Bond Graphs - A graphical language for the analysis of multiphysical systems

Pierre Haessig

To cite this version:

Pierre Haessig. Bond Graphs - A graphical language for the analysis of multiphysical systems. Engineering school. France. 2022. hal-03602684

HAL Id: hal-03602684
https://cel.hal.science/hal-03602684
Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Bond Graphs

A graphical language for the analysis of multiphysical systems

Pierre Haessig, CentraleSupélec (campus of Rennes)
Slide deck 1: the language
Course outline

- Bond graph objectives
- The bond graph language
 - Bonds and power variables: the physical analogy
 - Elements
- Practice: reading & creating bond graphs
- Causality and derivation of mathematical models
Bond graph objectives

- a simple unified graphical language for many physical domains
- acausal models
 - to preserve the physical structure of the real physical system
 - which highlight energy exchange
- but with the (optional) superposition of a *computational causality* information
Bond graph model structure is *hybrid*

Two extremal structures of model:

1. Block diagrams, with very clear computational structure
 - but lost physical structure
2. Physical network-type diagrams (electrical, mechanical)
 - but no computational information

\[U : \text{Se} \quad \rightarrow \quad 1 \quad \rightarrow \quad 0 \quad \rightarrow \quad C : \text{C} \]

\[\downarrow \quad \downarrow \]

\[I : \text{L} \quad \quad R : \text{R} \]
Model comparisons

BG, Circuit (acausal), Block diagram (causal)

\[\text{U : Se} \rightarrow 1 \rightarrow 0 \rightarrow \text{C : C} \]

\[\text{I : L} \rightarrow \text{R : R} \]
The bond graph language

- Bonds & power variables
- Elements
Bonds

Bonds model the physical interaction of two elements which exchange energy.

The interaction happens through two generalized physical variables: effort & flow, collectively named the “power variables”.

\[\text{Effort} \quad \text{Flow} \]
Physical analogy in bond graphs

Each physical domain has a specific choice for the generalized *effort* and *flow* variables of each bond:

<table>
<thead>
<tr>
<th>Physical Domain</th>
<th>Effort e</th>
<th>Flow f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translational mechanics</td>
<td>Force F (N)</td>
<td>Velocity v (m/s)</td>
</tr>
<tr>
<td>Rotational mechanics</td>
<td>Torque Γ (N.m)</td>
<td>Angular velocity ω (rad/s)</td>
</tr>
<tr>
<td>Electricity</td>
<td>Voltage u (V)</td>
<td>Current i (A)</td>
</tr>
<tr>
<td>Thermal transfers</td>
<td>Temperature T (K)</td>
<td>Entropy flow rate \dot{S} (J/K/s)</td>
</tr>
<tr>
<td>Hydraulic</td>
<td>Pressure P (N/m²)</td>
<td>Volume flow rate Q_v (m³/s)</td>
</tr>
</tbody>
</table>

Property: the two variables of each bond are chosen such that:

$$Effort \times Flow = Power \ (\text{Watt})$$
Reminder: Modelica's physical analogy

Modelica's analogy is based on the port's *connection* behavior

<table>
<thead>
<tr>
<th>Potential</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translat. mech.</td>
<td>Position s (m)</td>
</tr>
<tr>
<td>Rotational mech.</td>
<td>Angular position φ (rad)</td>
</tr>
<tr>
<td>Electricity</td>
<td>Voltage u (V)</td>
</tr>
<tr>
<td>Thermal transfers</td>
<td>Temperature T (K)</td>
</tr>
<tr>
<td>Hydraulic</td>
<td>Pressure P (N/m²)</td>
</tr>
</tbody>
</table>

⚠ Differences with bond graph:

- Force and Torque are **switched**: BG's Effort \rightarrow Modelica's Flow
- Different vocabulary in **bold**: in particular position vs speed
Comparison with Modelica's analogy

BG & Modelica:
- both introduce an analogy between variables across different physical domains
- but using a different classification & vocabulary, because each is built on different foundations

BG's analogy: group variables as “effort” or “flow”
- by preserving common physical sense (ex.: voltage ↔ force, current ↔ speed)
- with constraint $e \times f = Power$

Modelica's analogy: group variables as “potential” or “flow”
- by preserving the connection topology of graphical diagrams (ex.: voltage ↔ position because both are equal at interconnection of ports)
- (with no constraint on the product $e \times f$)
Relation between BG's and Modelica's analogies

<table>
<thead>
<tr>
<th>Domain</th>
<th>Mechanics</th>
<th>Others (e.g. electricity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG effort</td>
<td>Mod flow</td>
<td>Mod potential</td>
</tr>
<tr>
<td>BG flow</td>
<td>Mod der(potential)</td>
<td>Mod flow (*)</td>
</tr>
</tbody>
</table>

Observations:

- for all domains except mechanics, we have:
 - BG effort = Modelica potential
 - BG flow = Modelica flow (*)
- but for mechanics:
 - it's reversed
 - and we have an extra derivative: speed = der(position)
- (*) thermal domain is an exception: heat flow (J/s) vs entropy flow (J/K/s)
Bonds

- Exchange of energy between elements
- Half arrow = direction of positive power flow
- Drawing conventions:
 - e above/left, f below/right
 - half arrow on the side of the flow (i.e. below/right)
Bond graph elements

Energy stores
- I store
- C store

Dissipators
- R (resistor)

Sources
- Se (effort source)
- Sf (flow source)

Junctions
- 0-junction
- 1-junction
- Transformer
- Gyrator

conserve power
Junctions

Unlike in network-type diagrams, the connection of elements is not achieved with the topology of links (e.g. loops of wires), but using explicitly one of the two junction elements:

- “0” junction: common effort
- “1” junction: common flow

Also in the junction category: transformers and gyrators

Common property: **instantaneous power is conserved**
0 junction

“Common effort” junction:

\[e_1 = e_2 = \ldots = e_n \]

Flows are distributed (incoming sum = outgoing sum), according to the orientation of the bonds. On the example:

\[f_1 = f_2 + \ldots + f_n \]
1 junction

“Common flow” junction:

\[f_1 = f_2 = \ldots = f_n \]

Efforts are distributed (incoming sum = outgoing sum), according to the orientation of the bonds. On the example:

\[e_1 = e_2 + \ldots + e_n \]
Two-port junctions: transformers & gyrators

Transmit power with a scaling of efforts & flows:

- in the same domain (unitless scaling)
- between two domains (scaling with a physical unit)
Transformer (TF)

\[f_2 = m.f_1 \]
\[m.e_2 = e_1 \]

\(m \) is the transformer ratio

Examples:

- Mechanical gear pair: \(\omega_2 = (r_2/r_1).\omega_1 \)
- Cable — Pulley: \(v = r.\omega \)
- Electrical transformer: \(v_1 = m.v_2 \) (⚠ inverted definition of the transformer ratio)
Gyrator (GY)

\[e_2 = r \cdot f_1 \]
\[e_1 = r \cdot f_2 \]

\(r \) is the gyrator ratio

Example:
- EMF of a DC motor: \(e = K \cdot \Omega \) and \(C = K \cdot i \)
Modulation of Transformers (Gyrators)

The transformer (gyrator) can be modulated by a signal (using a signal arrow \rightarrow):

$\begin{align*}
 &m(t) & &r(t) \\
 \frac{e_1}{f_1} \xrightarrow{MTF} &\frac{e_2}{f_2} \\
 \frac{e_1}{f_1} \xrightarrow{MGY} &\frac{e_2}{f_2}
\end{align*}$

Examples: crank-slider mechanism, averaged DC-DC converter.
One-port elements

There are 3 basic energy consuming/storing devices:

- **Dissipator**: resistor
- **Energy stores**:
 - **C** store, also called **Compliance** or **Capacitor**
 - **I** store, also called **Inertia**

In addition, there are two sources: **Se** (effort) and **Sf** (flow source)

Remark: in electricity, *one-port* element = device with *two* electrical pins
Resistor (R)

Relation (linear case):

\[e = R \cdot f \]

Property: power is irreversibly dissipated (as heat)

Examples:
- Electrical resistor: \(u = R \cdot i \)
- Mechanical damper: \(f = d \cdot v \)
C energy store (also called Compliance or Capacitor)

Using the “generalized displacement” q (an “energy” variable):

$$q = \int f \, dt$$

C store relation:

$$q = \Phi_C(e)$$

Linear C store:

$$q = C \cdot e$$

→ consequence: $f = C \cdot \frac{de}{dt}$
C store examples (linear)

Mechanics:
- displacement = (kinematic) displacement $x = \int v \cdot dt$
- relation: $x = (1/k).f$
- C store = spring

Electricity:
- displacement = charge $q = \int i \cdot dt$ (Coulomb)
- relation $q = C.u$
- C store = (electrical) capacitor
I energy store (also called Inertia)

Using the “generalized momentum” \(p \) (an “energy” variable):

\[
p = \int e \, dt
\]

I store relation:

\[
p = \Phi_I(f)
\]

Linear I store:

\[
p = I \cdot f
\]

→ consequence: \(e = I \cdot \frac{df}{dt} \)
I store examples (linear)

Mechanics:
• momentum = mechanical momentum \(p = \int f \, dt \)
• relation: \(p = m.v \), that is \(f = m.\frac{dv}{dt} \) (inertial force)
• I store = mechanical \textbf{inertia}

Electrity:
• momentum = magnetic flux linkage \(\lambda = \int u \, dt \) (\(V.s = Wb \))
• relation: \(\lambda = L.i \), that is \(v = L.\frac{di}{dt} \)
• I store = \textbf{inductor}
Parametrization of R, C, I elements

The value of a linear R/C/I element is appended with the notation “: x”.

Same notation is used for the value of a source (next slide).
Sources

Sources either impose the effort (Se) or the flow (Sf).

Se examples:
- Electricity: voltage source
- Mechanics: imposed torque or force

Sf examples:
- Electricity: current source
- Mechanics: imposed speed
Bond Graphs practice

A graphical language for the analysis of multiphysical systems

Pierre Haessig, CentraleSupélec (campus of Rennes)
Slide deck 2: practice
Course outline

- Bond graph objectives
- The bond graph language
 - Bonds and power variables: the physical analogy
 - Elements
- Practice: reading & creating bond graphs
- Causality and derivation of mathematical models
Practice

Objectives: being able to

1. **Read** BGs
 - recognize classical structure

2. **Create** BGs from network diagrams (electrical, mechanical)
M1: 1 junctions represent “velocity points”

Questions:
- Fill the blanks on the BG
- Represent the physical system
- Derive the overall mechanical equation of the system
M1: 1 junctions represent “velocity points” (S)

This BG represents the free fall of a mass m with equation:

$$m \cdot \frac{dv_m}{dt} = -m \cdot g$$
M2: Springs and dampers typically on 0 junctions

\[v_a \quad 0 \quad v_b \]

\[1 \quad 0 \quad 1 \]

\[F_k \]

\[C : 1/k \]

Questions:

- Fill the blanks on the BG
- Represent the physical system
- Give the expression of \(F_k \)
M2: Springs and dampers typically on 0 junctions (Sol.)

This BG represents a spring of stiffness k between two points A and B.

$$F_k = k \int (v_a - v_b) \, dt = k(x_a - x_b)$$
Mechanical BGs: main structures

- velocity points represented by 1 junctions
 - an Inertia can attach directly to its corresponding 1 junction
- components which react on a velocity/position differences (spring and dampers) are typically connected to a 0 junction placed between two 1 junctions
E1: 0 junctions represent voltage nodes

Questions:
- Fill the blanks on the BG
- Represent the physical system
E1: 0 junctions represent voltage nodes (Sol.)
E2: 1 junction for voltage drop on a RLC component

Questions:

- Fill the blanks on the BG
- Represent the physical system
- Compute i_r
E2: 1 junction for voltage drop on a RLC component (Sol.)

\[i_r = \frac{e_a - e_b}{r} \]
E3: Voltage source

...
Bond Graphs practice

A graphical language for the analysis of multiphysical systems

Pierre Haessig, CentraleSupélec (campus of Rennes)
Slide deck 3: causality
Course outline

- Bond graph objectives
- The bond graph language
 - Bonds and power variables: the physical analogy
 - Elements
- Practice: reading & creating bond graphs
- Causality and derivation of mathematical models
 - Principles
 - Practice
Computational causality & derivation of mathematical models
Causally completed bonds

Reminder: bonds express acausal physical links between components

Optionnaly, bonds can be completed with "causality stroke/arrow" which indicate the direction of the computation flow.

Remark: this computational causality doesn't express a physical cause → consequence relationship
Meaning and significance of causality in BGs

BG to block diagrams fragments

A \[\begin{array}{c}
\text{e} \\
\text{f}
\end{array}\] B

A

\[\begin{array}{c}
\text{e} \\
\text{f}
\end{array}\]

B

Mnemonic: the causality arrow is the direction of the *effort signal arrow*

To be continued...
Rules for each class of BG components

- sources
- junctions
- energy stores & dissipators
Causality for Sources

For sources, causality orientation is **compulsory**:

- Se imposes the effort \(\rightarrow \) outgoing effort
- Sf imposes the flow \(\rightarrow \) outgoing flow
Causality for junctions: 0 junction

Compulsory rule

For 0 junction (share effort): “One and only one incoming effort”

Remark: causality arrows unrelated to bond orientations
Causality for junctions: 1 junction

Compulsory rule

For 1 junction (share flow): “One and only one incoming flow

Remark: causality arrows unrelated to bond orientations
Causality for junctions: TF

\[e_1 \quad f_1 \quad m \quad f_2 \quad e_2 \]

[Compulsory] Transformers \textbf{preserve} the direction of the e&f signals

- one incoming effort
- one incoming flow
Causality for junctions: GY

[Compulsory] Gyrators reverse the direction of the e&f signals

• either two incoming efforts
• or two incoming flows
Causality for Energy stores

C and I energy stores can accept the two possible causalities:

- **Integral causality** is the one yielding an integrator block
- **Derivative causality** is the one yielding an derivator block

For computational easiness, integrators are prefered, so

Integral causality = **Preferred** causality
Causality for Energy stores: C

Integral causality: receives a flow, imposes an effort

- Capacitor: current → voltage
- Spring: speed/position → force
Causality for Energy stores: I

Integral causality: receives a flow, imposes an effort

- Inductor: voltage \rightarrow current
- Intertia: force \rightarrow speed
Causality for R (dissipators)

For dissipators, all orientations are fine.

Sometimes called “resistance” vs “conductance” causality.
Sequential assignment rules

SCAP procedure:

Rule 1: assign sources

Rule 2: assign integral causality to Energy stores
Causality assignment examples

- Ex1: Rule 1 (sources+propagation) is enough
- Ex2: Rule 1+2 (prefered causality for energy stores) are enough
Bond Graphs practice

A graphical language for the analysis of multiphysical systems

Pierre Haessig, CentraleSupélec (campus of Rennes)
Slide deck 4: causality practice
Course outline

- Bond graph objectives
- The bond graph language
 - Bonds and power variables: the physical analogy
 - Elements
- Practice: reading & creating bond graphs
- Causality and derivation of mathematical models
 - Principles
 - Practice
Causality assignment Ex1

Se → V → 0 → C

R

V

C

R

Bond Graphs – Pierre Haessig – CS Rennes 2022
Causality assignment Ex1 (Sol.)

1. R1: Se sets the effort on the 0 junction
2. Propagation: effort propagates through the 0 junction
Causality assignment Ex2

\[\text{Sf} \xrightarrow{I} 0 \xrightarrow{} C \]

\[\text{R} \]

\[\text{I} \]

\[\text{C} \quad \text{R} \]
1. R1: Sf sets the flow on the 0 junction.
 ○ (no propagation)

2. R2: Set integral causality for C
 ○ → C sets the effort on the 0 junction

3. Propagation of effort to R through the 0 junction
Impossible connections exercise

Se \rightarrow V_1 0 \rightarrow I_3 Sf

V_2

Se

Bond Graphs – Pierre Haessig – CS Rennes 2022
Impossible connections exercise (Sol.)

The physical impossibility of parallel voltage sources emerges as a causality conflict on the 0 junction ("only one incoming effort allowed").