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Institut de Mathématiques de Bourgogne
franz.chouly@u-bourgogne.fr

May 4, 2021

1

franz.chouly@u-bourgogne.fr


Introduction

These lectures notes were written for students of the first year of the interna-
tional Master ‘Maths for Physics’ at the University of Burgundy in 2021, as
a part of the course called ‘Numerical Methods’. It was designed for a total
of 22 hours of classes. The main objective of this course is to provide a first
insight into numerical methods to solve mathematical problems inspired from
physics and engineering. It focuses both on the mathematical fundations and
justifications of numerical methods and on practical aspects related to their im-
plementation. We start to study ordinary differential equations (ODEs), and
present some methods for their discretization, i.e., to approximate the time-
derivative. Then we focus on partial differential equations (PDEs), and present
a well-known method, the Finite Element Method (FEM), to approximate the
solution of elliptic PDEs. The last part will be devoted to time-dependent PDEs,
such as the heat equation, where we combine both ideas coming from the two
previous chapters. I thank deeply all the students for their remarks associated
to this course, and for their enthusiasm despite the very special context, and I
thank also my colleagues at the IMB and ICB for their support.
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1 Discretization of ODEs

This part concerns ordinary differential equations and their numerical approxi-
mation. Ordinary differential equations are omnipresent to describe the behav-
ior of many systems in physics and applied science. For instance (see [12]), if
you are interested in computing the velocity v of a small ball of mass m when
it is dropped from a given height, you need to solve:

v′(t) = g − k

m
v(t), t > 0, v(0) = v0,

where t is the time variable, g is the gravity constant, k is the resistance of the
air, and v0 is the initial value of the velocity. If you are interested in predicting
the motion of a spherical pendulum, you need to solve:

0 = − sin(θ(t)) + sin(θ(t)) cos(θ(t))(ϕ̇(t))2 − θ̈(t)
0 = − sin2(θ(t))ϕ̈(t)− 2 sin(θ(t)) cos(θ(t))ϕ̇(t)θ̇(t), t > 0

ϕ(0) = ϕ0, ϕ̇(0) = ϕ̇0, θ(0) = θ0, θ̇(0) = θ̇0,

where (θ, ϕ) represent the Euler angles of a pendulum of lenght 1 (with mass
and gravity constant 1, also). Initial conditions are given, respectively the initial
position (θ0, ϕ0) and velocity (θ̇0, ϕ̇0) It is well known that a lot of differential
equations modelling physical problems do not admit, up to what is known today,
closed-form solutions. For instance the first ODE we presented may have one,
but the second one surely not. So we need some techniques to approximate their
solution efficiently and accurately.

1.1 Introduction and simplest schemes

Let us start to study this simple initial-value problem:{
y′(t) = f(t, y(t)),
y(0) = y0.

(1)

Here y : R+ → R is the (unknown) solution, a function that depends on the
(time) variable t, y′ is the first-order derivative of y, and f : R+ × R → R a
given (known) function of two variables. The (real) scalar y0 is known. The first
equation of (1) is a scalar first-order ordinary differential equation (ODE), and
the second one is the initial condition, at time t = 0. We suppose that f is kind
enough, for instance globally Lipschitz, so that (1) admits one unique solution
y, well-defined and continuously differentiable on the whole interval R+. This
setting is simplistic, of course, but will be sufficient to introduce almost all the
ideas related to numerical approximation. Most of the techniques and proofs
that we will see in the reminder extend easily to more general setting (ODE
well-posed only within a bounded interval of R+, second-order ODE, systems
of ODE, etc).

Suppose that f , though kind enough to make (1) is well-posed, is not so kind,
however, so that it is easy to find an explicit, closed-form solution. So if we are
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really interested in solving this, one realistic option is to solve it approximately
using a computer. The main problem, at this stage, is that a computer is very
efficient to perform quickly basic arithmetical operations, but not clever enough
to understand the concepts of function and derivative. So we can not give it
directly (1) and tell him : ‘Please, solve this !’. We need to preprocess it for
him, so that he has to deal only with sequences of numbers. The simplest way
to do this is to slice the half-real line into small slabs, of size τ , where τ > 0 is
a chosen parameter, called the time–step. As a result we define the sequence of
real values tn := nτ , for any n ∈ N:

0 = t0 < t1(= τ) < . . . < tn(= nτ) < . . .

To each value of n, we also associate a real unknown yn, and we will work
enough so that at the end, the computer provides an explicit value of yn such
that

yn ' y(tn),

and we will precise later on the meaning of '. The idea is that, if τ is small
enough, the sequence (yn) is fine enough to represent approximately the function
y. Of course, plenty of values of y are missing, but could be, if necessary,
recovered, using, for instance, linear interpolation between two successive values
yn and yn+1.

Now, we need to approximate the value of the derivative y′ using the sequence
(yn). The basic idea is to make use of the finite difference:

y′(tn) ' yn+1 − yn
τ

.

Let us just remark for the moment, that, if (yn) represents accurately the func-
tion y, and if τ is very small, we should approximate correctly the derivative.
The initial condition is simply transposed as

y0 = y0.

From now on, three possible options arise naturally for the discretization of (1),
that depend each one of the treatment of the right-and side of the first equation
(f(t, y(t))):

1. The first option: we take f(t, y(t)) at time–step n, which leads to the
equation, for all n ≥ 0:

yn+1 − yn
τ

= f(tn, yn). (2)

This is called the forward Euler scheme.

2. The second option: we take f(t, y(t)) at time–step n + 1, which leads to
the equation, for all n ≥ 0:

yn+1 − yn
τ

= f(tn+1, yn+1). (3)

This is called the backward Euler scheme.
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3. The third option: we take a barycentric combination of time–steps n and
n+ 1. This leads to the following equation, for all n ≥ 0:

yn+1 − yn
τ

=
1

2
(f(tn, yn) + f(tn+1, yn+1)). (4)

This is called the Crank-Nicolson scheme.

Before entering the mathematical analysis of these procedures, let us just
give a first insight into their implementation. We illustrate the implementa-
tion aspects using Octave, which is an open-source clone of Matlab, that has
a graphical user interface and a script language very convenient for scientific
computing. It can be downloaded here:

https://www.gnu.org/software/octave/index

There is also an online version of Octave, available here:

https://octave-online.net

We recommend to download the package on your computer, which makes its
use more comfortable. Nevertheless, the above online version can be helpful in
case of emergency for instance. Of course, other alternatives can be chosen if
preferred, for instance the commercial software Matlab (if you are rich enough),
the open-source french software Scilab (from the INRIA, https://www.scilab.
org) or Python-based solutions such as SciPy, with nice interfaces such as Spyder
or Jupyter notebooks (https://www.scipy.org/about.html).

Let us start with the implementation of the first scheme (2), forward Euler.
Note that the relationship (2) can be rewritten:

yn+1 = yn + τf(tn, yn). (5)

This provides a simple recurrence formula to compute the approximation yn+1,
at time tn+1, for the previous approximated solution yn at time tn. There is
nothing more to do. Since the approximated solution at a given discrete time
is inferred explicitely from the previous solution, this scheme is called explicit
(and is sometimes referred as explicit Euler time-marching scheme).

For the backward Euler scheme (3), it can be also rewritten as follows:

yn+1 − τf(tn+1, yn+1) = yn. (6)

This provides also a recurrence formula, but this is not as simple as for forward
Euler. Indeed, the approximation yn+1 is not obtained explicitely, and, instead,
needs to be found as the zero of the function I − τf(tn+1, ·) − yn (I denotes
the identity). This operation can be done by many ways, for instance using
Newton’s method, but at the price of an extra effort, and an extra computational
expense. For this reason, this scheme is called implicit (and is often referred to
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as implicit Euler time–marching scheme). Despite of this difficulty, this scheme
remains interesting in many situations. We will see the precise reason for this
later on.

The Crank-Nicolson scheme (4) can be rewritten as:

yn+1 −
1

2
τf(tn+1, yn+1) = yn +

1

2
τf(tn, yn). (7)

Remark that this scheme remains still implicit. Remark also that any other
convex combination between the time–steps n and n+1 could be meaningful, but
Crank-Nicolson refers to the values ( 1

2 ,
1
2 ) (otherwise we talk about θ–schemes).

At first glance, this scheme seems to have no advantage above the backward
Euler scheme, but we will see later on it has some.

A final remark about implementation is that, though all these schemes are
very simple to implement, their main drawback is that, to obtain the solution
at a given final time, you need to compute iteratively all the intermediate so-
lutions, which can be long for some problems. In fact, for ODEs, there is no
straightforward way to solve them quickly using parallel architectures, and some
special schemes are needed if you want to achieve this (see for instance [6] or
[7]).

Now, let us provide another viewpoint on the above schemes. Let us integrate
the first equation of (1) between time tn and time tn+1:

y(tn+1)− y(tn) =

∫ tn+1

tn

f(t, y(t))dt. (8)

In some sense, we transform our initial problem to a problem of another kind:
the computation of an integral. Now let us try, instead of approximating the
derivative y′ in (1), to approximate the integral in the right-hand side of (8).
There are many quadrature rules that can be used, and let us try with the
simplest ones. For instance, if we use the left rectangle rule∫ b

a

ϕ(t)dt ' (b− a)ϕ(a)

we get from (8):
y(tn+1)− y(tn) ' τf(tn, y(tn)) (9)

from which we recover the forward Euler scheme, by substituting yn to y(tn)
for each value of n. You can also show, as an exercice, that the backward Euler
scheme, resp. the Crank-Nicolson scheme, is recovered identically from the right
rectangle rule, resp. the trapezoidal rule.

Now, to conclude this first part, let us give some very first notions about
numerical stability of the above schemes. To this purpose, we consider the
following variant of (1): {

y′(t) = −α y(t),
y(0) = 1.

(10)
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Here α > 0 is a real parameter. The above equation has the following explicit
solution:

y(t) = exp(−αt).

This solution remains bounded, in the sense that its modulus remains smaller
than 1:

|y(t)| ≤ 1, ∀t ∈ R+.

Let us approximate now this solution using the forward Euler scheme. Following
equation (5), we obtain:

yn+1 = yn − ατyn = (1− ατ) yn. (11)

Here, there is no need to use a computer to obtain the discrete solution, which
is simply given by the formula below, for any value of n:

yn = (1− ατ)n.

So the modulus of the discrete solution is:

|yn| = |1− ατ |n.

We expect, that, at least, the discrete solution remains bounded, but we observe
here that this is not always the case. A necessary and sufficent condition, in
this situation, is that:

|1− ατ | ≤ 1

or, equivalently:
−1 ≤ 1− ατ ≤ 1

which can be reformulated as

τ ≤ 2

α
,

(where we used that α and τ are positive). So the discrete solution (yn) remains
bounded only if the time–step τ is small enough. We say in this case that the
forward Euler scheme is conditionally stable: stable if τ is small enough, unstable
otherwise. Of course, we want to avoid numerical unstability, since, in this
situation, the discrete solution approximates very poorly the exact one. Using
the same argument, one can assess that the backward Euler scheme and the
Crank-Nicolson scheme are unconditionnaly stable (these are good exercices).

1.2 One-step methods

Now that we have a first insight into numerical approximation of ODEs, and
before going into more complex (and widely used) methods, let us be more
precise and go into the mathematical analysis of the simplest methods. To
this purpose, let us introduce a general class of approximation methods, called
one–step methods, as follows:

yn+1 = yn + τΦτ (tn, yn), (12)
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for n ∈ N, and where Φτ : R+×R→ R is a given function, that may depend on
the time–step τ , and that is supposed at least continuous. The simplest example
of one-step method is the forward Euler scheme (5), and this case corresponds
to

Φτ (t, y) = f(t, y).

We have seen previously that yn is only an approximation of y(tn), and we will
try now to say something general and precise about this approximation. For
this purpose, we introduce the global error :

en := y(tn)− yn

at each step n. We introduce also the truncation error Tn as

Tn :=
y(tn+1)− y(tn)

τ
− Φτ (tn, y(tn)),

where y is the solution to Problem (1). The truncation error is the basic notion,
and represents roughly how much the one-step method approximates the ODE.
The first interesting point is that we can infer a bound on the global error from
the truncation error (see [16]):

Theorem 1 Suppose that, for the one-step method (12), the function Φτ is
Lipschitz: there exists L > 0 such that, for all t ∈ R+ and u, v ∈ R, there holds:

|Φτ (t, u)− Φτ (t, v)| ≤ L|u− v|, (13)

then there holds, for all n ∈ N:

|en| ≤
1

L

(
eLtn − 1

)
max

k=0,...,n
|Tk|. (14)

Proof. First let us rewrite differently the definition of the truncation error:

y(tn+1) = y(tn) + τΦτ (tn, y(tn)) + τTn

and then we substract (12):

y(tn+1)− yn+1 = y(tn)− yn + τΦτ (tn, y(tn))− τΦτ (tn, yn) + τTn

so we obtain an equation on the global error:

en+1 = en + τ (Φτ (tn, y(tn))− Φτ (tn, yn)) + τTn.

Now we use the triangle inequality and the Lipschitz condition (13) to bound
the left hand-side above:

|en+1| ≤ |en|+ τL |y(tn)− yn|+ τ |Tn|,

which can be rewritten:

|en+1| ≤ (1 + τL)|en|+ τ |Tn|.
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Now, let us show by induction that, for all n ≥ 0, there holds:

|en| ≤
Θn

L
((1 + τL)n − 1) (15)

where Θn := maxk=0,...,n |Tk|. Indeed, for n = 0, there holds:

e0 = y(0)− y0 = y0 − y0 = 0,

so that (15) holds for n = 0. Suppose now that (15) is true for n. From this
relationship and the bound above, we deduce:

|en+1| ≤ (1 + τL)|en|+ τ |Tn|

≤ (1 + τL)
Θn

L
((1 + τL)n − 1) + τΘn

≤ Θn

L
(1 + τL)n+1 − (1 + τL)

Θn

L
+ τΘn

≤ Θn+1

L
(1 + τL)n+1 − 1)

where we used the (obvious) bound Θn ≤ Θn+1. We then use the relationship

1 + τL ≤ exp(τL),

(remember exp(·) is a convex function) to infer from (15):

|en| ≤
Θn

L
(exp(nτL)− 1) ,

and remarking that τn = tn, we obtain (14). This ends the proof. �

Let us now apply this result to the forward Euler scheme:

Corollary 1 Let us consider the forward Euler method (2) to discretize Problem
(1), and make the assumption that f is globally Lipschitz: there exists L > 0
such that, for all t ∈ R+ and u, v ∈ R, there holds:

|f(t, u)− f(t, v)| ≤ L|u− v|, (16)

then there holds, for all n ∈ N:

|en| ≤
τ

2L

(
eLtn − 1

)
max
t∈[0;tn]

|y′′(t)|. (17)

Proof. It suffices to apply Theorem 1 to the forward Euler scheme, recalling
that Φτ = f , so L is the Lipschitz constant of f . Let us estimate the consistency
error, which expression is, for the forward Euler method:

Tn =
y(tn+1)− y(tn)

τ
− f(tn, y(tn)).
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Then we use the first equation from (2):

y′(tn) = f(tn, y(tn))

and the Taylor-Lagrange expansion of y at time tn:

y(tn+1) = y(tn) + τy′(tn) +
τ2

2
y′′(ξn),

with ξn ∈ [tn; tn+1]. We then deduce:

Tn =
τy′(tn) + τ2

2 y
′′(ξn)

τ
− y′(tn) = y′(tn) +

τ

2
y′′(ξn)− y′(tn).

Therefore:
Tn =

τ

2
y′′(ξn).

This ends the proof. �

As a result, the forward Euler scheme (2) converges in O(τ). We say this is
a first-order scheme, or a scheme of order one. More generally, we say that a
scheme is of order p (p ≥ 0) when convergence is in O(τp). The above statement
is important. Not only it tolds us that the approximation error vanishes when
τ decreases, but it provides us an information with respect to the convergence
rate (or speed). For a scheme of order one, notably, this means that dividing by
two the time step results in a global error divided by two. This is not so bad,
and this makes this scheme already applicable for numerical solving of ODEs.
Nonetheless, in terms of accuracy, it remains still among the worst schemes one
can think about. This is the reason why we will see in the next part of this
chapter some schemes that allow to increase the accuracy. These schemes are
not as simple as forward Euler, but they are not that much complicated and
the gain in accuracy is sometimes huge.

Before seing other schemes, let us state a few additional remarks corre-
sponding to Theorem 1 and Corollary 1. Particularly, note that, as expected,
the bound on the global error increases, exponentially, with time. As a result,
the numerical solution gets less and less accurate as time is evolving. This is
something you can observe generally in practice. This is a problem for long-time
simulations (think about simulation in celestial dynamics, astrophysics, or for
spatial technology), which has motivated the need of very accurate schemes.
Note also that the bound on the global error depends on the solution itself and
its variations: in Corollary 1, it depends on y′′, so, as it can be expected ‘gen-
uinely’, an ODE for which the solution has great/irregular variations with time
can be more difficult to approximate correctly.

1.3 Runge-Kutta (RK) methods

Runge-Kutta (RK) methods are still one-step methods, but for which f is eval-
uated at some intermediate points. If chosen correctly, these evaluation allow
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to recover a better accuracy than the forward Euler method. For instance the
modified Euler method is defined by the recurrence formula

yn+1 = yn + τf

(
tn +

1

2
τ, yn +

1

2
τf(tn, yn)

)
.

It can be shown, as an exercice, that this method is second-order accurate:
the bound in the global error is in O(h2), this time. The gain in accuracy is
substantial: dividing by two the time step, the approximation error is divided
by four. Plenty of RK methods exist (see for instance the books of Butcher [4],
and Hairer, Norsett & Wanner [12, 13] for an extensive study of these methods).
Let us just mention the most popular one, the classical fourth-order RK method
(see [16]):

yn+1 = yn +
1

6

(
ỹ1
n + 2ỹ2

n + 2ỹ3
n + ỹ4

n

)
,

where

ỹ1
n = f(tn, yn),

ỹ2
n = f(tn +

1

2
τ, yn +

1

2
τ ỹ1
n),

ỹ3
n = f(tn +

1

2
τ, yn +

1

2
τ ỹ2
n),

ỹ4
n = f(tn + τ, yn + τ ỹ3

n).

An (awkward) calculation allows to assess that this method is fourth-order: the
approximation error is in O(h4). This is very good, still with a method that is
quite simple. Remark that the above RK methods are both explicit : yn+1 is
obtained directly, without the need to solve an equation involving f .

1.4 Linear multistep methods

A drawback of above RK methods is that they may require too many evalua-
tions of f to improve the accuracy. Therefore, another strategy to improve the
accuracy is to use previous computations yn−1, yn−2, . . . , and not only yn, to
predict yn+1. The interesting point, here, is that these previous computations
have already been made, and stored somewhere on your favorite computer. This
is the main idea of linear multistep methods, which are, for instance, behind the
function lsode in Octave. Following [16], a linear k-step method is defined
according to the formula below:

k∑
j=0

αjyn+j = τ

k∑
j=0

βjf(tn+j , yn+j). (18)

In (18) the coefficients α0, . . . , αk and β0, . . . , βk are real values. Each different
choice corresponds to a different method. We will assume that: 1) either α0 or
β0 is different from 0, 2) αk 6= 0, so as to avoid degenerate cases. Remark that
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if βk = 0, the method is explicit : yn+k is obtained directly from previous values
of the approximate solution. If βk 6= 0, the method is implicit : an algebraic
equation needs to be solved at each time-step to recover yn+k. To alleviate the
notation, we will use the same convention as in the book of Süli & Mayers [16]
and set:

fn := f(tn, yn).

Let us present first some popular examples of linear multistep methods:

• For the choice

β0 = 1, β1 = 0, α0 = −1, α1 = 1,

we get
yn+1 − yn = τfn,

which is the (explicit) forward Euler scheme (2).

• For the choice

β0 = 0, β1 = 1, α0 = −1, α1 = 1,

we get
yn+1 − yn = τfn+1,

which is the (implicit) backward Euler scheme (3).

• For the choice

β0 =
1

2
, β1 =

1

2
, α0 = −1, α1 = 1,

we get

yn+1 − yn =
τ

2
(fn + fn+1),

which is the (implicit) Crank-Nicolson scheme (4).

• For the choice

β0 = − 9

24
, β1 =

37

24
, β2 = −59

24
, β3 =

55

24
, β4 = 0,

and
α0 = 0, α1 = 0, α2 = 0, α3 = −1, α4 = 1,

we get

yn+4 − yn+3 =
τ

24
(−9fn + 37fn+1 − 59fn+2 + 55fn+3),

which is the (explicit) Adams-Bashforth four-step scheme.
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• For the choice

β0 =
1

24
, β1 = − 5

24
, β2 =

19

24
, β3 =

9

24
,

and
α0 = 0, α1 = 0, α2 = −1, α3 = 1,

we get

yn+3 − yn+2 =
τ

24
(fn − 5fn+1 + 19fn+2 + 9fn+3),

which is the (implicit) Adams-Moulton three-step scheme.

Note first that this formalism allows to recover the three different schemes pre-
sented in 1.1. The last two schemes are new. You already have guessed that
the difficulty in the design of sophisticated linear multistep methods is to set
appropriately the values of the coefficients (αj) and (βj). They must satisfy
conditions that make the scheme stable and accurate (consistent and conver-
gent). These last properties are vital: if they are not satisfied, the method is of
no use in practice. Let us say a little bit more about these properties.

1.5 Stability and accuracy

Let us consider a linear multistep scheme to solve the initial-value problem (1).
Let us now suppose that this problem is well-posed on a bounded time-interval
[0, T ], and let N be the natural number such that T = Nτ (we suppose that
the time-step divides exactly T ). We need k values y0, . . . , yk−1 to initiate the
computation of the approximate solution using the recurrence formula (18).
The first thing to note is that, due to (limited) machine precision, at least, the
initial values y0, . . . , yk−1 will not be used exactly to compute the approximated
solution (yn), but instead we will only have approximate values: let us call them
ŷ0, . . . , ŷk−1. They should satisfy, of course:

ŷ0 ' y0, ŷk−1 ' yk−1,

with a precision of, for instance, ten digits (or more). The precision for the
initial condition can be very good, but the final approximate solution yn at a
time tn may be obtained from these initial values after thousands (or more) cal-
culations. This means that the final solution can be very inaccurate, due to the
accumulation of round-off errors. To limit such effects, we want to design linear
multistep schemes that verify the following property, known as zero-stability :

The linear k-step method (18) is said zero-stable if there exists a constant
K > 0 such that, for any small enough value of the time-step τ , and for any se-
quence (yn) generated from (18) and initial conditions y0, . . . , yk−1, and another
sequence (ŷn), still generated using (18), and initial conditions ŷ0, . . . , ŷk−1,
there holds

|yn − ŷn| ≤ K max
0≤j≤k−1

|yj − ŷj |, (19)
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for any natural number n smaller than N .

Let us introduce now a very useful, and nice, result to assess in practice if a
multistep method is zero-stable (or not). This is in fact an algebraic equivalent
of zero-stability and is called root condition. For this purpose, let us define the
first and second characteristic polynomials associated to (18), as, respectively:

Pα(z) =

k∑
j=0

αjz
j , Pβ(z) =

k∑
j=0

βjz
j ,

for z ∈ C. To start with, we need the following lemma:

Lemma 1 Let us consider the recurrence relation

αkun+k + αk−1un+k−1 + . . .+ α1un+1 + α0un = 0, (20)

for n a natural number, with the associated characteristic polynomial

P (z) = αkz
k + αk−1z

k−1 + . . .+ α1z + α0,

for z ∈ C. We suppose α0 6= 0 and αk 6= 0. Let us write P in factorized form

P (z) = αk(z − z1)m1(z − z2)m2 . . . (z − zl−1)ml−1(z − zl)ml ,

where z1, z2, . . . , zl−1, zl are the l distinct (complex) roots of P , of associated
multiplicities m1,m2, . . . ,ml−1,ml. Then, if a sequence (un) satisfies (20), it
can be written as follows

un =

l∑
j=1

Pj(n)znj , (21)

for any natural number n. In the above formula, the Pj are polynomials of
degree mj − 1.

We can admit this Lemma for the moment. The proof can be found in the
book of Süli & Mayers [16, Lemma 12.1]. We provide now our main result
known as the Root Condition, which is a necessary and sufficent condition for
zero-stability [16].

Theorem 2 (Root Condition) Let us consider the linear k-step method (18)
to solve the initial-value problem (1). Then the method (18) is zero-stable if,
and only if, the roots of its first characteristic polynomial Pα are all within the
domain

S1 := {z ∈ C | |z| ≤ 1}

with, additionally, each root zj that satisfies |zj | = 1 being simple.

Proof. Let us prove that the Root Condition is a necessary condition.

14



Let us take the particular case f = 0 in (1), so that we solve y′ = 0 with
initial condition y0, which solution is a constant one: y(t) = y0 for t ≥ 0. In
this case, the method (18) reads

k∑
j=0

αjyn+j = 0. (22)

We then apply the above Lemma 1 to infer that the approximate solution (yn)
can be written as

yn =

l∑
j=1

Pj(n)znj .

Therefore, if there exists a root zj of the first characteristic polynomial Pα that
satisfies zj /∈ S1, this means that |zj | > 1 and therefore

|zj |n → +∞

where n tends to +∞. As a result, there exists a set of initial values y0, . . . , yk−1

such that |yn| tends to +∞ when n tends to +∞ (i.e., when τ → 0, since n ≤ N
and Nτ = T ). The other case we need to consider is the case of a root zj on the
boundary of S1, (|zj | = 1) of multiplicity greater than 1. Since its associated
polynomial Pj is of multiplicity mj − 1 ≥ 1, then it grows with n as nmj−1, and
once again, there exists a set of initial values y0, . . . , yk−1 such that |yn| tends
to +∞ when n tends to +∞.

Let us take now another sequence ŷ0 = 0, ŷ1 = 0, . . . , ŷk−1 = 0 such that the
sequence (ŷn) generated from these initial values and (22) be identically equal to
0. It appears then that there is no way that the property (19) be satisfied for the
two sequences (yn) and (ŷn), when the time-step τ is small enough. Therefore
we proved that if the root condition is not satisfied, zero-stability does not hold
any more.

The proof that the Root Condition is a sufficent condition is much more
technical, and can be admitted. For a detailed proof, see for instance the book
of Gautschi, Section 6.3 [10]. �

Let us now apply this result to assess that some of the presented linear
multistep methods are zero-stable. First, let us consider the forward Euler
method (2). The associated first characteristic polynomial is

Pα(z) = z − 1,

which has one unique simple root z1 = 1, that verifies |z1| = 1. So Theorem 2
ensures that the forward Euler method is zero-stable. The same property holds
for the backward Euler scheme (3) and the Crank-Nicolson scheme (4). For the
Adams-Bashforth four-step scheme, the first characteristic polynomial is

Pα(z) = z4 − z3 = z3(z − 1),
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with a triple root z1 = 0 and a simple root z2 = 1, so the Root Condition holds,
and Theorem 2 ensures that it is zero-stable. You can treat the case of the
Adams-Moulton three-step scheme as an exercice.

Let us provide also a counter-example: the following linear multi-step me-
thod

yn+3 + yn+2 − yn+1 − yn = 2τ(fn+2 + fn+1),

is not zero-stable, though it can look nice at first glance. Indeed, the first
characteristic polynomial is

Pα = z3 + z2 − z − 1 = z(z2 − 1) + z2 − 1 = (z + 1)(z2 − 1) = (z + 1)2(z − 1),

has a double root z1 = −1 on the boundary of S1, so the Root Condition is not
satisfied, and Theorem 2 ensures that it can not be zero-stable.

In fact, as you may have noticed in the proof of Theorem 2, the Root Con-
dition is linked with solving the ODE y′ = 0, with zero right-hand side. This
is why we talk about ‘zero’-stability. In some sense, a multistep scheme is zero-
stable if small perturbations in the initial data imply small perturbations in the
whole (discrete) trajectory, and this notion of zero-stability can be viewed as a
sensibility to initial small perturbations.

For a multistep method to be useful, it not only needs to be (zero-)stable,
it should also be accurate. So the other crucial notion for this purpose is that
of consistency. Let us take y the unique solution to the initial-value problem
(1) and the recurrence formula (18) for a linear k-step scheme. We define the
corresponding truncation error as follows:

Tn :=

∑k
j=0 αjy(tn+j)− τ

∑k
j=0 βjf(tn+j , y(tn+j))

τ
∑k
j=0 βj

. (23)

Though it looks more complicated, one can realize it is a quite straightforward
adaptation of the definition for one-step scheme, with still the same idea behind:
the exact solution y should satisfy approximately the recurrence relation (18).
Note however the normalization by the quantity

τ

k∑
j=0

βj(= Pβ(1)),

that should be supposed different from 0. We now define the consistency prop-
erty as follow: the multistep scheme (18) is consistent if, for any ε > 0, there
exists τε > 0, such that, for any value of the time-step τ that satisfies τ ≤ τε,
and for any natural number n, there holds

|Tn| ≤ ε.
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Let us now use some Taylor expansions to rewrite the numerator of (18):

k∑
j=0

αjy(tn+j)− τ
k∑
j=0

βjf(tn+j , y(tn+j))

=

k∑
j=0

αjy(tn+j)− τ
k∑
j=0

βjy
′(tn+j)

=

k∑
j=0

αj
(
y(tn) + (jτ)y′(tn) +O(τ2)

)
−τ

k∑
j=0

βj
(
y′(tn) + (jτ)y′′(tn) +O(τ2)

)

= y(tn)

k∑
j=0

αj + τ

y′(tn)

k∑
j=0

(jαj − βj)

+O(τ2).

where we used first that y is the solution to (1), and then we applied Taylor
expansions of y and y′ at time tn (supposing that y is smooth enough). Finally,
we just put together all the terms of the same order in τ . So (necessary and
sufficent) conditions for consistency are

k∑
j=0

αj = 0,

k∑
j=0

jαj =

k∑
j=0

βj ,

which can be rewritten also

Pα(1) = 0, P ′α(1) = Pβ(1)( 6= 0).

Remark particularly that any consistent method is associated with a simple root
of the first characteristic polynomial, that belongs to the boundary of S1 (this
is, luckily, still compatible with zero-stability).

As an example, still we consider the forward Euler method. It is indeed
consistent, since

k∑
j=0

αj = −1 + 1 = 0,

k∑
j=0

jαj = 0 + 1 = 1 = 1 + 0 =

k∑
j=0

βj .

The same calculations can be done as exercices for the other linear multistep
methods provided previously. In fact, we can go further and find the largest
natural number p such that Tn = O(τp). Algebraic conditions on the coefficients
(αj) and (βj) can be derived following the same path as previously. It only
requires Taylor expansions to order higher than 2 when we reformulate the
truncation error (23) (see the book of Süli & Mayers [16], Section 12.8, for
more details). As for one-step methods, we then talk about methods of order
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p, and once again, the interest to derive methods of high order is to increase
the accuracy of the discrete solution (yn), with only a slight increase in the
computational cost.

We end this section with an important result that allows us to understand
why both notions of zero-stability and consistence are fundamental (and suffi-
cent) to assess that the approximated solution (yn) obtained with the multistep
scheme (18) is accurate, in the sense it gets closer to y(tn) as τ becomes smaller.
This is a well-known result in the theory of numerical ODEs, due to Germund
Dahlquist. The proof is difficult and will be omitted for this introductory course.

Theorem 3 (Dahlquist’s Equivalence Theorem) Let us consider the ini-
tial-value problem (1), with f globally Lipschitz, and the multistep scheme (18),
that is supposed to be consistent. Let us suppose that the initial values y0 . . . yk−1

are chosen consistently. Therefore, the multistep scheme (18) is zero-stable, if,
and only if, it converges. Moreover, if the exact solution y has continuous
derivatives up to order p and the truncation error satisfies Tn = O(τp), for
p ≥ 1, then the global error en = y(tn)− yn satisfies

en = O(τp).

The above Theorem 3 ensures the convergence of the five multistep methods
we have presented. For the forward Euler method (2) especially, we recover the
result obtained thanks to the Corollary 1. We are done now with this first tour
about numerical approximation of ODEs. Before entering in the (wonderful)
world of numerical PDEs, we just give a few extra comments on this topic.

1.6 Extra remarks

This first part about numerical approximation of ODEs is just a small introduc-
tion, but can be enough to have a first idea on the topic, and for the reminding
part of this course. We will revisit this topic at the end, when we will study
PDEs with evolution in time. There are many issues we have not discussed,
and if you are interested, there are many good books that deal with the topic
(among many others, let us quote [4, 9, 12, 13, 16]). In fact, numerical analysis
of ODEs has been object of intensive research along the twentieth century, and
many methods have been invented and analysed. This is still an active research
topic, though.

To give you a few hints about other issues, first, there is also an important
result by Germund Dahlquist, the so-called Dalquist barrier, which tells you,
roughly speaking, that the condition of zero-stability limits the multistep meth-
ods in terms of accuracy [16]. Also, another issue are stiff systems of ODEs,
which present some specific difficulties in terms of numerical approximation,
and for which we need a stronger notion of stability (A-stability) and specific
multistep schemes (BDF schemes for instance). A good and simple introduction
to this issue can be found, still, in the book of Süli & Mayers [16, Section 12.11],
and one can have a look at [13] for an extensive treatment.
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Also, a fascinating topic is about geometric numerical integration and nu-
merical schemes that preserve some important properties for some classes of
dynamical systems (symplectic numerical integration for instance). An intro-
duction to these issues can be found in the book of ‘Geometric Numerical Inte-
gration’ of Ernst Hairer, Gerhard Wanner and Christian Lubich [11].
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2 FEM for elliptic PDEs

Let us move now from ODEs to Partial Differential Equations (PDEs). PDEs
allow to model a great range of physical phenomena very accurately, since com-
mon physical laws, such as the conservation of mass, momentum, energy, can be
expressed using PDEs. Basically, and as you know, PDEs relate some unknown
quantities (the temperature, the motion of material points, etc) to their deriva-
tive in time and space. The most famous PDEs are known sometimes since the
eighteen or nineteen centuries, as well as closed-form solutions for very specific
configurations. Various approximation techniques have been invented from the
end of the nineteen century, so as to calculate effective approximate solutions.
Now, the most popular methods are the finite difference method, the finite ele-
ment method, the finite volume method and the spectral method. An introductive
presentation to such methods is given for instance in the book of Martin Gander
and Felix Kwok [8].

As an introduction to this topic, we will focus here on the finite element
method, and on the most simple elliptic partial differential equation (a linear,
scalar, PDE). We first present it, and then reformulate it to find what is called
its weak formulation. Indeed, the finite element method does not discretize
directly the differential operators. In fact, it relies on the construction of an
appropriate finite element space, which is a finite dimensional vector space,
that approximates the true vector space in which we seek the solution (which
is an infinite dimensional vector space, endowed with a Hilbert (or Banach)
structure). At the end of the whole process, we will simply obtain an algebraic
linear system, that can be implemented and solved using a computer. Finally,
we will answer the question : does the finite element method provide an accurate
approximation of the exact solution ?

2.1 Model problem: reaction-diffusion

Let us introduce a first model problem, as simple as possible. A PDE provides a
relationship between the different derivatives, in time and space, of an unknown.
Let us forget about time for the moment and consider only PDEs in space, that
correspond to stationnary problems (the solution does not evolve in time). In
general (but not always) the solution of the PDE is defined only on a subdomain
of the whole space. Let us denote by Ω this subdomain. We will suppose that Ω
is an open subset of Rd, d ≥ 1 (in practice, d = 1, 2 or 3). We will suppose that Ω
is non-empty and bounded. We will denote by Γ := ∂Ω the boundary of Ω. For
d = 1 we will take Ω as a finite union of open intervals. For d = 2 (respectively
d = 3) the boundary Γ will be supposed polygonal (respectively polyhedral).
This last assumption can be alleviated in fact, but will avoid some technical
difficulties at a specific moment. We do not make any extra assumption about
Ω, and, for instance, it does not need to be connected or convex.

We want to solve the following problem:

c u−∆u = f in Ω, u = 0 on Γ. (24)
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In (24) u : Ω→ R is the unknown solution, c ≥ 0 is a constant, f : Ω→ R is a
(known) source term. The operator ∆ is the Laplace operator, defined as

∆v := div (∇v) =

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

)
v,

for any v : Ω → R smooth enough. Note that we used the notation x1, . . . , xd
for the coordinate system in Rd. The above equation cu − ∆u = 0 is known
as the reaction-diffusion equation, and is among the simplest partial differen-
tial equations. It is a linear, scalar, elliptic partial differential equation. For
c = 0, we recover the Laplace equation (or Poisson’s problem), that has many
physical interpretations: for instance the unknown u can represent the (steady)
temperature induced by the source term f , or the vertical displacement of a
thin membrane induced by f , which in this case represents a surfacic density of
loads. For c > 0 there is a reaction term cu can have a special meaning for some
problems in chemistry or biology, and also will be useful when we will study
time-evolving PDEs.

Remark also that in Problem (24) there is a second equation on the boundary
Γ. This is a boundary condition. Since it involves the unknown u directly, it is
called a Dirichlet (or essential) boundary condition. There are other types of
boundary conditions (Neumann, Robin), that we should study later on. This
condition is in general motivated by physical considerations : for instance, if
u represents the displacement of a membrane, it means that the membrane is
fixed at its boundary (u = 0 means ‘no vertical displacement’), or if u represents
a temperature, it means that the temperature is fixed (to 0 K) on the boundary.

2.2 Weak formulation

The first important idea of the FEM is to reformulate Problem (24) as a weak
problem, which is equivalent in some specific sense. To this purpose we pick an
arbitrary test function v : Ω→ R, and multiply it to the first equation of (24):

c uv − (∆u)v = fv,

and we integrate over the whole domain Ω:

c

∫
Ω

uv −
∫

Ω

(∆u)v =

∫
Ω

fv.

We then apply the Green formula to the second term:

c

∫
Ω

uv +

∫
Ω

∇u · ∇v −
∫

Γ

(∇u · n)v =

∫
Ω

fv.

Here n denotes the outward unit normal to the boundary Γ. Finally, we impose
an extra condition on the test function v. It should vanish on the boundary Γ.
This causes the boundary term above to vanish, and we get finally:

c

∫
Ω

uv +

∫
Ω

∇u · ∇v =

∫
Ω

fv.
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Before we go further, I guess that now, many questions should arise. Why did
we do that ? Are the above calculations mathematically meaningful ? Why
such a complicated way to proceed ? We will try to provide answers to these
questions in the sequel.

First of all, just suppose that u and v are smooth enough so that above
calculations are valid. Then, let us try to provide, at least, a precise meaning
to the last equation. For this purpose, we need two functional spaces, first let
us introduce the Sobolev space

H1(Ω) := {v ∈ L2(Ω) | (∇v) ∈ L2(Ω;Rd)},

where L2(Ω) is the (Lebesgue) space of square-integrable (real-valued) functions,
and L2(Ω;Rd) is the space of square-integrable vector-valued functions. Take
care that we need to take the gradient of v, ∇v in the sense of distributions (or
in the weak sense) since functions in L2(Ω) are not necessarily differentiable (in
the classic sense). We introduce for functions v, w in H1(Ω) a scalar product,
defined as

(v, w)1,Ω := (v, w)0,Ω + (∇v,∇w)0,Ω,

where

(v, w)0,Ω :=

∫
Ω

vw

denotes the standard scalar product in L2(Ω). The corresponding norm will be
denoted by ‖ · ‖1,Ω:

‖v‖1,Ω :=
√

(v, v)1,Ω

for v ∈ H1(Ω). It can be easily proven that, endowed with this scalar product,
H1(Ω) is a Hilbert space, i.e., a vector space with a scalar product, in which
every Cauchy sequence converges (completeness). This is in fact a property
inherited from the structure of L2(Ω) [14, 15] We define now H1

0 (Ω) which is
the closure of the space of test functions D(Ω) in H1(Ω), for the norm ‖ · ‖1,Ω.
It can be proven that

H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 on Γ}.

This is a non-trivial result, and an important consequence of the trace theorem
(see as well the references cited above), since it is not at all obvious at first
glance that functions in H1(Ω) are properly defined on the boundary Γ. Partic-
ularly, the trace theorem needs regularity assumptions on the boundary, and if
Γ is a Lipschitz (or strictly) polygonal boundary, this theorem can be applied.
The above characterization of H1

0 (Ω) is much more convenient than its original
definition, and will serve to treat the Dirichlet boundary conditions. We can
now define the bilinear form

a(v, w) := c

∫
Ω

vw +

∫
Ω

∇v · ∇w,

for every functions v and w in H1(Ω). We check that indeed, a(·, ·) is meaningful
when the functions are restricted to this space: applying the Cauchy-Schwarz
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inequality, we assess indeed the Lebesgue integrals are finite. As well, we suppose
that f ∈ L2(Ω), and for every w in H1(Ω), we define the linear form

L(w) :=

∫
Ω

fw,

and we check once again that this definition is meaningful.
We have worked enough now to define the weak formulation (or variational

formulation) of Problem (24), which is

Find u ∈ H1
0 (Ω) such that a(u, v) = L(v), for any v ∈ H1

0 (Ω). (25)

Remark that the boundary condition u = 0 on Γ has been integrated in the
definition of the space H1

0 (Ω) (we say it is an essential boundary condition).
Since the bilinear form a(·, ·) is symmetric, this weak formulation is the first-
order optimality condition associated to the minimisation problem

Find u ∈ H1
0 (Ω) that minimizes J over H1

0 (Ω), (26)

where

J (v) :=
1

2
a(v, v)− L(v).

2.3 Lagrange finite element space on simplices

Of course, Problem (24) (or (25)) can be solved analytically only for very special
cases, where for instance Ω is square-shaped and the expression of f is simple.
Otherwise, there is little hope to find an exact solution (and the situation is even
worse for more complex PDEs, with more complex boundary conditions). So we
introduce an approximation technique known as the Lagrange Finite Element
Method. The first step, as in the previous chapter about ODEs, is to decompose
the domain Ω into small, simple cells. This process, in the FEM terminology, is
called, meshing. So we introduce a simplicial mesh as a collection of simplices in
Rd that partition the domain Ω. We call each simplex K and Kh the collection
of all the simplices in Ω (we will precise in a few minutes the meaning of the
index h). The mesh needs to satisfy two conditions:

1. It should cover exactly the domain Ω:

Ω :=
⋃

K∈Kh

K,

where the simplices K are supposed to be closed.

2. The intersection of two distinct simplices K and K ′ is either empty, or a
simplex of dimension lower than d, that is common to both K and K ′.

For each simplex K in the mesh, hK denotes the maximal distance between two
points inside K (it is the ‘size’ of K), and

h := max
K∈Kh

hK
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is the global size of the mesh. What we expect now is that, if the mesh size is
small enough, we will recover an accurate enough approximated solution (as for
the time-step τ when we studied ODEs).

Before going further, let us be more explicit about these notions for problems
in one or two dimensions. First in one dimension (d = 1) and for Ω that is an
open interval, the different simplices K1, . . . ,KN+1 are simply closed intervals,
that cover Ω, and intersect each other only at both ends. We denote

xi = Ki ∩Ki+1

the nodes of the mesh. Remark that if all the simplices are of the same size, we
recover a situation similar as in the previous chapter.

Now, for problems in two dimensions, d = 2, simplices K are triangles. The
intersection between two triangles is either empty, or a common vertex, or a
common edge. The vertices of the triangles are also called the nodes of the
mesh.

Now, from the meshKh, we will build a finite dimensional subspace ofH1
0 (Ω),

that we will call Vh, as follows. We define, now for every value of the dimension
d, the nodes of the mesh as the vertices of the simplices. The interior nodes
are the nodes that do not belong to the boundary Γ. Let us denote them by
x1, . . . , xN . Let us define a family of basis functions

ϕ1, . . . , ϕN

such that

1. Each ϕi is globally continuous on Ω and its restriction to each simplex K
is a piecewise affine function (a polynomial function of degree at most 1):

ϕi|K ∈ P1(K),

where P1(K) is the space of (multivariate) polynomials of degree 1.

2. Each ϕi is equal to 1 at node xi, and equal to 0 for the other nodes:

ϕi(xj) = δij ,

where δij is the Kronecker symbol.

From the two above properties, one can check directly that each ϕi has a
compact support located on the patch ωi of simplices that share the same vertex
xi. So this function vanishes everywhere except in simplices that are in the
neighbourhood of the node xi.

One can also check that the functions (ϕi) are linearly independent. Then
we set

Vh := span(ϕ1, . . . , ϕN ).

In dimension 1, (ϕi) is the so-called family of hat functions, and in dimension 2,
each ϕi is a pyramid of basis ωi and height 1. One can also check that Vh is the
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space of continuous functions that are affine on each simplex K, and that this is
a proper subspace of H1

0 (Ω): because of this property, we talk about conforming
finite elements. The terminology ‘Lagrange’ finite elements comes from the fact
that it relies on piecewise polynomial Lagrange interpolation between the nodes
of the mesh. Remark finally that any function vh in Vh satisfies automatically
the boundary condition

vh = 0 on Γ.

Once the space Vh is built, the discrete problem that serves to approximate
Problem (25) simply reads:

Find uh ∈ Vh such that a(uh, vh) = L(vh), for any vh ∈ Vh. (27)

This is our Finite Element Method. You see, this is easy, we just took Prob-
lem (25) and added the subscript h everywhere. Seriously speaking, the main
difference with (25) is that now, we find an approximate solution in a simple,
finite dimensional, vector space Vh. The main interest of (27) is the following:
it can be recasted in matrix form. Indeed, first write

uh =

N∑
j=1

Ujϕj

and set U the column vector of sizeN that contains all the scalar unknowns (Uj).
Remark, that, due to the definition of the basis (ϕi), we get the relationship

Uj = uh(xj),

for any index j. We say that the unknowns are nodal unknowns, since they
simply represent the value of uh at interior nodes. Take vh = ϕi ∈ Vh for an
arbitrary index i, and we get from (27):

a(uh, ϕi) = L(ϕi).

Then use the above expression for uh:

a

 N∑
j=1

Ujϕj , ϕi

 = L(ϕi).

By linearity
N∑
j=1

Uja (ϕj , ϕi) = L(ϕi). (28)

There remains to introduce the (symmetric) stiffness matrix K = (Kij) with

Kij =

∫
Ω

∇ϕi · ∇ϕj
(

=

∫
Ω

∇ϕj · ∇ϕi = Kji

)
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as well as the (symmetric) mass matrix

Mij =

∫
Ω

ϕiϕj

(
=

∫
Ω

ϕjϕi = Mji

)
for i, j = 1, . . . , N . We define the load vector F = (Fi) with the relationship

Fi = L(ϕi)

for i = 1, . . . , N . Since there holds, by definition, a(ϕi, ϕj) = cMij + Kij ,
formula (28) becomes

N∑
j=1

(c Mij +Kij)Uj = Fi.

So we finally reformulate the discrete Problem (27) in matrix form:

(c M + K)U = F. (29)

At this point, we get something that can be treated by a computer. So the
whole story about FEM, in practice, consists, in 1) building the matrices M
and K as well as the vector F (assembly procedure), 2) solving the linear system
(29), 3) recovering uh from the vector U of nodal unknowns (postprocessing).

2.4 Practical implementation

There have been plenty of available finite element codes for decades. They differ
in various aspects, but are more or less based on the same structure and ideas.
To start with, and to stay within the (now friendly) Octave world, we will play
a little bit with the Octave scripts of Martin Gander and Felix Kwok, available
here:

https://www.unige.ch/~gander/siamprograms.php

If you have a look at all the scripts, and at the detailed explanations, you will
realize that solving a PDE with FEM is rather more complicated than solving
an ODE. Let us start just giving the main ideas.

1st step: mesh generation. The first thing is to get a mesh Kh of the domain
Ω. A simple and convenient way to handle it is to store it as a matrix of mesh
nodes N, which contains the coordinates of all the nodes, ordered by columns,
and another matrix of simplices T that contains the information about connec-
tivity. In fact, each line of T contains the indices of the nodes that belong to the
same simplex. It can also contain additional information, such as special phys-
ical properties, or information about the boundary. To generate a mesh that
corresponds to various shapes, simply use the function NewMesh that returns, at
least, N and T. There are also functions to plot, refine and smooth a mesh.

2nd step: assembly of the linear system (29). This is the most important
part and, in some sense, the very core of every finite element program. In fact,
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the most efficient, and now widespread way to compute the matrices involved in
(29) is to go through all the simplices, and add the corresponding contribution to
the global matrices. This way of thinking comes from the following observation.
Recall that, for the stiffness matrix, we have

Kij =

∫
Ω

∇ϕi · ∇ϕj =
∑
K∈Kh

∫
K

∇ϕi · ∇ϕj .

So it suffices to compute only integrals on simplices K that involve restrictions
on K of the basis functions. Remark that for a wide range of values for i and
j, these integral vanish. The precise way to do it is described in details in the
corresponding chapter in the book of Martin Gander and Felix Kwok [8].

The function FEPoisson does the whole job, and calls subroutines Compute-
ElementMassMatrix and ComputeElementStiffnessMatrix, that compute el-
ementary matrices (associated to each simplex) that will contribute into the
global matrix.

3rd step: solving of the linear system (29). In general, one just call a library
for solving linear systems. In Octave, this is done automatically and efficiently
through the instruction \. In general, direct methods such as LU or Cholesky
decomposition or variants are used for small systems, and iterative methods
such as CG or GMRES are used for large systems [2, 9]. Still the function
FEPoisson does this part.

4th step: postprocessing. Once U is recovered, one can provide the user some
various information about the solution. At least, it should be visualized. This
is the object of the function PlotSolution.

2.5 Existence of solutions

Now that we have a first insight into the method and its behavior, let us try
to justify it, particularly to justify that uh is a good approximation of u if h
is small enough and if the simplices have a nice shape (we will put a precise
definition behind these fuzzy words soon). The first step is to make sure that
the exact solution u exists, and is unique, so that we approximate something
well-defined. For ODEs, we had the Cauchy-Lipschitz (or Picard) Theorem that
ensured this fundamental point. Here, we need an equivalent. Before we prove
this main theorem of existence, we need a preliminary result, which is known
as Poincaré’s inequality.

Theorem 4 Let Ω be an open, connected and bounded set in Rd with polygonal
boundary. There exists cP > 0 such that, for every v ∈ H1

0 (Ω):

cP ‖v‖0,Ω ≤ ‖∇v‖0,Ω. (30)

As a consequence, we deduce that ‖∇ · ‖0,Ω is a norm on H1
0 (Ω), equivalent to

the H1–norm.
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Proof. We proceed by contradiction. Suppose that, for every n ≥ 1, there
exists vn ∈ H1

0 (Ω) such that

1

n
‖vn‖0,Ω ≥ ‖∇vn‖0,Ω.

Define wn := vn/‖vn‖0,Ω, so there holds

1

n
≥ ‖∇wn‖0,Ω,

with ‖wn‖0,Ω = 1. As a result, there holds

‖wn‖21,Ω = ‖wn‖20,Ω + ‖∇wn‖20,Ω ≤ 1 +
1

n2
≤ 2,

so that the sequence (wn) is bounded in the H1–norm. As a result, we use the
Rellich-Kondrachov Theorem, and deduce there is a subsequence (wϕ(n)) that
converges strongly in L2(Ω). Moreover, since

‖∇wϕ(n)‖0,Ω ≤
1

ϕ(n)
,

we deduce that ∇wϕ(n) tends to 0 for n → +∞, and thus (wϕ(n)) is a Cauchy
sequence in H1

0 (Ω). Since H1
0 (Ω) is a Hilbert (complete) space, we deduce that

there exists a limit w? such that

wϕ(n) → w? (strongly) in H1
0 (Ω).

There holds
‖∇w?‖0,Ω = lim

n→+∞
‖∇wϕ(n)‖0,Ω = 0,

from which we deduce that w? is a constant on Ω. Furthermore, since w? = 0
on ∂Ω, we conclude that w? = 0. On the other hand, we have

‖w?‖0,Ω = lim
n→+∞

‖wϕ(n)‖0,Ω = 1,

which contradicts w? = 0. To prove the last assertion, note first that we have,
by definition, for v ∈ H1

0 (Ω):

‖∇v‖0,Ω ≤ ‖v‖1,Ω.

Then we use (30) to prove that

‖v‖21,Ω = ‖v‖20,Ω + ‖∇v‖20,Ω ≤
1

c2P
‖∇v‖20,Ω + ‖∇v‖20,Ω ≤

(
1

c2P
+ 1

)
‖∇v‖20,Ω.

This ends the proof. �

Beware that the above Theorem makes use of three non-trivial results in
functional analysis:
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1. The Rellich-Kondrachov Theorem, that ensures, below the appropriate
assumptions on Ω, that the injection H1(Ω) ↪→ L2(Ω) is compact (partic-
ularly, Ω needs to be bounded).

2. The kernel of the (weak) gradient operator ∇ consists of the constant
distributions on a connected domain (a result that is difficult to establish
when d ≥ 1).

3. The Trace Theorem, which ensures that H1
0 (Ω) is the kernel of the trace

operator.

There is a direct (simplest ?) proof of Poincaré’s inequality, which is obtained
thanks to explicit calculation of the Sobolev norms [14, 15]. Nevertheless, the
above proof has the advantage that it can be generalized easily for more complex
boundary conditions (not only homogeneous Dirichlet). Some generalizations
can be found in the litterature with the name of Poincaré-Friedrichs inequalities,
Peetre-Tartar lemma, etc.

We now state our main theorem of existence:

Theorem 5 Let Ω be an open bounded, connected, set in Rd with polygonal
boundary. Let f ∈ L2(Ω), for any c ≥ 0, there exists one unique solution
u ∈ H1

0 (Ω) to Problem (25), that is also the unique minimizer of J on H1
0 (Ω).

Moreover, the following a priori estimate holds: there exists C > 0 such that

‖u‖1,Ω ≤ C‖f‖0,Ω. (31)

Proof. We use the previous result, Theorem 4, which ensures that the bilinear
form a(·, ·) defines a scalar product on H1

0 (Ω), even for c = 0, equivalent to the
canonical scalar product (·, ·)1,Ω. Since H1

0 (Ω) is a Hilbert space, we can apply
the Riesz-Fréchet representation theorem, to assess that there is one unique
vector u ∈ H1

0 (Ω) such that
a(u, ·) = L(·).

Moreover, there holds, for any v in H1
0 (Ω):

J (v)− J (u) =
1

2
a(v − u, v − u).

This ensures that u is the unique minimizer of J on H1
0 (Ω). Let us derive finally

the a priori error estimate. Remember first that

‖u‖21,Ω ≤
(

1

c2P
+ 1

)
‖∇u‖20,Ω ≤

(
1

c2P
+ 1

)
a(u, u) =

(
1

c2P
+ 1

)
L(u).

Using the Cauchy-Schwarz inequality, we have also

L(u) ≤ ‖f‖0,Ω‖u‖1,Ω.

Therefore the estimate (31) is deduced. Remark that the constant C does not
depend of c. �
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In the above proof, we have established that there exists α > 0 such that,
for any v ∈ H1

0 (Ω), there holds:

α‖v‖21,Ω ≤ a(v, v).

When such property is satisfied, we say that the bilinear form a(·, ·) is elliptic
(or coercive) on H1

0 (Ω). Having such a property (or a variant) is a fundamental
point to prove existence and uniqueness when one looks at PDEs. From the
viewpoint of convex analysis, using the ellipticity of a(·, ·), we deduce that the
functional J is strongly convex on H1

0 (Ω) (and we can recover the existence and
uniqueness of solutions following this path).

Let us now establish the strong-weak equivalence, in other terms let us prove
that Problem (24) and Problem (25) are equivalent in some sense.

Proposition 1 Any solution u ∈ H1
0 (Ω) to Problem (25) satisfies also the Prob-

lem (24), where the first equation has to be understood in the distributional
sense. Reciprocally, if u ∈ H1

0 (Ω) satisfies (24) (in the sense of distributions),
it is also a solution to (25).

Proof. Let u ∈ H1
0 (Ω) be the solution to Problem (25), and pick ϕ ∈ D(Ω).

There holds
〈∆u, ϕ〉 = −〈∇u,∇ϕ〉

by definition of the Laplace operator, in the sense of distributions (the brackets
〈·, ·〉 denote the duality product in D′(Ω)). But, since u ∈ H1

0 (Ω), ∇u is in fact
a regular distribution, which means that

〈∇u,∇ϕ〉 =

∫
Ω

∇u · ∇ϕ

Now, from Problem (25), we deduce

〈∇u,∇ϕ〉 =

∫
Ω

fϕ− c
∫

Ω

uϕ

so
〈(cu−∆u− f) , ϕ〉 = 0,

which means that
cu−∆u− f = 0

in D′(Ω). Moreover, since u ∈ H1
0 (Ω), there also holds u = 0 on the boundary

Γ. As a result, u is a solution to Problem (24). The other assertion can also
be proven using the density of D(Ω) into H1

0 (Ω), as we will show now. Let us
suppose that u ∈ H1

0 (Ω) satisfies

cu−∆u = f

in D′(Ω). Then pick v ∈ H1
0 (Ω) and a sequence of test functions (ϕn) that tends

to v in the H1-norm. First, note that, for any n ≥ 0, we can bound

|a(u, v)− a(u, ϕn)| ≤ (c+ 1)‖u‖1,Ω‖v − ϕn‖1,Ω

30



where we used the Cauchy-Schwarz inequality. Similarly, we bound

|L(v)− L(ϕn)| ≤ ‖f‖0,Ω‖v − ϕn‖1,Ω.

There just remains to write

a(u, v)− L(v) = (a(u, v)− a(u, ϕn)) + (a(u, ϕn)− L(ϕn)) + (−L(v) + L(ϕn)).

Since cu−∆u = f in D′(Ω), the second term a(u, ϕn)−L(ϕn) vanishes, and we
conclude using the triangle inequality, the above bounds, and letting n→ +∞.
�

Following the same proof as above, we deduce this next result for the FE
solution uh:

Theorem 6 Let Ω be an open bounded, connected, set in Rd with polygonal
boundary. Let Vh a finite dimensional space such that Vh ⊂ H1

0 (Ω). Let f ∈
L2(Ω), for any c ≥ 0, there exists one unique solution uh ∈ Vh to Problem (27),
that is also the unique minimizer of J on Vh. Moreover, the following a priori
estimate holds: there exists C > 0 such that

‖uh‖1,Ω ≤ C‖f‖0,Ω. (32)

Moreover, from the ellipticity of a(·, ·) on Vh(⊂ V ), we deduce that, in (29),
the global matrix (c M + K) is symmetric, positive and definite (even for c = 0).

2.6 Accuracy of the FE approximation

Now we are ensured that both solutions u and uh exist, and are not multiple,
we can say something about the accuracy of the FE approximation, and we will
show that the norm

‖u− uh‖1,Ω
will decrease when the size h of the mesh decreases, provided some specific
assumption on the geometry of the simplices. We will start with an abstract
result, known as Cea’s Lemma.

Lemma 2 Let V be a Hilbert space and Vh a closed vector space such that
Vh ⊂ V . Let a(·, ·) be a continuous bilinear form on V that satisfies the following
ellipticity condition

α‖v‖21,Ω ≤ a(v, v).

Let L(·) be a continuous linear form on V . We define u the unique solution of
the weak problem

a(u, v) = L(v), ∀v ∈ V,

and uh the unique solution of the approximate weak problem

a(uh, vh) = L(vh), ∀vh ∈ Vh.
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Then there exists a constant C > 0 that depends solely on the continuity and
ellipticity constants of a(·, ·) such that:

‖u− uh‖V ≤ C inf
vh∈Vh

‖u− vh‖V (33)

where ‖ · ‖V is the natural norm on V .

Before we study the proof, let us comment a little bit on this lemma. The
first point is that there are very few assumptions on Vh, except that it must be a
subspace of V . It has not to be something specific like a finite element space (it
does not even need to be a finite dimensional vector space). The second point is
that you bound the difference between the continuous and discrete errors by an
approximation error that quantifies how accurately the space Vh approximates
V (the richer the space is, the better the approximation should be).

Proof. Let u and uh be the continuous and discrete weak solutions. First, pick
vh ∈ Vh and, noting that vh − uh ∈ Vh ⊂ V , we can write

a(u, vh − uh)− a(uh, vh − uh) = L(vh − uh)− L(vh − uh) = 0

and thus
a(u− uh, vh − uh) = 0.

Using the above equality we can write

a(u− uh, u− uh) = a(u− uh, u− vh + vh − uh) = a(u− uh, u− vh).

We then use the ellipticity of a(·, ·), combined with the above identity:

α‖u− uh‖2V ≤ a(u− uh, u− uh) = a(u− uh, u− vh).

There remains to use the continuity of a(·, ·):

α‖u− uh‖2V ≤ Ca‖u− uh‖V ‖u− vh‖V ,

with Ca > 0 the continuity constant of a(·, ·). As a result we get

‖u− uh‖V ≤
Ca
α
‖u− vh‖V ,

and we conclude by setting C := Ca

α and taking the infimum over Vh. �

Now to say something more precise about the (concrete) Lagrange finite
element space Vh we defined and used in the previous sections, we need some
technical results that allow to bound the error for the Lagrange interpolation in
appropriate Sobolev norms. Before this, we need now to introduce a geometric
assumption on the mesh, and more precisely on the simplices of the mesh.

Let us consider a mesh sequence (Kh)h>0 index by h (the size of the sim-
plices). We say that this sequence is shape-regular if there is a constant CR > 0,
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independent of h, such that, for any value of h, and for every simplex K ∈ Kh,
there holds

hK
ρK
≤ CR,

where hK is the size of K, as defined previously, and ρK is the size of the largest
ball included in K.

Remark first that we consider a mesh sequence, and not only one fixed
mesh, such that the maximum size of the simplices tend to 0. This definition
is traditionnaly attributed to Philippe G. Ciarlet (one of the pioneers of this
method). It means, roughly speaking, that the geometry of the simplices can not
degenerate when the mesh is refined. For d = 2, when simplices are triangles,
it can be shown that this is equivalent to the minimal angle condition: the
smallest angle in each triangle is bounded by below (the triangles can not be
“too flat”). For structured mesh, such a geometric condition is always satisfied,
but, for unstructured mesh, and complicated geometries, this condition may
be hard to achieve in practice (this is still the object of current research). Of
course, for d = 1, this geometric condition is always satisfied (hK = ρK . . . ).

We now introduce the Lagrange interpolation operator as follows:

Ih(v) :=

N∑
i=1

v(xi)ϕi,

for any v ∈ H1
0 (Ω) ∩ C0(Ω). We impose this condition on v since continuity

is required to define nodal (ponctual) values of v, and functions in H1
0 (Ω) are

not always continuous (at least when d ≥ 2). Remark that Ih(v) belongs to
the Lagrange finite element space Vh: this function is simply obtained from
v by setting its value at interior nodes, and then doing piecewise polynomial
interpolation between nodes.

The following estimate can be proven for the linear Lagrange interpolation:

Lemma 3 Let d ≤ 3. Let Vh be the linear Lagrange finite element space built
from a shape-regular mesh Kh of the domain Ω. Then, there is a constant C > 0,
independent of h (but dependent of the shape regularity constant CR), such that,
for every v ∈ H2(Ω) ∩H1

0 (Ω), there holds:

‖v − Ih(v)‖1,Ω ≤ Ch‖v‖2,Ω.

The Sobolev space H2(Ω) denotes the subspace of L2(Ω) with partial weak
derivatives up to order two that belong to L2(Ω). It can be proven that functions
in H2(Ω) are always continuous for d ≤ 3 (this is a consequence of the Sobolev
embedding Theorems). The proof of this result in the general case (d ≥ 2) is a
bit harsh and can be admitted at this stage (for an excellent detailed proof, see
for instance [14]). In the case d = 1, the proof is much more simple [8].

We end this section with the following result, that bounds the error related
to the Finite Element solution uh, as a function of the mesh size h:
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Theorem 7 Let d ≤ 3, let (Kh)h>0 be a shape regular sequence of meshes, let
Vh be the Lagrange finite element space built upon these meshes. We still denote
by u the solution to Problem (25) and by uh the solution to Problem (27). We
suppose that u ∈ H2(Ω) ∩ H1

0 (Ω). Then there exists a constant C > 0, that
depends only on the continuity and ellipticity constants of a(·, ·), and on the
shape-regularity constant CR, such that

‖u− uh‖1,Ω ≤ Ch‖u‖2,Ω

for every h > 0.

Proof. We set V = H1
0 (Ω) and Vh ⊂ V the Lagrange finite element space. Then

the result is obtained using Cea’s Lemma 2, setting vh = Ih(u), and applying
the interpolation estimate in Lemma 3. �

The above result is of fundamental importance. First, it allows to assess,
that, for shape-regular meshes, the approximate FE solution uh tends to the
solution u when the mesh size h tends to 0 (when the simplices get smaller and
smaller). Moreover, the H1-norm is a quite strong one, since it takes also into
account the spatial derivatives of the solution. Also, it quantifies precisely how
much the quality of the approximation is improved when the mesh is refined. If
h is divided by two, so is the approximation error ‖u−uh‖1,Ω. We talk of linear
convergence in this situation. This behavior can be illustrated very accurately
in practice in many situations.

2.7 Extra remarks

This presentation was a tiny introduction to this wide topic, and many aspects
of the method were hidden, mostly to simplify the presentation, and also because
we do not have infinite time to discuss about this topic.

First of all, the reaction-diffusion, or even Poisson’s problem, is a good,
and common choice to start with, but there are many more partial differen-
tial equations, with a great variety of boundary conditions. Sometimes, these
more complex problems can be treated by rather straightforward adaptations
of the present framework, sometimes not, and in this case, it has been object of
intensive research activity.

Also, many type of finite elements, with specific attractive features, have
been invented since 1950. There is even a Table of Finite Elements designed by
Douglas Arnold:

http://www-users.math.umn.edu/~arnold/femtable/

The Lagrange finite element is just the simplest one (and still among the most
widely used). There are also many methods inspired from the finite element
method (just to quote a few recent ones: the eXtended Finite Element Method,
the Isogeometric Method, the Virtual Element Method, the Hybrid High Order
Method, the cut Finite Element method, etc, etc).
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Finally, one can go much further into the mathematical analysis, and prove
much more things about the properties of the numerical approximation: esti-
mates in various norms can be derived, as well as, for instance, a posteriori error
estimates that allow to determine on which cells of the mesh the error is the
larger. This allows for instance adaptive mesh refinement, which is a powerful
technique to improve the accuracy of the solution.

Concerning all these different topics, there are very good monographs that
review most of them in details, particularly [1, 3, 5, 14].
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3 Time-dependent PDEs

In this final chapter, we will illustrate how the notions we have studied in the
two previous chapters can be combined to deal with time-dependent PDEs, that
allow to model unsteady phenomena.

3.1 The heat equation

Let us introduce a simple model of PDE with an evolution in time: the heat
equation. As in the previous chapter, we need a domain Ω, which is still an
open subset of Rd, d ≥ 1 (in practice, d = 1, 2 or 3). We will suppose again
that Ω is non-empty and bounded. We will denote by Γ := ∂Ω the boundary
of Ω. For d = 1 we will take Ω as a finite union of open intervals. For d = 2
(respectively d = 3) the boundary Γ will be supposed polygonal (respectively
polyhedral). We consider the evolution of the temperature u in the domain Ω,
so we want to solve the following heat equation:

∂u

∂t
− κ ∆u = f in R+

∗ × Ω, u = 0 on R+
∗ × Γ, u(0) = u0 in Ω. (34)

In the above equation (34)
u : R+ × Ω→ R

is the unknown solution (the temperature). We will denote by u(t, x) its (scalar)
value at time t ≥ 0 and at point x ∈ Ω. The Laplace operator is still denoted
by ∆, whereas the notation ∂

∂t denotes the partial derivative in time. As for the
reaction-diffusion equation, f : R+

∗ ×Ω→ R is a given source term, that models
the local production, or absorption, of heat. The coefficient κ > 0 in front of the
Laplace operator is a diffusion coefficient, that models the conductive properties
of the material under consideration. Still we impose a Dirichlet condition u = 0
on the boundary, for the sake of simplicity. It means that we know the value
of the temperature u on Γ. This needs to be changed if a different situation is
considered. Conversely to the reaction-diffusion equation, and in the same way
as for ODEs, we need an initial condition, and we suppose the temperature is
known at the initial time t = 0, and equal to u0, a given function.

Remark that if we seek steady (stationnary) solutions to this equation (if we
set u(t, x) = u(x)) the partial derivative in time vanishes, and we recover the
Poisson’s equation we have seen before (reaction-diffusion with c=0). This is
the reason why we told you earlier that Poisson’s equation can also model the
diffusion of heat in a continuous medium.

As for most of the other PDEs, and as for the reaction-diffusion equation,
closed-form solutions are only known for very particular domains and/or val-
ues of the source term, initial conditions and boundary conditions. Notably, a
well-known solution, due to Joseph Fourier, can be obtained using the Fourier
transform (this motivated the introduction of the Fourier transform). Never-
theless, this solution is valid only for Ω = Rd. So for most practical situations,
we need to discretize Problem (34) and to find an approximate solution with
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our (now) favorite computer. Before doing this, and as for the reaction-diffusion
equation earlier, we need first to derive a weak form of this equation.

For this purpose, it will be convenient to adopt the following convention,
that will allow us to see the space-time field u as a function of time, only:

u : t 7→ u(t) ∈ Ω

so we can say that
u(t)(x) = (u(t))(x) = u(t, x).

This said and done, we proceed exactly as for the heat equation, at a fixed time
t > 0. We, once again, pick an arbitrary test function v : Ω→ R, and multiply
it to the first equation of (34):

∂u

∂t
v − κ (∆u)v = fv

and we integrate over the whole domain Ω:∫
Ω

∂u

∂t
v − κ

∫
Ω

(∆u)v =

∫
Ω

fv.

We then apply the Green formula to the second term:∫
Ω

∂u

∂t
v + κ

∫
Ω

∇u · ∇v − κ
∫

Γ

(∇u · n)v =

∫
Ω

fv.

Still n denotes the outward unit normal to the boundary Γ. Finally, we impose
the test function v to vanish on the boundary Γ:∫

Ω

∂u

∂t
v + κ

∫
Ω

∇u · ∇v =

∫
Ω

fv.

We use the identity ∫
Ω

∂u

∂t
v =

d

dt

∫
Ω

uv

and get the weak formulation corresponding to (34):

d

dt
(u(t), v)0,Ω + κ(∇u(t),∇v)0,Ω = (f(t), v)0,Ω, t > 0, u(0) = u0, (35)

where u(t), v ∈ H1
0 (Ω). Remark that it integrates all the three equations present

in (34) (the boundary condition has been included in H1
0 (Ω)). We also made

explicit the dependency of each term with t.
Now, let us first establish a result of existence and uniqueness for this equa-

tion, as we did in the previous section. This result will allow moreover to precise
the functional spaces in which the solution is defined. There are plenty of ways to
establish it, for instance using a Galerkin approximation, using the semi-group
theory or even using the Ladyzenskaya-Babuska-Brezzi (LBB) theory. See for
instance [1, 5, 14]. Here, we follow the path of Grégoire Allaire and state the
result proven in his book. We skip the proof, that is a bit long (but not really
difficult), and we recommand you study it in the book.
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Theorem 8 Let us suppose that that the initial condition u0 belongs to L2(Ω)
and the source term f belongs to L2((0,+∞);L2(Ω)). Then Problem (35) admits
one unique solution u ∈ L2((0,+∞);H1

0 (Ω)) ∩ C([0,+∞);L2(Ω)).

The above notation L2((0,+∞);L2(Ω)) means functions square-integrable
in the time-interval (0,+∞), with values in L2(Ω) (L2((0,+∞);H1

0 (Ω)) means
the same, except that the functions take their value in H1

0 (Ω)). The notation
C([0,+∞);L2(Ω)) means functions of time with values in L2(Ω), that are con-
tinuous in time. For the detailed proof, see [1, Theorem 8.2.3] (I just adapted
here for a time domain that is unbounded).

The heat equation satisfies many interesting mathematical properties, that
have also a physical meaning. We will focus especially here on the following
stability estimate:

Proposition 2 Suppose that u0 ∈ L2(Ω), and f is identically equal to zero,
then the following stability estimate holds, for all t ≥ 0:

1

2
‖u(t)‖20,Ω + κ

∫ t

0

‖∇u(s)‖20,Ω ds =
1

2
‖u0‖20,Ω, (36)

where u is the solution to (35).

Proof. Let us take u0 ∈ L2(Ω), f = 0, and t > 0. We choose

v = u(t) ∈ H1
0 (Ω)

in (35) and get: (
d

dt
u(t), u(t)

)
0,Ω

+ κ (∇u(t),∇u(t))0,Ω = 0.

This can be reformulated as

1

2

d

dt
‖u(t)‖20,Ω + κ‖∇u(t)‖20,Ω. = 0.

Then we obtain (36) by integration in time. �

We deduce from (36) that the solution u remains bounded in the L2(Ω)-norm.
This norm decreases when t increases. The term in κ is a dissipation term,
that depends on the physical properties of the material. There is dissipation
meanwhile the temperature is not homogeneous in the material, and dissipation
stops when the temperature gets uniform. We will try to mimic this behavior
numerically.

3.2 Finite elements

To discretize Problem (35), we use what is called the method of lines: we first
semi-discretize the space variables using finite elements, ang we will obtain a
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system of ODEs. Then we apply a time-marching scheme to compute the ulti-
mate numerical approximation of these equations, as we did in the first chapter.
Other strategies can be designed, for instance one could think about discretizing
globally the space-time cylinder in which the equation lives. Nevertheless, the
method of lines is among the simplest one and has some advantages in terms of
implementation, computation cost, etc.

So we just use the Lagrange finite element space Vh, as defined in the previous
chapter, and built from a mesh Kh of the domain Ω. The semi-discrete (FE)
weak form associated to (35) consists in finding

uh : t 7→ uh(t) ∈ Vh

for any t > 0 that is solution to

d

dt
(uh(t), vh)0,Ω + κ(∇uh(t),∇vh)0,Ω = (f(t), vh)0,Ω, t > 0, uh(0) = uh0, (37)

for any vh ∈ Vh. The initial condition uh0 ∈ Vh is an approximation of the
exact initial condition u0, that can be obtained, for instance, using Lagrange
interpolation (uh0 = Ih(u0)).

Still using the same matrix notations as in previous chapter, this problem
can be recasted as :

M
dU

dt
(t) + κKU(t) = F(t). (38)

As a result, we simply obtain a system of (linear) ODEs, and we find ourselves
in the situation of the first chapter. Since K is symmetric definite positive,
Cauchy-Lipschitz Theorem (for instance) ensures the existence and uniqueness
of a solution U ∈ C([0; +∞);RN ). Now there just remain to apply our favorite
time-marching scheme for this system of ODEs. Before this, let us state the
following result, which is obtained exactly the same way as in the continuous
case:

Proposition 3 Suppose that uh0 ∈ Vh, and f is identically equal to zero, then
the following stability estimate holds, for all t ≥ 0:

1

2
‖uh(t)‖20,Ω + κ

∫ t

0

‖∇uh(s)‖20,Ω ds =
1

2
‖uh0‖20,Ω, (39)

where uh is the solution to (37).

3.3 Backward Euler

Let us use the backward Euler scheme. We keep the same conventions as in the
previous chapter, and, for a time-step τ > 0, and introduce a sequence (unh),
such that, for each n :

unh ' uh(tn),
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with u0
h = uh0, and, for n ≥ 0:

1

τ
(un+1
h − unh, vh)0,Ω + κ(∇un+1

h ,∇vh)0,Ω = (f(tn+1), vh)0,Ω, (40)

still with vh ∈ Vh. In matrix form, we can write it as

M
Un+1 −Un

τ
+ κKUn+1 = F(tn+1). (41)

In this form you may (should) recognize Euler scheme as it was introduced at
the very beginning of this course. Remark that Problem (40) can be recasted
as

1

τ
(un+1
h , vh)0,Ω + κ(∇un+1

h ,∇vh)0,Ω = (f(tn+1), vh)0,Ω +
1

τ
(unh, vh)0,Ω, (42)

so we realize that un+1
h is solution to the discretized reaction-diffusion equation

presented in the previous chapter (and you understand now the interest of the
constant c, with here c = 1

τ ). In the same way, the linear system that needs to
be solved at each time-step is

(M + τκK)Un+1 = τF(tn+1) + MUn. (43)

This is a system identical to what we obtained for the reaction-diffusion equa-
tion. Of course, since the matrices involved are the same at each time-step,
they can be computed before we enter in the loop that computes the sequence
U1,U2, . . . . We can even precompute, for instance, their Cholesky decomposi-
tion before we enter the loop.

Theorems of the previous section ensure existence and uniqueness of the fully
discrete solution unh for any value of n ≥ 0. Theory about ODEs also ensures
stability and accuracy of this time-marching scheme. Let us, for the end, provide
another argument inspired from the stability estimates we presented previously.

Proposition 4 Suppose that u0
h ∈ Vh, and f is identically equal to zero, then

the following stability estimate holds, for all n ≥ 1:

1

2
‖unh‖20,Ω +

1

2

n−1∑
k=0

‖uk+1
h − ukh‖20,Ω + κτ

n−1∑
k=0

‖∇uk+1
h ‖20,Ω =

1

2
‖u0

h‖20,Ω, (44)

where unh is the solution to (40).

Proof. Let us take u0
h ∈ V h, f = 0, and n ≥ 1. We choose

vh = un+1
h ∈ Vh

in (40) and get:

1

τ
(un+1
h − unh, un+1

h )0,Ω + κ(∇un+1
h ,∇un+1

h )0,Ω = 0.
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We rewrite the first term

(un+1
h − unh, un+1

h )0,Ω = ‖un+1
h ‖20,Ω − (unh, u

n+1
h )0,Ω

and use the identity

‖un+1
h − unh‖20,Ω = ‖un+1

h ‖20,Ω + ‖unh‖20,Ω − 2(unh, u
n+1
h )0,Ω

so as to obtain

(un+1
h − unh, un+1

h )0,Ω

=‖un+1
h ‖20,Ω +

1

2

(
‖un+1

h − unh‖20,Ω − ‖un+1
h ‖20,Ω − ‖unh‖20,Ω

)
that simplifies into

(un+1
h − unh, un+1

h )0,Ω =
1

2

(
‖un+1

h − unh‖20,Ω + ‖un+1
h ‖20,Ω − ‖unh‖20,Ω

)
.

We combine this with the first inequality and get:

1

2τ

(
‖un+1

h − unh‖20,Ω + ‖un+1
h ‖20,Ω − ‖unh‖20,Ω

)
+ κ‖∇un+1

h ‖20,Ω = 0,

or, equivalently:

1

2
‖un+1

h ‖20,Ω +
1

2
‖un+1

h − unh‖20,Ω + τκ‖∇un+1
h ‖20,Ω =

1

2
‖unh‖20,Ω.

Then we obtain (44) by summation. �

There are some comments about this result: then it allows to check that
the backward Euler scheme is unconditionnaly stable, since the L2-norm of
unh remains bounded by the initial condition whatever is the value of n and
whatever is the value of τ . We also recover a “physical dissipation” that mimics
the integral term in the estimate (36). There is also an extra dissipation term,
which is purely numerical, and comes from the scheme : we say that the scheme
is dissipative. It dissipates artificial energy. In some situations (let us say, for
large κ and τ small enough) this dissipation is neglectible, but sometimes it is
not really desired since it deteriorates the accuracy of the numerical solution.

3.4 Extra remarks

There are still many aspect to discuss about time-evolution PDEs: the general
process to solve other PDEs such as the wave equation or the Schrödinger equa-
tion is the same, but care has to be taken to chose the appropriate finite element
method and time discretization, so as to recover appropriately some interesting
properties, such as energy conservation. Also, some PDEs such as the transport
equation or some more complex first-order hyperbolic PDEs need a very specific
treatment in order to recover appropriate solutions.

41



4 Perspectives

This class is just an introduction to some basic facts when one needs to solve
numerically some ODEs or PDEs related to physical models. Many topics
have not been discussed. For instance, I did not talk about non-linear PDEs,
which require some specific treatment, and specific care, to be solved appro-
priately. Another interesting aspect is to use some modern finite element soft-
ware, such as FreeFEM++ (http://www3.freefem.org/), GetFEM++ (http:
//getfem.org/) or FEniCS (https://fenicsproject.org/), that include a
high-level language related to weak formulations. For instance, you can try to
use FreeFEM++ here:

https://freefem.org/tryit

?
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