
HAL Id: hal-03277561
https://cel.hal.science/hal-03277561v1

Submitted on 4 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Bayesian Optimization
Julien Bect, Emmanuel Vazquez

To cite this version:
Julien Bect, Emmanuel Vazquez. Bayesian Optimization. Doctoral. CEA-EDF-INRIA Numerical
analysis Summer school 2017. Design and optimization under uncertainty of large-scale numerical
models., Université Pierre et Marie Curie (Paris VI), Paris, France. 2017, pp.224. �hal-03277561�

https://cel.hal.science/hal-03277561v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

1/224

Bayesian Optimization

—
Engineering design under uncertainty using

expensive-to-evaluate numerical models
—

Julien Bect and Emmanuel Vazquez

Laboratoire des signaux et systèmes, Gif-sur-Yvette, France

CEA-EDF-INRIA Numerical Analysis Summer School

Université Pierre et Marie Curie (Paris VI)

Paris, 2017, July 3–7

2/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

References

3/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

References

4/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

5/224

Computer-simulation based design

◮ The numerical model might be time- or resource-consuming

◮ Design parameters might be subject to dispersions

◮ The system might operate under unknown conditions

6/224

Computer-simulation based design – Example

◮ Computer simulations to design a product or a process, in particular

◮ to find the best feasible values for design parameters (optimization problem)
◮ to minimize the probability of failure of a product

◮ To comply with European emissions

standards, the design parameters of

combustion engines have to be carefully

optimized

◮ The shape of intake ports controls

airflow characteristics, which have direct

impact on
◮ the performances of the engine
◮ emissions of NOx and CO

◮ f : X ⊂ Rd → R performance as a

function of design parameters

(d = 20 ∼ 100)

◮ Computing f (x) takes 5 ∼ 20 hours

◮ Objective: estimate x⋆ = argmaxx f (x)

Simulation of an intake port (Navier-Stokes equ.)

(courtesy of Renault)

7/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

8/224

Black-box modeling

8/224

Black-box modeling

8/224

Black-box modeling

For simplification → drop u

9/224

Black-box modeling

◮ Let f : X → R be a real function defined on X ⊆ R
d , where

◮ X is the input/parameter domain of the computer simulation

under study, or the factor (from Latin, “which acts”) space

◮ f is a performance or cost function (a function of the outputs

of the computer simulation)

10/224

Black-box modeling

◮ Let x1, . . . , xn ∈ X be n simulations points

◮ Denote by

z1 = f (x1), . . . , zn = f (xn)

the corresp. simulation results (observations/evaluations of f)

◮ Our objective: use the data Dn = (xi , zi)i=1...n to infer

properties about f

◮ Example: given a new x ∈ R
d , predict the value f (x)

11/224

Black-box modeling

◮ f is a black-box, only known through evaluation results: query

an evaluation at x , observe the result

◮ Predict the value of f at a given x?

→ the problem is that of constructing an approximation / an

estimator f̂n of f from Dn

◮ Such a f̂n also called a model or a meta-model (because the

numerical simulator is a model itself) of f

12/224

A simple curve fitting problem

◮ Suppose that we are given a data set of n simulation results,

i.e., evaluations results of an unknown function f : [0, 1] → R,

at points x1, . . . , xn.

◮ A data set of size n = 8:

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

z

13/224

A simple curve fitting problem

◮ Any approximation procedure of f consists in building a

function f̂n = h(·; θ) where θ ∈ R
l is a vector of parameters,

to be estimated from Dn and available prior information

◮ Fundamental example: linear model

f̂n(x) = h(x , θ) =
l∑

i=1

θi ri(x)

where functions ri : X → R are called regressors (e.g.,

r1(x) = 1, r2(x) = x , r3(x) = x2 . . . → polynomial model)

◮ Most classical method to obtain a good value of b:

least squares → minimize the sum of squared errors

J(θ) =
n∑

i=1

(
zi − f̂n(xi)

)2
=

n∑

i=1

(zi − h(xi ; θ))2

14/224

A simple curve fitting problem

◮ Linear fit

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

z

15/224

A simple curve fitting problem

◮ Quadratic fit

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

z

16/224

A simple curve fitting problem

◮ Poor fit!

◮ Why? Model capacity is weak

◮ Now, as an example, consider the model

f̂n(x) = θtr(x)

with

r(x) = (1 cos(2πx) sin(2πx) . . . cos(2mπx) sin(2mπx))t ∈ R
2m+1

(a truncated Fourier series)

◮ The increase in the number of parameters yields an ill-defined

problem (l ≫ n)

17/224

A simple curve fitting problem

◮ When the problem becomes ill-defined (as capacity increases),

a classical solution for finding a good value of b is to minimize

the sum of an approximation error and a regularization term:

J(θ) =
n∑

i=1

(
zi − θtr(xi)

)2
+ C‖θ‖2

2, C > 0

◮ ‖θ‖2
2 penalizes vectors θ with large elements

◮ C strikes a balance between regularization and data fidelity

◮ This approach is known as Tikhonov regularization (Tikhonov

& Arsenin, 1977) → at the basis of numerous approximation

methods (ridge regression, splines, RBF, SVM. . .)

18/224

A simple curve fitting problem

◮ n = 8, m = 50, l = 101, C = 10−8

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

z

19/224

A simple curve fitting problem

◮ The regularization principle alone is not enough to obtain a

good approximation

◮ As modeling capacity increases, overfitting may arise

20/224

A simple curve fitting problem

◮ To avoid overfitting, we should try a regularization that

penalizes high frequencies more

◮ For instance, take

‖θ‖ = θ2
1 +

m∑

k=1

θ2
2k + θ2

2k+1

(1 + (2kπ)α)2

21/224

A simple curve fitting problem

◮ n = 8, m = 50, l = 101, C = 10−8, α = 1.3

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

z

22/224

A simple curve fitting problem

◮ From this example, we can see that the construction of a

regularization scheme should result from a procedure that

takes into account the data (using cross-validation, for

instance) an/or prior knowledge

(high frequencies ≪ low frequencies, for instance)

23/224

Black-box modeling

◮ A large number of methods are available in the literature:

polynomial regression, splines, NN, RBF. . .

◮ All methods are based on mixing prior information and

regularization principles

◮ Instances of “regularization” in regression:
◮ t-tests, F-tests, ANOVA, AIC (Akaike info criterion). . . in linear

regression
◮ Early stopping in NN
◮ Regularized reproducing-kernel regression

◮ 1960 : splines, (Schoenberg 1964, Duchon 1976–1979)

◮ 1970 : ridge regression (Hoerl, Kennard)

◮ 1980 : RBF, (Micchelli 1986, Powel 1987)

◮ 1995 : SVM, (Vapnik 1995)

◮ 1997 : SVR, (Smola 1997) & semi-param SVR (Smola 1999)

24/224

Black-box modeling

◮ How to choose a regularization scheme?

◮ The Bayesian setting is a principled approach that makes it

possible to construct regularized regressions

25/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

26/224

Why a Bayesian approach?

◮ Objective: infer properties about f : X → R through

pointwise evaluations

◮ Why a Bayesian approach?
◮ a principled approach to choose a regularization scheme

according to prior information
◮ through probability calculus and/or Monte Carlo simulations,

the user can infer properties about the unknown function
◮ for instance: given prior knowledge and Dn, what is the

probability that the global maximum of f is greater than a

given threshold u ∈ R?

◮ Main idea: use a statistical model of the observations,

together with a probability model for the parameter of the

statistical model

27/224

Some reminders about probabilities

◮ Recall that a random variable is a function that maps a sample

space Ω to an outcome space E (e.g. E = R), and that assigns

probabilities (weights) to possible outcomes

Def.

Formally, let (Ω, A, P) be a probability space, and (E , E) be a measurable

outcome space

→ a random variable X is a measurable function (Ω, A, P) → (E , E)

◮ X is used to assign probabilities to events: for instance

P(X ∈ [0, 1]) = PX ([0, 1]) = 1/2

◮ Case of a random variable with a density

P(X ∈ [a, b]) = PX ([a, b]) =
∫ b

a

pX (x)dx

28/224

Gaussian random variables

◮ A real-valued random variable Z is said to be Gaussian N (µ, σ2), if

it has the continuous probability density function

gµ,σ2(z) =
1√

2πσ2
exp

(
−1

2
(z − µ)2

σ2

)

z

g µ
,σ

2

µ

σ

29/224

Gaussian random variables

◮ The mean of Z (also called expectation or first-order

moment) is

E(Z) =
∫

R

z gµ,σ2(z)dz = µ

and its second-order moment is defined as

E(Z 2) =
∫

R

z2gµ,σ2(z)dz = σ2 + µ2

◮ The variance of Z is defined as

var(Z) = E
[
(Z − E(Z))2] = E

[
Z 2]− E[Z]2 = σ2

30/224

Gaussian random variables

◮ A Gaussian variable Z can be used as a stochastic model of

some uncertain real-valued quantity

◮ In other words, Z can be thought as a prior about some

uncertain quantity of interest

31/224

Gaussian random variables

◮ Using a random generator, it is possible to “generate”

sample values z1, z2, . . . of our model Z → possible values for

our uncertain quantity of interest

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
n=100

31/224

Gaussian random variables

◮ Using a random generator, it is possible to “generate”

sample values z1, z2, . . . of our model Z → possible values for

our uncertain quantity of interest

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
n=1000

31/224

Gaussian random variables

◮ Using a random generator, it is possible to “generate”

sample values z1, z2, . . . of our model Z → possible values for

our uncertain quantity of interest

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
n=10000

(as n → ∞, the empirical distribution of the realizations tends to

the normal distribution)

32/224

Bayesian model

Formally, recall that a statistical model is a triplet M = (Z, F , P)

◮ Z → observation space (typically, Z = R
n)

◮ F → σ-algebra on Z
◮ P → parametric family {Pθ; θ ∈ Θ} of probability

distributions on (Z, F)

Def.

A Bayesian model is defined by the specification of

◮ a parametric statistical model M (model of the observations)

◮ a prior probability distribution Π on (Θ, Ξ) → probability

model that describes uncertainty about θ before an

observation is made

33/224

Example

◮ Suppose we repeat measurements of a quantity of interest:

z1, z2, . . . ∈ R

◮ Model of observations: Zi
iid∼ N (θ1, θ2), i = 1, . . . , n

◮ The statistical model can formally be written as the triplet

M =
(
R

n, B(Rn),
{N (θ1, θ2)⊗n}

θ1,θ2

)

◮ Moreover, if we a assume a prior distribution about θ1 and θ2

(e.g. θ1 ∼ N (1, 1), θ2 ∼ IG(3, 2)), we obtain a

Bayesian model

◮ From this Bayesian model (model of observations + prior), we

can compute the posterior distribution of (θ1, θ2) given

Z1, . . . , Zn (will be explained later)

34/224

Example

n = 50, θ1 = 1.2, θ2 = 0.8

sample size n=50

-1 0 1 2 3 4
zi

0

0.1

0.2

0.3

0.4

pd
f

prior

0 1 2

0.5

1

1.5

2
posterior

0 1 2

0.5

1

1.5

2

θ1θ1

θ 2θ 2

35/224

Simple curve fitting problem from a Bayesian approach

◮ Recall our simple curve fitting model

f̂n(x) = θtr(x)

with

r(x) = (1 cos(2πx) sin(2πx) . . . cos(2mπx) sin(2mπx))t ∈ R
2m+1

◮ Bayesian model?

36/224

◮ Assume the following statistical model for the observations:

Zi = ξ(xi) + εi , i = 1, . . . , n

ξ(x) = θtr(x), x ∈ X

εi
iid∼ N (0, σ2

ε)

or equivalently,

Zi
iid∼ N (θtr(xi), σ2

ε), i = 1, . . . , n

◮ Moreover, choose a prior distribution for θ:

θj
indep∼ N (0, σ2

θj
), j = 1, . . . , 2m + 1

◮ The rvs Zi constitute a Bayesian model of the observations

◮ ξ is a random function / random process → prior about f

37/224

Random process

Def.

A random process ξ : (Ω,X) → R is a collection of random

variables ξ(·, x) : Ω → R indexed by x ∈ X

◮ Random processes can be viewed as a generalization of

random vectors

◮ For a fixed ω ∈ Ω, the function ξ(ω, ·) : X → R is called a

sample path

38/224

◮ In our Bayesian setting, we can say that
◮ we use a random process ξ as a stochastic model of the

unknown function f

◮ f is viewed as as sample paths of ξ

◮ ξ represents our knowledge about f before any evaluation has

been made
◮ the distribution Π = Pξ is a prior about f

All real functions

Prior Pξ

Unknown function f

39/224

◮ Here, ξ(ω, ·) = θ(ω)tr(·)
◮ Fixing ω (a sample path) amounts to “choosing” a value for

the random vector θ

40/224

◮ Example of sample paths with

θ1 ∼ N (0, 1)

θ2k , θ2k+1
indep∼ N

(
0, 1

1+(ω0k)α

)
, k = 1, . . . , m

with ω0 = 2π
10 , α = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-4

-3

-2

-1

0

1

2

3

z

40/224

◮ Example of sample paths with

θ1 ∼ N (0, 1)

θ2k , θ2k+1
indep∼ N

(
0, 1

1+(ω0k)α

)
, k = 1, . . . , m

with ω0 = 2π
50 , α = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-8

-6

-4

-2

0

2

4

6

8

z

40/224

◮ Example of sample paths with

θ1 ∼ N (0, 1)

θ2k , θ2k+1
indep∼ N

(
0, 1

1+(ω0k)α

)
, k = 1, . . . , m

with ω0 = 2π
10 , α = 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-3

-2

-1

0

1

2

3

z

41/224

Bayesian approach

◮ The choice of a prior in a Bayesian approach reflects the

user’s knowledge about uncertain parameters

◮ In the case of function approximation → regularity of the

function

42/224

Bayesian approach

◮ Where shall we go now?

◮ Objective: compute posterior distributions from data

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

x

z

42/224

Bayesian approach

◮ Where shall we go now?

◮ Objective: compute posterior distributions from data

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

x

z

42/224

Bayesian approach

◮ Where shall we go now?

◮ Objective: compute posterior distributions from data

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

x

z

42/224

Bayesian approach

◮ Where shall we go now?

◮ Objective: compute posterior distributions from data

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

x

z

42/224

Bayesian approach

◮ Where shall we go now?

◮ Objective: compute posterior distributions from data

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

x

z

43/224

A “simplification” of the Bayesian model for the simple

curve fitting problem

◮ ξ = θtr (our prior about f) is a Gaussian process

◮ Why?

44/224

Gaussian random vectors

Def.

A real-valued random vector Z = (Z1, . . . , Zd) ∈ R
d is said to be

Gaussian iff any linear combination of its components
∑d

i=1 aiZi ,

with a1, . . . , ad ∈ R, is a Gaussian variable

◮ A Gaussian random vector Z is characterized by its mean

vector, µ = (E[Z1], . . . , E[Zd]) ∈ R
d , and the covariance of

the pairs of components (Zi , Zj), i , j ∈ {1, . . . , d},

cov(Zi , Zj) = E[(Zi − E(Zi))(Zj − E(Zj))]

◮ If Z ∈ R
d is a Gaussian vector with mean µ ∈ R

d and

covariance matrix Σ ∈ R
d×d , we shall write Z ∼ N (µ, Σ)

45/224

◮ Exercise: Let Z ∼ N (µ, Σ). Determine E
(∑d

i=1 aiZi

)
and

var
(∑d

i=1 aiZi

)

◮ The correlation coefficient of two components Zi and Zj of Z

is defined by

ρ(Zi , Zj) =
cov(Zi , Zj)√
var(Zi)var(Zj)

∈ [−1, 1],

→ measures the similarity between Zi and Zj

46/224

Gaussian random vectors: correlation

ρ = 0

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

ρ = 0.8

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

47/224

Gaussian random processes

◮ Recall that a random process is a set ξ = {ξ(x), x ∈ X} of

random variables indexed by the elements of X

◮ Gaussian random process

→ generalization of a Gaussian random vector

Def.

ξ is a Gaussian random process iff, ∀n ∈ N, ∀x1, . . . , xn ∈ X, and

∀a1, . . . , an ∈ R, the real-valued random variable

n∑

i=1

aiξ(xi)

is Gaussian

48/224

Application

◮ If

ξ(x) = θtr(x), x ∈ X

θj
indep∼ N (0, σ2

θj
), j = 1, . . . , 2m + 1

then, ∀x1, . . . , xn ∈ X, and ∀a1, . . . , an ∈ R,

n∑

i=1

aiξ(xi) =
∑

i

ai

(∑

j

θj rj(xi)
)

=
∑

j

(∑

i

ai rj(xi)
)
θj ∼ N

(
0,
∑

j

(∑

i

ai rj(xi)
)2

σ2
θj

)

◮ Thus, ξ = θtr is a Gaussian process

49/224

Gaussian random processes

◮ A Gaussian process is characterized by
◮ its mean function

m : x ∈ X 7→ E[ξ(x)]

◮ and its covariance function

k : (x , y) ∈ X
2 7→ cov(ξ(x), ξ(y))

◮ Notation: ξ ∼ GP (m, k)

50/224

◮ Exercise: determine E
(∑d

i=1 aiξ(xi)
)

and var
(∑d

i=1 aiξ(xi)
)

◮ What is the distribution of
∑

aiξ(xi)?

→ The distribution of a linear combination of a Gaussian process

GP(m, k) can be simply obtained as a function of m and k

51/224

Application

◮ If

ξ(x) = θtr(x), x ∈ X

θj
indep∼ N (0, σ2

θj
), j = 1, . . . , 2m + 1

then,

ξ ∼ GP(0, k)

with

k : (x , y) 7→
∑

j

σ2
θj

rj(x)rj(y)

52/224

◮ Covariance function corresponding to

θ1 ∼ N (0, 1)

θ2k , θ2k+1
indep∼ N

(
0, 1

1+(ω0k)α

)
, k = 1, . . . , m

with ω0 = 2π
10 , α = 4

-0.5 0 0.5
h

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

k

52/224

◮ Covariance function corresponding to

θ1 ∼ N (0, 1)

θ2k , θ2k+1
indep∼ N

(
0, 1

1+(ω0k)α

)
, k = 1, . . . , m

with ω0 = 2π
50 , α = 4

-0.5 0 0.5
h

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

k

53/224

The covariance of a Gaussian random process

◮ Main properties: a covariance function k is
◮ symmetric: ∀x , y ∈ X, k(x , y) = k(y , x)
◮ positive:

∀n ∈ N, ∀x1, . . . , xn ∈ X, ∀a1, . . . , an ∈ R,

n∑

i,j=1

aik(xi , xj)aj ≥ 0

◮ In the following, we shall assume that the covariance of

ξ ∼ GP(m, k) is invariant under translations, or stationary:

k(x + h, y + h) = k(x , y), ∀x , y , h ∈ X

◮ When k is stationary, there exists a stationary covariance

ksta : Rd → R such that

cov(ξ(x), ξ(y)) = k(x , y) = ksta(x − y)

54/224

Stationary covariances

◮ When k is stationary, the variance

var(ξ(x)) = cov(ξ(x), ξ(x)) = k(0)

does not depend on x

◮ The covariance function can be written as

k(x − y) = σ2ρ(x − y) ,

with σ2 = var(ξ(x)), and where ρ is the correlation function

of ξ.

55/224

Stationary covariances

◮ The graph of the correlation function is a symmetric “bell

curve” shape

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

correlation range

56/224

◮ We have, by C-S,

∀h ∈ X, |k(h)| =
∣∣cov(ξ(x), ξ(x + h))

∣∣

=
∣∣E[(ξ(x) − m(x))(ξ(x + h) − m(x + h))]

∣∣

≤ E((ξ(x) − m(x))2)1/2E((ξ(x + h) − m(x + h))2)1/2

= k(0)1/2k(0)1/2 = k(0)

◮ Recall, Bochner’s spectral representation theorem

Theorem

A real function k(h), h ∈ R
d is symmetric positive iff it is the Fourier

transform of a finite positive measure, i.e.

k(h) =
∫

Rd

eı(u,h)dµ(u) ,

where µ is a finite positive measure on R
d .

57/224

Gaussian process simulation

◮ Using a random generator, it is possible to “generate” sample

paths f1, f2, . . . of a Gaussian process ξ

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2
−4

−2

0

2

4

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2
−4

−2

0

2

4

58/224

Gaussian process simulation

How to simulate sample paths of a zero-mean Gaussian random

process?

◮ Choose a set of points x1, . . . xn ∈ X

◮ Denote by K the n × n covariance matrix of the random

vector ξ = (ξ(x1), . . . , ξ(xn))t (NB: ξ ∼ N (0, K))

◮ Consider the Cholesky factorization of K

K = CC t ,

with C a lower triangular matrix (such a factorization exists

since K is a sdp matrix)

◮ Let ε = (ε1, . . . , εn)t a Gaussian vector with εi
i.i.d∼ N (0, 1)

◮ Then Cε ∼ N (0, K)

59/224

“Simplification” of the Bayesian model for the simple curve

fitting problem

◮ Instead of choosing the model

ξ(x) = θtr(x), x ∈ X

θj
indep∼ N (0, σ2

θj
), j = 1, . . . , 2m + 1

simply choose a covariance function k and assume

ξ ∼ GP(0, k)

◮ More details about how to choose k will be given below

60/224

Posterior

◮ How to compute a posterior distribution, given the

Gaussian-process prior ξ and data?

0 0.2 0.4 0.6 0.8 1
x

-4

-3

-2

-1

0

1

2

3

4
z

61/224

Conditional distributions

◮ Let X be a random variable modeling an unknown quantity of

interest

◮ Assume we observe a random variable T , or a random vector

T = (T1, . . . , Tn)

◮ Provided that T and X are not independent, T contains

information about X

◮ Aim: define a notion of distribution of X “knowing” T

62/224

Conditional probabilities

Recall the following

Def.

Let (Ω, A, P) be a probability space. Given two events A, B ∈ A
such that P(B) 6= 0, define the probability of A given B (or

conditional on B) by

P(A | B) =
P(A ∩ B)

P(B)

63/224

The notion of conditional density

Def.

Assume that the pair (X , T) ∈ R
2 has a density p(X ,T).

Define the conditional density of X given the event T = t by

pX |T (x | t) =

p(X ,T)(x , t)
pT (t)

=
p(X ,T)(x , t)∫
pX ,T (x , t)dx

if pT (t) > 0

arbitrary density if pT (t) = 0.

64/224

Application

◮ Given a Gaussian random vector Z = (Z1, Z2) ∼ N (0, Σ), what is

the distribution of Z2 “knowing” Z1?
◮ Define

pZ2|Z1 (z2|z1) =
p(Z2,Z1)(z2, z1)

pZ1 (z1)
=

σ1

(2π)1/2(det Σ)1/2
exp(−1/2(ztΣ−1z−z2

1 /σ2
1))

→ Gaussian distribution!

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

◮ The random variable denoted

by Z2 | Z1 with density

pZ2|Z1(· | Z1) represents the

residual uncertainty about Z2

when Z1 has been observed

◮ High correlation → small

residual uncertainty

65/224

Conditional mean/expectation

A fundamental notion: conditional expectation

Def.

Assume that the pair (X , T) has a density p(X ,T). Define the

conditional mean of X given T = t as

E(X | T = t)
∆
=
∫

R

x pX |T (x |t)dx = h(t)

Def.

The random variable E(X | T) = h(T) is called the conditional

expectation of X given T

66/224

Conditional expectation

◮ Why conditional expectation is an fundamental notion?

◮ We have the following

Theorem

Under the previous assumptions, the solution of the problem

X̂ = argminY E
[
(X − Y)2

]

where the minimum is taken over all functions of T is given by

X̂ = E(X | T)

◮ In other words, E(X | T) is the best approximation (in the

sense of the quadratic mean) of X by a function of T

67/224

Important properties of conditional expectation

(1) E(X | T) is a random variable depending on T → there exists

a function h such that E(X | T) = h(T)

(2) The operator πH : X 7→ E(X | T) is a (linear) operator of

orthogonal projection onto the space of all functions of T (for

the inner product X , Y 7→ (X , Y) = E (XY))

(3) Let X , Y , T ∈ L2. Then

i) ∀α ∈ R, E(αX + Y | T) = αE(X | T) + E(Y | T) a.s.

ii) E(E[X | T]) = E(X)

iii) If X ⊥⊥ T , E(X | T) = E(X)

68/224

Conditional expectation: Gaussian random variables

◮ Recall that the space of second-order random variables

L2(Ω, A, P) endowed with the inner product

X , Y 7→ (X , Y) = E (XY) is a Hilbert space

◮ Gaussian linear space

Def.

A linear subspace G of L2(Ω, A, P) is Gaussian iff

∀X1, . . . , Xn ∈ G and ∀a1, . . . , an ∈ R the random variable
∑

i aiXi is Gaussian

◮ In what follows, assume that G is centered, i.e., each element

in G is a zero-mean random variable

69/224

Theorem (Projection theorem in centered Gaussian spaces)

Let G be a centered Gaussian space. Let X , T1, . . . , Tn ∈ G. Then

E(X | T1, . . . , Tn) is the orthogonal projection (in L2) of X on

T = span{T1, . . . , Tn}.

proof Let X̂ ∈ G be the orthogonal projection of X on T .

◮ we have X = X̂ + ε where ε ∈ G is orthogonal to T .

In G, orthogonality ⇔ independence. Thus, ε ⊥⊥ Ti , i = 1, . . . , n.

◮ Then,

E(X | T1, . . . , Tn) = E(X̂ | T1, . . . , Tn) + E(ε | T1, . . . , Tn)

= X̂ + E(ε) = X̂

The result follows.

70/224

Application

Let Z = (Z1, Z2) be a zero-mean Gaussian random vector, with

covariance matrix (
σ2

1 σ1,2

σ2,1 σ2
2

)

Then E(Z1 | Z2) is the orthogonal projection of Z1 onto Z2. Thus

E(Z1 | Z2) = λZ2

with

(Z1 − λZ2, Z2) = (Z1, Z2) − λ(Z2, Z2) = 0 .

Hence,

λ =
σ1,2

σ2
2

71/224

Application

◮ Let Z = (Z1, Z2) ∼ N (0, Σ) as above → recall that the cond.

distrib. of Z2 given Z1 is a Gaussian distribution

◮ Hence Z2 | Z1 ∼ N (µ(Z1), σ(Z1)2) → µ ? σ ?

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

◮ µ = E(Z2 | Z1) = λZ1 with

λ = σ1,2

σ2
2

◮ Using the property of the

orthogonal projection:

σ2 = E
(
(Z2 − E(Z2 | Z1))2 | Z1

)

⊥
= E

(
(Z2 − E (Z2 | Z1))2

)

= E
(
(Z2 − λZ1)2

)

⊥
= E ((Z2 − λZ1)Z2)

= σ2
2 − λσ1,2

72/224

Generalization

Exercise: Let (Z0, Z1, . . . , Zn) be a centered Gaussian vector.

Determine E (Z0 | Z1, . . . , Zn).

73/224

Application: computation of the posterior distrib. of a GP

◮ Let ξ ∼ GP (0, k)

◮ Assume we observe ξ at x1, . . . , xn ∈ X

◮ Given x0 ∈ X, what is the conditional distrib.—or the

posterior distrib. in our Bayesian framework—of

ξ(x0) | ξ(x1), . . . , ξ(xn) ?

◮ More generally, what is the posterior distribution of the

random process

ξ(·) | ξ(x1), . . . , ξ(xn) ?

74/224

Computation of the posterior distribution of a GP

Prop.

Let ξ ∼ GP (0, k). The random process ξ conditioned on

Fn = {ξ(x1), . . . , ξ(xn)}, denoted by ξ | Fn, is a Gaussian

process with

– mean ξ̂n : x 7→ E(ξ(x) | ξ(x1), . . . , ξ(xn))

– covariance kn : x , y 7→ E
(
(ξ(x) − ξ̂n(x))(ξ(y) − ξ̂n(y))

)

75/224

Computation of the posterior distrib. of a GP

◮ By property of the conditional expectation in Gaussian spaces,

for all x ∈ X, ξ̂n(x) is a linear combination of ξ(x1), . . . , ξ(xn):

ξ̂n(x) :=
n∑

i=1

λi(x) ξ(xi)

◮ Moreover, the posterior mean ξ̂n(x) is the orthogonal
projection of ξ(x) onto span{ξ(xi), i = 1, . . . , n}, such that

◮ ξ̂n(x) = argminY E
[
(ξ(x) − Y)2

]
→ the variance of the

prediction error is minimum
◮ E (ξ̂n(x)) = E[E (ξ(x) | Fn)] = E(ξ(x)) = 0 → unbiased estimation

◮ ξ̂n(x) is the best linear predictor (BLP) of ξ(x) from

ξ(x1), . . . , ξ(xn), also called the kriging predictor of ξ(x)

76/224

Computation of the posterior distrib. of a GP

◮ The posterior covariance, also called kriging covariance, is

given by

kn(x , y) := cov
(
ξ(x) − ξ̂n(x), ξ(y) − ξ̂n(y)

)

= k(x − y) −
∑

i

λi(x) k(y − xi) .

◮ kn is the covariance function of the error of prediction

◮ The posterior variance of ξ, also called the kriging variance, is

defined as

σ2
n(x) = var(ξ(x) − ξ̂n(x)) = kn(x , x)

◮ σ2
n(x) is the variance of the error of prediction

77/224

Kriging equations

◮ How to compute the weights λi(x) of the posterior

mean/kriging predictor?

◮ Weights λi(x) are solutions of a system of linear equations

Kλ(x) = k(x)

with

– λ(x) = (λ1(x), . . . , λn(x))t

– K : n × n covariance matrix of the observation vector

– k(x): n × 1 vector with entries k(xi , x)

78/224

Kriging equations

proof

79/224

Posterior distrib. of a GP

◮ For all x ∈ X, the random variable ξ(x) | Fn with distrib.

N (ξ̂n(x), σ2
n(x)

)
represents the residual uncertainty about

ξ(x) when ξ(x1), . . . , ξ(xn) are observed

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ξ̂n(x)

+2σn(x)

−2σn(x)

80/224

Software for kriging/GP regression

◮ R packages
◮ BACCO Bayesian analysis of computer code software
◮ fanovaGraph Building Kriging Models from FANOVA Graphs
◮ DiceKriging DiceOptim GPareto Dice and ReDice packages
◮ MuFiCokriging Multi-Fidelity Cokriging models
◮ RobustInv Robust inversion based on GP (like KrigInv)
◮ tgp Treed Gaussian processes
◮ . . .

81/224

Software for kriging/GP regression

◮ Matlab/GNU Octave
◮ DACE DACE, a matlab kriging toolbox.
◮ FERUM Finite Element Reliability using Matlab
◮ GPML Gaussian Processes for Machine Learning
◮ GPStuff GP Models for Bayesian analysis
◮ scalaGAUSS Kriging toolbox with a focus on large datasets
◮ Matlab Stat & ML toolbox GP regression from Mathworks
◮ STK Small (Matlab/GNU Octave) Toolbox for Kriging
◮ SUMO ooDACE Surrogate Modeling Lab
◮ UQLab Uncertainty quantification framework in Matlab

◮ Python
◮ scikit-learn Machine learning in Python
◮ OpenTURNS Open source lib for UQ
◮ Spearmint Bayesian optimization
◮ GPy Gaussian processes framework in Python

82/224

Generalization: prediction from noisy observations

◮ Let ξ ∼ GP(0, k)
◮ For i = 1, . . . , n, we observe Zi = ξ(xi) + εi at points xi ,

where the random variables εi model an observation noise:

◮ εi
i.i.d∼ N (0, σ2)

◮ independent from ξ

◮ As above, the posterior mean ξ̂n(x) of ξ(x) is obtained as the

orthogonal projection of ξ(x) on the linear subspace

span{Zi , i = 1, . . . , n}:

ξ̂n(x) =
n∑

i=1

λi(x)Zi

with λi(x) such that

∀i , ξ(x) − ξ̂n(x) ⊥ Zi

83/224

Generalization: prediction from noisy observations

◮ Thus, ∀i

E
[
(ξ(x) − ξ̂n(x))Zi

]

= E [ξ(x)(ξ(xi) + εi)] −
n∑

j=1

λj(x)E [(ξ(xj) + εj)(ξ(xi) + εi)]

= k(x , xi) −
n∑

j=1

λj(x)
(
k(xj , xi) + σ2δi ,j

)

◮ Under matrix form (exercise):

84/224

Generalization: prediction from noisy observations

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Kriging prediction based on noisy observations

x

z

85/224

Generalization: prediction from noisy observations

We should use an approximation instead of an interpolation in

three cases:

i) The observations are noisy (obviously): the computer code is

stochastic (for instance, Monte Carlo is used) and running the

code twice does not produce the same output

ii) The output of the computer code is very irregular → a smooth

approximation is preferred

iii) The covariance matrix is ill-conditioned → adding a small

observation noise will regularize the solution of the linear

system (why?)

86/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

87/224

Posterior of a quantity of interest

◮ Using the posterior distribution of ξ, we can address questions
like

◮ What are plausible values for ξ(x) at a given x? (obviously)
◮ What are plausible values for

∫
g(ξ(x)) dµ(x) for given g

and µ?
◮ What are plausible values for the minimum M = minx ξ(x)?
◮ Where is the minimizer x⋆ = argminx ξ(x)?
◮ What is the probability that ξ(x) exceeds a given threshold?
◮ . . .

88/224

Example of a quantity of interest: the improvement

◮ Suppose that our objective is to minimize an unknown

function f : X → R

◮ In our Bayesian approach, we choose a GP prior ξ for f (in

other words, ξ is a model of f)
◮ Objective: construct a sequence (X1, X2, . . .) ∈ X that

converges to X ⋆ = argminx ξ(x)
◮ Given X1, . . . , Xn+1, how to define and choose a “good” point

Xn+1 in our setting?
◮ Let mn = min1≤i≤n ξ(Xi)
◮ A “good” point x ∈ X is such that mn − ξ(x) is large
◮ Define the excursion of ξ at x below mn, a.k.a the

improvement:

In =

{
0 if ξ(x) > mn

mn − ξ(x) if ξ(x) ≤ mn

89/224

Example of a quantity of interest: the improvement

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ξ̂n(x)

+2σ̂n(x)

−2σ̂n(x)

89/224

Example of a quantity of interest: the improvement

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

89/224

Example of a quantity of interest: the improvement

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ξ̂n(x) σ̂n(x)

89/224

Example of a quantity of interest: the improvement

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Improvement

ξ̂n(x)
mn

90/224

Example of a quantity of interest: the improvement

◮ Regions with high values of the posterior mean of In are

promising search regions for the minimum of ξ

◮ The posterior mean of In may be written as

ρn(x) = E (In | ξ(X1), . . . , ξ(Xn))

=
∫ mn

z=− inf
(mn − z) pξ(x)|ξ(X1),...,ξ(Xn)(z) dz

= γ(mn − ξ̂n(x), σ2
n(x))

with

γ(z , s) =

√
s Φ′

(
z√
s

)
+ z Φ

(
z√
s

)
if s > 0,

max (z , 0) if s = 0.

◮ ρn is called the expected improvement [Mockus 78, Schonlau

et al. 96, Jones et al. 98]

91/224

Example of a quantity of interest: the improvement

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

ξ̂n(x)

mn

x

ρ
n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

92/224

Insertion into an optimization algorithm

◮ The EI algorithm: Xn+1 = argmaxx ρn(x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−6

−4

−2

0

x

lo
g 1

0
ρ

n
(x

)

93/224

Example of quantity of interest: the minimizer

◮ Assume an unknown function f : X → R and suppose we are

interested in seeking its minimizer:

x⋆ = argminx f (x)

◮ Choose a GP prior ξ for f . Given observations ξ(x1), . . . ξ(xn),

what is the posterior distrib. of X ⋆ = argminx ξ(x)?

◮ Unlike In above, the distrib. of X ⋆ does not possess a

closed-form expression → resort to an empirical estimation

using conditional sample paths

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
0

1

2

3

x

p
x

⋆
|F

n

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
0

2

4

6

x

p
x

⋆
|F

+ n

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
0

1

2

3

4

x

p
x

⋆
|F

+ n

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
0

1

2

3

x

p
x

⋆
|F

+ n

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
0

1

2

3

x

p
x

⋆
|F

+ n

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
0

1

2

3

x

p
x

⋆
|F

+ n

94/224

Empirical posterior density of the minimizer

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
0

1

2

3

4

x

p
x

⋆
|F

+ n

95/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

96/224

Choosing a centered Gaussian random process

How to choose the covariance function of a GP ξ ∼ N (0, k)?

97/224

Regularity properties of a random process

Def.

Given x0 ∈ R
d , a random process ξ is said to be continuous in

mean-square at x0 iff

lim
x→x0

E
[
(ξ(x) − ξ(x0))2

]
= 0

Prop.

Let ξ be a second-order random process with continuous mean

function and stationary covariance function k. ξ is continuous in

mean-square iff k is continuous at zero.

98/224

Regularity properties of a random process

Def.

For x , h ∈ R
d , define the random variable

ξh(x) =
ξ(x0 + h) − ξ(x0)

‖h‖

ξ is mean-square differentiable at x0 iff there exists a random

vector ∇ξ(x0) such that

lim
h→0

E
[(

ξh(x0) − (∇ξ(x0), h)
)2]

= 0

Prop.

Let ξ be a second-order random process with differentiable mean

function and stationary covariance function k. ξ is differentiable in

mean-square iff k is two-time differentiable at zero.

99/224

Regularity properties of a random process

◮ Differentiability of the covariance function at the origin →
mean-square differentiability of ξ

100/224

Influence of the regularity

mean-square continuity

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

three-time mean-square

differentiability

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

101/224

Choice of a covariance

◮ A Gaussian process prior carries a high amount of information

about f

→ it is often difficult to elicit such a prior before any

evaluation is made

◮ Covariance function of ξ is usually assumed to belong to some

parametric class of positive definite functions

◮ Parameter values assumed to be unknown

◮ Two approaches:

1. The parameters can be estimated from the evaluation results

by maximum likelihood, and then used as if they were known

(plug-in approach)

2. We can assume a prior distrib. for the parameters of the

covariance and use a fully Bayesian approach

102/224

Choice of a parametrized covariance function: the Matérn

covariance

◮ The Matérn covariance function is a conventional covariance

function in the literature of computer experiments

→ offers the possibility to adjust the regularity of ξ with a single

parameter

◮ The Matérn function:

κν(h) =
1

2ν−1Γ(ν)

(
2ν1/2h

)ν

Kν

(
2ν1/2h

)
, h ∈ R (1)

with

– Γ the Gamma function

– Kν the modified Bessel function of the second kind

◮ To model a real-valued function defined over X ⊂ R, we use the

Matérn covariance:

kθ(h) = σ2κν(|h|/ρ) , h ∈ R (2)

103/224

Choice of a parametrized covariance function: the Matérn

covariance

Matérn covariance in one dimension σ2 = 1, ρ = 0.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν = 1/2
ν = 3/2
ν = 9/2

ξ is p-time mean-square differentiable iff ν > p

104/224

Choice of a parametrized covariance function: the Matérn

covariance

◮ To model a function f defined over X ⊂ R
d , with d > 1, we

use the anisotropic form of the Matérn covariance:

kθ(x , y) = σ2κν

√√√√
d∑

i=1

(x[i] − y[i])2

ρ2
i

 , x , y ∈ R

d (3)

where x[i], y[i] denote the i th coordinate of x and y , and the

positive scalars ρi represent scale parameters

◮ Since σ2 > 0, ν > 0, ρi > 0, i = 1, . . . , d , in practice, we

consider the vector of parameters

θ = {log σ2, log ν, − log ρ1, . . . , − log ρd} ∈ R
d+2

→ makes parameter estimation easier

105/224

Parameter estimation by maximum likelihood

◮ Assume ξ is a zero-mean Gaussian process

◮ The log-likelihood of the data ξ
n

= (ξ(x1), . . . , ξ(xn))t can be

written as

ℓ(ξ
n
; θ) = −n

2
log(2π)− 1

2
log det K (θ)− 1

2
ξ

n
tK (θ)−1ξ

n
, (4)

where K (θ) is the covariance matrix of ξ
n
, which depends on

the parameter vector θ

◮ The log-likelihood can be maximized using a gradient-based

search method

106/224

Prediction of a Gaussian process with unknown mean

function

◮ In the domain of computer experiments, the mean of a

Gaussian process is generally written as a linear parametric

function

m(·) = βtϕ(·) , (5)

with

- β a vector of unknown parameters

- ϕ = (ϕ1, . . . , ϕl)
t an l-dimensional vector of functions (in

practice, polynomials)

◮ Simplest case: the mean function is an unknown constant m,

in which case β = m and ϕ : x ∈ X 7→ 1

107/224

Prediction of a Gaussian process with unknown mean function

◮ Define the linear space of functions

P =

{
x 7→

l∑

i=1

βiϕi(x); βi ∈ R

}
,

◮ Define Λ the linear space of finite-support measures on X, i.e.

λ ∈ Λ =⇒ λ =
n∑

i=1

λiδxi
for some n ∈ N

◮ For f : X → R, and λ =
∑n

i=1 λiδxi
∈ Λ,

〈λ, f 〉 =
∫

X

f dλ =
n∑

i=1

λi f (xi)

◮ Define the linear subspace ΛP⊥ ⊂ Λ of finite-support measures

vanishing on P, i.e.

λ ∈ ΛP⊥ =⇒ 〈λ, f 〉 =
∫

X

fdλ =
n∑

i=1

λi f (xi) = 0 , ∀f ∈ P

108/224

Prediction of a Gaussian process with unknown mean function

◮ Let ξ be a Gaussian random process with an unknown mean in P,

and a covariance function k

◮ For x ∈ X, the (intrinsic) kriging predictor ξ̂n(x) of ξ(x) from

ξ(x1), . . . , ξ(xn) is the linear projection

ξ̂n(x) =
∑

i

λi(x)ξ(xi)

of ξ(x) onto span{ξ(xi), i = 1, . . . , n} such that the variance of the

error ξ(x) − ξ̂n(x) is minimized, under the constraint

δx −
∑

λi(x)δxi
∈ ΛP⊥

i.e.,

〈δx −
∑

λi(x)δxi
, ϕj〉 = ϕj(x) −

∑
λi(x)ϕj(xi) = 0 , j = 1, . . . , l

◮ The requirement δx −∑λi(x)δxi
∈ ΛP⊥ makes the kriging predictor

unbiased, even if the mean of ξ is unknown

109/224

Prediction of a Gaussian process with unknown mean

function

ξ̂n(x) is the linear projection of ξ(x) onto span{ξ(x1), . . . , ξ(xn)}
orthogonally to P

span{ξ(xi), i ≤ n}

P

ξ(x)
ξ̂n(x)

O

110/224

Prediction of a Gaussian process with unknown mean

function

◮ The weights λi(x ; xn) are again solutions of a system of linear

equations, which can be written under a matrix form as

(
K ϕt

ϕ 0

)(
λ(x)

µ(x)

)
=

(
k(x)

ϕ(x)

)
, (6)

with

– ϕ an l × n matrix with entries ϕi(xj), i = 1, . . . , l , j = 1, . . . , n

– µ a vector of Lagrange coefficients

– K , λ(x), k(x) as above

111/224

Prediction of a Gaussian process with unknown mean function

◮ When the mean is unknown, the kriging covariance function (the

covariance of the error of prediction) is given by

kn(x , y) := cov
(

ξ(x) − ξ̂n(x), ξ(y) − ξ̂n(y)
)

= k(x − y) − λ(x)t k(y) − µ(x)tϕ(y) .

Prop.

Let k be a covariance function and assume m ∈ P.

If

{
ξ | m ∼ GP (m, k)

m : x 7→ βtϕ(x), β ∼ U(Rl)
then ξ | Fn ∼ GP

(
ξ̂n(·), kn(·, ·)

)

with U(Rl) the (improper) uniform distribution over Rl

→ justifies the use of kriging in a Bayesian framework provided that

the covariance function of ξ is known

112/224

Parameter estimation with unknown mean function

◮ Objective: estimate the covariance parameters of a Gaussian

process with unknown mean

◮ Restricted Maximum Likelihood (REML) approach →
maximize the likelihood of the increments (or generalized

increments) of the data

◮ Let ξ be a Gaussian process with an unknown mean function

in P and ξ
n

the random vector of observations at points xi ,

i = 1, . . . , n

◮ Let ϕ = (ϕi(xj))
l ,n
i ,j=1 be the l × n matrix of basis functions of

P evaluated on {x1, . . . , xn}.

113/224

Parameter estimation with unknown mean function

◮ Since the dimension of P is l , the dimension of the space of

the measures with support {x1, . . . , xn} that cancel out the

functions of P is n − l .

◮ Assume an n × (n − l) matrix W with rank n − l has been

found, such that

ϕW = 0 .

(The columns of W are in the kernel of ϕ.)

◮ Then Z = W Tξ
n

is a Gaussian random vector taking its

values in R
n−l , with zero mean and covariance matrix

W TK (θ)W

where K (θ) is the covariance matrix of ξ
n

with entries

kθ(xi − xj)

114/224

REML

◮ The random vector Z is a contrast vector

◮ The log-likelihood of the contrasts is given by

L(z | θ) = −n − l

2
log 2π−1

2
log det(W tK (θ)W)−1

2
z t(W tK (θ)W)−1z .

115/224

REML

◮ Various methods may be employed to compute the matrix W

◮ We favor the QR decomposition of ϕT

ϕT = (Q1 | Q2)

(
R

0

)
,

where (Q1 | Q2) is an n × n orthogonal matrix and R is a l × l

upper triangular matrix

◮ It is trivial to check that the columns of Q2 form a basis of

the kernel of ϕ

◮ So we may chose W = Q2

◮ Note that W TW = In−l .

116/224

Books

◮ M. Stein, Interpolation of Spatial Data: Some Theory for

kriging, Springer, 1999

◮ T. Santner, B. Williams and W. Notz, The Design and

Analysis of Computer Experiments, Springer, 2003

◮ C. Rasmussen and C. Williams, Gaussian processes for

Machine Learning, MIT Press, 2006

◮ A. Forrester, A. Sóbester and A. Keane, Engineering

design via surrogate modelling: a practical guide, John Wiley

& Sons, 2008

117/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

References

118/224

What is Bayesian optimization ?

◮ “wide sense” definition

◮ optimization using tools from Bayesian UQ

118/224

What is Bayesian optimization ?

◮ “wide sense” definition

◮ optimization using tools from Bayesian UQ

◮ started with Harold Kushner’s paper: A New Method of

Locating the Maximum Point of an Arbitrary Multipeak Curve

in the Presence of Noise, J. Basic Engineering, 1964.

119/224

What is Bayesian optimization ?

◮ a slightly more restrictive definition

◮ sequential Bayesian decision theory applied to optimization

119/224

What is Bayesian optimization ?

◮ a slightly more restrictive definition

◮ sequential Bayesian decision theory applied to optimization

◮ started with the work of Jonas Mockus and Antanas Žilinskas

in the 70’s, e.g., On a Bayes method for seeking an extremum,

Avtomatika i Vychislitel’naya Teknika, 1972 (in Russian)

119/224

What is Bayesian optimization ?

◮ a slightly more restrictive definition

◮ sequential Bayesian decision theory applied to optimization

◮ started with the work of Jonas Mockus and Antanas Žilinskas

in the 70’s, e.g., On a Bayes method for seeking an extremum,

Avtomatika i Vychislitel’naya Teknika, 1972 (in Russian)

◮ In this lecture we adopt this second (more constructive !) definition

120/224

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

121/224

Decision-theoretic framework

121/224

Decision-theoretic framework

◮ Bayesian decision theory (BDT) in a nutshell
◮ a mathematical framework for decisions under uncertainty
◮ uncertainty is captured by probability distributions
◮ the “Bayesian agent” aims at minimizing the expected loss

122/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

122/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

122/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature”
◮ a prior distribution over the states of nature
◮ a description of the decisions we have to make
◮ and the corresponding “transitions”
◮ a loss function (or utility function)

122/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature”
◮ a prior distribution over the states of nature
◮ a description of the decisions we have to make
◮ and the corresponding “transitions”
◮ a loss function (or utility function)

123/224

States of nature

◮ What are the states of nature in an optimization problem?

◮ Short answer
◮ Everything that “nature” knows but you don’t

123/224

States of nature

◮ What are the states of nature in an optimization problem?

◮ Short answer
◮ Everything that “nature” knows but you don’t

◮ More practically: depends on the type of problem

1. the content of the black box (expensive numerical model)

2. for stochastic simulators: future responses of the simulator

3. design under uncertainty: the value of environmental variables

4. . . .

123/224

States of nature

◮ What are the states of nature in an optimization problem?

◮ Short answer
◮ Everything that “nature” knows but you don’t

◮ More practically: depends on the type of problem

1. the content of the black box (expensive numerical model)

2. for stochastic simulators: future responses of the simulator

3. design under uncertainty: the value of environmental variables

4. . . .

Notation

Ω =
{
all possible states ω of nature

}

124/224

States of nature: example

◮ Consider the following setting
◮ a deterministic numerical model
◮ input space X ⊂ R

d , output space R
p

◮ no environmental variables in the problem

◮ States of nature for this setting
◮ Ω =

{
f : X → R

p | f such that . . .
}

124/224

States of nature: example

◮ Consider the following setting
◮ a deterministic numerical model
◮ input space X ⊂ R

d , output space R
p

◮ no environmental variables in the problem

◮ States of nature for this setting
◮ Ω =

{
f : X → R

p | f such that . . .
}

◮ e.g., d = 1, p = 1, X = [0; 1] and Ω = C(X;R)

◮ Until further notice, we will use this simple (but important)

setting to illustrate the basics of Bayesian optimization

125/224

Uncertainty quantification (reminder from Lecture #1)

◮ The true state of nature ω⋆ ∈ Ω is unknown

◮ Example (cont’d)
◮ a function f ⋆ ∈ Ω = C(X;R) is inside the black box (ω⋆ ≡ f ⋆)
◮ we don’t “know” f ⋆(x) until we run the code with input x

125/224

Uncertainty quantification (reminder from Lecture #1)

◮ The true state of nature ω⋆ ∈ Ω is unknown

◮ Example (cont’d)
◮ a function f ⋆ ∈ Ω = C(X;R) is inside the black box (ω⋆ ≡ f ⋆)
◮ we don’t “know” f ⋆(x) until we run the code with input x

◮ Bayesian approach to UQ
◮ our knowledge of ω⋆ is encoded by a probability distribution

on the set Ω of all possible ω’s
◮ technically: proba on (Ω, F) for some σ-algebra F . . .

125/224

Uncertainty quantification (reminder from Lecture #1)

◮ The true state of nature ω⋆ ∈ Ω is unknown

◮ Example (cont’d)
◮ a function f ⋆ ∈ Ω = C(X;R) is inside the black box (ω⋆ ≡ f ⋆)
◮ we don’t “know” f ⋆(x) until we run the code with input x

◮ Bayesian approach to UQ
◮ our knowledge of ω⋆ is encoded by a probability distribution

on the set Ω of all possible ω’s
◮ technically: proba on (Ω, F) for some σ-algebra F . . .

◮ Sequence of decisions ⇒ sequence of distributions P0, P1, . . .
◮ Pn corresponds to the agent’s beliefs after the nth decision
◮ A prior distribution P0 needs to be specified

126/224

Uncertainty quantification: example

◮ Example (cont’d): if f is known to look more or less like this:

-1 -0.5 0 0.5 1
input variable x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

re
sp

on
se

 z

then we can take P0 = GP(m, k)

with m ∼ U(R) and k a (stationary) Matérn covariance

126/224

Uncertainty quantification: example

◮ Example (cont’d): if f is known to look more or less like this:

-1 -0.5 0 0.5 1
input variable x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

re
sp

on
se

 z

then we can take P0 = GP(m, k)

with m ∼ U(R) and k a (stationary) Matérn covariance

◮ Gaussian process priors are commonly used because
◮ they are computationally convenient
◮ while allowing a certain modeling flexibility

127/224

Uncertainty quantification: consequences

◮ For clarity, consider again the case of a deterministic model:
◮ an unknown function f ∈ Ω is in the black box

127/224

Uncertainty quantification: consequences

◮ For clarity, consider again the case of a deterministic model:
◮ an unknown function f ∈ Ω is in the black box

◮ Given a proba P on Ω, we can
◮ compute the probability of any (measurable) statement about f

◮ compute the expectation of any (measurable) function of f

i.e., the unknown f can be treated as random

127/224

Uncertainty quantification: consequences

◮ For clarity, consider again the case of a deterministic model:
◮ an unknown function f ∈ Ω is in the black box

◮ Given a proba P on Ω, we can
◮ compute the probability of any (measurable) statement about f

◮ compute the expectation of any (measurable) function of f

i.e., the unknown f can be treated as random

Convenient notation

ξ = random function that represents the unknown f

◮ we will write, e.g., En (ξ(x)) instead of
∫

Ω f (x) Pn(df) ,

128/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature”
◮ a prior distribution over the states of nature
◮ a description of the decisions we have to make
◮ and the corresponding “transitions”
◮ a loss function (or utility function)

128/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature” X

◮ a prior distribution over the states of nature X

◮ a description of the decisions we have to make
◮ and the corresponding “transitions”
◮ a loss function (or utility function)

129/224

Decisions

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

129/224

Decisions: intermediate decisions

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

◮ Intermediate decisions (simple setting)
◮ running the numerical model with a given input x ∈ X

◮ getting the corresponding output (deterministic or random)

129/224

Decisions: intermediate decisions

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

◮ Intermediate decisions (simple setting)
◮ running the numerical model with a given input x ∈ X

◮ getting the corresponding output (deterministic or random)

◮ Intermediate decisions (various extensions)
◮ parallel computing: batches of input values
◮ multi-fidelity: choosing the right fidelity level
◮ variable run-time: choosing when to stop a computation
◮ . . .

129/224

Decisions: stopping decision

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

◮ Stopping decision (standard setting)
◮ a budget of evaluations, or computation time, is given
◮ the stopping decision is trivial in this case

129/224

Decisions: stopping decision

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

◮ Stopping decision (standard setting)
◮ a budget of evaluations, or computation time, is given
◮ the stopping decision is trivial in this case

◮ Digression: taking the cost of observations into account?
◮ in principle, BO can deal with the stopping decision too
◮ in practice, difficult to translate into a loss (see later)
◮ some “BO papers” propose heuristic stopping rule

129/224

Decisions: final decision

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

◮ Final decision (ex: single-objective minimization pb.)
◮ an estimate of the minimizer x∗ = argminx∈X f (x)
◮ and/or an estimate of the minimum M∗ = minx∈X f (x)

with X a “known” input space

129/224

Decisions: final decision

◮ Several types of decisions in an optimization procedure:
◮ intermediate decisions
◮ stopping decision
◮ final decision

◮ Final decision (ex: single-objective minimization pb.)
◮ an estimate of the minimizer x∗ = argminx∈X f (x)
◮ and/or an estimate of the minimum M∗ = minx∈X f (x)

with X a “known” input space

◮ Other settings
◮ multi-objective: Pareto set / Pareto front (see later),
◮ inequality constraints (see later), equality constraints (harder !),
◮ quasi-optimal region (sublevel set). . .

130/224

Decisions: standard setting and notations

◮ From now on we focus on the “standard” setting
◮ intermediate decisions ≡ evaluations (known comput. cost)
◮ stopping: a budget of N evaluations is given

130/224

Decisions: standard setting and notations

◮ From now on we focus on the “standard” setting
◮ intermediate decisions ≡ evaluations (known comput. cost)
◮ stopping: a budget of N evaluations is given

Notations

Xn(ω) = the nth evaluation point

DN+1(ω) = the “final decision” (estimate of the QoI)

D(ω) = (X1(ω), . . . , XN(ω), DN+1(ω))

131/224

Transitions: conditioning probability measures

◮ Recall that
◮ the agent’s knowledge at time n is described by Pn

◮ the (n + 1)th decision induces a transition Pn → Pn+1

131/224

Transitions: conditioning probability measures

◮ Recall that
◮ the agent’s knowledge at time n is described by Pn

◮ the (n + 1)th decision induces a transition Pn → Pn+1

Notations: available information

In = the information obtained as a result of the nth decision

Fn = the information available at time n

◮ Mathematically, Pn = P0 (· | Fn) = Pn−1 (· | In)

◮ Various settings can be addressed
◮ depending on what we define as In ,

132/224

Decisions: standard setting and notations

◮ From now on we focus on the “standard” setting
◮ intermediate decisions ≡ evaluations (known comput. cost)
◮ stopping: a budget of N evaluations is given

Notations

Xn(ω) = the nth evaluation point

DN+1(ω) = the “final decision” (estimate of the QoI)

D(ω) = (X1(ω), . . . , XN(ω), DN+1(ω))

◮ We cannot use information that is not yet available
◮ Xn(ω) depends on ω through Fn−1 only
◮ DN+1(ω) depends on ω through FN only
◮ D is a decision strategy (sequence of decision rules)

133/224

Transitions: examples

◮ Example (cont’d)
◮ single-output, deterministic code
◮ In = (Xn, ξ(Xn)) and Fn = (X1, ξ(X1), . . . , Xn, ξ(Xn))
◮ ξ(Xi) = f ⋆(Xi) is the true, scalar, value of the model at Xi

133/224

Transitions: examples

◮ Example (cont’d)
◮ single-output, deterministic code
◮ In = (Xn, ξ(Xn)) and Fn = (X1, ξ(X1), . . . , Xn, ξ(Xn))
◮ ξ(Xi) = f ⋆(Xi) is the true, scalar, value of the model at Xi

◮ Many other (interesting) settings are possible !
◮ stochastic simulators

◮ the output is a random draw Zn ∼ some distrib. PZn|Xn

◮ In = (Xn, Zn) and Fn = (X1, Z1, . . . , Xn, Zn)

133/224

Transitions: examples

◮ Example (cont’d)
◮ single-output, deterministic code
◮ In = (Xn, ξ(Xn)) and Fn = (X1, ξ(X1), . . . , Xn, ξ(Xn))
◮ ξ(Xi) = f ⋆(Xi) is the true, scalar, value of the model at Xi

◮ Many other (interesting) settings are possible !
◮ stochastic simulators

◮ the output is a random draw Zn ∼ some distrib. PZn|Xn

◮ In = (Xn, Zn) and Fn = (X1, Z1, . . . , Xn, Zn)

◮ availability of gradients (e.g., adjoint code)

133/224

Transitions: examples

◮ Example (cont’d)
◮ single-output, deterministic code
◮ In = (Xn, ξ(Xn)) and Fn = (X1, ξ(X1), . . . , Xn, ξ(Xn))
◮ ξ(Xi) = f ⋆(Xi) is the true, scalar, value of the model at Xi

◮ Many other (interesting) settings are possible !
◮ stochastic simulators

◮ the output is a random draw Zn ∼ some distrib. PZn|Xn

◮ In = (Xn, Zn) and Fn = (X1, Z1, . . . , Xn, Zn)

◮ availability of gradients (e.g., adjoint code)
◮ batch setting and/or multiple outputs

133/224

Transitions: examples

◮ Example (cont’d)
◮ single-output, deterministic code
◮ In = (Xn, ξ(Xn)) and Fn = (X1, ξ(X1), . . . , Xn, ξ(Xn))
◮ ξ(Xi) = f ⋆(Xi) is the true, scalar, value of the model at Xi

◮ Many other (interesting) settings are possible !
◮ stochastic simulators

◮ the output is a random draw Zn ∼ some distrib. PZn|Xn

◮ In = (Xn, Zn) and Fn = (X1, Z1, . . . , Xn, Zn)

◮ availability of gradients (e.g., adjoint code)
◮ batch setting and/or multiple outputs
◮ variable run-times, “simulation failures”. . .

134/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature” X

◮ a prior distribution over the states of nature X

◮ a description of the decisions we have to make
◮ and the corresponding “transitions”
◮ a loss function (or utility function)

134/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature” X

◮ a prior distribution over the states of nature X

◮ a description of the decisions we have to make X

◮ and the corresponding “transitions” X

◮ a loss function (or utility function)

135/224

Loss function

◮ To guide the decisions of the Bayesian agent, we need to

specify a loss function L

Notation

L : Ω × D → R

(ω, d) 7→ L(ω, d)

where D is the set of all possible sequences of decisions

135/224

Loss function

◮ To guide the decisions of the Bayesian agent, we need to

specify a loss function L

Notation

L : Ω × D → R

(ω, d) 7→ L(ω, d)

where D is the set of all possible sequences of decisions

◮ The Bayes-optimal strategy is, by definition:

D = argmin E0 (L(D))

= argmin
∫

Ω
L(ω, D(ω)) P0(dω)

where D ranges over all strategies

136/224

Loss function: example

◮ Example (cont’d)
◮ Assume that we want to find the minimizer of f

◮ d = (x1, . . . , xn, x̂)

◮ with x̂ our estimate of argmin f

136/224

Loss function: example

◮ Example (cont’d)
◮ Assume that we want to find the minimizer of f

◮ d = (x1, . . . , xn, x̂)

◮ with x̂ our estimate of argmin f

◮ A standard loss function for this situation is the linear loss:

L(f , d) = L(f , x̂) = f (x̂) − min f

(a.k.a. opportunity cost, a.k.a. instantaneous regret)

136/224

Loss function: example

◮ Example (cont’d)
◮ Assume that we want to find the minimizer of f

◮ d = (x1, . . . , xn, x̂)

◮ with x̂ our estimate of argmin f

◮ A standard loss function for this situation is the linear loss:

L(f , d) = L(f , x̂) = f (x̂) − min f

(a.k.a. opportunity cost, a.k.a. instantaneous regret)

◮ Remarks
◮ L coincides with the L1 loss of the estimator f (x̂)

f (x̂) ≥ min f ⇒ L(f , x̂) = |f (x̂) − min f |

◮ L is a terminal loss (does not depend on X1, ξ(X1), . . .)

137/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature” X

◮ a prior distribution over the states of nature X

◮ a description of the decisions we have to make X

◮ and the corresponding “transitions” X

◮ a loss function (or utility function)

137/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature” X

◮ a prior distribution over the states of nature X

◮ a description of the decisions we have to make X

◮ and the corresponding “transitions” X

◮ a loss function (or utility function) X

◮ Our BDT framework is complete, let’s use it ,

137/224

Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set of all possible “states of nature” X

◮ a prior distribution over the states of nature X

◮ a description of the decisions we have to make X

◮ and the corresponding “transitions” X

◮ a loss function (or utility function) X

◮ Our BDT framework is complete, let’s use it ,

138/224

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

139/224

Problem statement

◮ Assume a standard BO setting
◮ fixed budget N, terminal cost only

◮ L(ω, d) = L(ω, dN+1)

◮ intermediate decisions ≡ evaluations

◮ one at a time, possibly noisy (stochastic simulator)

◮ Fn = (X1, Z1, . . . , Xn, Zn)

139/224

Problem statement

◮ Assume a standard BO setting
◮ fixed budget N, terminal cost only

◮ L(ω, d) = L(ω, dN+1)

◮ intermediate decisions ≡ evaluations

◮ one at a time, possibly noisy (stochastic simulator)

◮ Fn = (X1, Z1, . . . , Xn, Zn)

◮ Recall the Bayes-optimal strategy (algorithm):

DBayes = argminD E0 (L(DN+1))

= argminD

∫

Ω
L(ω, DN+1(ω)) P0(dω)

where D ranges over all strategies D = (X1, . . . , XN , DN+1)

140/224

Problem statement

What does this DBayes look like ?

Can we actually build an optimal Bayesian algorithm ?

141/224

Problem statement (more precisely)

◮ Recall that
◮ Xn+1(ω) must depend on ω through Fn only
◮ DN+1(ω) must depend on ω through FN only

141/224

Problem statement (more precisely)

◮ Recall that
◮ Xn+1(ω) must depend on ω through Fn only
◮ DN+1(ω) must depend on ω through FN only

Notations

Xn+1 = ϕn (X1, Z1, . . . , Xn, Zn) = ϕn(Fn)

DN+1 = ϕN (X1, Z1, . . . , XN , ZN) = ϕN(FN)

141/224

Problem statement (more precisely)

◮ Recall that
◮ Xn+1(ω) must depend on ω through Fn only
◮ DN+1(ω) must depend on ω through FN only

Notations

Xn+1 = ϕn (X1, Z1, . . . , Xn, Zn) = ϕn(Fn)

DN+1 = ϕN (X1, Z1, . . . , XN , ZN) = ϕN(FN)

◮ Goal: find the functions ϕ0, . . . , ϕN

142/224

Lecture 2 : Bayesian optimization (BO)

2.2. From Bayes-optimal to myopic strategies
The optimal terminal decision

Optimal choice of the last evaluation

Bayes-optimal versus “practical Bayes” optimization

Sampling criteria for multi-objective and/or contrained optimization

143/224

Optimal terminal decision

Notation

En = E (· | Fn) = conditional expectation with respect to Fn

= expectation with respect to the probability Pn

143/224

Optimal terminal decision

Notation

En = E (· | Fn) = conditional expectation with respect to Fn

= expectation with respect to the probability Pn

◮ Consider any incomplete strategy X1, . . . XN

◮ Claim: the optimal terminal decision is

DN+1 = ϕBayes
N (X1, Z1, . . . , XN , ZN) = argmind EN (L(d))

where d runs over all possible values for the terminal decision

144/224

Optimal terminal decision: proof

◮ Take any strategy D = (X1, . . . , XN , DN+1)

◮ Consider the modified strategy D′ =
(
X1, . . . , XN , D′

N+1

)

where D′
N+1 = ϕBayes

N (X1, Z1, . . . , XN , ZN)

144/224

Optimal terminal decision: proof

◮ Take any strategy D = (X1, . . . , XN , DN+1)

◮ Consider the modified strategy D′ =
(
X1, . . . , XN , D′

N+1

)

where D′
N+1 = ϕBayes

N (X1, Z1, . . . , XN , ZN)

◮ Then, by definition of ϕBayes
N ,

EN (L(DN+1)) = EN (L(d))|d=DN+1

≥ min
d

EN (L(d)) = EN

(
L(D′

N+1)
)

144/224

Optimal terminal decision: proof

◮ Take any strategy D = (X1, . . . , XN , DN+1)

◮ Consider the modified strategy D′ =
(
X1, . . . , XN , D′

N+1

)

where D′
N+1 = ϕBayes

N (X1, Z1, . . . , XN , ZN)

◮ Then, by definition of ϕBayes
N ,

EN (L(DN+1)) = EN (L(d))|d=DN+1

≥ min
d

EN (L(d)) = EN

(
L(D′

N+1)
)

◮ and thus

E0(L(DN+1)) = E0 (EN (L(DN+1)))

≥ E0
(
EN

(
L(D′

N+1)
))

= E0(L(D′
N+1))

145/224

Vocabulary: posterior (Bayes) risk at time N

◮ Define the posterior risk at time N for the decision d :

RN(d) = EN (L(d))

(“risk” is a synonym for “expected loss”)

145/224

Vocabulary: posterior (Bayes) risk at time N

◮ Define the posterior risk at time N for the decision d :

RN(d) = EN (L(d))

(“risk” is a synonym for “expected loss”)

◮ Define the posterior Bayes risk at time N:

RBayes
N = min

d
RN(d)

◮ Remember: the min attained for d = ϕBayes
N (FN)

146/224

Example (cont’d): linear loss

◮ Recall the setting
◮ goal: minimize f

◮ dN+1 = x̂ is an estimate of X∗(f) = argmin f

◮ L(f , x̂) = f (x̂) − min f

146/224

Example (cont’d): linear loss

◮ Recall the setting
◮ goal: minimize f

◮ dN+1 = x̂ is an estimate of X∗(f) = argmin f

◮ L(f , x̂) = f (x̂) − min f

◮ Compute the posterior risk at time N for a given x̂ ∈ X:

RN(x̂) = EN (L(ξ, x̂)) = EN (ξ(x̂) − min ξ)

= ξ̂N(x̂) − EN (min ξ)

146/224

Example (cont’d): linear loss

◮ Recall the setting
◮ goal: minimize f

◮ dN+1 = x̂ is an estimate of X∗(f) = argmin f

◮ L(f , x̂) = f (x̂) − min f

◮ Compute the posterior risk at time N for a given x̂ ∈ X:

RN(x̂) = EN (L(ξ, x̂)) = EN (ξ(x̂) − min ξ)

= ξ̂N(x̂) − EN (min ξ)

◮ Thus the optimal terminal decision is

DBayes
N+1 = X̂Bayes = argminx∈X ξ̂N(x)

147/224

Example (cont’d): linear loss

Assume that n = N = 5 (a small budget indeed).

0 2 4 6 8 10 12
-10

-5

0

5

10

input x

re
sp

on
se

z

147/224

Example (cont’d): linear loss

Assume that n = N = 5 (a small budget indeed).

0 2 4 6 8 10 12
-10

-5

0

5

10

input x

re
sp

on
se

z

147/224

Example (cont’d): linear loss

Assume that n = N = 5 (a small budget indeed).

0 2 4 6 8 10 12
-10

-5

0

5

10

input x

re
sp

on
se

z

148/224

Example (cont’d): the L
1 loss, variant

◮ To summarize, we have for this example

X̂Bayes = argmin ξ̂N

RBayes
N = min ξ̂N − EN (min ξ)

◮ Remark: in general, X̂Bayes 6∈ {X1, . . . , XN}
◮ the value of the function at X̂Bayes is not known

148/224

Example (cont’d): the L
1 loss, variant

◮ To summarize, we have for this example

X̂Bayes = argmin ξ̂N

RBayes
N = min ξ̂N − EN (min ξ)

◮ Remark: in general, X̂Bayes 6∈ {X1, . . . , XN}
◮ the value of the function at X̂Bayes is not known

◮ Variant: restrict the terminal decision to {X1, . . . , XN}

X̂Bayes,1 = argminx∈{X1,...,XN} ξ(x)

RBayes,1
N = min

i≤N
ξ(Xi) − EN (min ξ)

149/224

Example (cont’d): linear loss

Assume that n = N = 5 (a small budget indeed).

0 2 4 6 8 10 12
-10

-5

0

5

10

input x

re
sp

on
se

z

149/224

Example (cont’d): linear loss

Assume that n = N = 5 (a small budget indeed).

0 2 4 6 8 10 12
-10

-5

0

5

10

input x

re
sp

on
se

z

Remark: the two estimates are equal when ξ̂ does not “overshoot”

(e.g., for a Brownian motion prior)

150/224

Lecture 2 : Bayesian optimization (BO)

2.2. From Bayes-optimal to myopic strategies
The optimal terminal decision

Optimal choice of the last evaluation

Bayes-optimal versus “practical Bayes” optimization

Sampling criteria for multi-objective and/or contrained optimization

151/224

Finding X
Bayes
N (last evaluation point)

◮ Let us focus now on the last evaluation point
◮ recall that D = (X1, . . . , XN−1, XN , DN+1)

151/224

Finding X
Bayes
N (last evaluation point)

◮ Let us focus now on the last evaluation point
◮ recall that D = (X1, . . . , XN−1, XN , DN+1)

Notation

En,x (Y) will mean: “compute En(Y), assuming that Xn+1 = x”

151/224

Finding X
Bayes
N (last evaluation point)

◮ Let us focus now on the last evaluation point
◮ recall that D = (X1, . . . , XN−1, XN , DN+1)

Notation

En,x (Y) will mean: “compute En(Y), assuming that Xn+1 = x”

◮ For example, if Y = g (X1, Z1, . . . , Xn, Zn, Xn+1, Zn+1),

En,x (Y) = En (g (X1, Z1, . . . , Xn, Zn, x , Zx))

where Zx denotes the result of a new evaluation at x

152/224

Finding X
Bayes
N (last evaluation point)

◮ Given xN ∈ X, consider the following strategy at time N − 1:

1) first, evaluate at XN = xN ,

2) then, act optimally, i.e., use DBayes
N+1 = ϕBayes

N (FN)

152/224

Finding X
Bayes
N (last evaluation point)

◮ Given xN ∈ X, consider the following strategy at time N − 1:

1) first, evaluate at XN = xN ,

2) then, act optimally, i.e., use DBayes
N+1 = ϕBayes

N (FN)

◮ The corresponding posterior risk at time N − 1 is

RN−1(xN) = EN−1,xN

(
L(DBayes

N+1)
)

= EN−1,xN

(
RBayes

N

)

152/224

Finding X
Bayes
N (last evaluation point)

◮ Given xN ∈ X, consider the following strategy at time N − 1:

1) first, evaluate at XN = xN ,

2) then, act optimally, i.e., use DBayes
N+1 = ϕBayes

N (FN)

◮ The corresponding posterior risk at time N − 1 is

RN−1(xN) = EN−1,xN

(
L(DBayes

N+1)
)

= EN−1,xN

(
RBayes

N

)

◮ Claim: the optimal decision rule for the last evaluation is

XBayes
N = ϕN−1(FN−1) = argminxN∈X RN−1(xN)

152/224

Finding X
Bayes
N (last evaluation point)

◮ Given xN ∈ X, consider the following strategy at time N − 1:

1) first, evaluate at XN = xN ,

2) then, act optimally, i.e., use DBayes
N+1 = ϕBayes

N (FN)

◮ The corresponding posterior risk at time N − 1 is

RN−1(xN) = EN−1,xN

(
L(DBayes

N+1)
)

= EN−1,xN

(
RBayes

N

)

◮ Claim: the optimal decision rule for the last evaluation is

XBayes
N = ϕN−1(FN−1) = argminxN∈X RN−1(xN)

◮ Remark: RN−1 is used as a “sampling criterion”

(a.k.a. “infill criterion”, a.k.a. “merit function”. . .)

153/224

Finding X
Bayes
N : proof

◮ For any strategy D = (X1, . . . , XN−1, XN , DN+1),

EN−1 (L(DN+1)) = EN−1 (RN(FN , DN+1))

≥ EN−1

(
RBayes

N (FN)
)

= RN−1(FN−1, XN−1)

153/224

Finding X
Bayes
N : proof

◮ For any strategy D = (X1, . . . , XN−1, XN , DN+1),

EN−1 (L(DN+1)) = EN−1 (RN(FN , DN+1))

≥ EN−1

(
RBayes

N (FN)
)

= RN−1(FN−1, XN−1)

◮ Let D′ =
(
X1, . . . , XN−1, X ′

N , D′
N+1

)
,

where X ′
N = ϕBayes

N−1 (FN−1) and D′
N+1 = ϕBayes

N (FN−1, X ′
N , Z ′

N)

153/224

Finding X
Bayes
N : proof

◮ For any strategy D = (X1, . . . , XN−1, XN , DN+1),

EN−1 (L(DN+1)) = EN−1 (RN(FN , DN+1))

≥ EN−1

(
RBayes

N (FN)
)

= RN−1(FN−1, XN−1)

◮ Let D′ =
(
X1, . . . , XN−1, X ′

N , D′
N+1

)
,

where X ′
N = ϕBayes

N−1 (FN−1) and D′
N+1 = ϕBayes

N (FN−1, X ′
N , Z ′

N)

◮ Then EN−1

(
L(D′

N+1)
)

= RBayes
N−1 (FN−1) ≤ RN−1(FN−1, XN−1)

153/224

Finding X
Bayes
N : proof

◮ For any strategy D = (X1, . . . , XN−1, XN , DN+1),

EN−1 (L(DN+1)) = EN−1 (RN(FN , DN+1))

≥ EN−1

(
RBayes

N (FN)
)

= RN−1(FN−1, XN−1)

◮ Let D′ =
(
X1, . . . , XN−1, X ′

N , D′
N+1

)
,

where X ′
N = ϕBayes

N−1 (FN−1) and D′
N+1 = ϕBayes

N (FN−1, X ′
N , Z ′

N)

◮ Then EN−1

(
L(D′

N+1)
)

= RBayes
N−1 (FN−1) ≤ RN−1(FN−1, XN−1)

◮ Thus E0 (L(DN+1)) ≥ E0

(
L(D′

N+1)
)

154/224

Finding X
Bayes
N : example (cont’d)

◮ Recall our linear loss example

X̂Bayes = argmin ξ̂N

RBayes
N = min ξ̂N − EN (min ξ)

154/224

Finding X
Bayes
N : example (cont’d)

◮ Recall our linear loss example

X̂Bayes = argmin ξ̂N

RBayes
N = min ξ̂N − EN (min ξ)

◮ Compute the posterior risk at time N − 1

RN−1(FN−1, xN) = EN−1,xN

(
RBayes

N (FN)
)

= EN−1,xN

(
min ξ̂N

)
− EN−1 (min ξ)

154/224

Finding X
Bayes
N : example (cont’d)

◮ Recall our linear loss example

X̂Bayes = argmin ξ̂N

RBayes
N = min ξ̂N − EN (min ξ)

◮ Compute the posterior risk at time N − 1

RN−1(FN−1, xN) = EN−1,xN

(
RBayes

N (FN)
)

= EN−1,xN

(
min ξ̂N

)
− EN−1 (min ξ)

◮ The optimal decision at time N − 1 is

XN = argminxN
EN−1,xN

(
min ξ̂N

)

(first appears (in english) in Mockus, Tiesis & Žilinskas, 1978)

155/224

Finding X
Bayes
N : example (cont’d)

◮ Equivalently,

XN = argmaxxN
min ξ̂N−1 − EN−1,xN

(
min ξ̂N

)

︸ ︷︷ ︸
ρKG

N−1(xN) ≥ 0

155/224

Finding X
Bayes
N : example (cont’d)

◮ Equivalently,

XN = argmaxxN
min ξ̂N−1 − EN−1,xN

(
min ξ̂N

)

︸ ︷︷ ︸
ρKG

N−1(xN) ≥ 0

◮ Nowadays called the Knowledge Gradient (KG) criterion

(Frazier, Powell & co-authors, 2008, 2009, 2011)

155/224

Finding X
Bayes
N : example (cont’d)

◮ Equivalently,

XN = argmaxxN
min ξ̂N−1 − EN−1,xN

(
min ξ̂N

)

︸ ︷︷ ︸
ρKG

N−1(xN) ≥ 0

◮ Nowadays called the Knowledge Gradient (KG) criterion

(Frazier, Powell & co-authors, 2008, 2009, 2011)

◮ Remarks
◮ applicable to “noisy” observations as well

◮ a.k.a. simulation-based optimization

155/224

Finding X
Bayes
N : example (cont’d)

◮ Equivalently,

XN = argmaxxN
min ξ̂N−1 − EN−1,xN

(
min ξ̂N

)

︸ ︷︷ ︸
ρKG

N−1(xN) ≥ 0

◮ Nowadays called the Knowledge Gradient (KG) criterion

(Frazier, Powell & co-authors, 2008, 2009, 2011)

◮ Remarks
◮ applicable to “noisy” observations as well

◮ a.k.a. simulation-based optimization

◮ even with a GP prior, ρKG is not exactly computable in general
◮ idea: approx. max over a finite grid (more about that later)

156/224

Finding X
Bayes
N : example (cont’d)

Same example as before, n = 5, but assume now that N = 6.

0 2 4 6 8 10 12
-10

-5

0

5

10

0 2 4 6 8 10 12
0

0.2

0.4

0.6

input x

final point xN

re
sp

on
se

z
sa

m
pl

in
g

cr
it

er
io

n
ρ

156/224

Finding X
Bayes
N : example (cont’d)

Same example as before, n = 5, but assume now that N = 6.

0 2 4 6 8 10 12
-10

-5

0

5

10

0 2 4 6 8 10 12
0

0.2

0.4

0.6

input x

final point xN

re
sp

on
se

z
sa

m
pl

in
g

cr
it

er
io

n
ρ

156/224

Finding X
Bayes
N : example (cont’d)

Same example as before, n = 5, but assume now that N = 6.

0 2 4 6 8 10 12
-10

-5

0

5

10

0 2 4 6 8 10 12
0

0.2

0.4

0.6

Mockus/KG

input x

final point xN

re
sp

on
se

z
sa

m
pl

in
g

cr
it

er
io

n
ρ

Warning: XN 6= argmax ξ̂N−1 (uncertainty is taken into account)

157/224

Finding X
Bayes
N : example, variant (cont’d)

◮ Recall the following variant

X̂Bayes,1 = argminx∈{X1,...,XN} ξ(x)

RBayes,1
N = min

i≤N
ξ(Xi) − EN (min ξ)

157/224

Finding X
Bayes
N : example, variant (cont’d)

◮ Recall the following variant

X̂Bayes,1 = argminx∈{X1,...,XN} ξ(x)

RBayes,1
N = min

i≤N
ξ(Xi) − EN (min ξ)

◮ Set Mn = mini≤n ξ(Xi). The optimal decision at time N − 1 is

XN = argmaxxN
MN−1 − EN−1,xN

(MN)

157/224

Finding X
Bayes
N : example, variant (cont’d)

◮ Recall the following variant

X̂Bayes,1 = argminx∈{X1,...,XN} ξ(x)

RBayes,1
N = min

i≤N
ξ(Xi) − EN (min ξ)

◮ Set Mn = mini≤n ξ(Xi). The optimal decision at time N − 1 is

XN = argmaxxN
MN−1 − EN−1,xN

(MN)

= argmaxxN
EN−1

(
(MN−1 − ξ(xN))+

)

︸ ︷︷ ︸
ρEI

n (xN) ≥ 0

◮ This is the Expected Improvement (EI) criterion

(Mockus et al 1978; Jones, Schonlau & Wlech, 1998)

157/224

Finding X
Bayes
N : example, variant (cont’d)

◮ Recall the following variant

X̂Bayes,1 = argminx∈{X1,...,XN} ξ(x)

RBayes,1
N = min

i≤N
ξ(Xi) − EN (min ξ)

◮ Set Mn = mini≤n ξ(Xi). The optimal decision at time N − 1 is

XN = argmaxxN
MN−1 − EN−1,xN

(MN)

= argmaxxN
EN−1

(
(MN−1 − ξ(xN))+

)

︸ ︷︷ ︸
ρEI

n (xN) ≥ 0

◮ This is the Expected Improvement (EI) criterion

(Mockus et al 1978; Jones, Schonlau & Wlech, 1998)

◮ Computable analytically for GP priors ⇒ most commonly used

(for deterministic numerical models)

158/224

Finding X
Bayes
N : example (cont’d)

Same example as before, n = 5, but assume now that N = 6.

0 2 4 6 8 10 12
-10

-5

0

5

10

0 2 4 6 8 10 12
0

0.2

0.4

0.6

Mockus/KG

input x

final point xN

re
sp

on
se

z
sa

m
pl

in
g

cr
it

er
io

n
ρ

Warning: XN 6= argmax ξ̂N−1 (uncertainty is taken into account)

158/224

Finding X
Bayes
N : example (cont’d)

Same example as before, n = 5, but assume now that N = 6.

0 2 4 6 8 10 12
-10

-5

0

5

10

0 2 4 6 8 10 12
0

0.2

0.4

0.6

Mockus/KG
EI

input x

final point xN

re
sp

on
se

z
sa

m
pl

in
g

cr
it

er
io

n
ρ

Warning: XN 6= argmax ξ̂N−1 (uncertainty is taken into account)

159/224

Lecture 2 : Bayesian optimization (BO)

2.2. From Bayes-optimal to myopic strategies
The optimal terminal decision

Optimal choice of the last evaluation

Bayes-optimal versus “practical Bayes” optimization

Sampling criteria for multi-objective and/or contrained optimization

160/224

The Bayes-optimal strategy

◮ Recall the optimal terminal decision rule

ϕBayes
N (FN) = argmind EN (L(d))

RBayes
N (FN) = mind EN (L(d))

160/224

The Bayes-optimal strategy

◮ Recall the optimal terminal decision rule

ϕBayes
N (FN) = argmind EN (L(d))

RBayes
N (FN) = mind EN (L(d))

◮ Recall the optimal rule for the last evaluation

ϕBayes
N−1 (FN−1) = argminxN

EN−1,xN

(
RBayes

N (FN)
)

RBayes
N−1 (FN−1) = minxN

EN−1,xN

(
RBayes

N (FN)
)

161/224

The Bayes-optimal strategy

◮ The entire Bayes-optimal strategy can be written similarly: ∀n,

ϕBayes
n−1 (Fn−1) = argminxn

En−1,xn

(
RBayes

n (Fn)
)

RBayes
n−1 (Fn−1) = minxn En−1,xn

(
RBayes

n (Fn)
)

◮ This is called backward induction (or dynamic programming)

161/224

The Bayes-optimal strategy

◮ The entire Bayes-optimal strategy can be written similarly: ∀n,

ϕBayes
n−1 (Fn−1) = argminxn

En−1,xn

(
RBayes

n (Fn)
)

RBayes
n−1 (Fn−1) = minxn En−1,xn

(
RBayes

n (Fn)
)

◮ This is called backward induction (or dynamic programming)

◮ So what ? Can we use this ?

162/224

The Bayes-optimal strategy

◮ More explicitely, the optimal decision for the first evaluation is

X1 = argminx1
E0,x1

(
minx2 E1,x2

(
. . .

minxN
EN−1,xN

(
mind EN (L(d))

)))

162/224

The Bayes-optimal strategy

◮ More explicitely, the optimal decision for the first evaluation is

X1 = argminx1
E0,x1

(
minx2 E1,x2

(
. . .

minxN
EN−1,xN

(
mind EN (L(d))

)))

◮ Very difficult to use in practice beyond N = 1 or 2
◮ each “min” is an optim. problem that needs to be solved. . .
◮ each “En,x ” is an integral that needs to be computed. . .
◮ none of them are tractable, even for the nicest (GP) priors /

163/224

Practical Bayesian optimization: myopic strategies

◮ Practical BO algorithms use, in general, myopic strategies
◮ a.k.a. one-step look-ahead strategies
◮ principle: make each decision as if it were the last one
◮ Bayes-optimal if N = 1, sub-optimal otherwise

163/224

Practical Bayesian optimization: myopic strategies

◮ Practical BO algorithms use, in general, myopic strategies
◮ a.k.a. one-step look-ahead strategies
◮ principle: make each decision as if it were the last one
◮ Bayes-optimal if N = 1, sub-optimal otherwise

◮ For any n ≤ N, let Ln = mind En (L(d))

163/224

Practical Bayesian optimization: myopic strategies

◮ Practical BO algorithms use, in general, myopic strategies
◮ a.k.a. one-step look-ahead strategies
◮ principle: make each decision as if it were the last one
◮ Bayes-optimal if N = 1, sub-optimal otherwise

◮ For any n ≤ N, let Ln = mind En (L(d))

Generic myopic BO algorithm

◮ For n from 0 to N − 1
◮ Compute Xn+1 = argminx En,xn+1

(
Ln+1

)

◮ Make an evaluation at Xn+1

◮ Output DN+1 = argmin EN (L(d))

164/224

Practical Bayesian optimization: hyper-parameters

◮ GP models have hyper-parameters θ (variance, range, etc.)
◮ fully Bayes approach (see Benassi 2013, chap. III, and refs)

1. set up prior distributions on the hyper-parameters

2. use MCMC/SMC to sample from the posterior

164/224

Practical Bayesian optimization: hyper-parameters

◮ GP models have hyper-parameters θ (variance, range, etc.)
◮ fully Bayes approach (see Benassi 2013, chap. III, and refs)

1. set up prior distributions on the hyper-parameters

2. use MCMC/SMC to sample from the posterior

◮ plug-in approach
◮ use Pθ

n ≈ δ
θ̂n

, with θ̂n an estimator of θ (MML, LOO-CV. . .)

◮ enough initial data is needed for this approach

164/224

Practical Bayesian optimization: hyper-parameters

◮ GP models have hyper-parameters θ (variance, range, etc.)
◮ fully Bayes approach (see Benassi 2013, chap. III, and refs)

1. set up prior distributions on the hyper-parameters

2. use MCMC/SMC to sample from the posterior

◮ plug-in approach
◮ use Pθ

n ≈ δ
θ̂n

, with θ̂n an estimator of θ (MML, LOO-CV. . .)

◮ enough initial data is needed for this approach

Generic myopic BO algorithm with hyper-parameter estimation

◮ Init: (space-filling) DoE of size n0 (rule of thumb: n0 = 10 d)
◮ For n from n0 to N − 1

◮ once in a while, Estimate hyper-parameters (plug-in/fully Bayes)

◮ Compute Xn+1 = argminx En,xn+1

(
Ln+1

)

◮ Make an evaluation at Xn+1

◮ Output DN+1 = argmin EN (L(d))

165/224

Practical Bayesian optimization: EGO

STK demo

. . . single-objective box-constrained optimization

with the EI criterion and a plug-in approach

(a.k.a. the “EGO” algorithm) . . .

166/224

Practical Bayesian optimization: optimization

◮ Each iteration involves an auxiliary optimization problem

166/224

Practical Bayesian optimization: optimization

◮ Each iteration involves an auxiliary optimization problem

◮ Various approaches to solve it
◮ Fix grid or IID random search

◮ OK for low-dimensional, simple problems

◮ if accurate convergence is not needed

166/224

Practical Bayesian optimization: optimization

◮ Each iteration involves an auxiliary optimization problem

◮ Various approaches to solve it
◮ Fix grid or IID random search

◮ OK for low-dimensional, simple problems

◮ if accurate convergence is not needed

◮ External solvers
◮ ex: DiceOptim → Rgenoud (genetic + gradient)

◮ ex: Janusvekis & Le Riche (2013) → CMA-ES

166/224

Practical Bayesian optimization: optimization

◮ Each iteration involves an auxiliary optimization problem

◮ Various approaches to solve it
◮ Fix grid or IID random search

◮ OK for low-dimensional, simple problems

◮ if accurate convergence is not needed

◮ External solvers
◮ ex: DiceOptim → Rgenoud (genetic + gradient)

◮ ex: Janusvekis & Le Riche (2013) → CMA-ES

◮ Sequential Monte Carlo (Benassi, 2013; Feliot et al, 2017)
◮ sample according to a well-chosen sequence of densities

166/224

Practical Bayesian optimization: optimization

◮ Each iteration involves an auxiliary optimization problem

◮ Various approaches to solve it
◮ Fix grid or IID random search

◮ OK for low-dimensional, simple problems

◮ if accurate convergence is not needed

◮ External solvers
◮ ex: DiceOptim → Rgenoud (genetic + gradient)

◮ ex: Janusvekis & Le Riche (2013) → CMA-ES

◮ Sequential Monte Carlo (Benassi, 2013; Feliot et al, 2017)
◮ sample according to a well-chosen sequence of densities

◮ Bayesian optimization ⇒ run-time overhead
◮ depends on the model, sampling criterion, optimizer, etc.
◮ BO is appropriate for expensive-to-evaluate numerical models

167/224

Lecture 2 : Bayesian optimization (BO)

2.2. From Bayes-optimal to myopic strategies
The optimal terminal decision

Optimal choice of the last evaluation

Bayes-optimal versus “practical Bayes” optimization

Sampling criteria for multi-objective and/or contrained optimization

168/224

Multi-objective problems

◮ Several objective functions to be minimized: f = (f1, . . . , fp)
◮ fj : X → R, 1 ≤ j ≤ p

168/224

Multi-objective problems

◮ Several objective functions to be minimized: f = (f1, . . . , fp)
◮ fj : X → R, 1 ≤ j ≤ p

Pareto domination relation

z ≺ z ′ if (def)

zj ≤ z ′
j for all j ≤ p,

zj < z ′
j for at least one j ≤ p.

168/224

Multi-objective problems

◮ Several objective functions to be minimized: f = (f1, . . . , fp)
◮ fj : X → R, 1 ≤ j ≤ p

Pareto domination relation

z ≺ z ′ if (def)

zj ≤ z ′
j for all j ≤ p,

zj < z ′
j for at least one j ≤ p.

◮ The goal is to find (estimate)
◮ the Pareto set P = {x ∈ X :6 ∃x ′ ∈ X, f (x ′) ≺ f (x)}

(a.k.a. set of Pareto-efficient solutions)

168/224

Multi-objective problems

◮ Several objective functions to be minimized: f = (f1, . . . , fp)
◮ fj : X → R, 1 ≤ j ≤ p

Pareto domination relation

z ≺ z ′ if (def)

zj ≤ z ′
j for all j ≤ p,

zj < z ′
j for at least one j ≤ p.

◮ The goal is to find (estimate)
◮ the Pareto set P = {x ∈ X :6 ∃x ′ ∈ X, f (x ′) ≺ f (x)}

(a.k.a. set of Pareto-efficient solutions)
◮ and/or the Pareto front {z ∈ R

p : ∃x ∈ P, z = f (x)}
(a.k.a Pareto frontier, Pareto boundary. . .)

169/224

Multi-objective problems

◮ EHVI: a natural extension of EI (Emmerich et al, 2006)

f1

f2

z1

z2

Noiseless evaluations

169/224

Multi-objective problems

◮ EHVI: a natural extension of EI (Emmerich et al, 2006)

f1

f2

z1

z2

z ref

Noiseless evaluations

B = Πp
j=1

]
−∞; z

ref
j

]
: bounding box

169/224

Multi-objective problems

◮ EHVI: a natural extension of EI (Emmerich et al, 2006)

H⋆

f1

f2

z1

z2

z ref

Noiseless evaluations

B = Πp
j=1

]
−∞; z

ref
j

]
: bounding box

True dominated region:

H
⋆(f) = {z ∈ B, ∃x ∈ X, f (x) � z}

169/224

Multi-objective problems

◮ EHVI: a natural extension of EI (Emmerich et al, 2006)

H⋆

f1

f2

z1

z2

z ref

Noiseless evaluations

B = Πp
j=1

]
−∞; z

ref
j

]
: bounding box

True dominated region:

H
⋆(f) = {z ∈ B, ∃x ∈ X, f (x) � z}

Loss function:

L(f , Ĥ) = |H⋆(f)△Ĥ|

169/224

Multi-objective problems

◮ EHVI: a natural extension of EI (Emmerich et al, 2006)

H⋆

f1

f2

z1

z2

z ref

Noiseless evaluations

B = Πp
j=1

]
−∞; z

ref
j

]
: bounding box

True dominated region:

H
⋆(f) = {z ∈ B, ∃x ∈ X, f (x) � z}

Loss function:

L(f , Ĥ) = |H⋆(f)△Ĥ|

Best “safe” estimator:

Hn = {z ∈ B, ∃i ≤ n, f (Xi) � z}

169/224

Multi-objective problems

◮ EHVI: a natural extension of EI (Emmerich et al, 2006)

H⋆

f1

f2

z1

z2

z3

z ref

Noiseless evaluations

B = Πp
j=1

]
−∞; z

ref
j

]
: bounding box

True dominated region:

H
⋆(f) = {z ∈ B, ∃x ∈ X, f (x) � z}

Loss function:

L(f , Ĥ) = |H⋆(f)△Ĥ|

Best “safe” estimator:

Hn = {z ∈ B, ∃i ≤ n, f (Xi) � z}

ρEHVI
n (xn+1) = En,xn+1 (|Hn+1 \ Hn|)

170/224

Multi-objective problems

◮ Implementation
◮ Exactly computable for independent GP priors, 2 ≤ p . 5
◮ Implemented in STK (Matlab/Octave), GPareto (R). . .
◮ Dependent priors, larger p: Monte Carlo approx.

170/224

Multi-objective problems

◮ Implementation
◮ Exactly computable for independent GP priors, 2 ≤ p . 5
◮ Implemented in STK (Matlab/Octave), GPareto (R). . .
◮ Dependent priors, larger p: Monte Carlo approx.

◮ Many other sampling criteria have been proposed
◮ See Feliot et al (2017, section 2.2) and references therein

170/224

Multi-objective problems

◮ Implementation
◮ Exactly computable for independent GP priors, 2 ≤ p . 5
◮ Implemented in STK (Matlab/Octave), GPareto (R). . .
◮ Dependent priors, larger p: Monte Carlo approx.

◮ Many other sampling criteria have been proposed
◮ See Feliot et al (2017, section 2.2) and references therein

STK demo

. . . bi-objective optimization with the EHVI criterion . . .

code by Etienne Leloup, Guillaume Maistre-Bazin, Lucain Pouget

CentraleSupelec final year project for CEA DIF

171/224

Inequality-constrained problems

◮ Single-objective, inequality-contrained problem:
◮ f = (fo, fc,1, . . . , fc,q), with
◮ fo : X → R, to be minimized,
◮ fc,j : X → R, 1 ≤ j ≤ q, must be ≤ 0.

171/224

Inequality-constrained problems

◮ Single-objective, inequality-contrained problem:
◮ f = (fo, fc,1, . . . , fc,q), with
◮ fo : X → R, to be minimized,
◮ fc,j : X → R, 1 ≤ j ≤ q, must be ≤ 0.

◮ Consider the following loss function

L(f , x̂) =

fo(x̂) − f ⋆
o if fc(x̂) ≤ 0,

+∞ otherwise.

where f ⋆
o = minx :fc(x)≤0 fo(x)

172/224

Inequality-constrained problems

◮ Assuming
◮ noiseless evaluations,
◮ independent priors on objective and constraint functions,
◮ ∃i ≤ n, ξc(Xi) = fc(Xi) ≤ 0,

the following myopic criterion follows (Schonlau et al, 1998)

ρEIC
n (xn+1) = ρEI

o,n(xn+1) · Πq
j=1Pn (ξc,j(xn+1) ≤ 0)
︸ ︷︷ ︸

Proba of Feasibility (PF)

.

172/224

Inequality-constrained problems

◮ Assuming
◮ noiseless evaluations,
◮ independent priors on objective and constraint functions,
◮ ∃i ≤ n, ξc(Xi) = fc(Xi) ≤ 0,

the following myopic criterion follows (Schonlau et al, 1998)

ρEIC
n (xn+1) = ρEI

o,n(xn+1) · Πq
j=1Pn (ξc,j(xn+1) ≤ 0)
︸ ︷︷ ︸

Proba of Feasibility (PF)

.

◮ Implementation
◮ Easy for independent GP priors (most commonly used)
◮ Dependent priors: harder. . . (but see Williams et al, 2010)

172/224

Inequality-constrained problems

◮ Assuming
◮ noiseless evaluations,
◮ independent priors on objective and constraint functions,
◮ ∃i ≤ n, ξc(Xi) = fc(Xi) ≤ 0,

the following myopic criterion follows (Schonlau et al, 1998)

ρEIC
n (xn+1) = ρEI

o,n(xn+1) · Πq
j=1Pn (ξc,j(xn+1) ≤ 0)
︸ ︷︷ ︸

Proba of Feasibility (PF)

.

◮ Implementation
◮ Easy for independent GP priors (most commonly used)
◮ Dependent priors: harder. . . (but see Williams et al, 2010)

◮ Again, many other approaches have been proposed
◮ See Feliot et al (2017, section 2.3) and references therein

173/224

Et maintenant une page de pub !

◮ BMOO algorithm (Feliot et al 2017)
◮ Unified EI/EHVI/EIC criterion

◮ well-defined even when no feasible point is known

◮ Efficient SMC technique for criterion optimization
◮ SMC = Sequential Monte Carlo

◮ extends the work of Benassi (2013)

173/224

Et maintenant une page de pub !

◮ BMOO algorithm (Feliot et al 2017)
◮ Unified EI/EHVI/EIC criterion

◮ well-defined even when no feasible point is known

◮ Efficient SMC technique for criterion optimization
◮ SMC = Sequential Monte Carlo

◮ extends the work of Benassi (2013)

Announcement

Paul Feliot’s PhD defense will take place

on Wednesday, July 12, 2017, 2 PM,

at CentraleSupelec (Gif). Venez nombreux !

174/224

Miscellaneous references for further reading

◮ Information-based BO: a different approach
◮ Risk = entropy of the minimizer
◮ See Villemonteix et al (2009), Hennig & Schueller (2012),

Hernandez-Lobáto and co-authors (2014, 2015. . .)

174/224

Miscellaneous references for further reading

◮ Information-based BO: a different approach
◮ Risk = entropy of the minimizer
◮ See Villemonteix et al (2009), Hennig & Schueller (2012),

Hernandez-Lobáto and co-authors (2014, 2015. . .)

◮ Aggregation-based approaches
◮ Multi-objective: ParEGO (Knowles, 2006)
◮ Constrained: Augmented Lagrangian methods

(Gramacy et al, 2016; Picheny et al, 2016)

174/224

Miscellaneous references for further reading

◮ Information-based BO: a different approach
◮ Risk = entropy of the minimizer
◮ See Villemonteix et al (2009), Hennig & Schueller (2012),

Hernandez-Lobáto and co-authors (2014, 2015. . .)

◮ Aggregation-based approaches
◮ Multi-objective: ParEGO (Knowles, 2006)
◮ Constrained: Augmented Lagrangian methods

(Gramacy et al, 2016; Picheny et al, 2016)

◮ Batch of evaluations: multi-point criteria
◮ Ginsbourger et al (2010), Chevalier & Ginsbourger (2013),

Chevalier et al (2014), Marmin et al (2015)

174/224

Miscellaneous references for further reading

◮ Information-based BO: a different approach
◮ Risk = entropy of the minimizer
◮ See Villemonteix et al (2009), Hennig & Schueller (2012),

Hernandez-Lobáto and co-authors (2014, 2015. . .)

◮ Aggregation-based approaches
◮ Multi-objective: ParEGO (Knowles, 2006)
◮ Constrained: Augmented Lagrangian methods

(Gramacy et al, 2016; Picheny et al, 2016)

◮ Batch of evaluations: multi-point criteria
◮ Ginsbourger et al (2010), Chevalier & Ginsbourger (2013),

Chevalier et al (2014), Marmin et al (2015)

◮ Noisy evaluations / stochastic simulators
◮ will be discussed in the next part ,

175/224

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

176/224

Lecture 2 : Bayesian optimization (BO)

2.3. Design under uncertainty
Overview of possible approaches

Optimization of a mean response

RBDO (and other formulations)

177/224

Design under uncertainty

◮ Standard design optimization problem:
◮ Minimize one objective (“cost”) function fo(x)
◮ or several objective functions fo,1(x), . . . , fo,p(x)
◮ under the constraints fc,j(x) ≤ 0, 1 ≤ j ≤ q

◮ Some objective/constraint functions are expensive to evaluate

177/224

Design under uncertainty

◮ Standard design optimization problem:
◮ Minimize one objective (“cost”) function fo(x)
◮ or several objective functions fo,1(x), . . . , fo,p(x)
◮ under the constraints fc,j(x) ≤ 0, 1 ≤ j ≤ q

◮ Some objective/constraint functions are expensive to evaluate

“Design under uncertainty” framework

◮ objective functions: fo,j(x , u), 1 ≤ j ≤ p

◮ constraint functions: fc,j(x , u), 1 ≤ j ≤ q

◮ where u denotes factors that the designer cannot control

178/224

(a few words on the) Worst-case approach

◮ Principle of the worst-case (minimax) approach
◮ Define an uncertainty set U
◮ Optimize by considering the worst u ∈ U

178/224

(a few words on the) Worst-case approach

◮ Principle of the worst-case (minimax) approach
◮ Define an uncertainty set U

◮ Optimize by considering the worst u ∈ U

◮ For instance, assuming a single-objective problem:

minimize max
u∈U

fo(x , u)

178/224

(a few words on the) Worst-case approach

◮ Principle of the worst-case (minimax) approach
◮ Define an uncertainty set U

◮ Optimize by considering the worst u ∈ U

◮ For instance, assuming a single-objective problem:

minimize max
u∈U

fo(x , u)

◮ If the problem has constraints, they become:

∀j ≤ q, ∀u ∈ U, fc,j(x , u) ≤ 0

179/224

Example 1: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-20 -15 -10 -5 0 5 10 15 20

x

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)

179/224

Example 1: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-20 -15 -10 -5 0 5 10 15 20

x

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

179/224

Example 1: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-20 -15 -10 -5 0 5 10 15 20

x

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

Remark: very conservative, the nominal performance is ignored

179/224

Example 2: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-10 -5 0 5 10 15 20

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)

179/224

Example 2: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-10 -5 0 5 10 15 20

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

180/224

Another example: worst-case approach for a constraint

Example: fc(x , u) = ‖x‖2 − u2

x1

x2

u0

180/224

Another example: worst-case approach for a constraint

Example: fc(x , u) = ‖x‖2 − u2, with u ∈ U = [u0 − δ; u0 + δ]

x1

x2

u0 − δ

181/224

(a few more words on the) Worst-case approach

◮ In this lecture, we will focus on the probabilistic approach

181/224

(a few more words on the) Worst-case approach

◮ In this lecture, we will focus on the probabilistic approach

◮ See Marzat, Walter & Piet-Lahanier (2013, 2016) for a

“BO treatment” of the worst-case approach (using relaxation)

181/224

(a few more words on the) Worst-case approach

◮ In this lecture, we will focus on the probabilistic approach

◮ See Marzat, Walter & Piet-Lahanier (2013, 2016) for a

“BO treatment” of the worst-case approach (using relaxation)

◮ An issue of terminology: in the math literature,
◮ “robust optimization” refers mainly to the worst-case setting

(see Ben Tal et al (2009), Bertsimas et al (2011) and refs)
◮ the probabilistic approach is called stochastic programming

◮ while engineers use the word “robust” for both ,

182/224

The probabilistic approach

◮ From now, we focus on the probabilistic approach
◮ u is considered as random → U ∼ PU

◮ can be a random vector (∈ R
m), or a more complicated object

182/224

The probabilistic approach

◮ From now, we focus on the probabilistic approach
◮ u is considered as random → U ∼ PU

◮ can be a random vector (∈ R
m), or a more complicated object

◮ Numerical models: two important settings
◮ stochastic simulators
◮ environmental variables

x

RNG

code Z = f (x , U) x code

u

z = f (x , u)

where f = (fo,1, . . . , fo,p, fc,1, . . . , fc,q)

183/224

The “stochastic simulator” setting

x

RNG

code Z = f (x , U)

◮ Features of the black box
◮ U is not directly accessible
◮ only x can be chosen by the algorithm; Z = f (x , U) is observed
◮ PU is not known explicitely

183/224

The “stochastic simulator” setting

x

RNG

code Z = f (x , U)

◮ Features of the black box
◮ U is not directly accessible
◮ only x can be chosen by the algorithm; Z = f (x , U) is observed
◮ PU is not known explicitely

◮ “State of nature” (the things that we don’t know)
◮ the family

(
PZ

x

)
of conditional distributions

◮ the RV U1, U2. . . that will be generated when running the

computer model with inputs x1, x2. . .
◮ the RV Ureal that defines the f (x , Ureal) ultimately realized

184/224

The “environmental variables” setting

x code

u

z = f (x , u)

◮ Features of the black box
◮ the simulator remains deterministic
◮ PU is specified separately, usually explicitely
◮ the algorithm can choose (x , u) pairs to be evaluated

184/224

The “environmental variables” setting

x code

u

z = f (x , u)

◮ Features of the black box
◮ the simulator remains deterministic
◮ PU is specified separately, usually explicitely
◮ the algorithm can choose (x , u) pairs to be evaluated

◮ “State of nature” (the things that we don’t know)
◮ the deterministic function f : (x , u) 7→ f (x , u)
◮ the RV Ureal that defines the f (x , Ureal) ultimately realized

184/224

The “environmental variables” setting

x code

u

z = f (x , u)

◮ Features of the black box
◮ the simulator remains deterministic
◮ PU is specified separately, usually explicitely
◮ the algorithm can choose (x , u) pairs to be evaluated

◮ “State of nature” (the things that we don’t know)
◮ the deterministic function f : (x , u) 7→ f (x , u)
◮ the RV Ureal that defines the f (x , Ureal) ultimately realized

◮ The two settings can be mixed ,

185/224

Problem formulations

◮ Various “robust” formulations can be considered for the
design problem, depending mainly on

◮ the number of objective functions,
◮ the presence of (expensive-to-evaluate) constraints,
◮ and, of course, how we want to deal with Ureal.

185/224

Problem formulations

◮ Various “robust” formulations can be considered for the
design problem, depending mainly on

◮ the number of objective functions,
◮ the presence of (expensive-to-evaluate) constraints,
◮ and, of course, how we want to deal with Ureal.

◮ In the following, we focus on
◮ single objective problems
◮ in the “environmental variables” setting

◮ and discuss two important cases:
◮ optimization of the averaged objective function
◮ reliability-based design optimization (RBDO), a.k.a. “chance

constrained” optimization, and other formulations

186/224

Lecture 2 : Bayesian optimization (BO)

2.3. Design under uncertainty
Overview of possible approaches

Optimization of a mean response

RBDO (and other formulations)

187/224

Optimization of a mean response

◮ Assume
◮ single objective f = fo, expensive to evaluate
◮ no (expensive-to-evaluate) constraints
◮ remark: cheap constraints allowed in the definition of X ⊂ R

d

◮ “environmental variables” setting

187/224

Optimization of a mean response

◮ Assume
◮ single objective f = fo, expensive to evaluate
◮ no (expensive-to-evaluate) constraints
◮ remark: cheap constraints allowed in the definition of X ⊂ R

d

◮ “environmental variables” setting

◮ Consider once again the L1 loss function

L ((f , ureal), x̂) =
∣∣∣f (x̂ , ureal) − min

x
f (x , ureal)

∣∣∣

= f (x̂ , ureal) − min
x

f (x , ureal)

188/224

Optimization of a mean response

◮ Compute the posterior risk at time N for an estimate x̂ ∈ X

EN (L ((ξ, Ureal), x̂)) = EN (ξ(x̂ , Ureal)) − EN (min ξ(·, Ureal))

188/224

Optimization of a mean response

◮ Compute the posterior risk at time N for an estimate x̂ ∈ X

EN (L ((ξ, Ureal), x̂)) = EN (ξ(x̂ , Ureal)) − EN (min ξ(·, Ureal))

= EN

(
ξ(x̂)

)
− EN (min ξ(·, Ureal))

where ξ(x) =
∫

ξ(x , u) PU(du)

188/224

Optimization of a mean response

◮ Compute the posterior risk at time N for an estimate x̂ ∈ X

EN (L ((ξ, Ureal), x̂)) = EN (ξ(x̂ , Ureal)) − EN (min ξ(·, Ureal))

= EN

(
ξ(x̂)

)
− EN (min ξ(·, Ureal))

where ξ(x) =
∫

ξ(x , u) PU(du)

◮ Same L1 risk (ignoring last term) as if we were dealing with the

Equivalent “deterministic” problem

min
x

f (x), with f (x) =
∫

f (x , u) PU(du)

(Remark: this formulation occurs very naturally in a BO framework ,)

189/224

Example 1: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-20 -15 -10 -5 0 5 10 15 20

x

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

Remark: very conservative, the nominal performance is ignored

189/224

Example 1: Worst-case versus probabilistic approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-20 -15 -10 -5 0 5 10 15 20

x

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

f o

argmin f o

f o = E (fo(·, U)), with U ∼ N (0, s2), s.t. P (|U| ≤ δ) = 99.9%

189/224

Example 2: Illustration of the worst-case approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-10 -5 0 5 10 15 20

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

189/224

Example 2: Worst-case versus probabilistic approach

Example: fo(x , u) = f̃ (x + u), with u ∈ U = [−δ; δ], δ = 5

-10 -5 0 5 10 15 20

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x)

fo(·, 0)
argmin fo(·, 0)
f +
o

= maxu fo(x, u)
argmin f +

o

f o

argmin f o

f o = E (fo(·, U)), with U ∼ N (0, s2), s.t. P (|U| ≤ δ) = 99.9%

190/224

Example 3: Three-bar truss (Koski, 1985; Das, 1997)

P

w
D

L

190/224

Example 3: Three-bar truss (Koski, 1985; Das, 1997)

P

w
D

La1 a2 a3

◮ Design variables: x = (a1, a2, a3, w)
◮ aj : cross-section of bar j

190/224

Example 3: Three-bar truss (Koski, 1985; Das, 1997)

F1 (wind)

F2 (suspended load)

P

w
D

La1 a2 a3

◮ Design variables: x = (a1, a2, a3, w)
◮ aj : cross-section of bar j

◮ Environmental variables: U = (F1, F2)

191/224

Example 3: Three-bar truss (Koski, 1985; Das, 1997)

◮ Our (supposedly expensive) numerical model computes
◮ the displacement y = (y1, y2) of point P,
◮ the stress σj in each bar (1 ≤ j ≤ 3).

191/224

Example 3: Three-bar truss (Koski, 1985; Das, 1997)

◮ Our (supposedly expensive) numerical model computes
◮ the displacement y = (y1, y2) of point P,
◮ the stress σj in each bar (1 ≤ j ≤ 3).

◮ We will consider the following problem:
◮ minimize EU (‖y‖)
◮ under the constraints: xmin ≤ x ≤ xmax, V ≤ Vmax

191/224

Example 3: Three-bar truss (Koski, 1985; Das, 1997)

◮ Our (supposedly expensive) numerical model computes
◮ the displacement y = (y1, y2) of point P,
◮ the stress σj in each bar (1 ≤ j ≤ 3).

◮ We will consider the following problem:
◮ minimize EU (‖y‖)
◮ under the constraints: xmin ≤ x ≤ xmax, V ≤ Vmax

◮ Remark about constraints
◮ The constraint V ≤ Vmax is cheap to evaluate

V = a1

√
L2 + w2 + a2L + a3

√
L2 + (D − w)2

◮ Additional constraints: |σj | ≤ σmax can be checked a posteriori

192/224

Breaking the “double loop”

◮ Natural “double loop” approach
◮ outer loop: ordinary optimization algorithm applied to f

◮ inner loop: integration (MC, quadrature. . .) to compute f

192/224

Breaking the “double loop”

◮ Natural “double loop” approach
◮ outer loop: ordinary optimization algorithm applied to f

◮ inner loop: integration (MC, quadrature. . .) to compute f

◮ Drawback: typically require large number of evaluations

192/224

Breaking the “double loop”

◮ Natural “double loop” approach
◮ outer loop: ordinary optimization algorithm applied to f

◮ inner loop: integration (MC, quadrature. . .) to compute f

◮ Drawback: typically require large number of evaluations

◮ Bayesian optimization breaks the double loop ,
◮ Construct a Bayesian model for f , not f

◮ Remark: can be achieved using other surrogate-model based

approaches (see Janusevkis & LeRiche, 2013, and refs therein)

193/224

Prior model

◮ There are two functions of interest in this setting
◮ the one that can be observed, i.e., f : (x , u) 7→ f (x , u),
◮ and the one that want to optimize: f =

∫
f (·, u) PU(du)

◮ f is a function of f

◮ priors cannot be specified independently

193/224

Prior model

◮ There are two functions of interest in this setting
◮ the one that can be observed, i.e., f : (x , u) 7→ f (x , u),
◮ and the one that want to optimize: f =

∫
f (·, u) PU(du)

◮ f is a function of f

◮ priors cannot be specified independently

Gaussian process priors are, again, very convenient

If ξ ∼ GP(m, k)︸ ︷︷ ︸
defined on X × U

, then ξ ∼ GP(mξ , kξ)
︸ ︷︷ ︸

defined on X

,

with
mξ (x) =

∫
m(x , u) PU(du)

kξ (x , y) =
x

k((x , u), (y , v)) PU(du)PU(dv)

194/224

Proof

◮ ξ is Gaussian by linearity of the integral

◮ Computation of the mean function: exchange
∫

and E

mξ (x) = E
(
ξ(x)

)
= E

(∫
ξ(x , u) PU(du)

)

=
∫

m(x , u) PU(du)

◮ Computation of the covariance function: idem with bilinearity

kξ (x , y) = cov
(
ξ(x), ξ(y)

)

= cov
(∫

ξ(x , u) PU(du),
∫

ξ(x , v) PU(dv)
)

=
x

k((x , u), (y , v)) PU(du)PU(dv)

195/224

Prior model (cont’d)

◮ Actually, we can say much better:

Jointly Gaussian processes

If ξ ∼ GP(m, k), then ξ and ξ are jointly Gaussian, and

kξ,ξ((x , u), y) = cov
(
ξ(x , u), ξ(y)

)
=
∫

k((x , u), (y , v)) PU(dv)

195/224

Prior model (cont’d)

◮ Actually, we can say much better:

Jointly Gaussian processes

If ξ ∼ GP(m, k), then ξ and ξ are jointly Gaussian, and

kξ,ξ((x , u), y) = cov
(
ξ(x , u), ξ(y)

)
=
∫

k((x , u), (y , v)) PU(dv)

◮ Remark: mξ , kξ and kξ,ξ can be computed exactly
◮ if PU is discrete (PU =

∑nU

j=1 wjδuj
)

◮ if PU is (a mixture of) Gaussian(s), for some particular k

◮ see Girard (2004) for exact formulas & approximations

195/224

Prior model (cont’d)

◮ Actually, we can say much better:

Jointly Gaussian processes

If ξ ∼ GP(m, k), then ξ and ξ are jointly Gaussian, and

kξ,ξ((x , u), y) = cov
(
ξ(x , u), ξ(y)

)
=
∫

k((x , u), (y , v)) PU(dv)

◮ Remark: mξ , kξ and kξ,ξ can be computed exactly
◮ if PU is discrete (PU =

∑nU

j=1 wjδuj
)

◮ if PU is (a mixture of) Gaussian(s), for some particular k

◮ see Girard (2004) for exact formulas & approximations

◮ Important special case: ξ(x , u) = ξ̃(x + u)
◮ If ξ is a GP iff ξ̃ is a GP
◮ mξ(x , u) = m

ξ̃
(x + u) and kξ((x , u), (u, v)) = k

ξ̃
(x + u, y + v)

196/224

Examples 1 and 2: discretization of PU

◮ In the two examples, ProbU = N (0, s2), with s = 1.52
◮ P (|U| ≤ 5) ≈ 99.9%

196/224

Examples 1 and 2: discretization of PU

◮ In the two examples, ProbU = N (0, s2), with s = 1.52
◮ P (|U| ≤ 5) ≈ 99.9%

◮ We choose to use a regular discretization with nU = 11 points
◮ points regularly spaced on [−5; 5]
◮ weights computed using the normal cdf (using mid-points)

-6 -4 -2 0 2 4 6

x

0

0.05

0.1

0.15

0.2

0.25

ex
ac

t p
df

0

0.05

0.1

0.15

0.2

0.25

di
sc

re
te

 a
pp

ro
x

197/224

Example 3: discretization of PU

◮ Here, U =

(
F1

F2

)
and PU = N

((
µF1

µF2

)
,

(
σ2

F1
0

0 σ2
F2

))

2.5 3 3.5 4 4.5 5 5.5 6 6.5
F1 10 5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

F
2

10 6

0.50

0.90

0.99

Monte Carlo sample of size nU = 50

197/224

Example 3: discretization of PU

◮ Here, U =

(
F1

F2

)
and PU = N

((
µF1

µF2

)
,

(
σ2

F1
0

0 σ2
F2

))

2.5 3 3.5 4 4.5 5 5.5 6 6.5
F1 10 5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

F
2

10 6

0.50

0.90

0.99

Quasi Monte Carlo (QMC) sample of size nU = 50

198/224

Sampling strategy: what ?

◮ What decision(s) do we have to make at each step ?
◮ i.e, what do we need to provide to run the numerical model ?

198/224

Sampling strategy: what ?

◮ What decision(s) do we have to make at each step ?
◮ i.e, what do we need to provide to run the numerical model ?

◮ General case
◮ numerical model f : (x , u) 7→ f (x , u), defined on X × U

◮ at each step, we must select a pair (Xn+1, Un+1) ∈ X × U

198/224

Sampling strategy: what ?

◮ What decision(s) do we have to make at each step ?
◮ i.e, what do we need to provide to run the numerical model ?

◮ General case
◮ numerical model f : (x , u) 7→ f (x , u), defined on X × U

◮ at each step, we must select a pair (Xn+1, Un+1) ∈ X × U

◮ Important special case
◮ f (x , u) = f̃ (x + u)
◮ in this case, we must simply select a point Xn+1 ∈ X

◮ In the following slides we assume the general case

(adaptation to the special case poses no difficulty)

199/224

Sampling strategy: how ?

◮ How do we build a sampling strategy for this problem ?
◮ in this lecture, we will apply the standard BO machinery

◮ L
1 loss → risk → “EI like” myopic strategy

199/224

Sampling strategy: how ?

◮ How do we build a sampling strategy for this problem ?
◮ in this lecture, we will apply the standard BO machinery

◮ L
1 loss → risk → “EI like” myopic strategy

◮ other strategies are proposed in the literature
◮ Williams et al 2000; Janusevkis et Le Riche 2013

◮ Entropy-based methods could be used as well

(Villemonteix et al 2009, Hennig & Schueller 2012. . .)

199/224

Sampling strategy: how ?

◮ How do we build a sampling strategy for this problem ?
◮ in this lecture, we will apply the standard BO machinery

◮ L
1 loss → risk → “EI like” myopic strategy

◮ other strategies are proposed in the literature
◮ Williams et al 2000; Janusevkis et Le Riche 2013

◮ Entropy-based methods could be used as well

(Villemonteix et al 2009, Hennig & Schueller 2012. . .)

◮ Assume now the L1 loss

◮ Recall the posterior risk at time N for an estimate x̂ ∈ X:

EN (L ((ξ, Ureal), x̂)) = EN

(
ξ(x̂)

)
− EN (min X ξ(·, Ureal))

200/224

Sampling strategy: one step look-ahead

◮ Let Ln denote the expected loss that we would get if we

stopped at time n:

Ln = min X En

(
ξ(x)

)
− En (min X ξ(·, Ureal))

= min X mξ,n − En (min X ξ(·, Ureal))

200/224

Sampling strategy: one step look-ahead

◮ Let Ln denote the expected loss that we would get if we

stopped at time n:

Ln = min X En

(
ξ(x)

)
− En (min X ξ(·, Ureal))

= min X mξ,n − En (min X ξ(·, Ureal))

◮ The one-step look-ahead (myopic) strategy is

(Xn+1, Un+1) = argminxn+1,un+1
En, (xn+1,un+1)

(
Ln+1

)

200/224

Sampling strategy: one step look-ahead

◮ Let Ln denote the expected loss that we would get if we

stopped at time n:

Ln = min X En

(
ξ(x)

)
− En (min X ξ(·, Ureal))

= min X mξ,n − En (min X ξ(·, Ureal))

◮ The one-step look-ahead (myopic) strategy is

(Xn+1, Un+1) = argminxn+1,un+1
En, (xn+1,un+1)

(
Ln+1

)

= argminxn+1,un+1
En, (xn+1,un+1)

(
min X mξ,n+1

)

201/224

Sampling strategy: one step look-ahead

◮ Equivalently,

(Xn+1, Un+1) = argmaxxn+1,un+1
ρn(xn+1, un+1)

where ρn denotes the corresponding “expected improvement”

ρn(xn+1, un+1) = Ln − En, (xn+1,un+1)

(
Ln+1

)

= min X mξ,n − En, (xn+1,un+1)

(
min X mξ,n+1

)

201/224

Sampling strategy: one step look-ahead

◮ Equivalently,

(Xn+1, Un+1) = argmaxxn+1,un+1
ρn(xn+1, un+1)

where ρn denotes the corresponding “expected improvement”

ρn(xn+1, un+1) = Ln − En, (xn+1,un+1)

(
Ln+1

)

= min X mξ,n − En, (xn+1,un+1)

(
min X mξ,n+1

)

◮ Formally, looks like the KG criterion of Frazier & co, but. . .

202/224

Sampling strategy: one step look-ahead

◮ Comparison with KG as presented in the literature

evaluations optimization

KG ξ(x) + N noise min ξ

here ξ(x , u) min ξ

202/224

Sampling strategy: one step look-ahead

◮ Comparison with KG as presented in the literature

evaluations optimization

KG ξ(x) + N noise min ξ

here ξ(x , u) min ξ

◮ There is no real difference mathematically: in both cases

1. the function to be optimized is not observable directly,

2. the evaluation results and the function to be optimized are

jointly Gaussian.

202/224

Sampling strategy: one step look-ahead

◮ Comparison with KG as presented in the literature

evaluations optimization

KG ξ(x) + N noise min ξ

here ξ(x , u) min ξ

◮ There is no real difference mathematically: in both cases

1. the function to be optimized is not observable directly,

2. the evaluation results and the function to be optimized are

jointly Gaussian.

◮ Good news: we can then derive an implementable

Approximate KG criterion as in Scott et al (2011)

203/224

Approximate KG criterion (AKG)

◮ Let Xref
n ⊂ X denote some finite “reference set”

◮ Let x̃n+1 = (xn+1, un+1). The AKG criterion is:

ρAKG
n (x̃n+1) = min mξ,n − En, x̃n+1

(
min mξ,n+1

)
≥ 0

where the min runs over Xref
n ∪ {x̃n+1}.

203/224

Approximate KG criterion (AKG)

◮ Let Xref
n ⊂ X denote some finite “reference set”

◮ Let x̃n+1 = (xn+1, un+1). The AKG criterion is:

ρAKG
n (x̃n+1) = min mξ,n − En, x̃n+1

(
min mξ,n+1

)
≥ 0

where the min runs over Xref
n ∪ {x̃n+1}.

203/224

Approximate KG criterion (AKG)

◮ Let Xref
n ⊂ X denote some finite “reference set”

◮ Let x̃n+1 = (xn+1, un+1). The AKG criterion is:

ρAKG
n (x̃n+1) = min mξ,n − En, x̃n+1

(
min mξ,n+1

)
≥ 0

where the min runs over Xref
n ∪ {x̃n+1}.

◮ Initially proposed by Scott et al (2011)
◮ under the name KGCP (“KG for continuous parameters”)
◮ with X

ref
n = {X1, . . . , Xn}

203/224

Approximate KG criterion (AKG)

◮ Let Xref
n ⊂ X denote some finite “reference set”

◮ Let x̃n+1 = (xn+1, un+1). The AKG criterion is:

ρAKG
n (x̃n+1) = min mξ,n − En, x̃n+1

(
min mξ,n+1

)
≥ 0

where the min runs over Xref
n ∪ {x̃n+1}.

◮ Initially proposed by Scott et al (2011)
◮ under the name KGCP (“KG for continuous parameters”)
◮ with X

ref
n = {X1, . . . , Xn}

◮ Implementation ?
◮ It is exactly computable (but not easy to compute. . .)
◮ Available in STK (Matlab/Octave), DiceOptim (R). . .

204/224

Optimization of a mean response: demos

STK demo

. . . One dimensional illustration: examples 1 and 2 . . .

STK demo

. . . Minimization of the mean displacement

in the 3-bar truss example . . .

205/224

(a few words about) The case of stochastic simulators

◮ Good news
◮ the same sampling criteria can be used in both cases

(environmental variables / stochastic simulators). . .
◮ . . . provided that the observations and the objective function

are jointly Gaussian.

205/224

(a few words about) The case of stochastic simulators

◮ Good news
◮ the same sampling criteria can be used in both cases

(environmental variables / stochastic simulators). . .
◮ . . . provided that the observations and the objective function

are jointly Gaussian.

◮ Review/benchmark of existing criteria: Picheny et al (2013)
◮ AKG emerges has one of the most efficient criteria
◮ Huang et al (2006)’s “augmented EI” also performs well
◮ (Entropy-based criteria not benchmarked)

205/224

(a few words about) The case of stochastic simulators

◮ Good news
◮ the same sampling criteria can be used in both cases

(environmental variables / stochastic simulators). . .
◮ . . . provided that the observations and the objective function

are jointly Gaussian.

◮ Review/benchmark of existing criteria: Picheny et al (2013)
◮ AKG emerges has one of the most efficient criteria
◮ Huang et al (2006)’s “augmented EI” also performs well
◮ (Entropy-based criteria not benchmarked)

◮ What about simulators with truly non-Gaussian output ?
◮ “batch trick” (CLT)
◮ see also Browne et al (2016). . .

206/224

Lecture 2 : Bayesian optimization (BO)

2.3. Design under uncertainty
Overview of possible approaches

Optimization of a mean response

RBDO (and other formulations)

207/224

Reliability-based (design) optimization (RBO, RBDO)

◮ Assume
◮ a single objective f = fo, often cheap to evaluate
◮ one or several expensive-to-evaluate constraints fc,1, . . . , fc,q

◮ “environmental variables” setting

207/224

Reliability-based (design) optimization (RBO, RBDO)

◮ Assume
◮ a single objective f = fo, often cheap to evaluate
◮ one or several expensive-to-evaluate constraints fc,1, . . . , fc,q

◮ “environmental variables” setting

◮ The so-called RB(D)O formulation reads:

Reliability-based (a.k.a. chance-constrained) optimization

Minimize

fo(x), where fo(x) = EU (fo(x , U))

under the constraints: x ∈ X and

∀j ≤ q, PU (fc,j(x , U) > 0) ≤ ptol
j

208/224

Reliability-based (design) optimization (RBO, RBDO)

◮ See Valdebenito & Schuëller (2010) for a survey

208/224

Reliability-based (design) optimization (RBO, RBDO)

◮ See Valdebenito & Schuëller (2010) for a survey

◮ fo is often cheap to evaluate
◮ e.g. volume / mass / manufacturing cost / . . .
◮ Expectation often computed (or approximated) analytically

208/224

Reliability-based (design) optimization (RBO, RBDO)

◮ See Valdebenito & Schuëller (2010) for a survey

◮ fo is often cheap to evaluate
◮ e.g. volume / mass / manufacturing cost / . . .
◮ Expectation often computed (or approximated) analytically

◮ Again, algorithms with a “double loop” structure can be used
◮ outer loop: ordinary optimization algorithm with constraints
◮ inner loop: reliability analysis method to compute the

constraints

208/224

Reliability-based (design) optimization (RBO, RBDO)

◮ See Valdebenito & Schuëller (2010) for a survey

◮ fo is often cheap to evaluate
◮ e.g. volume / mass / manufacturing cost / . . .
◮ Expectation often computed (or approximated) analytically

◮ Again, algorithms with a “double loop” structure can be used
◮ outer loop: ordinary optimization algorithm with constraints
◮ inner loop: reliability analysis method to compute the

constraints

◮ Again, surrogate-based methods should be able to “break the

double loop” by building a model on X × U

209/224

Why RBDO is harder than mean-response optimization

◮ because the thresholds ptol
j are usually small

◮ MC-type approx. PU ≈ 1
m

∑
j δuj

becomes very expensive or

infeasible
◮ Dedicated techniques (e.g., FORM/SORM, IS, subset

simulation) needed for an efficient evaluation of the constraints

209/224

Why RBDO is harder than mean-response optimization

◮ because the thresholds ptol
j are usually small

◮ MC-type approx. PU ≈ 1
m

∑
j δuj

becomes very expensive or

infeasible
◮ Dedicated techniques (e.g., FORM/SORM, IS, subset

simulation) needed for an efficient evaluation of the constraints

◮ BO: the distribution of PU (ξc,j(x , U) > 0) is intractable
◮ Posterior mean/variance can be written as integrals (see, e.g.,

Villemonteix 2008 chap III), but. . .
◮ . . . the posterior distribution is not Gaussian even if ξc is !
◮ Very difficult to derive Bayesian sampling criteria that can be

implemented efficiently. . .

210/224

Bayesian RBDO algorithms ?

◮ A few GP-based algorithms have been proposed, notably:
◮ Bichon et al (2009): EGO+EGRA algorithm
◮ Dubourg and co-authors (2011a, 2011b): RBDO-N2LA

210/224

Bayesian RBDO algorithms ?

◮ A few GP-based algorithms have been proposed, notably:
◮ Bichon et al (2009): EGO+EGRA algorithm
◮ Dubourg and co-authors (2011a, 2011b): RBDO-N2LA

◮ Complex, “weakly Bayesian” algorithms. . . e.g., RBDO-N2LA:

210/224

Bayesian RBDO algorithms ?

◮ A few GP-based algorithms have been proposed, notably:
◮ Bichon et al (2009): EGO+EGRA algorithm
◮ Dubourg and co-authors (2011a, 2011b): RBDO-N2LA

◮ Complex, “weakly Bayesian” algorithms. . . e.g., RBDO-N2LA:

◮ RBDO-N2LA is available in FERUM (Bourrinet et al, 2009)

211/224

RBDO and other formulations: alternative approach

◮ A general alternative approach in two steps

1. Explore the design space efficiently using multi-objective BO,

2. Evaluate probabilities of failure, quantiles, etc. a posteriori for

non-dominated (and possibly other) solutions,

211/224

RBDO and other formulations: alternative approach

◮ A general alternative approach in two (or three) steps

1. Explore the design space efficiently using multi-objective BO,

2. Evaluate probabilities of failure, quantiles, etc. a posteriori for

non-dominated (and possibly other) solutions,

3. optionally Reduce the uncertainty on the most promising designs.

211/224

RBDO and other formulations: alternative approach

◮ A general alternative approach in two (or three) steps

1. Explore the design space efficiently using multi-objective BO,

2. Evaluate probabilities of failure, quantiles, etc. a posteriori for

non-dominated (and possibly other) solutions,

3. optionally Reduce the uncertainty on the most promising designs.

◮ In step 1. constraints can be taken into account as objectives
◮ i.e., the contraint PU (fc,j(x , U) > 0) ≤ ptol

j

◮ becomes: minx fc,j(x , u0) u.c. fc,j(x , u0) ≤ 0

211/224

RBDO and other formulations: alternative approach

◮ A general alternative approach in two (or three) steps

1. Explore the design space efficiently using multi-objective BO,

2. Evaluate probabilities of failure, quantiles, etc. a posteriori for

non-dominated (and possibly other) solutions,

3. optionally Reduce the uncertainty on the most promising designs.

◮ In step 1. constraints can be taken into account as objectives
◮ i.e., the contraint PU (fc,j(x , U) > 0) ≤ ptol

j

◮ becomes: minx fc,j(x , u0) u.c. fc,j(x , u0) ≤ 0

◮ In step 2. no new evaluations need to be carried out
◮ the posterior distribution of ξ is used to assess uncertainties

212/224

RBDO and other formulations: alternative approach

STK demo

. . . Robust design through multi-objective optimization . . .

213/224

Lecture 1 : From meta-models to UQ

1.1 Introduction

1.2 Black-box modeling

1.3 Bayesian approach

1.4 Posterior distribution of a quantity of interest

1.5 Complements on Gaussian processes

Lecture 2 : Bayesian optimization (BO)

2.1. Decision-theoretic framework

2.2. From Bayes-optimal to myopic strategies

2.3. Design under uncertainty

References

214/224

References I

Julien Bect, Emmanuel Vazquez, et al.

STK: a Small (Matlab/Octave) Toolbox for Kriging. Release 2.4.2, 2017.

URL http://kriging.sourceforge.net.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski.

Robust optimization.

Princeton University Press, 2009.

Romain Benassi.

Nouvel algorithme d’optimisation bayésien utilisant une approche Monte-Carlo

séquentielle.

PhD thesis, Supélec, 2013.

Romain Benassi, Julien Bect, and Emmanuel Vazquez.

Bayesian optimization using sequential Monte Carlo.

In Learning and Intelligent Optimization. 6th International Conference, LION 6,

Paris, France, January 16-20, 2012, Revised Selected Papers, volume 7219 of

Lecture Notes in Computer Science, pages 339–342. Springer, 2012.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis.

Theory and applications of robust optimization.

SIAM review, 53(3):464–501, 2011.

http://kriging.sourceforge.net

215/224

References II

Barron Bichon, Sankaran Mahadevan, and Michael Eldred.

Reliability-based design optimization using efficient global reliability analysis.

In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference

11th AIAA No, page 2261, 2009.

Mickael Binois and Victor Picheny.

GPareto: Gaussian Processes for Pareto Front Estimation and Optimization.

R package version 1.0.3, 2016.

Jean-Marc Bourinet, Cécile Mattrand, and Vincent Dubourg.

A review of recent features and improvements added to FERUM software.

In H. Furuta, D. M. Frangopol, and M. Shinozuka, editors, Proc. 10th

International Conference on Structural Safety and Reliability (ICOSSAR 2009),

Osaka, Japan, September 13–17, 2009. CRC Press, 2009.

Thomas Browne, Bertrand Iooss, Loïc Le Gratiet, Jérôme Lonchampt, and

Emmanuel Remy.

Stochastic simulators based optimization by gaussian process

metamodels–application to maintenance investments planning issues.

Quality and Reliability Engineering International, 32(6):2067–2080, 2016.

216/224

References III

Clément Chevalier and David Ginsbourger.

Fast computation of the multi-points expected improvement with applications in

batch selection.

In International Conference on Learning and Intelligent Optimization, pages

59–69. Springer, 2013.

Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez, Victor

Picheny, and Yann Richet.

Fast parallel kriging-based stepwise uncertainty reduction with application to the

identification of an excursion set.

Technometrics, 56(4):455–465, 2014.

Indraneel Das.

Nonlinear multicriteria optimization and robust optimality.

PhD thesis, Rice University, 1997.

Vincent Dubourg.

Adaptive surrogate models for reliability analysis and reliability-based design

optimization.

PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2011.

217/224

References IV

Vincent Dubourg, Bruno Sudret, and Jean Marc Bourinet.

Reliability-based design optimization using kriging surrogates and subset

simulation.

Structural and Multidisciplinary Optimization, 44(5):673–690, 2011.

Michael Emmerich, Kyriakos C. Giannakoglou, and Boris Naujoks.

Single- and multi-objective evolutionary optimization assisted by Gaussian

random field metamodels.

IEEE Transactions on Evolutionary Computation, 10(4):421–439, 2006.

Paul Feliot, Julien Bect, and Emmanuel Vazquez.

A Bayesian approach to constrained single-and multi-objective optimization.

Journal of Global Optimization, 67(1-2):97–133, 2017.

Alexander Forrester, András Sóbester, and Andy Keane.

Engineering design via surrogate modelling: a practical guide.

John Wiley & Sons, 2008.

Peter Frazier, Warren Powell, and Savas Dayanik.

The knowledge-gradient policy for correlated normal beliefs.

INFORMS journal on Computing, 21(4):599–613, 2009.

218/224

References V

Peter I Frazier, Warren B Powell, and Savas Dayanik.

A knowledge-gradient policy for sequential information collection.

SIAM Journal on Control and Optimization, 47(5):2410–2439, 2008.

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro.

Kriging is well-suited to parallelize optimization.

In Computational Intelligence in Expensive Optimization Problems, pages

131–162. Springer Science & Business Media, 2010.

Agathe Girard.

Approximate methods for propagation of uncertainty with gaussian process

models.

PhD thesis, University of Glasgow, 2004.

Robert B. Gramacy, Genetha A. Gray, Sebastien Le Digabel, Herbert K. H. Lee,

Pritam Ranjan, Garth Wells, and Stefan M. Wild.

Modeling an augmented lagrangian for blackbox constrained optimization.

Technometrics, 58(1):1–11, 2016.

Philipp Hennig and Christian J. Schuler.

Entropy search for information-efficient global optimization.

Journal of Machine Learning Research, 13(Jun):1809–1837, 2012.

219/224

References VI

José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani.

Predictive entropy search for efficient global optimization of black-box functions.

In Advances in Neural Information Processing Systems, pages 918–926, 2014.

José Miguel Hernández-Lobato, Michael A. Gelbart, Matthew W. Hoffman,

Ryan P. Adams, and Zoubin Ghahramani.

Predictive entropy search for Bayesian optimization with unknown constraints.

In ICML, pages 1699–1707, 2015.

Deng Huang, Theodore T. Allen, William I. Notz, and R. Allen Miller.

Sequential kriging optimization using multiple-fidelity evaluations.

Structural and Multidisciplinary Optimization, 32(5):369–382, 2006.

Janis Janusevskis and Rodolphe Le Riche.

Simultaneous kriging-based estimation and optimization of mean response.

Journal of Global Optimization, 55(2):313–336, 2013.

Donald R. Jones, Matthias Schonlau, and William J. Welch.

Efficient global optimization of expensive black-box functions.

Journal of Global Optimization, 13(4):455–492, 1998.

220/224

References VII

Joshua Knowles.

ParEGO: A hybrid algorithm with on-line landscape approximation for expensive

multiobjective optimization problems.

IEEE Transactions on Evolutionary Computation, 10(1):50–66, 2006.

Juhani Koski.

Defectiveness of weighting method in multicriterion optimization of structures.

Communications in Applied Numerical Methods, 1(6):333–337, 1985.

Sébastien Marmin, Clément Chevalier, and David Ginsbourger.

Differentiating the multipoint expected improvement for optimal batch design.

In International Workshop on Machine Learning, Optimization and Big Data,

pages 37–48. Springer, 2015.

Julien Marzat, Eric Walter, and Hélène Piet-Lahanier.

Worst-case global optimization of black-box functions through kriging and

relaxation.

Journal of Global Optimization, 55(4):707, 2013.

Julien Marzat, Eric Walter, and Hélène Piet-Lahanier.

A new expected-improvement algorithm for continuous minimax optimization.

Journal of Global Optimization, 64(4):785–802, 2016.

221/224

References VIII

Jonas Mockus, Vytautas Tiesis, and Antanas Žilinskas.

The application of Bayesian methods for seeking the extremum.

In L. C. W. Dixon and G. P. Szegö, editors, Towards Global Optimization,

volume 2, pages 117–129, North Holland, New York, 1978.

Victor Picheny, Tobias Wagner, and David Ginsbourger.

A benchmark of kriging-based infill criteria for noisy optimization.

Structural and Multidisciplinary Optimization, 48(3):607–626, 2013.

Victor Picheny, David Ginsbourger, and Roustant Olivier et al.

DiceOptim: Kriging-Based Optimization for Computer Experiments, 2016a.

R package version 2.0, 2016.

Victor Picheny, Robert B. Gramacy, Stefan Wild, and Sebastien Le Digabel.

Bayesian optimization under mixed constraints with a slack-variable augmented

lagrangian.

In Advances in Neural Information Processing Systems, pages 1435–1443, 2016b.

Carl R. Rasmussen and Christopher K. I. Williams.

Gaussian Processes for Machine Learning.

MIT Press, 2006.

222/224

References IX

Samee Ur Rehman and Matthijs Langelaar.

Efficient infill sampling for unconstrained robust optimization problems.

Engineering Optimization, 48(8):1313–1332, 2016.

Samee Ur Rehman, Matthijs Langelaar, and Fred van Keulen.

Efficient kriging-based robust optimization of unconstrained problems.

Journal of Computational Science, 5(6):872–881, 2014.

Olivier Roustant, David Ginsbourger, and Yves Deville.

DiceKriging, DiceOptim: Two R packages for the analysis of computer

experiments by kriging-based metamodeling and optimization.

Journal of Statistical Software, 51(1), 2012.

Thomas J. Santner, Brian J. Williams, and William Notz.

The Design and Analysis of Computer Experiments.

Springer Verlag, 2003.

Matthias Schonlau, William J. Welch, and Donald R. Jones.

Global versus local search in constrained optimization of computer models.

In New Developments and Applications in Experimental Design: Selected

Proceedings of a 1997 Joint AMS-IMS-SIAM Summer Conference, volume 34 of

IMS Lecture Notes-Monographs Series, pages 11–25, 1998.

223/224

References X

Warren Scott, Peter Frazier, and Warren Powell.

The correlated knowledge gradient for simulation optimization of continuous

parameters using gaussian process regression.

SIAM Journal on Optimization, 21(3):996–1026, 2011.

Michael L. Stein.

Interpolation of Spatial Data: Some Theory for Kriging.

Springer, New York, 1999.

Marcos A. Valdebenito and Gerhart I. Schuëller.

A survey on approaches for reliability-based optimization.

Structural and Multidisciplinary Optimization, 42(5):645–663, 2010.

Emmanuel Vazquez.

Modélisation comportementale de systèmes non-linéaires multivariables par

méthodes à noyaux et applications.

PhD thesis, Univ Paris XI, Orsay, France, 2005.

Julien Villemonteix.

Optimisation de fonctions coûteuses Modèles gaussiens pour une utilisation

efficace du budget d’évaluations: théorie et pratique industrielle.

PhD thesis, Université Paris Sud-Paris XI, 2008.

224/224

References XI

Julien Villemonteix, Emmanuel Vazquez, and Éric Walter.

An informational approach to the global optimization of expensive-to-evaluate

functions.

Journal of Global Optimization, 44(4):509–534, 2009.

Brian J. Williams, Thomas J. Santner, and William I. Notz.

Sequential design of computer experiments to minimize integrated response

functions.

Statistica Sinica, pages 1133–1152, 2000.

Brian J. Williams, Thomas J. Santner, William I. Notz, and J. S. Lehman.

Sequential design of computer experiments for constrained optimization.

In Statistical Modelling and Regression Structures, pages 449–472.

Physica-Verlag HD, 2010.

	Lecture 1 : From meta-models to UQ
	1.1 Introduction
	1.2 Black-box modeling
	1.3 Bayesian approach
	Introduction
	Bayesian model: definition
	Bayesian model for the curve fitting problem
	Gaussian random processes
	Covariance of a GP
	Gaussian process simulation
	Posterior distribution
	Conditional expectation
	Computation of the conditional expectation
	Prediction of a zero-mean Gaussian process
	Kriging
	Prediction with noisy observations

	1.4 Posterior distribution of a quantity of interest
	1.5 Complements on Gaussian processes
	Choosing a centered Gaussian random process
	Gaussian processes with unknown mean function
	Books

	Lecture 2 : Bayesian optimization (BO)
	2.1. Decision-theoretic framework
	Uncertainty quantification
	(Lots of) Decisions to be made
	Loss function

	2.2. From Bayes-optimal to myopic strategies
	The optimal terminal decision
	Optimal choice of the last evaluation
	Bayes-optimal versus ``practical Bayes'' optimization
	Sampling criteria for multi-objective and/or contrained optimization

	2.3. Design under uncertainty
	Overview of possible approaches
	Optimization of a mean response
	RBDO (and other formulations)

	References

