Lucas Gerin
email: lucas.gerin@polytechnique.edu

Mini-course: Random uniform permutations

émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Brief reminder on permutations

Before we turn to random permutations, we will give a few definitions regarding non-random (or deterministic permutations).

A permutation of size n ≥ 1 is a bijection σ : {1, 2, . . . , n} → {1, 2, . . . , n}. For example

1 2 3 4 ↓ ↓ ↓ ↓ 2 4 3 1
is a permutation of size 4. In these notes we often write a permutation with its one-line representation σ(1)σ(2) . . . σ(n). For example the above permutation is simply written 2431. There are n! permutations of size n.

Cycle decomposition

For our purpose, there is a convenient alternative way to encode a permutation: by its cycle decomposition. A cycle is a finite sequence of distinct integers, defined up to the cycle order. This means that the three following denote the same cycle:

(8, 3, 4) = (3, 4, 8) = (4, 8, 3), while (8, 3, 4) = (8, 4, 3).

The cycle decomposition of a permutation σ is defined as follows. We give the theoretical algorithm and detail the example of 1 2 3 4 5 6 7 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 6 3 1 5 7 2 4

Algorithm

Example Start with 1st cycle [START_REF] Arratia | Size bias, sampling, the waiting time paradox, and infinite divisibility: when is the increment independent[END_REF] (1) Add to this cycle σ(1), then σ(σ(1)), then σ(σ(σ(1))), and so one until one of this number is one.

(1) → (1, 6) → (1, 6, 2) → (1, 6, 2, 3) and the cycle is over since σ(3) = 1. Start the 2d cycle with a number which has not been seen before. 2 How to simulate a random uniform permutation?

We will first discuss the following question. Imagine that you are given a random number generator rand (in your favourite programming language) which returns independent uniform random variables. How to use rand to simulate a random uniform permutation of size n?

The naive algorithm

It works as follows:

• Pick σ(1) uniformly at random in {1, 2, . . . , n} (n choices);

• Pick σ(2) uniformly at random in {1, 2, . . . , n} \ {σ(1)} (n -1 choices);

• Pick σ(3) uniformly at random in {1, 2, . . . , n} \ {σ(1), σ(2)} (n -2 choices), and so on until σ(n) (1 choice). By construction every permutation occurs with probability 1/n! so the output is uniform.

2.2

The "continuous" algorithm

• Pick continuous random variables X 1 , X 2 , . . . , X n , independently and uniformly in (0, 1) ;

• With probability 1 the n values are pairwise distinct. Therefore there exists a unique permutation σ such that

X σ(1) < X σ(2) < X σ(3) < • • • < X σ(n) .
• This σ is your output.

Proposition 1. For every n, the output of the continuous algorithm is uniform among the n! permutations of size n.

Proof.

Step 1: The n values are distinct. We have to prove that

P (for all i = j, X i = X j) = 1.
We prove that the complement event {there are i, j such that X i = X j } has probability zero. First we notice that P(there are i = j such that

X i = X j) = P (∪ i =j {X i = X j }) ≤ i =j P (X i = X j) ,
by the union bound (i) . Now, P (X i = X j) = Step 2: The output σ is uniform. To avoid messy notations we make the proof in the case n = 3.

Since the 3 values X 1 , X 2 , X 3 are distinct we have

1 = P(X 1 < X 2 < X 3) + P(X 1 < X 3 < X 2) + P(X 2 < X 1 < X 3) + P(X 2 < X 3 < X 1) + P(X 3 < X 1 < X 2) + P(X 3 < X 2 < X 1) = (0,1) 3 1 x 1 <x 2 <x 3 dx 1 dx 2 dx 3 + (0,1) 3 1 x 1 <x 3 <x 2 dx 1 dx 2 dx 3 + (0,1) 3 1 x 2 <x 1 <x 3 dx 1 dx 2 dx 3 + (0,1) 3 1 x 2 <x 3 <x 1 dx 1 dx 2 dx 3 + (0,1) 3 1 x 3 <x 1 <x 2 dx 1 dx 2 dx 3 + (0,1) 3 1 x 3 <x 2 <x 1 dx 1 dx 2 dx 3 .
Now, x 1 , x 2 , x 3 are dummy variables in the above integrals, so they are interchangeable. Therefore, these 6 integrals are identical and each of these is 1/6 = 1/3!.

The "Chinese restaurant" algorithm

We introduce the Chinese restaurant algorithm, also called the Fisher-Yates algorithm (or even Fisher-Yates-Knuth algorithm). The main difference with the two previous algorithms is that the output σ will be described through its cycle decomposition. The algorithm runs as follows:

(i) The union bound says that P n≥1 A n ≤ n≥1 P(A n) for every sequence of events (A n).

• Assume we are given infinitely many "restaurant tables" C 1 , C 2 , These tables are large enough so that an arbitrary number of people can sit at each table.

. . .

C 1 C 2 C 3
• Infinitely many customers 1, 2, 3, . . . enter the restaurant, one at a time. Put Customer n.1 at table C 1 : . . .

C 1 C 2 C 3 1
• With equal probability one-half, put Customer n.2 either at the same table as 1 (on its right) or alone at the new table C 2 :

. . .

C 1 C 2 C 3 1 2
• With equal probability one-third, put Customer n.3 either on the right of 1, or on the right of 2, or alone at the first empty table : . . . Proof. By construction, each table repartition with n customers occurs with the same probability

C 1 C 2 C 3 1 2 3 • . . . • Assume
1 × 1 2 × 1 3 × • • • × 1 n .
Now, each table repartition corresponds to exactly one permutation of size n. Therefore each permutation occurs with probability 1/n!.

Simulations

Here is a simulation for n = 30:

Here For more on the Chinese restaurant we refer to [START_REF] Pitman | Combinatorial stochastic processes[END_REF]. On the following webpage you can run simulations of the Chinese restaurant by yourself: http://gerin.perso.math.cnrs.fr/ChineseRestaurant.html

Typical properties of a random uniform permutation

Frow now on S n denotes a random uniform permutation of size n, generated by any of the previous algorithms.

Number of fixed points

Definition 1. Let σ be a permutation of size n. The integer

1 ≤ i ≤ n is a fixed point of σ if σ(i) = i.
For example, 2431 has a unique fixed point at i = 3. Proposition 3. Let F n be the number of fixed points of S n . For every n, we have that (ii)

E[F n] = 1, Var(F n) = 1.
This is quite surprising that E[F n] and Var(F n) do not depend on n.

Proof. We write F n = n i=1 X i , where

X i = 1 if S n (i) = i, 0 otherwise .
Random variables X i 's are not independent. Still we have by linearity of expectation that

E[F n] = E[X 1 + • • • + X n] = E[X 1] + • • • + E[X n],
and we are left to compute E[X i] for every i. Now,

P(X i = 1) = P(S n (i) = i) = card {permutations s of size n with s(i) = i} card {permutations of size n} = (n -1)! n! = 1 n .
(Indeed, a permutation such that s(i) = i is also a permutation of the set {1, 2, . . . , i -1, i + 1, . . . , n} of size n -1.) Therefore we have that

E[X i] = 1 × P(X i = 1) + 0 × P(X i = 0) = 1/n.
(ii) Thank you to Amic Frouvelle for pointing me that the variance was wrong in the previous version of these notes.

Finally

E[F n] = E[X 1] + • • • + E[X n] = n × 1/n = 1.
In order to compute the variance we will use the formula Var(

X i) = i Var(X i) + i =j Cov(X i , X j) = nVar(X 1) + n(n -1)Cov(X 1 , X 2)
By the previous computation we have:

E[X 1] = 1 n , Var(X 1) = 1 n (1 -1 n).
Similarly as above we can compute

E[X 1 X 2] = P(X 1 × X 2 = 1) = P(X 1 = 1, X 2 = 1) = (n -2)! n! = 1 n(n -1)
.

Hence Cov(X 1 , X 2) = 1 n(n-1) -E[X 1]E[X 2] = 1 n(n-1) -1 n 2 . Finally Var(F n) = 1 - 1 n + n(n -1) 1 n 2 (n -1) = 1.

The Poisson paradigm

There is a general phenomenon in probability known as the Poisson paradigm. It says that if X i 's are 0/1 random variable such that 1. E[X i] = P(X i = 1) is "small" for every i ;

2. X i 's are "almost" independent ; then X = X i is almost distributed like the Poisson distribution with mean

E[X i].
Here E[X i] = n i=1 1/n = 1 and one can make the Poisson paradigm rigorous: Proposition 4. Let (S n) n be a sequence of random uniform permutations, and let F n be the number of fixed points of S n . Then F n converges in distribution to the Poisson distribution with mean 1, i.e.

P(F n = k) n→+∞ → P(Poisson(1) = k) = e -1 k! ,
for every k = 0, 1, 2,

A combinatorial proof can be found at [8]. For more on the Poisson paradigm, we refer to [START_REF] Barbour | Poisson approximation[END_REF].

Number of inversions

An inversion in σ is a pair (i, j) such that i < j, σ(i) > σ(j) .

Let Inv(σ) be the number of inversions of σ. For example, if σ = 43152 then Inv(σ) = 6 (each arc counts for an inversion):

4 3 1 5 2 σ:

Proposition 5. For every n, let S n be a uniform random permutation of size n. Then

E[Inv n (S n)] = n(n -1) 4 .
Proof. We will make a combinatorial proof, with (almost) no computation. First, let σ be the reversed permutation of σ: for every 1 ≤ i ≤ n,

σ(i) = n + 1 -σ(i).
For instance, if σ = 43152 then σ = 23514. Then by construction we have that an arbitrary pair (i, j) is an inversion for σ if and only if it is not an inversion for σ. We deduce that

Inv(σ) + Inv(σ) = card { all pairs 1 ≤ i < j ≤ n} = n 2 = n(n -1) 2 .
Here we see that Inv(43152) + Inv(23514) = 6 + 4 = 5 2 :

4 3 1 5 2 σ:

2 4 5 1 3 σ:
Now, we apply the above equality to σ = S n and take expectations of both sides:

E Inv(S n) + E Inv(Sn) = n(n -1) 2 .
But now, it is obvious that σ → σ is a bijection so it preserves the uniform measure. Therefore Sn is also a uniform random permutation and we have E Inv(S n) = E Inv(Sn) . The proof is done.

Number of cycles

Proposition 6. Let C n be the number of cycles of S n . When n → +∞,

E[C n] n→+∞ ∼ log(n).
Proof. We may assume that S n is the output of the Chinese restaurant algorithm. All along the process of the Chinese restaurant, a new cycle appears when a customer sits at a new table:

C n = n i=1 Z i ,
where

Z i = 1 if Customer i sits at a new table, 0 otherwise .
Customer i sits at a new table with probability 1/i, therefore

E [Z i] = 1/i. Then, E[C n] = E n i=1 Z i = n i=1 E [Z i] = n i=1 1 i . Now, we use the fact that (iii) n i=1 1 i ∼ log(n).

Size of the first cycle/first table

Let T 1 (n) be the number of customers at Table 1 in the Chinese restaurant process at time n. By Proposition 2, we have that the random variable T 1 (n) has the distribution of the cycle of 1 in the cycle decomposition of a random uniform permutation of size n.

Proposition 7. For every n, the random variable T 1 (n) is uniformly distributed in {1, 2, . . . , n}, i.e.

P(T 1 (n) = i) = 1 n ,
for every i ∈ {1, 2, . . . , n} .

Remark .

1. The distribution of the sequence (T 1 (n)) n≥1 is actually known as the Pólya Urn process [START_REF] Pouyanne | Pólya urn models[END_REF]. Proof. 1st proof: Probability. The proof goes by induction. For n = 1 this is obvious since with probability one T 1 (1) = 1.

Assume now that for some n ≥ 1, the random variable T 1 (n) is uniform in {1, 2, . . . , n}. If T 1 (n) = i, then Customer n + 1 sits at table 1 with probability i/(n + 1).

(iii) See https://en.wikipedia.org/wiki/Harmonic series (mathematics) . . . Therefore

T 1 (n + 1) = i + 1 with probab. i n+1 , i with probab. n+1-i n+1 . (1)
Fix j ∈ {1, . . . , n + 1}. The above argument implies that

P(T 1 (n + 1) = j) = P(T 1 (n + 1) = j ∩ T 1 (n) = j) + P(T 1 (n + 1) = j ∩ T 1 (n) = j -1) = P(T 1 (n + 1) = j|T 1 (n) = j)P(T 1 (n) = j) + P(T 1 (n + 1) = j|T 1 (n) = j -1)P(T 1 (n) = j -1) = n + 1 -j n + 1 × P(T 1 (n) = j) (apply (1) with i = j.) + j -1 n + 1 × P(T 1 (n) = j -1) (apply (1) with i = j -1.) = n + 1 -j n + 1 × 1 n + j -1 n + 1 × 1 n (recall T 1 (n) is uniform) = n (n + 1)n = 1 n + 1 ,
which proves that T 1 (n + 1) is uniform in {1, . . . , n + 1}. 2d proof: Combinatorics. For i = 1, . . . , n, let us enumerate the permutations in which T 1 (n) = i. We have to choose i -1 elements x 1 , . . . , x i-1 (n-1 i-1 choices) which belong to this cycle, and put them in a given order ((i -1)! choices). Then, the ni remaining elements form a permutation of size n

-i ((n -i)! choices). . . . C 1 1 x 1 i people at table 1 bijection of size n-i x 2 x i-1 . . . Therefore P(T 1 (n) = i) = card {permutations of size n with T 1 (n) = i} n! = 1 n! n -1 i -1 (i -1)!(n -i)! = 1 n! (n -1)! (i -1)!(n -i)! (i -1)!(n -i)! = 1 n .
Discussion: the reinforcement phenomenon

The Chinese restaurant process illustrates the reinforcement phenomenon which is very common in Probability. It is also known as the "rich gets richer" phenomenon. Indeed, we observe that the more people there are at Table 1 at a given time, the more there will be in the future.

As an application, it turns out that because Table 1 appears sooner than Table 2, Table 1 is much more occupied (in average) than Table 2.

Proposition 8. For large n, we have that

E[T 1 (n)] n→+∞ ∼ n 2 , E[T 2 (n)] n→+∞ ∼ n 4 .
Proof. First, we claim that conditionally on the event {T 1 (n) = i}, then T 2 (n) is uniformly distributed in {1, 2, . . . , n -i}: for every j ≤ ni we have

P(T 2 (n) = j | T 1 (n) = i) = 1 n-i if i < n, 0 if i = n.
We skip the proof, which is very similar to the proof of Proposition 7 (in this case the combinatorial proof is easier).

Consequently, if we condition on the event {T 1 (n) = i} we have that

E[T 2 (n)|T 1 (n)] = E[Uniform random var. in {1, 2, . . . , n -T 1 (n)}] = 1 + n -T 1 (n) 2 .
Now, by the tower property of conditional expectation (iv) we obtain

E[T 2 (n)] = E E[T 2 (n)|T 1 (n)] = E 1 + n -T 1 (n) 2 = 1 + n -n/2 2 ∼ n 4 .

Exercise 1

 1 What is the cycle decomposition of 62784315?

 is a simulation for n = 2000 (We only represent sizes of tables. They have respective sizes 122, 673, 631, 68, 176, 159, 35, 8, 28, 91, 2, 5, 1, 1.): A last simulation for n = 30000. Tables have sizes 15974, 11238, 31, 2121, 99, 25, 397, 97, 13, 2, 3.

2 .

 2 A nice problem related to Proposition 7 is given by the 100 prisoners problem [7].

Figure :

 : Figure:A sketch of the situation when Customer n + 1 tries to sit.

 Now, we return the permutation σ whose cycle decomposition corresponds to table repartitions. Assume here that 8 sits alone, we obtain the diagram Exercise

		1			3		8	
	2	C 1	6	5	C 2 7	4	C 3	. . .
	This can also be written (126)(3547)(8). The corresponding permutation is
				1 2 3 4 5 6 7 8
				↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 2 6 5 3 7 1 4 8
			1			3		
		2	C 1	6	5	C 2 7	4	C 3	. . .
					8			
						4		

that customers 1, 2, . . . , n -1 are already installed. With equal probability 1/n, put Customer n either on the right of 1, . . . , or on the right of n -1, or alone at the first empty table (here n = 8): 2 Take n = 4. What is the probability that the output of the algorithm is the permutation 4231? (Hint: First write the cycle decomposition of 4231.) Proposition 2. For every n, the output of the Chinese restaurant algorithm is uniform among the n! permutations of size n.

(iv) This says thatE[E[X|Y]] = E[X].

Discussion: the size-bias phenomenon We conclude by investigating an apparent paradox:

• In average, there are n/2 people at the same table as 1. But recall that the output of the Chinese restaurant process is uniform in S n so by symmetry, every element in {1, 2, . . . , n} plays the same role: this table can be considered as a typical table.

• There are in average log(n) distinct tables, so a typical table should have (in average) about

Number of customers Number of tables

The paradox is that Table 1 is not typical: by saying that 1 sits at this table the size of this table is biased. The size of Table 1 is overestimated compared to a "true" typical table. This is the size-bias phenomenon, whose a very nice introduction can be found in [START_REF] Arratia | Size bias, sampling, the waiting time paradox, and infinite divisibility: when is the increment independent[END_REF].

4 How to sort S n efficiently: average-case analysis of Quicksort

We will discuss a different topic regarding random permutations: the analysis of sorting algorithms. We will focus on one of the most famous: Quicksort.

The algorithm

The algorithm uses the Divide-and-Conquer strategy, there are three steps:

1. Call x 1 the pivot of the list.

2. Compare all the elements x 2 , . . . , x n with x 1 and re-order the list so that (a) elements < x 1 come before the pivot, (b) elements ≥ x 1 come after the pivot.

3. Recursively apply strategy to both sub-lists.

Here are the first steps applied to the permutation 435162:

Average-case analysis

We consider that the cost of the algorithm driven on x 1 , . . . , x n is given by the number Comp(x 1 , . . . , x n) of pairwise comparisons between x i 's. For instance, in the above example we have that Comp(4, 3, 5, 1, 6, 2) = 5 + 1 + 2 + 1 = 9.

If the input is random, then Comp is a random variable.

Proposition 9. Let X 1 , . . . , X n be independent random variables uniform in the interval (0, 1). Then, when n → +∞,

Both the algorithm and its analysis were provided by Hoare [START_REF] Hoare | Quicksort[END_REF]. A modern reference is [START_REF] Flajolet | An introduction to the analysis of algorithms[END_REF].

Proof. By construction X 1 is the first pivot. Denote by Y 1 , . . . , Y I-1 be the numbers > X 1 , and Z 1 , . . . , Z n-I , so that I is the (random) rank of X 1 in the sequence. Because of the recursive strategy the number of comparisons is given by

We omit the proofs of the two following claims:

• The rank I is uniform in 1, 2, . . . , n.

• Conditionally on X 1 , the Y j 's are i.i.d. (and uniform in (0, X 1)) and the Z j 's are i.i.d. (and uniform in (X 1 , 1)).

Therefore, if we take expectations of both sides of () and put c n = E Comp(X 1 , . . . , X n) then we obtain

with c 0 = c 1 = 0. In order to get rid of the sums we compute

This can be rewritten as:

If we divide by n(n + 1) we get

If we put d n := cn+2n n+1 we have that

i.e. (We observe that the number of comparisons Comp(X 1 , . . . , X n) only depends on the relative order of the X i 's, not on their exact values. Therefore Proposition 9 remains true (with the same proof) if X i 's are i.i.d. with an arbitrary density.)