

Measurement of surfaces topography Noël Brunetière

▶ To cite this version:

Noël Brunetière. Measurement of surfaces topography. Doctoral. France. 2022. hal-03710660v1

HAL Id: hal-03710660 https://cel.hal.science/hal-03710660v1

Submitted on 30 Jun 2022 (v1), last revised 13 Nov 2023 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Measurement of surfaces topography

Noël Brunetière¹

Institut Pprime - Poitiers

June 30, 2022

¹noel.brunetiere@univ-poitiers.fr

Noël Brunetière (Institut Pprime - Poitiers)

Outline

1 Introduction

- Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation
- Other instruments
- 6 Comparison of instruments
 - 7 Summary
- 8 Application

Outline

1 Introduction

- Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

4) Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation
- 5 Other instruments
- 6 Comparison of instruments
- 7 Summary
- 8 Application

Why measuring surface topography?

The topography of the surfaces will affect many physical phenomena and surface functions:

- light reflexion
- contact area between solids
 - adhesion
 - electricity conduction
 - heat conduction
 - friction
- tactile perception
- liquid spreading on the surface (wettability)

Why measuring surface topography?

- Control and verify the surface: According to Leach[Lea11], it is essential to measure surface texture: "Surface texture plays a vital role in the functionality of a component. It is estimated that surface effects causes 10% of manufactured parts to fail and can contribute significantly to an advance nation's GDP (Gross Domestic Product)"
- Check the surface morphology change with time

Figure: New surface

Figure: Surface after friction

Content of the course:

- Description fo the surface roughness: the different types of surface deviation according to their scales and what will be measured.
- Roughness parameters: the parameters to describe roughness, identify different surfaces topography, link of the parameters with the production method
- Optical instruments for surface topography: different optical methods (mainly interferometry)
- Other instruments: other instruments available at Pprime
- Comparison of instruments: limits of the different instruments and influence on measurements results.

Outline

1 Introduction

Description of the surface roughness

- Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

4) Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation
- 5 Other instruments
- 6 Comparison of instruments
- 7 Summary
- 8 Application

Topography of surfaces: case of profiles

- Due to the production processes, the conditions of use, the wear, the surfaces exhibit defects which are characterized by deviations in altitude from their theoretical profile;
- Defects are generally identified according to their wavelength L:
 - $L \sim$ surface size: shape defect
 - $L \sim 0.01$ to 0.001m : waviness
 - *L* < 0.001*m* : roughness.

Example of surfaces measured with different instruments

Figure: The surface is digitized by the instrument: a given number of points equally spaced and on given area (or length)

Figure: Same surface with: a) White Light Interferometer: $z \text{ scale} = 5.8 \ \mu\text{m}$, L = 0.9 mm, $\Delta x = 0.9 \ \mu\text{m}$, b) Atomic Force Microscope: $z \text{ scale} = 3 \ \mu\text{m}$, $L = 14.8 \ \mu\text{m}$, $\Delta x = 0.029 \ \mu\text{m}$, Noël Brunetière (Institut Pprime - Poitiers) Measurement of surfaces topography June 30, 2022 9 / 56

Outline

1 Introduction

Description of the surface roughness

3 Roughness parameters

• Definition of the usual parameters

• Influence of the machining process

Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation

5 Other instruments

- 6 Comparison of instruments
- 7 Summary
- 8 Application

Topography of surfaces: case of profiles

- Profile: height z as a function of the horizontal length x;
- CDF = Cumulative Distribution Function: ratio of material above a cutting line of height z;

CDF (Cumulative distribution function)

Topography of surfaces: case of profiles

- PDF = Probability Density Function: derivative with respect to <math>/z of the CDF
- For most rough surfaces, the probability density follows a Gaussian law: : $f(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(z-\mu)^2}{2\sigma^2}\right];$
- μ is the mean and σ the standard deviation (*Rq* in ISO metrology);
- The profile points are in the range -3σ to $+3\sigma$.

Height statistical parameters: case of profiles

- The profile is measured by a device which gives a series of *n* points z_i laterally spaced of Δx;
- Height (m or μ m): Arithmetic average $Ra = \frac{1}{n} \sum_{1}^{n} |z_i|$
- Height (m or μ m): Quadratic average $Rq = \sqrt{\frac{1}{n}\sum_{1}^{n} z_{1}^{2}}$ is equivalent to σ ;
- Skewness parameter (non-dimensional): $RSk = \frac{1}{nRq^3} \sum_{i=1}^{n} z_i^3$;
- Kurtosis parameter (non-dimensional): $RKu = \frac{1}{nRq^4} \sum_{i=1}^{n} z_i^4$;

Height statistical parameters: case of profiles

- Due to the manufacuring process, surfaces can be Non-Gaussian.
- Gaussian surface : $Rq \approx \sqrt{\frac{\pi}{2}}Ra \approx 1.25Ra$ RSk = 0 RKu = 3
- Non Gaussian surface (process with pics removal): RSk < 0 et RKu > 3.

Lateral size of asperities: case of profiles

- ACF = Auto Correlation Function: egree of resemblance of a surface to itself shifted by *x*;
- FAC $(x = j\Delta x) = \frac{1}{nRq^2} \sum_{1}^{n} z_i \times z_{i+j}$
- For many rough surfaces, it is a decreasing function tending to zero.
- The correlation length λ is the characteristic size of asperities.
- Is it the horizontal distance to reach ACF = 0.2.

Roughness characterization: PSD

- PSD = Power Spectrum Density is the Fourier transform of the ACF.
- Distribution of the space frequencies;
- Lowest frequency $\frac{1}{L}$ where L is the sample length;
- Highest frequency $f_M = \frac{1}{2\Delta x}$ where Δx is the sampling length.
- The slope changes occurs at $\frac{1}{\lambda}$
- The area below the curve corresponds to $\frac{R_q^2}{2}$

From profiles to surfaces

The roughness parameters are defined in the ISO standard. Many metrological tolls measure the surface (and not the profile). Surface parameters have the same definition but different name:

Parameter	Profile	Surface
Arithmetic average	Ra	Sa
Quadratic average	Rq	Sq
Skewness	RSk	SSk
Kurtosis	RKu	SKu
Correlation length (lowest value)	λ	Sal
Correlation length (biggest value)	λ	Sal/Str

Usual machining process

Figure: Some usual surfaces production methods

Impact of machining on topography

Impact of the machining process on the roughness height Sq (WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m):

Impact of machining on topography

Impact of the machining process on the Gaussian nature of the surface:

Examples of surfaces

Figure: Surface obtained by electrorosion ($z \times 5$), WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m.

Figure: Surface obtained by rough milling ($z \times 5$), WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m.

Examples of surfaces

Figure: Surface obtained by fine milling ($z \times 5$), WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m.

Figure: Surface obtained by honing ($z \times 5$), WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m.

Examples of surfaces

Figure: Surface obtained by polishing ($z \times 500$), WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m.

Figure: Surface obtained by mirror polishing ($z \times 500$), WLI, L = 0.9mm, $\Delta x = 0.9 \mu$ m.

Can surfaces be fractal ?

- A fractal surface: PSD $\propto f^{2D-5}$ where D is the fractal dimension (between 1 and 2 for a profile)
- According to Whitehouse[Whi01], λ or *Sal* is linked to the process (density of grain during polishing, etc)
- A surface appears to be fractal if $L < \lambda$

Outline

1 Introduction

- 2 Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation

5 Other instruments

- 6 Comparison of instruments
- 7 Summary
- 8 Application

Monichromatic light wave (in air): $s = a \cos \left[\frac{2\pi}{\lambda} \left(ct - z \right) + \phi \right]$

- c speed of light
- λ wave length
- t time, z position
- ϕ phase

- f focal length
- Magnification $M = \frac{b}{a}$

- A_N Numercial aperture of a microscope objective
- *n* refractive index of the media (n = 1 in air)
- $A_N = n \sin \alpha$
- This parameter will affect the performance of the objective (working distance W_d and others)

Some basics of optics

- Spatial resolution r = minimum distance between two features [Lea11]
- $r = 0.61 \frac{\lambda}{A_N}$ (Rayleigh)
- $r = 0.82 \frac{\lambda}{A_N}$ (Sparrow)
- Depth of field Z = depth along with the object is in focus [Lea11]
- $Z = \frac{n\lambda}{A_N^2}$

The numerical aperture has a strong impact on the optical performance

Michelson Interferometer

- $L_2 = L_1 + d$
- Beam 1: $s_1 = a \cos \left[\frac{2\pi}{\lambda} \left(ct - z \right) + \phi \right]$
- Beam 2: $s_2 = a \cos \left[\frac{2\pi}{\lambda} \left(ct - z - 2d \right) + \phi \right]$
- Resulting beam: $s = s_1 + s_2 = 2a \cos \left[\frac{2\pi}{\lambda} (ct z d)\right] \cos \left(\frac{2\pi}{\lambda} d\right)$
- Light intensity:
- $I = 2a^2 \cos^2\left(\frac{2\pi}{\lambda}d\right)$ • $I = a^2 \cos\left(\frac{4\pi}{\lambda}d\right) + a^2$

Figure:

https://commons.wikimedia.org/wiki/File: Michelson Interferometer scheme.png, Polytec GmbH, CC BY-SA 3.0 via Wikimedia Commons

Michelson Interferometer

- If the mirror is moved, there will be alternate of dark and light signal on the screen
- The wave length is $\lambda/2$

Figure:

https://commons.wikimedia.org/wiki/File: Michelson Interferometer scheme.png, Polytec GmbH, CC BY-SA 3.0 via Wikimedia Commons

Michelson Interferometer

- If one mirror is spherical, Newton's ring are obtained
- The lines are level lines with a height difference of $\lambda/2$ (with λ from 380 to 780 nm for visible light.)
- Is it convex or concave shape ?

Figure: Interferences on ceramic ball (from a ball bearing)

Michelson Interferometer with white light

- White light has a spectrum of wave lengths (380–780 nm).
- If the mirror is moved, there will be alternate of dark and light signal on the screen but with decreasing amplitude (on spatial range of a few microns)

Figure: White light through a prism (https://upload.wikimedia.org/wikipedia/comm dispersion of a mercury vapor lamp with a flint glass prism IPNr 0125.jpg, D-Kuru, CC BY-SA 3.0 via Wikimedia Commons)

Phase shifting interferometry (monochromatic light)

• The real position is find by imposing controlled displacement *u_i* (using a piezo actuator or an accurate device)

•
$$I = a^2 \cos(\theta + \phi_i) + a^2$$

•
$$\theta = \frac{4\pi}{\lambda} d$$
 and $\phi_i = \frac{4\pi}{\lambda} u_i$

It is possible to calculate θ (with an unknown constant kπ) and then d.
Unwrapping is necessary

Position is find from relative position to neighbor points

Figure: Interferences on ceramic ball at different ϕ values

Phase shifting interferometry (monochromatic light)

Advantage

- Very fast measurement (limited number of images)
- Vertical accuracy of less than 0.1 *nm*, independent of magnification

Disadvantages:

- Limited to flat surface (must be in focus everywhere)
- Limited to smooth surface (Sq < 30 nm), otherwise interference fringes are not visible.
- Does not work with steps $> \frac{\lambda}{2}$

Figure: Example of surface adapted to phrase shifting interferometry: hard drive disk surface

Vertical scanning interferometer (white light)

White light interferometer:

- Large vertical displacement (compared to phase shifting)
- Full interferogram for each pixel
- Height calculation independant of the neighbors

Vertical scanning interferometer (white light)

- Advantage
 - Vertical range not limited by depth of field
 - Works with rough and stepped surfaces
- Disadvantages:
 - More images to record and analyse
 - Slower than phase shifting

Position is independent of relative position to neighbor points

Figure: Interferences on ceramic ball during vertical scanning measurement

Interferometry lens

Lens	A_N	$W_d \pmod{mm}$	<i>L</i> (mm)	$\Delta x \; (\mu m)$	$r~(\mu m)$	$Z~(\mu m)$	Max slope
5x	0.13	9.3	3.6	3.6	2.12	20	3.5°
10x	0.30	7.4	1.8	1.8	0.92	3.73	8°
20x	0.40	4.7	0.9	0.9	0.69	2.10	14.5°
50×	0.55	3.6	0.36	0.36	0.50	1.11	22°

Table: Lens of the Talysurf CCI with $\delta z < 0.1$ nm

Focus variation

- A focus variation microscope uses confocal light and actuator for the lens
- The light reflected will vary depending on the focus level

Figure: Focus variation microscope

Focus variation

Focus	Image	Light RMS		
		(neighbors of central pixel)		
Out		10		
Almost		20		
Focus		50		
Almost		20		
Out		10		

Figure: Effect of displacement of the objective on the image

Focus variation

- Indentification of the maximum by curve fitting
- Vertical resolution dependent on the depth of field Z
- Necessity to use neighbor points information

Focus variation lens

Lens	A_N	$\Delta x \ (\mu m)$	<i>r</i> (µm)	$Z (\mu m)$	$\Delta z (nm)$	Max slope
10x	0.30	1	1.09	8.2	100	87°
20x	0.40	0.5	0.82	4.6	50	87 <i>°</i>
50×	0.6	0.2	0.54	2.05	20	87 <i>°</i>

Table: Lens of the Alicona Infinte focus (Low vertical resolution but high surface slope limit)

Outline

1 Introduction

- 2 Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

4 Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation

Other instruments

- 6 Comparison of instruments
- 7 Summary
- 8 Application

Stylus profiler:

- Vertical resolution $\Delta z = 1 nm$;
- Lateral resolution $\Delta x = 2\mu m = \text{curvature radius of the tip};$
- Sample length $L_x = qqcm$;
- Requires profile or surface scan (can create scratches in soft materials)

Atomic force microscope

- Vertical resolution $\Delta z < 0.1 nm$;
- Lateral resolution $\Delta x \simeq 1 nm$;
- Sample length $L_x < 0.1 mm$;
- Requires profile or surface scan.

Outline

1 Introduction

- 2 Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

4 Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation
- 5 Other instruments

6 Comparison of instruments

Summary

8 Application

Comparison of instrument

Figure: Usual limitations of optical and contacting measurement systems

Comparison of instrument

Figure: Comparison of the ranges of measurement of instruments (including slope and radius limits)[Ste87]

Comparison of instruments

Or of the second second

Figure: WLI (White Light Interferometer), $Sq=0.93\mu$ m, L=0.9mm, $\Delta x=0.9\mu$ m

Figure: AFM (Atomic Force Microscope), $Sq = 0.37 \mu m$, $L = 14.8 \mu m$, $\Delta x = 0.029 \mu m$

Necessity to specify the instrument (sample length and lateral sampling) when giving Sq values

Comparison of instrument

Figure: Comparison of different instruments on a surface: black = stylus profiler, blue = AFM, red = Transmission Electron Microscope, figure from [Guj+18] (open access on https://d-scholarship.pitt.edu/37274/)

Outline

1 Introduction

- 2 Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

4 Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation
- 5 Other instruments
- 6 Comparison of instruments

Summary

B Application

Summary

- Solid surface = Interface between a solid and another media;
- The topography is affected by the machining process, wear, etc;
- The topography influences surface functions and physical phenomena ;
- The surface topography is characterized by several parameters including *Rq* or *Sq* (roughness height) and *Sal* (lateral scale of asperities);
- These parameters depend on the measuring instrument;
- The instruments are defined by their bandwidth of spatial frequencies;
- This information must be given with the surface roughness parameters;
- Optical instruments offer areal measurements but some artifacts due to light reflection are possible
- Contact instruments requires a sampling of the surface (long process)

Outline

1 Introduction

- 2 Description of the surface roughness
- 3 Roughness parameters
 - Definition of the usual parameters
 - Influence of the machining process

4) Optical instruments for surface topography

- Some basics of optics
- Interferometry
- Phase shifting interferometry
- Vertical scanning interferometry
- Focus variation
- 5 Other instruments
- 6 Comparison of instruments
 - Summary

8 Application

Application

Application

- (1) We assume that $PSD = \frac{2Rq_0^2\lambda}{1+4\pi^2\lambda^2f^2}$
- 2 Express the Rq value for frequencies in the range f_1 and f_2 . We use: $\frac{Rq^2}{2} = \int_{f_1}^{f_2} PSDdf$
- ③ Calculate the theoretical values of R_q for the AFM and WLI and compare to the measured values.

Figure: WLI (White Light Interferometer), Sq = 0.93 μ m, L = 0.9mm, $\Delta x = 0.9 \mu$ m

Figure: AFM (Atomic Force Microscope), $Sq = 0.37 \mu m$, $L = 14.8 \mu m$, $\Delta x = 0.029 \mu m$

Abhijeet Gujrati et al. "Combining TEM, AFM, and Profilometry for Quantitative Topography Characterization Across All Scales". In: ACS Applied Materials & Interfaces 10.34 (2018). PMID: 30052425, pp. 29169–29178. DOI: 10.1021/acsami.8b09899.

R Leach, ed. *Optical Measurement of Surface Topography*. Springer, 2011.

M. Stedman. "Basis for comparing the performance of surface-measuring machines". In: *Precision Engineering* 9.3 (1987), pp. 149–152. ISSN: 0141-6359. DOI: https://doi.org/10.1016/0141-6359(87)90032-8.

- DJ Whitehouse. "Fractal or fiction". In: *Wear* 249.5-6 (2001), pp. 345–353.
- D.J. Whitehouse. *Handbook of Surface and Nanometrology*. IOP Publishing, 2003.