgroup of G, and the quotient group T = P/H ' AutG(G/H) is a torus.

Remark 1.5. It follows from the proposition that G/H can be viewed as the total space of a torus
bundle over the flag variety G/P .

We now explain the combinatorial description of the horospherical subgroups given in [Pas08].
For I ⊆ S, we denote by PI the standard parabolic subgroup generated by B and the unipotent
subgroups of G associated with the simple roots α ∈ I (this gives a 1-to-1 correspondence between
the power set of S and the set of conjugacy classes of parabolic subgroups of G). In particular,
P∅ = B and PS = G. Let I ⊆ S and let M be a sublattice of X(PI)(⊆ X(T )). Then

H(I,M) :=
⋂
χ∈M

Ker(χ)

is a horospherical subgroup of G whose normalizer is PI , and the inclusion M ⊆ X(T ) induces a
surjective morphism T � T.

Proposition 1.6. ([Pas08, Prop. 2.4]) If H is a horospherical subgroup of G, there exists a unique
pair (I,M) as above such that H is conjugate to H(I,M); the pair (I,M) is called horospherical
datum of H.
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Example 1.7. Some examples of horospherical data:

(1) The datum of a parabolic subgroup conjugate to PI is (I, {0}).
(2) The datum of a maximal unipotent subgroup U of G is (∅,X(T )).
(3) The datum of the subgroup H defined in Example 1.3(4) is (I,M) = ({α2},Z 〈χ〉).

1.2. Colored fans of horospherical varieties.

Definition 1.8. Let X be a normal G-variety with an open orbit G/H. It is called a horospherical
variety if H is a horospherical subgroup of G.

Let X be a horospherical variety. There is a G-equivariant rational map ϕ : X 99K G/P induced
by the natural surjection G/H → G/P . If ϕ is defined everywhere, then X is called a toroidal
horospherical variety; it verifies

X ' G×P Y,

where Y is the (scheme-theoretic) fiber of ϕ over eP . Since X is a normal variety, Y is also a
normal variety. Moreover, the torus T = P/H acts on Y with an open orbit, and so Y is a toric
variety with associated fan ΣX (see [Ful93] for a general reference on toric varieties). In general, ϕ
is not defined everywhere, but one can always blow-up G-stable closed subsets of X canonically to
solve the indeterminacies of ϕ (see [Bri91, § 3.3] for details). This gives a commutative diagram

X ′

ϕ′ ""

δ // X

ϕ}}
G/P

where X ′ is toroidal (corresponding to a fan that we denote again by ΣX since X ′ → X is canonical)
and δ is the decoloration morphism.

Let us now explain a bit where the name of the morphism δ comes from.

Definition 1.9. The colors of a horospherical homogeneous space G/H are its B-stable prime
divisors.

Colors of G/H correspond to codimension 1 Schubert varieties of G/P via the morphism G/H →
G/P . Thus colors of G/H are indexed by the elements of S \ I, where I ⊆ S corresponds to the
conjugacy class of P . We will see in § 2.1 that there is a natural (non-injective) map ρ from the
set of colors of G/H to X∨Q = X∨ ⊗Z Q, where X∨ = Homgr(Gm,T) is the cocharacter lattice of T,

and so colors of G/H can be represented as points in X∨Q.
It turns out that the G-stable closed subsets that need be blown-up to solve the indeterminacies

of ϕ are always contained in the closures of colors of G/H, and so one can encode these subsets
combinatorially in terms of the colors G/H.

Definition 1.10. The datum of the fan ΣX together with the set DX of colors of G/H correspond-
ing to the G-stable closed subsets one blows-up to get δ : X ′ → X yields a combinatorial gadget
called the colored fan of the horospherical variety X.

Theorem 1.11. (Particular case of Theorem 2.13) An equivariant embedding X of a homogeneous
horospherical space G/H is uniquely determined, up to G-isomorphism, by its colored fan.

Remark 1.12. A combinatorial classification of the equivariant embeddings of G/U inspired by the
approach of Luna-Vust was obtained by Pauer in [Pau81].

Therefore the variety X is toroidal if and only if DX = ∅, in which case δ is the identity morphism
as there is no ”decoloration” to perform.
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Example 1.13. Some examples of colored fans ((3) and (4) are taken from [Pas08, § 1]):

(1) The colored fan of a flag variety is a point.
(2) The colored fan of a toric variety is its usual fan.
(3) The non-trivial equivariant embeddings of SL2 /U ' A2 \ {0} are the following:

1/ A2, 2/ P2 \ {0}, 3/ P2, 4/ Bl0(A2), and 5/ Bl0(P2).

2/4/ 1/

5/ 3/

The small white dot corresponds to the unique color Dα of SL2 /U . Here DX = ∅ in cases
2, 4, and 5 and DX = {Dα} in cases 1 and 3.

(4) Let G = SL2×Gm and let H = U × {1}. Then dim(T) = 2 and equivariant embeddings of
G/H are parametrized by colored fans looking like these:
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The first colored fan corresponds to a P2-bundle X1 → P1. As vector bundles over P1 split as a
direct sum of line bundles, there exist m ≥ n ≥ 0 such that X1 ' P(OP1(m)⊕OP1(n)⊕OP1). One
can check (e.g. using toric coordinates) that the only possibility for such a bundle to have an open
orbit isomorphic to G/H is when (m,n) = (1, 0).

The second colored fan corresponds to a horospherical variety X2 obtained by a divisorial contrac-
tion X1 → X2. One can check that X2 ' P3 = P(V1⊕V0⊕V0), where Vi = C[x, y]i is the irreducible
SL2-representation of dimension i+ 1, and Gm acts by multiplication on the last coordinate of P3.

It is not as easy to obtain a concrete geometric description of the horospherical variety X3

corresponding to the third fan. One can however verify that X3 is a complete variety, of Picard
rank 2, and that its the singular locus is the union of three lines.

It follows from this geometric description of horospherical varieties that studying horospherical
varieties reduces to studying toric varieties up to the decoloration morphism. The next theorem
can be proved using the corresponding results for toric varieties (except for (3)).

Theorem 1.14. Let X be a horospherical variety. The following hold:

(1) The variety X is complete if and only if its fan ΣX is complete.

(2) There is a bijective correspondence between the G-orbits in X and the colored cones of the
colored fan ΣX .

(3) There is a smoothness criterion for X (see e.g. [Tim11, § 28.3] or [Pas08, § 2]). This
criterion implies that if X is smooth, then every G-stable subvariety of X is also smooth.
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(4) If X is projective, then by [Pas08, Prop. 3.1] an anticanonical divisor of X is given by

−KX = X1 + · · ·+Xm +
∑
α∈S\I

aαDα,

where the Xi are the irreducible G-stable divisors of X, the Dα are the colors of G/H and

aα =
〈∑

β∈R+\R+
I
β, α∨

〉
∈ N with R+ ⊆ R the subset of positive roots and R+

I ⊆ R+ the

subset of positive roots which are linear combinations of elements of I.

To finish this section, let us note that one can easily construct an equivariant resolution of
singularities for horospherical varieties:

Proposition 1.15. Let X be a horospherical variety. Let δ : X ′ ' G ×P Y → X be the decol-
oration morphism, and let Y ′ → Y be a T-equivariant resolution of the toric variety Y (obtained by
subdividing the cones of its fan). Then the composed morphism G ×P Y ′ → X is a G-equivariant
resolution of singularities of X.

1.3. Horospherical varieties with Picard rank 1. We now consider smooth projective horo-
spherical varieties X such that Pic(X) ' Z; these are natural to consider from the point of view
of the MMP. In the toric setting, the only smooth projective varieties with Picard rank 1 are the
projective spaces Pn. But in the horospherical setting, the situation is richer.

These varieties were classified by Pasquier in [Pas09], and since then their geometry has been
very much studied (see e.g. [PP10, Hon16, GPPS, MJT]). Pasquier proved the following result:

Theorem 1.16. ([Pas09, Theorem 0.1]) Let G be a simply-connected semisimple group, and let X
be a smooth projective horospherical G-variety such that Pic(X) ' Z. Then either X = G/P is a
flag variety (with P a maximal parabolic subgroup) or X has three G-orbits and can be constructed
in a uniform way from a triple (G,$Y , $Z), where $Y , $Z are fundamental weights of G, belonging
to the following list:

(1) (Bn, $n−1, $n) with n ≥ 3;
(2) (B3, $1, $3);
(3) (Cn, $m, $m−1) with n ≥ 2 and m ∈ [2, n];
(4) (F4, $2, $3); or
(5) (G2, $1, $2).

For a given triple, the corresponding variety X is constructed as follows:

X := G · [vY + vZ ] ⊆ P(VY ⊕ VZ),

where VY and VZ are the irreducible G-modules with highest weights $Y and $Z and highest weight
vectors vY and vZ . Moreover, X has two closed orbits which are isomorphic to the flag varieties
G/PS\$Y

and G/PS\$Z
.

Remark 1.17. The case (Cn, $m, $m−1) corresponds to the odd symplectic grassmannians that
were studied by Mihai in [Mih07] and by Pech in [Pec13].

More generally, any projective horospherical G-variety X can be realized as

X = G · [v] ⊆ P(V ),

where V is a rational G-module and v is a finite sum of highest weight vectors (see [Tim11, § 28]).

Let us also mention that Pasquier classified smooth projective horospherical varieties of Picard
rank 2 and give a first description of their geometry via the Log-MMP in [Pas].
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2. Lecture 2: spherical varieties

The Luna-Vust theory (see [LV83] and [Tim11, § 12]) whose goal is to describe combinatorially all
normal G-varieties is particularly well-developed for spherical varieties (see [Kno91] and [Tim11]).
Classical examples of spherical varieties are given by horospherical varieties, symmetric varieties,
determinantal varieties, and wonderful varieties.

As for horospherical varieties there are two aspects for the classification of spherical varieties.
First one classifies birational equivalence classes (i.e. the spherical homogeneous spaces), then one
classifies isomorphy classes in a given birational equivalence class (i.e. the equivariant embedding
of a given spherical homogeneous space). The first part is done in terms of spherical systems and
Luna diagrams while the second part is done in terms of colored fans.

2.1. Spherical homogeneous spaces.

Definition 2.1. Let H be an algebraic subgroup of G; it is called spherical if B acts on G/H with
an open orbit.

Example 2.2. Some examples of spherical homogeneous spaces:
(1) flag varieties and tori;
(2) more generally, by Bruhat decomposition, horospherical homogeneous spaces; and
(3) reductive algebraic groups and, more generally, symmetric spaces.

Proposition 2.3. The following properties are equivalent ([Tim11, § 25.1] and [Per14, § 2.1]):
• G/H is spherical;
• G/H has finitely many B-orbits;
• H acts on G/B with an open orbit;
• H acts on G/B with finitely many orbits;
• C(G/H)B = C; and
• any G-equivariant embedding of G/H has finitely many G-orbits.

As for horospherical subgroups, there is a combinatorial classification of spherical subgroups, but
it is much more involved (see e.g. [Tim11, § 30.11] for details). The idea of classifying spherical
homogeneous spaces G/H in combinatorial terms was proposed by Luna in [Lun01]. The strategy
is to reduce the classification of spherical subgroups to the case of wonderful subgroups (i.e. the
subgroups H ⊆ G such that G/H admits a wonderful compactification), and then to classify the
wonderful G-varieties (which are in bijection with conjugacy classes of wonderful subgroups of G)
via certain combinatorial data called spherical systems and Luna diagrams.

The uniqueness part of this classification was proved by Luna in [Lun01] (for groups of type A)
and by Losev in [Los09] (for the general case). The existence part was recently fulfilled after a
decade of joint efforts of several researchers including Luna.

We now define some objects attached toG/H that play a key-role in the combinatorial description
of the G-equivariant embeddings of G/H as we will see in the next section.

Definition 2.4. Let G/H be a homogeneous spherical space.
• The valuation cone of G/H is V = V(G/H) = {G-invariant valuations of C(G/H)}.
• The weight lattice of G/H is

X = X(G/H) = {χ ∈ X(B) | C(G/H)(B)
χ 6= {0}} ⊆ X(B) = X(T ),

where C(G/H)
(B)
χ = {f ∈ C(G/H) such that b · f = χ(b)f, ∀b ∈ B} with χ ∈ X(B). The

group X(G/H) is a free abelian group of finite rank, and there is a (split) exact sequence

0→ C∗ → C(G/H)(B) \ {0} → X(G/H)→ 0.
6



• The set of colors of G/H is D = D(G/H) = {B-stable prime divisors of G/H}.

Any valuation 1 ν of C(G/H) induces a homomorphism

(1) ρν : X→ Q, χ 7→ ν(f) with f ∈ C(G/H)(B)
χ .

The element ρν ∈ HomZ(X,Q) ' X∨Q is well-defined since C(G/H)
(B)
χ is one-dimensional. Also, to

any prime divisor D of G/H is associated a geometric valuation νD, where νD(f) is the order of
vanishing of f along D. Therefore there is a canonical map

ρ : V t D → X∨Q

which is injective on V ([Kno91, Cor. 1.8]) but not on D in general (take for instance G/H a flag
variety). From now on we will identify V with its image in X∨Q; it is a convex solid polyhedral cone

in X∨Q (see e.g. [Tim11, § 21.1]).

Remark 2.5. The homogeneous space G/H is horospherical if and only if V = X∨Q, which makes
the combinatorial description of horospherical varieties slightly easier than in the general case.

Remark 2.6. Spherical homogeneous spaces G/H of rank 1 (i.e. such that rk(X(G/H)) = 1) were
classified by Akhiezer in [Akh83] and Brion in [Bri89].

2.2. Colored fans of spherical varieties.

Definition 2.7. LetX be a normalG-variety with an open orbitG/H. IfH is a spherical subgroup,
then X is called a spherical variety.

Example 2.8. Some examples of spherical varieties:

(1) horospherical varieties (in particular toric varieties and flag varieties);
(2) symmetric varieties;
(3) determinantal varieties; and
(4) wonderful varieties.

We now give a brief outline of the combinatorial classification of spherical varieties in terms of
colored cones and colored fans (see e.g. [Kno91], [Per14, § 3], or [Tim11, § 15] for more details).

Definition 2.9. A spherical variety X with a unique closed orbit Y is called simple. To such a
variety one associates (with the notation introduced in § 2.1)

• VY (X) = {G-stable prime divisors D of X such that Y ⊆ D} ⊆ V;
• DY (X) = {D ∈ D | Y ⊆ D} ⊆ D; and
• C∨Y (X) ⊆ X∨Q the cone generated by VY (X) and ρ(DY (X)).

Theorem 2.10. ([Kno91, Th. 3.1]) A simple equivariant embedding X of G/H with closed orbit
Y is uniquely determined, up to G-isomorphism, by the colored cone (C∨Y (X),DY (X)).

Remark 2.11. An affine spherical variety is always simple, but the converse is false in general.

Example 2.12. ([Gan18, Ex. 2.2 and 3.5]) Let X =M≤rm,n(C) be the set of m× n-matrices whose
rank is at most r ≤ min(m,n), endowed with the usual action of G = GLm×GLn. The set of
matrices of rank r is an open G-orbit G · p0 of X with

p0 =

[
Ir 0
0 0

]
and H = StabG(p0) =

{[
Ar,r Br,m−r

0 Cm−r,m−r

]
,

[
Ar,r 0
Dn−r,r En−r,n−r

]}
.

1Recall that a valuation of C(X) is a group homomorphism ν : (C(X)∗,×) → (Q,+) satisfying ν(a + b) ≥
min(ν(a), ν(b)) when a+ b 6= 0, whose kernel contains C∗, and whose image is a discrete subgroup of (Q,+).
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One verifies that the Borel subgroup B = B−m × B+
n acts on X with an open orbit. Since X is

normal, it is a simple spherical variety (with closed orbit Y = {0}). Its weight lattice is

X = Z
〈
$′1 −$1, $

′
2 −$2 . . . , $

′
r −$r

〉
' Zr = Z 〈e1, e2, . . . , er〉 ,

where the $i and $′i are the fundamental weights of GLm and GLn respectively.
For each i ∈ {1, . . . , r} let di be the determinant of the upper left square block of order i; it is a

B-semi-invariant of C(G/H) of weight $′i − $i and we denote by Di the corresponding B-stable
prime divisor. The colored cone of X is (C∨Y (X),DY (X)), where

• C∨Y (X) = Q+ 〈e∨1 , e∨2 , . . . , e∨r 〉 ⊆ X∨Q; and

•

{
DY (X) = {D1, . . . , Dr−1} and VY (X) = {Dr} if m = n = r;
DY (X) = {D1, . . . , Dr} and VY (X) = ∅ otherwise.

Any spherical variety X has an open covering by simple spherical varieties. Indeed, if Y is any
G-orbit in X, then XY = {x ∈ X | Y ⊆ G · x} is a G-stable open subset of X containing Y .

Theorem 2.13. ([Kno91, Th. 3.3]) An equivariant embedding X of G/H is uniquely determined,
up to G-isomorphism, by the colored fan

F(X) = {(C∨Y (X),DY (X)), where Y runs over all the G-orbits in X}.

Example 2.14. ([Tim11, Ex. 17.7 and 17.28]) Let G = SL3 acting diagonally on C3 ⊕ (C3)∨, and
let X be the hypersurface defined by X = {(v, ϕ) ∈ C3⊕(C3)∨ | ϕ(v) = 1}. Then G acts transitively

on X and H = StabG((e1, e
∨
1 )) =


1 0 0

0 a b
0 c d

 , ad− bc = 1

 ' SL2. Moreover, B acts on X with

an open orbit, hence X ' SL3 /SL2 is a spherical homogeneous space. Let

µ1 : X → C,

x1

x2

x3

 , [y1 y2 y3

] 7→ x1 and µ2 : X → C,

x1

x2

x3

 , [y1 y2 y3

] 7→ y3

be the two B-semi-invariants of C(X) of weights $1 and $2 (corresponding to the representations
C3 and (C3)∨ respectively). The weight lattice of X is X = Z 〈$1, $2〉. Denoting by D1 and D2

the B-stable prime divisors corresponding to µ1 and µ2, one verifies that D = {D1, D2} and that
ρ(D1) = α∨1 and ρ(D2) = α∨2 . Also, the valuation cone of X is V = {q ∈ X∨Q | q ·(α∨1 +α∨2 ) ≤ 0}. An

example of a colored fan corresponding to a complete (non-projective) SL3-equivariant embedding
of SL3 / SL2 is

As for horospherical varieties one can define toroidal spherical varieties and the decoloration
morphism. Also, Theorem 1.14 and Proposition 1.15 still hold mutatis mutandis for arbitrary
spherical varieties. (See [Bri91, § 4] or [Per14, § 4.3.4] for the smoothness criterion, [Bri97, Th. 4.2]
or [Per14, § 3.3.4] for a B-stable canonical divisor, and [Per14, § 3.3.3] for the existence of an
equivariant toroidal resolution.)

8



2.3. Wonderful varieties. As mentioned in § 2.1 the classification of spherical homogeneous
spaces reduces to the classification of wonderful varieties. Besides, these varieties have nice geo-
metric properties (whence the name).

Definition 2.15. A smooth projective G-variety X is called wonderful if G acts on X with an open
orbit whose complement is the union of prime divisors D1, . . . , Dr having simple normal crossings
and such that the closures of the G-orbits in X correspond to the intersections ∩i∈IDi, where I is
a subset of {1, . . . , r}.

Example 2.16. (see e.g. [Tim11, § 30.2] for details) Let H ⊆ G be a spherical subgroup such that
NG(H) = H. Let g = Lie(G) and h = Lie(H). The closure of the orbit G · [h] ⊆ Grass(dim h, g) is
a wonderful variety called the Demazure embedding of G/H.

If G/H is a spherical homogeneous space such that its valuation cone V ⊆ X∨Q is strictly convex

and generated by a Z-basis of X∨, then the spherical variety associated to the colored cone (V, ∅)
is a wonderful variety. Actually, all wonderful varieties are of this form ([Lun96]); in particular,
wonderful varieties are spherical varieties.

Starting from a spherical subgroup H ⊆ G, Luna defined in [Lun01] its spherical closure H as
the subgroup of NG(H) acting trivially on the set D(G/H), and he proved that the classification
of the spherical subgroups of G reduces to the classification of their spherical closures. It turns
out that the valuation cone V(G/H) always satisfies the properties above ([Kno96, § 7]), and so
G/H admits a (unique, up to G-isomorphism) wonderful compactification. That’s basically how
the classification of spherical subgroups reduces to the classification of wonderful varieties.

2.4. Elementary spherical varieties. Elementary spherical varieties play a key-role in the found-
ing work of Luna-Vust in [LV83]. They also appear for instance in [BM] where Batyrev-Moreau
introduced the notion of satellites for spherical subgroups.

Definition 2.17. A spherical G-variety X is called elementary if it is the union of two G-orbits: the
open orbit X0 ' G/H and a closed orbit X1 of codimension 1. (In particular, complete elementary
spherical varieties are wonderful.)

Remark 2.18. Complete G-varieties with two orbits are always spherical varieties (see e.g. [CF03]),
but the closed orbit may not be of codimension 1.

Example 2.19. ([BM, Ex. 7.8]) Let G = SLn and let H be the standard Levi subgroup of the
maximal parabolic subgroup PS\α1

⊆ G. The homogeneous space G/H is spherical and admits a

unique elementary embedding, up to G-isomorphism, given by X = Pn−1 × (Pn−1)∨ on which G
acts diagonally. The closed orbit is given by X1 = {([v], [ϕ]) ∈ X | ϕ(v) = 0}.

If X is an elementary spherical variety, then X is smooth and uniquely determined, up to a
G-isomorphism, by the G-invariant valuation induced by the G-stable prime divisor X1. Therefore,
elementary embeddings ofG/H are in one-to-one correspondence with the colored cones (Q+ 〈ν〉 , ∅),
where ν ∈ V \ {0}.
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3. Lecture 3: complexity-one varieties

In this last lecture we explain briefly how the classification of spherical varieties fits in a more
general framework. Then we focus on two families of examples: the quasi-homogeneous SL2-
threefolds and the complexity-one varieties with horospherical orbits.

3.1. Generalities.

Definition 3.1. Let X be a normal G-variety. The complexity c(X) of X is the codimension of a
general B-orbit. By the Rosenlicht theorem, we have c(X) = tr.degC(X)B.

Remark 3.2. Complexity-zero varieties are precisely spherical varieties.

There are two possibilities for a general orbit of a complexity-one variety:

• The group G acts on X with an open orbit G/H, so the variety X is quasi-homogeneous
and its birational type is determined by H since C(X) = C(G/H).

• A general G-orbit is of codimension 1, in which case the variety X is the total space of a
fibration of spherical homogeneous spaces over the quotient stack [X/G]. It follows from
a result by Alexeev-Brion [AB05, Th. 3.1] that there exists a G-stable dense open subset
X0 ⊆ X and a spherical subgroup H ⊆ G such that any G-orbit of X0 is G-isomorphic to
G/H. Moreover, there exists a (smooth projective) curve C and a finite abelian group A
acting faithfully and equivariantly on G/H ×C such that X0 is equivariantly birational to
(G/H × C)/A (see [Lan] for details).

Remark 3.3. Complexity-one affine homogeneous spaces were classified by Panyushev in [Pan92]
(for simple G) and by Arzhantsev-Chuvashova in [AC04] (for arbitrary G). But there is no complete
classification of complexity-one homogeneous spaces as far as the author knows.

As for spherical varieties, there is a combinatorial classification of complexity-one varieties with a
given birational model X0 due to Luna-Vust [LV83] (for the quasi-homogeneous case) and to Tima-
shev [Tim97] (for the general case). The idea is to glue together all the G-varieties equivariantly
birational to X0 to construct one huge integral G-scheme X0 called the universal model of X0.

Now any G-variety equivariantly birational to X0 is an open subset of X0 covered by a finite
number of B-charts (which are B-stable affine open subsets of X0) and their G-translates. The
coordinate algebras of these B-charts can be described in terms of their B-stable prime divisors.

Therefore one needs first a way to encode all the B-stable prime divisors of X0, then to determine
which sets of B-stable prime divisors correspond to actual B-charts X1, X2, . . . , Xr of X0, and finally
to decide which G-varieties G·X1, . . . , G·Xr may be glued together to form a (separated) G-variety.

Definition 3.4. Let X0 be a complexity-one G-variety.

• The valuation cone of X0 is

V = V(X0) = {G-invariant valuations of C(X0)}.

• The weight lattice of X0 is

X = X(X0) = {χ ∈ X(T ) | C(X0)(B)
χ 6= 0} ⊆ X(T ).

• The set of colors of X0 is

D = D(X0) = {B-stable prime divisors of X0 which are not G-stable}.
10



In fact V, X, and D depend only on the birational type of X0 since C(X0) = C(X0) and any
B-stable prime divisor of X0 which is not G-stable must intersect every G-stable open subset of X0.
Also, Knop proved in [Kno93, § 3.5] that elements of V are determined uniquely by their restriction

on C(X0)(B) as in the case of spherical varieties. The pair (V,D) is called the colored equipment of
X0; the set V corresponds to G-stable prime divisors of X0 and the set D corresponds to its other
B-stable prime divisors.

3.2. Case of quasi-homogeneous SL2-threefolds. Let H be any algebraic subgroup of G such
that rk(X(G/H)) ≤ 1. Then Panyushev proved in [Pan95] that either G/H is a spherical ho-
mogeneous space or G/H is obtained from a homogeneous SL2-threefold by parabolic induction.
Therefore, the easiest case of complexity-one quasi-homogeneous varieties to consider is the case of
quasi-homogeneous SL2-threefolds.

Example 3.5. Some families of quasi-homogeneous SL2-threefolds:

(1) The Fano threefolds P3, Q3, V5, and VMU
22 are quasi-homogeneous SL2-threefolds.

(2) The families of P1-bundles over P2 or Fn obtained in [BFT, Th. A], whose neutral com-
ponents of the automorphism groups correspond to conjugacy classes of maximal connected
algebraic subgroups of Bir(P3), are either toric (families (a)-(b)) or quasi-homogeneous SL2-
threefolds (families (c)-(d)-(e)).

Let X be a quasi-homogeneous SL2-threefold. Then X contains an open orbit SL2 /H with
H a finite subgroup of SL2. Conjugacy classes of finite subgroups of SL2 are classified and well-
understood (A-D-E type), and so the birational part of the classification is easy for these complexity-
one varieties. It remains to see how colored data, that parametrize the equivariant embeddings of
a given homogeneous space SL2 /H, specialize in this situation.

To simplify, we only consider the case where H = {I2}. The equivariant embeddings of SL2 were

classified by Luna-Vust in [LV83, § 9]. We write SL2 =

{[
a b
c d

]
, ad− bc = 1

}
and B =

[
∗ 0
∗ ∗

]
⊆

SL2. The set of colors D = D(SL2) is the set of B-orbits of SL2; it is parametrized by B \SL2 ' P1

as follows :
∀[s : t] ∈ P1, D[s:t] = Z(sa+ tb) ⊆ SL2 .

Any valuation ν ∈ V(SL2) is determined by its values on

C(SL2)(B) =

{
P (a, b)

Q(a, b)
; P,Q ∈ C[X,Y ] homogeneous

}
.

The corresponding weight lattice is X = X(SL2) ' Z and the map C(SL2)(B) \ {0} → X is the one
sending P

Q to deg(Q) − deg(P ). Let us note that any valuation ν ∈ V(SL2) is determined by its

values on the set {f[s:t] : (a, b)→ as+ tb} ⊆ C(SL2)(B). Normalizing the valuations such that their
minimal value on this set is −1, we have the following description of V:

Proposition 3.6. ([LV83, § 9.1]) Given [s : t] ∈ P1 and r ∈] − 1, 1] ∩ Q there exists a unique
element ν([s : t], r) ∈ V such that

ν([s : t], r)(f[s′:t′]) =

{
r if [s : t] = [s′ : t′]; and
−1 otherwise.

Moreover, any valuation corresponding to an SL2-stable prime divisor with an open orbit is of this
form, and

V =
{
ν([s : t], r); [s : t] ∈ P1 and r ∈]− 1, 1] ∩Q

}
t {ν(·,−1)},
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where ν(·,−1) satisfies ν(·,−1)(f[s′:t′]) = −1, for all f[s′:t′], and corresponds to an SL2-stable prime
divisor formed by infinitely many SL2-stable curves.

The set V can therefore be represented as a skeleton with one rational interval [−1, 1] for each
element [s : t] ∈ P1; all these intervals being joined at the point −1 (corresponding to the valuation
ν(·,−1)). Valuations corresponding to G-stable prime divisors will be represented by notches on
the skeleton. Also, G-orbits of dimension 0 and 1 are characterized by the set of colors containing
them; this gives rise to a classification by type (Aα, AB,B+, B−, B0; see [LV83] for details).

Here are some examples of diagrams corresponding to equivariant embeddings of SL2:

Remark 3.7. There is a similar combinatorial description of SL2-equivariant embeddings of SL2 /H
when H is any finite subgroup of SL2 (see e.g. [Bou00]).

Example 3.8. Let SL2 act on X = P2 × P1 = P(V0 ⊕ V1) × P(V1), where Vi = C[x, y]i is the
irreducible SL2-representation of degree i+ 1. In other words, SL2 acts on X via

SL2×X → X,

([
a b
c d

]
, ([u0 : u1 : u2], [v1 : v2])

)
7→ ([u0 : au1+bu2 : cu1+du2], [av1+bv2 : cv1+dv2]).

Take p0 = ([1 : 1 : 0], [0 : 1]), then StabSL2(p0) = {I2}, and so we get an equivariant embedding of
SL2 in X. The orbit decomposition of X is X = `1 t `2 t S1 t S2 t V , where

• `1 = {([0 : u1 : u2], [u1 : u2])} ' P1;
• `2 = {([1 : 0 : 0], [v1 : v2])} ' P1;
• S1 = {([0 : u1 : u2], [v1 : v2]) with [u1 : u2] 6= [v1 : v2]} ' P1 × P1 \∆;
• S2 = {([1 : α : β], [u1 : u2]) with [α : β] = [u : v]} ' A2 \ {0}; and
• V ' SL2 is the open complement in X.

Also, X has two G-stable prime divisors, namely D1 = Z(u0) = S1 = S1 t `1 ' P1 × P1 and
D2 = Z(u1v2−u2v1) = S2 = S2t `1t `2 ' Bl0(P2), and infinitely many colors (i.e. B-stable prime
divisors which are not G-stable) obtained as the closures of the B-orbits in V ' SL2. This set of
colors of X is therefore parametrized by B \ SL2 ' P1 as follows :

∀[s : t] ∈ P1, D[s:t] = Z(su1 + tv1) ⊆ X.

Let X1 = {p ∈ X | u1v1 6= 0} ' A3 and X2 = {p ∈ X | u0v1 6= 0} ' A3. Then X1, X2 are two
B-stable affine open subsets (=B-charts) of X such that G·X1 = V tS1t`1 and G·X2 = V tS2t`2.
Computing in these local charts, we obtain that νD1 = ν([0 : 1], 1) and νD2 = ν([1 : 0], 0). Moreover,
`1 is contained in all the colors D[s:t] except for [s : t] ∈ {[0 : 1], [1 : 0]} (orbit of type A2), while `2
is contained in only one color, namely D[1:0] (orbit of type B+). The corresponding diagram is the
one in the middle above.

Remark 3.9. Smooth complete quasi-homogeneous SL2-threefolds were classified, following the
Luna-Vust combinatorial approach, by Moser-Jauslin in [MJ90] (when the general isotropy is trivial
or {±I2}) and by Bousquet in [Bou00].
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3.3. Case of complexity-one varieties with horospherical orbits. Let X be a complexity-one
varieties with horospherical orbits. Knop proved in [Kno90, Satz 2.2] that there exist a horospherical
subgroup H ⊆ G, a smooth projective curve C, and a G-equivariant birational map

φ : X 99K C ×G/H,

where G acts on C × G/H by translation on G/H and trivially on C. The map φ induces field
isomorphisms C(X) ' Quot (C(C)⊗C C(G/H)) and C(C) ' C(X)G. Hence the birational type of
X is determined by the pair (C,H).

The geometry of complexity-one varieties with horospherical orbits was studied by Langlois and
the author in [LT16, LT17], by Langlois in [Lan17], and by Langlois-Pech-Raibaut in [LPR19].
Classical examples are given by T-varieties and one-parameter families of horospherical varieties.

Recall that, by the work of Altmann-Hausen-Süß (see [AH06, AHS08]), complexity-one T-
varieties are classified in terms of divisorial fans on smooth projective curves. Let now X be
any complexity-one G-variety with horospherical orbits. As for horospherical varieties (see § 1.2),
there is a decoloration morphism X ′ → X such that X ′ ' G ×P Y , where Y is a complexity-one
T-variety and T = NG(H)/H. Also, the datum of the divisorial fan of Y together with the set of
colors of G/H corresponding to the G-stable closed subsets one blows-up to obtain X → X yields
a combinatorial gadget called colored divisorial fan (see [LT16] for details).

We finish this section with a short example just to show what a colored divisorial fan looks like.

Example 3.10. ([LT17, Example 2.3]) Let G = SL3 and let H = U be a maximal unipotent
subgroup of G. Then T = NG(H)/H = B/U ' T , and so X(G/H) ' X(T) ' Z2. We consider a
variety X in the birational class of G/H × P1 corresponding to the following colored divisorial fan:

(0, 0)
•

e1

e2

O
(0, 0)
•

(−1
2

, 1
2
)

•

( 1
4
, −1

4
)

•

(0, 1
9
)

•
(0, 1

9
)

•

tail fan slice over [0 : 1] slice over [1 : 1] slice over [2 : 3]

We only mention in the figures the non-trivial slices and the tails of the colored polyhedral divisors.
The dark gray boxes correspond to polyhedral divisors defined over P1. The two colors of X map to
the vectors e1, e2 of the canonical basis via the map ρ : D(G/H)→ X∨Q defined by (1). The round
mark in the diagram of tail fan is the color that we take into account.

13



References

[AB05] Valery Alexeev and Michel Brion. Moduli of affine schemes with reductive group action. J. Algebraic Geom.,
14(1):83–117, 2005. 3.1

[AC04] I. V. Arzhantsev and O. V. Chuvashova. Classification of affine homogeneous spaces of complexity one. Mat.
Sb., 195(6):3–20, 2004. 3.3

[AH06] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334(3):557–
607, 2006. 3.3

[AHS08] Klaus Altmann, Jürgen Hausen, and Hendrik Süss. Gluing affine torus actions via divisorial fans. Transform.
Groups, 13(2):215–242, 2008. 3.3

[Akh83] Dmitry Akhiezer. Equivariant completions of homogeneous algebraic varieties by homogeneous divisors.
Ann. Global Anal. Geom., 1(1):49–78, 1983. 2.6
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