

Détecteurs Cryogéniques Damien Prêle

► To cite this version:

Damien Prêle. Détecteurs Cryogéniques. École thématique. DÉTECTION DE RAYONNEMENT À TRÈS BASSE TEMPÉRATURE - DRTBT, Aussois, France. 2018. hal-03767837

HAL Id: hal-03767837 https://cel.hal.science/hal-03767837

Submitted on 16 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Détecteurs Cryogéniques

DÉTECTION DE RAYONNEMENT À TRÈS BASSE TEMPÉRATURE

Damien PRÊLE - APC Aussois, 10 Décembre 2018

- Cryogenic Particule Detectors B. Cabrera CPAD2013
- Supraconductivité L. Dumoulin DRTBT2009
- Le bolomètre résistif L. Rodriguez DRTBT2009
- ► *Intro. to KIDs* S. Doyle DRTBT2012
- ► Isolants d'Anderson S. Marnieros DRTBT2009
- ► Metallic Magnetic Calorimeters M. Rodrigues DRTBT2012
- Cryogenic Particle Detection Ch. Enss Springer
- ▶ Détecteurs bolo. refroidis P. de Marcillac Detect. Mes. 2018
- Principes des Bolomètres P. Camus DRTBT2002
- Direct détection : Bolomètres M. Piat NTTI2009
- ► Coherent systems for CMB M. Gervasi et al. RS2006
- ▶ Physical Principles of LTD C. Enss et al. JLTP2008
- ► Low Temp. Detectors: Principles & Ap. G. C. Hilton LTD13
- Les détecteurs TES D. Prêle DRTBT2012
- ► Superconductive bolo H. Kraus SST1996
- Super. Det. and Mix. mm Astro. J. Zmuidzinas JPROC2004

Plan:

Détection Cryogénique Généralités Rayonnements Détecteurs

Bolomètre

Thermomètre Polarisation Contre-réaction électro-thermique Lecture et multiplexage

KID

Inductance cinetique Kinetic Inductance Detector Matrices de KID et multiplexage

<u>Plan :</u> Détection Cryogénique

Détection Cryogénique

Généralités Rayonnements Détecteurs

Bolomètre

Thermomètre Polarisation Contre-réaction électro-thermique Lecture et multiplexage

KID

Inductance cinetique Kinetic Inductance Detector Matrices de KID et multiplexage

Détecteur

Grandeur physique \Rightarrow **Transducteur** \Rightarrow Signal électrique faible / masquée / bruité \uparrow Perturbations

Transduction multiple :

- ► filtrage fréquence, temporel/trigger, champ de vue
- guidage grandeur initiale ou transport d'une grandeur intermédiaire
- transposition modulation, détection synchrone ou détection quadratique
- Transductions multiples séries/successives grandeurs intermédiaires
- Transductions parallèles discrimination, anti-coincidence/veto, double échantillonnage corrélé

Cryogénie T < 120 K 1 K

- ► faible bruit / rayonnement de fond
- ▶ physique des détecteurs (faible chaleur spécifique, supra, ...)

* Sub-K

Détection de Rayonnement Électromagnétique

		Cha	rge q	e = 0 et Mass	e <i>m</i> :	= 0; $E = hfe$	t Imj	pulsion $p = \frac{h}{\lambda}$
(f	[Hz]	=	c/λ	=	E/h	~	4,965k _B T/h
J	λ	[m]	=	c/f	=	hc/E	≈	hc/4,965k _B T
Ĺ	Ε	[eV]	=	hf	=	hc/λ	≈	$4,965k_BT$
ι	Т	[K]	=	$hf/4,965k_B$	≈	$hc/4,965k_B\lambda$	≈	$E/4,965k_B$

	fréquence f	longueur d'onde λ	Energie E	Т
Radio	< 300 MHz	> 1 m	$< 1 \ \mu eV$	3 mK
μOnde	$\approx 3 \text{ GHz}$	$\approx 10 \text{ cm}$	$\approx 10 \ \mu eV$	30 mK
mm	$\approx 300 \text{ GHz}$	$\approx 1 \text{ mm}$	$\approx 1 \text{ meV}$	3 K
		antennes possible		
IR	$\approx 300 \text{ THz}$	$\approx 1 \mu \mathrm{m}$	$\approx 1 \text{ eV}$	3000 K
Visible	$\approx 500 \mathrm{~THz}$	≈ 600 nm	$\approx 2 \text{ eV}$	5000 K
UV	$\approx 1 \text{ PHz}$	≈ 300 nm	$\approx 4 \text{ eV}$	10 000 K
	\downarrow $\lambda \leq$ distance inter-atomique			
Х	$\approx 300 \text{ PHz}$	$\approx 1 \text{ nm}$	$\approx 1 \text{ keV}$	3 MK
	> 30 EHz	< 10 pm	>100 keV	> 300 MK

 $h\approx 6,63\times 10^{-34}J.s\approx 4,13\times 10^{-15}eV/Hz$ la constante de Planck

Astrophysique multi-longueurs d'onde

prele@apc.in2p3.fr

DRTBT 2018 - Aussois - du 9 au 14 décembre 2018

Détection cohérente *vs* quadratique

- ► Ondes radio (< 100 GHz) ⇒ Détection cohérente (module et phase)
- ► IR et optique (> 1 *THz*) ⇒ Détection quadratique (module au carré)

Limite de détection

Détection cohérente :

Détection quadratique :

- Mesure de l'amplitude et de la phase simultanément
- + Principe d'indétermination de Heisenberg

= limitation quantique $|T_n|$ =

 \Rightarrow pas de limite fondamental ... mais tjs des limites instrumentales

Mesure de la puissance efficace

Exemple de limite de sensibilité à 300 GHz (le mm)

Observation d'un rayonnement thermique (corps noir) :

Loi de Wien :
$$T \approx \frac{3 \, 10^{-3}}{\lambda = 1 mm} = 3K$$

 λ typique pour l'observation du fond diffus cosmologique $_{\mbox{\tiny (rayonnement à 3K)}}$

Limitation **quantique** des détecteur cohérent à 300 GHz Bruit quantique : $\frac{hv}{k_B} = 14K$

Limitation "thermique" d'un bolomètre Contribution en bruit de l'environnement (background) et du détecteur lui-même à la température T (bruit de phonon)

Température de fonctionnement $T \lesssim 300 mK$ (réduction du bruit de phonon des TES en 4 $k_B T^2$ G) pour n'être limité que par l'environnement Background Limited Performances - BLLP

Détection de Rayonnement Corpusculaire/Particulaire

Épergie relativiste <i>F</i> –	mc^2	et Impulsion $n-$	mv
Ellergie relativiste E =	$\sqrt{1-(v/c)^2}$	ct mpulsion p -	$\sqrt{1-(v/c)^2}$

	Charge q	Masse m	"Taille"
Axion (?)	0	? < 1 meV	
Neutrino électronique	0	$< 2,5 \ eV/c^2$	
Neutrino muonique	0	$< 170 \; eV/c^2$	
Neutrino tauique	0	$< 18 \; MeV/c^2$	
Neutron	0	$pprox 940~MeV/c^2$	
WIMP (?)	0	? 1-1000 GeV/c^2	
$\mathrm{e}^{-}\left(eta^{-} ight)$	-е	$\approx 511 \ keV/c^2$	$\approx 1 \text{ am}$
positron (β^+)	+e	$\approx 511 \ keV/c^2$	
Muon	-е	$pprox 106 \; MeV/c^2$	
Proton	+e	$\approx 940 \ MeV/c^2$	$\approx 1 \text{ fm}$
Ion ${}^{4}\text{He}^{2+}(\alpha)$	2e	$\approx 3.7 \ GeV/c^2$	$\approx 1 \text{ fm}$

Couplage avec la radiation

• Guidage / Directivité (télescope, lentille, collimateur, Lyot-stop, antenne)

- Filtrage (coplanaire, optique, dichroïque, blindage ...)
- Dissipation / Absorption / Cible (onde TEM → 377 Ω)

Détecteurs Cryogenics

Détecteurs thermiques/ equilibrium detectors (Excitations $\approx k_B T$) Bolomètre/Calorimètre/HEB

- semi-conducteur
- supra-conducteur (TES)
- magnétique (MMC)

Détecteurs athermiques / non-equilibrium detectors (Excitations > k_BT)

- Inductance Cinétique
 - LEKID
 - MKID
- Heterodyne (non-quadratique)
 - mixer/SIS/SNS
- Nanofil supraconducteur (SNSPD)

Détecteurs Cryogenics (sub-Kelvin)

Détecteurs thermiques/ equilibrium detectors (Excitations $\approx k_B T$) Bolomètre/Calorimètre/HEB

- semi-conducteur
- supra-conducteur (TES)
- magnétique (MMC)

Détecteurs athermiques / non-equilibrium detectors (Excitations > k_BT)

- Inductance Cinétique
 - ► LEKID
 - MKID
- Heterodyne (non-quadratique)
 - mixer/SIS/SNS
- Nanofil supraconducteur (SNSPD)

Plan : Bolomètre

Détection Cryogénique Généralités Rayonnements Détecteurs

Bolomètre

Thermomètre Polarisation Contre-réaction électro-thermique Lecture et multiplexage

KID

Inductance cinetique Kinetic Inductance Detector Matrices de KID et multiplexage

"background"/flux de photon

photons>eV/particules

Soit un absorber à une temperature de référence $T = T_0$

 $C \text{ capacité calorifique [J]/K]; } G \text{ conductance thermique [W/K]; } T_{bolo} \text{ Temperature d'équilibre [K]; } T_{bain} \text{ Température de bain [K]; } E \text{ Energie déposée [J]; } P_i \text{ Puissance incidente [W]; } P_J \text{ Puissance dissipée par effet Joule [W]}$

 $C \text{ capacité calorifique [J/K]; } G \text{ conductance thermique [W/K]; } T_{bolo} \text{ Temperature d'équilibre [K]; } T_{bain} \text{ Température de bain [K]; } E \text{ Energie déposée [J]; } P_i \text{ Puissance incidente [W]; } P_I \text{ Puissance dissipée par effet Joule [W]}$

"background"/flux de photon

photons>eV/particules

Température de référence = bain thermique $\rightarrow T_0 = T_{bain}$

 $C \text{ capacité calorifique [J]/K]; } G \text{ conductance thermique [W/K]; } T_{bolo} \text{ Temperature d'équilibre [K]; } T_{bain} \text{ Température de bain [K]; } E \text{ Energie déposée [J]; } P_i \text{ Puissance incidente [W]; } P_J \text{ Puissance dissipée par effet Joule [W]}$

Constante de temps naturel du bolomètre $\rightarrow \tau = \frac{6}{6}$

 $C \text{ capacité calorifique [J/K]; } G \text{ conductance thermique [W/K]; } T_{bolo} \text{ Temperature d'équilibre [K]; } T_{bain} \text{ Température de bain [K]; } E \text{ Energie déposée [J]; } P_i \text{ Puissance incidente [W]; } P_I \text{ Puissance dissipée par effet Joule [W]}$

prele@apc.in2p3.fr

"background"/flux de photon

photons>eV/particules

Température de référence > bain thermique $\rightarrow T_{bolo} - T_{bain} = \frac{P_I}{C}$

 $C \text{ capacité calorifique [J/K]; } G \text{ conductance thermique [W/K]; } T_{bolo} \text{ Temperature d'équilibre [K]; } T_{bain} \text{ Température de bain [K]; } E \text{ Energie déposée [J]; } P_i \text{ Puissance incidente [W]; } P_I \text{ Puissance dissipée par effet Joule [W]}$

prele@apc.in2p3.fr

Refroidir pour mieux Chauffer

MAY 4, 1935 NATURE 763

take the temperature sensitivity as constant. Using a substance like tungsten, with a higher fustor one can increase this factor still further by one power of 10. If one wishes to measure the heat developed with an accuracy of 1 per cent, the temperature must be allowed to change by 1/10°, assuming that the measuring sensitivity is 1/1,000°-1/10,000". The effects can be accumulated over a period of at least ten minutes, as at very low temperatures the thermal insulation can be made nearly perfect, owing to the lack of radiation. Thus, using a calorimeter consisting of 1 cm.3 of tungsten, one could measure 10.º cal./sec., which is about 1,000 times more sensitive than in the calorimeter of Meitner and Orthmann'. So, for example, the total heating effect of 10 * gm. of radium situated within the calorimeter could be determined, or the heating caused by the y-rays from a source of 0-1 millicurie of radon placed 3 cm. away from the calorimeter,

¹⁰ Biblio pillois a consistence to the two second sec

The specific heat of a paramagnetic sail, however, does not follow the 7¹ law, as its specific heat must necessarily be anomalous in this temperature region?, No great increase in swativity could therefore be achieved below 1² by working with a calorimeter achieved below 1² by working with a calorimeter not apply to an appropriate official states of the paramagnetic sail and an aborbing substance of non-anomalous specific heat.

In some preliminary experiments carried out during the past few weeks, Dr. Kürti and I nevertheless worked with the unfavourable case of the salt alone in order to be able to use our ordinary apparatus for magnetic cooling*. We took 1 gm, of iron ammonium alum and cooled it down to 0.05°, which in this case was an advantage solely because of the improved thermal insulation'. In spite of the very small absorption coefficient of the substance for yrays, and the comparatively low thermometric sensitivity of this particular apparatus, a sharp rise of temperature set in immediately after the substance had been exposed to the y-radiation of 100 millicuries of radon at a distance of 2-5 cm. (This turned out to be a very convenient way for measuring the specific heat of the salt and we will report soon on the results.) Even in this unfavourable case, we could measure 10-* cal./sec., and it should be possible to measure, in a volume of about 1 cm.", an evolution of heat of the order of 10⁻¹¹ cal./see, by using a suitable ab-sorbing substance in combination with the paramagnetic salt and improving the sensitivity of the temperature determination.

With such increased sensitivity, various problems can be attacked, and experiments in this direction are in progress at the Clarendon Laboratory, F. Smon.

Clarendon Laboratory, Oxford. March 28.

¹ L. Meitner and W. Orthmann, Z. Phys., 60, 143; 1930. ⁴ N. Kürti and F. Simon, Proc. Eur. Soc., A, 140, 152; 1935.

Bruits intrinsèques

- ▶ P_i [W] → Puissance incidente (de l'onde)
- $E[J] \rightarrow \text{Energie déposée (par une particule)}$
- C [J/K] → Capacité calorifique du dissipateur couplé au thermomètre
- ► T_{bolo} [K] → Température du bolomètre
- $G[W/K] \rightarrow$ Conductance thermique
- ► T_{bain} [K] → Référence de température

• Calorimetre $\Delta T = P_i/G$ Fluctuations d'Energie : $\Delta E_{rms} = \sqrt{k_B T^2 C}$ [J]

► Bolometre $\Delta T = E/C$ Bruit thermodynamique : $NEP = \sqrt{4k_BT^2G} [W/\sqrt{Hz}]$

🖙 travailler à basse température

prele@apc.in2p3.fr

Bolomètre = Transducteur P ou $E \rightarrow T$

- ▶ P_i [W] → Puissance incidente (de l'onde)
- ► *E* [J] → Energie déposée (par une particule)
- *P_J* [W] → Puissance dissipée par effet Joule dans le thermomètre
- C [J/K] → Capacité calorifique du dissipateur couplé au thermomètre
- ► T_{bolo} [K] → Température du bolomètre
- $G[W/K] \rightarrow$ Conductance thermique
- P_b [W] \rightarrow Puissance de fuite
- ► T_{bain} [K] → Référence de température

Conversion P
$$\rightarrow$$
 T $P_i + P_J - G(T_{bolo} - T_{bain}) = C \frac{\partial T}{\partial t}$
ou E \rightarrow T $\frac{\partial E}{\partial t} + P_J - G(T_{bolo} - T_{bain}) = C \frac{\partial T}{\partial t}$

Constante de temps naturel du bolomètre

Thermomètre = Transducteur T \rightarrow grandeur mesurable

Bolomètre magnétique / Calorimètre magnétique

1 μm Au:Er thermomètre + Absorber X (bismuth-gold bi-couches "en porte à faux")

S. Bandler - GSFC - Magnetic calorimeter arrays for x-ray astronomy - SPIE2010 DDI: 10.1117/2.1201002.002620

Champ magnetic externe vs meandre

M. Rodrigues - LNE-LNHB-CEA - Metallic Magnetic Calorimeters - DRTBT2012

Bolomètre résistif

Bolomètre "Spider web" (JPL)

Matrice Pacs (CEA)

Bolomètre supraconducteurs *mm field array*

Transition-Edge Sensor - TES mm [QUBIC - APC/CSNSM/C2N...]

Thermomètre TES NbSi / Absorbeur mm : grille suspendue en Palladium Pd

Bolomètre supraconducteurs *mm* + Antenne

Transition-Edge Sensor - TES mm/150GHz [SPTpol]

Thermomètre TES Mo/Cu bi-couches sur membrane SiN / Antenne : OMT Nb/NbO + Filtres microstrip

Bolomètre supraconducteurs γ

Calorimètre/Spectroscopie γ [TES γ - Ullom/Bennett - NIST]

Thermometre TES cuivre/molybdène Mo/Cu bi-couche sur membrane Si_3N_4 / Absorbeur γ : étain supraconducteur collé

à l'Epoxy sur des pistes normales

Détection Cryogénique Bolomètre KID

Bolomètre résistif + charge + lumière

Cuoricino Double beta decay Thermomètre NTD Ge/ Absorber TeO₂

Edelweiss

Détection direct de matière noire Thermo. NTD / Abs. Ge + Electrodes

Rosebud

Détection directe de la matière noire Thermo. NTD Ge / Abs. Ger.+BGO

Sensibilité "adimentionnelle" du thermomètre

Polarisation d'un bolomètre résistif

On polarise le thermomètre résistif afin de bénéficier d'un **signal électrique** image de la variation de résistance et donc de la variation de température.

Polarisation en courant

 $V(T) = R(T) \times I_{BIAS}$

$$P_J(T) = R(T) \times I_{BIAS}^2$$

DRTBT 2018 - Aussois - du 9 au 14 décembre 2018

Polarisation en tension

DRTBT 2018 - Aussois - du 9 au 14 décembre 2018

Contre-réaction électro-thermique - ETF

Gain de boucle de la contre-réaction : $\mathscr{L} = \frac{\partial T}{\partial P} \frac{\partial P_J}{\partial T} = \frac{P_J \alpha}{GT_{holo}}$

 $\frac{\partial T}{\partial P}$ - fonction de transfert Thermique du bolomètre $\frac{\frac{1}{G_d}}{1+j\omega\tau}$ $\frac{\partial P_I}{\partial T}$ - fonction de transfert Electrique du bolomètre

En forte contre réaction électro-thermique (TES polarisé en tension et \mathscr{L} (Tres grand) la fonction de transfert $\frac{\partial T}{\partial P} \approx \frac{1}{\mathscr{L}G} \frac{1}{1+j\omega \frac{\tau}{\mathscr{L}}} \to 0$

En cas de forte ETF, le thermomètre empêche la température de varier

prele@apc.in2p3.fr

Sensibilité du TES

TES polarisé en tension V = cst

Sensibilité
$$S_I = \frac{\partial I}{\partial P} = \frac{\partial T}{\partial P} \frac{\partial R}{\partial T} \frac{\partial I}{\partial R}$$
 du TES
 $S_I \quad \lim_{\mathscr{L}} \int \infty \frac{1}{\mathscr{L}G} \frac{1}{1+j\omega\frac{\tau}{\mathscr{L}}} \times \alpha \frac{R}{T} \times \frac{-V}{R^2} = \left[\frac{-1}{V} \frac{1}{1+j\omega\frac{\tau}{\mathscr{L}}}\right]^{\text{MVI}}$

S_I = ∂I/∂P linéaire et indépendant du TES
 τ_{eff} = constante de temps accélérée ⇒ Bande passante ∕

Lecture en courant des TES

Le circuit de lecture du TES doit assurer la **polarisation en tension** du TES et sa lecture en courant.

Le SQUID Superconducting Quantum Interference Device permet une lecture en courant du TES sans résistance d'entrée.

- 1. Amplificateur de courant (trans-impédance $I \rightarrow V$
- 2. Réactance nulle \Rightarrow Polarisation en tension
- 3. Fonctionne jusqu'à $\approx 0K$
- 4. Multiplexage possible (marge de bruit et de bande passante)

La caractéristique périodique du SQUID est linéarisée par une boucle de contre-

réaction qui fixe le gain de la chaîne de lecture à

$$\frac{M_{IN}}{M_{FB}}R_{FB}$$

= boucle de contre réaction du SOUID prele@apc.in2p3.fr

Multiplexage à SQUID

Plan: KID

Détection Cryogénique Généralités Rayonnements Détecteurs

Bolomètre

Thermomètre Polarisation Contre-réaction électro-thermique Lecture et multiplexage

KID

Inductance cinetique Kinetic Inductance Detector Matrices de KID et multiplexage Inductance cinétique alternative à la mesure de la température pour la détection quadratique $\ll T_C$

Inductance cinétique

Apparait dans les couches minces supraconductrices où les **paires de Cooper atteignent de très grandes vitesses** (*/* temps entre "collisions" τ)

L'inertie (masse + vitesse) des porteurs "supra." s'oppose à un changement de sens d'un champ. élec. appliqué

Conductivité dans un métal normal

Conductivité électrique AC suivant le modèle de Drude

$$\sigma_n = \frac{n_n e^2 \tau}{m_n (1 + i\omega\tau)} = \frac{\sigma_0}{1 + i\omega\tau} = \left[\underbrace{\frac{\sigma_0}{1 + \omega^2 \tau^2}}_{\sigma_1 n} - i \underbrace{\omega \tau \frac{\sigma_0}{1 + \omega^2 \tau^2}}_{\sigma_2 n} \right]$$

Métal normal \Rightarrow temps typique entre 2 "collision" \approx femtoseconde :

Conductivité dans un métal normal

Conductivité électrique AC suivant le modèle de Drude

$$\sigma_n = \frac{n_n e^2 \tau}{m_n (1 + i\omega\tau)} = \frac{\sigma_0}{1 + i\omega\tau} = \left[\underbrace{\frac{\sigma_0}{1 + \omega^2 \tau^2}}_{\sigma_1 n} - i \underbrace{\omega \tau \frac{\sigma_0}{1 + \omega^2 \tau^2}}_{\sigma_2 n} \right]$$

Métal normal \Rightarrow temps typique entre 2 "collision" \approx femtoseconde :

Conductivité dans un métal normal

Conductivité électrique AC suivant le modèle de Drude

$$\sigma_n = \frac{n_n e^2 \tau}{m_n (1 + i\omega\tau)} = \frac{\sigma_0}{1 + i\omega\tau} = \left[\underbrace{\frac{\sigma_0}{1 + \omega^2 \tau^2}}_{\sigma_1 n} - i \underbrace{\omega \tau \frac{\sigma_0}{1 + \omega^2 \tau^2}}_{\sigma_2 n} \right]$$

Métal normal \Rightarrow temps typique entre 2 "collision" \approx femtoseconde :

Conductivité dans un supraconducteur

Les paires de Cooper ne diffusent pas : $\tau_s \rightarrow \infty$

$$\sigma_s = \lim_{\tau_s \to \infty} \frac{n_s q^2 \tau_s}{m_s (1 + i\omega \tau_s)} = -i \left[\frac{n_s q^2}{\underbrace{m_s \omega}_{\sigma 2s}} \right] = -i \frac{\sigma_0}{m_s \tau_s \omega}$$

σ_s imaginaire pur \Rightarrow Inductance Cinétique

Modèle à deux fluides (T<Tc)

Expression générale de conductivité dans un supra

$$\sigma = \sigma_{1n} - i\sigma_{2n} - i\sigma_{2s} = \boxed{\frac{n_n e^2 \tau}{m_n (1 + \omega^2 \tau^2)} - i\left(\frac{n_n e^2 \omega \tau^2}{m_n (1 + \omega^2 \tau^2)} + \frac{n_s q^2}{m_s \omega}\right)}$$

Modèle à deux fluides (T<Tc)

Expression générale de conductivité dans un supra

$$\sigma = \sigma_{1n} - i\sigma_{2n} - i\sigma_{2s} = \left[\frac{n_n e^2 \tau}{m_n (1 + \omega^2 \tau^2)} - i\left(\frac{n_n e^2 \omega \tau^2}{m_n (1 + \omega^2 \tau^2)} + \frac{n_s q^2}{m_s \omega}\right)\right]$$

 Σ quasi-particules + super-courant

$$\underline{\omega\tau \ll 1} \Rightarrow \sigma \approx \sigma_{1n} - i\sigma_{2s} = \boxed{\frac{n_n e^2 \tau}{m_n} - i\frac{n_s q^2}{m_s \omega}} \begin{cases} T > Tc & \sigma = \frac{n_n e^2 \tau}{m_n} \\ T = 0 & \sigma = -i\frac{n_s q^2}{m_s \omega} \end{cases}$$

prele@apc.in2p3.fr

DRTBT 2018 - Aussois - du 9 au 14 décembre 2018

Modèle à deux fluides $n = n_n + n_s$

L'impédance de surface
$$Z_S = \frac{1}{t \times \sigma} = \frac{1}{t(\sigma_{1n} - i\sigma_{2s})} = R \parallel i\omega L_K$$

à T
$$\ll$$
 Tc $L_K \approx \frac{1}{\sigma_{2s}} \frac{l}{S} = \frac{m_s}{n_s q^2} \frac{l}{S}$

 \Rightarrow Long méandre d'un film supra mince et fin pour maximiser $\frac{l}{S}$

 m_n et n_n masse et densité d'e⁻; $m_s = 2m$ et $n_s = n/2$ masse et densité de paire de Cooper; q=2e

1) L'inductance cinétique maximisée si t < λ_L (profondeur de pénétration) \rightarrow film fin :

2) Méandre pour minimiser "aussi" l'inductance géométrique :

1) L'inductance cinétique maximisée si t < λ_{L} (profondeur de pénétration) \rightarrow film fin :

2) Méandre pour minimiser "aussi" l'inductance géométrique :

Kinetic Inductance Detector

⇒ Détection par lecture du déplacement et de l'amortissement de la résonance (δf)

Photons $\nearrow \Rightarrow$ quasiparticules $\nearrow \Rightarrow f_0 = \frac{1}{2\pi\sqrt{L_sC}} \searrow \Rightarrow Q = \frac{1}{R_s} \sqrt{\frac{L_s}{C}} \searrow$

Constante répartie *vs* constante localisée

Résonateur CL_K pour mesurer ΔL_K

- 1. Circuit constantes localisées : L et C discrets / élements $\ll \lambda_{readout}$
- 2. Circuit constantes réparties : "association infinie d'éléments" / ligne de transmission $\geq \lambda_{readout}$

MicroWave Kinetic Inductance Detectors

Lumped Element resonator

Casser les "paires de Cooper"

Choix du supraconducteur - *gap* Energie détectée > Energie de Gap Supra

Gap énergetique Δ des supraconducteurs

 $2\Delta \approx 3,5 k_B T_C < h f |_{300 GHz} \simeq 1,2 meV$

Le KID doit travailler à $f > f_c = \frac{2\Delta}{h}$

Supra.	T_C	2Δ	fc
Al	1.19 K	0,36 meV	90 GHz
Re	1.7 K	0,5 meV	120 GHz
Ta	4.4 K	1,3 meV	310 GHz
Nb	9.2 K	2,8 meV	670 GHz

Couplage

Antenne vs "field array"

KID multiplexés

prele@apc.in2p3.fr

Matrice

Matrice

