

Support de cours sur la commande des machines électriques, Master 2 Énergie Électrique, Nancy

Thierry Lubin

▶ To cite this version:

Thierry Lubin. Support de cours sur la commande des machines électriques, Master 2 Énergie Électrique, Nancy. Master. France. 2022. hal-03759304

HAL Id: hal-03759304

https://hal.science/hal-03759304

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MASTER EEA – M2 Spécialité Energie Electrique

UE 942: Commande des machines électriques Supports de cours

Partie 1: Rappels sur la commande de la machine à courant continu

Partie 2: Commande vectorielle de la machine synchrone

Partie 3: Commande vectorielle de la machine asynchrone

MASTER EEA – M2 Spécialité Energie Electrique

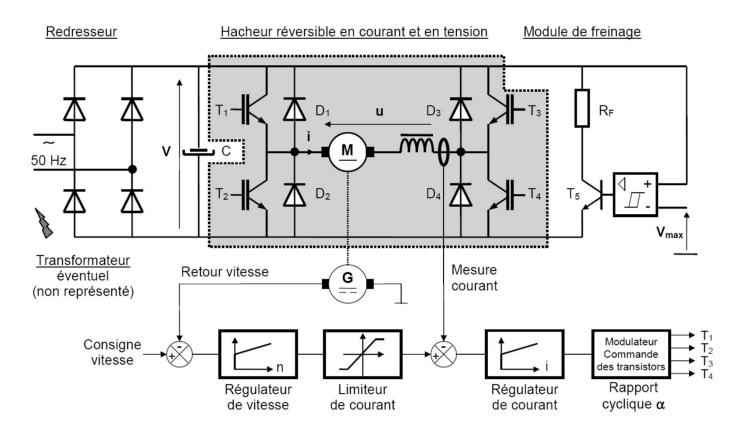
UE 942: Commande des machines électriques

Partie 1: Rappels sur la commande de la machine à courant continu

Supports de cours

Commande d'une machine à courant continu (excitation séparée) alimentée par un hacheur 4 quadrants

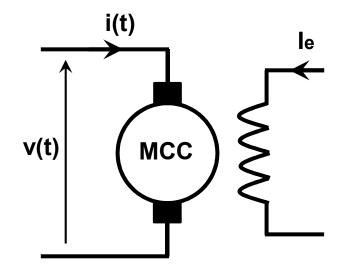
La structure de base est la commande de la MCC



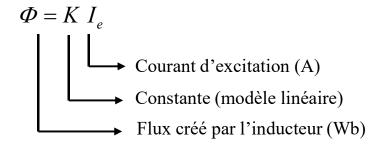
Boucle interne (rapide) : régulation du courant dans l'induit = régulation du couple

Boucle externe (généralement + lente): régulation de vitesse

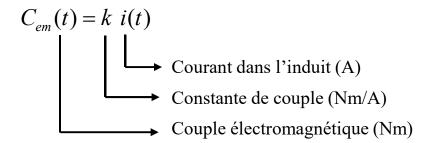
Equations fondamentales de la MCC : principe de la commande



♦ Le flux Φ dans la machine est imposé par le courant d'excitation I_e (ou des aimants permanents)



♦ A flux constant, le couple C_{em} est imposé par le courant dans l'induit i(t)

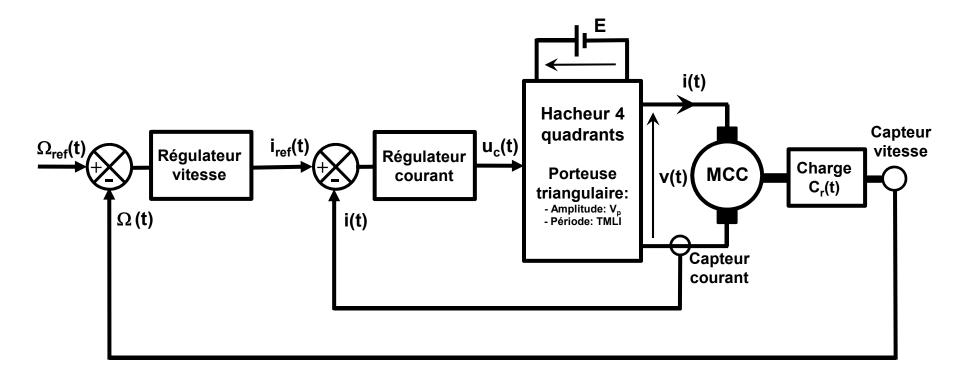


Modèle très simple: à flux constant, le couple est proportionnel au courant dans l'induit!

Si on contrôle le courant dans l'induit par un asservissement, alors on contrôle le couple!

Pour contrôler la vitesse ou la position d'un système d'entrainement électromécanique, il faut être capable de maitriser le couple instantané fourni par le moteur électrique (quelque soit le type de moteur : MCC, MAS, MSAP....)

Structure de la régulation



Régulation à deux boucles imbriquées:

- ♦ boucle interne très rapide (ms): contrôle du courant donc du couple
- ♦ boucle externe plus lente (centaines de ms): contrôle de la vitesse

Synthèse des régulateurs: modèles de la charge, du moteur, du hacheur et des capteurs.

Modèle de la charge

Principe fondamental de la dynamique des systèmes en rotation

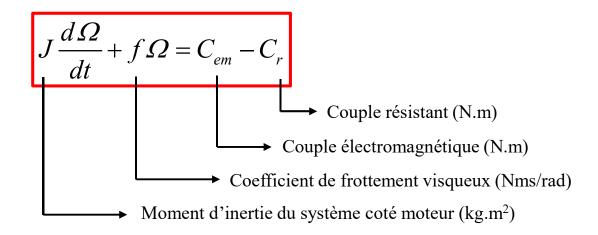
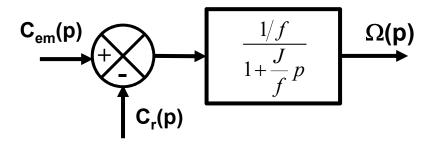
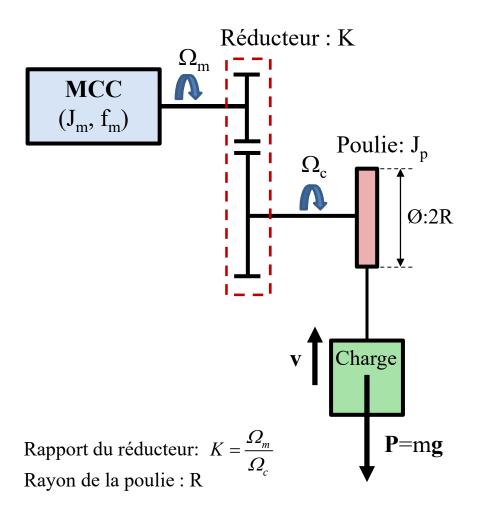


Schéma bloc associé (p est la variable de Laplace)



Exemple de système mécanique: monte charge avec réducteur de vitesse



◆ Equation de la dynamique au niveau du moteur :

$$J_{T}\frac{d\Omega_{m}}{dt} + f_{T}\Omega_{m} = C_{em} - C_{r}$$

lacktriangle Moment d'inertie total J_T ramené sur l'arbre moteur : (\rightarrow équivalence de l'énergie cinétique totale)

$$\frac{1}{2}J_{T}\Omega_{m}^{2} = \frac{1}{2}J_{m}\Omega_{m}^{2} + \frac{1}{2}J_{p}\Omega_{p}^{2} + \frac{1}{2}mV^{2}$$

Ce qui donne:
$$J_T = \frac{1}{K^2} (mR^2 + J_p) + J_m$$

• Frottements visqueux f_T ramené sur l'arbre moteur :

$$f_T = f_m$$

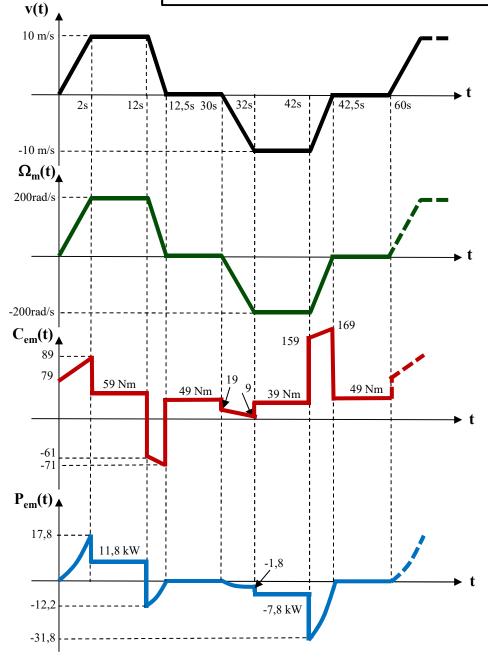
lacktriangle Couple résistant C_R ramené sur l'arbre moteur :

$$C_R = \frac{R}{K} mg$$

♦ Relation entre v (m/s) et $\Omega_{\rm m}$ (rad/s) :

$$\Omega_m = \frac{K}{R}v$$

Application: cycle de vitesse du monte charge



♦ Paramètres:

R = 25cm; K = 5; m = 100kg; $J_m = 0.01kgm^2$; $f_m = 0.05Nms/rad$ $G = 9.81 \text{ms}^{-2}$; $J_p = 1 \text{kgm}^2$

 $J_T = 0.3 \text{kgm}^2$; $f_T = 0.05 \text{Nms/rad}$; $C_r = 49 \text{Nm}$ (constant)

♦ Calcul du couple électromagnétique:

$$C_{em}(t) = J_T \frac{d\Omega_m}{dt} + f_T \Omega_m + C_r$$

0 < t < 2s:

$$\Omega_m(t) = 100t \rightarrow C_{em}(t) = 79 + 5t$$

2s < t < 12s:

$$\Omega_m(t) = 200 \rightarrow C_{em}(t) = 59$$

12s < t < 12.5s:

$$\Omega_m(t) = 5000 - 400t \rightarrow C_{em}(t) = 179 - 20t$$

12,5s < t < 30s:
$$\Omega_m(t) = 0 \rightarrow C_{em}(t) = 49$$

30s < t < 32s:

$$\Omega_m(t) = 3000 - 100t \rightarrow C_{em}(t) = 169 - 5t$$

32s < t < 42s:

$$\Omega_m(t) = -200 \rightarrow C_{em}(t) = 39$$

$$42s < t < 42.5s$$
: $\Omega_m(t) = -17000 + 400t \rightarrow C_{em}(t) = -681 + 20t$

$$42.5s < t < 60s$$
: $\Omega_m(t) = 0 \rightarrow C_{em}(t) = 49$

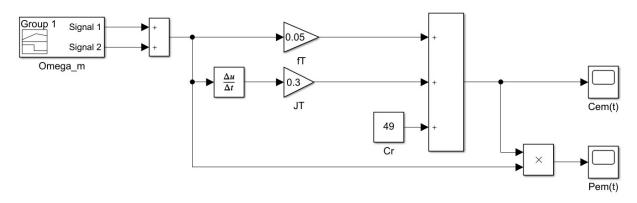
♦ Calcul de la puissance électromagnétique:

$$P_{em}(t) = C_{em}(t)\Omega_m(t)$$

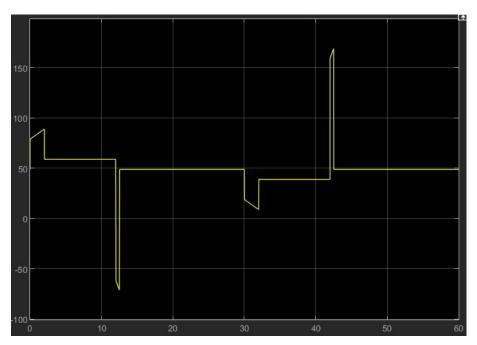
Energie consommée par la machine sur un cycle (60s):

$$P_{em}(t) = \frac{dW}{dt} \rightarrow W = \int_{0}^{T} P_{em}(t)dt$$
 (J)

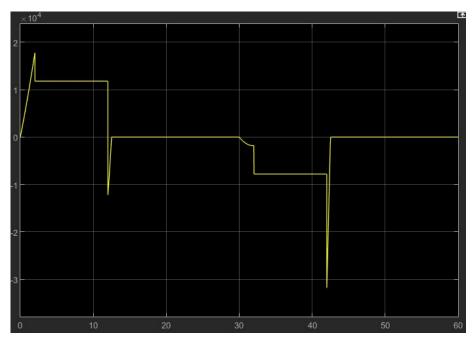
Simulation du monte charge sous Simulink



Couple $C_{em}(t)$ (Nm)



Puissance P_{em}(t) (W)



Critères de choix pour le moteur d'entrainement du monte charge

- \rightarrow Le moteur doit être capable d'assurer le couple nécessaire pour les accélérations: C > C_{max} (transitoire)
- ightarrow Le moteur doit-être capable d'assurer la vitesse maximale sur le cycle $N > N_{max}$
- \rightarrow D'un point de vue thermique (échauffement), il faut que le couple nominal du moteur (**régime permanent**) soit supérieur au couple thermique équivalent sur cycle noté C_{th} (couple RMS)

Couple thermique équivalent :

$$C_{th} = \sqrt{\frac{1}{T} \int_{0}^{T} C_{em}^{2}(t) dt}$$

T : période du cycle

→ Pour l'exemple du monte charge, nous avons:

$$C_{max} = 169 \text{ Nm}$$
; $N_{max} = 1910 \text{ tr/mn}$; $C_{th} = 52.3 \text{ Nm}$ (calcul effectué sur Simulink)

DMR 132 SN (ABB)

Vitesse de rotation n Tension d'induit Ua de:			Puis- sance	n max électr.	Courant d'induit	Couple	Rendement		Induc- tance	Résistance de circuit d'induit	Numéro de catalogue		
400	420	460	480	Pab		la	M	eta A	eta tot	La	Ra		
[V]	[V]	[V]	[V]	[kW]	[min-1]	[A]	[Nm]	[%]	[%]	[mH]	[Ohm]		-27
2130				26,5	3600	76	119	87,2	84,4	7,00	0,34	DMR 132 SN-	2720
	2250			28,0	3600	76	119	87,7	85,0	7,00	0,34	DMR 132 SN-	272P
		2490		31,0	3600	76	119	88,5	86,0	7,00	0,34	DMR 132 SN-	272R
			2600	32,3	3600	76	119	88,8	86,5	7,00	0,34	DMR 132 SN-	272T

Facteur de forme < 1.03 Puissance d'excitation 1000 W Type de fonctionnement poids 160 kg Limite méc. 5300 1/min IP 23 Courant d'excitation pour 310V Type de protection non compensé Moment d'inertie 0.09 kgm² Classe d'isolation Type de refroidissement IC 06 / 17 / 37

Capacité de surcharge

Les moteurs sont, selon la norme EN 60034, dimensionnés pour une surcharge du courant d'induit de <u>l'ordre de 1,5 fois l</u>e courant nominal pendant 45 secondes sous les tensions d'induit et d'excitation nominales.

Ces valeurs de surcharge sont réduites s'il y a désexcitation. (afaiblissement de champ).

Le dimensionnement de moteurs avec un fonctionnement sur une durée donnée avec une surcharge supé-rieure est possible sur demande.

Contrainte pour le choix: $C_{max} = 169 \text{Nm}$

- Moteur : 1,5×Cn pendant 45s soit ≈ 178Nm
- $C_n = 119 \text{ Nm} > 52,3 \text{ Nm}$
- $N_n = 2130 \text{ tr/mn} > 1910 \text{ tr/mn}$

MCC: $U_n = 400V$; $I_n = 76A$; $C_n = 119 \text{ Nm}$

L = 7mH; $R = 0.34\Omega$; k = 1.68Nm/A;

 $J_m = 0.09 \text{kgm}^2$; $f_m = 0.038 \text{ Nms/rad}$

(Rebouclage nécessaire pour le choix du moteur car l'inertie du moteur n'est pas celle du départ...)

Application

Un moteur électrique de puissance utile P_u = 1,5kW et de vitesse nominale N_n = 1425tr/min entraîne par l'intermédiaire d'un réducteur de rapport K = 10 et de rendement η = 90%, le tambour d'un treuil de rayon R = 10 cm. Le rendement propre du treuil sera pris égal à 100%.

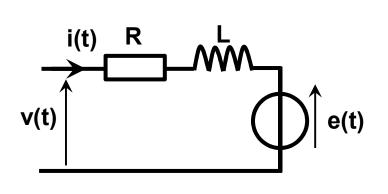
Sur le tambour s'enroule une chaîne (masse négligeable) qui supporte une charge ascendante. La masse de la charge est notée M. On prendra $g = 10 \text{m/s}^2$.

La rampe d'accélération du moteur est réglée sur 2s, au niveau du variateur de vitesse. L'inertie propre de l'ensemble rotor du moteur/pignon d'entrée du réducteur est $J_0 = 0,004 \text{ kg.m}^2$. L'inertie propre de l'ensemble tambour du treuil/pignon de sortie du réducteur est $J_t = 0,1 \text{kg.m}^2$.

- 1°) Faire le schéma synoptique de l'installation
- **2°)** Calculer la vitesse de rotation nominale de l'axe du tambour puis la vitesse V de translation de la charge.
- **3°)** Calculer le couple nominal du moteur.
- 4°) Calculer la puissance transmise à la charge ascendante, en déduire la masse M.
- 5°) Calculer le couple exercé par le moteur en phase d'accélération. Le couple de démarrage C_d du moteur ne doit pas dépasser 1,2 fois son couple utile nominal. Le cahier des charges du moteur estil respecté ?
- 6°) Pendant la phase de montée, la vitesse du moteur suit le cycle suivant :

Calculer l'énergie consommé par le moteur en supposant que le rendement du moteur reste constant.

Modèle de la machine à courant continu à flux constant



$$\begin{cases} v(t) = Ri(t) + L\frac{di(t)}{dt} + e(t) \\ e(t) = k\Omega(t) \text{ et } C_{em}(t) = ki(t) \end{cases}$$

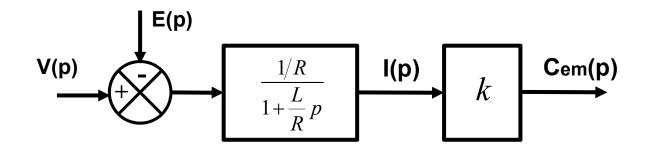
3 Paramètres:

R: résistance de l'induit (Ω)

L: inductance de l'induit (H)

k: constante de couple (Nm/A)

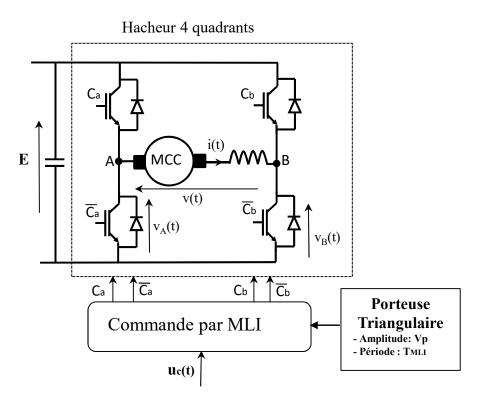
Schéma bloc associé (p est la variable de Laplace)

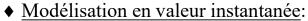


$$\tau_e = \frac{L}{R}$$
 Constante de temps électrique (ms)

Modèle du hacheur 4 quadrants pour la commande (1/2)

Le hacheur peut-être modélisé par un gain noté Ghach

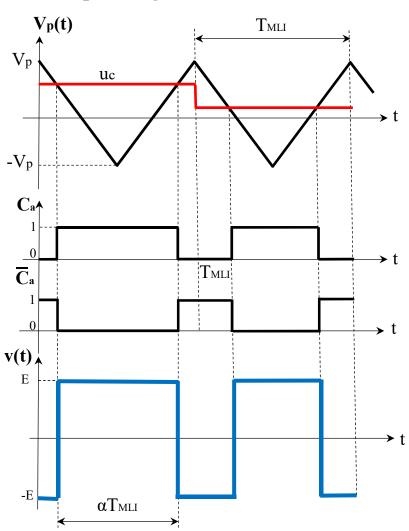




$$v_A(t) = C_a(t)E$$
 $v_B(t) = C_b(t)E$

 $C_b(t) = 1 - C_a(t)$ commande complémentaire

$$v(t) = v_A(t) - v_B(t)$$
 $v(t) = (2C_a(t) - 1)E$



Modèle du hacheur 4 quadrants pour la commande (2/2)

♦ Modélisation en valeur moyenne sur une période MLI:

On s'intéresse à la valeur moyenne prise par v(t) sur chaque période MLI, On note cette grandeur V(t) (on ne « regarde » plus le découpage)

$$V(t) = \frac{1}{T_{MLI}} \int_{0}^{T_{MLI}} v(t)dt = \frac{1}{T_{MLI}} \int_{0}^{T_{MLI}} (2C_a(t) - 1)Edt$$

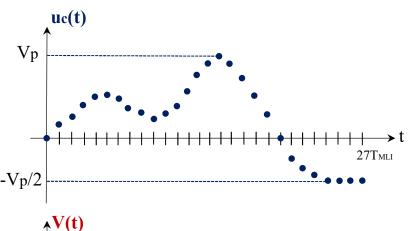
$$V(t) = E\left(2\left\langle C_a(t)\right\rangle - 1\right) \text{ avec } \left\langle C_a(t)\right\rangle = \frac{1}{2}\left(1 + \frac{u_c(t)}{V_p}\right)$$

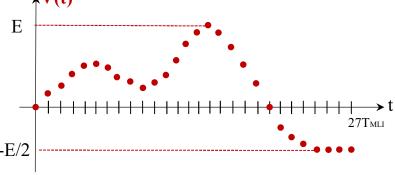
$$V(t) = \frac{E}{V_p} u_c(t) = G_{HACH} u_c(t)$$

$$V(t) = \frac{E}{V_p} u_c(t) = G_{HACH} u_c(t)$$

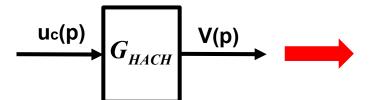
$$V(t) = \frac{E}{V_p} u_c(t) = G_{HACH} u_c(t)$$

Gain du hacheur:
$$G_{HACH} = \frac{E}{V_p}$$



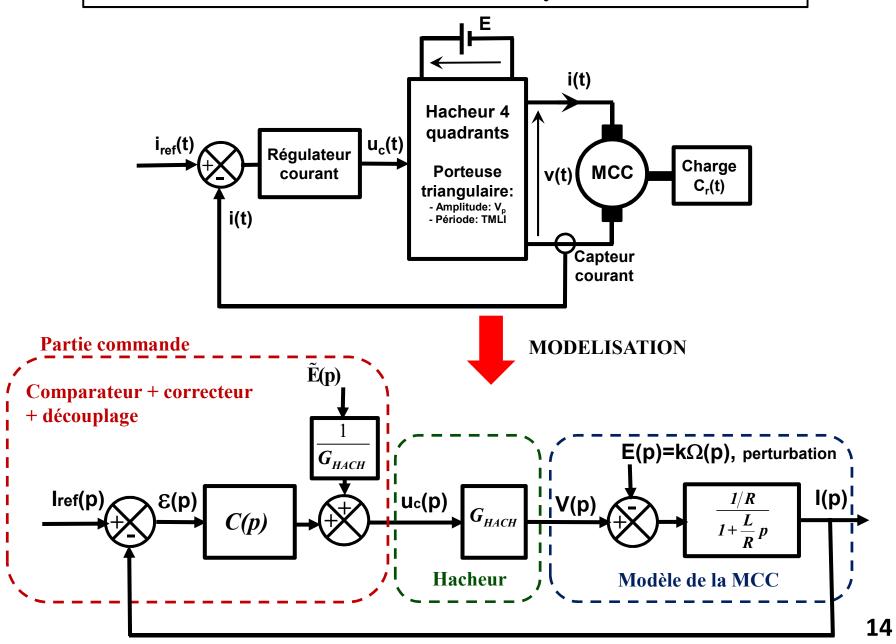


13

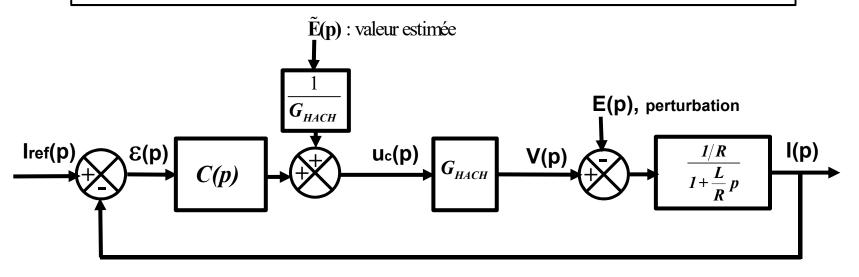


Simple amplificateur de tension (mais on ne voit plus l'impact du découpage MLI sur les ondulations du courant i(t)...)

Modélisation de la boucle de courant: synthèse du correcteur



Boucle de courant: calcul de la FTBO notée G(p)



$$I(p) = \frac{1/R}{1 + \tau_e p} \left\{ -E(p) + G_{HACH} \left(C(p)\varepsilon(p) + \frac{1}{G_{HACH}} \tilde{E}(p) \right) \right\}$$

$$I(p) = \frac{1/R}{1 + \tau_e p} \left\{ -E(p) + \tilde{E}(p) + G_{HACH} C(p)\varepsilon(p) \right\}$$

Si la perturbation E(p) est parfaitement estimée, nous avons: $\tilde{E}(p) = E(p)$

$$I(p) = C(p)G_{HACH} \frac{1/R}{1 + \tau_e p} \varepsilon(p)$$

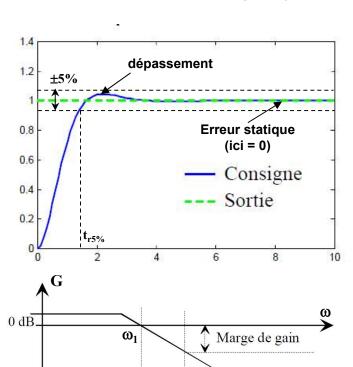
$$G(p) = \frac{I(p)}{\varepsilon(p)} = C(p)G_{HACH} \frac{1/R}{1 + \tau_e p}$$

Synthèse du correcteur de courant: cahier des charges

φ

-180°

Amener le système à suivre un comportement fixé par un cahier de charges (bien évidemment tout d'abord assurer la stabilité)



Marge de phase

Contraintes sur la réponse temporelle:

- ♦ Temps de réponse à 5% : tr (ms ou s)
- ♦ Dépassement toléré par rapport à la consigne: D(%)
- lacktriangle Erreur entre la consigne et la sortie en régime permanent: erreur statique ε_s si échelon....

♦ Contrainte sur la réponse fréquentielle (FTBO):

- ♦ Assurer une marge par rapport à la limite de stabilité du système (G = 0 dB, $\phi = -180^{\circ}$):
- \rightarrow Réglage marge de phase $M\varphi$ entre 45° et 60° ($M\varphi$ = 60° correspond à un dépassement \approx 10%)

Pour
$$\omega = \omega_1 \rightarrow |G(j\omega_1)| = 0$$

 $M\varphi = 180^\circ + \arg\{G(j\omega_1)\}$

Rappels d'automatique: système du 1er ordre

https://www.wikimeca.org/index.php/Pr%C3%A9cision des SLCI

Forme canonique de la fonction de transfert d'un système du premier ordre

$$H(p)=G.\,rac{1}{1+ au p}$$

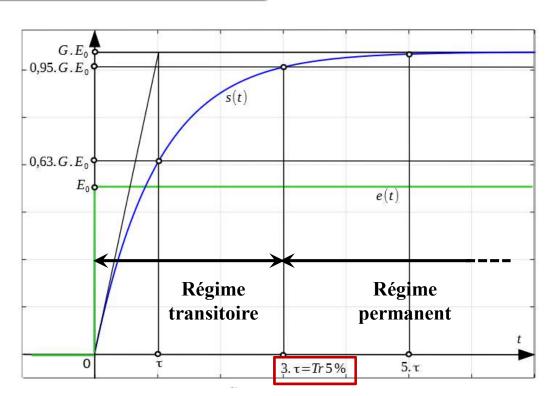
- G est le gain statique;
- τ est la constante de temps (s), elle est positive.

Réponse indicielle du premier ordre

$$s(t)=G.\,E_0.\,(1-e^{rac{-t}{ au}}).\,u(t)$$

Temps de réponse à 5% : $t_{r5\%} = 3\tau$

$$t_{r5\%} = 3\tau$$



Rappels d'automatique: systèmes du 2ème ordre

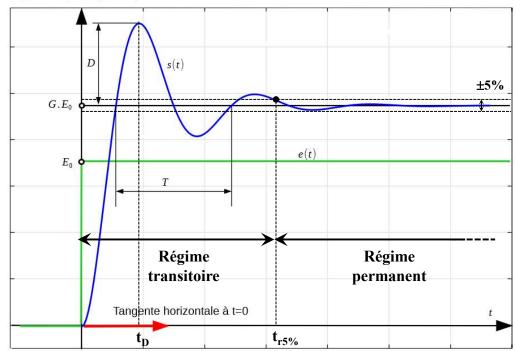
Forme canonique - système du second ordre

$$H(p)=rac{G}{rac{p^2}{\omega_n^2}+rac{2z}{\omega_n}p+1}$$

avec:

- G : Gain statique;
- ω_n : Pulsation naturelle (ou pulsation propre non-amortie) en rad/s;
- z : Coefficient d'amortissement.

Courbe de réponse pour z=0,3



Cas z < 1 (Δ < 0) - Régime périodique

$$s(t) = G. \left[1 - rac{e^{-z\omega_n t}}{\sqrt{1-z^2}} \sin(\omega t + arphi)
ight] u(t)$$

◆ <u>Pseudo-periode</u>:

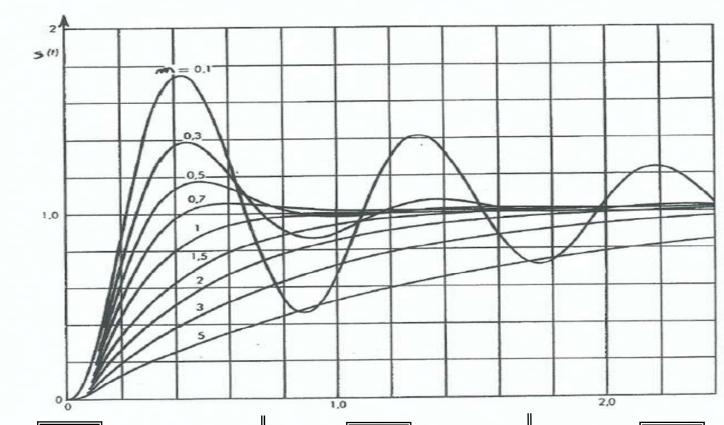
$$T=rac{2.\pi}{\omega}=rac{2.\pi}{\omega_n\sqrt{1-z^2}}$$

♦ 1^{er} dépassement (ou abaque):

$$D=G.\,E_0.\,e^{rac{-z\pi}{\sqrt{1-z^2}}}$$
 $t_D=rac{\pi}{\omega_n\sqrt{1-z^2}}$

◆ Temps de réponse à ±5%: voir les abaques

Réponse indicielle d'un système du 2ème ordre



m > 1

$$s(t) = K \cdot \left(1 + \frac{1}{2 \cdot \sqrt{m^2 - 1}} \cdot \left(\alpha \cdot e^{\beta \cdot \omega_n \cdot t} - \beta \cdot e^{\alpha \cdot \omega_n \cdot t}\right)\right)$$

$$\alpha = -m - \sqrt{m^2 - 1}$$

$$\beta = -m + \sqrt{m^2 - 1}$$

$$s(t) = K \cdot \left(1 - \frac{e^{-m \cdot \omega_n \cdot t}}{\sqrt{1 - m^2}} \cdot \sin\left(\omega \cdot d \cdot t + \Psi\right)\right)$$

$$\omega d = \omega_n \cdot \sqrt{1 - m^2}$$

$$\sin \Psi = \sqrt{1 - m^2}$$

$$s(t) = K.(1 - e^{-\omega_{n}.t} - \omega_{n}.t.e^{-\omega_{n}.t})$$

$$s(t) = K \left(1 - \frac{e^{-m \cdot \omega_n \cdot t}}{\sqrt{1 - m^2}} \cdot \sin(\omega_d \cdot t + \Psi) \right)$$

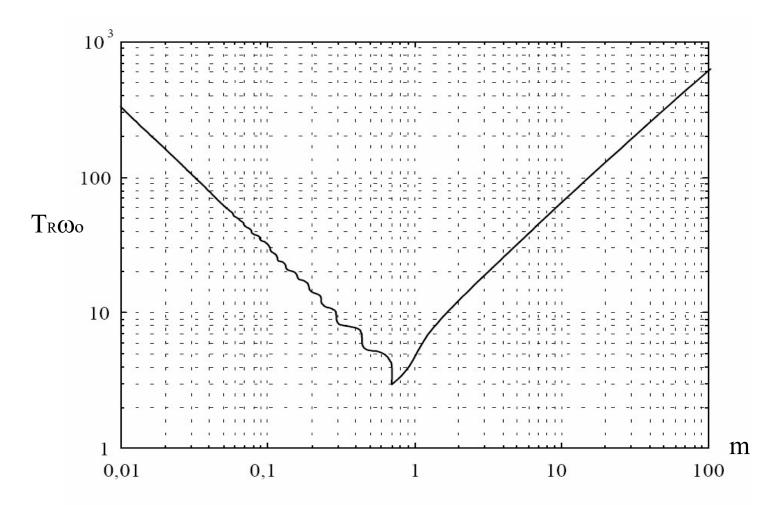
$$\omega_d = \omega_n \cdot \sqrt{1 - m^2}$$

$$\sin \Psi = \sqrt{1 - m^2}$$

$$\cos \Psi = m$$

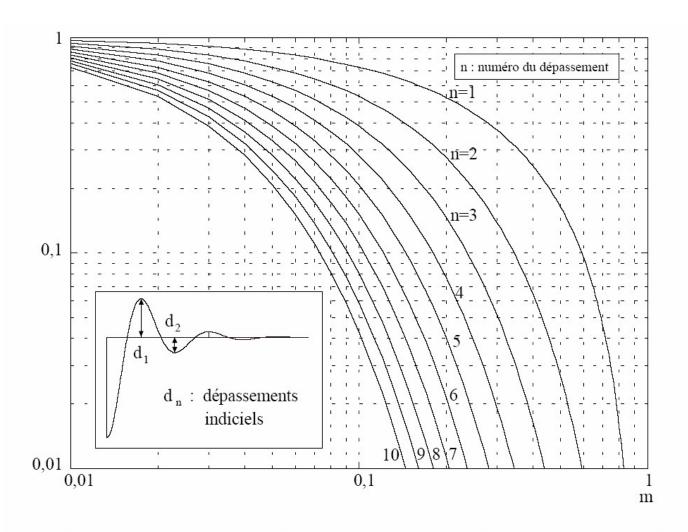
19

Abaque pour les systèmes du 2ème ordre: Temps de réponse à 5%



Courbe du temps de réponse à 5 % normalisé d'un deuxième ordre $T_R.\omega_0$ en fonction du coefficient d'amortissement m.

Abaque pour les systèmes du 2ème ordre: dépassements successifs



Courbes des amplitudes des dépassements successifs pour un 2ème ordre en fonction du coefficient d'amortissement m.

Réglage d'un système du 2ème ordre

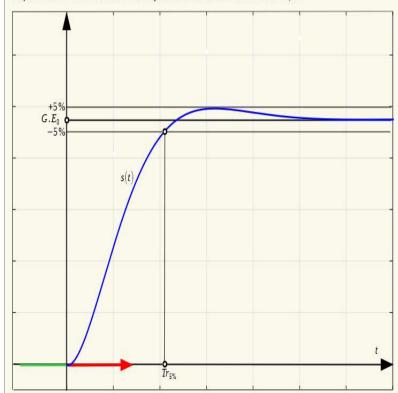
Valeur particulière de z pour optimiser la rapidité (avec dépassement)

Pour :

$$z=rac{\sqrt{2}}{2}\simeq 0,7$$

,on obtient un dépassement relatif $d=e^{-\pi}=0,043=4,3\%$. C'est un bon compromis entre rapidité et dépassement. C'est la réponse la plus rapide si le cahier des charges tolère un dépassement.

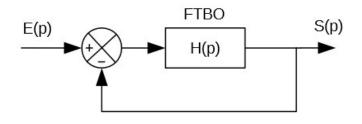
Réponse à un échelon unitaire d'un système avec un amortissement z=0,7 :



On remarque que le premier dépassement reste contenu à la limite de la bande à + 5% de la valeur finale permettant la mesure du temps de réponse. Cette réponse est donc la plus rapide possible si on tolère le dépassement.

Si le dépassement n'est pas toléré, la réponse la plus rapide est pour z=1 (régime critique).

Rappels d'automatique: précision des systèmes bouclés



Erreur statique et écart statique

Dans un asservissement, l'**erreur statique** e_s est la limite à convergence (quand $t o \infty$) de l'erreur $e_r(t)$.

$$e_s = \lim_{t o \infty} e_r(t) = \lim_{t o \infty} (e(t) - s(t))$$

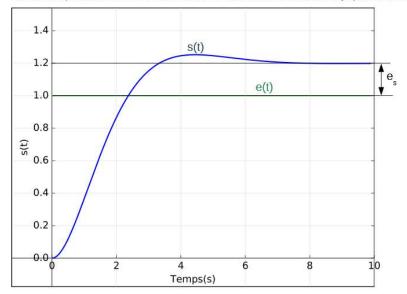
De même l'écart statique ϵ_s est la limite à convergence (quand $t \to \infty$) de l'écart $\epsilon(t)$.

$$\epsilon_s = \lim_{t o \infty} \epsilon(t)$$

Erreur en position

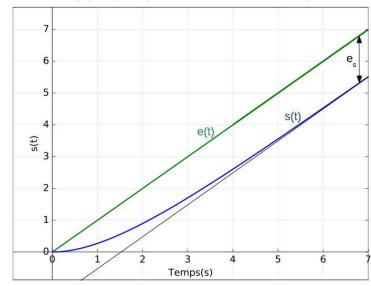
Si l'entrée est un **échelon**, $E\left(p
ight)=rac{e_{0}}{p}$, e_{s} correspond alors à l'**erreur en position**.

L'erreur statique est alors la différence entre la valeur de l'échelon d'entrée et l'asymptote finale de la sortie . L'erreur de trainage (ou de poursuite) est alors la distance verticale entre la rampe d'entrée et l'asymptote finale de la sortie



Erreur de trainage ou de poursuite

Si l'entrée est une rampe, $E\left(p\right)=\frac{e_0}{n^2}$, e_s correspond alors à l'erreur en vitesse, ou erreur de trainage, ou erreur de poursuite.



Rappels d'automatique: précision des systèmes bouclés

https://www.wikimeca.org/index.php/Pr%C3%A9cision des SLCI

classe et gain de la FTBO

En négligeant la perturbation, on peut mettre la FTBO H(p) sous la forme générale suivante :

$$H\left(p
ight)=rac{K}{p^{lpha}}rac{1+a_{1}p+\ldots+a_{m}p^{m}}{1+b_{1}p+\ldots+b_{n}p^{n}}$$
 où $lpha,$ m et n sont des entiers.

Dans cette forme, on note:

- α est la classe du système, et représente le nombre d'intégrateurs purs dans H(p);
- K est le gain de la chaine directe, ou gain en boucle ouverte. Il est appelé gain statique si il n'y a pas d'intégrateur pur dans H(p) (cad pour $\alpha=0$), ou gain en vitesse, ou gain en accélération si, respectivement, $\alpha=1$ ou $\alpha=2$.

Erreur statique en	fonction de	la classe de	e la FTBO et du	type d'entrée	
Entrée	impulsion	échelon	rampe	parabole	
β	0	1	2	3	
E(p) Classe de la FTBO	1	$\frac{1}{p}$	$\frac{1}{p^2}$	$\frac{1}{p^3}$	
$\alpha = 0$	0 (précis)	$\frac{1}{1+K}$	∞ (divergent)	∞ (divergent)	
lpha=1	0 (précis)	0 (précis)	$\frac{1}{K}$	∞ (divergent)	
lpha=2	0 (précis)	0 (précis)	0 (précis)	$\frac{1}{K}$	

Conclusion importante:

Si on veut obtenir une erreur statique nulle face à un échelon, il faut que la FTBO soit de classe 1:

- ♦ Si le système à réguler est de classe 0, il faudra que le correcteur soit de classe 1→ correcteur PI
- ◆ Si le système à réguler est de classe 1, un correcteur de classe 0 sera suffisant → correcteur P

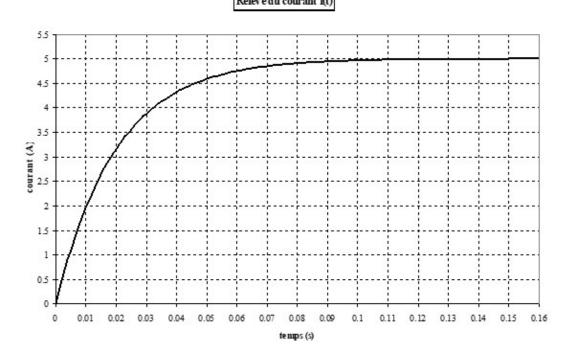
Applications

EXERCICE I

La mesure de la résistance d'induit d'un moteur à courant continu à aimants permanents a donnée $R=0,6\Omega$. Il reste à déterminer la valeur de l'inductance L de l'induit. Pour cela on effectue un essai à rotor bloqué.

- 1°) Représenter le modèle électrique équivalent de l'induit à rotor bloqué.
- 2°) Déterminer la fonction de transfert $F(p) = \frac{I(p)}{U(p)}$; en déduire l'expression de la constante de temps τ et du gain statique en fonction de L et R.

3°) Le relevé du courant i(t) a un échelon de tension de 3V est le suivant ; déterminer la valeur de L.

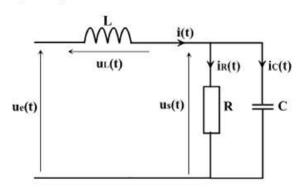


Applications

EXERCICE II

La réponse à un échelon de tension d'un système du deuxième ordre a été enregistré à l'oscilloscope (voir figure suivante).

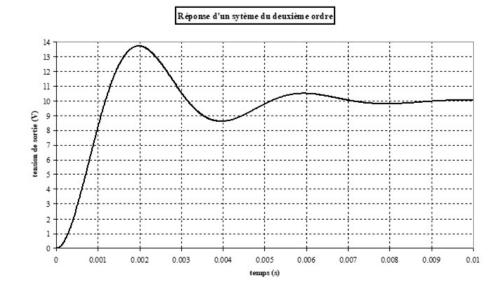
- 1°) Déterminer la valeur du premier dépassement D₁ (en %), la pseudo période T et le temps de réponse à 5% tr.
- 2°) En déduire la valeur de m et ωn.
- 3°) Quel est le gain statique K du système sachant que la tension d'entrée vaut 10 V?
- 4°) Le système est constitué du circuit électrique suivant :

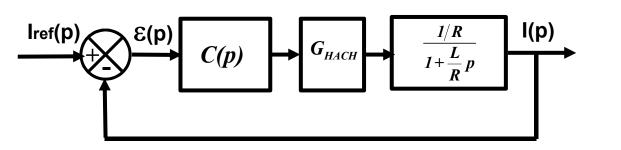


a) Excripe la fonction de transfert $F(p) = \frac{U_s(p)}{U_e(p)}$

et la mettre sous la forme canonique.

- b) Déterminer les expressions de K, m et ω_n en fonction de L, R et C
- b) Sachant que L = 0,36H et R = $1k\Omega$, déterminer la valeur de C.





FTBO

$$G(p) = \frac{I(p)}{\varepsilon(p)} = C(p)G_{HACH} \frac{1/R}{1 + \tau_e p}$$

♦ Paramètres de la machine et du hacheur:

 $P=2kW\;;\;U=250V\;;\;I=8A;\;N=1500tr/mn\;;\;R=0,7\Omega\;;\;L=18mH\;;\;k=1,59Nm/A\;;\;J=0,02kg,m^2\;;\;f=0,002Nms/rad\;$ Hacheur 4 quadrants : $E=270V\;;\;V_p=5V\;;\;F_{MLI}=10kHz$

- ♦ Cahier des charges de la boucle de courant :
 - ◆Erreur statique nulle (échelon)
 - ♦ Temps de réponse à 5% : $t_{r5\%}$ = 5ms
 - ♦ Aucun dépassement toléré par rapport à la consigne

♦ Choix du correcteur :

Comme le système à réguler est de classe 0 (1er ordre), il faut que le correcteur soit de classe 1→ correcteur PI

$$C(p) = K \frac{1 + \tau_i p}{\tau_i p}$$

K : gain du correcteur

 τ_i : constante de temps intégral du correcteur

Synthétiser un correcteur revient à calculer K et τ_i pour répondre au cahier des charges, ensuite il faut le réaliser (technologie analogique ou numérique)

Trois méthodes classiques pour la synthèse du correcteur de courant:

- ♦ Compensation du pole dominant du système
- ullet Calcul direct de la FTBF (2ème ordre) et détermination de K et τ_i pour répondre au cahier des charges
- ullet On peut également faire la synthèse dans le domaine fréquentielle (Bode) en s'imposant une marge de phase de l'ordre de 60° (on respecte la règle du $1/10^{\rm ème}$ pour le calcul de τ_i)

♦ Synthèse par compensation du pole du système:

$$G(p) = K \frac{1 + \tau_i p}{\tau_i p} G_{HACH} \frac{1/R}{1 + \tau_e p}$$

$$T_i = \tau_e = \frac{L}{R}$$

$$AN : \tau_i = 25,7 \text{ms}$$

$$G(p) = \frac{A}{\tau_i p} \text{ avec } A = \frac{KG_{HACH}}{R}$$

On calcule ensuite la fonction de transfert en boucle fermée (FTBF) notée H(p):

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{1}{1 + \frac{\tau_i}{A}p}$$

$$1^{\text{er}} \text{ ordre donc pas de dépassement (ok cahier des charges)}$$

$$t_{r5\%} = 3\frac{\tau_i}{A} \longrightarrow K = \frac{3L}{G_{H4CH}t_{r5\%}}$$

$$AN : K = 0,2$$

♦ Synthèse par le calcul direct de la FTBF:

$$G(p) = A \frac{1 + \tau_i p}{\tau_i p (1 + \tau_e p)}$$
 avec $A = \frac{KG_{HACH}}{R}$ $\xrightarrow{\text{FTBF}}$ $H(p) = \frac{G(p)}{1 + G(p)}$

$$H(p) = \frac{1 + \tau_i p}{1 + \left(\frac{1 + A}{A}\right)\tau_i p + \frac{\tau_i \tau_e}{A} p^2}$$
 Système du 2^{ème} ordre avec présence d'un zéro (numérateur)

Une méthode approximative consiste à faire abstraction du zéro et de vérifier ensuite si l'hypothèse est acceptable:

$$H(p) \approx \frac{1}{1 + \left(\frac{1+A}{A}\right)\tau_i p + \frac{\tau_i \tau_e}{A} p^2}$$
 — On peut utiliser les abaques des systèmes du 2ème ordre

On identifie à la forme canonique système du 2^{ème} ordre: $H(p) = \frac{1}{1 + \frac{2m}{m}p + \frac{1}{m^2}p^2}$

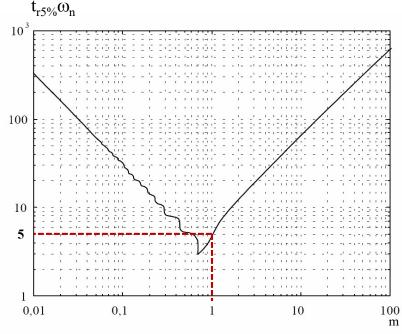
$$\begin{cases} \frac{2m}{\omega_n} = \left(\frac{1+A}{A}\right)\tau_i \\ \frac{1}{\omega_n^2} = \frac{\tau_i \tau_e}{A} \end{cases} \qquad = \begin{cases} K = \frac{R}{G_{HACH}} \left(2m\tau_e \omega_n - 1\right) \\ \tau_i = \frac{KG_{HACH}}{R\tau_e \omega_n^2} \end{cases}$$

Il reste à définir m et ω_n à partir du cahier des charges et des abaques des systèmes du $2^{\text{ème}}$ ordre

- ◆ Erreur statique nulle (échelon) → ok grâce au PI
- ♦ Temps de réponse à 5% : t_{r5%} = 5ms
- ◆ Aucun dépassement toléré par rapport à la consigne: impose m = 1 (réponse la plus rapide sans dépassement)

 $d_{n} (\%)$ $\begin{array}{c} 1 \\ \hline \\ n : num\acute{e}ro du d\acute{e}passement \\ \hline \\ n=1 \\ \hline \\ n=2 \\ \hline \\ n=3 \\ \hline \\ d_{n} : d\acute{e}passements \\ \hline \\ indiciels \\ \hline \\ 0.01 \\ \hline \end{array}$

Courbes des amplitudes des dépassements successifs pour un 2ème ordre en fonction du coefficient d'amortissement m.

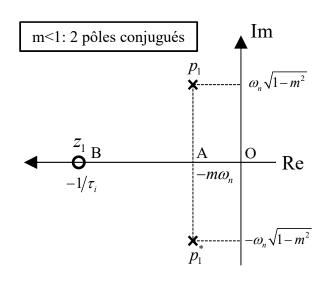


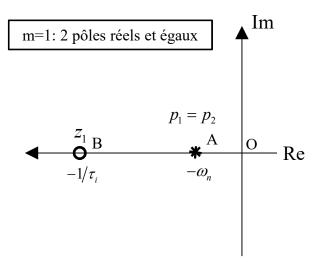
Courbe du temps de réponse à 5 % normalisé d'un deuxième ordre $T_R.\omega_0$ en fonction du coefficient d'amortissement m.

$$m=1$$
 \rightarrow $t_{r5\%}\omega_n = 5$ soit $\omega_n = 1000 rad / s$

$$\begin{cases} K = \frac{R}{G_{HACH}} (2m\tau_e \omega_n - 1) = 0,654 \\ \tau_i = \frac{KG_{HACH}}{R\tau_e \omega_n^2} = 1,96 ms \end{cases}$$

Impact du zero sur la réponse en BF:





$$H(p) = \frac{1 + \tau_i p}{1 + \frac{2m}{\omega_n} p + \frac{1}{\omega_n^2} p^2}$$

Le zéro a peu d'influence sur la réponse temporelle/2^{ème} ordre si la condition suivante est vérifiée :

$$\frac{\left|OB\right|}{\left|OA\right|} > 5$$

Si cette condition n'est pas vérifiée, on a un dépassement plus important sur la réponse temporelle

$$\begin{cases} |OB| = \frac{1}{\tau_i} = 510 \\ |OA| = \omega_n = 1000 \end{cases} \rightarrow \frac{|OB|}{|OA|} = 0,51$$

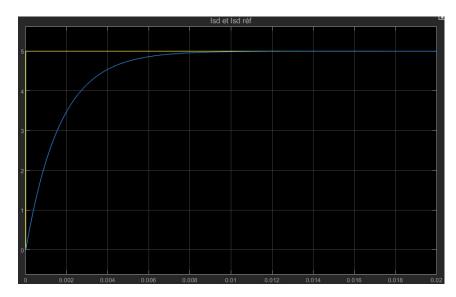
On est très loin de vérifier la condition, il va y avoir du dépassement sur la réponse temporelle si on choisit ce réglage!

Vérification des performances sur Matlab/Simulink

Boucle de courant (synthèse par compensation du pole):

$$\dot{A} t = 0s: I_{ref} = 5A$$

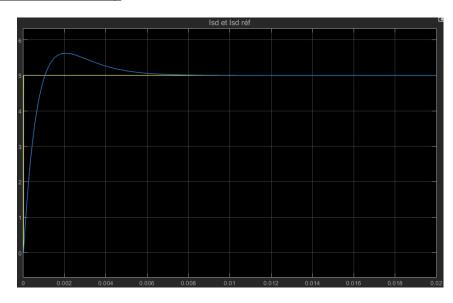
- $-t_{r5\%} = 5 \text{ ms (ok)}$
- Pas de dépassement (ok)
- Erreur statique nulle (ok)



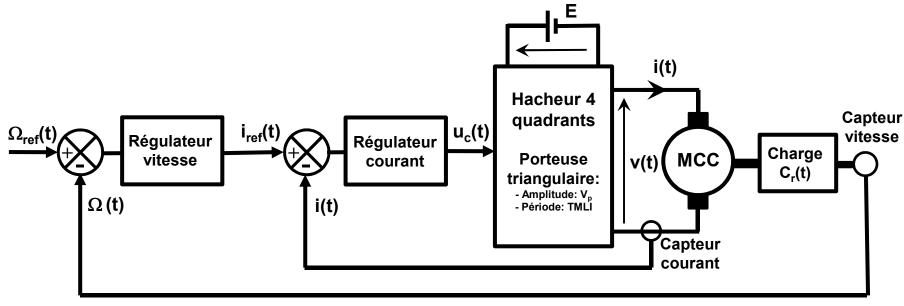
Boucle de courant (synthèse par le calcul de la FTBF):

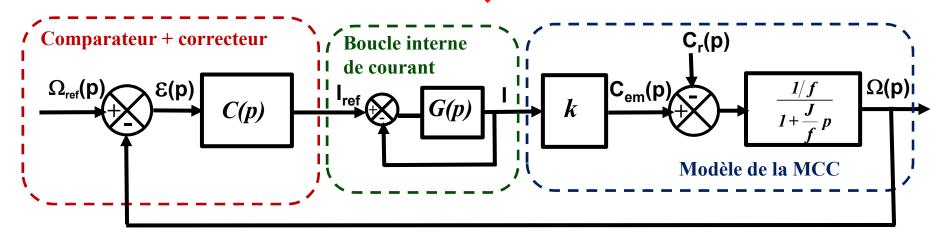
$$\dot{A} t = 0s: I_{ref} = 5A$$

Dépassement à cause de l'impact du zéro dans la FTBF

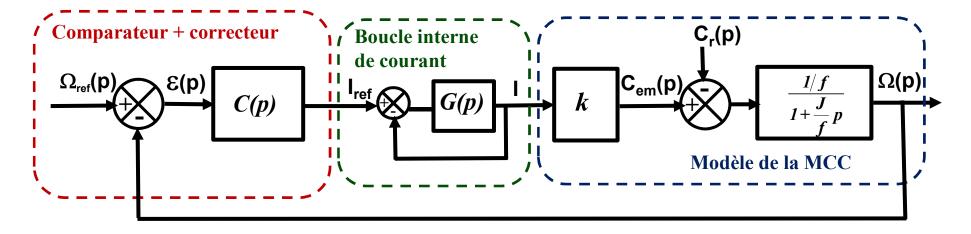


Synthèse du correcteur de vitesse



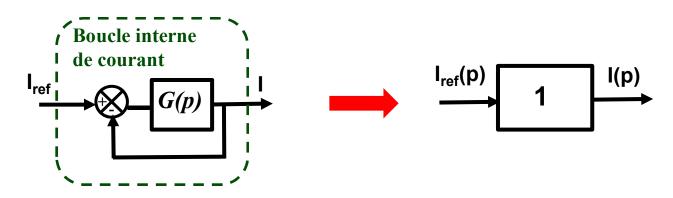


Synthèse du correcteur de vitesse

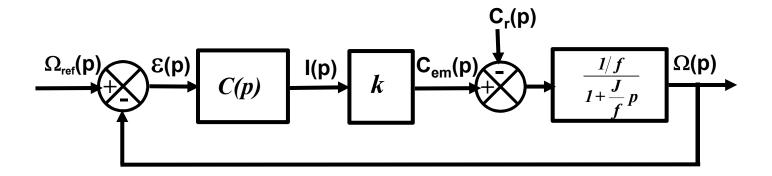


- La boucle de courant a été réglée avec $t_{r5\%}$ = 5ms et une erreur statique nulle
- La constante de temps mécanique $J/f >> t_{r5\%}$ (10s >> 5ms) : constante de temps dominante

Comme la boucle de courant répond avec une erreur nulle et très rapidement par rapport à la dynamique de la vitesse, on peut la modéliser par un gain unitaire (ce n'est pas toujours vrai!)



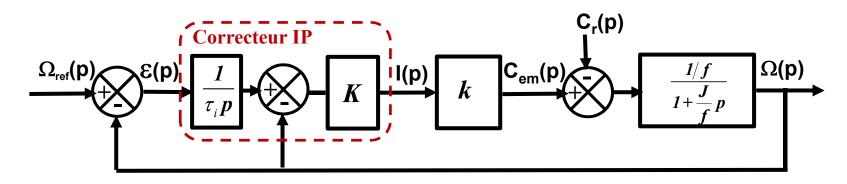
Synthèse du correcteur de vitesse



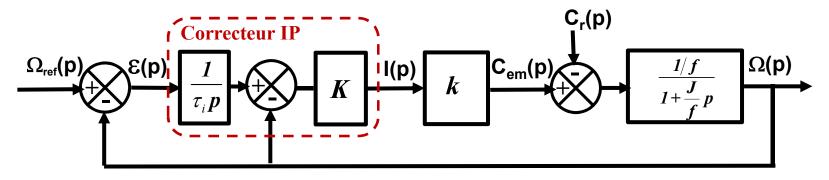
♦ <u>Cahier des charges de la boucle de vitesse</u> :

- ◆Erreur statique nulle (échelon)
- ♦ Temps de réponse à 5% : $t_{r5\%} = 0.5s$
- ♦ Dépassement par rapport à la consigne: D < 10%

Pour éviter l'impact souvent négatif du zéro introduit par l'utilisation d'un correcteur PI, on préfère souvent utiliser un correcteur de type IP pour la boucle de vitesse



Synthèse du correcteur de vitesse



Synthèse par le calcul de la FTBF:

$$\Omega(p) = \frac{1/f}{1 + \tau_m p} kK \left\{ \frac{1}{\tau_i p} \left(\Omega_{ref}(p) - \Omega(p) \right) - \Omega(p) \right\}$$

$$H(p) = \frac{\Omega(p)}{\Omega_{ref}(p)} = \frac{1}{1 + \left(\frac{1+B}{B} \right) \tau_i p + \frac{\tau_i \tau_m}{B} p^2} \quad \text{avec} \quad B = \frac{kK}{f}$$

On obtient un « vrai » second ordre que l'on peut identifier à la forme canonique

$$H(p) = \frac{1}{1 + \frac{2m}{\omega_n} p + \frac{1}{\omega_n^2} p^2}$$

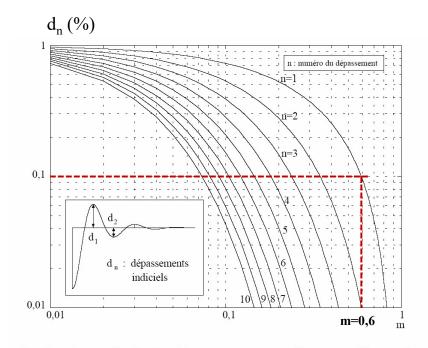
$$\begin{cases} \frac{2m}{\omega_n} = \left(\frac{1+B}{B}\right) \tau_i \\ \frac{1}{\omega_n^2} = \frac{\tau_i \tau_e}{B} \end{cases}$$

$$\begin{cases} K = \frac{f}{k} (2m\tau_m \omega_n - 1) \\ \tau_i = \frac{Kk}{f \tau_m \omega_n^2} \end{cases}$$

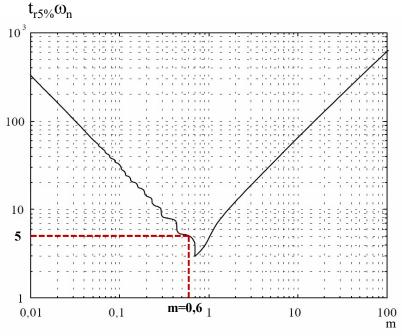
Il reste à définir m et ω_n à partir du cahier des charges et des abaques des systèmes du $2^{\rm ème}$ ordre

Synthèse du correcteur de vitesse

- ◆ Erreur statique nulle (échelon) → ok grâce au IP
- ♦ Temps de réponse à 5% : $t_{r5\%} = 0.5s$
- ♦ Dépassement par rapport à la consigne: D < 10% : nous donne m = 0,6 d'après l'abaque (dépassement)



Courbes des amplitudes des dépassements successifs pour un 2ème ordre en fonction du coefficient d'amortissement m.

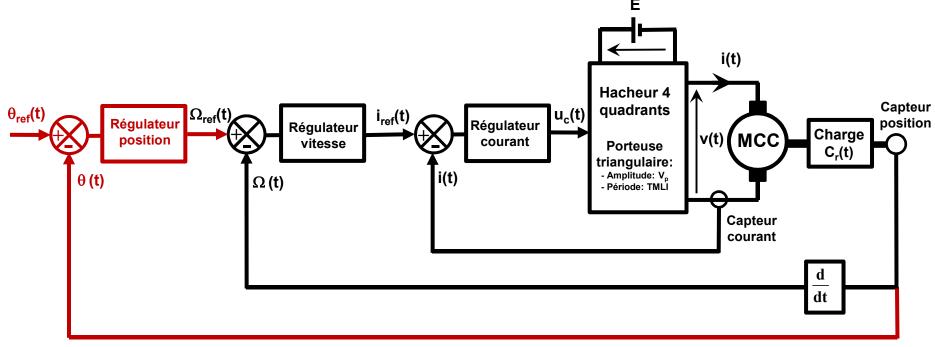


Courbe du temps de réponse à 5 % normalisé d'un deuxième ordre $T_R.\omega_0$ en fonction du coefficient d'amortissement m.

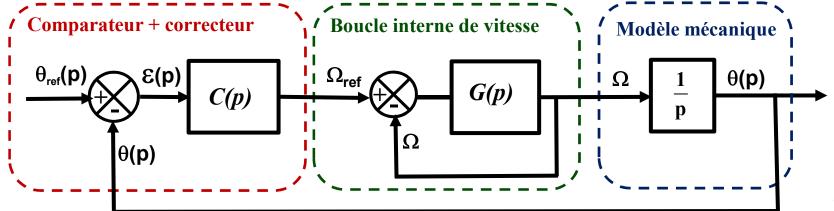
$$m = 0.6$$
 \rightarrow $t_{r5\%}\omega_n = 5$ soit $\omega_n = 10 rad/s$

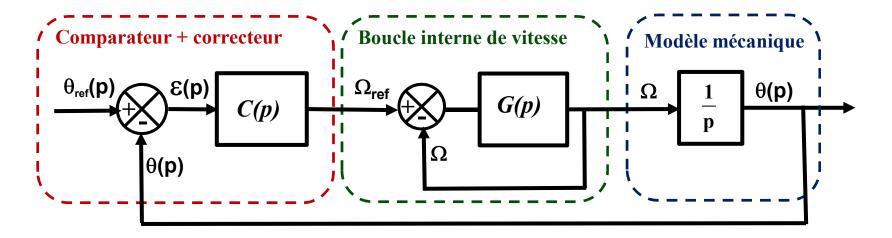
$$\begin{cases} K = \frac{f}{k} (2m\tau_m \omega_n - 1) = 0,15 \\ \tau_i = \frac{Kk}{f \tau_m \omega_n^2} = 0,119 \end{cases}$$

On désire réaliser un asservissement de position : boucle externe supplémentaire (en rouge)

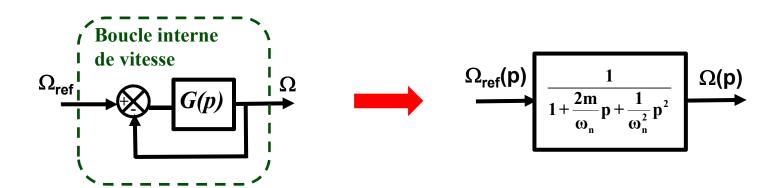


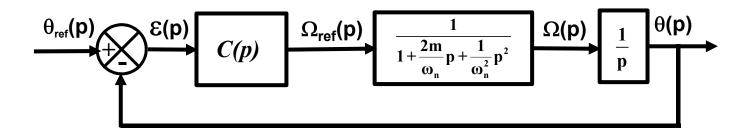
Modélisation:





- La boucle de vitesse a été réglée avec $t_{r5\%} = 0.5$ s, une erreur statique nulle avec un dépassement de $10\% \rightarrow m = 0.6$ et $\omega_n = 10$ rad/s (voir transparent 33)
- On ne peut généralement pas négliger la dynamique de la boucle interne de vitesse pour synthétiser le correcteur de position (temps de réponse du même ordre)





♦ Cahier des charges de la boucle de position :

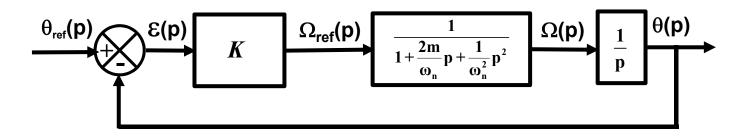
- ◆Erreur statique nulle (échelon)
- ♦ Marge de phase de 60°

♦ Choix du correcteur:

Comme le système à réguler est de classe 1 (présence d'un intégrateur), le correcteur peut-être de classe 0 pour annuler l'erreur statique \rightarrow correcteur P

C(p) = K

K : gain du correcteur

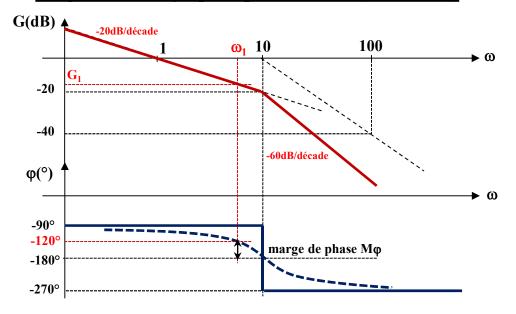


♦ Synthèse dans le domaine fréquentielle à partir de la FTBO (diagramme de Bode):

$$G(p) = K \frac{1}{p\left(1 + \frac{2m}{\omega_n}p + \frac{1}{\omega_n^2}p^2\right)} \xrightarrow{\text{(m=0,6 et }\omega_n = 10\text{rad/s)}} G(j\omega) = K \frac{1}{j\omega\left(1 - \frac{\omega^2}{\omega^2} + j\frac{2m}{\omega}\omega\right)}$$

$$G(j\omega) = K \frac{1}{j\omega \left(1 - \frac{\omega^2}{\omega_n^2} + j\frac{2m}{\omega_n}\omega\right)}$$

♦ Diagrammes asymptotiques de Bode (avec K = 1):



$$\begin{cases} |G| = -20\log(\omega) - 20\log\left(\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(\frac{2m}{\omega_n}\omega\right)^2}\right) \\ \varphi = -\frac{\pi}{2} - \arctan\left(\frac{2m\omega}{\omega_n} / \left(1 - \frac{\omega^2}{\omega_n^2}\right)\right) \end{cases}$$

On veut une marge de phase $M\phi = 60^{\circ}$

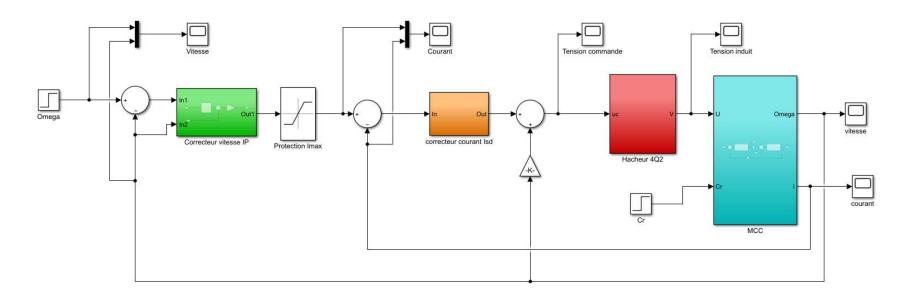
$$M\varphi = 180^{\circ} + \varphi \rightarrow \varphi = -120^{\circ}$$

Pour $\omega = \omega_1 \rightarrow 20\log(K) = -G_1$

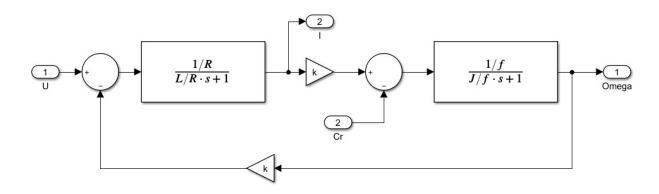
On trouve $\omega_1 = 4 \text{ rad/s et } G_1 = -11,7dB$

$$C(p) = K = 3,8$$

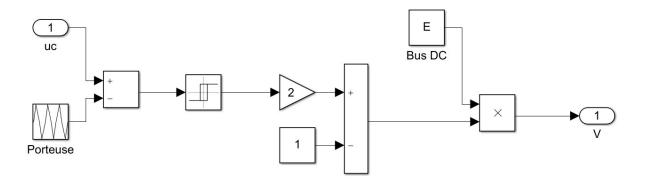
Régulation de courant et régulation de vitesse:



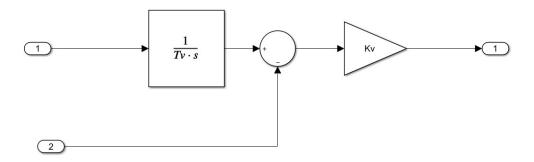
<u>Détails du modèle de la MCC</u>:



Modèle du hacheur 4 quadrants (en grandeurs instantanées):



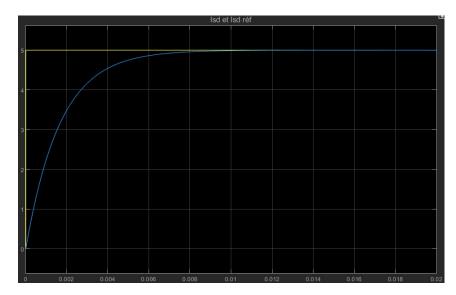
Modèle du correcteur de vitesse (IP)



Boucle de courant (synthèse par compensation du pole):

$$\dot{A} t = 0s: I_{ref} = 5A$$

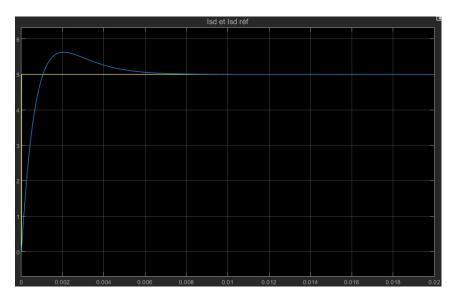
- $-t_{r5\%} = 5 \text{ ms (ok)}$
- Pas de dépassement (ok)
- Erreur statique nulle (ok)



Boucle de courant (synthèse par le calcul de la FTBF):

$$\dot{A} t = 0s: I_{ref} = 5A$$

Dépassement à cause de l'impact du zéro dans la FTBF



Boucle de vitesse + échelon de couple (correcteur IP):

À
$$t = 0s : \Omega_{ref} = 150 \text{ rad/s}$$

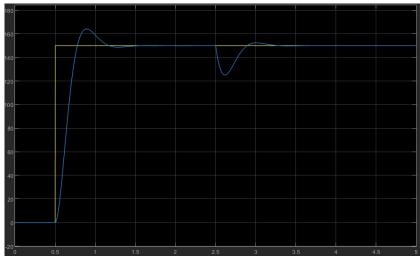
À $t = 2.5s$: Cr = 10 Nm

- $-t_{r5\%} = 5 \text{ s (ok)}$
- Dépassement<10% (ok)
- Erreur statique nulle (ok)

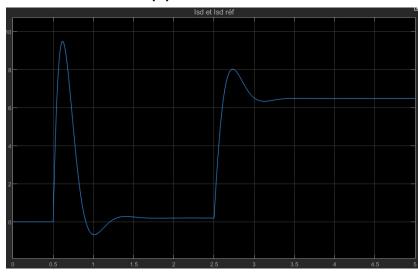
Evolution du courant dans l'induit:

- pic de courant pour assurer le démarrage,
- -I = 6,4A pour Cr = 10Nm

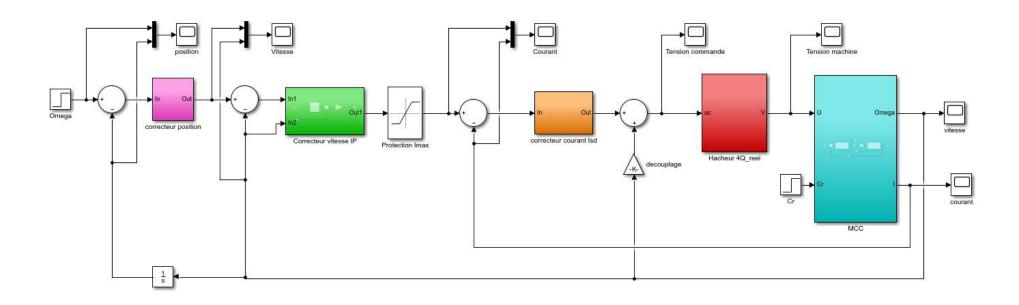
Vitesse moteur (rad/s)



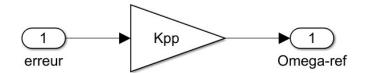
Courant dans l'induit (A)



Asservissement de la position:



Correcteur de position (P):



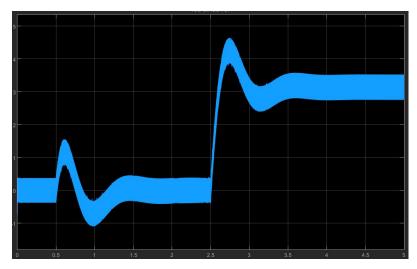
Boucle de position + échelon de couple (correcteur P):

$$\dot{A} t = 0s : \theta_{ref} = 2\pi \text{ rads}$$

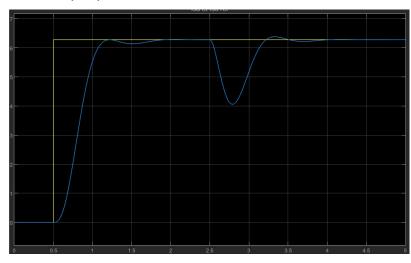
$$\dot{A} t = 2.5s: Cr = 5 Nm$$

- $t_{r5\%} \approx 0.5 \text{ s}$
- Erreur statique nulle (ok)

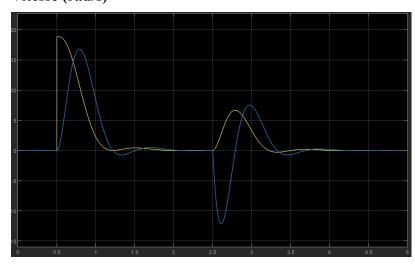
Courant (avec effet du découpage du hacheur ; 10 kHz)



Position (rad)

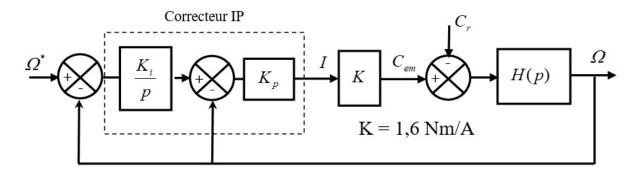


Vitesse (rad/s)



Application

Le schéma bloc de la régulation de vitesse d'une machine à courant continu (MCC) est représenté sur la figure suivante. Les notations sont les suivantes :

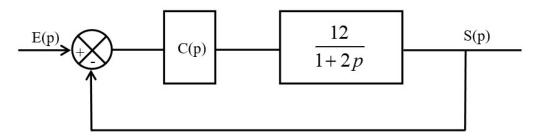


La fonction de transfert H(p) du système est la suivante : $H(p) = \frac{200}{1+5p}$

- 1°) Calculer la fonction de transfert $G(p) = \frac{\Omega}{\Omega^*}$ en boucle fermée (on considérera un couple résistant nul).
- **2°)** Calculer les gains K_i et K_p pour répondre au cahier des charges suivant :
 - Coefficient d'amortissement = 0,7
 - Temps de réponse $t_r = 1$ s
- **3°)** Représenter l'allure de $\Omega(t)$ et i(t) si on impose à l'entrée un échelon de 50 rad/s (indiquer les grandeurs importantes sur le graphe)

Application

Un asservissement est réalisé suivant le schéma ci-dessous :



On considère un correcteur proportionnel tel que C(p) = K

- 1) Exprimer la fonction de transfert en boucle fermée et la mettre sous la forme classique d'un système du premier ordre. Calculer la valeur de K permettant d'avoir une erreur statique inférieure à 5%. Quel est le temps de réponse à 5% du système bouclé ?
- 2) Le gain K étant fixé à la valeur précédente, on soumet le système a une entrée e(t) en échelon unitaire. On vous demande de représenter l'allure de s(t) en indiquant les grandeurs importantes

On considère maintenant un correcteur Proportionnel-Intégral (PI) :

$$C(p) = K \frac{1 + T_i p}{T_i p}$$

- 3) Quel est l'intérêt d'utiliser un tel correcteur pour le système à réguler ?
- 4) Calculer la fonction de transfert en boucle fermée $G(p) = \frac{S(p)}{E(p)}$.
- 5) Calculer K et T_i pour répondre au cahier des charges suivant (on négligera l'influence du zéro dans la FTBF):
 - coefficient d'amortissement m= 1
 - temps de réponse $t_r = 0.3$ s
- 6) Représenter l'allure de s(t) si on impose à l'entrée un échelon unitaire (indiquer les grandeurs importantes sur le graphe).

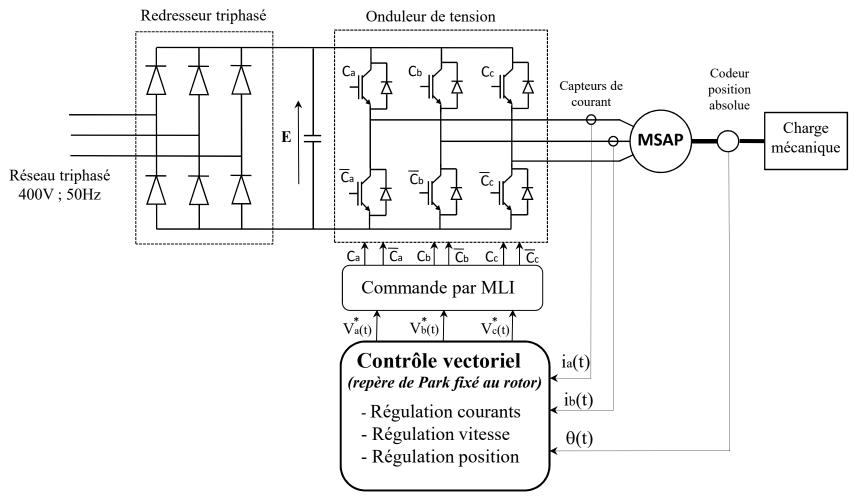
MASTER EEA – M2 Spécialité Energie Electrique

UE 942: Commande des machines électriques

Partie 2: Commande vectorielle des machines synchrones à aimants permanents (MSAP)

Supports de cours

Architecture de commande pour Machine Synchrone triphasée à Aimants Permanents (MSAP)

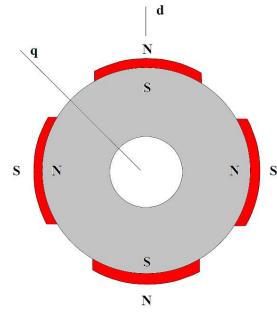


DSP: Digital Signal Processor

Pour contrôler la vitesse ou la position d'un système d'entrainement électromécanique, il faut être capable de maitriser le couple instantané fourni par le moteur électrique.

Différents types de rotors dont le choix dépend de l'application visée (robotique, traction, éolienne...)

♦ Machine à aimants permanents collés en surface (pôles lisses, pas de variation d'entrefer)



Inductances statoriques (modèle d-q)

$$L_d = L_q$$

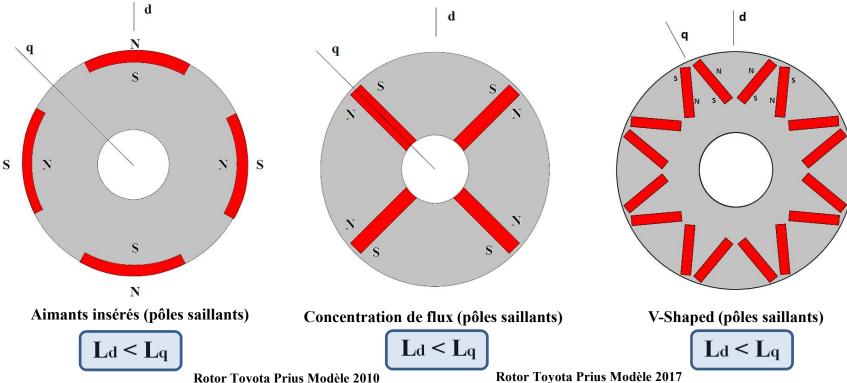
Stator triphasé

Rotor à aimants montés en surface

Prototype petite éolienne 1,1 kW (Thèse Duc-Hoan TRAN, Toulouse 2010)

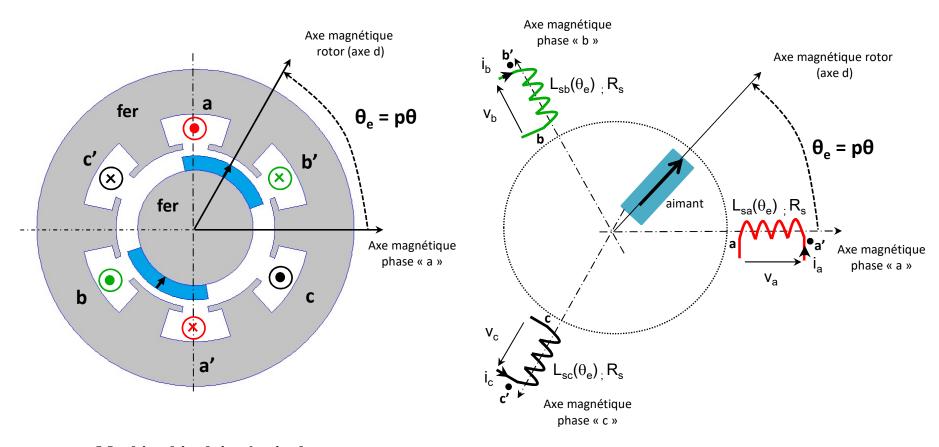
Différents types de rotors dont le choix dépend des applications (robotique, traction, éolienne...)

♦ Machine à aimants insérés (pôles saillants, variation de la perméance avec la position du rotor)



Rotor Toyota Prius Modèle 2010

Modélisation de la MSAP triphasée (circuits couplés)



Machine bipolaire équivalente

Représentation sous la forme de circuits couplés

Modèle dynamique de la MSAP avec saillance magnétique au rotor (repère abc fixé au stator)

- Les inductances propres et mutuelles statoriques dépendent de la position du rotor θ_e (si pôles saillants)
- Hypothèse du 1^{er} harmonique d'espace : variation sinusoïdale des inductances avec la position du rotor.
- Saturation magnétique négligée (relations linéaires entre flux et courants)

Equations des tensions et des flux:

$$\begin{pmatrix} V_a \\ V_b \\ V_c \end{pmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \cdot \begin{pmatrix} I_a \\ I_b \\ I_c \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \end{pmatrix}$$

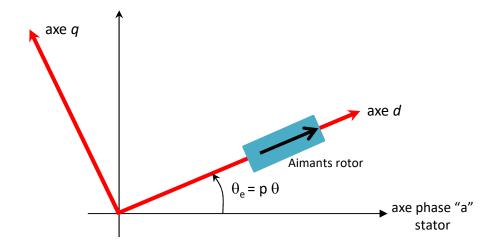
$$\begin{pmatrix} \Psi_{a} \\ \Psi_{b} \\ \Psi_{c} \end{pmatrix} = \begin{bmatrix} L_{0} + L_{2}\cos(2\theta_{e}) & M_{0} + M_{2}\cos(2\theta_{e} - 2\pi/3) & M_{0} + M_{2}\cos(2\theta_{e} + 2\pi/3) \\ M_{0} + M_{2}\cos(2\theta_{e} - 2\pi/3) & L_{0} + L_{2}\cos(2\theta_{e} + 2\pi/3) & M_{0} + M_{2}\cos(2\theta_{e}) \\ M_{0} + M_{2}\cos(2\theta_{e} + 2\pi/3) & M_{0} + M_{2}\cos(2\theta_{e}) & L_{0} + L_{2}\cos(2\theta_{e} - 2\pi/3) \end{bmatrix} \begin{pmatrix} I_{a} \\ I_{b} \\ I_{c} \end{pmatrix} + \Psi_{A} \begin{pmatrix} \cos(\theta_{e}) \\ \cos(\theta_{e} - 2\pi/3) \\ \cos(\theta_{e} + 2\pi/3) \end{pmatrix}$$

Equation du couple électromagnétique (dérivée de la coénergie Wc): $(I)^T = (I_a \ I_b \ I_c)$

$$C_{em} = p \frac{\partial W_c}{\partial \theta_e} \bigg|_{I=cst} \quad \text{avec} \quad W_c = \frac{1}{2} (I)^T (\Psi(\theta_e)) \quad \text{soit} \quad C_{em} = \frac{1}{2} p (I)^T \frac{\partial \Psi(\theta_e)}{\partial \theta_e} \quad \text{(modèle linéaire)}$$

Si pôles lisses (L₂ = M₂ = 0): $C_{em} = -p\Psi_A \{i_a(t)\sin(\theta_e) + i_b(t)\sin(\theta_e - 2\pi/3) + i_c(t)\sin(\theta_e + 2\pi/3)\}$

Ecriture des équations de la MSAP dans le repère du rotor (d-q) Transformation de Park



♦ Transformation de Park $(abc) \rightarrow (dq)$:

♦ Transformation de Park inverse $(dq) \rightarrow (abc)$:

$$\begin{pmatrix} X_a \\ X_b \\ X_c \end{pmatrix} = [P(\theta_e)]^{-1} \cdot \begin{pmatrix} X_d \\ X_q \\ X_o \end{pmatrix} \qquad [P(\theta_e)]^{-1} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\theta_e) & -\sin(\theta_e) & \sqrt{2}/2 \\ \cos(\theta_e - 2\pi/3) & -\sin(\theta_e - 2\pi/3) & \sqrt{2}/2 \\ \cos(\theta_e + 2\pi/3) & -\sin(\theta_e + 2\pi/3) & \sqrt{2}/2 \end{bmatrix}$$

Evolution des grandeurs électriques en régime permanent sinusoïdal dans le repère d-q

Régime permanent :

• la vitesse de rotation est constante : $\omega = p\Omega$ (ω est la pulsation des courants statorique)

$$\Omega = \frac{d\theta}{dt} \rightarrow \theta(t) = \Omega t \text{ soit } \theta_e(t) = p\Omega t = \omega t$$

Les courant de phase sont sinusoïdaux de valeur efficace I_s:

$$I_{a}(t) = I_{s}\sqrt{2}\cos(\omega t + \alpha)$$

$$I_{b}(t) = I_{s}\sqrt{2}\cos(\omega t - 2\pi/3 + \alpha)$$

$$I_{c}(t) = I_{s}\sqrt{2}\cos(\omega t + 2\pi/3 + \alpha)$$

$$\begin{pmatrix} I_d \\ I_q \\ I_o \end{pmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} \cos(\omega t) & \cos(\omega t - 2\pi/3) & \cos(\omega t + 2\pi/3) \\ -\sin(\omega t) & -\sin(\omega t - 2\pi/3) & -\sin(\omega t + 2\pi/3) \\ \sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \cdot \begin{bmatrix} I_s \sqrt{2} \cos(\omega t + \alpha) \\ I_s \sqrt{2} \cos(\omega t - 2\pi/3 + \alpha) \\ I_s \sqrt{2} \cos(\omega t + 2\pi/3 + \alpha) \end{bmatrix}$$

$$I_d = I_s \sqrt{3} \cos(\alpha)$$

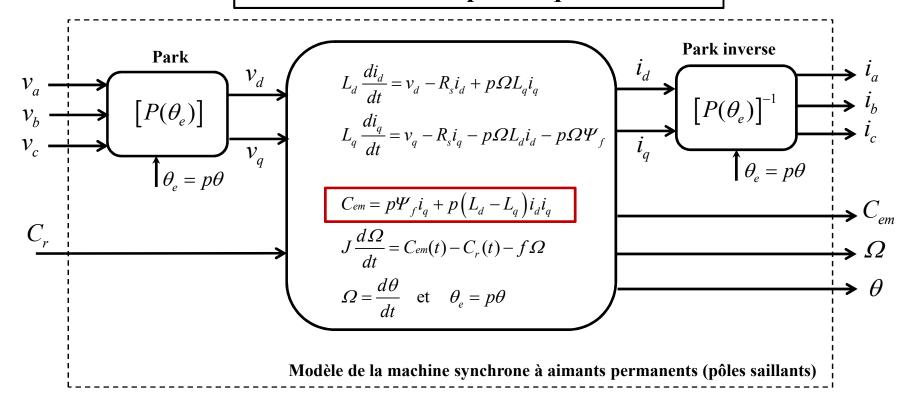
$$I_q = -I_s \sqrt{3} \sin(\alpha)$$

$$I_o = 0$$

 $I_{d} = I_{s} \sqrt{3} \cos(\alpha)$ $I_{q} = -I_{s} \sqrt{3} \sin(\alpha)$ Les courants I_{d} et I_{q} sont constants en régime permanent (grandeurs plus faciles à réguler)

$$I_s = \sqrt{\frac{I_d^2 + I_q^2}{3}}$$

Modèle dynamique de la MSAP à pôles saillants dans un repère d-q fixé au rotor



$$\begin{pmatrix} L_d = L_0 - M_0 + \frac{3}{2}L_2 \\ L_q = L_0 - M_0 - \frac{3}{2}L_2 \end{pmatrix}$$

$$L_q = L_0 - M_0 - \frac{3}{2}L_2$$

Ld: inductance cyclique statorique d'axe direct (axe d)

 L_q : inductance cyclique statorique d'axe en quadrature (axe q)

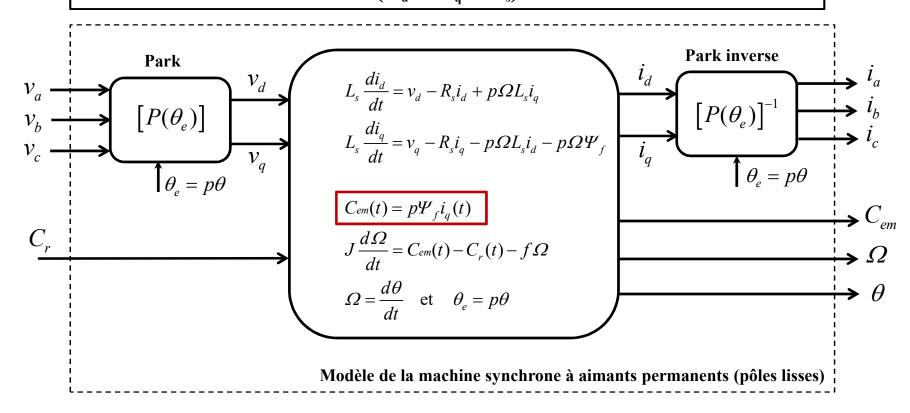
Rs: résistance d'un enroulement statorique

p : nombre de paires de pôles

$$\Psi_f = \sqrt{\frac{3}{2}} \Psi_A$$

 Ψ_A est le flux total créé par les aimants à travers un enroulement statorique

Modèle dynamique de la MSAP: cas de la machine à pôles lisses $(L_d = L_g = L_s)$



 L_s : inductance cyclique statorique

Rs: résistance d'un enroulement statorique

p : nombre de paires de pôles

$$\Psi_f = \sqrt{\frac{3}{2}} \Psi_A$$

Principe du contrôle vectoriel de la machine à pôles lisses

→ L'expression du couple est beaucoup plus simple dans un repère d-q lié au rotor :

$$C_{em}(t) = p \varPsi_f i_q(t)$$

 $\rightarrow \Psi_f$ est le flux produit par les aimants (il est constant): le couple est directement proportionnel au courant $i_a(t)$

Même expression de couple que pour une MCC (flux × courant)!

Le contrôle du couple se fera par le contrôle du courant $i_q(t)$

$$C_{em}(t) = ki_q(t)$$
 avec $k = p\Psi_f$

Pour contrôler la vitesse ou la position d'un système d'entrainement électromécanique, il faut être capable de maitriser parfaitement le couple instantané fourni par le moteur électrique.

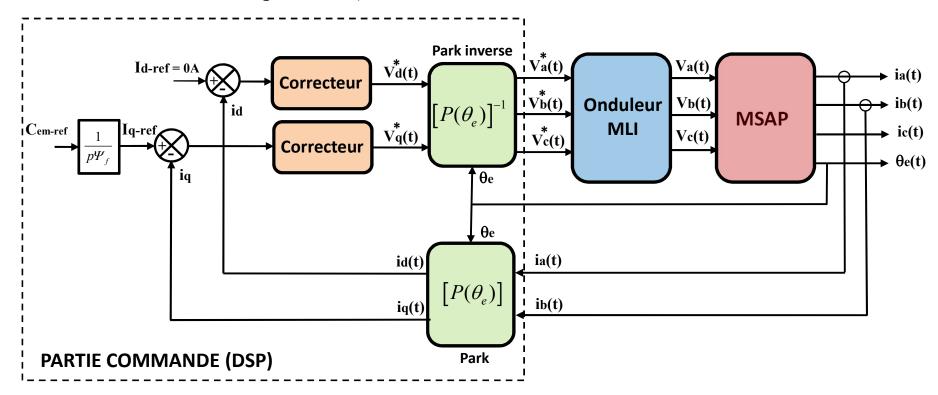
- $\rightarrow i_q(t)$ est une grandeur constante en régime permanent: beaucoup plus facile à réguler qu'une grandeur sinusoïdale en utilisant un correcteur PI (\rightarrow erreur statique nulle)
- \rightarrow Comme $i_d(t)$ n'intervient pas dans l'expression du couple, on peut le réguler à 0A, cela permet de minimiser le courant absorbé et donc les pertes joules statoriques:

$$I_{\mathit{dref}} = 0A$$

Schéma de principe du contrôle vectoriel de la MSAP (contrôle en couple)

 $C_{em}(t) = p\Psi_f i_q(t)$ Le courant $i_q(t)$ permet de régler le couple.

Le courant id(t) est fixé à zéro (minimisation du courant absorbé pour un couple donné).



Synthèse des correcteurs: modèles de la charge, du moteur, de l'onduleur et des capteurs.

12

Modèle de la charge

Principe fondamental de la dynamique des systèmes en rotation

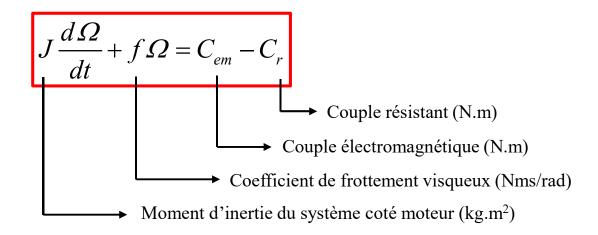
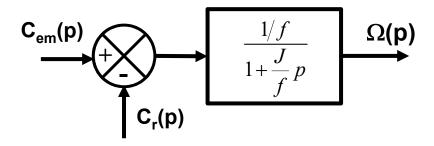


Schéma bloc associé (p est la variable de Laplace)



Modèle de la machine synchrone à pôles lisses dans le repère d-q fixé au rotor

$$\begin{aligned} v_d &= R_s i_d + L_s \frac{di_d}{dt} - p\Omega L_s i_q \\ v_q &= R_s i_q + L_s \frac{di_q}{dt} + p\Omega L_s i_d + k\Omega \\ C_{em} &= ki_q \end{aligned}$$

3 Paramètres:

 R_s : résistance d'une phase statorique (Ω)

 L_s : inductance cyclique du stator(H)

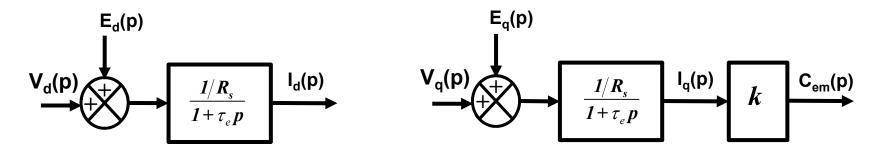
 $k = p \mathcal{Y}_f$: constante de couple (Nm/A)

On définit les termes de couplage entre les deux axes (vus comme des perturbations)

$$e_d = p\Omega L_s i_q$$
 $e_q = -p\Omega L_s i_d - k\Omega$

Schéma bloc associé (p est la variable de Laplace)

 $\tau_e = \frac{L_s}{R_s}$ Constante de temps électrique (ms)

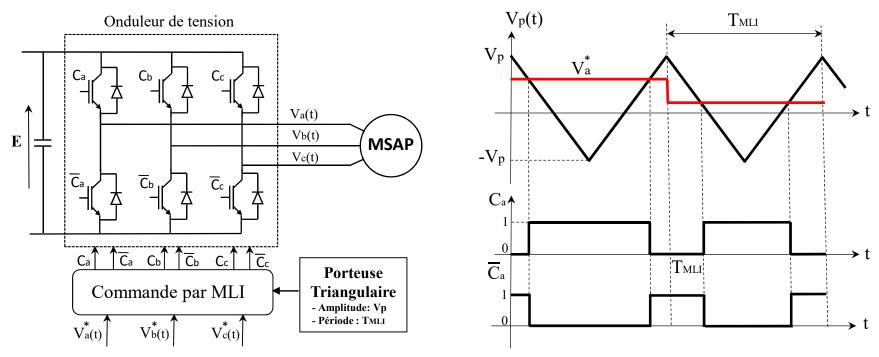


Modèle machine axe d

Modèle machine axe q

Modélisation de l'onduleur en valeur moyenne sur une période MLI (TMLI)

L'onduleur peut être modélisé par un gain noté Gond



♦ Modélisation en valeur instantanée

$$\begin{pmatrix} V_a(t) \\ V_b(t) \\ V_c(t) \end{pmatrix} = \frac{E}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{pmatrix} C_a(t) \\ C_b(t) \\ C_c(t) \end{pmatrix}$$

♦ Modélisation en valeur moyenne d'un onduleur MLI (voir TD)

$$\begin{pmatrix} V_a(t) \\ V_b(t) \\ V_c(t) \end{pmatrix} = \frac{E}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{pmatrix} C_a(t) \\ C_b(t) \\ C_c(t) \end{pmatrix}$$

$$\begin{pmatrix} V_a(t) \\ V_b(t) \\ V_c(t) \end{pmatrix} = G_{ond} \begin{pmatrix} V_a^*(t) \\ V_b^*(t) \\ V_c^*(t) \end{pmatrix}$$

$$Park \begin{pmatrix} V_d(t) \\ V_q(t) \end{pmatrix} = G_{ond} \begin{pmatrix} V_d^*(t) \\ V_q^*(t) \end{pmatrix}$$

$$avec G_{ond} = \frac{E}{2V_p}$$

E: Tension du bus continu

V_p: Amplitude de la porteuse

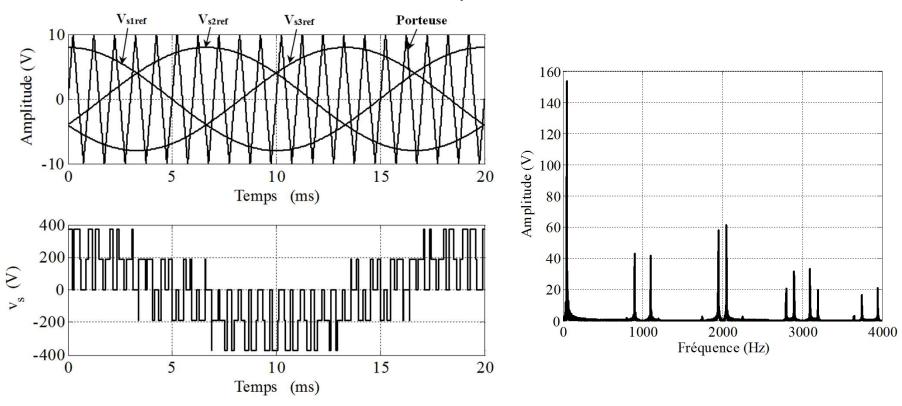
Tension V_a(t) et sa décomposition spectrale

$$E = 550V$$
; $V_p = 10V$; $F_{MLI} = 1kHz$; $F_{fondamental} = 50Hz$

$$V_a^*(t) = \hat{V}_{ref} \cos(\omega t)$$

Signaux de commande:
$$V_b^*(t) = \hat{V}_{ref} \cos(\omega t - 2\pi/3)$$
 avec $\hat{V}_{ref} = 8V$

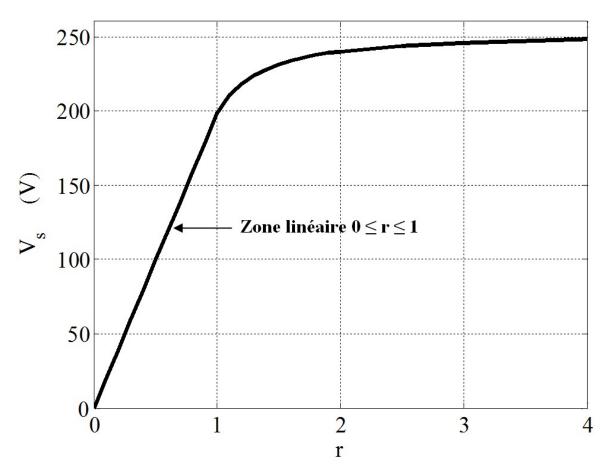
$$V_c^*(t) = \hat{V}_{ref} \cos(\omega t + 2\pi/3)$$



Fondamental à 50 Hz : $V_s \approx 155V$

Harmoniques autour de la fréquence MLI: 1kHz, 2kHz, 3kHz......

Valeur efficace du fondamental de $V_a(t)$ en fonction de r (r : coefficient de réglage en tension)



Zone linéaire:

$$V_s = \frac{E}{2\sqrt{2}}r \qquad r = \frac{\hat{V}_{ref}}{V_p}$$

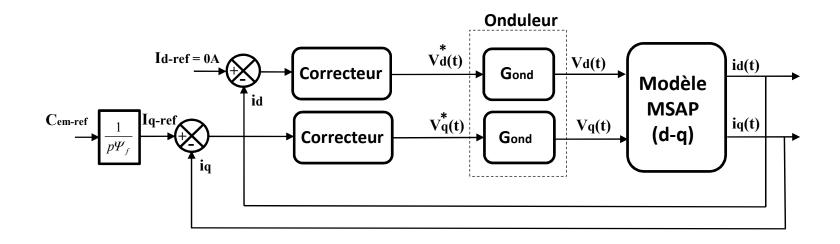
r = coefficient de réglage en tension $0 \le r \le 1$ en MLI

Pleine onde: $r \rightarrow \infty$

$$V_s = \frac{2E}{\pi\sqrt{2}}$$

- Pour E = 550V et $r = 8/10 = 0.8 \rightarrow V_s \approx 155V$
- En commande MLI, la valeur efficace maximale disponible (r = 1) : $V_s \approx 194,5V$
- En pleine onde, on peut atteindre $V_s \approx 247 V$ (mais présence d'harmoniques basses fréquences dans le spectre de la tension donc du courant ce qui est mauvais pour la machine.....)

Schéma de commande incluant le modèle de l'onduleur et de la MSAP dans le repère de Park



Modèle MSAP (d-q)

$$L_{s} \frac{di_{d}}{dt} + R_{s}i_{d} = v_{d} + p\Omega L_{s}i_{q}$$

$$L_{s} \frac{di_{q}}{dt} + R_{s}i_{q} = v_{q} - p\Omega L_{s}i_{d} - p\Omega \Psi_{f}$$

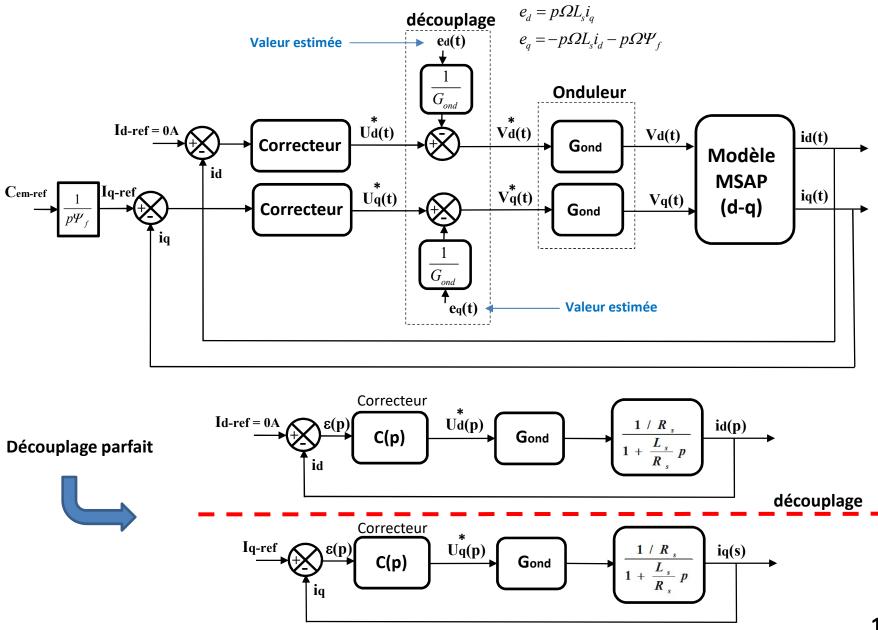
Les 2 équations sont couplées. Une variation de iq affectera id et vice-versa par les termes de couplage:

$$e_d = p\Omega L_s i_q$$

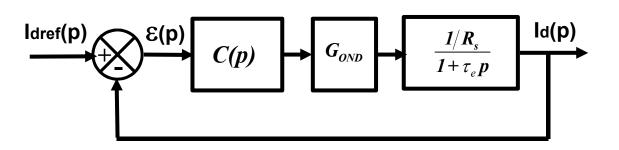
$$e_q = -p\Omega L_s i_d - p\Omega \Psi_f$$

Nécessité d'effectuer un découplage des axes

Découplage des axes d et q : Calcul des correcteurs



Synthèse des correcteurs de courant



FTBO

$$G(p) = \frac{I_d(p)}{\varepsilon(p)} = C(p)G_{OND} \frac{1/R_s}{1 + \tau_e p}$$

♦ Paramètres de la machine synchrone à pôles lisses et de l'onduleur:

$$P=1,8kW\;;\;N_{n}=3000tr/mn\;;\;p=3;\;I=7,3A;\;R_{s}=0,5\Omega\;;\;L_{s}=2,1mH\;;\;\Psi_{A}=122\;mWb\;;\;J=4.10^{-3}kg,m^{2}\;;\;f=6.10^{-4}Nms/rad\;$$
 Onduleur triphasé : E=250V ; $V_{p}=1V\;;\;F_{MLI}=5kHz$

- ♦ Cahier des charges de la boucle de courant :
 - ◆Erreur statique nulle (échelon)
 - ♦ Temps de réponse à 5% : t_{r5%} = 5ms
 - ♦ Aucun dépassement toléré par rapport à la consigne

♦ Choix du correcteur :

Comme le système à réguler est de classe 0 (1er ordre), il faut que le correcteur soit de classe 1→ correcteur PI

$$C(p) = K \frac{1 + \tau_i p}{\tau_i p}$$

K : gain du correcteur

 τ_i : constante de temps intégral du correcteur

Synthétiser un correcteur revient à calculer K et τ_i pour répondre au cahier des charges, ensuite il faut le réaliser (technologie analogique ou numérique)

Synthèse du correcteur de courant

♦ Synthèse par compensation du pole du système:

$$G(p) = K \frac{1 + \tau_i p}{\tau_i p} G_{OND} \frac{1/R_s}{1 + \tau_e p}$$

$$T_i = \tau_e = \frac{L_s}{R_s}$$

$$AN : \tau_i = 4,2ms$$

$$G(p) = \frac{A}{\tau_i p} \text{ avec } A = \frac{KG_{OND}}{R}$$

On calcule ensuite la fonction de transfert en boucle fermée (FTBF) notée H(p):

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{1}{1 + \frac{\tau_i}{A}p}$$

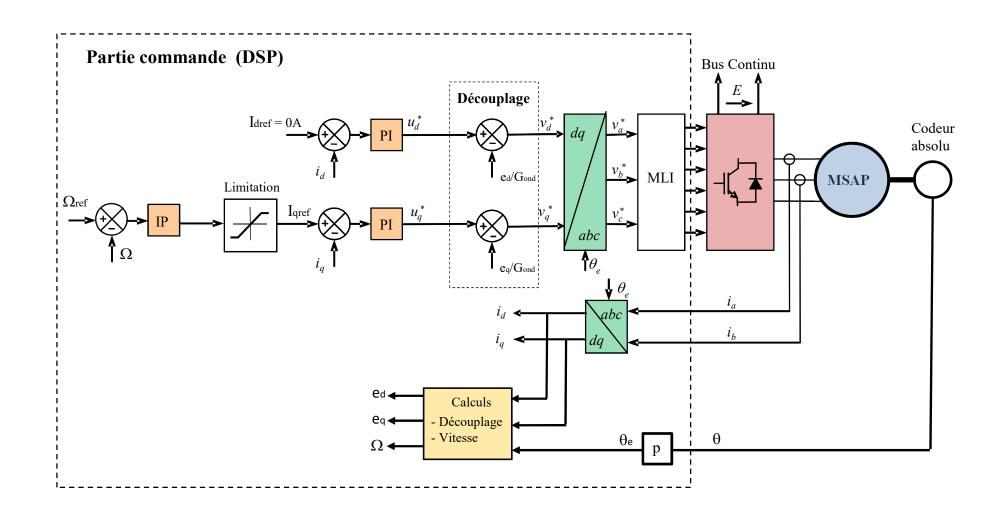
$$1^{\text{er}} \text{ ordre donc pas de dépassement (ok cahier des charges)}$$

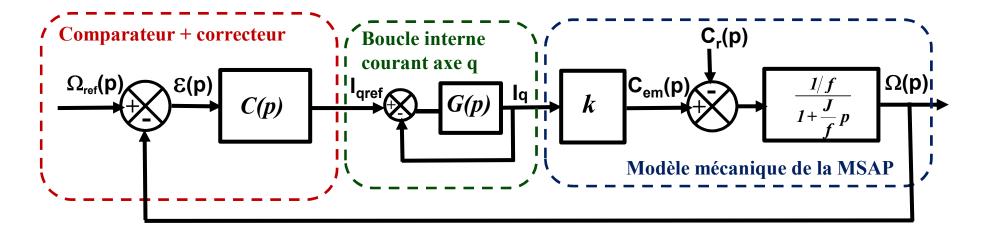
$$t_{r5\%} = 3\frac{\tau_i}{A} \longrightarrow K = \frac{3L_s}{G_{OND}t_{r5\%}}$$

$$AN : K = 0,01$$

La boucle de régulation du courant d'axe q étant identique, les gains du correcteur sont les mêmes,

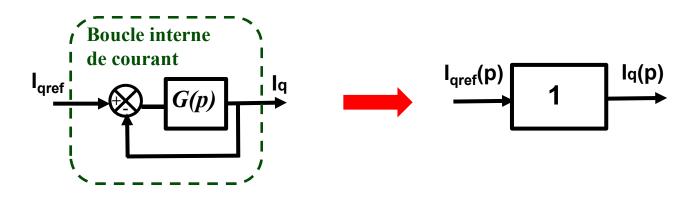
Structure globale du contrôle vectoriel de la MSAP incluant la boucle de vitesse

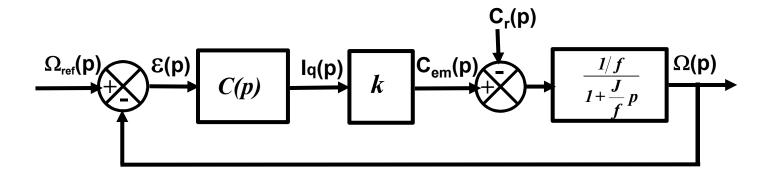




- La boucle de courant a été réglée avec $t_{r5\%}$ = 5ms et une erreur statique nulle
- La constante de temps mécanique $J/f >> t_{r5\%}$ (6,66s >> 5ms) : constante de temps dominante

Comme la boucle de courant répond avec une erreur nulle et très rapidement par rapport à la dynamique de la vitesse, on peut la modéliser par un gain unitaire

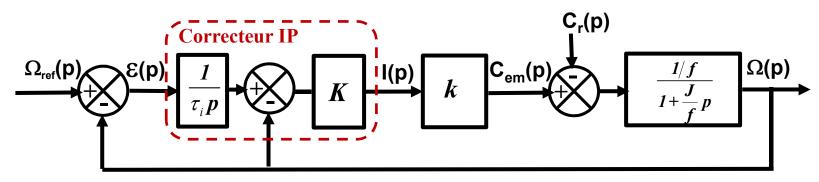


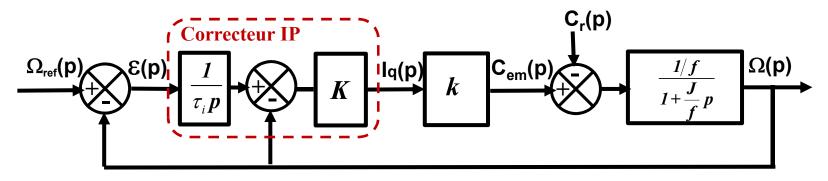


♦ <u>Cahier des charges de la boucle de vitesse</u> :

- ◆Erreur statique nulle (échelon)
- ♦ Temps de réponse à 5% : $t_{r5\%} = 0.1s$
- ♦ Système le plus rapide sans dépassement

Pour éviter l'impact négatif du zéro introduit par l'utilisation d'un correcteur PI (contraintes plus importantes sur I_{qref} lors des transitoires), on préfère utiliser un correcteur de type IP pour la boucle de vitesse





Synthèse par le calcul de la FTBF:

$$\Omega(p) = \frac{1/f}{1 + \tau_m p} kK \left\{ \frac{1}{\tau_i p} \left(\Omega_{ref}(p) - \Omega(p) \right) - \Omega(p) \right\}$$

$$H(p) = \frac{\Omega(p)}{\Omega_{ref}(p)} = \frac{1}{1 + \left(\frac{1+B}{B} \right) \tau_i p + \frac{\tau_i \tau_m}{B} p^2} \quad \text{avec} \quad B = \frac{kK}{f} \quad \text{et} \quad \tau_m = \frac{J}{f}$$

On obtient un système du second ordre que l'on peut identifier à la forme canonique

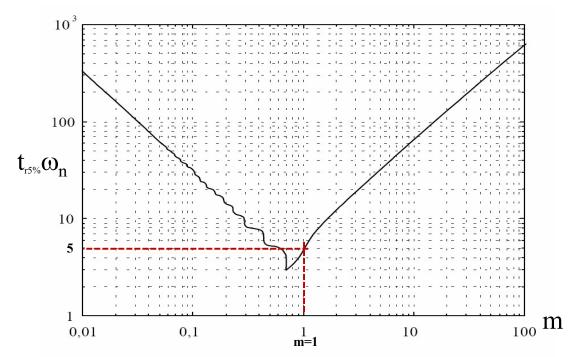
$$H(p) = \frac{1}{1 + \frac{2m}{\omega_n} p + \frac{1}{\omega_n^2} p^2}$$

$$\begin{cases} \frac{2m}{\omega_n} = \left(\frac{1+B}{B}\right) \tau_i \\ \frac{1}{\omega_n^2} = \frac{\tau_i \tau_e}{B} \end{cases}$$

$$\begin{cases} K = \frac{f}{k} (2m\tau_m \omega_n - 1) \\ \tau_i = \frac{Kk}{f \tau_m \omega_n^2} \end{cases}$$

Il reste à définir m et ω_n à partir du cahier des charges et des abaques des systèmes du $2^{\grave{e}me}$ ordre

- ◆ Erreur statique nulle (échelon) → ok grâce au IP
- ♦ Temps de réponse à 5% : $t_{r5\%} = 0.1s$
- ♦ Système le plus rapide sans dépassement : impose m = 1



Courbe du temps de réponse à 5 % normalisé d'un deuxième ordre $T_R.\omega_0$ en fonction du coefficient d'amortissement m.

$$m=1 \rightarrow t_{r5\%}\omega_n = 5$$
 soit $\omega_n = 50 rad / s$

$$k = p\Psi_{f} = p\sqrt{\frac{3}{2}}\Psi_{A} = 0,448 \text{ Nm/A}$$

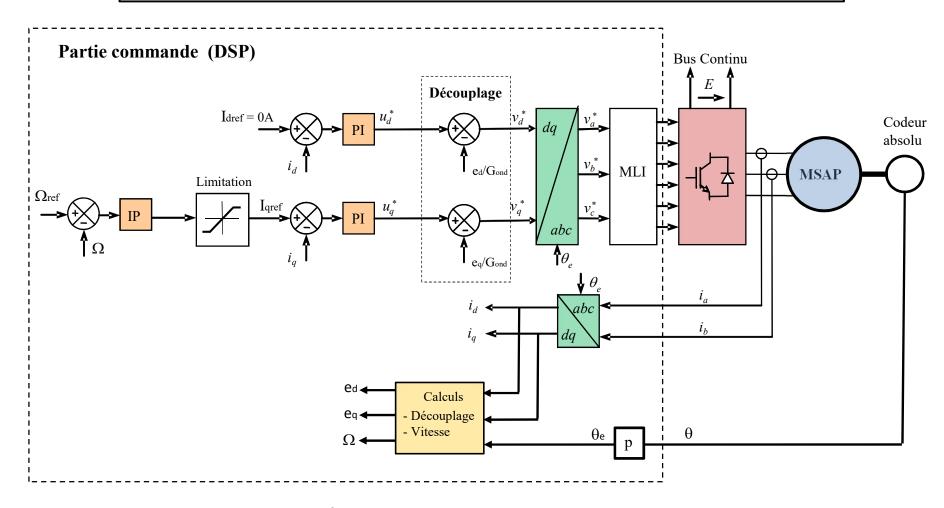
$$f = 6.10^{-4} \text{ Nms/rad}$$

$$J = 4.10^{-3} \text{ kg.m}^{2}$$

$$\tau m = J/f = 6,66s$$

$$\begin{cases} K = \frac{f}{k} (2m\tau_{m}\omega_{n} - 1) = 0,89 \\ \tau_{i} = \frac{Kk}{f\tau_{m}\omega_{n}^{2}} = 0,04 \end{cases}$$

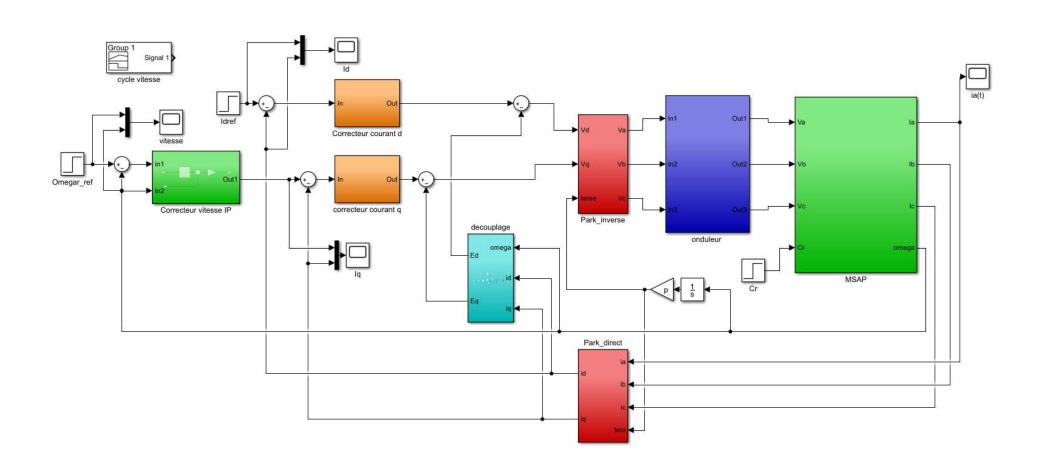
Simulation du contrôle en vitesse de la MSAP à pôles lisses sous Matlab/Simulink



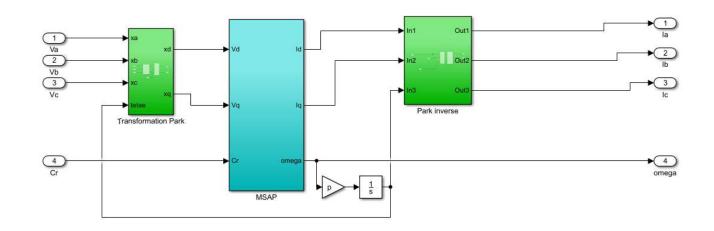
♦ <u>Paramètres de la machine synchrone à pôles lisses et de l'onduleur</u>:

 $P=1,8kW\;;\;N_{n}=3000tr/mn\;;\;p=3;\;I=7,3A;\;R_{s}=0,5\Omega\;;\;L_{s}=2,1mH\;;\;\Psi_{A}=122\;mWb\;;\;J=4.10^{-3}kg,m^{2}\;;\;f=6.10^{-4}Nms/rad\;$ Onduleur triphasé : E=250V ; $V_{p}=1V\;;\;F_{MLI}=5kHz$

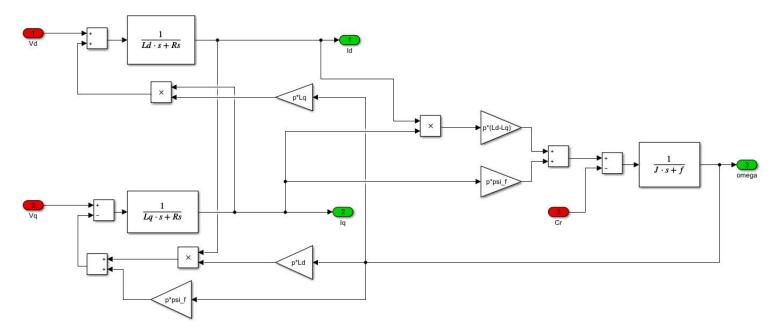
Simulation du contrôle en vitesse de la MSAP à pôles lisses sous Matlab/Simulink



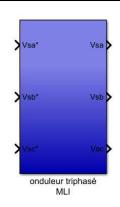
Modèle Simulink de la Machine Synchrone à Aimants Permanents



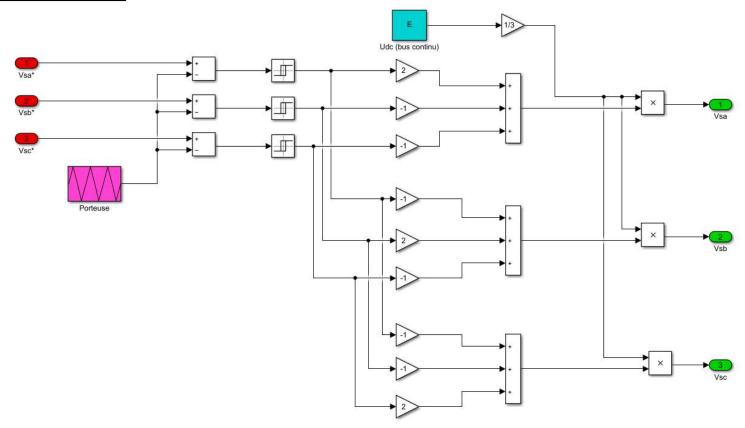
Détails du bloc MSAP



Modèle Simulink de l'onduleur triphasé MLI



Détails onduleur triphasé

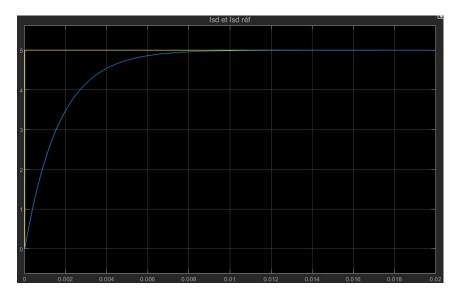


Vérification des performances sur Matlab/Simulink

Boucle de courant (synthèse par compensation du pole):

$$\dot{A} t = 0s: I_{qref} = 5A$$

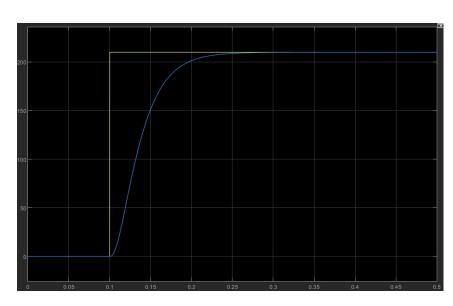
- $-t_{r5\%} = 5 \text{ ms (ok)}$
- Pas de dépassement (ok)
- Erreur statique nulle (ok)



Boucle de vitesse (correcteur IP):

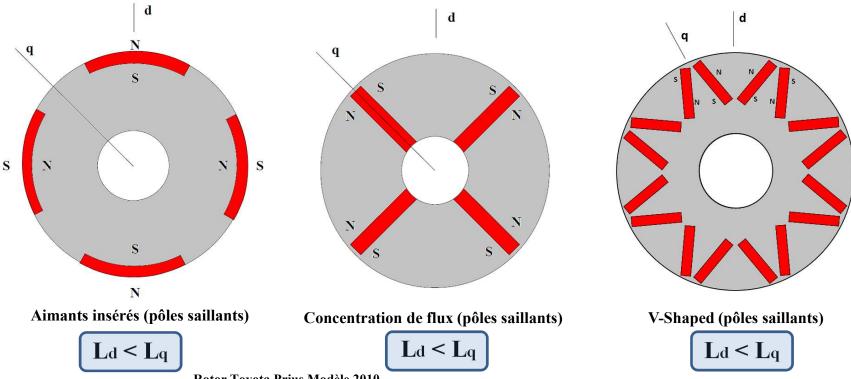
$$\grave{A} t = 0s: \Omega_{ref} = 210 \text{ rad/s } (2000 \text{ tr/mn})$$

- $-t_{r5\%} = 0.1 \text{ s (ok)}$
- Pas de dépassement (ok)
- Erreur statique nulle (ok)



Machine à aimants permanents à pôles saillants (V-Shaped, concentration de flux...); Utilisation du couple de réluctance

♦ Machine à aimants insérés (pôles saillants, variation de la perméance avec la position du rotor)



Rotor Toyota Prius Modèle 2010

$$C_{em} = p \Psi_f i_q + p \left(L_d - L_q \right) i_d i_q$$

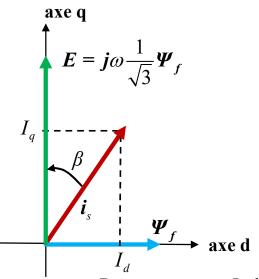
Couple d'interaction **Aimants-courant**

Couple de réluctance

On va « utiliser » ce couple de reluctance

$$I_{dref} \neq 0 \ (I_{dref} < 0 \ car \ L_q > L_d)$$

Commande à couple maximum pour un courant I_s donné (MTPA: Maximum Torque Per Ampere control)



$$C_{\it em} = p \varPsi_f i_q + p \left(L_d - L_q \right) i_d i_q$$

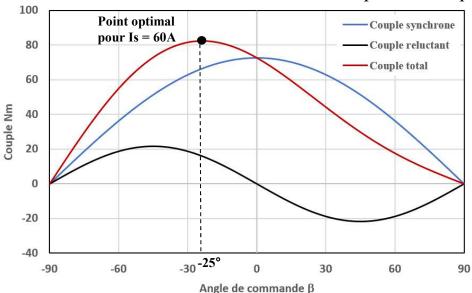
$$i_s = \sqrt{i_d^2 + i_q^2}$$
 et $I_s = \frac{i_s}{\sqrt{3}}$

 I_s : valeur efficace des courants statoriques

 β : angle de commande

$$C_{em} = p\sqrt{3}\Psi_f I_s \cos(\beta) + \frac{3}{2}p(L_d - L_q)I_s^2 \sin(2\beta)$$

Pour un courant I_s donné, quelle est la valeur de l'angle β qui maximise le couple ? (ou bien comment minimiser le courant pour un couple donné, donc pertes joules minimum?)



(Pertes joules $\approx 80\%$ des pertes)

Paramètre d'une machine à aimants internes

$$p = 4$$
; $\Psi_f = 0.175 \text{Wb}$;
 $R_s = 0.1 \Omega$
 $L_d = 1 \text{mH}$; $L_q = 2 \text{mH}$;
 $I_s = 60 \text{A}$

$$\beta < 0^{\circ} donc I_d < 0$$

Commande à couple maximum pour un courant I, donné (MTPA: Maximum Torque Per Ampere control)

♦ Machine à pôles lisses $(L_d = L_q)$

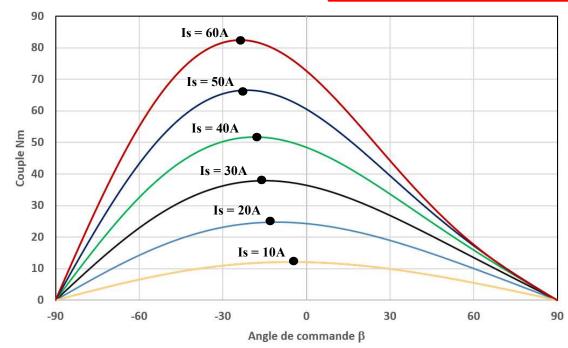
$$C_{em} = p\sqrt{3}\Psi_f I_s \cos(\beta) \rightarrow \beta = 0^\circ \text{ soit } I_d = 0$$

♦ Machine à pôles saillants ($L_d < L_g$)

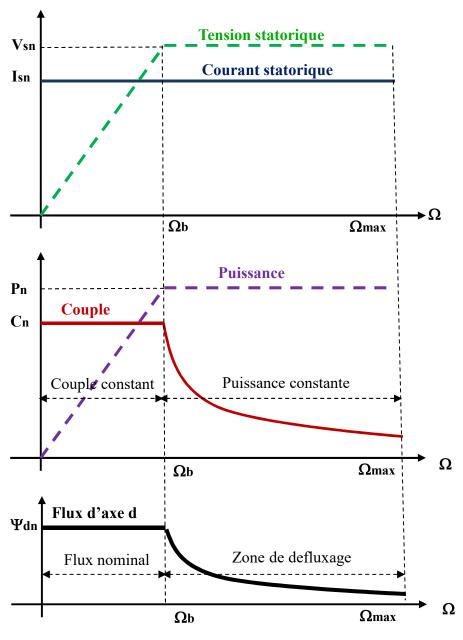
$$\left. \frac{\partial C_{em}}{\partial \beta} \right|_{I_s = cst} = 0 \quad \text{soit} \quad -\sqrt{3} \Psi_f I_s \sin(\beta) + 3 \left(L_d - L_q \right) I_s^2 \cos(2\beta) = 0$$

$$\beta_{opt} = \sin^{-1} \left(\frac{-\Psi_f + \sqrt{\Psi_f^2 + 24(L_d - L_q)I_s^2}}{4\sqrt{3}(L_d - L_q)I_s} \right) \qquad I_{dref} = \frac{\Psi_f - \sqrt{\Psi_f^2 + 24(L_d - L_q)I_s^2}}{4(L_d - L_q)} \qquad I_{dref} < 0$$

$$I_{dref} = \frac{\Psi_f - \sqrt{\Psi_f^2 + 24(L_d - L_q)I_s^2}}{4(L_d - L_q)}$$



Montée en vitesse: nécessité de « défluxer » la machine



En général, un moteur est dimensionné pour atteindre la tension nominale V_{sn} pour le couple nominal et la vitesse nominale (vitesse de base Ω_b) : puissance nominale

Pour aller au-delà de Ω_b (voiture sur autoroute), il faut « **défluxer** » la machine car on ne peut plus augmenter la tension (on travaille alors à puissance constante).

Field Weakening Control

- ♦ Dans une MCC, on baisse le courant d'excitation
- ♦ Dans une machine à aimants (si on néglige R_s; à vide)

$$V_s \approx \frac{1}{\sqrt{3}} V_q \approx \frac{1}{\sqrt{3}} p \Omega \Psi_d$$

$$\Psi_d = \Psi_f + L_d I_d$$

Si la tension à atteint sa limite : $V_s = V_{sn} = E/(2\sqrt{2})$

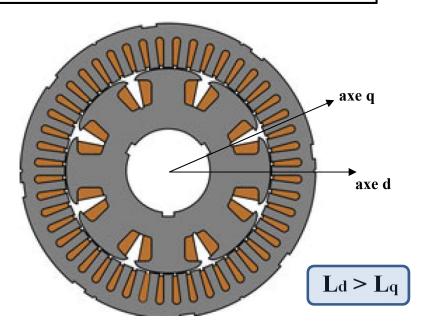
$$\Omega = \frac{\sqrt{3}V_{sn}}{p\Psi_d} = \frac{\sqrt{3}}{2\sqrt{2}} \frac{E}{p(\Psi_f + L_d I_d)}$$
 (E: tension du bus DC)

Comme Ψ_f est constant, il faut $I_d < 0$ pour monter en vitesse (défluxage)

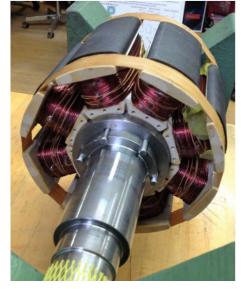
Contraintes: $\sqrt{\frac{I_d^2 + I_q^2}{3}} \le I_{sn}$ et $\sqrt{\frac{V_d^2 + V_q^2}{3}} \le V_{sn}$

- ♦ Très difficile de défluxer une machine à aimants en surface car L_d faible $\rightarrow I_d$ important (Is important).
- ♦ Traction: machines à aimants enterrés, faible entrefer, L_d plus important → I_d plus faible et défluxage possible sur une large plage de vitesse 35

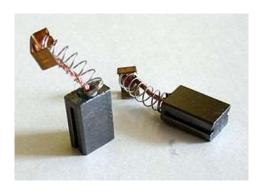
Machine synchrone à rotor bobiné (MSRB): Clio Zoé de Renault



Externally excited synchronous motor



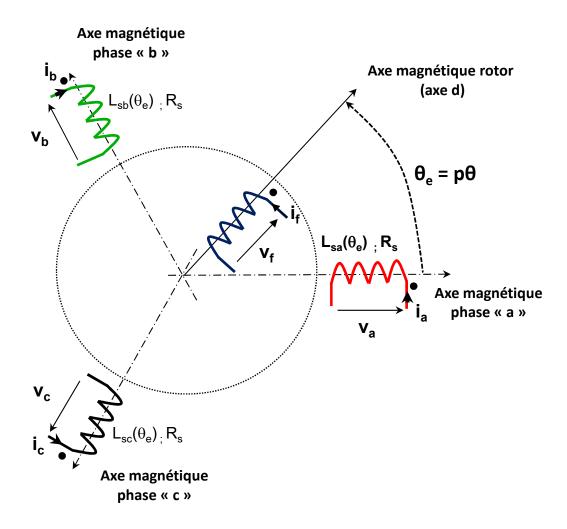
♦ Machine à pôles saillants ($L_d > L_q$), 8 pôles



Photographie du rotor (bobiné, DC, 8 pôles)

Système bagues-balais pour l'alimentation du rotor

Modélisation de la MSRB triphasée (circuits couplés)



Représentation sous la forme de circuits couplés d'une machine synchrone à rotor bobiné

I_f: courant dans l'inducteur (courant continu)

Modèle dynamique de la MSRB (repère abc fixé au stator)

Equation des tensions statoriques (repère abc):

$$\begin{pmatrix} V_a \\ V_b \\ V_c \end{pmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \cdot \begin{pmatrix} I_a \\ I_b \\ I_c \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \end{pmatrix}$$

$$\begin{pmatrix} \Psi_{a} \\ \Psi_{b} \\ \Psi_{c} \end{pmatrix} = \begin{bmatrix} L_{0} + L_{2}\cos(2\theta_{e}) & M_{0} + M_{2}\cos(2\theta_{e} - 2\pi/3) & M_{0} + M_{2}\cos(2\theta_{e} + 2\pi/3) \\ M_{0} + M_{2}\cos(2\theta_{e} - 2\pi/3) & L_{0} + L_{2}\cos(2\theta_{e} + 2\pi/3) & M_{0} + M_{2}\cos(2\theta_{e}) \\ M_{0} + M_{2}\cos(2\theta_{e} + 2\pi/3) & M_{0} + M_{2}\cos(2\theta_{e}) & L_{0} + L_{2}\cos(2\theta_{e} - 2\pi/3) \end{bmatrix} \begin{pmatrix} I_{a} \\ I_{b} \\ I_{c} \end{pmatrix} + M_{fs}I_{f} \begin{pmatrix} \cos(\theta_{e}) \\ \cos(\theta_{e} - 2\pi/3) \\ \cos(\theta_{e} + 2\pi/3) \end{pmatrix}$$

Equation de la tension rotorique:

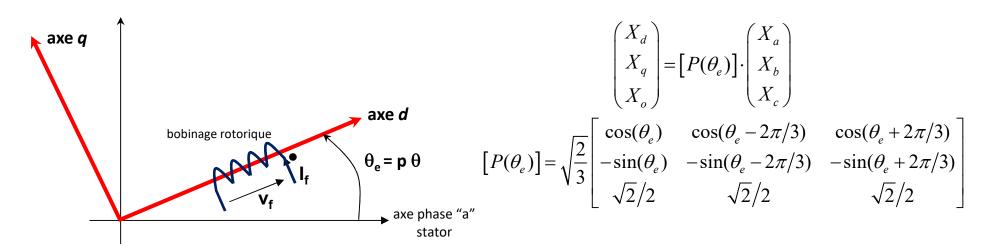
$$\begin{split} V_f &= R_f I_f + \frac{d \Psi_f}{dt} \\ \Psi_f &= L_f I_f + M_{fs} \cos(\theta_e) I_a + M_{fs} \cos(\theta_e - 2\pi/3) I_b + M_{fs} \cos(\theta_e + 2\pi/3) I_c \end{split}$$

 R_f : résistance de l'enroulement d'excitation

 L_f : inductance propre de l'inducteur

 $\dot{M}_{f\dot{s}}$: Valeur maximale de l'inductance mutuelle stator-rotor

Equations de la MSRB dans un repère commun fixé au rotor (d-q)

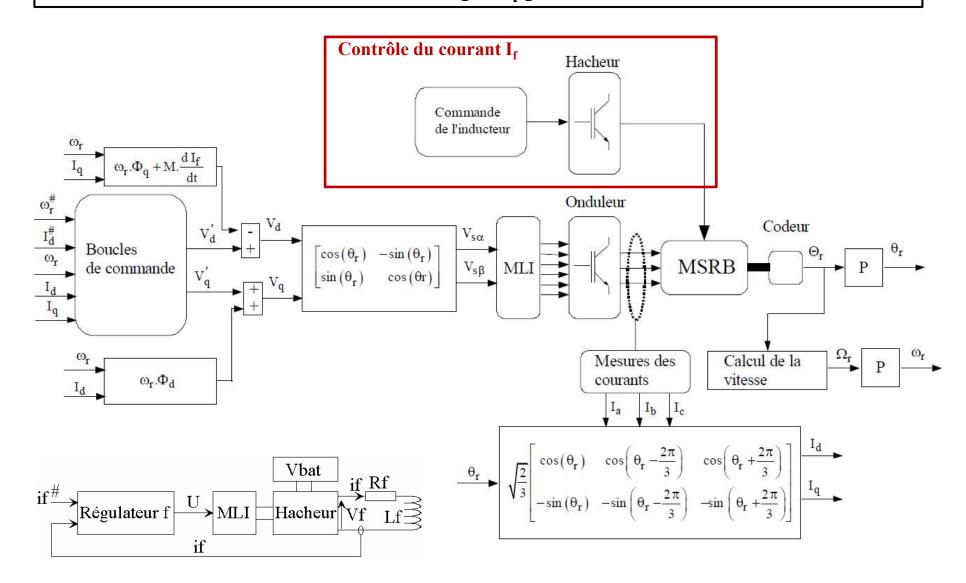


$$\begin{aligned} v_{d} &= R_{s}i_{d} + \frac{d\Psi_{d}}{dt} - \omega \Psi_{q} & \Psi_{d} &= L_{d}i_{d} + M_{f}i_{f} & L_{d} &= L_{0} - M_{0} + \frac{3}{2}L_{2} \\ v_{q} &= R_{s}i_{q} + \frac{d\Psi_{q}}{dt} + \omega \Psi_{d} & \Psi_{f} &= L_{f}i_{f} + M_{f}i_{d} & L_{q} &= L_{0} - M_{0} - \frac{3}{2}L_{2} \\ v_{f} &= R_{f}i_{f} + \frac{d\Psi_{f}}{dt} & \omega &= p\Omega & M_{f} &= \sqrt{\frac{3}{2}}M_{fs} \end{aligned}$$

$$C_{\textit{em}} = p M_{f} i_{f} i_{q} + p \left(L_{d} - L_{q} \right) i_{d} i_{q}$$

 $L_d > L_q$

Structure globale du contrôle vectoriel de la MSRB incluant la commande du courant rotorique $I_{\rm f}$ par un hacheur

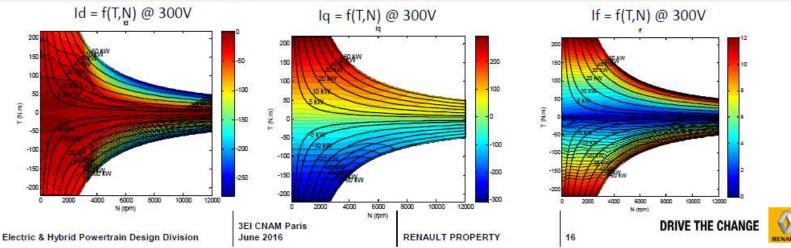


Stratégies de commande : trois variables d'entrée I_d , I_q et I_f

EESM challenges : motor control

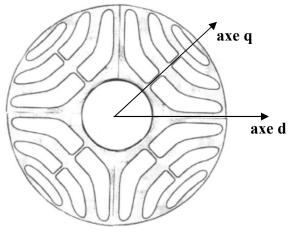
□ 3 parameters instead of 2 commonly used to control the motor Therefore, many possible { Id, Iq, If } combinations

(Id,Iq,If) control maps to determine for each (torque, speed) operating point & DC voltage



Machine synchrone à réluctance variable

Machine sans aimant permanent: uniquement le couple de réluctance

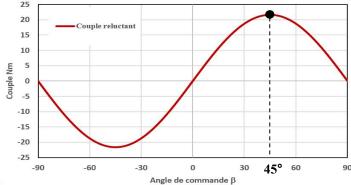


Forme du rotor $(L_d > L_q)$

Moteur de chez ABB

$$C_{\it em} = p \Big(L_{\it d} - L_{\it q} \, \Big) i_{\it d} i_{\it q}$$

$$L_d > L_q$$

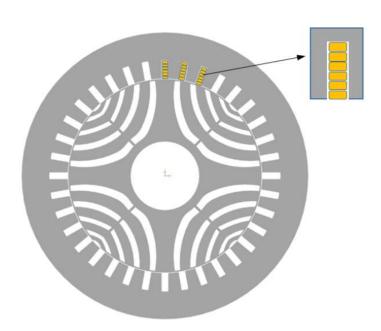


$$C_{em} = \frac{3}{2} p \left(L_d - L_q \right) I_s^2 \sin(2\beta)$$

Pour I_s donné, $\beta = \pi/4$ maximise le couple

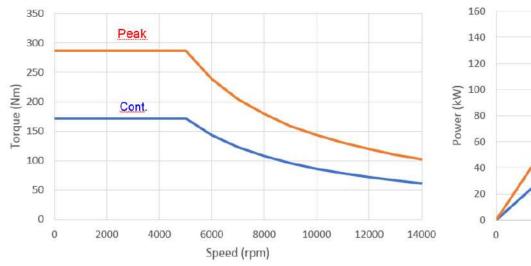
$$I_d = I_q = \frac{\sqrt{2}}{2}i_s = \frac{\sqrt{6}}{2}I_s$$

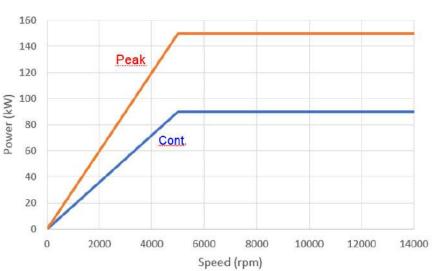
Machine synchrone à réluctance variable pour véhicule électrique



DC Voltage	V	600
Rated power	kW	90
Peak power	kW	150
Base speed	rpm	5000
Rated torque @ base speed	Nm	172
Maximum speed	rpm	14000
Efficiency	%	> 94
Stack length	mm	200
Outer stator diameter	mm	250
Cooling		liquid

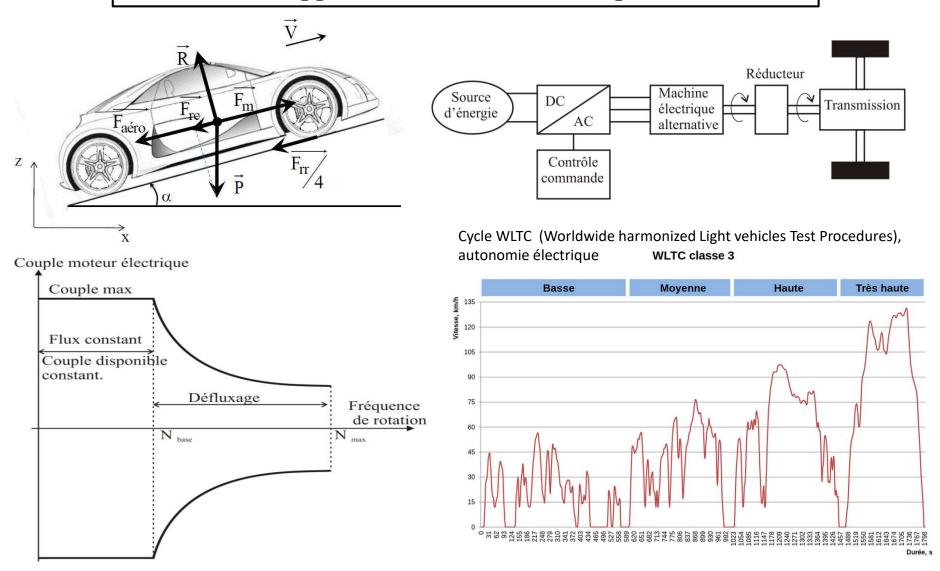
	1	
N.pole		4
N.stator slots		36
Stack length	mm	200
Outer stator diameter	mm	250
Inner stator diameter	mm	170
Air-gap	mm	0.70
Turns per phase		12
Electrical steel	3	M235-35A
Continuos mode:		
Phase current	Arms	300
Base speed	rpm	5000
Rated torque	Nm	172
Rated power	kW	90
Efficiency	%	96.4
Maximum speed	rpm	14000
Torque @ max speed	Nm	61
Peak mode:		
Phase current	Arms	460
Base speed	rpm	5000
Torque	Nm	290
Power	kW	152





Marco Villani, « High Performance Electrical Motors for Automotive Applications – Status and Future of Motors with Low Cost Permanent Magnets », 8th International Conference of Magnetism and Metallurgy (WMM), 2018

Application : véhicule électrique



Quel type de moteur? Quel contrôle commande? Quelle source d'énergie? Extrait de la conférence de M. Gilles Feld, Enseignant à l'ISEN Brest, CNAM juin 2016.

Exemple de véhicule électrique : BMW i3

MOTOR OF THE BMW i3. HYBRID SYNCHRONOUS MOTOR.

Two layer magnet arrangement

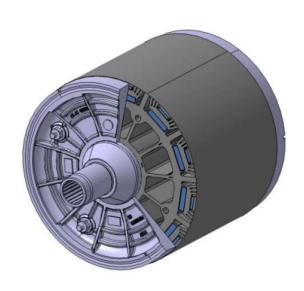
- very sinusoidal induced voltage
- high difference Ld Lq

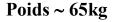
High Number of pole pairs (p = 6)

- to reduce the yoke weight

Iron mass reduced to the absolute necessary dimensions

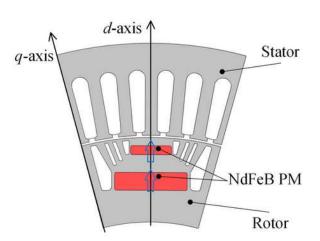
special attention to the mechanical strength





BMW Group, Dr. J. Merwerth, 20.03.2014, Workshop University Lund

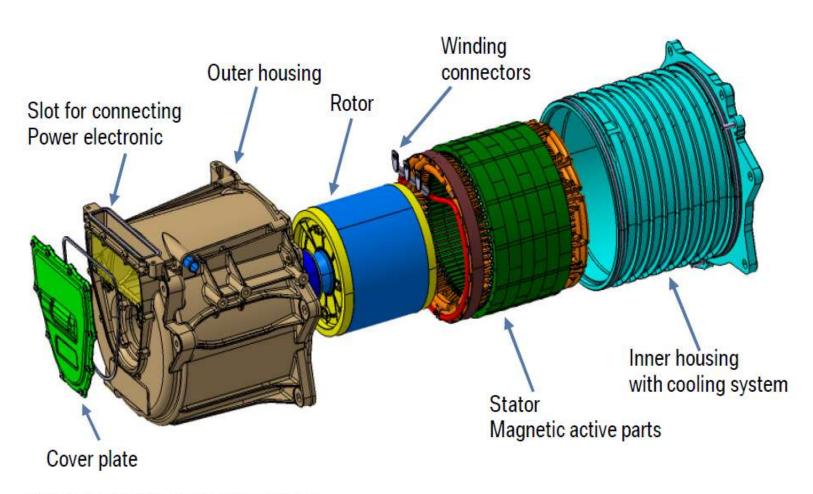
$$\begin{split} &P_{max} = 125 \; kW \; (10 \; s) \; / \; 75 kW \; (nominal) \; ; \\ &C_{max} = 250 \; Nm \; (10 \; s) \; / \; 150 \; Nm \; (nominal) \; ; \\ &N_b = 4800 \; tr/mn \; ; \; N_{max} = 11400 \; tr/mn \\ &I_{rms} = 375 \; A \; (10 \; s) \; / \; \; 225 \; A \; (nominal) \\ &U_{dc} = 380 \; V \; (batteries \; Lithium-Ion) \; ; \\ &Accélération \; de \; 0 \; à \; 100 \; km/h \; en \; 7,3s \end{split}$$



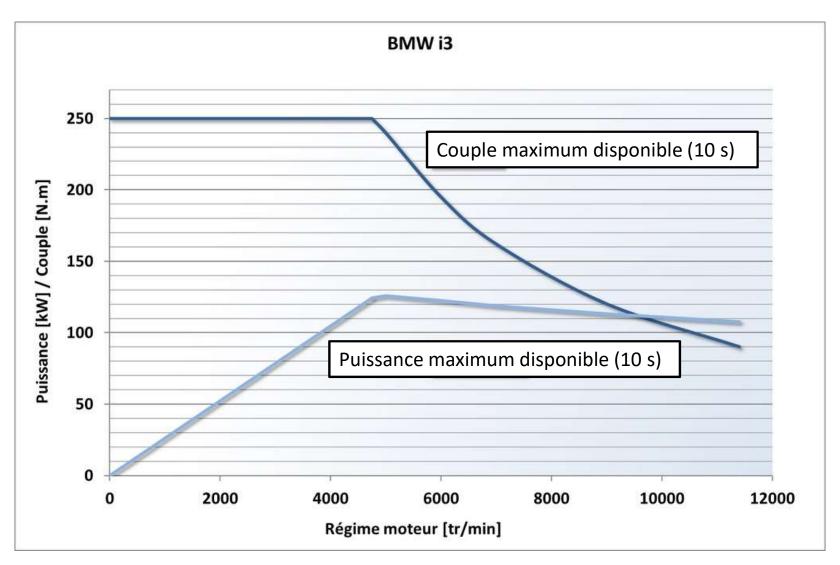
Stator slot number	72		
Rotor pole pair number	6		
Stator outer radius (mm)	121		
Air-gap length (mm)	0.7		
Rotor outer radius (mm)	89.3		
Active stack length (mm)	132		
Peak current (A)	530		
Steel grade	TKM330-35		
NdFeB grade	N35EH		

Assemblage mécanique du moteur électrique de la BMW i3

MECHANICAL DESIGN AND LIGHT WEIGHT CONCEPT. COMPLETE MOTOR.

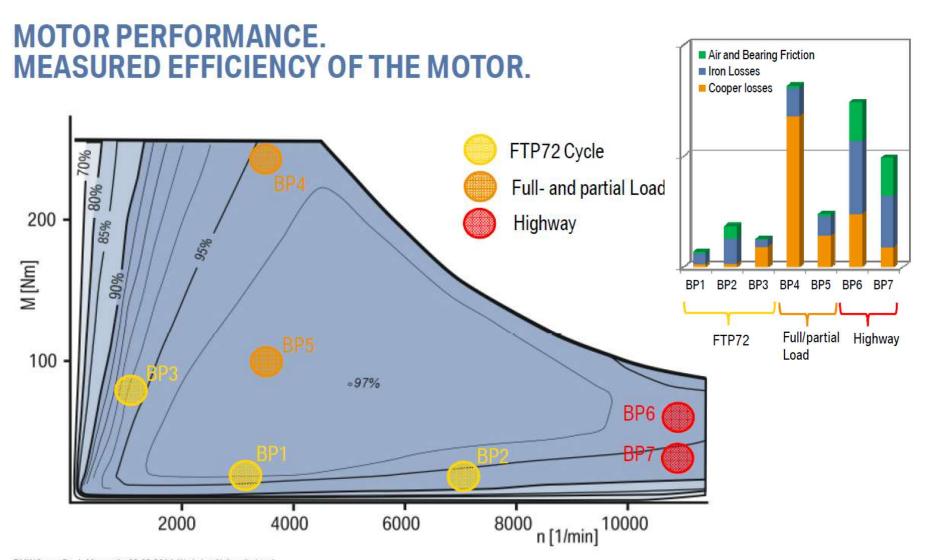


Caractéristique couple-vitesse de la BMW i3

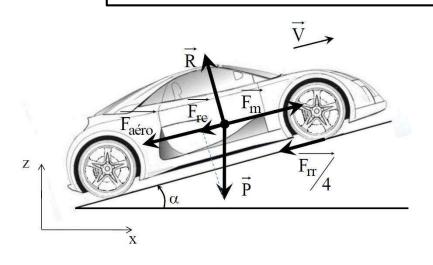


 $P_{max} = 125~kW~(10s)~/~75kW~(nominal)~;~C_{max} = 250~Nm~(10s)~/150~Nm~(nominal)~;~V_{max} = 150~km/h\\N_{base} = 4800~tr/mn~;~U_{dc} = 380V~(batteries~Lithium-Ion)~;~Accélération~de~0~à~100~km/h~en~7,3s$

Rendement et origine des pertes de la BMW i3 pour différents points de fonctionnement



Véhicule électrique : Modélisation mécanique



Force aérodynamique : $F_{aero} = \frac{1}{2} \rho C_x S_f V^2$

Force de résistance au roulement : $F_{rr} = f_{rr}Mg\cos(\alpha)$

Force de résistance en montée : $F_{rc} = Mg \sin(\alpha)$

Force motrice: F_m

Données pour la BMW i3:

ρ	masse volumique de l'air	1,225 kg.m ⁻³	
C_{x}	coefficient de pénétration dans l'air	0,3	
S _f	section frontale du véhicule	2,4 m ²	
f _{rr}	coefficient de résistance au roulement	0,017	
g	accélération de la pesanteur	9,81 m.s ⁻²	
α	angle de la pente	variable	
М	masse du véhicule	1400 kg	
R	rayon d'une roue	0,32 m	
J_{roues}	moment d'inertie des 4 roues	3 kg.m ²	
J_{m}	moment d'inertie du moteur	0,15 kg.m ²	
K	rapport de réduction du réducteur	9,7	
η	rendement du réducteur de vitesse	97%	

Equation fondamentale de la dynamique ramené sur l'arbre moteur:

$$C_m = J_T \frac{d\Omega_m}{dt} + C_r$$

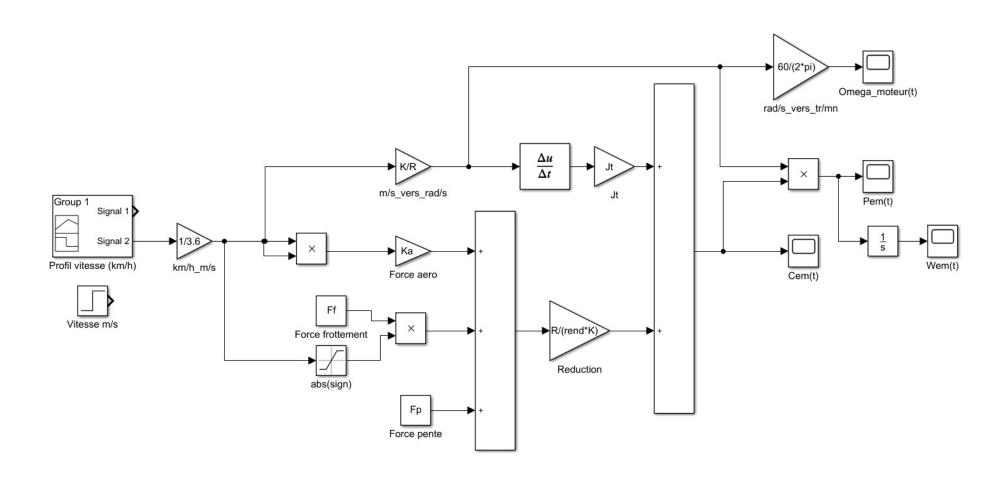
Avec:

$$J_{T} = \frac{1}{K^{2}} (MR^{2} + J_{roues}) + J_{m}$$

$$C_{r} = \frac{R}{\eta K} (F_{aero} + F_{rr} + F_{rc})$$

$$\Omega_{m} = \frac{K}{R} V$$

Modèle sous Simulink de l'équation mécanique d'un véhicule urbain



Application à la BMW i3

Assurer un démarrage en cote pour une pente donnée :

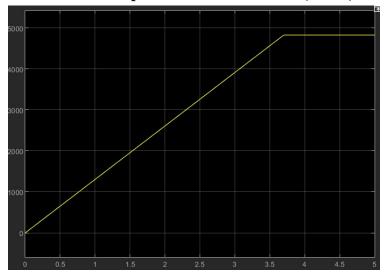
Une pente de 30% ($\alpha = 16.7^{\circ}$) à $\Omega = 0$ rad/s $\rightarrow C_1 = 134$ Nm ($P_1 = 0$ kW puis augmente)

Fournir le couple nécessaire à la vitesse maximale :

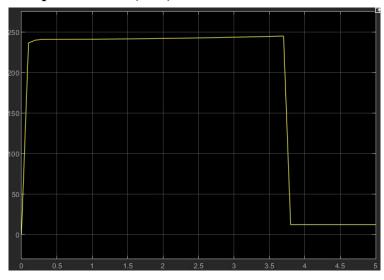
$$V_{max} = 150 \text{ km/h}$$
, soit $\Omega_{max} = 1200 \text{ rad/s}$, pente = 0% $\to C_2 = 34 \text{ Nm}$ ($P_2 = 43 \text{ kW}$) $V_{max} = 150 \text{ km/h}$, soit $\Omega_{max} = 1200 \text{ rad/s}$, pente = 5% $\to C_3 = 57 \text{ Nm}$ ($P_3 = 72 \text{ kW}$)

Assurer une accélération de 0 à 60 km/h en 3,7s (pente nulle) : $C_4 \approx 240 \text{ Nm}$

Vitesse moteur pendant accélération (rad/s)

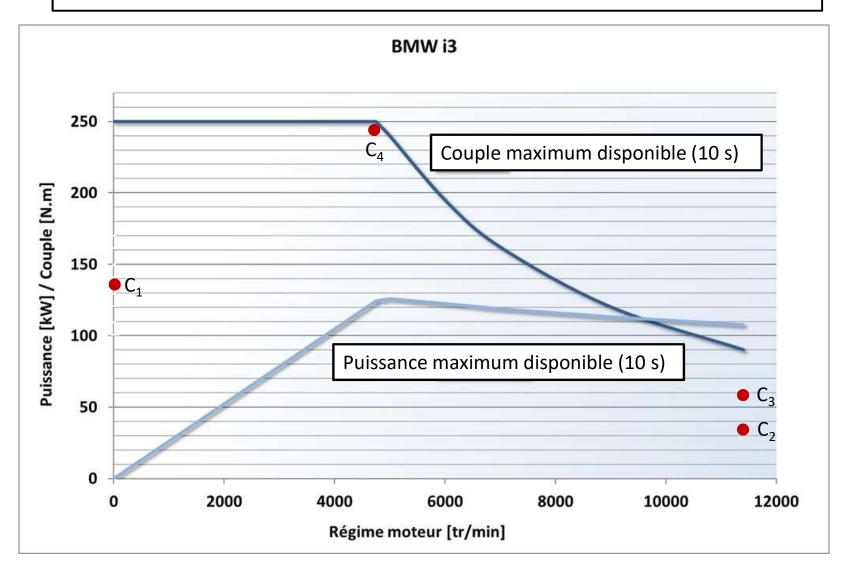


Couple moteur (Nm)



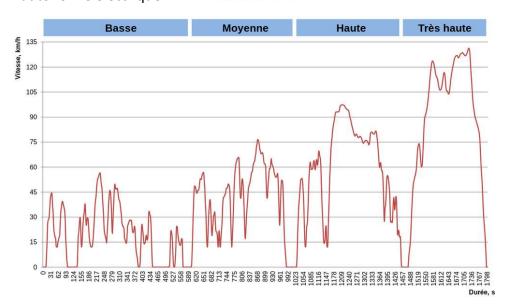
A t= 3,7s \rightarrow P_{max} \approx 125kW : Ce point définit la puissance maximum de la voiture pour t<10s (échauffement). Il correspond à la vitesse de base N_b = 4800 tr/mn

Caractéristique couple-vitesse de la BMW i3 Points de fonctionnement



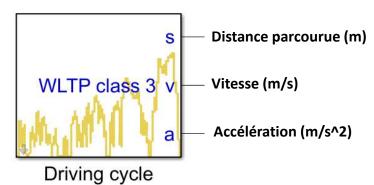
Simulation d'un cycle WLTC pour la BMW i3 : Energie consommée

Cycle WLTC (Worldwide harmonized Light vehicles Test Procedures), autonomie électrique WLTC classe 3

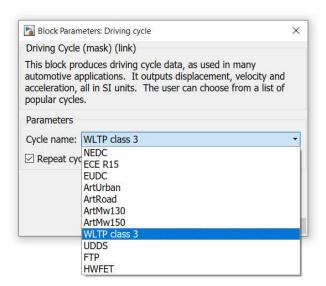


Cycle d'essai WLTC classe 3								
	Unité	Basse	Moyenne	Haute	Extra haute	Total		
Durée	s	589	433	455	323	1800		
Durée des arrêts	S	156	48	31	7	242		
Distance	m	3095	4756	7158	8254	23262		
Proportion des arrêts	-	26,5%	11,1%	6,8%	2,2%	13,4 %		
Vitesse maximale	km/h	56,5	76,6	97,4	131,3			
Vitesse moyenne sans les arrêts	km/h	25,7	44,5	60,8	94,0	53,8		
Vitesse moyenne avec les arrêts	km/h	18,9	39,5	56,6	92,0	46,5		
Accélération minimale	m/s ²	-1,5	-1,5	-1,5	-1,2			
Accélération maximale	m/s ²	1,5	1,6	1,6	1,0			

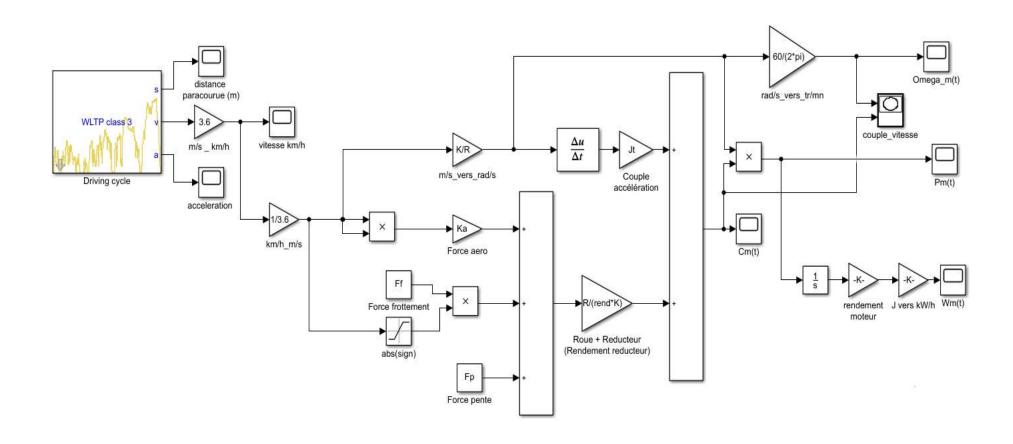
Modèle Simulink: cycles vitesse



Daniel J. Auger (2020). Driving Cycle (Simulink Block), Cranfield University

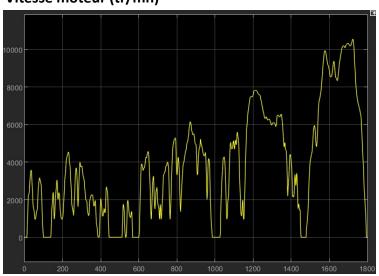


Simulation d'un cycle WLTC pour la BMW i3 : Energie consommée (Schéma Simulink)

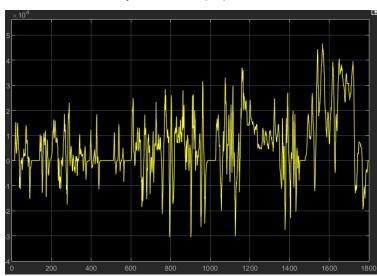


Simulation d'un cycle WLTC pour la BMW i3 : Energie consommée

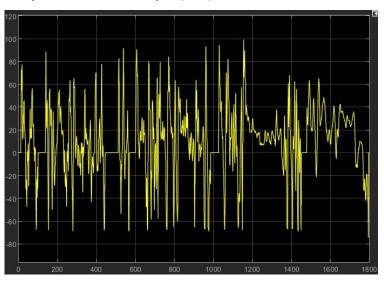
Vitesse moteur (tr/mn)



Puissance mécanique moteur (W)



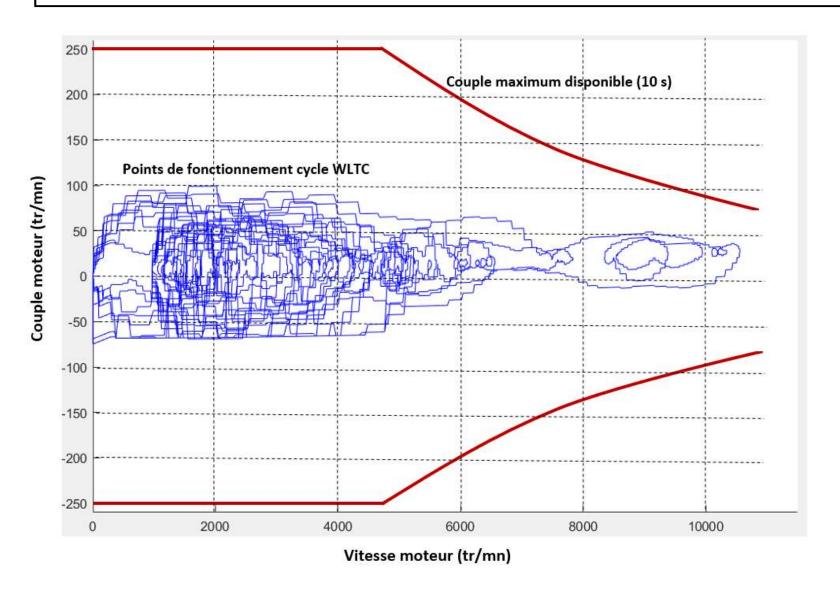
Couple moteur électrique (Nm)



Energie consommée (kWh)



Simulation d'un cycle WLTC pour la BMW i3 : Points de fonctionnement dans le plan couple-vitesse



Simulation d'un cycle FTP pour la BMW i3 : Calcul de l'autonomie

BMW i3. VEHICLE CONCEPT.

Maximum speed v_{max}: 150 km/h
Acceleration 0-100 km/h: 7,2 s
Range KV01 cycle: 190 km
FTP72 cycle: 225 km (140 mls)

Vehicle weight m_{Fzg}: 1195 kg
Battery energy content: 22 kWh
Peak power (ECE R85): 125 kW
30 min power (ECE R85): 75 kW

Durée du cycle : 1369 s

Distance parcourue pour 1 cycle : 12 km Energie consommée pour 1 cycle : 1,2 kWh

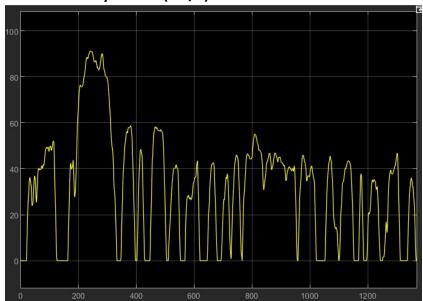
Capacité de la batterie : 22 kWh

Autonomie BMWi3 sur cycle FTP (rendement moyen moteur + convertisseur à 0,93) :

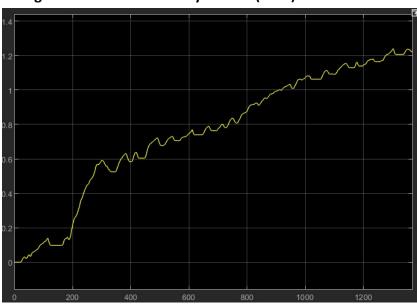
Autonomie =
$$\frac{22}{1,2} \times 12 = 220 \text{ km}$$

(le fabricant annonce 225km)

Profil vitesse cycle FTP (km/h)



Energie consommée sur un cycle FTP (kWh)



MASTER EEA – M2 Spécialité Energie Electrique

UE 942: Commande des machines électriques

Partie 3: Commande vectorielle de la Machine Asynchrone (MAS)

Supports de cours

Machine asynchrone à cage

La machine la plus utilisée dans l'industrie (80%): fonctionnement direct sur le réseau ou avec un variateur de vitesse à U/f constant en boucle ouverte, faible coût, robuste, maintenance réduite (pompage, ventilation, convoyeur....)

Systèmes de traction (voitures électriques, tramways, TGV) ou systèmes de production d'énergie renouvelables (éoliennes) : elle est dans ce cas associée à une commande en couple performante de type contrôle vectoriel ou contrôle direct du couple.

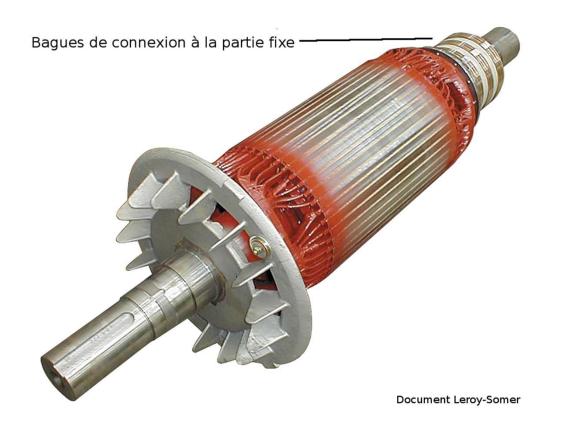
Stator et rotor

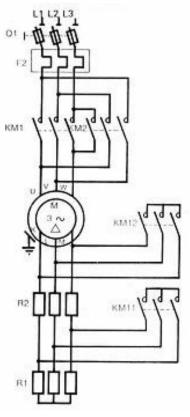
Coupe du rotor (barres en aluminium)

Machine asynchrone à rotor bobiné (enroulements rotoriques accessibles par un système bagues - balais

L'accès au bobinage rotorique permet d'améliorer les caractéristiques de démarrage sur le réseau (fort couple et courant d'appel réduit) par élimination de résistances rotoriques (concasseur, pont roulant...); usure des balais donc maintenance supplémentaire.

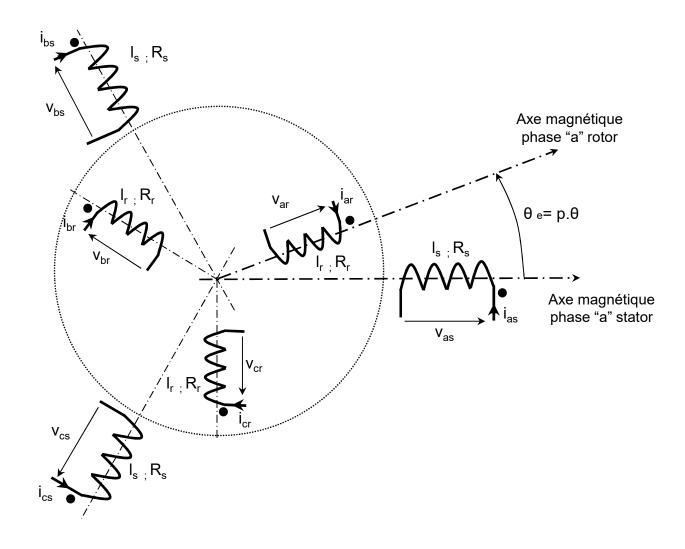
Eoliennes de fortes puissances (quelques MW) associée à un variateur de vitesse placé au rotor : Machine Asynchrone à Double Alimentation (MADA)





Démarrage par élimination de résistances rotoriques

Modélisation de la MAS triphasée (circuits couplés)



Modèle dynamique de la MAS triphasée

- Hypothèse du 1^{er} harmonique d'espace : variation sinusoïdale des inductances mutuelles stator-rotor
- Saturation magnétique négligée (relations linéaires entre flux et courants)

Stator

$$\begin{pmatrix} V_{as} \\ V_{bs} \\ V_{cs} \end{pmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \cdot \begin{pmatrix} I_{as} \\ I_{bs} \\ I_{cs} \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \Psi_{as} \\ \Psi_{bs} \\ \Psi_{cs} \end{pmatrix}$$

$$\begin{pmatrix} \boldsymbol{\Psi}_{as} \\ \boldsymbol{\Psi}_{bs} \\ \boldsymbol{\Psi}_{cs} \end{pmatrix} = \begin{bmatrix} \boldsymbol{l}_{s} & \boldsymbol{m}_{s} & \boldsymbol{m}_{s} \\ \boldsymbol{m}_{s} & \boldsymbol{l}_{s} & \boldsymbol{m}_{s} \\ \boldsymbol{m}_{s} & \boldsymbol{m}_{s} & \boldsymbol{l}_{s} \end{bmatrix} \begin{pmatrix} \boldsymbol{I}_{as} \\ \boldsymbol{I}_{bs} \\ \boldsymbol{I}_{cs} \end{pmatrix} + \begin{bmatrix} \boldsymbol{m}_{1} & \boldsymbol{m}_{3} & \boldsymbol{m}_{2} \\ \boldsymbol{m}_{2} & \boldsymbol{m}_{1} & \boldsymbol{m}_{3} \\ \boldsymbol{m}_{3} & \boldsymbol{m}_{2} & \boldsymbol{m}_{1} \end{bmatrix} \begin{pmatrix} \boldsymbol{I}_{ar} \\ \boldsymbol{I}_{br} \\ \boldsymbol{I}_{cr} \end{pmatrix}$$

$$\begin{pmatrix} \boldsymbol{\Psi}_{ar} \\ \boldsymbol{\Psi}_{br} \\ \boldsymbol{\Psi}_{cr} \end{pmatrix} = \begin{bmatrix} \boldsymbol{m}_{1} & \boldsymbol{m}_{2} & \boldsymbol{m}_{3} \\ \boldsymbol{m}_{3} & \boldsymbol{m}_{1} & \boldsymbol{m}_{2} \\ \boldsymbol{m}_{2} & \boldsymbol{m}_{3} & \boldsymbol{m}_{1} \end{bmatrix} \begin{pmatrix} \boldsymbol{I}_{as} \\ \boldsymbol{I}_{bs} \\ \boldsymbol{I}_{cs} \end{pmatrix} + \begin{bmatrix} \boldsymbol{I}_{r} & \boldsymbol{m}_{r} & \boldsymbol{m}_{r} \\ \boldsymbol{m}_{r} & \boldsymbol{I}_{r} & \boldsymbol{m}_{r} \\ \boldsymbol{m}_{r} & \boldsymbol{I}_{r} & \boldsymbol{I}_{cr} \end{pmatrix}$$

Rotor

$$\begin{pmatrix} V_{as} \\ V_{bs} \\ V_{cs} \end{pmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \cdot \begin{pmatrix} I_{as} \\ I_{bs} \\ I_{cs} \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \Psi_{as} \\ \Psi_{bs} \\ \Psi_{cs} \end{pmatrix}$$

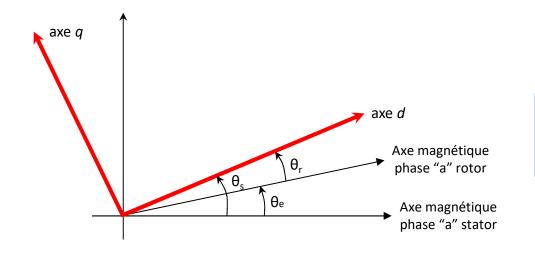
$$\begin{pmatrix} V_{ar} \\ V_{br} \\ V_{cr} \end{pmatrix} = \begin{bmatrix} R_r & 0 & 0 \\ 0 & R_r & 0 \\ 0 & 0 & R_r \end{bmatrix} \cdot \begin{pmatrix} I_{ar} \\ I_{br} \\ I_{cr} \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \Psi_{ar} \\ \Psi_{br} \\ \Psi_{cr} \end{pmatrix}$$

$$\begin{pmatrix} \boldsymbol{\mathcal{Y}}_{ar} \\ \boldsymbol{\mathcal{Y}}_{br} \\ \boldsymbol{\mathcal{Y}}_{cr} \end{pmatrix} = \begin{bmatrix} m_1 & m_2 & m_3 \\ m_3 & m_1 & m_2 \\ m_2 & m_3 & m_1 \end{bmatrix} \begin{pmatrix} \boldsymbol{I}_{as} \\ \boldsymbol{I}_{bs} \\ \boldsymbol{I}_{cs} \end{pmatrix} + \begin{bmatrix} \boldsymbol{l}_r & m_r & m_r \\ m_r & \boldsymbol{l}_r & m_r \\ m_r & m_r & \boldsymbol{l}_r \end{bmatrix} \begin{pmatrix} \boldsymbol{I}_{ar} \\ \boldsymbol{I}_{br} \\ \boldsymbol{I}_{cr} \end{pmatrix}$$

$$m_1 = m_{sr} \cos(\theta_e)$$
 $m_2 = m_{sr} \cos(\theta_e - \frac{2\pi}{3})$ $m_3 = m_{sr} \cos(\theta_e + \frac{2\pi}{3})$

*l*_s est l'inductance propre d'un enroulement statorique l, est l'inductance propre d'un enroulement rotorique m_s est l'inductance mutuelle entre deux enroulements statoriques m_r est l'inductance mutuelle entre deux enroulements statoriques $m_{\rm sr}$ est la valeur maximum de l'inductance mutuelle stator-rotor R_s est la résistance d'un enroulement statorique R, est la résistance d'un enroulement rotorique

Ecriture des équations de la MAS dans un repère commun (d-q) Transformation de Park



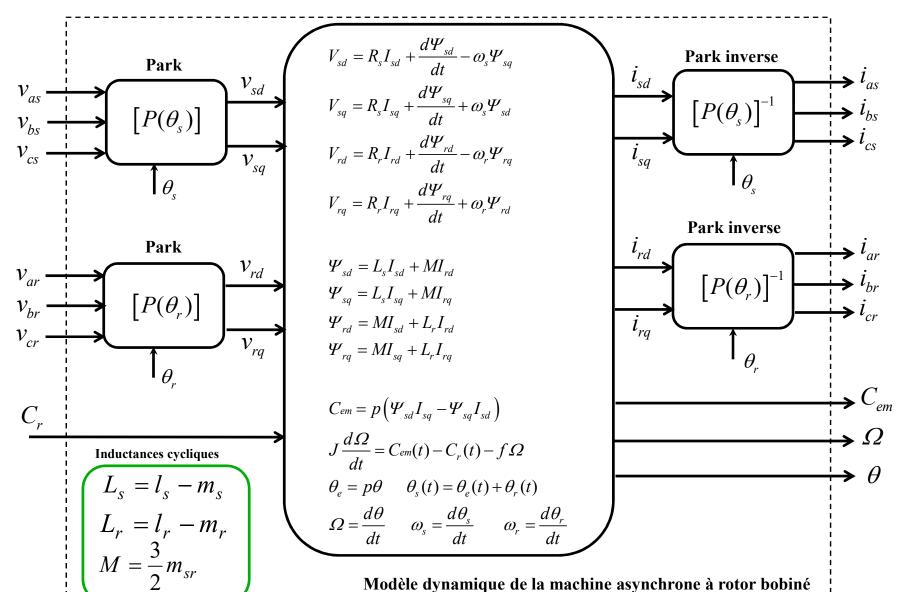
e d
$$\theta_s(t) = \theta_r(t) + \theta_e(t)$$
 Axe magnétique phase "a" rotor
$$\theta_e(t) = p\theta(t) \qquad \Omega(t) = \frac{d\theta(t)}{dt}$$

♦ Transformation de Park $(abc) \rightarrow (dqo)$:

♦ Transformation de Park inverse $(dqo) \rightarrow (abc)$:

$$\begin{pmatrix} X_a \\ X_b \\ X_c \end{pmatrix} = [P(\theta_s)]^{-1} \cdot \begin{pmatrix} X_d \\ X_q \\ X_o \end{pmatrix} \qquad [P(\theta_s)]^{-1} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\theta_s) & -\sin(\theta_s) & \sqrt{2}/2 \\ \cos(\theta_s - 2\pi/3) & -\sin(\theta_s - 2\pi/3) & \sqrt{2}/2 \\ \cos(\theta_s + 2\pi/3) & -\sin(\theta_s + 2\pi/3) & \sqrt{2}/2 \end{bmatrix}$$

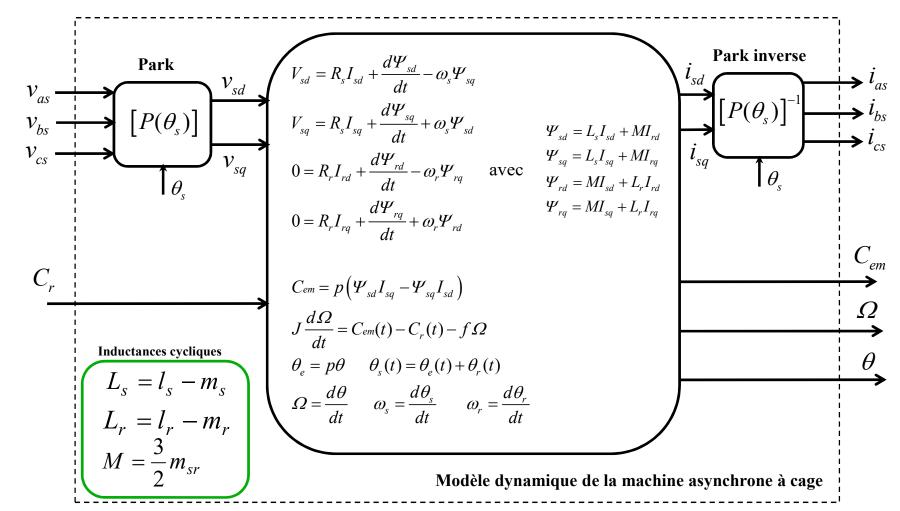
Modèle dynamique de la MAS à rotor bobiné dans le repère d-q $(\theta_s = \theta_r + \theta_e)$



Modèle dynamique de la MAS à cage dans le repère d-q $(\theta_s = \theta_r + \theta_e)$

Machine à cage (rotor en court-circuit)

$$V_{rd} = V_{rq} = 0$$



Modèle dynamique de la MAS à cage dans le repère d-q avec paramètres mesurables : R_s , L_s , σ et T_r

$$\Psi_{rd} = MI_{mrd} \quad \text{avec} \quad I_{mrd} = I_{sd} + \frac{L_r}{M}I_{rd}$$

$$\Psi_{rq} = MI_{mrq} \quad \text{avec} \quad I_{mrq} = I_{sq} + \frac{L_r}{M}I_{rq}$$

$$\Psi_{sq} = \sigma L_s I_{sd} + L_s (1 - \sigma)I_{mrd}$$

$$\Psi_{sq} = \sigma L_s I_{sq} + L_s (1 - \sigma)I_{mrq}$$

Les équations des tensions deviennent alors :

$$\begin{split} V_{sd} &= R_s I_{sd} + \sigma L_s \frac{dI_{sd}}{dt} + L_s \left(1 - \sigma\right) \frac{dI_{mrd}}{dt} - \sigma L_s \omega_s I_{sq} - L_s \left(1 - \sigma\right) \omega_s I_{mrq} \\ V_{sq} &= R_s I_{sq} + \sigma L_s \frac{dI_{sq}}{dt} + L_s \left(1 - \sigma\right) \frac{dI_{mrq}}{dt} + \sigma L_s \omega_s I_{sd} + L_s \left(1 - \sigma\right) \omega_s I_{mrd} \\ 0 &= I_{mrd} + T_r \frac{dI_{mrd}}{dt} - I_{sd} - \omega_r T_r I_{mrq} \\ 0 &= I_{mrq} + T_r \frac{dI_{mrq}}{dt} - I_{sq} + \omega_r T_r I_{mrd} \end{split} \qquad \qquad \sigma = 1 - \frac{M^2}{L_s L_r} \quad \text{est le coefficient de dispersion} \\ T_r &= \frac{L_r}{R_r} \quad \text{est la constante de temps rotorique} \end{split}$$

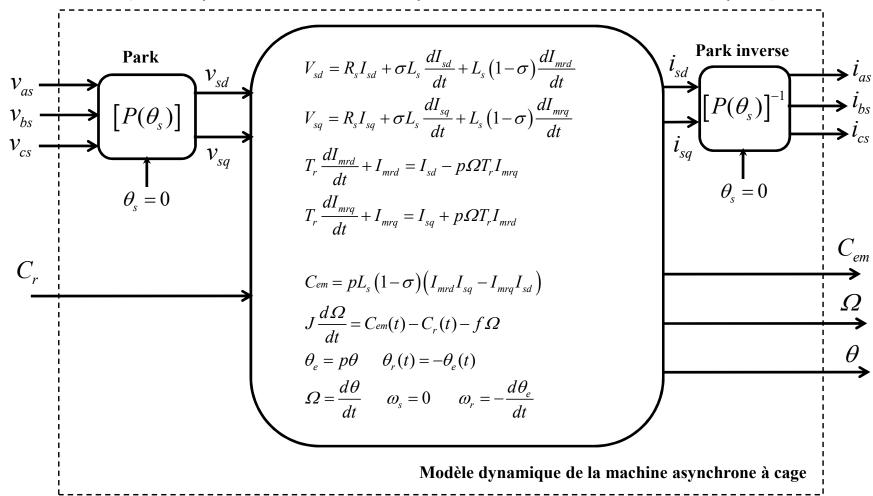
Le couple électromagnétique s'écrit :

$$C_{em} = pL_s (1 - \sigma) (I_{mrd} I_{sq} - I_{mrq} I_{sd})$$

Simulation du démarrage direct sur le réseau : Modèle dynamique de la MAS à cage dans le repère d-q fixé au stator ($\theta_s = 0$ et $\omega_s = 0$)

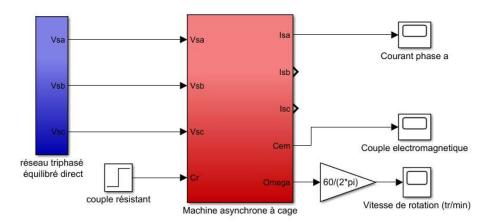
$$\theta_s = 0$$
 et $\omega_s = 0$ $\theta_r = -\theta_e$ $\omega_r(t) = -p\Omega(t)$

(On simplifie nettement les équations des tensions dans ce repère)

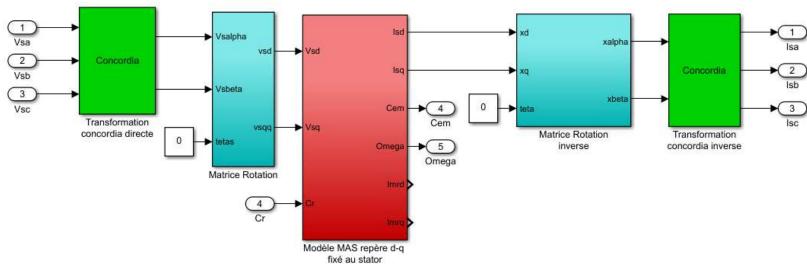


Simulation du démarrage directe d'une MAS à cage sur le réseau à l'aide de Matlab/Simulink

Schéma de simulation:

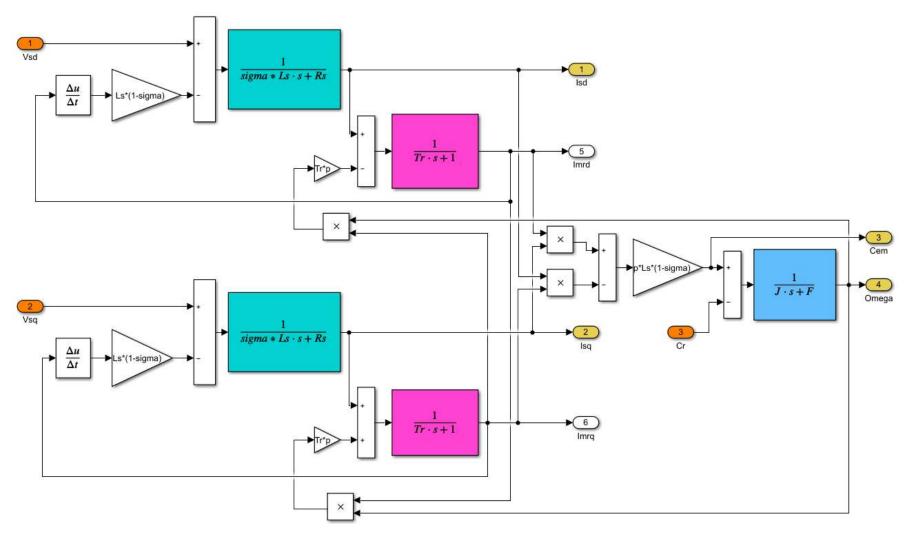


Sous-système machine asynchrone:



Simulation du démarrage directe d'une MAS à cage sur le réseau à l'aide de Matlab/Simulink

Modèle de la machine asynchrone dans le repère d-q fixé au stator:



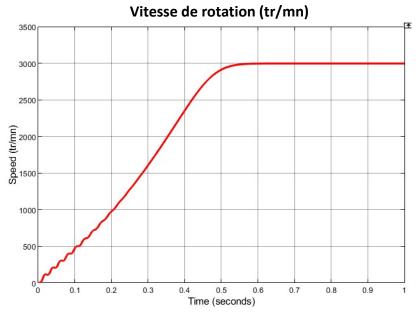
Résultats de simulation pour un démarrage direct à vide (U = 400V / 50Hz)

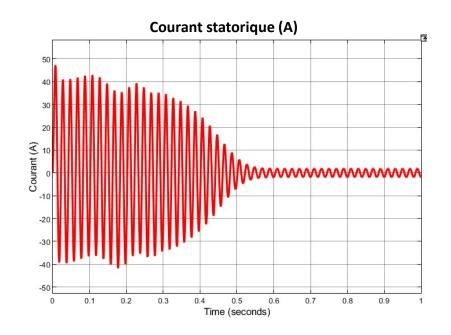
Paramètres de la machine

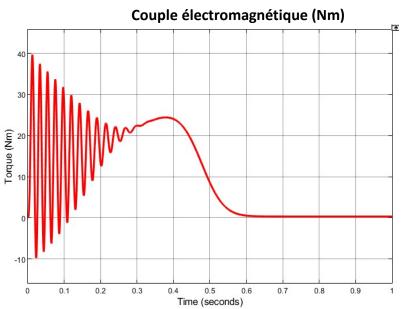
Puissance nominale: $P_u = 3 \text{ kW}$ Vitesse nominale: N = 2850 tr/mnCourant statorique nominal: $I_s = 5.5 \text{ A}$ Rendement au point nominal: $\eta = 0.84$ Facteur de puissance nominal : $\cos \varphi = 0.92$ Résistance d'une phase stator $R_s = 2.6 \Omega$ Inductance cyclique statorique $L_{\rm s} = 0.53 \; {\rm H}$ Coefficient de dispersion : $\sigma = 0.04$ $T_r = 0.28 \text{ s}$ Constante de temps rotorique : Moment d'inertie moteur + charge $J = 0.03 \text{ kg.m}^2$ $f = 1.10^{-3} \text{ Nm/rad/s}$ Coefficient de frottement visqueux : Pertes dans le fer (sous 230V; 50Hz): $P_{fer}=160 \text{ W}$

 $P_{\text{meca}} = 50 \text{ W}$

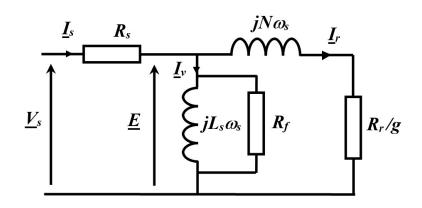
Pertes mécanique (vitesse nominale):







Equations du régime permanent et schéma équivalent (voir cours M1)

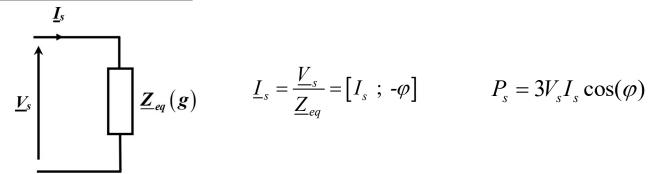


♦ Mesure des paramètres :

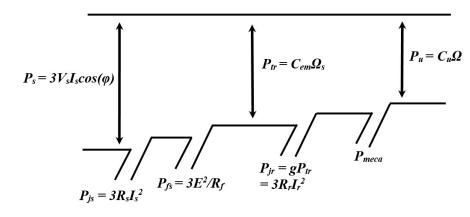
 R_s : Méthode volt-ampèremétrique en DC R_f , L_s et P_{meca} : essai à vide sous tension nominale N et R_r : essai à rotor bloqué sous courant nominal

$$\sigma = \frac{N}{L_s + N} \qquad T_r = \frac{L_s}{(1 - \sigma)R_r}$$

♦ Prédétermination des caractéristiques:



♦ Bilan de puissances :

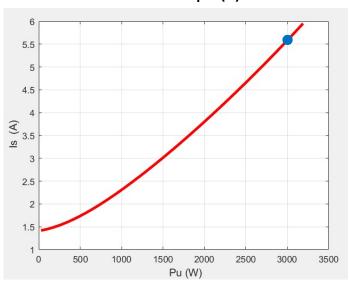


$$P_{u} \approx \left(P_{s} - 3R_{s}I_{s}^{2} - 3\frac{V_{s}^{2}}{R_{f}}\right)(1-g) - P_{meca}$$

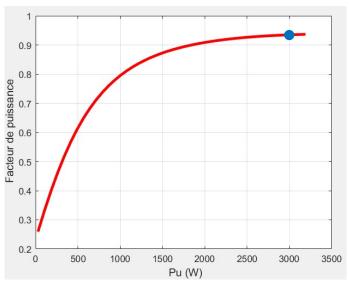
$$\eta = \frac{P_{u}}{P_{s}}$$

Caractéristiques en régime permanent (U = 400V; f = 50Hz)

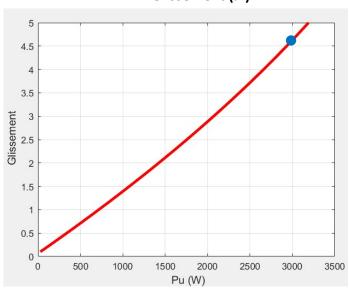
Courant statorique (A)



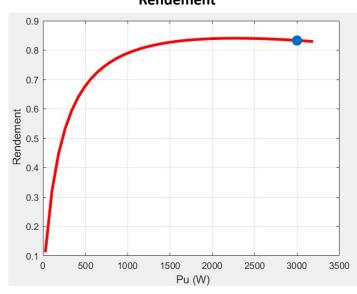
Facteur de puissance



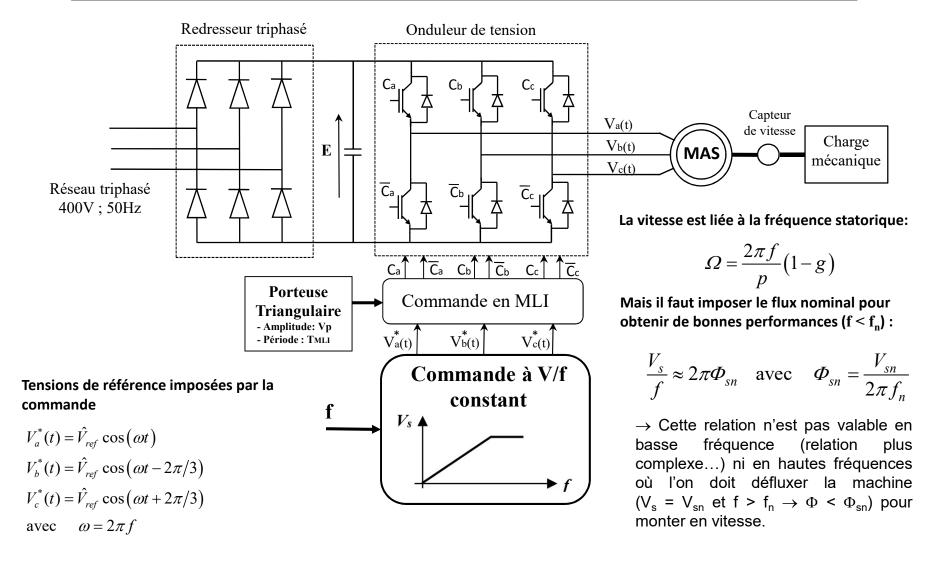
Glissement (%)



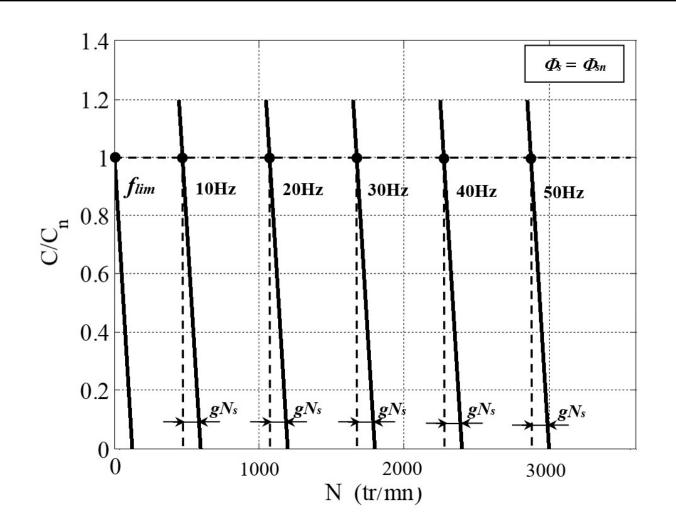
Rendement



Alimentation d'une MAS par un onduleur triphasé fonctionnant à V/f constant : variateur de vitesse



Caractéristiques couple-vitesse d'une MAS alimentée par un variateur fonctionnant à V/f constant



A flux nominal, les caractéristiques couple-vitesse sont parallèles : bon rendement en charge pour chaque fréquence ($\eta \approx 1$ -g).

Mais conserver un flux constant en basse vitesse est difficile → compensation de RI ...

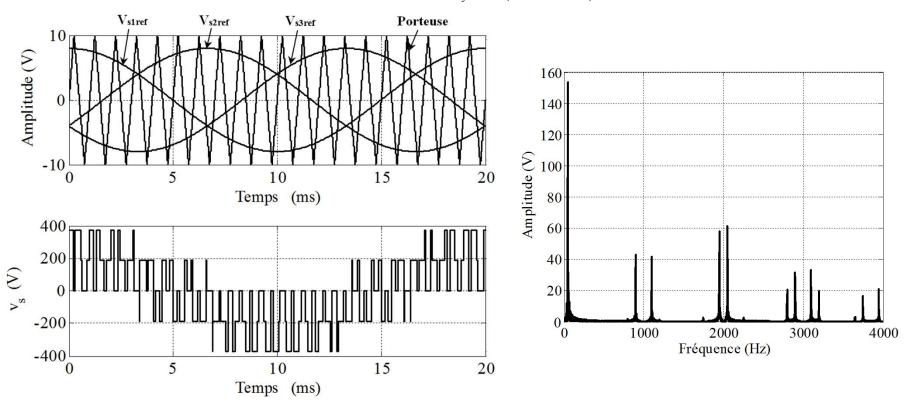
Tension V_a(t) et sa décomposition spectrale

$$E = 550V$$
; $V_p = 10V$; $F_{MLI} = 1kHz$; $F_{fondamental} = 50Hz$

$$V_a^*(t) = \hat{V}_{ref} \cos(\omega t)$$

Signaux de commande:
$$V_b^*(t) = \hat{V}_{ref} \cos(\omega t - 2\pi/3)$$
 avec $\hat{V}_{ref} = 8V$

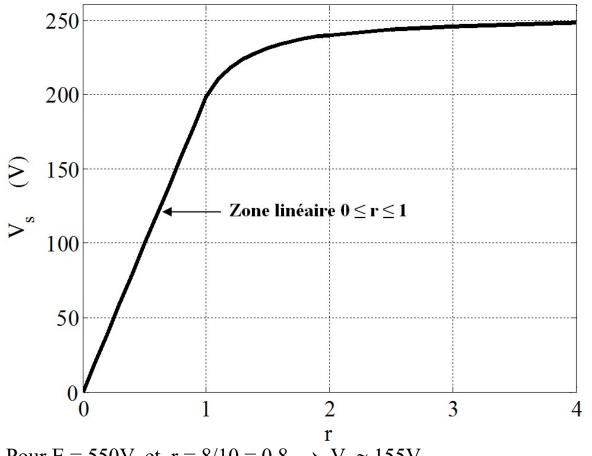
$$V_c^*(t) = \hat{V}_{ref} \cos(\omega t + 2\pi/3)$$



Fondamental à 50 Hz : $V_s \approx 155V$

Harmoniques autour de la fréquence MLI: 1kHz, 2kHz, 3kHz......

Courbe de réglage de la tension efficace pour un onduleur triphasé (r : coefficient de réglage en tension)



Zone linéaire:

$$V_s = \frac{E}{2\sqrt{2}}r \qquad r = \frac{\hat{V}_{ref}}{V_p}$$

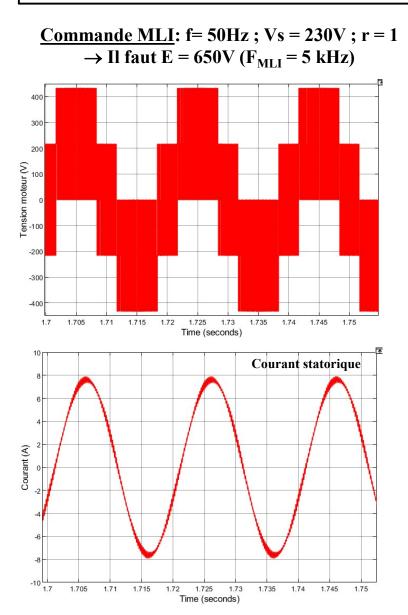
 $0 \le r \le 1$ en MLI

Pleine onde: $r \rightarrow \infty$

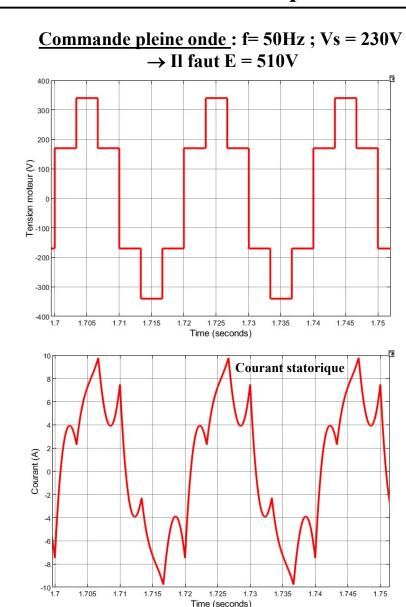
$$V_s = \frac{2E}{\pi\sqrt{2}}$$

- Pour E = 550V et $r = 8/10 = 0.8 \rightarrow V_s \approx 155V$
- En commande MLI, la valeur efficace maximale disponible (r = 1) : $V_s \approx 194,5V$ si E = 550V
- En commande pleine onde, on peut atteindre $V_s \approx 247V$ (avec E = 550V) mais présence d'harmoniques basses fréquences dans le spectre de la tension donc du courant, ce qui est mauvais pour la machine: ondulation de couple, pertes supplémentaires...
- En MLI Vectorielle, $V_s = E/\sqrt{6}$ pour r = 1 (\rightarrow pour E = 550V on peut atteindre $V_s = 224V!$)

Courant dans la MAS en commande MLI et en commande en pleine onde

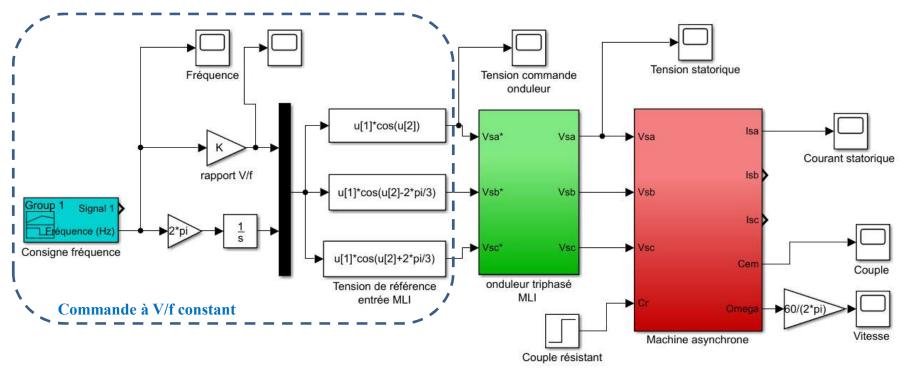


Le courant est sinusoïdal (OK)



Harmoniques de courant basses fréquences !!!

Simulation d'une MAS alimentée par un variateur de vitesse fonctionnant à V/f constant (Matlab/Simulink)



$$V_{sa}^*(t) = \hat{V}_{ref} \cos(\omega t)$$

$$V_{sb}^{*}(t) = \hat{V}_{ref} \cos(\omega t - 2\pi/3)$$

$$V_{sc}^{*}(t) = \hat{V}_{ref} \cos(\omega t + 2\pi/3)$$

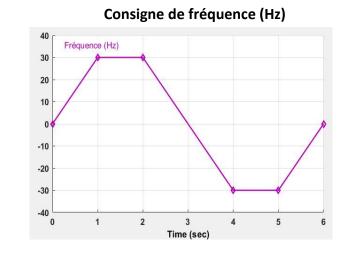
Fonctionnement à V/f constant si

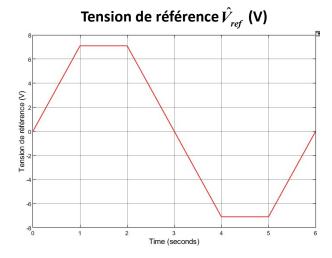
$$\hat{V}_{ref} = K \times f$$
 avec $K = 2\sqrt{2} \frac{V_p}{E} \left(\frac{V_{sn}}{f_n}\right)$ en MLI et pour $f \le f_n$

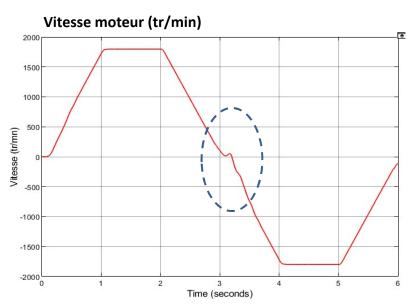
Si
$$E = 550V$$
; $V_p = 10V$; $V_{sn} = 230V$; $f_n = 50Hz \rightarrow K = 0.236$

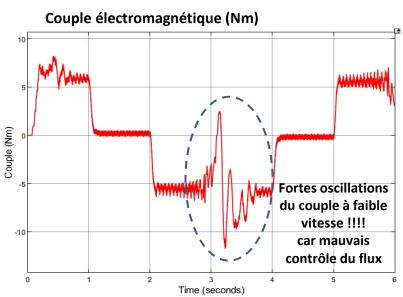
Pour $f > f_n$ (montée en vitesse), on maintient $V_s = V_{sn}$ (\rightarrow défluxage) **21**

Variateur de vitesse fonctionnant à V/f constant (Matlab/Simulink)







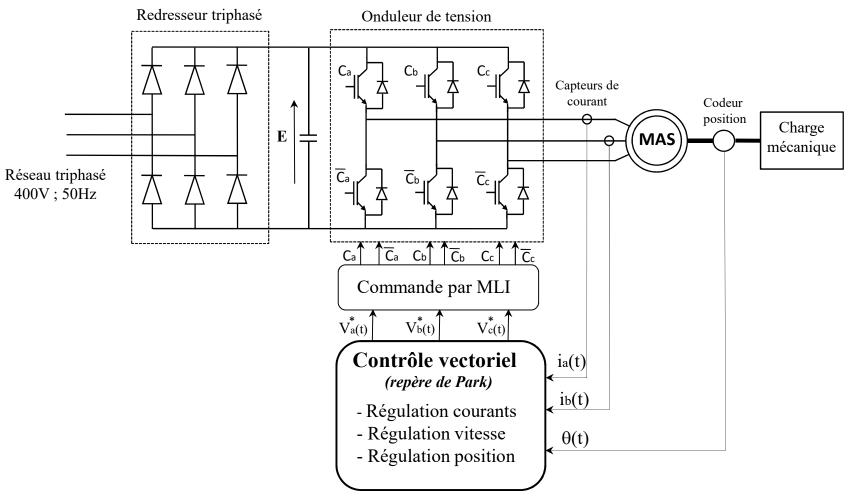


22

Si on veut maitriser le couple instantanée en basse vitesse et jusqu'à l'arrêt (systèmes de traction)

Variateur de vitesse à commande vectorielle (ou à flux orienté)

Architecture pour la commande vectorielle d'une machine asynchrone triphasée (MAS)



DSP: Digital Signal Processor

Principe du contrôle vectoriel de la machine asynchrone

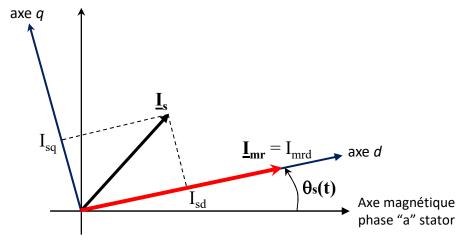
Pour contrôler la vitesse ou la position d'un système d'entrainement électromécanique, il faut être capable de maitriser parfaitement le couple instantané fourni par le moteur électrique.

Expression du couple instantané:

$$C_{em} = pL_s (1-\sigma) (I_{mrd}I_{sq} - I_{mrq}I_{sd})$$

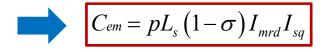
<u>Question</u>: Est-il possible de simplifier cette expression par un choix judicieux du positionnement du repère d-q pour se ramener à celle d'une machine à courant continu (commande simple)?

- ♦ Si on réussit à éliminer le deuxième terme ($I_{mrq}I_{sd}$) de l'expression du couple, alors on obtient une expression similaire à celle d'une MCC ou d'une MSAP → flux × courant.
- ullet Pour cela, il faut choisir convenablement l'angle de rotation de Park $\theta_s(t)$ de sorte que le courant magnétisant rotorique soit entièrement porté sur l'axe direct (d) et donc d'avoir $I_{mrq} = 0$.



Contrôle par orientation du flux rotorique

$$C_{em} = pL_s (1-\sigma) (I_{mrd}I_{sq} - I_{rq}I_{sd})$$



- Le courant magnétisant I_{mrd} permettra de régler le flux dans la machine (valeur constante)
- Le courant $I_{sq}(t)$ permettra de contrôler le couple.
- Il faudra maitriser à chaque instant la position du repère de Park pour imposer $I_{mrq}=0$.

Simplification des équations si le repère d-q est fixé sur le courant magnétisant rotorique $(I_{mrq}=0)$

$$V_{sd} = R_s I_{sd} + \sigma L_s \frac{dI_{sd}}{dt} + L_s (1 - \sigma) \frac{dI_{mrd}}{dt} - \sigma L_s \omega_s I_{sq} - L_s (1 - \sigma) \omega_s I_{mrq}$$

$$V_{sq} = R_s I_{sq} + \sigma L_s \frac{dI_{sq}}{dt} + L_s (1 - \sigma) \frac{dI_{mrq}}{dt} + \sigma L_s \omega_s I_{sd} + L_s (1 - \sigma) \omega_s I_{mrd}$$

$$0 = I_{mrd} + T_r \frac{dI_{mrd}}{dt} - I_{sd} - \omega_r T_s I_{mrq}$$

$$0 = \sum_{ms} + T_r \frac{dI_{mrq}}{dt} - I_{sq} + \omega_r T_r I_{mrd}$$

Contrôle de I_{mrd} (donc du flux)

$$T_r \frac{dI_{mrd}}{dt} + I_{mrd} = I_{sd}$$

La composante d'axe d du courant statorique (I_{sd}) permettra de contrôler le flux (I_{mrd}) dans la machine (contrôle indirect du flux)

Angle de changement de repère $\theta_s(t)$

$$\omega_r = \frac{I_{sq}}{TI_{max}}$$

$$\omega_{s}(t) = p\Omega(t) + \omega_{r}(t)$$

$$\theta_s(t) = p\theta(t) + \int \frac{I_{sq}}{T_r I_{mrd}} dt$$

Contrôle du couple

$$C_{em} = pL_s (1 - \sigma) I_{mrd} I_{sq}$$

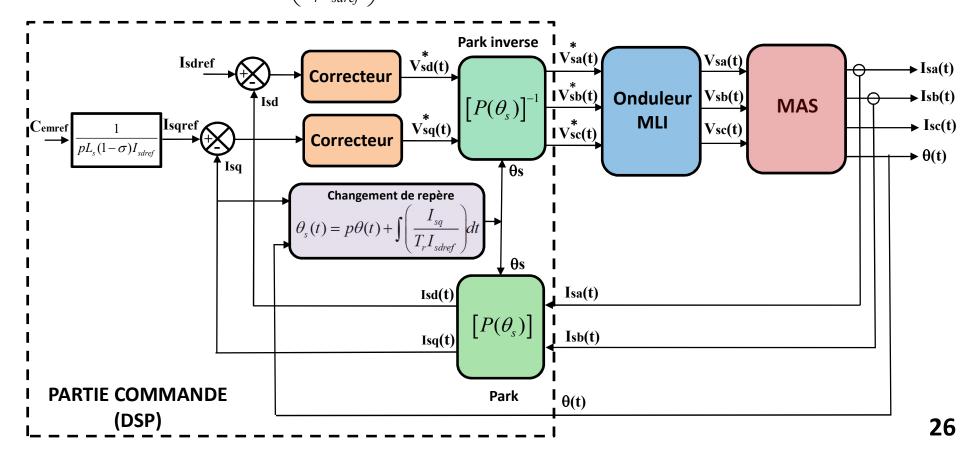
La composante d'axe q du courant statorique (I_{sq}) permettra de contrôler le couple

Schéma du contrôle vectoriel de la MAS : contrôle indirect du flux par I_{sd}

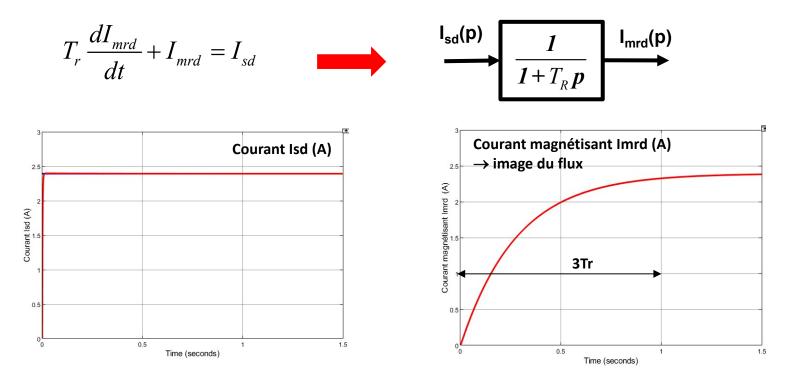
Le courant $I_{sd}(t)$ permet de fixer le flux dans la machine (I_{sdref}) : il faudra attendre $3T_r$ pour que le flux (I_{mrd}) s'établisse avant d'imposer une référence de couple.

$$C_{em}(t) = pL_s(1-\sigma)I_{sdref}i_{sq}(t)$$
 Le courant $I_{sq}(t)$ permet de régler le couple.

$$\theta_s(t) = p\theta(t) + \int \left(\frac{i_{sq}}{T_r I_{sdref}}\right) dt$$
 Angle de changement de repère.



Contrôle indirect du flux par I_{sd}



Le courant $I_{sd}(t)$ permet de fixer le flux dans la machine (I_{sdref}): il faut attendre $3T_r$ pour que le flux (I_{mrd}) s'établisse avant d'imposer une référence de couple par l'intermédiaire du courant I_{sq} .

$$\dot{\mathbf{a}} \ \mathbf{t} = 3\mathbf{T}_{\mathbf{r}} \qquad \rightarrow \quad I_{mrd} = I_{sdref} \qquad \qquad \mathbf{si} \ \mathbf{t} \ \geq \ 3\mathbf{T}_{\mathbf{r}} \\ & \qquad \qquad C_{em} = pL_{s} \left(1 - \sigma\right) I_{sdref} I_{sq} = kI_{sq}$$

On peut faire un contrôle direct de I_{mrd} mais cela est rarement fait en pratique car il faut estimer I_{mrd} qui est non mesurable (\rightarrow contrôle direct du flux, voir TD)

Modèle de la charge

Principe fondamental de la dynamique des systèmes en rotation

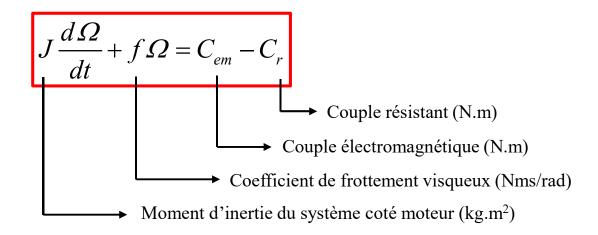
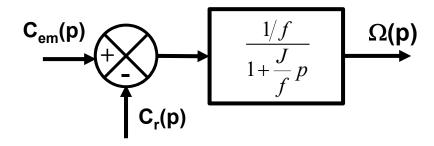


Schéma bloc associé (p est la variable de Laplace)



Modèle de la machine asynchrone pour l'axe d

$$V_{sd} = R_s I_{sd} + \sigma L_s \frac{dI_{sd}}{dt} + L_s (1 - \sigma) \frac{dI_{mrd}}{dt} - \sigma L_s \omega_s I_{sq}$$

$$T_r \frac{dI_{mrd}}{dt} = I_{sd} - I_{mrd}$$

$$V_{sd} = R_{eq} I_{sd} + \sigma L_s \frac{dI_{sd}}{dt} - \frac{L_s}{T_r} (1 - \sigma) I_{mrd} - \sigma L_s \omega_s I_{sq}$$

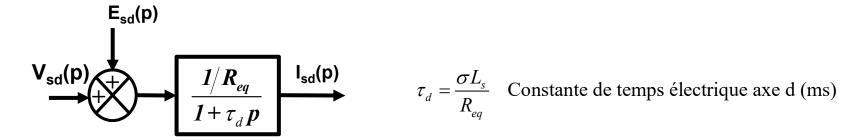
$$Avec \quad R_{eq} = R_s + \frac{L_s (1 - \sigma)}{T_r}$$

On définit le terme de couplage entre les deux axes (perturbations)

$$E_{sd} = \frac{L_s}{T_r} (1 - \sigma) I_{mrd} + \sigma L_s \omega_s I_{sq}$$

On peut négliger l'impact de I_{mrd} car sa variation est très lente (temps de réponse égale $3T_r$ par rapport à I_{sd}). Si on veut en tenir compte, on peut l'estimer (non mesurable).

$$E_{sd} \approx \sigma L_s \omega_s I_{sa}$$



Modèle machine axe d

Modèle de la machine asynchrone pour l'axe q

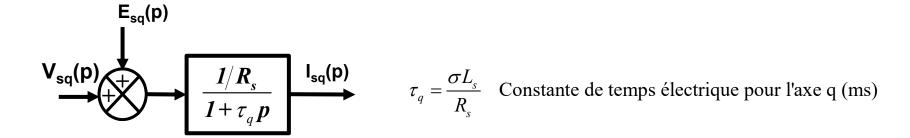
$$V_{sq} = R_s I_{sq} + \sigma L_s \frac{dI_{sq}}{dt} + \sigma L_s \omega_s I_{sd} + L_s (1 - \sigma) \omega_s I_{mrd}$$

Comme le flux doit être fixé avant le contrôle du couple, on suppose que I_{mrd} est établi avant toute variation sur I_{sq} , on a alors $I_{mrd} = I_{sd}$ (sinon on peut estimer I_{mrd} ...):

$$V_{sq} = R_s I_{sq} + \sigma L_s \frac{dI_{sq}}{dt} + L_s \omega_s I_{sd}$$

On définit le terme de couplage entre les deux axes (perturbation)

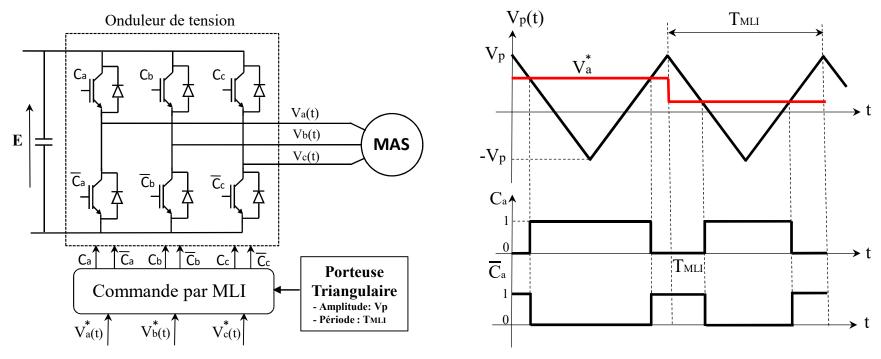
$$E_{sa} = -L_s \omega_s I_{sd}$$



Modèle machine axe q

Modélisation de l'onduleur pour la commande

L'onduleur peut être modélisé par un gain noté Gond



♦ Modélisation en valeur moyenne d'un onduleur MLI (voir TD N°2)

$$\begin{pmatrix} V_{sa}(t) \\ V_{sb}(t) \\ V_{sc}(t) \end{pmatrix} = G_{ond} \begin{pmatrix} V_{sa}^*(t) \\ V_{sb}^*(t) \\ V_{sc}^*(t) \end{pmatrix} \mathbf{Park} \begin{pmatrix} V_{sd}(t) \\ V_{sq}(t) \end{pmatrix} = G_{ond} \begin{pmatrix} V_{sd}^*(t) \\ V_{sq}^*(t) \end{pmatrix} \mathbf{avec} \quad \mathbf{G}_{ond} = \frac{\mathbf{E}}{2V_p}$$

E: Tension du bus continu

V_p : Amplitude de la porteuse

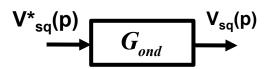
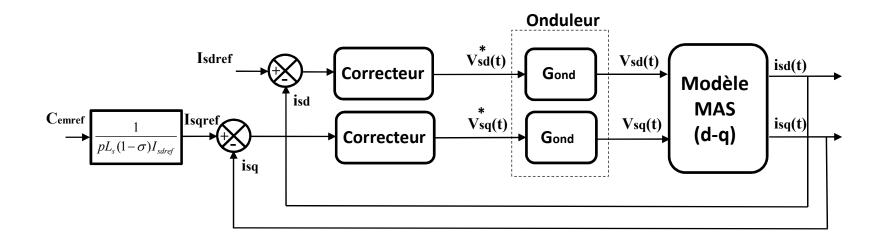


Schéma de commande incluant le modèle de l'onduleur et de la MAS dans le repère de Park lié au flux rotorique



Modèle MAS (d-q)

$$\sigma L_{s} \frac{dI_{sd}}{dt} + R_{eq}I_{sd} = V_{sd} + \underline{E}_{sd}$$

$$\sigma L_{s} \frac{dI_{sq}}{dt} + R_{s}I_{sq} = V_{sq} + \underline{E}_{sq}$$

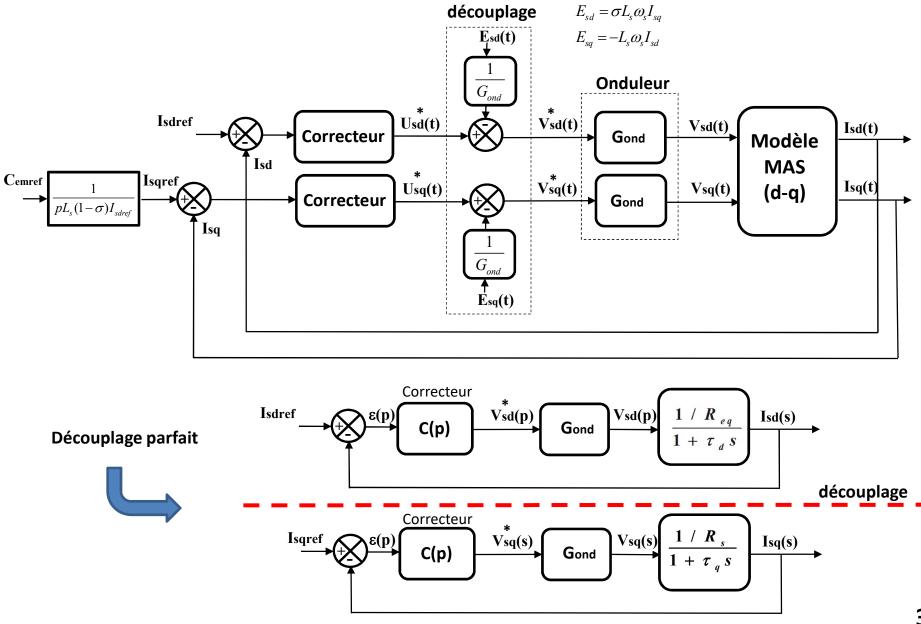
Les 2 équations sont couplées. Une variation de isq affectera isd et vice-versa par les termes de couplage:

$$E_{sd} = \sigma L_s \omega_s I_{sq}$$

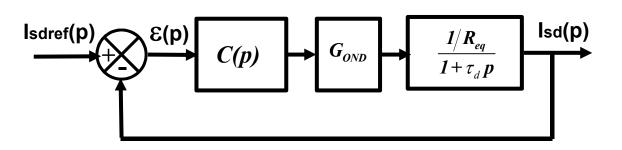
$$E_{sq} = -L_s \omega_s I_{sd}$$

Nécessité d'effectuer un découplage des axes

Découplage des axes d et q : Calcul des correcteurs de courant



Synthèse du correcteur de courant d'axe d (contrôle du flux)



FTBO

$$G(p) = \frac{I_{sd}(p)}{\varepsilon(p)} = C(p)G_{OND} \frac{1/R_{eq}}{1 + \tau_d p}$$

♦ Paramètres de la machine asynchrone et de l'onduleur triphasé:

 $P_u = 3 \text{ kW} \; ; \; N_n = 2850 \; \text{tr/mn} \; ; \; \; p = 1 \; ; \; V_{sn} = 230 \; V \; ; \; \; I_{sn} = 5.5 \; A \; ; \; cos\phi_n = 0.92 \; ; \; \eta_n = 0.86 \; ; \\ R_s = 2.6\Omega \; ; \; L_s = 0.53 H \; ; \; \sigma = 0.04 ; \; T_r = 0.28 s \; ; \; J = 0.03 kg, \\ m^2 \; ; \; f = 1.10^{-3} Nms/rad \; ; \; M_s = 2.00 \; ; \; M_s = 2$

Onduleur triphasé : E = 650 V; $V_p = 10 \text{ V}$; $F_{MLI} = 10 \text{ kHz}$

♦ Cahier des charges de la boucle de courant :

- ◆ Erreur statique nulle (échelon)
- ♦ Temps de réponse à 5% : $t_{r5\%} = 5 \text{ms}$
- ♦ Aucun dépassement toléré par rapport à la consigne

♦ Choix du correcteur :

Comme le système à réguler est de classe 0 (1er ordre), il faut que le correcteur soit de classe 1→ correcteur PI

$$C(p) = K \frac{1 + \tau_i p}{\tau_i p}$$

K: gain du correcteur

 $\boldsymbol{\tau_i}$: constante de temps intégral du correcteur

Synthétiser un correcteur revient à calculer K et τ_i pour répondre au cahier des charges, ensuite il faut le réaliser (technologie analogique ou numérique)

Synthèse du correcteur de courant d'axe d

♦ Synthèse par compensation du pole du système:

$$G(p) = K \frac{1 + \tau_i p}{\tau_i p} G_{OND} \frac{1/R_{eq}}{1 + \tau_d p}$$

$$T_i = \tau_d = \frac{\sigma L_s}{R_{eq}}$$

$$AN : \tau_i = 4.8ms$$

$$G(p) = \frac{A}{\tau_i p} \text{ avec } A = \frac{KG_{OND}}{R_{eq}}$$

$$R_{eq} = R_s + \frac{L_s(1 - \sigma)}{T_r} = 4.42\Omega$$

On calcule ensuite la fonction de transfert en boucle fermée (FTBF) notée H(p):

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{1}{1 + \frac{\tau_i}{A}p}$$
1er ordre donc pas de dépassement (ok cahier des charges)

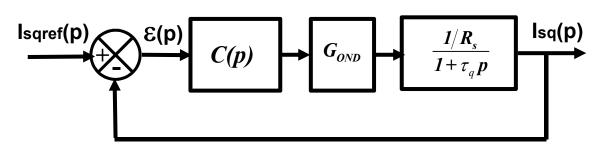
$$t_{r5\%} = 3\frac{\tau_i}{A}$$
 \longrightarrow $K = \frac{3\sigma L_s}{G_{OND}t_{r5\%}}$ $G_{ond} = \frac{E}{2V_p} = 32,5$ AN: $K = 0.39$

Valeur de I_{sdref} pour avoir le flux nominal dans la machine (environ 30% du courant nominal):

Flux nominal
$$\longrightarrow$$
 $I_{sdref} = \frac{U_{sn}}{L_s \omega_{sn}}$

$$AN: I_{sdref} = 2,4A$$

Synthèse du correcteur de courant d'axe q



FTBO

$$G(p) = \frac{I_{sq}(p)}{\varepsilon(p)} = C(p)G_{OND} \frac{1/R_s}{1 + \tau_q p}$$

♦ Synthèse par compensation du pole du système:

$$C(p) = K \frac{1 + \tau_i p}{\tau_i p}$$
K: gain du correcteur
$$\tau_i : constante de temps intégral du correcteur$$

$$G(p) = K \frac{1 + \tau_i p}{\tau_i p} G_{OND} \frac{1/R_s}{1 + \tau_q p}$$
Compensation du pole
$$\tau_i = \tau_q = \frac{\sigma L_s}{R_s}$$
AN: $\tau_i = 8,15$ ms

$$\tau_i = \tau_q = \frac{\sigma L_s}{R_s}$$

$$G(p) = \frac{A}{\tau_i p}$$
 avec $A = \frac{KG_{OND}}{R_s}$

On calcule ensuite la fonction de transfert en boucle fermée (FTBF) notée H(p):

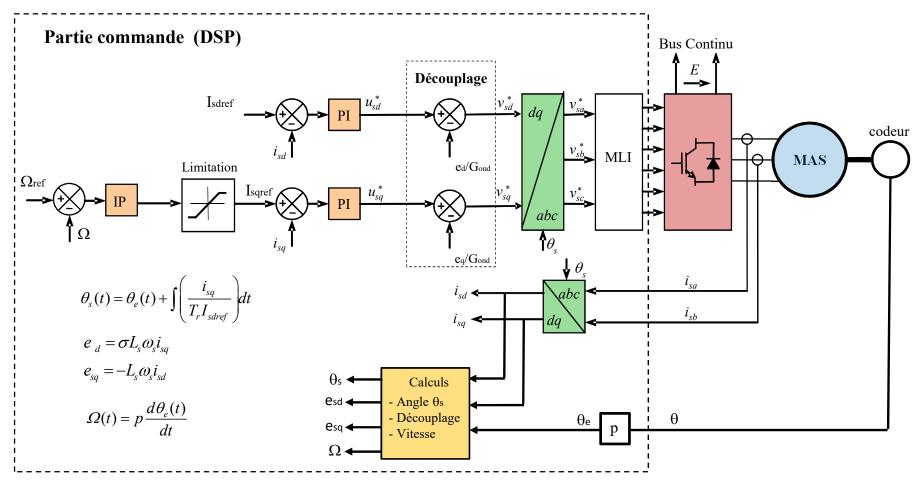
$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{1}{1 + \frac{\tau_i}{A}p}$$
 1er ordre donc pas de dépassement (ok cahier des charges)

$$t_{r5\%} = 3\frac{\tau_i}{A} \longrightarrow K = \frac{3\sigma L_s}{G_{OND}t_{r5\%}}$$
 AN: K = 0,39

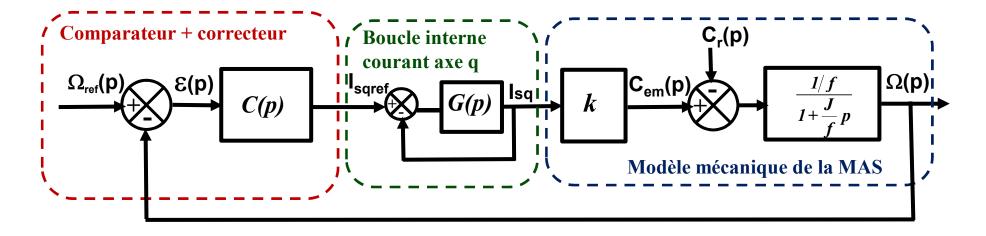
$$K = \frac{3\sigma L_{s}}{G_{OND}t_{r5\%}}$$

$$AN: K = 0,39$$

Structure globale du contrôle vectoriel de la MAS incluant la boucle de vitesse

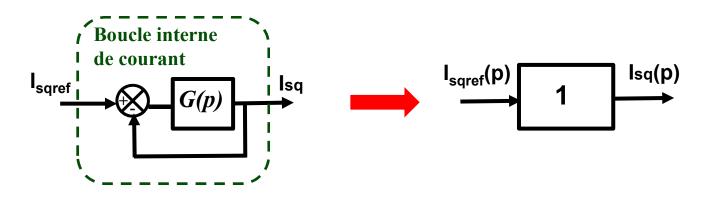


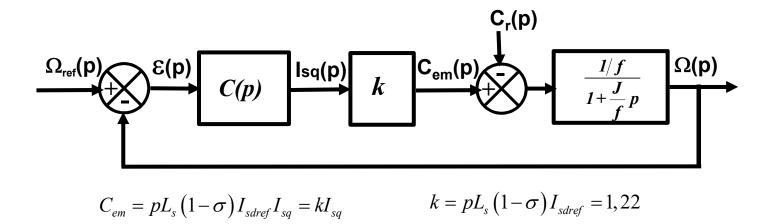
- On mesure les courants $i_{sa}(t)$ et $i_{sb}(t)$ avec des capteurs de courant à effet Hall.
- ullet On mesure la position mécanique du rotor $\theta(t)$: codeur incrémental ou résolveur.
- ullet On calcule $i_{sd}(t)$ et $i_{sq}(t)$ à partir de $i_{sa}(t)$ et $i_{sb}(t)$: transformation de Park.
- ♦ On effectue la régulation des courants $i_{sd}(t)$ et $i_{sq}(t)$ à l'aide de correcteurs PI (erreur statique nulle car i_{sd} et i_{sq} sont constants en régime établi); on intègre les termes de découplage.
- ♦ On effectue la régulation de vitesse à l'aide d'un correcteurs IP: on limite la sortie du régulateur de vitesse à $\pm I_{sqrefmax}$ pour éviter que le courant statorique atteigne des valeurs excessives.
- ♦ On calcule les références de tension v_{sa}^* , v_{sb}^* et v_{sc}^* à appliquer au moteur à partir des tensions v_{sd}^* et v_{sq}^* issues des correcteurs de courant (transformation de Park inverse), On en déduit les ordres de commande des IGBT (MLI) C_a , C_b et C_c .



- La boucle de courant a été réglée avec t_{r5%} = 5ms et une erreur statique nulle
- La constante de temps mécanique $J/f >> t_{r5\%}$ (30s >> 5ms) : constante de temps dominante

Comme la boucle de courant répond avec une erreur nulle et très rapidement par rapport à la dynamique de la vitesse, on peut la modéliser par un gain unitaire

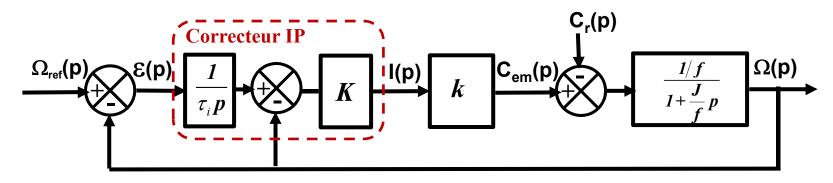




♦ Cahier des charges de la boucle de vitesse :

- ◆Erreur statique nulle (échelon)
- ♦ Temps de réponse à 5% : $t_{r5\%} = 0.5s$
- ♦ Système le plus rapide sans dépassement

Pour éviter l'impact négatif du zéro introduit par l'utilisation d'un correcteur PI (contraintes plus importantes sur I_{qref} lors des transitoires), on préfère utiliser un correcteur de type IP pour la boucle de vitesse :





Synthèse par le calcul de la FTBF:

$$\Omega(p) = \frac{1/f}{1 + \tau_m p} kK \left\{ \frac{1}{\tau_i p} \left(\Omega_{ref}(p) - \Omega(p) \right) - \Omega(p) \right\}$$

$$H(p) = \frac{\Omega(p)}{\Omega_{ref}(p)} = \frac{1}{1 + \left(\frac{1+B}{B} \right) \tau_i p + \frac{\tau_i \tau_m}{B} p^2} \quad \text{avec} \quad B = \frac{kK}{f} \quad \text{et} \quad \tau_m = \frac{J}{f}$$

On obtient un système du second ordre que l'on peut identifier à la forme canonique

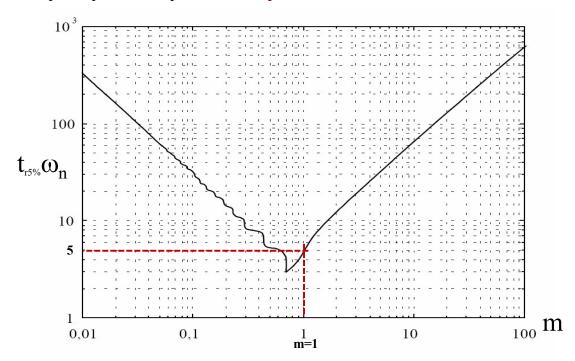
$$H(p) = \frac{1}{1 + \frac{2m}{\omega_n} p + \frac{1}{\omega_n^2} p^2}$$

$$\begin{cases} \frac{2m}{\omega_n} = \left(\frac{1+B}{B}\right) \tau_i \\ \frac{1}{\omega_n^2} = \frac{\tau_i \tau_m}{B} \end{cases}$$

$$\begin{cases} K = \frac{f}{k} (2m\tau_m \omega_n - 1) \\ \tau_i = \frac{Kk}{f \tau_m \omega_n^2} \end{cases}$$

Il reste à définir m et ω_n à partir du cahier des charges et des abaques des systèmes du $2^{\grave{e}me}$ ordre

- ◆ Erreur statique nulle (échelon) → ok grâce au IP
- ♦ Temps de réponse à 5% : $t_{r5\%} = 0.5s$
- ♦ Système le plus rapide sans dépassement : impose m = 1



Courbe du temps de réponse à 5 % normalisé d'un deuxième ordre $T_R.\omega_0$ en fonction du coefficient d'amortissement m.

$$m=1 \rightarrow t_{r5\%}\omega_n = 5$$
 soit $\omega_n = 10 rad / s$

$$k = pL_s (1-\sigma)I_{sdref} = 1,22Nm/A$$

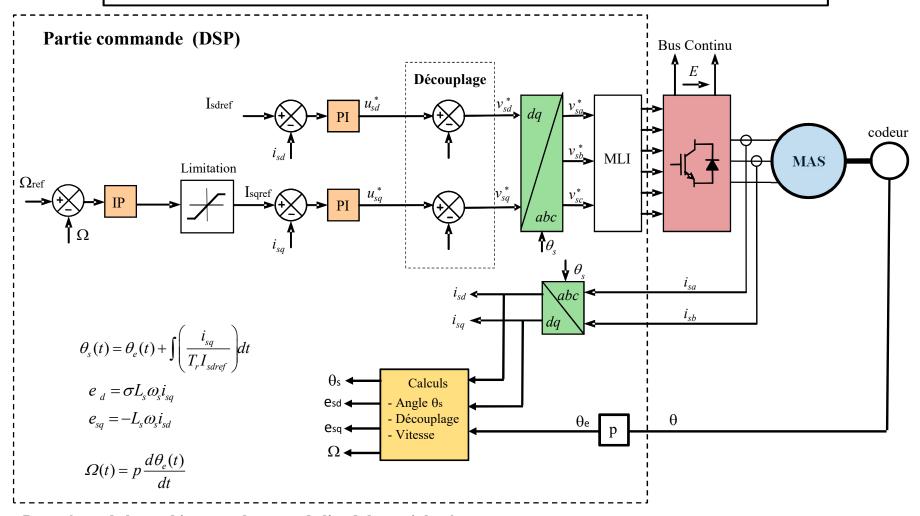
$$f = 1.10^{-3} \text{Nms/rad}$$

$$J = 0,03\text{kg.m}^2$$

$$\tau_m = J/f = 30s$$

$$\begin{cases} K = \frac{f}{k} (2m\tau_m \omega_n - 1) = 0.49 \\ \tau_i = \frac{Kk}{f \tau_m \omega_n^2} = 0, 2 \end{cases}$$

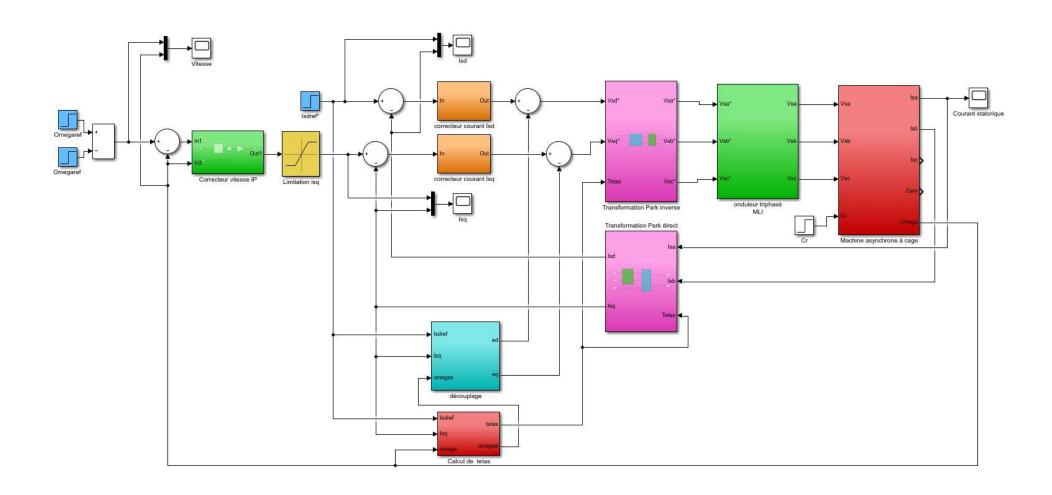
Simulation du contrôle en vitesse de la MAS sous Matlab/Simulink



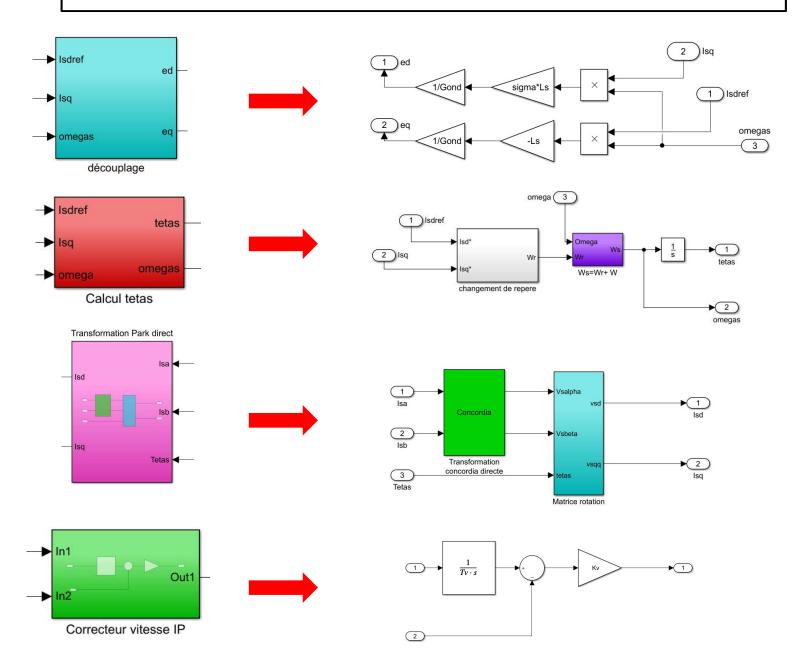
♦ Paramètres de la machine asynchrone et de l'onduleur triphasé:

 $\begin{array}{l} P_u \! = \! 3\;kW\;;\; N_n = \! 2850\;tr/mn\;;\;\; p = 1\;;\; V_{sn} \! = \! 230\;V\;;\;\; I_{sn} \! = \! 5,\!5\;A\;;\; cos\phi_n \! = \! 0,\!92\;;\; \eta_n \! = \! 0,\!86\;; \\ P_s \! = \! 2,\!6\Omega\;;\; L_s \! = \! 0,\!53H\;;\; \sigma \! = \! 0,\!04;\; T_r \! = \! 0,\!28s\;;\; J \! = \! 0,\!03kg,\!m^2\;;\; f \! = \! 1.10^{-3}Nms/rad \end{array}$

Simulation du contrôle en vitesse de la MAS sous Matlab/Simulink (contrôle vectoriel)



Détail des blocs

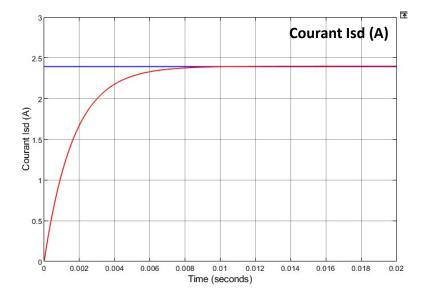


Vérification des performances sur Matlab/Simulink

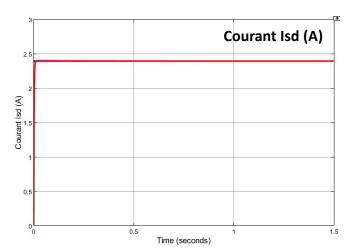
Boucle de courant d'axe d (synthèse par compensation du pole):

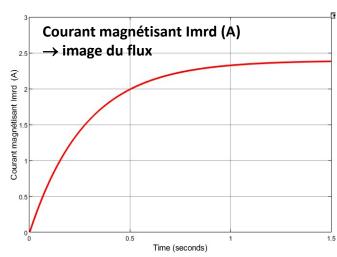
$$\dot{A} t = 0 s \rightarrow I_{sdref} = 2,4A$$

- $-t_{r5\%} = 5 \text{ ms (ok)}$
- Pas de dépassement (ok)
- Erreur statique nulle (ok)



Evolution du courant magnétisant Imrd:



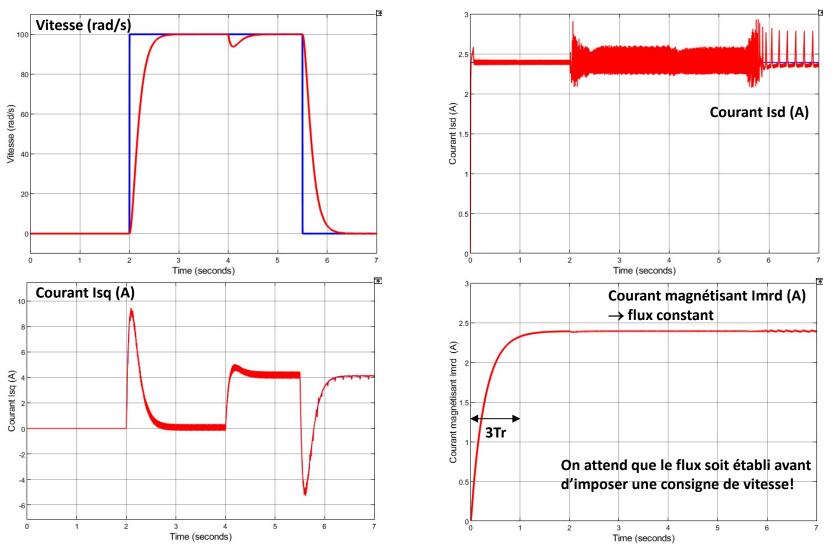


Le flux s'établit en un temps égal à $3T_r$, soit environ 1s pour cet exemple ($T_r = 0.28s$). Il faut attendre que le flux soit établi pour demander du couple (contrôle indirect du flux)!

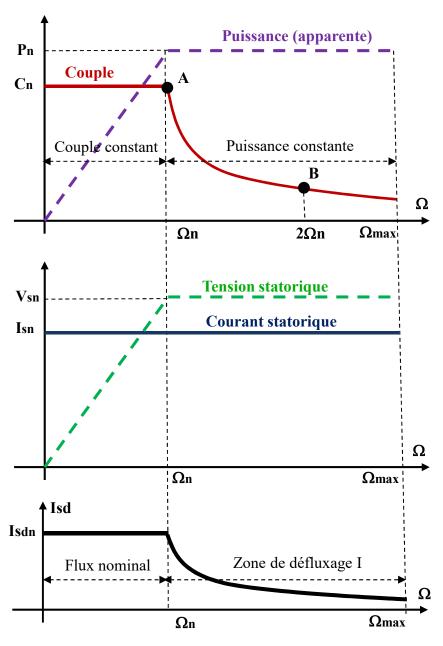
Vérification des performances sur Matlab/Simulink

Boucle de vitesse (correcteur IP):

à $t = 2s \rightarrow \Omega_{ref} = 100$ rad/s puis à $t = 5.5s \rightarrow \Omega_{ref} = 0$ rad/s ; à t = 4s on applique $C_r = 5Nm$ $t_{r5\%} = 0.5$ s (ok); pas de dépassement (ok); erreur statique nulle (ok) ; bon rejet de la perturbation à t = 4s; La machine tient le couple à l'arrêt (t>6s), ce qui serait impossible avec un variateur à V/f constant!



Montée en vitesse : Défluxage (étude simplifiée)



Le moteur est dimensionné pour atteindre la tension nominale V_{sn} pour le couple nominal C_n et la vitesse nominale $\Omega_n \to \text{puissance nominale } P_n$

Pour aller au-delà de Ω_n , il faut « **défluxer** » la machine car on ne peut plus augmenter la tension. On travaille alors à puissance apparente constante ($I_s = I_{sn}$ et $V_s = V_{sn}$).

Field Weakening Control

- ♦ Pour une MCC, on baisse le courant d'excitation
- ♦ Pour une machine asynchrone (calcul approché):

$$\Omega \approx \frac{\sqrt{3}V_{sn}}{pL_sI_{sd}}$$
 Ω augmente si I_{sd} diminue

♦ Le couple s'écrit alors (calcul approché)

$$C_{em} \approx pL_s \sqrt{3}I_{sn}I_{sd} \approx \frac{3V_{sn}I_{sn}}{Q}$$

→ Le couple est inversement proportionnelle à la vitesse.

Pour chaque point de fonctionnement (C, Ω) au-delà de Ω_n , il faut déterminer I_{sd} et I_{sq} tels que:

$$\sqrt{\frac{I_d^2 + I_q^2}{3}} \le I_{sn} \quad \text{et} \quad \sqrt{\frac{V_d^2 + V_q^2}{3}} \le V_{sn}$$

♦ Point A: $Ω = Ω_n ≈ 300 \text{ rad/s et } C = C_n ≈ 10 \text{Nm}$

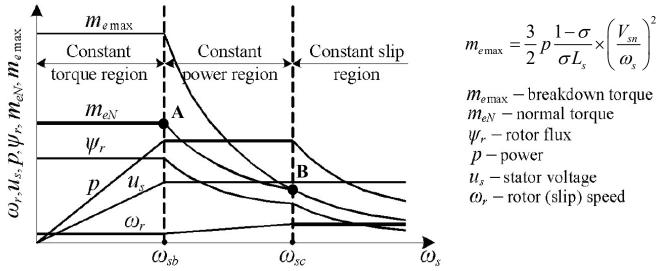
$$\longrightarrow$$
 $I_{sd} = I_{sdn} = 2,4A \text{ et } I_{sq} \approx 7,5A$

♦ Point B : $Ω = 2Ω_n ≈ 600 \text{ rad/s et } C = 0.5 C_n ≈ 5 \text{Nm}$

$$I_{sd} = 0.5I_{sdn} = 1.2A \text{ et } I_{sq} \approx 7.8A$$

Montée en vitesse : Défluxage (calculs plus exacts...)

K. NGUYEN-THAC, T. ORLOWSKA-KOWALSKA, G. TARCHALA, "Comparative analysis of the chosen field-weakening methods for the Direct Rotor Flux Oriented Control drive system " ARCHIVES OF ELECTRICAL ENGINEERING VOL. 61(4), pp. 443-454 (2012)



 $Exemple: P_u = 3 \text{ kW} \; ; \; N_n = 2850 \; tr/mn \; ; \; \; p = 1 \; ; \; V_{sn} = 230 \; V \; ; \; \; I_{sn} = 5,5 \; A \; ; \; R_s = 2,6\Omega \; ; \; L_s = 0,53 \; H \; ; \; \sigma = 0,04; \; T_r = 0,28 \; s \; ; \; T_r = 0,28 \; s \; r = 0,04 \; ; \; T_r =$

♦ Limits of the constant torque region (point A):

$$I_{sd} = \frac{U_{sn}}{L_{s}\omega_{sn}} \qquad \omega_{sb} = \frac{\sqrt{3}V_{sn}}{L_{s}\sqrt{I_{d}^{2}\left(1-\sigma^{2}\right)+3\sigma^{2}I_{sn}^{2}}} \qquad \omega_{rb} = \frac{\sqrt{3}I_{sn}^{2}-I_{sd}^{2}}{T_{r}I_{sd}} \qquad \Omega_{b} = \frac{1}{p}\left(\omega_{sb}-\omega_{rb}\right) \qquad m_{eN} = pL_{s}\left(1-\sigma\right)I_{sd}\sqrt{3I_{sn}^{2}-I_{sd}^{2}}$$

A. N.: $I_{sd} = 2.4 \text{ A}$; $\omega_{sb} = 309 \text{ rad/s}$; $\omega_{rb} = 13.7 \text{ rad/s}$; $\Omega_b = 295.3 \text{ rad/s}$ (2820 tr/mn); $m_{eN} = 11.2 \text{ Nm}$

♦ Limits of the "constant power" region (point B, stability limit):

$$I_{sd} = \frac{\sigma\sqrt{3}I_{sn}}{\sqrt{1+\sigma^2}} \qquad \omega_{sc} = \sqrt{\frac{1+\sigma^2}{2(\sigma L_s)^2}} \times \left(\frac{V_{sn}}{I_{sn}}\right) \qquad \omega_{rc} = \omega_{r\max} = \frac{1}{\sigma T_r} \qquad \Omega_c = \frac{1}{p}(\omega_{sc} - \omega_{rc}) \qquad m_e = pL_s \frac{(1-\sigma)}{\sigma}I_{sd}^2$$

A. N.: $I_{sd} = 0.38 \text{ A}$; $\omega_{sc} = 1396 \text{ rad/s}$; $\omega_{rc} = 89 \text{ rad/s}$; $\Omega_{c} = 1307 \text{ rad/s}$ (12480 tr/mn); $m_{e} = 1.83 \text{ Nm}$

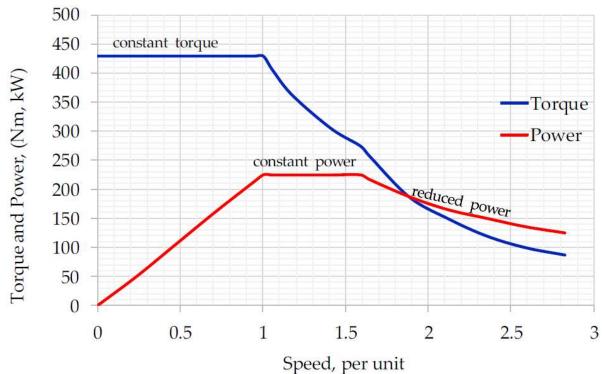
For $\omega > \omega_{sc}$ (very high speed region), we impose $\omega_{rc} = \omega_{rmax} = 1/\sigma T_r$ (stability) $\rightarrow I_{sq} = I_{sd}/\sigma : V_s = V_{sn} \& I_s < I_{sn}$

Exemple : Caractéristique couple - vitesse de la Tesla S60 (2013)

Moteur asynchrone à cage (cage en cuivre): $P_{max} = 225 \text{ kW}$; $C_{max} = 430 \text{ Nm}$; $N_{max} = 14800 \text{ tr/mn}$ ($\approx 190 \text{km/h}$)

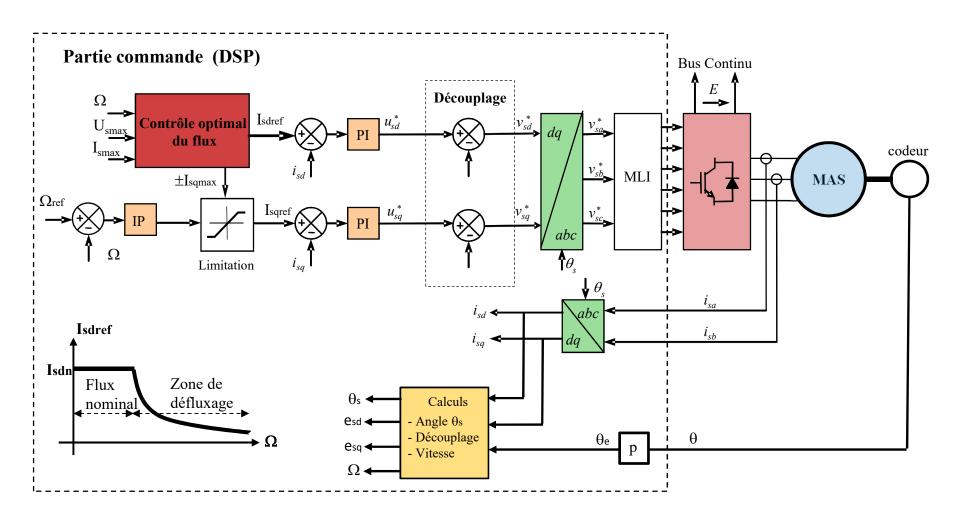
Stator triphasé à 4 pôles (60 encoches) Rotor à cage en en cuivre (pertes réduites)

Réducteur mécanique: k = 9,73 Rayon des roues : 35 cm



Exemple: Caractéristique couple - vitesse de la Tesla S60 (2013)

Loi de contrôle du flux (donc de I_{sd}) en fonction de la vitesse du véhicule : bloc supplémentaire (en rouge) à définir en fonction de l'application...



Bibliographie

Kwang H. N., *AC motor control and electrical vehicle applications*, CRC Press, 2nd ed , Taylor & Francis Group, 2019, 575 pages

Bose B. K., Power electronics and AC drives, Prentice Hall, 1986, 402 pages.

Caron J. P., Hautier J. P., *Modélisation et commande de la machine asynchrone*, Ed Technip, 1995, 279 pages.

Leonhard W., Control of electrical drives, 2nd ed. Springer-Verlag, 1996, 420 pages.

Vas P., Vector control of AC machines, Ed. Oxford University Press, 1990, 332 pages.

Bonal J., Séguier G., *Entrainements électriques à vitesse variable*, Tec &Doc, Lavoisier, 2000, en 3 volumes (404 pages, 449 pages et 352 pages)