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Bond Graphs

A graphical language for the analysis of multiphysical systems

⇁

Pierre Haessig, CentraleSupélec (campus of Rennes) 
SG6: Dec. 2021 – Jan. 2022

Slide deck 1: the language
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Course outline

Bond graph objectives

The bond graph language

Bonds and power variables: the physical analogy

Elements

Practice: reading & creating bond graphs

Causality and derivation of mathematical models
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Bond graph objectives

a simple unified graphical language for many physical domains

acausal models

to preserve the physical structure of the real physical system

which highlight energy exchange

but with the (optional) superposition of a computational causality information
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Bond graph model structure is hybrid

Two extremal structures of model:

1. Block diagrams, with very clear computational structure

but lost physical structure

2. Physical network-type diagrams (electrical, mechanical)

but no computational information

I : L R : R

U : Se 01 C : C
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v
CU

Model comparisons

BG, Circuit (acausal), Block diagram (causal)

I : L R : R

U : Se 01 C : C

R
C

U L
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The bond graph language

Bonds & power variables

Elements
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Bonds

Bonds model the physical interaction of two elements which exchange energy.

e

f

ffort

low

The interaction happens through two generalized physical variables: effort & flow,
collectively named the “power variables”.
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Physical analogy in bond graphs

Each physical domain has a specific choice for the generalized effort and flow
variables of each bond:

Effort Flow 

Translational mechanics Force F (N) Velocity v (m/s)

Rotational mechanics Torque Γ (N.m) Angular velocity ω (rad/s)

Electricity Voltage u (V) Current i (A)

Thermal transfers Temperature T (K) Entropy flow rate Ṡ (J/K/s)

Hydraulic Pressure P (N/m²) Volume flow rate  (m³/s)

Property: the two variables of each bond are chosen such that:

Effort × Flow = Power (Watt)

e f

Q  v
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i
1
+i

2
+i

3
=0

Reminder: Modelica's physical analogy

Modelica's analogy is based on the port's connection behavior

Potential Flow

Translat. mech. Position s (m) Force f (N)

Rotational mech. Angular position φ (rad) Torque Γ (N.m)

Electricity Voltage u (V) Current i (A)

Thermal transfers Temperature T (K) Heat flow Q (J/s=W)

Hydraulic Pressure P (N/m²) Mass flow rate  (kg/s)

 Differences with bond graph:

Force and Torque are switched: BG's Effort → Modelica's Flow

Different vocabulary in bold: in particular position vs speed

Q  m

Bond Graphs – Pierre Haessig – CS Rennes 2022 9



Comparison with Modelica's analogy

BG & Modelica:

both introduce an analogy between variables across different physical domains

but using a different classification & vocabulary, because each is built on
different foundations

BG's analogy: group variables as “effort” or “flow”

by preserving common physical sense (ex.: voltage ↔ force, current ↔ speed)

with constraint 

Modelica's analogy: group variables as “potential” or “flow”

by preserving the connection topology of graphical diagrams 
(ex.: voltage ↔ position because both are equal at interconnection of ports)

(with no constraint on the product )

e × f = Power

e × f
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Relation between BG's and Modelica's analogies

Domain Mechanics Others (e.g. electricity)

BG effort Mod flow Mod potential

BG flow Mod der(potential) Mod flow (*)

Observations:

for all domains except mechanics, we have:

BG effort = Modelica potential

BG flow = Modelica flow (*)

but for mechanics:

it's reversed

and we have an extra derivative: speed = der(position)

(*) thermal domain is an exception : heat flow (J/s) vs entropy flow (J/K/s)
Bond Graphs – Pierre Haessig – CS Rennes 2022 11



e

f

e f

e f

e

f

Bonds

Exchange of energy between elements

Half arrow = direction of positive power flow

Drawing conventions:

e above/le, f below/right

half arrow on the side of the flow (i.e. below/right)
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Junctions

Unlike in network-type diagrams, the connection of elements in not achieved with the
topology of links (e.g. loops of wires), 
but using explicitly one of the two junction elements:

“0” junction: common effort

“1” junction: common flow

Also in the junction category: tranformers and gyrators

Common property: instantaneous power is conserved
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e₁

f₁

e₂
f₂

eₙ
fₙ

0

0 junction

“Common effort” junction:

e  =1 e  =2 ... = e  n

Flows are distributed (incoming sum = outgoing sum),
according to the orientation of the bonds. 
On the example:

f  =1 f  +2 ... + f  n
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1
e₁

f₁

e₂
f₂

eₙ
fₙ

1 junction

“Common flow” junction:

f  =1 f  =2 ... = f  n

Efforts are distributed (incoming sum = outgoing sum),
according to the orientation of the bonds. 
On the example:

e  =1 e  +2 ... + e  n
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Two-port junctions: transformers & gyrators

Transmit power with a scaling of efforts & flows:

in the same domain (unitless scaling)

between two domains (scaling with a physical unit)
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Transformer (TF)

×m
:

TF

m
e₂

f₂

e₁

f₁

f  =2 m.f  1

m.e  =2 e  1

 is the transformer ratio

Examples:

Mechanical gear pair: 

Cable — Pulley: 

Electrical transformer:  (  inverted definition of the transformer ratio)

m

ω  =2 (r  /r  ).ω  2 1 1

v = r.ω

v  =1 m.v  2
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Gyrator (GY)

×r
GY

:r
e₁

f₁

e₂

f₂

e  =2 r.f  1

e  =1 r.f  2

 is the gyrator ratio

Example:

EMF of a DC motor:  and 

r

e = K.Ω C = K.i
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Modulation of Transformers (Gyrators)

The transformer (gyrator) can be modulated by a signal (using a signal arrow →):

MTF
e₂

f₂

e₁

f₁

m(t)

                

MGY
e₂

f₂

e₁

f₁

r(t)

Examples: crank-slider mechanism, averaged DC-DC converter.
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One-port elements

There are 3 basic energy consuming/storing devices:

Dissipator: Resistor

Energy stores:

C store, also called Compliance or Capacitor

I store, also called Inertia

In addition, there are two sources: Se (effort) and Sf (flow source)

Remark: in electricity, one-port element = device with two electrical pins
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R
e

f

Resistor (R)

Relation (linear case):

e = R.f

Property: power is irreversibly dissipated (as heat)

Examples:

Electrical resistor: 

Mechanical damper: 

u = R.i

f = d.v
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C
e

f

C energy store (also called
Compliance or Capacitor)

Using the “generalized displacement”  (an “energy” variable):

q = f .dt∫

C store relation:

q = Φ  (e)C

Linear C store:

q = C.e

→ consequence: 

q

f = C.de/dt
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C
e

f

C store examples (linear)

Mechanics:

displacement = (kinematic) displacement 

relation: 

C store = spring

Electricity:

displacement = charge  (Coulomb)

relation 

C store = (electrical) capacitor

x = v.dt∫

x = (1/k).f

q = i.dt∫

q = C.u
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I
e

f

I energy store (also called Inertia)

Using the “generalized momentum”  (an “energy” variable):

p = e.dt∫

I store relation:

p = Φ  (f)I

Linear I store:

p = I.f

→ consequence: 

p

e = I.df/dt
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I
e

f

I store examples (linear)

Mechanics:

momentum = mechanical momentum 

relation: , that is  (inertial force)

I store = mechanical inertia

Electrity:

momentum = magnetic flux linkage  (V.s = Wb)

relation: , that is 

I store = inductor

p = f .dt∫

p = m.v f = m.dv/dt

λ = u.dt∫

λ = L.i v = L.di/dt
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Parametrization of R, C, I elements

The value of a linear R/C/I element is appended with the notation “: ”.

C : C
e

f
any symbol

Type : value
R, C or I

Same notation is used for the value of a source (next slide).

x
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E

f
E : Se

F : Sf
e

F

Sources

Sources either impose the effort (Se) or the flow (Sf).

Se examples:

Electricity: voltage source

Mechanics: imposed torque or force

Sf examples:

Electricity: current source

Mechanics: imposed speed
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Bond Graphs practice

A graphical language for the analysis of multiphysical systems

⇁

Pierre Haessig, CentraleSupélec (campus of Rennes) 
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Course outline

Bond graph objectives

The bond graph language

Bonds and power variables: the physical analogy

Elements

Practice: reading & creating bond graphs

Causality and derivation of mathematical models
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Practice 

Objectives: being able to

1. Read BGs

recognize classical structure

2. Create BGs from network diagrams (electrical, mechanical)
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M1: 1 junctions represent “velocity points”

1 I : m−m.g : Se
v

m

estions:

Fill the blanks on the BG

Represent the physical system

Derive the overall mechanical equation of the system
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m

v
m

m.g

M1: 1 junctions represent “velocity
points” (S)

1 I : m−m.g : Se
v

m

v
m

v
m

−m.g m.v̇
m

This BG represents the free fall of a mass  with equation:

m.  =
dt

dv  m −m.g

m
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M2: Springs and dampers typically on 0 junctions

01 1

C : 1/k

v
a

v
b

F
k

estions:

Fill the blanks on the BG

Represent the physical system

Give the expression of F  k
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M2: Springs and dampers typically on 0 junctions
(Sol.)

01 1

C : 1/k

v
a

v
b

F
k

F
k

F
k

v
a
 − v

b

v
a

v
b

 

k

v
a

v
b

F
k

F
k

F
k
 = k.∫v

a
−v

b
 

= k(x
a
−x

b
)

This BG represents a spring of stiffness  between two points A and B.

F  =k k (v  −∫ a v  ).dt =b k(x  −a x  )b

k
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Mechanical BGs: main structures

velocity points represented by 1 junctions

an Inertia can aach directly to its corresponding 1 junction

components which reacts on a velocity/position differences (spring and dampers) 
are typically connected to a 0 junction placed between two 1 junctions
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E1: 0 junctions represent voltage nodes

0 R : R

C : C

v

Sf
I i

R

estions:

Fill the blanks on the BG

Represent the physical system
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E1: 0 junctions represent voltage nodes (Sol.)

0 R : R

C : C

v

Sf
I i

R

v v

v

v

I − i
R

 

R
C

v

I i
R

Bond Graphs – Pierre Haessig – CS Rennes 2022 10



E2: 1 junction for voltage drop on a RLC component

0 1 0

R : r

i
r

0

e
a

e
b

estions:

Fill the blanks on the BG

Represent the physical system

Compute i  r
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E2: 1 junction for voltage drop on a RLC component
(Sol.)

0 1 0

R : r

i
r

0

e
a

e
be

a
e

b

e
a
 − e

b

i
r

i
r

 
i
r
 = (e

a
 − e

b
)/r

r
e

a
e

b

i
r

i  =r (e  −a e  )/rb
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E3: Voltage source

…
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Bond Graphs practice

A graphical language for the analysis of multiphysical systems

⇁

Pierre Haessig, CentraleSupélec (campus of Rennes) 
SG6: Dec. 2021 – Jan. 2022

Slide deck 3: causality
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Course outline

Bond graph objectives

The bond graph language

Bonds and power variables: the physical analogy

Elements

Practice: reading & creating bond graphs

Causality and derivation of mathematical models

Principles

Practice
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Computational causality & derivation of
mathematical models
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Causally completed bonds

Reminder: bonds express acausal physical links between components

acausal causally
completed

either

or

Optionnaly, bonds can be completed with “causality stroke/arrow” which indicate
the direction of the computation flow.

Remark: this computational causality doesn't express a physical cause → consequence
relationship
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Meaning and significance of causality in BGs

BG to block diagrams fragments

B
e

f
A

A B
e

f

e

f
A B

e

f
A B

Mnemonic: the causality arrow is the direction of the effort signal arrow

To be continued…
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Rules for each class of BG components

sources

junctions

energy stores & dissipators
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Sf

e

f
Se

e

f

Se

Sf

e

f

e

f

Causality for Sources

For sources, causality orientation is
compulsory:

Se imposes the effort 
→ outgoing effort

Sf imposes the flow 
→ outgoing flow
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Causality for junctions: 0 junction

A

B

C

e
A

f
A

e
B

f
B

e
C

f
C

0

C

B

e
A

f
A

e
B

f
B
e
C

f
C

A

Compulsory rule

For 0 junction (share effort): “One and only one incoming effort”

Remark: causality arrows unrelated to bond orientations
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Causality for junctions: 1 junction

1

C

B

e
A

f
A

e
B

f
B
e
C

f
C

A

C

B

A
e
A

f
A

e
B

f
B

e
C

f
C

Compulsory rule

For 1 junction (share flow): “One and only one incoming flow

Remark: causality arrows unrelated to bond orientations
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Causality for junctions: TF

e₂

f₂

e₁

f₁
:

TF

m
e₂

f₂

e₁

f₁
:

TF

m
e₂

f₂

e₁

f₁

m

m

1/m

1/m

e₁

f₁

e₂

f₂

[Compulsory] Transformers preserve the direction of the e&f signals

one incoming effort

one incoming flow
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Causality for junctions: GY

e₁

f₁

e₂

f₂

GY
:re₁

f₁

e₂

f₂

GY

:re₁

f₁

e₂

f₂

r

1/r

r

1/r

e₂

f₂

e₁

f₁

[Compulsory] Gyrators reverse the direction of the e&f signals

either two incoming efforts

or two incoming flows
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Causality for Energy stores

C and I energy stores can accept the two possible causalities:

Integral causality is the one yielding an integrator block

Derivative causality is the one yielding an derivator block

For computational easiness, integrators are prefered, so 
Integral causality = Prefered causality
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e

f
C

e

f

C
e

f

e

f C.s
1

C.s

Causality for Energy
stores: C

Integral causality: receives a flow,
imposes an effort

Capacitor: current → voltage

Spring: speed/position → force
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e

f
I

e

f

e

f

I.s
1

I.sI
e

f

Causality for Energy
stores: I

Integral causality: receives a flow,
imposes an effort

Inductor: voltage → current

Intertia: force → speed
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e

f
R

e

f

R
e

f

e

f

R
1

R

Causality for R
(dissipators)

For dissipators, all orientiations are
fine.

Sometimes called “resistance” vs
“conductance” causality
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Sequential assignement rules

SCAP procudure:

Rule 1: assign sources

Rule 2: assig integral causality to Energy stores
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Causality assignment examples

Ex1: Rule 1 (sources+propagation) is enough

Ex2: Rule 1+2 (prefered causality for energy stores) are enough
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Bond Graphs practice

A graphical language for the analysis of multiphysical systems
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Slide deck 4: causality practice
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Course outline

Bond graph objectives

The bond graph language

Bonds and power variables: the physical analogy

Elements

Practice: reading & creating bond graphs

Causality and derivation of mathematical models

Principles

Practice
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Causality assignment Ex1

C

R

0Se
V

 

R
C

V
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Causality assignment Ex1 (Sol.)

C

R

0Se
V

① R1 ② R1 
propag.

 

R
C

V

1. R1: Se sets the effort on the 0 junction

2. Propagation: effort propagates through the 0 junction
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Causality assignment Ex2

C

R

0Sf
I

 

R
C

I
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Causality assignment Ex2 (Sol.)

C

R

0Sf
I

① R1

③ R2
propag.

② R2

 

R
C

I

1. R1: Sf sets the flow on the 0 junction.

(no propagation)

2. R2: Set integral causality for C

→ C sets the effort on the 0 junction

3. Propagation of effort to R through the 0 junctionBond Graphs – Pierre Haessig – CS Rennes 2022 6



Impossible connections exercise

0 SfSe

Se

V₁

I₃

V₂
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Impossible connections exercise (Sol.)

0 SfSe

Se

V₁

I₃

V₂

The physical impossibility of parallel voltage sources emerges as a causality conflict
on the 0 junction (“only one incoming effort allowed”).
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