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Foreword

The present lecture notes are meant to accompany the classes "Introduction to Quantum Mesoscopic Transport and Topological Matter", which I dispense since 2019/20 at École Polytechnique, Palaiseau. They are built up on the grounds of lectures by my colleague Gilles Montambaux, who initiated the third-year physics students at École Polytechnique to the research field of quantum mesoscopic physics, which deals with quantum electronic transport at the mesoscopic scale relevant in the understanding of nano-devices. This field emerged as a major research topic in the 1980ies and 1990ies with some ground-breaking experiments, such as the discovery of the quantum Hall effect in 1980 by K. v. Klitzing (Nobel Prize in 1985), which turned upside-down our understanding of electronic conduction based on Ohm's law and the Drude model. Indeed, the electric conduction turned out, under certain circumstances, to be given in terms of universal constants G 0 = e 2 /h independent of the sample geometry or even the inevitable disorder in the devices. Namely, ballistic transport had to be seriously taken into account.

This discovery came along with the accessibility of high-mobility twodimensional electron gases in modulation-doped semiconductor (GaAs) heterostructures that are nowadays used as the basic material to fabricate highperformance electronic devices at the nanoscale, where the size of the device can be smaller than the average distance between two scattering processes, that is the core of ballistic transport.

Later, since 2005, a new class of materials has been and still is investigated heavily in condensed-matter physics. It is the class of relativistic and topological materials that contains graphene, two-and three-dimensional topological insulators and superconductors, as well as three-dimensional Weyl semimetals. Not only do they display novel forms of quantum transport that is described in terms of a relativisic Dirac equation, usually employed in highenergy rather than in condensed-matter physics, but they also show a certain number of phenomena similar to the quantum Hall effect, such as the quantum anomalous or the quantum spin Hall effects. Similarly to the former, these effects are due to ballistic electron transport over large distances.

These lecture notes provide an introduction to this field of modern condensed-matter physics. While one may think that it is mainly addressed to students that intend to pursue a carreer in (more or less) fundamental research, some of the concepts are equally relevant -already today -for engineers who design electronic devices at the nano-scale in the vast field of quantum technologies. While this is less the case for topological materials, the discussion of which constitutes the second part of these lecture notes (at the moment available only in French), their high potential for future quantum technologies justifies their integration into the third-year program for physics students at École Polytechnique, be they interested in the more fundamental aspects of modern research in quantum matter or oriented towards the engineering aspects of the latter and its applications. Furthermore, the concepts of topological band theory (such as Chern numbers and Berry curvature), which are used in the theoretical description of topological materials, find an application also in other fields of physics, such as quantum optics and high-energy physics.

As mentioned above, these classes are based on lectures by Gilles Montambaux whom I want to thank most warmly in this first place. Namely the chapters 3 and 4 unambiguously bear his signature and heavily inspired by his own lecture notes (in French). I am deeply indepted to him who taught me many aspects of quantum mesoscopic transport, both in his classes and in daily exchange during common research projects ever since I joined Laboratoire de Physique des Solides, Orsay, as a CNRS researcher in 2005. Most of our common research interest was concerned with graphene. At this place, I also need to mention my colleague and collaborator Jean-Noël Fuchs with whom I taught some first classes on graphene (in the Doctoral School of Université Paris-Sud, in 2008, andduring a Summer School in Cargèse, also in 2008). While the later chapters of my lecture notes are based on classes I gave on the quantum Hall effect in a Les Houches Summer School (Singapore, 2009) and at Université Paris-Sud in 2011 on topological matter, they benefited largely from exchange with Jean-Noël Fuchs and his own classes on this topic. Finally I would like to mention and acknowledge my students at École Polytechnique, who allowed me to experiment these classes in 2019 and 2020 and whose feedback was extremely important for the present lecture notes. I would like to thank particularly Clément Brochet, Mathieu Lamblin and Mathieu Lizée for a careful reading of the later chapters of these notes and their fruitful comments and suggestions.

Finally, I would like to mention that the classes were given in French until 2021, precisely the moment when the lecture notes for the second part of these classes had been finalised. The translation to English of the last two chapters is ongoing and will be made available as soon as possible.

Mark Oliver Goerbig, October 2022 Electric transport in materials is doubtlessly one of the central issues in modern technology-based civilisations. Metals, such as copper, are used in electric wires that provide our households with the necessary electricity to light our rooms and to run basic appliances. Semiconductors are the basis of high-performance electronic devices, e.g. our computers or smartphones.

A deep understanding of the electonic properties of materials and devices is therefore not only a field of research and knowledge shared by few university scholars but also necessary for students, be they interested in modern condensed-matter physics or plan they to become technicians and engineers that conceive, construct and maintain such devices.

As fundamental as it is, electronic transport is also an extremely complex field of condensed-matter physics that appeals to different (length) scales. One may intuitively suppose that macroscopic transport, e.g. in housefold appliances, needs to be treated differently from the transmission of electronic signals in computer chips. And indeed, the size of the latter becomes so small that quantum effects turn out to be relevant even if it is at an intermediate length scale (some tens or hundreds of nanometers) larger than the microscopic size of atoms. While the link between the microscopic and the macroscopic worlds, with their different laws, is provided by statistical 1 Introduction: quantum phenomena at the mesoscopic scale physics, these intermediate mesoscopic 1 length scales require a special treatment, which is a major motivation for these classes and lecture notes.

Classical electric transport -Ohm and Drude

The probably first quantitative account of electric transport in conductors was given by G. S. Ohm in 1827, whose famous law

I = GV (1.1)
showed a linear dependence of the electric current I on the applied voltage V . The proportionality constant between the two is nothing other than the conductance G = 1/R, which is the inverse of the electric resistance R. Naturally, all these quantities are macroscopic ones, and Ohm also realised that the conductance depends on the geometry of the metallic rod that he was investigating (see figure 1.1). Indeed, the conductance

G = σ S L (1.2)
is proportional to the cross section S of the conductor and inversely proportional to its length L. It is important to stress that Ohm's law is a purely empirical one obtained experimentally. Again, σ is a proportionality constant called conductivity. Contrary to the conductance, It is a materialspecific quantity that accounts for the conduction properties in a material and its chemical composition -to give an example, the conductivity of copper is different from that of iron. While physics is primarily an experimental science, it is natural to be curious about the theoretical models that provide understanding of the observed phenomena. In the present situation, one may then wonder about the underlying (microscopic) mechanisms of Ohm's emperical law (1.1). A major breakthrough in this direction was the discovery of the electron in 1897, an elementary particle carrying the elemenatary charge -e. 2 Three years later based on this discovery, P. Drude proposed a first microscopic theory of the electric conductivity, using the recently developed framework of the Figure 1.1: Sketch of a concuctor of length L and cross section S. The applied voltage V = V A -V B induces a current I, according to Ohm's law. On the microscopic level, the electric conduction is characterise by the electric field E and the current density j in the conductor.

kinetic theory of gases -a prototype of statistical physics. The microscopic approach is based on Newton's law,

dp dt = -eE, (1.3)
according to which the variation in time of a particle's momentum p is given by a force, here the electric force -eE, which a particle of charge -e experiences in an electric field E.

How can this microscopic law be used to obtain a current? We first need to make a connection between the microscopic variables (here the momentum p of the particle) and the macroscopic quantity, which is the current and that is related to the current density j by I = j ⊥ S, where j ⊥ is the component of the current density perpendicular to the cross section of the conductor (see figure 1.1). At this point, the attentive reader should protest for the first time: while p is the momentum of an individual particle, j as a current density is an average quantity obtained by taking the average over a large number of charged particles. Indeed, we have tacitly made a statistical assumption that all charged particles behave in the same manner and independently from one another. We may then relate the current density j = -en el v = -en el p m (1.4) to the average momentum p = m v or the average velocity v of particles of mass m. Furthermore, n el is the particle density. Again you should protest loudly "Hold on! There is a problem here!" We have supposed, via Newton's law, a proportionality relation between the current density, which is itself proportional to the current, and the average momentum of the particles. Since Ohm's law stipulates that the current Introduction: quantum phenomena at the mesoscopic scale should be proportional to the voltage drop V = -e|E|L, the current density must thus grow linearly with the electric field E, i.e. j ∝ E. However, based on Newton's law, one would expect a proportionality between the time derivative of the current density dj/dt and the electric field and not of the current density j itself. In order to heal this problem, Drude needed to introduce a relaxation processes characterised by a relaxation time τ , e.g. due to scattering that the charged particle experiences while passing through the conductor, and Newton's law should therefore be modified to

dp dt = -eE - p τ .
(1.5)

If we now search for a stationary solution, dp/dt = 0, we obtain the searchedfor equation that relates linearly the current density to the electric field,

j = e 2 n el τ m E = σ 0 E, (1.6) 
where σ 0 = e 2 n el τ /m is the so-called Drude conductivity. The expression (1.6) is sometimes also called Ohm's law -it is actually its microscopic version -and the macroscopic version is retrieved with the help of E = V /L and I = |j|S neglecting the vectorial character of the quantities.

A hint of quantum mechanics in classical transport

While the Drude model has been extremely successful and is still used to characterise the electronic properties of conducting materials, it implies severe conceptual problems. The major one is the assumption of free electrons that underlies the validity of Newton's law: to obtain the Drude conductivity in Eq. (1.6), we have supposed that electrons, even if they are displaced in a material -in a crystal formed out of atoms -, follow an energy-momentum relation = p 2 /2m of electrons in free isotropic space. This point is tacitly understood if we use the equation v = ∇ p = p/m relating the particle's velocity to its momentum. The validity of this approach is highly questionable for the electronic motion in materials and, to spoil parts of the following notes, it is even utterly wrong in many circumstances. However, before discussing the limits of the Drude model, let us see how physicists argued during several decades why this model remains valid. The that are connected by straight lines to allow for a two-dimensional plot of the energy bands while the lattice momentum q is a three-dimensional vector. The dark grey region indicates an energy window in which there are no electronic states. This energy window is called the gap.

argument is based on a quantum-mechanical treatment of the electronic motion in a periodic potential that mimics the underlying atomic lattice felt by the electrons. As it is discussed in great detail in Chap. 2, the periodicity of the lattice shows discrete translational invariance. Remember the continuous translation symmetry of free space, which is certainly better known and that is used for a quantum-mechanical treatment of free particles in terms of plane waves. Indeed, this symmetry allows us to classify the electronic states and their energies by their momentum p, via the above-mentioned energy-momentum relation = p 2 /2m. From a more formal point of view, the eigenstates of the momentum operator are also eigenstates of the Hamiltonian and thus allow us to easily diagonalise the latter; and its eigenvalues are good quantum numbers.

In 1928, F. Bloch showed that these general arguments may also be adapted to the discrete translation symmetry of a periodic lattice, in which case one may also define a momentum, that is sometimes called lattice or quasi-momentum q and that remains a good quantum number. There is however a price to pay: the energy-momentum relation, which we will hence-Introduction: quantum phenomena at the mesoscopic scale forth call dispersion relation or band E(q), is no longer as simple as in the case of free particles. First, there is generally not only one band but as many bands as electronic states in the unit cell, which is the elementary brick of the periodic lattice. Second, the bands are periodic in the so-called reciprocal space spanned by the lattice momenta. As an example, the electronic bands of silicon are shown in figure 1.2(b) in comparison to the dispersion relation of a free particle with the parabolic energy-momentum relation = p 2 /2m [figure 1.2(a)]. Notice that the lattice momentum in a three-dimensional crystal is itself three-dimensional, and it is therefore challenging to represent the bands graphically. 3 As a convention, one uses particular straight paths between high-symmetry points in reciprocal space, which are marked by captical letters in figure 1.2(b), and plots the evolution of the energy along these paths.

Bloch's theory of electronic bands in crystals turned out to be a milestone in the understanding of the electronic properties of materials. Most saliently, it allows us to understand why some materials are conducting (metals) while others do not conduct electricity (insulators or semiconductors). In order to appreciate this point, remember the quantum-statistics chapter of your statistical-physics classes. Electrons are fermions that are constrained by Pauli's exclusion principle which states that each quantum state can only be occupied by a single fermion. 4 Therefore, fermions occupy an energy spectrum successively from below, i.e. they occupy first the states of lowest energy such as to minimise the total energy. In the case of our electrons in a crystal, the bands are similarly filledfrom below until the Fermi level (or Fermi energy), which is the energy of the last occupied state and that depends therefore on the electronic density. Now, two different situations may arise: first, the Fermi level crosses a band so that the last occupied state is infinitesimally close in energy to the first unoccupied one. In this case, electrons can easily travel through the crystal, and one obtains a metal. In the second case, the Fermi level resides in an energy window, where no quantum states are present, e.g. in the dark gray region shown in figure 1.2(b).

An electron from the occupied states must therefore overcome this energy window, which is also called the (band) gap, in order to reach the lowest unoccupied state. As we will discuss in detail in Chap. 3, the electronic motion is then frozen at low temperatures when k B T is smaller than the band gap,5 and no current can flow. This is the typical situation of an insulator or a semiconductor. Notice that there is no clear physical distinction between an insulator and a semiconductor, but only a practical and, honestly, rather arbitrary one: if the band gap is larger than 1 eV, one speaks of an insulator, while a semiconductor has a band gap lower than 1 eV. From a technological point of view the latter can more easily be doped, e.g. via chemical substitution by other elements, such that the system becomes metallic.

Let us now get back to the Drude model and Ohm's law. As we have just seen, it might seem almost suicidal to use the expression (1.6) obtained for free electrons with a parabolic dispersion relation to mimic the electronic behaviour in crystals with its complex band structure. Consider, however, the bands in silicon of figure 1.2(b) and place the Fermi level a tiny bit above the band gap, e.g. if the system is slightly electron-doped. 6 In this case, the additional electrons start to fill the formerly unoccupied band at its minimum in the vicinity of the point X 1 . As you easily see, the band in the vicinity of this point is parabolic to lowest order in the wave vector around this point. Naturally, the parabolicity of the band is not given by the bare electron mass that enters the energy-momentum relation of a free electron, but dimensionally one may describe the parabolicity of the slightly filled band, X 1 (q) = q 2 /2m B , by another mass m B , which is called the band mass. This allows us to use Ohm's law in the form of Eq. (1.6) also for the electronic conductivity in some materials if we replace the bare electron by the band mass, m → m B .

Notice, however, that this replacement is yet not generally valid. As one may easily see in figure 1.2(b), the bands are not always well approximated by a parabolic dispersion. One may also encounter band crossings that are often linear rather than parabolic. If the Fermi level is placed in the vicinity of such a linear band crossing, one cannot attribute a band mass to the bands, and Eq. (1.6) needs to be revisited then. This situation arises, e.g., in graphene -a one-atom-thick graphite layer that is still heavily investigated Introduction: quantum phenomena at the mesoscopic scale due to its amazing electronic properties and reduced dimensionality -where two band cross linearly at the Fermi level. The energy bands of graphene are extensively discussed in Chap. 2, and we will show in Chap. 3 how Ohm's law is modified in this case and more general ones.

From classical to quantum transport

We have seen, in the preceding section, that a quantum-mechanical treatment of electrons in a crystal is necessary to understand the basic transport properties of materials. Quantum mechanics appears in two facets: it provides us with the energy bands -the generalised energy-momentum relation of free particles -and one needs to take into account the fermionic nature of the electrons to place the Fermi level in this band structure. However, even in this case, the electric transport is essentially classical since the electrons can be considered as point-like particles subject to scattering processes that are taken into account via the relaxation time τ in Ohm's microscopic law (1.6). Now remember your basic quantum-mechanics classes in which you were taught that one of the motivations for establishing the theory of quantum mechanics was the particle-wave duality according to which particles, such as electrons, can behave as waves. This particle-wave duality has been illustrated with free particles there, but should the wave character not survive also in the case of electrons in a crystal? After all, the wave functions associated with the eigenstates in periodic lattices are Bloch waves that should have the same power to interfere as plane waves.

The answer to the question whether one should consider electrons in a crystal as waves or particles is as simple or complex as in basic quantum physics, e.g. in atomic physics or quantum optics: it is related to the phenomenon of decoherence. Indeed, beyond a certain distance, which is precisely the phase-coherence length, the phase of the electronic wave function is no longer correlated with its value at the origin such that the electron can no longer interfere with itself along two different paths. For this to happen, one requires a particular type of scattering events, as one may see from the following qualitative argument. The phase of the wave function has two contributions: one takes into account the static plane waves ∼ exp(iq • r/ ) in terms of the position r and the lattice momentum q that is commonly used to describe interferences. The second one is the time-dependent contribution ∼ exp(i t/ ) in terms of the electron's energy . In order to allow The green dots represent elastic scatterers in the form of lattice defects separated by the mean free path l e , and the big spiky red dots show inelastic scattering events spaced by the phase-coherence length L φ (T ), which generally depends on the temperature T . The blue line indicates a possible path of the electron.

for interferences along different paths, one must make sure that the latter phase remains well-defined, i.e. the energy must not change erratically in the scattering processes.

Elastic vs. inelastic scattering: mean free path and coherence length

The electron's energy is indeed conserved as long as the scattering processes are elastic that is the electron does not transmit energy to its scatterer. Ti visualise such an elastic scattering process, you may think of a tennis ball that hits a wall and bounces back. While its momentum has changed in the process, the modulus of its velocity and thus its kinetic energy remain the same. Such elastic scattering events are eventually the most likely ones in materials: they occur in the form of electron scattering on static lattice defects that are ubiquitous in matter. Notice a very important point here that has often be the source of confusion: the atoms of the underlying lattice are not scatterers! As we have seen, they provide -in the absence of defects -a perfectly periodic potential for the electrons, and the lattice momentum q, which is the quantum number associated with the discrete translation symmetry, is therefore conserved. That is why we need to appeal to lattice defects, which break this discrete translation symmetry, in order to scatter electrons. Between two elastic scattering events, the electron moves ballistically in the crystal and one may associate a characteristic length with the average distance between elastic scatterers, the mean free path l e , which

Introduction: quantum phenomena at the mesoscopic scale varies typically between 10 nm (in usual metals) and 1 µm in the case of very clean electron gases in semiconductor heterostructures (see figure 1.3). The mean free path is directly related to the relaxation time τ by

l e = v F τ, (1.7)
where v F is the average (Fermi) velocity of mobile electrons in the vicinity of the Fermi level.

As mentioned above, the electrons maintain phase coherence in these elastic scattering events since their energy is preserved. This is no longer the case when we consider inelastic scattering, in which case the electron is scattered by an obstacle that absorbs part of the electron's energy or alternatively transmits energy to the electron. Such inelastic scattering occurs for example due to the interaction of the electron with the collective lattice vibrations or their quanta, called phonons. Furthermore, an electron can be scattered by another electron due to their mutual interaction, very much like a billiard ball that is hit by another one. These inelastic scattering events occur typically at larger length scales than the elastic scattering events, and this length scale is precisely the phase-coherence length L φ . Contrary to the mean free path, the phase-coherence length is strongly temperature-dependent. Indeed, the acoustic phonons are gapless excitations and their density is thus an algebraic function of temperature, while the density of static impurities is given by an activated behaviour n imp ∼ exp(-∆ imp /k B T ), where ∆ imp ∼ 1 eV is the energy to create a defect and k B is the Boltzmann constant. 7Similarly to the mean free path, one may also associate a characteristic time scale to the phase-coherence length that is called the coherence time τ φ . However, the relation between length and time is not as simple as in the expression (1.7) for the mean free path because the electron undergoes a certain number of elastic scattering events between two inelastic ones, as it is shown in figure 1.3. The transport between two inelastic scattering events is therefore intrinsically diffusive -as opposed to the ballistic transport between two elastic scattering events -and one obtains

L φ = Dτ φ ,
(1.8)

Figure 1.4: Mesoscopic conductors, as defined by the length scales l e (mean free path)

and L φ (phase-coherence length). The regime l e L L φ defines the quantum diffusive regime in which electrons are elastically scattered throughout the conductor, but do not encounter an inelastic scatterer. The electron maintains its phase coherence and thus its capacity to interfere quantum-mechanically. The regime L l e is that of ballistic quantum transport, where the electrons are not scattered at all during their passage through the conductor. The conductor can then be viewed as a wave guide, similarly to that for light in optics.

in terms of the diffusion constant D = v 2 F τ /d, which depends on the (elastic) relaxation time τ and the spatial dimension d, as it will be discussed in more detail in Chap. 3. The typical order of magnitude for the phase-coherence length is 1 µm in metals, and it can reach up to some 10 µm in semiconductor heterostructures.

The mesoscopic scale

We are now armed to appreciate under which conditions one needs to take into account the quantum-mechanical wave nature of the electrons in condensed-matter systems: it is all a question of size! As long as we are concerned with large macroscopic systems the size L of which exceeds both mean free path and phase-coherence length, L L φ l e , we do not need to worry about the wave nature of the electrons. This is the classical ( L φ ) diffusive regime in which one can safely use Ohm's law (1.6) or a variant of it that takes into account the specific form of the bands in the vicinity of the Fermi level. However, as mentioned, high-tech devices depend on the miniaturisation of their electronic components, which can reach the nanometer scale, Introduction: quantum phenomena at the mesoscopic scale whence the term nanotechnologies. While they are not microscopic8 , they are not macroscopic either. They are on an intermediate, mesoscopic length scale, which we now define as the scale set by the mean free path and the phase coherence-length.

More precisely, we shall distinguish two main mesocopic regimes, which are schematically represented in figure 1.4.

1. In the diffusive quantum regime (l e L L φ ), the system size is smaller than the phase-coherence length but larger than the mean free path. One therefore needs to take into account the quantum-mechanical nature of the electronic wave function even if the electrons are repeatedly scattered elastically on their way through the system, whence the term diffusive to denote this regime. In this regime, one encounters a large number of surprising quantum-mechanical phenomena that were heavily investigated in the 1980s and 1990s in the emergent field of quantum mesoscopic physics, which is still very active today. One may cite, e.g. weak localisation of electrons due to the distructive quantum interference of their wave functions on various paths through the system or the Aharonov-Bohm effect, which may be viewed as the condensedmatter analogue of Young's double split experiment. Similarly to the latter, the system consists of a ring connected to a source and a drain so that an electron on its way from the source to the drain has the choice to pass the upper or the lowed half ring (see figure 1.5). While one would expect, according to Kirchhoff's laws that are directly based on Ohm's law, that the conductances of the upper and lower path then simply add up because they are simply conductances in series, this is not the case due to interferences caused by a magnetic flux inside of the ring the variation of which yields periodic minima and maxima in the total conductance. Generally, the conductance in this regime is on the average governed by Ohm's law, albeit with universal conductance fluctuations that are on the order of the quantum of conductance e 2 /h. 2. In the ballistic quantum regime (L l e L φ ) one does not only have to take into account the quantum-mechanical nature of the electrons but also the fact that their transport is now ballistic, i.e. the probability to be scattered while passing through the system tends to zero.

The relaxation time therefore ceases to be a relevant quantity because the time the electron spends in the conducting device is much shorter than the intrinsic relaxation time of the material. It is therefore natural to admit that in this regime Ohm's law is no longer vaild. One would expect an infinite conductance, and even the concept of conductivity as a "microscopic" physical quantity ceases to be relevant. The electrons behave purely as waves in this regime, and the novel concepts which are required to describe the electronic transport in the ballistic quantum regime were strongly influenced by the transmission of optical waves, e.g. in wave guides. As we will discuss in detail in Chap. 4, the Landauer-Büttiker formalism for quantum transport may indeed be viewed as a bridge between transport in condensed-matter physics and wave transmission in optical media, and we will see that the conductance is given by the Landauer formula,

G = e 2 h T , (1.9) 
in terms of the quantum of conductance e 2 /h and a transmission coefficient T .

The Landauer-Büttiker formalism for ballistic quantum transport will serve us to understand the quantum Hall effect, in which current passes through chiral edge states formed at the borders of a two-dimensional electron system submitted to a perpendicular magnetic field (Chap. 5) as well as in two-dimensional topological insulators (Chap. 7).

Quantum and topological matter

In the preceding sections, we have argued qualitatively that quantum mechanics is relevant for electronic transport in two aspects. First, in macroscopic systems, the behaviour of the electrons is governed by Bloch's theory of electronic bands and the Pauli principle; and second, the wave nature of the electrons needs to be taken into account if the system size is reduced to the mesoscopic scale, given by the phase-coherence length and the mean free path. In addition to this, quantum mechanics also plays a relevant role in the understanding of collective phenomena that arise due to electronelectron interactions, such as the different forms of magnetism or chargeordered states, or electron-phonon interactions such as superconductivity.

Introduction: quantum phenomena at the mesoscopic scale Figure 1.5: Experimental evidence for the violation of Kirchhoff's laws and the limit of validity for Ohm's law in the mesocopic regime, l e L L φ . The electrons can travel around either of the arms of the copper rings if they are injected on the left hand side. Classically, one would expect the total conductance G to be simply the sum of the conductances G 1 and G 2 in each of the arms (Kirchhoff's law for conductances in parallel). Quantum-mechanically, however, the electron can be transmitted as a wave simultaneously in both arms, in which case one expects quantum interferences, as it has been measured by Webb et al. (see the lower right panel). The interferences can be triggered by the flux φ in the ring (Aharonov-Bohm effect), and the interference term is then given by the red part in the displayed formula, g cos(2πφ/φ 0 ), in terms of the flux quantum φ 0 = h/e. The amplitude of the interference is given by the quantum of conductance g ∼ e 2 /h. Adapted from R. Webb et al., Phys. Rev. Lett. 54, 2696(1985).

However, the study of collective N -particle phenomena is largely beyond the scope of the present classes, where we stick to one-particle physics.

The above picture of the role of quantum mechanics in electronic systems was heavily challenged with the advent of topological materials at the beginning of the years 2000. As milestones one may mention the isolation of graphene, which has already been mentioned above, in 2004/05. Contrary to most semiconducting materials used in mesoscopic quantum physics, the low-energy electronic properties in this material are no longer described in terms of a Schrödinger equation with an effective band mass, but the electrons may be viewed as massless ultra-relativistic particles that are governed by the Dirac equation, which is normally used in high-energy physics to describe relativistic quantum mechanics. Another milestone was the prediction in 2005 and its discovery in 2006 of (two-dimensional) topological insulators that display a quantum spin Hall effect, an effect similar to the quantum Hall effect. Losely speaking, electrons with spin up show a quantum Hall effect generated by a magnetic field in one direction perpendicular to the system, while electrons with spin down are exposed to a magnetic field in the opposite direction.

Two-dimensional topological insulators are introduced in Chap. 7. Their understanding is based on what may now be called topological band theory, which deals not only with the band spectrum but also with the Bloch states, i.e. the quantum-mechanical eigenstates. For a long time, the importance of these states has been underestimated, but they have quite unusual geometric properties that are encoded in the Berry curvature. These geometric properties, which are discussed in Chap. 6, provide the electronic bands with a topological invariant in the form of an integer, the Chern number, which has profound physical consequences. As its name indicates, the Berry curvature is a curvature that describes a local quantity in some space. This space turns out to be the Hilbert space spanned by the Bloch states, and the Berry curvature can be viewed as the evolution of the Bloch states upon local variation of the lattice momenta, which span the basis state. Topology arises when one considers a global quantity, which is obtained by integrating the local Berry curvature over the entire basis space of lattice momenta. Since both spaces are compact, as it will be discussed in detail in Chap. 2 for the space of lattice momenta and in Chap. 6 for that of the Bloch states, a basic theorem of mathematical topology indicates that all continuous deformations of the system can be characterised by an integer, which is called topological invariant. This point is perhaps rather well known in the Gauss-Bonnet theorem, which the reader may have encountered in previous mathematics classes. The theorem deals with the surface S of an object or, more formally, a compact two-dimensional (Riemannian) manyfold with a Gaussian curvature K(r), which is our local geometric quantity. If one integrates the curvature over the full surface S dσ(r)K(r), where dσ(r) is the infinitesimal surface element at the position r, one obtains a global, topological quantity that is related the the number of holes of the object, called genus g, g = 1 -1 4π S dσ(r)K(r).

(1.10)

The impatient reader may now ask: "Well, this is all nicely abstract, but what does this have to do with the physics of electrons in condensed matter, or even in physics in general?" Imagine that a physically measurable quantity could depend only on this topological invariant. This will then indeed be a very robust quantity: even upon local changes of the environment, say the landscape of lattice defects or charged impurities that should generally affect the electronic dynamics, such a quantity remains unaltered. While these Introduction: quantum phenomena at the mesoscopic scale This means that all different objects (with a single) hole have the same global topological invariant even if they have locally different surfaces given by the geometric curvature K(r).

local changes can be described as continuous deformations, as in the example illustrated in figure 1.6, the global topological invariant (in the example, the genus g) being an integer cannot be changes continuously. All states that can be obtained by such continuous deformations, i.e. without changing this integer, fall into the same homotopy class, which is precisely given by the topological invariant.

It turns out that, under certain circumstances, the conductance is precisely such a rubust quantity protected topologically. It reads (1.11) where the integer n is just the topological invariant mentioned above. This is the case for the (Hall) conductance in the quantum Hall effect, which is nowadays viewed as the paradigmatic prototype of a two-dimensional topological insulator, but also for that in two-dimensional topological insulators such as those studied in HgTe/CdTe quantum wells, where the quantum spin Hall effect was discovered in 2006. Most saliently, these topological materials -not only two-dimensional topological insulators, but also topological superconductors or the threedimensional topological insulators and Weyl semimetals discuss in Chap 8 -display an intriguing bulk-boundary correspondence according to which the bulk invariant determines the presence (and the number) of very special conducting states at the boundary. These boundary states happen to be protected topologically and cannot be removed. Even if one cleaves the material into two parts, the newly generated surface happens to be conducting. To illustrate this highly unusual situation, imagine a tablet of chocolate wrapped in a sheet of aluminium that represents the conducting boundary: in order to get the chocolate, which you are usually more interested in than in the aluminium sheet, break the tablet along with the aluminium cover into two part. If the tablet were a topological insulator, you would encounter the frustrating situation to never get access to the chocolate because the liberated section of the chocolate would immediately be covered by aluminium again. In two spatial dimensions, a topological insulator is thus accompanied by robust conducting edge states which can be viewed as one-dimensional metals. It is precisely these edge channels that conduct electricity in the quantum Hall effect. Moreover the direction of transport is imposed by the orientation of the magnetic field (see Chap. 5) so that the transport in these channels is perfectly ballistic: each channel contributes then a quantum of conductance e 2 /h to the conductance that is at the origin of the precise conductance quantisation as stipulated by Eq. (1.11) in this system.

G = e 2 h n,
To conclude this section, we notice that topological materials, in contrast to the more conventional metals and semiconductors used in nanotechnologies, do not require a miniaturisation down to system sizes below the phase-coherence length or the mean free path in order to display true quantum transport. It is the bulk-boundary correspondence which ensures the formation of ballistic channels, e.g. in two-dimensional topological insulators. Most saliently the associated quantised conductance (1.11) indicates clearly that Ohm's law is no longer valid in this case: the conductance is completely independent of the geometric character of the conductor. It does neither depend on the length of the conductor nor on a cross section as it is stipulated by Eq. (1.2). On the contrary, the associated ballistic transport is described to great precision by the Landauer formula (1.9), in which case the transmission coefficient T is equal to one per conducting channel.

Materials and sample fabrication

The request for new concepts to describe transport at the mesoscopic scale or in topological materials, as those mentioned in the previous section, did not pop up out of the blue. It is closely related to material synthesis in two and three dimensions on the one hand side and device fabrication on the other side. This section is therefore devoted to these two aspects on a very qualitative level. Since we are dealing with conducting systems, the devices are based on metals or semiconductors (see figure 1.7). Generally, metals Figure 1.7: Characteristics of nanocircuits (a) The mean free path in metallic devices is usually in the 10 nm range so that they are mainly in the diffusive regime, but the phasecoherence length can be on the order of 1 µm and exceed the system size. (b) Larger mean free paths can be achieved in semiconducting devices and graphene (not shown here) where the mean free path l e ∼ 1 . . . 10 µm can be on the same order of magnitude as the phase-coherence length. These devices can therefore be either in the diffusive or ballistic regime.

have rather short mean free paths due to intrinsic disorder in the material. They are on the order of 10 nm, far below the system size. The latter can nevertheless be below the phase-coherence length, which is in the micron range at low temperatures, so that one may achieve the quantum diffusive regime. The ballistic regime can be obtained in semiconducting devices based on modulation-doped semiconductor heterostructures where mean free paths in the 1 . . . 10 µm range can be reached, similarly to graphene-based devices.

Fabrication of nano-circuits via lithography

Before discussing how to obtain high-mobility semiconductor devices, let us first take a look at the nanofabrication techniques used to obtain quantum circuits at the nano scale. They are generally based on electron lithography, whose principle is the following (see figure 1.8). The insulating substrate of the future nanocircuit is first covered by a polymer (PMMA) layer that is sacrificed in the process. The polymers are locally bombarded by a focused electron beam that destroys the polymer bonds. This is the proper lithographic process that gives its name to the full procedure. The electron beam can be moved laterally in space and thus allows one to draw the future circuits. The destroyed polymer bonds are then etched away with the help of a chemical solvant that leaves the non-bombarded polymer mask unharmed, and the insulating substrate is thus locally uncovered at the bottom of the trenches. This polymer mask can be viewed as the negative of a photo, and the trenches are the future metallic circuits. The full system is then covered with a metallic film with the help of a (hot) source where the metal is evaporated, before it is put into a bath of another chemical solvant in the lift-off process. This solvent removes the originally unharmed polymer mask but does not attack the metallic parts at the bottom of the trenches that are in direct contact with the substrate. One thus obtains metallic circuits or wires on an insulating substrate that have been designed by the electronic beam. In principle, one may also use focused light for the lithographic process (optical lithography), but electron lithography has the advantage to be more precise thus allowing for a smaller wire width.

Notice that this lithographic technique is also used in semiconducting devices or graphene. In this case, the circuit is not directly etched in the material, but the electron system is first covered by an insulating (cap) layer on which metallic gates are designed with the help of the same lithographic process exposed above. These gates are then used to define electrostatically Introduction: quantum phenomena at the mesoscopic scale Figure 1.8: (a) Illustration of electron lithography. In a preparatory step, an insulating substrate (for example Si) is covered by a polymer (PMMA) layer. The polymer bonds are then locally destroyed, in the lithographic process, by a focused electron beam that can be controled in the xy-plane such as to design the future circuits [see inset (b)]. The destroyed polymers are then removed in an etching process with the help of a chemical solvant that leaves the non-exposed parts of the polymer layer intact. This "negative" is the mask for the nanocircuits, which are now visible in the form of trenches up to the (Si) substrate. The systems is now covered with metal within an evaporation from some source. The metal layer covers both the bottom of the trenches and the mask, which is then sacrificed by a chemical solvant that lifts off the mask while it does not affect the metallic parts at the bottom of the trenches. One thus obtains a metallic nanodevice directly on the substrate that can then be contacted by larger metallic contacts (usually via micro-welding). ( c the circuit in the 2D electron system, e.g. be depleting the regions below the metallic gates. An example is shown in the right panel of figure 1.7(b), which shows a photo of a quantum dot defined electrostatically by the gray metallic gates.

Fabrication of two-dimensional electron systems

As seen in the previous paragraph, the nanocircuits can be obtained lithographically, but in the case of semiconducting devices, one first needs to fabricate the 2D electron gas which serves as the basis of the device. There are several semiconductors used to obtain 2D electron gases, the most popular of which is the AlGaAs/GaAs heterostructure fabricated via molecular-beam epitaxy (MBE). The 2D electron gas is then formed at the interface between two types of semiconductor with different band gap.

Before explaning why the interface between two semiconductors can host a metallic 2D electron gas, let us first see how an atomically sharp interface can be obtained. Indeed, these systems are grown artificially by MBE the principles of which are sketched in figure 1.9(a). The crystal is grown atomic layer by atomic layer on a substrate in an ultra-high vacuum that is required to avoid accidental contamination by particles in the air. The growth is ensured by ovens in which the elements constituting the final compound (here Ga, As, Al and Si) are evaporated and ejected towards the substrate. Shutters are used to control the atomic flux and can be opened and closed during the process. In the case of the AlGaAs/GaAs heterostructure, which is shown in figure 1.9(b), the growth starts with only two elements (Ga and As) in equal amount to obtain a first layer of GaAs. After the desired thickness, the Al oven is opened to continue with a layer of AlGaAs of thickness s. This thickness is determined by the experimental use one wants to make of the final compound and typically varies from some 10 nm to some 100 nm. After this spacer layer is achieved, some Si atoms are added that serve as electron dopants. Indeed, Si has one additional electron as compared to Ga and As and can share it with the AlGaAs host matrix. The process is terminated by shutting the Si and Al ovens to obtain a protective GaAs layer. During the process, the substrate is heated from behind in order to ensure a highly conrolled growth of the crystal and to avoid any kind of lattice defects, such as domain walls or dislocations.

Here, we have illustrated the MBE growth of a typical AlGaAs/GaAs heterostructure, but other elements can be and are commonly used to obtain dif- ferent types of compounds. As an example, one may mention CdTe/HgTe/CdTe quantum wells that are the prototype of a 2D topological insulator displaying the quantum spin Hall effect, which we discuss in detail in Chap. 7. However, let us concentrate on the AlGaAs/GaAs heterostructure and discuss how the 2D electron gas is formed at the interface between GaAs and the AlGaAs spacer. First, one needs to know that GaAs and AlGaAs, in spite of their structural and electronic similarity, have a different band gap that separates the conduction from the valence band. The energy minimum of the conduction band is depicted in the upper part of figure 1.9(b). It is slightly lower in the GaAs part than in the AlGaAs part and would lead to a step. However, the Si atoms in the n-doped part of AlGaAs yield dopant levels below the conduction-band minimum there. Even if they are spatially separated from the GaAs part (over a distance s), it is energetically favourable for the extra electrons provided by the Si dopants to populated the conduction band of GaAs situated below the dopant levels. This charge separation (extra electrons in the GaAs part and positively ionised Si atoms in the AlGaAs part) yields a constant electric field E over the spacer and thus a linear potential offset eEz in addition to the energy step in the conduction band. This provides a triangular confinement potential in the GaAs part at the interface with the AlGaAs spacer over a distance that is itself -by electrostaticson the order of the spacer thickness s. This confinement protential is at the origin of quantised electronic states at the GaAs/AlGaAs interface the lowest level of which is represented by the characteristic wave function u 0 (z). Usually, the Fermi level resides in this lowest level, which is separated from other levels by the confinement gap so that one is confronted with a quenched electron dynamics in the z-direction. Since the motion in the xy-plane remains that of free particles, one obtains an effective 2D electron gas. The potential in the dopant layer then varies quadratically as it is shown in the figure, but this is no longer of interest for the electronic properties of the 2D electron gas. These so-called modulation-doped semiconductor heterostructures have been at the origin of a true technological revolution in semiconductor physics and the fabrication of high-mobility nano-devices. It is namely the spacer level that allows one to push the dopants, which are a necessary ingredient but that also act as undesired scatterers, far away from the interface where the 2D electron gas is formed. The resulting high mobility is at the origin of the large mean free paths in these systems.

Once a wafer of sufficient size is obtained by MBE, quantum circuits can be defined via the above-mentioned lithographic processes. Furthermore, the Introduction: quantum phenomena at the mesoscopic scale crystals can be cleaved prior to the patterning of the circuits in order to contact the 2D electron gas directly by lateral Ohmic contacts.

While these semiconductor heterostructures are still commonly used in the fabrication of electronic nanodevices, another type of 2D electron systems is heavily investigated ever since the advent of graphene in 2004/05. These systems consist of truly two-dimensional crystals whose width is just that of a single atom, or several atoms in the case of more complex unit cells. Originally these crystals have been obtained with the help of the so-called exfoliation technique. It consists of peeling off a layered three-dimensional crystal, such as graphite, where the atomic layers weakly stick together by the van-der-Waals force, while the atoms inside each layer are held together by strong covalent bonds. This is the reason why we can easily draw with a pencil that has a graphite lead: each time we draw a line on a piece of paper, we peel off graphitic layers that stick then to the paper. It is this property that A. Geim and K. Novoselov used in 2004 to isolate graphene with the help of a simple scotch tape (Nobel Prize in 2010). The receipe is quite simple: place a thin graphite chip on the right part of a piece of scotch tape and glue the left part on the right part.9 Then separate the two parts of the scotch tape again. Due to the relatively weak van-der-Waals interaction between the graphitic layers as compared to the cohesive force of the scotch tape, the chip is cleaved into two parts. Repeat this procedure about ten times so that the chip is exfoliated into thinner and thinner graphitic layers. In a last exfoliation process, glue the dirty scotch tape on an insulating substrate 10 and gently lift off the scotch tape [see figure 1.10(a)]. Some graphitic layers are thus transferred to the insulating substrate, which is then investigated via a microscope to search single graphene layers. A typical photo is shown in figure 1.10(b). The optical contrast, which happens to be particularly good on the originally used SiO 2 substrates, allows one to identify single-layer from bilayer and multi-layer graphene, and the desired graphene sample can then be contacted by electric contacts.

Ever since the first exfoliation of graphene samples on SiO 2 substrates, the technique has been used with great success in the fabrication of other 2D materials [see figure 1.11], such as the 2D transition-metal dichalcogenides MoS 2 and NbSe 2 or boron nitride. The latter material is particularly important because it is nowadays used as the standard insulating substrate to host 10 At the beginning, most people used insulating SiO 2 wavers whose back side consisted of doped Si. This doped part later served as a metallic backgate that allows one to control the electronic density in the graphene devices by applying a voltage between the backgate and the graphene layer.

graphene samples. It shares with graphene the same lattice structure -the atoms are arranged in a honeycomb lattice -and it is almost commensurate with graphene. Graphene samples encapsulated in boron-nitride layers are today's highest-mobility samples in which mean free paths of several tenths of microns can be achieved. Furthermore, exfoliated samples can nowadays be transferred with great precision so that one can fabricate heterostructures of layers with different 2D crystals. Encapsulation with insulating boronnitride layers finally allows for a long life time of the samples, which can then be contacted and patterned by metallic gates in a similar manner as the semiconductor heterostructures, as it is shown in figure 1.11(b) for a MoS 2 sample.

Outline of the lecture notes

The remainder of these lecture notes follow this introduction, which was simply intended to serve as an appetizer. The author does not expect the reader to have understood all mentioned concepts which have not yet been defined nor explained in detail. The main course is the following. Chapter 2 is a reminder of the basic band theory following Bloch's quantum-mechanical treatment of electrons in a periodic potential. This sets the stage for a (quantum) statistical treatment of the conductivity in materials with a band structure that is not necessarily described in terms of "free" electrons, where we simply replace the bare mass by a band mass. This statistical treatment yields a generalised version of Ohm's law in terms of the density of states, rather than a band mass (Chap. 3). Furthermore, we review Bloch's band theory in a language that anticipates topological band theory, which will be introduced in Chap. 6 along with some very basic aspects of topology in physics. However, before, we discuss the limits of Ohm's law and its variants in systems at the mesoscopic scale, where the electronic transport needs to be treated within an alternative approach that is given by the Landauer-Büttiker formalism (Chap. 4). Chapter 5 is a central one of the present notes: it yields an introduction to the quantum Hall effect. On the one hand side, transport in the quantum Hall effect is an excellent illustration of the Landauer-Büttiker formalism that desribes to great accuracy the ballistic electron transport, which occurs at the chiral sample edges. On the other hand, it is the prototype of a topological insulator and its bulk-boundary correspondence so that it is a bridge to the following chapters.

After the introduction to topological band theory in Chap. 6, Chap. 7 is devoted to the study of two-dimensional topological insulators. The central role of time-reversal symmetry is also discussed there, and we will illustrate two classes of topological insulators with the help of specific models: the Haldane model, which was proposed in 1988 long before the advent of topological insulators, illustrates the class of insulators with broken time-reversal symmetry, and topological insulators with preserved time-reversal symmetry are presented with the help of the Kane-Mele ( 2005) and the Bernevig-Hughes-Zhang ( 2006) models. The bulk-boundary correspondance is equally introduced in this chapter, and we will use the Landauer-Büttiker formalism to describe theoretically the (ballistic) transport properties in these systems that give rise to the quantum anomalous and the quantum spin Hall effects. Chapter 8 is finally devoted to three-dimensional topological materials -both topological insulators and Weyl semimetals -after a short historical introduction to the relativistic Dirac equation in three spatial dimensions.

These notes cover a series of nine lectures (along with exercise classes) and can therefore not cover the entire field of quantum mesoscopic transport and topological materials. They do not mean to be complete -a both necessary and frustrating situation -but the author has tried to give them a certain coherence via the question of electric transport. Even this field is not fully covered, and many phenomena of quantum coherent transport in the diffusive regime (l e L L φ ), such as weak localisation or universal conductance fluctuations, are only alluded to or discussed on a very qualitative level. Naturally, the characterisation of the electronic properties in condensed matter is not restricted to electric transport. Much insight, e.g. in the topological structure of quantum matter, is obtained by spectroscopic means, be it optical (absorption and reflection, angle-resolved photoemission,...) or electronic spectroscopy (scanning-tunneling spectroscopy, electronic Mach-Zehnder interferometry,...). These spectroscopic techniques are not or only sparsely covered in the present notes. Also a full mathematical description of topology in Bloch bands is missing: homotopy classes and topological invariants are only qualitatively introduced, mathematical proofs are merely sketched, and the theory of fibre bundles is completely absent.

Another, albeit huge, field that is missing in the present classes is that of correlated matter, that is matter in which the electrons can no longer be described in terms of independent or quasi-independent particles that do not interact among one another. This is naturally not true as you all know: electrons carry charge and thus mutually repell each other due to the Introduction: quantum phenomena at the mesoscopic scale Coulomb interaction. While in many cases these interactions are screened and not sufficiently strong to invalidate the picture of independent particlesapart perhaps from yet another renormalisation of there basic properties such as their mass in Landau's theory of Fermi liquids 11 -this is far from being the general situation encountered in condensed-matter systems. Due to these interactions, the electrons can form novel states of matter, such as different magnetic or superconducting phases. They can even form an electron crystal, called the Wigner crystal, that turns out to be a collective insulator, a state of matter theorised by E. Wigner in 1934 and only recently (in 2021) observed directly in two-dimensional transition-metal dichalcogenides. These states of matter are the subject of a very active field of research in today's condensedmatter research, and some correlated phases are also topological. This is the case, for example, in the fractional quantum Hall effect. However, as fascinating as they are, they cannot be covered in these lecture notes. Instead, they would merit a full series of advanced classes along with the necessary theoretical techniques to describe them that are beyond the scope of the present classes.

Chapter 2

Bloch's theorem and tight-binding models -a reminder of band theory

The present chapter is meant to be a short reminder of band theory and Bloch's theorem. The adaption of quantum mechanics to electrons in a periodic potential that is formed by the underlying regular lattice of (ionised) atoms, is at the heart of the understanding of the electronic and also magnetic properties of solids. Covering all its aspects would therefore require a book on its own, and an introduction to this field of physics is given in the class "Electrons in Solids" (PHY552A, see also H. Aloul's book, in French). Here, we will review only its essential aspects to provide the necessary basis for both the quantum-statistical desciption of (classical) electronic transport in materials with an arbitrary band structure (Chap. 3) as well as that for Chap. 6, where topological band theory is introduced. In short, while a conventional introduction to band theory is mainly concerned with the spectral aspects, i.e. the electronic bands, and their related density of states responsible for the thermodynamic properties of electrons in solids, the topological aspets are encoded in quantities beyond these spectral properties. They are encoded in the Bloch wave functions, i.e. the eigenstates of the periodic Hamiltonian, and the present chapter therefore emphasizes the structure of these eigenstates more than perhaps a conventional introduction to band theory.
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Bloch's theorem and tight-binding models

Translation symmetry in Bravais lattices

In order to describe the electronic motion in a crystal, let us briefly remember some basic aspects of quantum mechanics. We all know that quantum states are represented in terms of Hilbert-space vectors while a physical quantity -an observable -is described in terms of a Hermitian operator acting in this Hilbert space. In addition to these basic quantities, symmetry plays an essential role in quantum mechanics. A symmetry is associated with a unitary operator U acting on the Hilbert-space states |ψ and |φ , |ψ = U |ψ and |φ = U |φ , while leaving their scalar product invariant, ψ|φ = ψ|φ . The unitary operator U represents a symmetry when not only the scalar product but also the Hamiltonian Ĥ of the system remains invariant, that is

U ĤU -1 = Ĥ.
(2.1) Quite generally, this unitary operator can be written as the exponential U = exp(iϕ Â) of an observable  =  † , which is called the generator of the symmetry, and a real (scalar) quantity ϕ. Equation (2.1) is then satisfied if the generator commutes with the Hamiltonian,

[ Â, Ĥ] = 0. (2.2)
As a consequence, the average value  is a constant of motion, i.e. it is conserved in time, as it may be seen with the help of Ehrenfest's theorem

i d dt  = [ Â, Ĥ] = 0, (2.3)
where the average is taken over an arbitary state |ψ , Â = ψ| Â|ψ . 1 Moreover, the commutation between the generator and the Hamiltonian indicates that there exists a common basis that diagonalizes both the Hamiltonian and the generator of the symmetry. This is not only a profound mathematical statement but of great practical importance in quantum mechanics: instead of diagonalising directly the Hamiltonian, one may first want to find the 1 Here, we consider an observable that does not depend explicitly on time (Schrödinger picture), with ∂ Â/∂t = 0, while the state satisfies the Schrödinger equation

i d dt |ψ = Ĥ|ψ .
eigenvalues and eigenstates of the generator. The latter are identical with the eigenstates of the Hamiltonian, which is therefore already diagonalised for free (at least in parts, as we may see below), and the eigenvalues are good quantum numbers that specify the spectrum of the Hamiltonian.

Let us illustrate this point with the help of a simple and well-known example that is translation symmetry for a free particle. Indeed, a translation by a vector a is represented by the unitary operator

T a = e ia•p/ , (2.4)
which acts on the wave function ψ(r) = r|ψ and the position operator r as

T a ψ(r) = ψ(r + a) and T a r T † a = r + a, (2.5) 
respectively. Here, the momentum operator p is the generator of spatial translations, and its average value p is naturally conserved for translationally invariant systems. Furthermore, its eigenstates |p , associated with the plane-wave states in a volume V

ψ p (r) = r|p = 1 √ V e ip•r , (2.6) 
form a convenient basis of the system, i.e. they diagonalize the translationally invariant Hamiltonian of a free (relativistic or non-relativistic) particle.

Bravais lattice

Here, the reader may ask how this illustration could help us to understand electrons in solids. Naturally, these electrons are far from being free since they are subject to a potential generated by the atoms forming the underlying lattice. Naturally, the crystal is overall charge-neutral so that the potential vanishes on the average. However, since the electrons responsible for the electronic properties of a material stem from the valence electrons in the outer orbitals of the atoms, we consider these electrons to be (partially) ionised for the moment and put back the electrons later on. The periodic potential, which is felt by an electron and that we consider here, is thus the potential created by these ionised atoms. While continuous translation symmetry is clearly broken by the potential, the latter is periodic if we consider a perfect lattice2 and therefore possesses a discrete translation symmetry. In contrast to a continuous symmetry, where all translations by an arbitrary vector a are allowed, this discrete symmetry means that only translations by multiples of some basis vectors a i are permitted and leave the system invariant. In three dimensions the lattice is then periodic in all lattice vectors

R j = j 1 a 1 + j 2 a 2 + j 3 a 3 , (2.7)
where the subscript j represents the three integer numbers (positive or negative) j 1 , j 2 and j 3 , and the elementary or primitive lattice vectors a i need to be non-coplanar, or mathematically the mixed product must not be zero, a 1 • (a 2 × a 3 ) = 0. The periodicity is illustrated in three dimensions, but it is immediately generalisable to an arbitrary dimension d: j is then a set of d integers, and there are d elementary lattice vectors a i . Notice that a perfectly periodic lattice in which all sites or nodes can be obtained by multiples of the elementary lattice vectors is called Bravais lattice. Bravais lattices fall into different classes and are characterised by their symmetry. This is the object of crystallography, which we do not revisit here; instead we only mention that there are 14 different Bravais lattices in three spatial dimensions and 5 in two dimensions. The Hamiltonian associated with an electron in a Bravais lattice thus reads

H(p, r) = p 2 2m + V (r), (2.8)
where the potential is periodic in all lattice vectors, V (r + R j ) = V (r), and so is the full Hamiltonian H(p, r + R j ) = H(p, r). As mentioned above, the discrete translation by a lattice vector

T R j = e ip•R j (2.9)
is a symmetry operation for this system, and it therefore commutes with the Hamiltonian (2.8), T R j , H(p, r) = 0.

(2.10)

General lattice

Before exploiting discrete translation symmetries within Bloch's theorem, it is important to mention that not all lattices encountered in Nature are Bravais lattices. In order to illustrate this point, let us consider the so-called kagomé lattice in two spatial dimensions depicted in figure 2.1 and let us test whether all nodes of this lattice can be obtained from a single node via multiples of two primitive lattice vectors a 1 and a 2 . Let us try, in a first step, the two vectors δ 1 and δ 2 , which are shown in the left panel of the figure and that connect the two nearest neighbours of an arbitrary node that we paint in red just for illustration reasons. If the lattice were periodic in these basis vectors, any linear combination with integer prefactors of these vectors should indicate the position of a lattice node. This is evidently not the case for the combination δ 1 + δ 2 , which denotes a point in the centre of a hexagon that is not occupied by a node of the lattice. Second try: let us choose the two violet vectors shown in the left panel of the figure. In this case, one immediately sees that any combination R j = j 1 a 1 + j 2 a 2 reproduces a node of the lattice. However, if we fix an origin, e.g. the blue node at the origin of the two violet vectors, only the blue nodes of the lattice are generated by these combinations, but not the red and green ones. In order to reach these other nodes, we need to appeal first to the translations δ 1 and δ 2 , even if they are not (!) symmetries -one needs to insist on this point -, to reach a nearest neighbour of a different colour and then translate this new node (say the green one) by the lattice vectors R j = j 1 a 1 + j 2 a 2 .

To summarise the structure of a general lattice and to fix the terminology used in the remainder, there are two types of vectors connecting the nodes. The vectors R j = j 1 a 1 + j 2 a 2 (or their generalisation in d dimensions) are the lattice vectors, which determine the perfectly periodic underlying Bravais lattice and that define the symmetry operations in terms of the discrete translation operators (2.9). In spite of their importance, these lattice vectors are not sufficient to span the full lattice but only one of the sublattices represented, here, by a specific colour. The two primitive lattice vectors a 1 and a 2 span the elementary unit cell of the lattice, which contains possibly several inequivalent nodes that are connected to the origin (usually an arbitrarily chosen node) by the vectors δ 1 and δ 2 . These vectors δ m define the basis (also called the motive) of the lattice. If there are N basis inequivalent nodes in the primitive cell, one has N basis sublattices each of which has δ m , with m = 1, ..., N basis , as its origin. 3 In general, an arbitrary lattice can always be decomposed into a basis and a Bravais lattice. The general lattice can then be fully obtained by displacing the entire basis by the lattice vectors R j .

In our illustrative example of the kagomé lattice in figure 2.1, the un-derlying Bravais lattice spanned by the violet vectors is a triangular lattice. The basis contains three nodes (N basis = 3) represented by the three different colours, and each set of nodes of like colour forms a sublattice, which reproduces the Bravais lattice. Another manner to show that the kagomé lattice is itself not a Bravais lattice is to displace an arbitary patch of the lattice and to superpose it with the original lattice. This is represented in figure 2.1, where the patch is the violet rectangle. If the patch is displaced by a Bravais lattice vector R j , such as in the left panel, the overlap is perfect. However, if we use an arbitrary vector that connects nodes of different colour (see right panel of the figure), the patch does not fit the original lattice.

Bloch's theorem

Let us now see how the above symmetry considerations allow us to understand electronic bands in a lattice. We have already remembered the fact that since the discrete translation operators T R j commute with the periodic Hamltonian H(p, r + R j ) = H(p, r), one might first want to diagonalise the translation operator to simplify the diagonalisation of the Hamilitonian. There exist different solutions of this problem, which are not all reviewed here. Instead, we concentrate on the so-called tight-binding model, which is based -as indicated by its name -on electrons that are tightly bound to their individual atoms. This is indeed a reasonable assumption in many cases. Indeed, even if the atoms are placed in a crystal, an electron on a lattice site is most affected by the potential generated by the (ionised) atom on this site, while the other sites can be viewed as a relatively weak perturbation.

We suppose that we already know the atomic states φ a (r -R j -δ m ) for an electron bound to its atom situated at the position R j + δ m , it is essentially an atomic orbital of an isolated atom that we do not calculate here but that we simply consider to be known from an atomic-physics calculation. Quite generally, there are many atomic orbitals per lattice node, but we are only interested in those that host an electron in the vicinity of the Fermi level.

For the moment, we consider that there is only one orbital per lattice node, but the situation is generalised in a straight-forward manner if we formally multiply the number of lattice nodes by the number of orbitals that we take into account. Formally, N basis is then the number of nodes times the number of orbitals per atom that we take into account, and some m thus share the same displacement vector δ m in the unit cell.

Bloch's theorem for a Bravais lattice

For the moment, we discard the above-mentioned complications and consider a Bravais lattice with a single node and a single atomic orbital per unit cell that we place at the Bravais-lattice nodes for convenience, φ a (r -R j ). Based on pure inspection and intuition obtained from plane waves describing free particles, Bloch proposed a fully delocalised superposition of these localised atomic wave functions by adding a plane wave factor exp(ik • R j ) to each of the orbital functions. This yields the Bloch wave function (2.11) where N denotes the number of lattice nodes or unit cells, which goes to infinity in the thermodynamic limit, similarly to the factor V in the prefactor of the plane waves of free particles [see Eq. (2.6)]. One can directly show, with the help of Eq. (2.5) and its action on the atomic wave functions depending on r, that Bloch's proposal (2.11) is actually the good one. It is indeed an eigenstate of the discrete translation operator (2.9) since it satisfies the eigenvalue equation

ψ k (r) = 1 √ N j e ik•R j φ a (r -R j ),
T R j ψ k (r) = e ik•R j ψ k (r).
(2.12)

We notice immediately that, apart from a factor , the wave vector k is nothing other than the lattice or quasi-momentum k mentioned in the introduction, similarly to the case of free particles. In the following, we will mostly speak about the wave vector rather than lattice momentum, but keep in mind that it is the same quantity.

Because the translation operator commutes with the periodic Hamiltonian, the Bloch wave function is an eigenstate of the latter, and we have already done the major part of the disagonalisation of the Hamiltonian and the calculation of its spectrum. We will see below that this is also the case in the more complex situation of a general lattice with a basis of several lattice sites. In order to appreciate this point, we consider the so-called tight-binding model in which electrons are allowed to pass to a site R j from another one R j + a l situated at a distance a l by the usual quantum mechanical tunnel effect with the characteristic tunneling amplitude t l . If we represent the quantum state centred at the lattice site R j by the Hilbert-Figure 2.2: Band spectra for the square lattice (left panel) and the triangular lattice (right panel). We have chosen t 1 = t 2 = t 3 = -t for illustration.

space vector |R j ,4 the above-mentioned tunneling event can be represented by the operator t l |R j R j + a l |. The overall Hamiltonian, which takes into account all different tunnel events between nearest neighbouring sites can therefore be written as a superposition of all these operators, Ĥ = j,l

t l |R j R j + a l |, (2.13) 
where the different a l are the vectors connecting an arbitary site to its nearest neighbours, as it is depicted in the insets of figure 2.2 for a square lattice (left panel) and the triangular lattice (right panel). In the case of a Bravais lattice, we can even write the Hamiltonian (2.13) in terms of the discrete translation operators because T a l |R j = |R j -a l .5 Indeed the discrete translation operators can also be written as (2.14) so that the tight-binding Hamiltonian (2.13) may be easily expressed in terms of the latter as Ĥ = l t l T a l .

T a l = j |R j R j + a l |,
(2.15)

This allows us also to obtain immediately, without calculations but simply by appealing to Eq. (2.12), the spectrum of the Hamiltonian

E(k) = l t l e ik•a l , (2.16)
which is nothing other than an electronic band. It is shown in figure 2.2 for a square lattice (left pannel), with a 1 = au x and a 2 = au y , and for a triangular lattice (right pannel), with a 1 = au x , a 2 = (a/2)(u x + √ 3u y ) and a 3 = (a/2)(-u x + √ 3u y ). For illustration reasons, we have chosen all t l = -t to be equal in these plots. Notice that if a l is a primitive lattice vector relating two nearest neighbour sites, then so is -a l , and it is associated with the same tunneling amplitude in order to maintain the symmetry of the Bravais lattice. 6 The tunneling amplitude will henceforth be called hopping parameter. The phase factors exp(ik • a l ) and exp(-ik • a l ) of the spectrum (2.16) thus come along with the same hopping parameter and thus simply yield a cosine, 2 cos(k • a l ), and the specrum thus becomes

E(k) = 2 [t 1 cos(k x a) + t 2 cos(k y a)]
(2.17)

for the square lattice and

E(k) = 2 t 1 cos(k x a) + t 2 cos k x + √ 3k y 2 a + t 3 cos -k x + √ 3k y 2 a
(2.18) for the triangular lattice.

When we take a closer look at the bands in figure 2.2, we notice that they are periodic in the space of wave vectors (or lattice momenta). This space is called reciprocal space, and its periodicity is a very important property of lattice systems that is absent for particles moving in a space with a continuous symmetry. Indeed, the dispersion E(k) = 2 k 2 /2m of a free non-relativistic particle, described in terms of the Schrödinger equation, is evidently not periodic in the wave vector but monotonically growing. The periodicity of physical quantities in reciprocal space is actually a consequence of the periodicity in the direct space of the Bravais lattice. In order to understand this point in more detail, let us introduce the reciprocal lattice, first in a formal manner -its physical significance should become clearer in the following paragraphs. In the same manner as the direct lattice may be constructed from the primitive lattice vectors a i , i = 1, ..., d (for a d-dimensional lattice, by ) and the fact that the product of two integers j i and µ i is itself an integer, that the eigenstate is unaltered, ψ k = ψ k+G . This periodicity in reciprocal space of the Bloch wave function is then naturally transmitted to all of its associated physical quantities such as its energy. This is the origin of the periodicity of the Bloch bands in the wave vectors

R j = j 1 a 1 + ... + j d a d ,
E(k) = E(k + G).
The above-mentioned periodicity in reciprocal space, which is a consequence of the original lattice periodicity, is a fundamental property of band theory, and it also turns out to be essential in the understanding of the topological aspects of Bloch bands that are discussed in Chap. 6. In contrast to free particles in a continuous space, not all wave vectors or momenta are therefore inequivalent -this is the basic difference between a lattice momentum and the usual momentum associated with a displacement in a continuous space -but they are defined modulo a reciprocal-lattice vector. We are therefore allowed (or even obliged, in order to avoid multiple counting of the same states) to restrict states in reciprocal space to those wave vectors that are inequivalent. The ensemble of these inequivalent wave vectors defines the first Brillouin zone, and there are various manners to define it. The conventional one, which we limit ourselves to, is the Wigner-Seitz construction represented in figure 2.3. Take a site of the reciprocal lattice -any one will do the job since they are all equivalent as we know by now -and call it the Γ-point, which is the center of the Brillouin zone. Then take all vectors relating the Γ-point to its (nearest) neighbours on the reciprocal lattice and cut them in the middle by a line perpendicular to the respective vectors. These lines delimit precisely the first Brillouin zone, as it is shown in figure 2.3 for the square (left panel) and the triangular lattice (right panel).

Illustration of the physical significance of the Brillouin zone

The equivalence between states that differ in their wave vector by a reciprocallattice vector can be illustrated nicely in the following example of an exciation in a one-dimensional crystal. It is noteworthy that the concepts of reciprocal lattice and Brillouin zone have been introduced before the advent of quantum mechanics and the theoretical description of the electronic motion in a crystal. Indeed, these concepts apply to all wave-like excitations in a periodic structure, and the most natural one is certainly the vibration of the lattice itself. Consider a one-dimensional chain of evenly spaced atoms, with a lattice spacing a, and a harmonic transverse displacement of the atoms in the direction perpendicular to the chain. This is depicted in panel (a) of figure 2.4. In order to describe this harmonic displacement, a rational person -for example a child that is asked to draw a line connecting the red point of the figure -would naturally propose an interpolation such as that shown in panel Figure 2.4: Illustration of the equivalence of oscillations in a one-dimensional lattice with wave vectors that differ by a reciprocal-lattice vector. Panel (a) represents a physical excitation of the lattice with a lattice spacing a of fixed wavelength that we arbitrarily choose to be λ = 4πa. Here, it is a transverse oscillation in which the atoms are displaced in a direction perpendicular to the lattice direction x. In the absence of the excitation, the atoms are placed at the discrete positions x = ja, where j are integers. (b) Interpolation with a continuous function

f 1 (x) = -2 cos(k x x) = -2 cos(k x ja). (c) Interpolation with a continuous function f 2 (x) = -2 cos[(k x + 2π/a)x] = -2 cos[(k x a + 2π)ja). (d)
The superposition of the two functions shows that both describe the same physical excitation.

(b), described by the formula f 1 (x) = -2 cos(k x x) = -2 cos(k x ja). Notice that this formula is now continuous and it describes, since it is a good interpolation, also positions between the discrete positions of the atoms x = ja in the x-direction, where j is an integer.

In addition to this very rational proposal, a mathematician might also suggest an alternative, more complicated interpolation formula depicted in panel (c). Instead of connecting two neighbouring atoms by a straight line, the mathematican's proposal has an additional oscillation in the space between the two atoms. This interpolation is given by the formula

f 2 (x) = -2 cos[(k x + 2π/a)x] = -2 cos[(k x a + 2π)j)
, and even if this proposal seems unnatural, it described the same elongation of the atoms in the excitation. As screwed as it may seem, it is therefore a formula that is as legitimate as the first one f 1 (x) since only the discrete positions of the atoms matter and not the space in between them, as it is shown in panel (d), where we superpose the two functions with the discrete lattice excitation. As reasonable physicists, we therefore need to identify the two periodic functions that are different in their wave vector: while f 1 has a wave vector k x , that of f 2 is k x + 2π/a. However, a * = 2π/a is precisely the reciprocal lattice vector of a periodic one-dimensional lattice with lattice spacing a, satisfying Eq. (2.19) for a onedimensional lattice. Similarly, any function f µ+1 (x) = 2 cos[(k x + 2πµ/a)x) with an integer value of µ is as eligible as or equivalent to f 1 or f 2 . In order to avoid redundancies, we therefore need to identify all these functions, which describe the same lattice excitation, and this is precisely done by restricting the wave vectors to the first Brillouin zone, which in our one-dimensional example is given by the interval [-a * /2, a * /2[= [-π/a, π/a[.

Continuum limit and band mass

Most physics students are confronted, in undergraduate classes on electronic transport, with the somewhat cryptic statement by their professors that electrons in a conductor, i.e. in a crystalline structure such as those discussed above, behave as free electrons albeit with another mass, called band mass, that bluntly falls from the sky. This is the case in the Drude model, which has been introduced in the introduction and that provides a microscopic approach to Ohm's law. We are now armed to understand better this enigmatic band mass. Indeed, the energy bands of electrons, which we have just calculated for the square or the triangular lattice, are not parabolic but given by the periodic functions (2.17) and (2.18). However, consider for the moment that these bands are only sparsely filled by electrons. In this case, the electrons occupy only states in the vicinity of the Γ-point where the bands have their minimum in the examples that we haev chosen. The position of this minimum is the origin of the wave vectors (at the Γ-point, we have k = 0). In this limit, we only need to consider wave vectors in the vicinity of the Fermi wave vector k F a 1 so that we can make a Taylor expansion of the bands in the vicinity of the Γ-point. This limit is also sometimes called the continuum limit because the wavelengths are much larger than the lattice spacing such that the atomic positions are coarse-grained. 7The Taylor expansion of the band dispersion (2.17) for the square lattice then yields

E(k) 2(t 1 + t 2 ) -t 1 k 2 x a 2 -t 2 k 2 y a 2 = E 0 + 2 k 2 x 2m x + 2 k 2 y 2m y (2.20)
around the Γ-point, where E 0 = 2(t 1 + t 2 ) is an irrelevant constant and the band masses are defined as

m x = - 2 2t 1 a 2 et m y = - 2 2t 2 a 2 . (2.21)
We need to point out two observations. First, the band mass generally depends on the direction of propagation, in contrast to the usual bare mass of free electrons, as a consequence of the isotropy of free space. However, if the crystal has a square symmetry (t 1 = t 2 ), the band mass becomes isotropic with m x = m y . Second, the band mass has nothing (!) to do with the bare mass m 0 of electrons in free space, as one clearly sees from the last equation: it is given entirely in terms of the lattice parameters -the lattice spacing and the hopping parameters. The origin of the formal equivalence of an electron at the band bottom and a free electron is simply due to the fact that a Taylor expansion around a minimum yields a parabolic function to lowest non-trivial order, and the curvature can be identified with a mass on a purely dimensional basis.

Simlilarly to the square lattice, a Taylor expansion of the band dispersion (2.18) around the Γ-point yields a slightly more complicated expression

E(k) E 0 -t 1 + t 2 + t 3 4 k 2 x a 2 - 3 4 (t 2 + t 3 )k 2 y a 2 - √ 3(t 2 -t 3 ) 2 k x k y , (2.22)
with the unimportant constant E 0 = 2(t 1 + t 2 + t 3 ). Even if it is more complicated than the expression for the square lattice for pure geometric reasons, it keeps nevertheless a quadratic form in the wave vectors that can be rendered diagonal by a spatial rotation, E(k)

E 0 + ( 2 /2)(k 2 + /m + + k 2 -/m -)
. However, we are not interested, here, in this rotation, but we stick to the simpler case t 2 = t 3 , for which the dispersion relation can be written in the same manner as for the square lattice,

E(k) E 0 + 2 k 2 x 2m x + 2 k 2 y 2m y , (2.23)
in terms of the band masses

m x = - 2 2(t 1 + 2t 2 )a 2 and m y = - 2 6t 2 a 2 (2.24)
in the x-and y-directions. Similarly to the square lattice the band becomes isotropic in the vicinity of the Γ-point if all hopping parameters are equal, t 1 = t 2 = t 3 .

Bloch's theorem for an arbitrary lattice

We now turn to the more complicated situation of Bloch's theorem for a general lattice that is not a Bravais lattice. As we have discussed above, such a lattice can always be decomposed into a basis of N basis sites or orbitals8 and a periodic Bravais lattice obtained by translating the basis by the lattice vectors R j . Consider for the moment that there are no tunneling events (hoppings) between sites of different sublattices, i.e. the sublattices are perfectly decoupled. In this case, we can describe the electronic motion on each of the sublattices simply by a Bloch wave function on each of the sublattices m = 1, ..., N basis , where N u.c. denotes the number of primitive unit cells that is the number of sites per sublattice. Quantum mechanics tells us that each superposition of these Bloch wave functions is an equally valid state on the full lattice, (2.26) since it still satisfies the lattice symmetries. If we now consider couplings between the sublattices, the amplitudes u (m) (k) are no longer freely choosable but fixed by the diagonalisation of the Hamiltonian in the subspace of the Bloch wave functions (2.25) at each of the wave vectors k. Before discussing this diagionalisation, which allows us to obtain the spectrum of N basis electronic bands, let us investigate in more detail the structure of the Hilbert space that we are confronting here. If we consider a lattice with N sites (atomic orbitals), the full Hilbert space must naturally be of dimension N . This number is decomposed into the number of unit cells N u.c. and that of sites per unit cell N basis , N = N u.c. × N basis . As mentioned above, Bloch's theorem applies to the underlying periodic Bravais lattice and thus allows us to diagonalise this periodic part in terms of the wave vectors in the first Brillouin zone in reciprocal space. If we consider periodic boundary conditions, the number of (discrete) wave vectors therefore equals that of unit cells N u.c. (remember your statistical-physics classes, e.g. PHY433).

ψ (m) k (r) = 1 √ N u.c. j e ik•R j φ m (r -R j -δ m ) (2.25)
ψ k (r) = N motif m=1 u (m) (k)ψ (m) k (r),
Bloch's theorem therefore allows us to perform an essential part of the disagonalisation, but we are still confronted with a Hamiltonian that is yet not diagonal in the subspace of a given wave vector k. In order to retrieve the correct number of quantum states, each of these subspaces must be of dimension N basis , i.e. the subspace Hamitonian is given by an N basis × N basis matrix that we will study in detail below. Put differently, this matrix has a spectrum of N basis eigenvalues that evolve in reciprocal space to the N basis energy bands that are functions precisely of the wave vector, E n (k).

Let us now take a closer look at the Hamiltonian in the N basis -dimensional subspace, which is nothing other than the Bloch Hamiltonian H k , which is characterised by its matrix elements

H m,n k = ψ (m) k | Ĥ|ψ (n) k
(2.27) the matrix elements of which are given in terms of the sublattice Bloch wave functions (2.25). In order to appreciate this point, consider the Schrödinger equation H|ψ k = E|ψ k for the full Bloch wave function (2.26), ψ k (r) = r|ψ k , and multiply it from the left with the bra ψ k |,

ψ k |H|ψ k = E ψ k |ψ k .
(2.28)

The scalar product ψ k |ψ k accounts for the fact that the Bloch wave function is not necessarily normalised. With the use of the decomposition (2.26), this equation becomes

m,m u (m) * (k) ψ (m) k | Ĥ|ψ (m ) k -E ψ (m) k |ψ (m ) k u (m ) (k) = 0, (2.29)
which implies the secular equation

det[H k -ES k ] = 0, (2.30)
the solution of which9 yields the N basis energy bands E n (k) we are looking for.

In addition to the Bloch Hamiltonian, this equation appeals to the overlap matrix

S k = ψ (m) k |ψ (m ) k
. Consider this overlap matrix to be simply the one matrix S k = δ m,m , i.e. we neglect the (exponentially suppressed) overlap between atoms on different lattice sites.10 In this case, the secular equation is the solution of a new static Schrödinger equation 

H k |u n (k) = E n (k)|u n (k) , ( 2 
n (k), |u n (k) ∼         u (1) n (k) . . . u (m) n (k) . . . u (N motif ) n (k)         . (2.32)
The reader should be warned about two things here! First, there is a nonnegligible danger to get lost in the indices. The subscript n indicates the n-th eigenstate, which is associated with the band E n (k), while the superscript (m) denotes the sublattice component. Second, the nomenclature is somewhat unusual: contrary to the usual quantum-mechanical relation between Hilbert-space state and wave function, the Bloch wave function is not the real-space representation of the Bloch state |u n (k) but of |ψ n (k) . As it is discussed in more detail below in section 2.2.3, the Bloch state |u n (k) represents rather an envelope function u n (k, r) that is itself periodic in the underlying Bravais lattice. If we wanted to be precise, we should call |u n (k) the "state corresponding to the periodic part of the Bloch wave function". However, this expression is rather cumbersome in view of the use we make of |u n (k) in these classes so that we stick to the term "Bloch states". Before a more exhaustive comparison between the two bases, associated with the periodic Hamiltonian and the Bloch Hamiltonian, respectively, we finish this section with a receipe to diagonalise the Bloch Hamiltonian and to obtain the different bands in terms of the atomic energies

t m,m (R j ) = d D rφ (m) * (r -R j -δ m )∆ Ĥφ (m ) (r -δ m )
, which are matrix elements of the Hamiltonian sandwiched between two atomic wave functions. The atomic wave function φ (m ) (r -δ m ) is that at the m -th site in the unit cell that defines the origin of the Bravais lattice, while φ (m) (r -R j -δ m ) is that at the site m in the unit cell at the (Bravais) lattice vector R j . The attentive reader may have noticed that it is actually not the full periodic Hamiltonian Ĥ that enters in this matrix element but only a part ∆ Ĥ of it, which can be understood in by the following reasoning. The potential that enters the full Hamiltonian is the periodic lattice potential V (r), which is formed by all the atoms of the lattice. However, the atomic wave function φ

(m) (r -R j -δ m ) is itself an eigenstate of the atomic Hamiltonian Ĥa φ (m) (r -R j -δ m ) = E (m) a φ (m) (r -R j -δ m ), (2.33)
which already takes into account the potential formed by the atom at the lattice site R j +δ m . In order to avoid double counting, the contribution from this atom to the potential V (r) must therefore be omitted, and the potential formed by the other atoms is therefore perturbatively taken into account by the part ∆ Ĥ of the Hamiltonian, which formally reads Ĥ = Ĥa + ∆ Ĥ.

(2.34)

With this in mind, the matrix element (2.27) of the Bloch Hamiltonian can be calculated, in d dimensions, as

ψ (m) k |H|ψ (m ) k = j,j e ik•(R j -R j ) N u.c. d d r φ (m) * (r -R j -δ m ) Ĥφ (m ) (r -R j -δ m ) = l e ik•R l d d r φ (m) * (r + R l -δ m-m )( Ĥa + ∆ Ĥ)φ (m ) (r ) = E (m ) a S m,m (k) + T m,m (k) , (2.35)
where we have performed diverse variable changes that allow us to omit one sum over the lattice vectors. It simply yields a factor of N u.c. which cancels that in the denominator in the second line. Furthermore, we have introduced the relative distance δ m-m = δ m -δ m between two different sites inside the same unit cell. 11 As mentioned above, we neglect the off-diagonal elements of the overlap matrix, which we consider to be 12 S m,m (k) δ m,m , and we have defined the hopping matrix

T m,m (k) = j e ik•R j t m,m (R j ).
(2.36)

It is given by the atomic energy

t m,m (R j ) = d d rφ (m) * (r -R j -δ m-m )∆ Ĥφ (m ) (r), (2.37)
which we have introduced above and that takes into account the hopping (tunnel effect) between atomic orbitals, and it is weighted by the plane wave states exp(ik • R j ) inherited from the Bloch wave function. We thus obtain the same structure as in the case of the tight-binding model on a Bravais lattice, where the hoppings were also weighted by these plane-wave factors, but we now need to distinguish between the different sites inside the unit cell.

In conclusion, here is the simplified receipe for writing down the tightbinding model on a general lattice. Fix the origin of the Bravais lattice on an arbitrary lattice point. A tunnel event to a neighbouring site is then given by the hopping parameter t m,m (R j ). Usually these hopping parameters depend on the relative distance between the origin and the site where the electron may hop to, and often the hopping parameter is then the same for all nearest neighbours. 13 Check whether the site, which is the target in the hopping process, is inside or outside the unit cell which contains the origin. If it is inside, we have R j = 0 and the phase factor that needs to be multiplied with the hopping parameter is simply one. If it is outside this unit cell, one needs to multiply the hopping parameter with the phase factor exp(ik • R j ) where R j is the vector that connects the unit cell of the origin with that of the target site. Please pay attention here: it is not the vector that relates the origin, which resides, e.g, on the sublattice A, to the target site, which may belong to a different sublattice. Instead, the vectors R j connect unit cells, i.e. it connects the origin on the sublattice A to the site of type A inside the unit cell that contains the taget site. The relative distances δ m do thus not occur in these phase factors but only the (Bravais) lattice vectors R j , as one clearly sees from Eq. (2.36). The off-diagonal elements of the Bloch Hamiltonian are then directly given by these weighted hopping parameters (2.36), while the diagonal elements have two contributions. The first contribution simply stems from the atomic energies E (m) a , which are naturally equal if the sites are occupied by the same atoms in a chemical sense (such as in silicon, graphite, copper,...), but they may be different in lattices with different chemical components (such as the semiconductors GaAs, InSb,... or the alloys Bi x Sb (1-x) , ...). This receipe will be illustrated in section 2.3, where we calculate and discuss the band structure of 2D graphene. There may be a second contribution to the diagonal elements if we consider hopping between sites on the same sublattice. However, these sites are generally no longer nearest neighbours (but next-nearest neighbours) for which we neglect the hopping in simplified tight-binding models, while nearest neighbours reside on different sublattices.

Periodic Hamiltonian and Bloch Hamiltonian

Before studying the concrete example of the electronic band structure in graphene, let us briefly discuss a complementary formulation of Bloch's theorem that is also of interest for the understanding of the topological version of band theory (Chap. 6) and that yields another perspective on the Bloch Hamiltonian and the Bloch states. Indeed, the Bloch wave function (for each component m) can also be written as

ψ (m) k (r) = e ik•r u (m) (k, r), (2.38) 
i.e. as the product of a plane wave exp(ik•r) and the function u (m) (k, r). Substituting this expression into Eq. (2.12) shows that the function (2.41) since exp(-ik • r)p exp(ik • r) = p + k, as it follows directly from the canonical commutation relations for the position and momentum operators, and the position operator naturally commutes with the (position-dependent) potential.

u (m) (k, r) = u (m) (k, r -R j ) is itself periodic in the lattice vectors R j . It
H k = (p + k) 2 2m + V (r),
Operators in the Bloch basis -the case of the velocity operator

The expression (2.41) of the Bloch Hamiltonian allows us to represent also other operators Ô in the Bloch basis, via the same unitary transformation,

O(k) = e -ik•r Ôe ik•r . (2.42)
Let us illustrate this with the velocity operator, which happens to be of strong relevance in the calculation of both transport and optical properties of crystalline systems. In the original basis of the periodic Hamiltonian, the µ-th component (µ = x, y, z in three dimensions) of the velocity operator is simply given by the Heisenberg equation of motion which becomes, in the Bloch basis,

v µ = ẋµ = 1 i [x µ , Ĥ], (2.43) physical object original basis (periodic Hamiltonian) Bloch basis operators Ô O(k) = e -ik•r Ôe ik•r states |ψ k |u(k) = e -ik•r |ψ k explicit Hamiltonian Ĥ = p 2 2m + V (r) H m,m k = ψ (m) k | Ĥ|ψ (m ) k H k = (p+ k) 2 2m + V (r) explicit eigenstates Bloch wave functions |ψ n,k Bloch states |u n (k) Schrödinger equation Ĥ|ψ n,k = E n (k)|ψ n,k H k |u n (k) = E n (k)|u n (k) velocity operator v µ = 1 i [x µ , Ĥ] v µ (k) = 1 ∂H k ∂kµ
v µ (k) = 1 i e -ik•r [x µ , Ĥ]e ik•r = 1 i [x µ , H k ], (2.44) 
where we have made use of the commutativity between the unitary transformation and the components of the position operator x µ in the last step.

If we now use the expression (2.41) for the Bloch Hamiltonian, we may also write the velocity operator in the Bloch basis as

v µ (k) = p µ + k µ m = 1 ∂H k ∂k µ , (2.45) 
i.e. the velocity operator in the Bloch basis is simply the k-space gradient of the Bloch Hamiltonian (devided by a factor of ). While the last step may seem quite formal, it turns out to be extremely practical if the Bloch Hamiltonian is written explicitly in its explicit matrix form as in Eq. (2.27) instead of Eq. (2.41).

The different bases, their relation and some relevant quantities are summarised in table 2.1.

Bloch's theorem in the presence of a constant electric field and Bloch oscillations

A very important fact about Bloch's theorem is that it remains valid in the presence of a constant electric field E. This is remarkable because the (2.46) which takes into account the energy of the charged electron in the presence of the field E, is no longer periodic in r even if the potential V (r) is so.

Hamiltonian Ĥ = p 2 2m + V (r) + eE • r,
In order to understande why Bloch's theorem remains valid nevertheless, we may perform a gauge transformation that allows us to get rid of the last term, which is not periodic. You all know about gauge transformations in classical electromagnetism, where the electric and magnetic fields remain unchanged even if the underlying potentials Φ(r) and A(r) are modified by a positionand time-dependent function Λ(r, t), according to Φ(r) → Φ(r) -∂Λ ∂t and A(r) → A(r) + ∇Λ.

(2.47)

In quantum mechanics, a gauge transformation is reminiscent of a symmetry operation: it is also represented by a unitary transformation acting on the Hilbert-space vectors, but it is local in space and time. The generator of the gauge transformation is precisely given by the operator (e/ )Λ(r, t), where the prefactor e/ has been added for pure dimensional reasons so that the generator is dimensionless. The unitary transformation is then given by 

U = e i e Λ(
U HU † |ψ = U i ∂ ∂t U † |ψ = e ∂Λ ∂t + i ∂ ∂t |ψ .
(2.51)

The transformed Hamiltonian therefore needs to be modified by the extra term due to the time derivative on the right-hand side, and one finds

Ĥ = (p -e∇Λ) 2 2m + V (r) + eE • r -e ∂Λ ∂t .
(2.52)

We may now use the last term to compensate the second-last term, which contains the electric field that we consider to be static, by fixing the gauge function Λ(r, t) = E • rt and U = e i e E•rt .

(2.53)

The transformed momentum thus reads (2.54) and the Hamiltonian may finally be written as

p = p -eEt,
Ĥ = (p -eEt) 2 2m + V (r), (2.55) 
which is evidently periodic in r so that we can save Bloch's theorem. This has also important practical consequences for the Bloch Hamiltonian that may be obtained from the periodic Hamiltonian Ĥ by the same transformation (2.40) as that in the absence of an electric field. Formally, this is ensured by the commutativity between the gauge transformation (2.48) and the unitary transformation exp(ik • r), which links the periodic to the Bloch Hamiltonian, and the latter now reads (2.56) This form of the Hamiltonian indicates us that we may continue to use the Bloch Hamiltonian, which we have e.g. obtained within the tight-binding model, in the presence of a constant electric field. Its effect is simply to provide a dynamical character to the wave vector k by (2.57) which grows linearly in time.

H k = [p + ( k -eEt)] 2 2m + V (r) ⇔ H k = H k-(e/ )Et .
k(t) = k - e Et,
Hold on! We have already seen above that the wave vector cannot grow constantly, but it is restricted to the first Brillouin zone. Indeed, once the wave vector reaches the border of the first Brillouin zone, it must be folded back, i.e. it reappears at the equivalent point on the opposite side of the first Brillouin zone. This backfolding of the wave vector is at the origin of the so-called Bloch oscillation. To see that this implies also an oscillation in position space, we may investigate the velocity operator (2.45) in the Bloch basis averaged over the Bloch state associated with an isolated band n,

v n (k) = u n (k) v k - e Et u n (k) .
(2.58)

One notices from this expression that the average velocity changes in time when the wave vector explores a path in the first Brillouin zone. Most saliently, we have seen that the physical quantities associate with a Bloch state are periodic in reciprocal space, and so is this average velocity. As a consequence it changes periodically its sign in time, e.g. when approaching the Brillouin-zone border, where the dispersion becomes flat (and the velocity thus vanishes). This periodic change in the velocity is at the origin of a real-space oscillation of an electron in a Bloch band. As we discuss in section 3.2 of Chap. 3, this oscillation is however strongly suppressed by scattering events at time scales τ that are usually nuch smaller than the period of the Bloch oscillation T ∼ /e|E|a, where a is the characteristic lattice spacing.

Band structure of graphene and boron nitride

After these general considerations about Bloch's theorem, we are now armed to confront an explicit and practical example with the calculation of the band structure of graphene. We do not pretend to provide a full band structure calculation, but we use a simplified tight-binding model, which reproduces the relevant electronic bands in the vicinity of the Fermi level that are responsible for the very particular electronic properties of this amazing material. Furthermore, we discuss on equal footing the band structure of two-dimensional (2D) boron nitride (BN), which has the same lattice structure as graphene so that the tight-binding model is almost the same. Both materials are 2D crystals that consist of a single layer of atoms arranged in the honeycomb lattice shown in figure 2.6(a). This particular crystalline structure can be understood on the basis of the chemical properties of the carbon atoms that constitute the graphene lattice, namely on the basis of the electronic occupation of the atomic orbitals. In a carbon atom, there are four electrons that occupy the 2s and 2p orbitals, three of which take part in the so-called sp 2 hybridisation. These hybridised orbitals form coplanar lobes with mutual 120 • angles, which are at the origin of extremely strong covalent bonds14 that form the 2D lattice. The orbitals are thus occupied by three electrons per cabon atom, while one electron still occupies the unhybridised orbital p z responsible for the electronic properties of graphene in the vicinity of the Fermi level. Notice already that this orbital is thus "half occupied" since it can host up to two electrons due to their twofold spin degeneracy.

The electrons in the p z orbitals, which occupy the nodes of the honeycomb lattice, are precisely the ones we take into account within our tight-binding model. In a first step we characterise the lattice geometrically as well as its reciprocal lattice. Each lattice site has three nearest neighbours, which are connected by the vectors e 1 , e 2 and e 3 in figure 2.6(a) and that reside on a different sublattice than the original site. Indeed, the honeycomb lattice is not a Bravais lattice, but it consists of two triangular sublattices displaced by one of the vectors e m of length a 0.14 nm. The triangular Bravais lattice is spanned by two primitive lattice vectors that we can choose to be 2.6(b), which is again that of the triangular lattice. 15 Anticipating their role in the band structure calculated below, let us concentrate first on the six corners of the first Brillouin zone, which can be put into two classes of points K and K . In order to appreciate this classification consider the utmost right and left corners, which are given by the wave vectors (2.61) for the K and K points, respectively. All other four corners can be connnected to one of them by the primitive reciprocal-lattice vectors ±a * 1 and ±a * 2 and are therefore equivalent to ±K -as mentioned in our illustration of the reciprocal lattice, they represent the same excitation on the discrete lattice.

a 1 = √ 3 2 a(u x + √ 3u y ) and a 2 = √ 3 2 a(-u x + √ 3u y ), ( 2 
K = 4π 3 √ 3a u x , and 
K = -K = - 4π 3 √ 3a u x ,
We have already mentioned that we take only into account electronic hopping between the p z orbitals in the tight-binding model. Furthermore, we make the simplification that only the hopping amplitudes16 t = 3 eV between nearest neighbours are considered in the model. 17 In order to obtain the corresponding Bloch Hamiltonian, let us apply the receipe mentioned at the end of section 2.2.2. Neglecting the overlap matrix, the Bloch Hamiltonian is a 2 × 2 matrix

H k = E A a T A,B (k) T B,A (k) E B a , (2.62) 
where we consider first the diagonal terms, which are given by the atomic energies. As mentioned, we have E A a = E B a in graphene because both sublattices are occupied by chemically identical carbon atoms, and we set this energy to zero henceforth, anticipating that it coincides with the Fermi level. However, in boron nitride, the A sublattice is occupied by, say, boron and the B sublattice by nitrogen atoms so that E A a = E B a . If we fix the zero in energy at their average value, we can set E A a = ∆ and E B a = -∆. Furthermore, there are no hopping contributions in our model because a "diagonal" tunneling event connects sites on the same sublattice that are at best next-nearest neighbours for which we set t nnn = 0, here.

Let us now investigate the off-diagonal terms that are related by complex conjugation, T B,A (k) = T * A,B (k), in order to have a Hermitian Hamiltonian, and let us apply the general receipe. The term T B,A (k) describes hopping from a site on the B sublattice to its nearest neighbours on the A sublattice represented by the green vectors e m , with the amplitude -t. 18 The vector e 3 connects the B site to an A site in the same basis if we define the basis as in figure 2.6(a). According to our receipe, the contribution to the element T B,A (k) of the hopping matrix is therefore simply -t with no phase factor. In contrast, if we consider the A site that is reached by the vector e 1 , it is not in the same unit cell but in a unit cell that is displaced by the vector a 1 with respect to the original one, and its hopping contribution comes therefore along with a phase factor exp(ik • a 1 ). By the same token, the A site at the vector e 2 is situated in the unit cell displaced by the vector a 2 , and the corresponding phase factor is exp(ik • a 2 ). One thus obtains for the off-diagonal elements of the matrix (2.62)

T B,A (k) = T * A,B (k) = -tγ k = -t 1 + e ik•a 1 + e ik•a 2 (2.63)
approach, we stick to this simplified model, which captures indeed the relevant electronic behaviour in graphene around the Fermi level. Next-nearest-neighbour hopping will be taken into account in a later chapter (Chap. 7), where we discuss a variant of graphene in the framework of the so-called Haldane model. It will become clear that the inclusion of further hoppings is technically straight-forward even if the expressions become a bit more cumbersome. 18 The sign is of no importance here, but quantum-chemistry calculations happen to provide a negative sign. The inset shows a zoom on the band structure in the vicinity of the band contact points, where the bands disperse linearly in the wave vector q, which is defined with respect to the points K and K . This is reminiscent of massless ultra-relativistic particles (electrons in the conduction band) and anti-particles (holes in the valence band). (b) Band structure of boron nitride. The conduction and valence bands are well separated in energy, but the gap is smallest at the points K and K , where it is given by 2∆. so that our tight-binding Hamiltonian finally reads

H k = ∆ -tγ * k -tγ k -∆ .
(2.64)

As mentioned above, we have ∆ = 0 in the case of graphene. This Hamiltonian is readily diagonalised, and one finds the pair of bands

E λ (k) = λ ∆ 2 + t 2 |γ k | 2 , (2.65)
where λ = ± is the band index. Remember that these bands stem from the p z orbitals that host each one single electron. This "half filling" of the orbitals is then transferred to the full band structure, which is itself half-filled. Therefore the band with λ = -, which is called the valence band is completely filled, while the conduction band with λ = + is empty in undoped graphene. This means that the Fermi level resides precisely at the band contact point, which we have set to zero, in graphene, while it is situated in the band gap in the case of boron nitride.

The electronic bands of graphene, with ∆ = 0 in Eq. (2.65), are shown in figure 2.7(a). One notices already from the figure that the conduction band touches the valence band at isolated points that happen to be the corners K and K of the first Brillouin zone, as we calculate explicitly below. Moreover, the bands are very special in the vicinity of these band contact points, where one obtains a linear dispersion of the energy as a function of the wave vector q that is now defined with respect to ±K (i.e. the points K and K , respectively). This is shown in the inset of figure 2.7(a). At this stage, one already notices that it is not possible to describe the bands in terms of a band mass in the low-energy window around the Fermi level, i.e. in terms of non-relativistic electrons such as in the Schrödinger equation. Indeed, the linearity of the bands is rather reminiscent of the dispersion of massless ultra-relativistic particles, = ± v|q|. As much as the band mass, which we have discussed in the framework of the square and the triangular lattice in section 2.2.1, is completely unrelated to the bare electron mass, the velocity v, which we calculate below, is not the true speed of light but given in terms of the parameters of the tight-binding model. In graphene, it happens to be 300 times smaller than the speed of light.

The band structure of boron nitride is shown in figure 2.7(b). As a consequence of ∆ = 0, the bands are now well separated in energy with a minimal gap of 2∆ at the K and K points. While the bands are approximately parabolic there and may thus be described in terms of a band mass, they are more appropriately given by the dispersion = ± ∆ 2 + 2 v 2 |q| 2 , which is that of massive relativistic particles, where ∆ = mv 2 plays the role of the rest mass, which may thus be identified with the band mass here, m = ∆/v 2 . Since the Fermi level resides in the gap between the valence and the conduction bands, boron nitride is an insulator from an electronic point of view, while graphene is a zero-gap semimetal. Indeed, graphene is somewhat in between a semiconductor and a metal: it is neither a true semiconductor because the band gap vanishes nor a true metal since there are only two isolated states at the Fermi level (one at the K point and one at the K point) instead of a macroscopic number of states.

Low-energy model of graphene and boron nitride -the emergence of 2D Dirac fermions

In order to understand the relation of electrons in graphene and boron nitride with relativistic particles more quantitatively, we make a Taylor expansion around the band contact points ±K, which are obtained by setting the sum of phase factors in Eq. (2.63) to zero,

γ K = 0 = 1 + e iK•a 1 + e iK•a 2 .
(2.66)

The phases must therefore be the third roots of unity, with

K • a 1 = 2π 3 = -K • a 2 or K • a 1 = - 2π 3 = K • a 2 .
(2.67)

A possible choice is then

K = 4π 3 √ 3a u x and K = -K = - 4π 3 √ 3a u x , (2.68)
which, as we have already mentioned, represent the K and K points, respectively. Remember that the other four corners of the first Brillouin zone do not represent different wave vectors since they are connected to K and K by reciprocal-lattice vectors. The low-energy properties of graphene (and boron nitride) are therefore governed by excitations around these two inequivalent points, which are also called the valleys and that we denote henceforth with the valley index ξ = ± (ξ = + for the K valley at K and ξ = -for the K valley at -K).

Let us now investigate the bands in the vicinity of the K and K points via the linear expansion in the wave vector. This is indeed justified since deviations from linearity are expected at energies that are a substantial fraction of the hopping amplitude t, i.e. in the 1 eV range away from the Fermi level, which corresponds to temperatures on the order of 10 000 K. We thus concentrate on energies E t, where the linear approximation is justified since E ∼ t|q|a, i.e. we consider small wave vectors with respect to the inverse lattice spacing, |q|a 1. Let us first expand the sum of the phase factors γ k around the K point to linear order

γ K+q γ K + iq • a 1 e i2π/3 + iq • a 2 e -i2π/3 3a 2 (-q x -iq y ), (2.69)
where we have made use of the explicit expressions (2.59) for the primitive lattice vectors a 1 and a 2 and the values sin(2π/3) = √ 3/2 and cos(2π/3) = -1/2, to separate the phases into their real and imaginary parts. Furthermore, by definition of the band contacts, we have γ ξK = 0. In the same manner, one obtains for the linear expansion of γ k around the K point γ -K+q γ -K + iq • a 1 e -i2π/3 + iq • a 2 e i2π/3 3a 2 (q x -iq y ).

(2.70)

Here and in the remainder, we use the following notational convention, which we have already implicitly made: we use k to denote the wave vectors in the full Brillouin zone, and their origin is naturally the Γ-point, while q is used for the wave vector in the continuum limit |q|a 1. In contrast to k, its origin is given by the low-energy expansion of the energy bands and can be multiple valleys, such as the K and K points in the present example.

Because of these two valleys, we obtain two low-energy Hamiltonians when we use the above small-wave vector expansions for the sum of the phase factors in Eq. (2.64),

H ξ (q) = ∆ v(ξq x -iq y ) v(ξq x + iq y ) -∆ = v(ξq x σ x + q y σ y ) + ∆σ z ,
(2.71) where we have used the Pauli matrices

σ x = 0 1 1 0 , σ y = 0 -i i 0 , et σ z = 1 0 0 -1 (2.72)
and defined the characteristic velocity v = 3ta 2 .

(2.73)

As already anticipated in the qualitative discussion of the energy bands in graphene, this velocity plays the role of the speed of light, here, but the analogy is only formal: this velocity is given in terms of the tight-binding parameters t and a, as it is also the case for the band masses, and is by no means related to the true speed of light. However, not only the low-energy parts of the bands

E ξ,λ (q) = λ m 2 v 4 + 2 q 2 v 2 , (2.74)
but also the Hamiltonians (2.71) are the same as those that describe the quantum-mechanical properties of relativistic fermions. They are the 2D version of the Dirac Hamiltonian, which is more frequently used to describe the relativistic quantum mechanics of high-energy particles. 19 Indeed, it came to many physicists as a surprise that this relativistic equation eventually finds an application in low-energy condensed-matter physics. However, it has been a source of many experimentally measured phenomena, originally discussed in the framework of high-energy physics, ever since the advent of graphene.

Because the Dirac Hamiltonian in high-energy physics describes relativistic fermionic particles, the low-energy electrons in graphene are also regularly called Dirac fermions. Notice, however, that this is somewhat abusive. While electrons are indeed fermions, regardless of whether we consider low-energy electrons in graphene or electrons promoted to the high-energy parts, we do not bother about the statistical properties of the electrons here in the calculation of the energy spectra. The tight-binding model is a one-particle model for particles, be they fermions or bosons, moving in a periodic structure, and the fermionic nature of the electrons only indicates the position of the Fermi level and thus the relevant parts of their energy bands. As it may be seen from Eq. (2.74) for the low-energy band dispersion in graphene and boron nitride, they do not depend on the valley index ξ. This may be compared to the presence of the physical spin of the electrons s =↑, ↓. In most situations (e.g. in the absence of the Zeeman effect), the electronic energy does not depend on this internal degree of freedom, and the electronic energy is said to be two-fold degenerate. This is also the case in the present situation, where the electronic energy is two-fold valley-degenerate. Even if the low-energy parts of the bands are situated at different positions in the first Brillouin zone, this piece of information is lost at low energies, for example if we consider some thermodynamic quantities in the vicinity of the Fermi level, such as the conductivity which is discussed in the following chapter. This two-fold valley degeneracy, or more generally the emergence of two Dirac fermions, described by the two Hamiltonians in Eq. (2.71), is actually an illustration of the fermion-doubling theorem first described by Nielssen and Ninomiya in 1983. At that time, high-energy physicists took the opposite way as we have just taken: instead of describing the low-energy physics in terms of Dirac Hamiltonians, via a Taylor expansion, they started from the Dirac Hamiltonian, which they tried to mimic as the low-energy limit of some lattice model. This is sometimes useful for numerical implementations. However, they were confronted with the seemingly bizarre problem that instead of describing only one (Dirac) fermion on the lattice, they obtained a second one that was unwanted. In contrast to this situation in high-energy physics, the fermion doubling is a natural effect in electronic systems on a lattice and physically relevant in many thermodynamic situations. Furthermore, we show in Chap. 6 that this doubling of fermions is a necessary condition for lattice electrons due to the periodicity of the first Brillouin zone, which can alternatively be viewed as a compact manifold, and it is related to the topological properties of several materials. Chapter 3

Notions and concepts to retain

Conduction and conductivity: Ohm's law and its limits

In the introduction, we have already encountered a first theoretical approach of electronic transport in materials within the Drude model. It has also been argued that there are severe limitations that are related to the particular form of the band structure in the vicinity of the Fermi level, even in the classical diffusive limit where the system size exceeds both mean free path and phase-coherence length, l e L φ L. In the present chapter, we first give an account of this classical transport within a model based on statistical physics. Even if this type of transport is supposed to be classical, it is immediately discussed it in different dimensions. As we have seen in section 1.5 in the introduction, two-dimensional (2D) systems are readily fabricated via MBE at the interface between different semiconductors, e.g. in GaAs/AlGaAs heterostructures. These 2D conducting systems are also the basis, e.g in the form of semiconductor wafers, for electric nano-circuits that are then defined lithographically. These nano-circuits can be viewed as a network of 1D nanowires the width of which is on the order of some 10 nm that is also the order of magnitude of the Fermi wavelength in 2D electron gases. The 1D character is then obtained simply by the lateral quantum confinement.

The first part of this chapter is devoted to a reminder of the density of states (section 3.1), which, as you should remember from your past statisticalphysics classes, is an essential quantity in the calculation of thermodynamic or average quantities. As we remind below, it allows us to replace the often cumbersome discrete sum over the quantum numbers of the orbital degrees of 65 freedom (here, the wave vectors) by an integral over energy. This approach is then used to calculate electric conductivity in Bloch bands (section 3.2), where we make a connection between the conductivity and diffusion processes via the Einstein relation and retrieve the Drude model for parabolic bands. In section (3.3), we revisit the relation between conductivity and conductance and argue that the latter is more fundamental from an experimental point of view and generally depends on the manner how a conductor is connected to the exterior world via electric contacts. We then provide a detailed investigation of quantum transport through a 1D conductor, both in the ballistic and the diffusive elastic regime. The Landauer formula for the conductance is derived within this framework, and we shall see that the conductance can be viewed as a transmission coefficient times the quantum of conductance. The chapter finishes with a generalisation of the Landauer formula to the multi-channel case, where we lift the constraint of having a purely 1D system. This allows us to make a connection with Ohm's law and the Drude model in the appropriate limits.

Density of states

Quite generally, the average of a physical quantity in statistical physics can be written as

A = k,s A k,s f [ (k)] = L d (2π) d s d d k A k,s f [ (k)] = g L d (2π) d d d k A k f [ (k)],
(3.1) where A k,s = k, s| Â|k, s is the value the quantity takes in the quantum state |k, s . Here, the quantum numbers are separated into two classes: the external or orbital degrees of freedom, which we consider to be the wave vectors k in our case, and internal degrees of freedom s, such as the spin of the electrons or emergent ones such as the valley index in the case of graphene. We suppose that neither the eigenenergies (k) nor the microscopic quantity A k,s = A k associated with the state |k, s depends on the internal quantum number s so that the latter is simply taken into account by the degeneracy factor g in the last expression. Furthermore, we have considered the system of volume L d in d spatial dimensions to be sufficiently large so that we may take the wave vectors as continuous variables so that the sum becomes an integral. As it is common in statistical physics, the average quantity A is obtained by the weighted sum of the microscopic quantity A k , and this weight -in quantum statistics -is given by the Fermi-Dirac occupation factor, since our electrons follow fermionic statistics,

f [ (k), µ] = 1 e β[ (k)-µ] + 1 , (3.2) 
where β = 1/k B T is the inverse temperature multiplied by the Boltzmann constant k B , and µ is the chemical potential, which coincides with the Fermi level at zero temperature.

Instead of calculating the multi-dimensional integral in Eq. (3.1), it is much simpler to perform an integral over the energy . This approach is justified since the Fermi-Dirac occupation factor (3.2) takes into account only the energy of the states, and this is also very often the case for the quantity A k = A( ) that we want to average. This can be formally achieved with the help of

A = g L d (2π) d d d k A k f [ (k), µ] = L 2 d ρ( )A( )f ( , µ), (3.3) 
where the quantity ρ( ), which is called the density of states (per unit volume),1 is some sort of dictionary that translates between the discrete sum over the wave vectors and the integral over energy. It counts how many states contribute to the average within a certain energy window [ , + d ].

The density of states may formally be written as

ρ( ) = 1 L d k δ( -(k)), (3.4)
in terms of Dirac δ-functions. While this expression corroborates the abovementioned state-counting picture, it is itself not very practical in analytical calculations.

One may, however, obtain analytical expressions for the density of states in the case of an isotropic and monotonic dispersion (k) ∼ k α . While we have seen that this is generally not the case in electronic bands in crystals, it is a good approximation in the continuum limit and in the vicinity of the Fermi level, where we saw in the previous chapter that (k)

2 |k| 2 /2m in the case of approximately parabolic bands, (k) v|k| for linearly dispersing bands, such as in graphene, or still (k) = ∆ 2 + 2 v 2 |k| 2 for massive Dirac fermions. In this case, the appropriate coordinates for the calculation of the integral over the wave vectors in Eq. (3.1) are (generalised) spherical coordinates, in which case the integral may be written as

k ... = L d (2π) d d d k... = L d (2π) d S d dkk d-1 ..., (3.5) 
where S d is the surface of the unit sphere in d dimensions. The integral over energy is then obtained by inverting the dispersion relations, k = k( ) and by a change of integration variables dk = (d /dk) -1 d = (1/ v)d , where we have made use of the expression v = (1/ )d /dk for the group velocity in the radial direction. The density of states therefore reads

ρ( ) = g (2π) d S d dk d k d-1 ( ) = g (2π) d S d 1 v k d-1 ( ), (3.6) 
with

S d=3 = 4π, S d=2 = 2π, S d=1 = 2 (3.7)
for the surfaces of the unit sphere in the dimensions d = 1, 2, 3 that interest us here.

Density of states for a parabolic dispersion

In a first step, we investigate an isotropic parabolic dispersion relation

= 2 k 2 2m ⇔ k( ) = √ 2m , (3.8)
for which we find dk/d = m/2 2 , and the density of states therefore reads

ρ( ) = g (2π) d S d m 2 d/2 (2 ) d/2-1 (3.9) in d dimensions.
The expressions for the density of states associate with a parabolic dispersion are listed in table 3.1, for the dimensions d = 1, 2 and 3.

dimension d = 1 d = 2 d = 3 density of states (per unit volume) g 2π √ 2m 1 √ g 2π m 2 g 2π 2 √ 2m 3 3 √ Table 3.1: Density of states for a parabolic dispersion relation = 2 |k| 2 /2m in different dimensions. dimension d = 1 d = 2 d = 3
density of states (per unit volume)

g 2π 1 v g 2π 2 v 2 g 2π 2 2 3 v 3 Table 3.2: Density of states for a parabolic dispersion relation = v|k| in different dimensions.

Density of states for a linear dispersion

In the case of an isotropic linear dispersion relation

= v|k| ⇔ k( ) = v , (3.10) 
we simply have dk/d = 1/ v -indeed, v is also the group velocity hereand the d-dimensional density of states reads

ρ( ) = g (2π) d S d d-1 ( v) d .
(3.11)

As in the case of the parabolic dispersion relation, the density of states is listed in the table 3.2, for the dimensions d = 1, 2 and 3.

Density of states for a general algebraic dispersion k α

For a general dispersion relation = Ck α , where C is just a constant that ensures the correct physical dimension, we naturally have k( ) = ( /C) 1/α and dk/d = (1/α) 1/α-1 /C 1/α so that the density of states becomes

ρ( ) = g (2π) d S d C d/α d α -1 .
(3.12)

Comparing this result with those obtained above, we see that the density of states for a parabolic and a linear dispersion relation follow well this general behaviour, for α = 2 and α = 1, respectively. From a general point of view, the important point to retain from the formulas of the density of states is the algebraic dependence on energy, ρ( ) ∼ d/α-1 rather than the prefactors. While they may be important in the full expressions of certain physical quantities, they often cancel out if we express some thermodynamic quantities in terms of others. As an example we may consider the internal energy of a Fermi gaz, which is the average energy

U = k,s k f [ (k), µ] = L d d ρ( ) f ( , µ), (3.13)
as well as the average number of fermions

N = k,s f [ (k), µ] = L d d ρ( )f ( , µ). (3.14)
Just by looking at the expressions, one notices that they look similar, and we may evaluate them in the zero-temperature limit T T F , i.e. at temperatures that are low with respect to the Fermi temperature T F = F /k B in terms of the Fermi energy F . In this limit, one may replace the Fermi-Dirac occupation factor by a simple Heaviside step function f ( ) Θ( F -), 2 so that the two integrals are easily evaluated,

U = α d + α g (2π) d S d L d C d/α d α +1 F (3.15) and N = α d g (2π) d S d L d C d/α d α F = α d L d ρ( F ) F (3.16)
While these expressions are quite cumbersome due to the various prefactors, one directly sees that they are both related by the rather simple expression

U = d d + α N F , (3.17)
where we have got rid of all these prefactors. The expression reproduces the internal energies (3.18) for non-relativistic and relativistic 3D Fermi gases, respectively, as you should remember from your basic statistical-physics classes. 

U non-rel = 3 5 N F and U rel = 3 4 N F ,

Dimensional reduction and evolution of the density of states

In the above discussion of the density of states, we have encountered dispersion relations in several dimensions even if we naturally live in a threedimensional (3D) world. The discussion of the different spatial dimensions is indeed not just a stylistic exercise, but one naturally encounters it when we artificially reduce the spatial dimensions of a system. We have already mentioned, in the introduction, that this naturally occurs in the formation of two-dimensional (2D) electron systems at the interface between two different semiconductors. If we consider an originally 3D parabolic band, the kinetic energy must be accompanied by a confining potential in one of the direction, which is usually the z-direction. In the case of MBE grown modulation-doped heterostructures, this confinement potential V (z) has a triangular shape, but the precise shape is of minor importance here. The overall Hamiltonian therefore reads

H = 2 (k 2 x + k 2 y ) 2m + H z , with H z = 2 k 2 z 2m + V (z). (3.19)
Instead of a full solution, which requires knowledge of the precise form of the confinement potential, let us just inspect the structure of the energy spectrum. It is clear that the wave-vector components k x and k y remain good quantum numbers, i.e. the motion in the plane is that of free particles, while the component k z does not commute with the confinement potential.

The motion in the z-direction is therefore quantized, and the effective onedimensional (1D) quantum-mechanical problem is described by the Hamiltonian H z . The latter yields a discrete spectrum n via the solution of the Schrödinger equation H z |n z = n |n z . The energy spectrum thus consists of a family of 2D bands

n (k x , k y ) = 2 (k 2 x + k 2 y ) 2m + n (3.20)
that are schematically shown in figure 3.1(a), where k = k 2 x + k 2 y is the inplane component of the wave vector. What about the density of states in this situation? We are now confronted with 2D bands, and we therefore need to take the expression for the 2D density of states, which is constant in energy for parabolic bands. The full density of states is therefore the sum of the contributions from all bands. However, in order to contribute to the full density of states at a given energy , only bands whose band bottom is lower in energy, n < , must be taken into account,

ρ( ) = m π 2 ∞ n=0 Θ( -n ), (3.21) 
in terms of the Heaviside step function.

The dimension of the system can still be reduced to effective 1D bands if we remember that a 2D electron gas, e.g. in an AlGaAs/GaAs heterostructure, can be constricted into channels by specially patterned gate electrodes.

If we consider a square potential in the y-direction of width W , defined electrostatically by such gates, the electronic motion in the y-direction is equally confined and we obtain, in the same manner as above, a family of 1D bands

n,j (k x ) = 2 k 2 x 2m + ˜ j + n , (3.22) 
where ˜ j = 2 π 2 j 2 /2mW 2 for the square potential. The associated density of states is now that of 1D bands with their characteristic 1/ √ decrease. Again only bands with minimal energy n + ˜ j < contribute to the density of states at the energy ,

ρ( ) = √ 2m π ∞ n=0 ∞ j=1 Θ( -n -2 π 2 j 2 /2mW 2 ) -n -2 π 2 j 2 /2mW 2 . (3.23)

Statistical model for conductivity

The above reminder of quantum statistics allows us to approach the conduction properties of electrons in diffusive conductors, where we start from the current density. The current density is given in terms of the average velocity of the electrons

j = - e L d n;s,k v n,k f [ n (k), µ], (3.24)
where the index n denotes the different electronic bands that may contribute to the electronic transport.

Let us first consider this expression in the absence of an electric field. Naively, we would expect that there is then no current flowing through the conductor, and our intuition turns out to be correct. In order to see this formally, we suppose that the system has time-reversal symmetry. Timereversal symmetry, which we discuss in more detail in Chap. 7, tells us that the fundamental equations of motion -in the case of quantum mechanics, the Schrödinger equation -remain invariant if we change the sense of the time arrow in a thought experiment. It is eventually broken in the presence of a magnetic field that changes itself its orientation upon the change of the time arrow. In the absence of a magnetic field, time-reversal invariance tells us that, if we have an electronic state at a wave vector k and energy n (k), there is also a state at -k with the same energy, n (-k) = n (k).

In order to show that there is no current flowing in the absence of an electric field, consider the velocity (2.58) for E = 0

v n (k) = u n (k)|v(k)|u n (k) = 1 u n (k) |∇ k H k | u n (k) , (3.25)
where we have made use of the expression (2.45) for the velocity operator v k in the Bloch basis. A straight-forward calculation indicates that the band velocity is then nothing other than the group velocity 3

v n (k) = 1 ∇ k n (k), (3.26)
and time-reversal symmetry then imposes

v n (k) = -v n (-k). (3.27)
Because the states at k and -k have the same energy, they are either both below or both above the Fermi level. In the latter case, they do not contribute to the electric transport anyway, while in the former case, these two contributions mutually annihilate each other due to the opposite sign in their velocity.

In order to overcome this mutual cancellation of the contributions at opposite wave vectors, we now apply an electric field. We have already seen how the average velocity changes in the presence of a homogeneous electric field which does not spoil the periodicity of the underlying lattice upon a gauge transformation, but it changes the wave vector according to Eq. (2.57) by the quantity ∆k = -eEt/ . As mentioned in section 2.2.3 of the preceding chapter, this leads to Bloch oscillations that are usually cut off by scattering events at the characteristic scattering time τ , which replaces the time t in the expression. The shift ∆k = -e Eτ (3.28)

thus becomes static -it can alternatively be viewed as due to the stationary solution of the Newton equation -and we may furthermore transfer, in Eq.

3 While this expression seems natural, one may derive it explicitly from the Schrödinger equation

H k |u n (k) = n (k)|u n (k) , which we multiply from the left with the bra u n (k)| before taking the k-space gradient ∇ k , ∇ k n (k) = ∇ k u n (k)|H k |u n (k) = ∇ k u n (k)|H k |u n (k) + u n (k)|∇ k H k |u n (k) + u n (k)|H k |∇ k u n (k) = ∇ k u n (k)|u n (k) n (k) + u n (k)|∇ k H k |u n (k) + n (k) u n (k)|∇ k u n (k)
Notice that the first and the last term in the last line cancel each other because the gradient ∇ k is an anti-Hermitian operator so that u (3.24) the shift to the occupation factor

n (k)|∇ k u n (k) = -∇ k u n (k)|u n (k) ,
j = - e L d n;s,k v n (k + ∆k)f [ n (k), µ] = - e L d n;s,k v n (k)f [ n (k -∆k), µ] = n j n (3.29)
by a simple change of the integration variable. In the last expression, we have explicitly written that the current density has contributions j n from all bands n. *** perhaps representation on the Ewald sphere *** We are now armed to confirm a central fact of electric transport in lattices: The contribution j n of any fully occupied band to the current density is zero! This can immediately be seen from the equation for j n and the fact the occupation number is one for all states, i.e. for all wave vectors in the first Brillouin zone,

j n = - e L d s,k v n (k) = 0. (3.30)
As in the case of no electric field, which may here simply be omitted by a simple change of integration variable, all contributions at k and -k cancel pairwise. The vanishing contribution j n of a filled band can also be understood from the periodicity of the electronic bands in reciprocal space, as it is shown in figure 3.2. If all states are shifted by ∆k, some states, which were initially occupied at the (left) border of the first Brillouin zone sketched in figure 3.2(b), are now empty while some others (at the right border) are shifted outside the first Brillouin zone. The latter need to be folded back into the first Brillouin zone, with the help of a reciprocal-lattice vector, and one notices that these states now occupy the emptied states (on the left border). This is simply due to the fact that a shift of a full periodicity of a periodic function remains a full periodicity, and the situation is therefore equivalent to the original one in the absence of an electric field [see figure 3.2(a)].

In order to calculate the current density for a partially filled band n, we simplify the above expression (3.29) and suppose that the electric field is oriented in the x-direction, E = Eu x , which is also the direction of the wave vector shift then ∆k x = -eEτ / . If we consider the electric field to be sufficiently small, that is ∆k x k F where k F is the Fermi wave vector in the band, we can use linear-response theory and expand the Fermi-Dirac occupation factor in ∆k x ,

f [ n (k -∆k), µ] f [ (k), µ] - ∂f ∂ ∂ ∂k x ∆k x = f [ (k), µ] + v x - ∂f ∂ ∆k x ,
(3.31) where we have used ∂ /∂k x = v x in the last step. The linearised Fermi-Dirac occupation factor is then substituted it into the expression of the current density. While the first term reproduces the zero result in the absence of an electric field, the relevant x-component of the current density in the n-th band becomes

j x,n = - e L d n;s,k v 2 n,x (k) - ∂f ∂ ∆k x = e 2 τ L d n;s,k v 2 n,x (k) - ∂f ∂ E, (3.32)
i.e. we obtain the searched-for linear relation between current density and electric field (in the same direction). We can thus immediately extract the conductivity, which is precisely the proportionality constant between the two, and one has

σ = e 2 τ L d n;s,k v 2 n,x (k) - ∂f ∂ = e 2 τ n d ρ n ( )v 2 n,x ( ) - ∂f ∂ , (3.33)
where we have made use of the density of states ρ n ( ) for the n-th band, in line with the discussion of the previous section.

In the last expressions, we have used the (negative) derivative of the Fermi-Dirac occupation factor with respect to energy, which is indeed suggestive: it is a distribution of width ∼ k B T centered around the Fermi level.

It reduces to the Dirac δ-function in the zero-temperature limit

- ∂f ∂ δ( -F ) (3.34)
so that we obtain the zero-temperature result, valid for T T F ,

σ e 2 τ n ρ n ( F )v 2 n,x ( F ). (3.35)
We already see from this expression that the conductivity is an additive quantity in two respects. First, if we have different bands, one may associate a conductivity σ n with each band, and the total conductivity is σ = n σ n .

From an electric-transport point of view, we may see that the conductivities of the different bands, or more precisely their associate conductances, are combined as conductivities (conductances) in parallel. The second point is more subtle and appeals to the different types of scattering processes, described by different relaxation times, τ 1 , τ 2 , .... In this case we need to add the inverses of the scattering times to obtain the total scattering time (Matthiesen's rule), 1/τ = 1/τ 1 + 1/τ 2 + ..., in agreement with the sum of the resistances in series.

Einstein relation and link with diffusion processes

The expression (3.35) for the zero-temperature conductivity actually makes a connection with diffusive scattering processes. Let us first notice that the x-component of the average band velocity v n,x ( F ) at the Fermi level in the n-th band is the same as that in the other directions if we consider an isotropic band dispersion. In this case, the average square velocity

v 2 n = d µ=1 v 2 nµ ( F ) = dv n,x ( F ) for a d-dimensional system, which is nothing other than the Fermi velocity in the n-th band, v 2 n = v 2 F,n .
We may thus write the conductivity in terms of the diffusion constant

D n = τ v 2 n,x ( F ) = τ v 2 F,n d = v F,n l e,n d , (3.36) 
where l e,n = v F,n τ is the mean free path for an electron in the n-th band. We finally obtain the so-called Einstein relation

σ = e 2 n D n ρ n ( F ), (3.37)
which relates the electric conductivity to a diffusion process, such as a random walk. Notice that the above expression for the Einstein relation (3.37) is that for several bands that possibly cross the Fermi level. This is a more complex situation than that of the single-band model, which is perhaps more often used in the literature. One may then omit the sum as well as the band indices, and the single-band Einstein relation simply reads σ = e 2 Dρ( F ).

(3.38)

Furthermore, we notice that this relation for the conductivity is quite general and does not make any assumption about the energy bands, be they parabolic, linear or following an arbitrary algebraic law. The Einstein relation is therefore more general than the expression obtained within the Drude model, which we retrieve for a single parabolic band, as we show below.

Back to the Drude model

In order to find again the expression (1.6) of the conductivity of the Drude model, we need to consider a parabolic band with a band mass m. As we have discussed in the previous section, the density of states, associated with a general algebraic dependence of the energy on the wave vector = Ck α , scales as ρ( ) = C d/α-1 , where C is an unimportant constant that contains the microscopic parameters. The electronic density is then simply obtained by integrating the density of states in energy up to the Fermi level, since we still consider the zero-temperature limit,

n el = F 0 d ρ( ) = 2 d C d/α F = α d ρ( F ) F , (3.39) 
in line with Eq. (3.16). We may thus substitute the density of states ρ( F ) = (d/α)n el / F into the single-band conductivity (3.38), and one obtains

σ = e 2 v 2 F n el τ α F . (3.40)
In the case of a parabolic band with α = 2, the Drude conductivity

σ = e 2 n el τ m (3.41)
is then finally obtained if we make use of the expression F = (1/2)mv 2 F for the Fermi energy in terms of the Fermi velocity and the band mass.

In the case of graphene with its linear dispersion relation, α = 1, we have ρ( ) = C d-1 , we obtain the conductivity

σ = e 2 v 2 F n el τ F = e 2 vτ k F , (3.42)
where we have used F = vk F in the last step as well as v F = v.

Conductivity and conductance

In the previous section, we have obtained the conductivity in the classical diffusive regime, i.e. in the regime where the system size exceeds both mean free path and phase-coherence length, l e L φ L. In this case, the conductance of a conductor of length L and cross section S = W d-1 (in terms of the width W ) is simply obtained from the conductivity, in a singleband model,4 by

G = σ W d-1 L = e 2 v 2 F τ d g (2π) d S d k d-1 F v F W d-1 L , (3.43)
where we have used the explicit expressions for the diffusion constant (3.36) and the d-dimensional density of states (3.6). This yet complicated expression can be simplified if we introduce the Fermi wavelength λ F = 2π/k F , the mean free path l e = v F τ and the Planck constant h = 2π . One can then get rid of the d factors 2π

G = g e 2 h A d W λ F d-1 l e L , (3.44) 
where we have introduced the volume A d = S d /d of the unit sphere in d dimensions. One notices that, apart from the degeneracy and this geometric prefactor, the conductance is proportional to the cross section W d-1 , where the width is measured in units of the Fermi wavelength, and proportional to length measured in units of the mean free path. These are dimensionless length scales, and the conductance itself is given in units of the quantum of conductance

G 0 = e 2 h = 1 25 812.807 Ω , (3.45)
which is itself expressed in the universal constants e and h. Its inverse, which may be called the quantum of resistance, has become the unit of resistance.

The expression (3.44) turns out to be extremely fruitful in the understanding of quantum electronic transport in several respects. First, we immediately see that the mean free path is a lower bound for the validity of the formula. Indeed, the conductanc would diverge in the limit L l e , where we need to take into account a ballistic approach to electric transport rather than the diffusive one of the Einstein relation. Furthermore, one also sees the intimite relation between the width or the cross section of the conductor and the Fermi wavelength. Although we have not explicitly taken into account the wave nature of the electrons in the previous section, this result already anticipates that the conductor may also be viewed as a wave guide, with transverse modes quantised by multiples of half the (Fermi) wavelength. The ratio W/λ F thus determines the number of transverse modes that are transmitted.

What is electric conductance and what is a conductance measurement? A new paradigm

Before a more detailed discussion of ballistic vs. diffusive transport, let us step back a bit and ask ourselves the question: what is more fundamental? the conductivity or the conductance of a device? In order to aboard this question, we should thoroughly think about the nature of the transport measurement. And ask ourselves: do we measure a conductivity or a conductance? From the experimental point of view, the answer is evident. One naturally measures a conductance and not a conductivity, since the latter is then deduced from the measured conductance and the geometrical properties of the conductor.

Let us be more precise than that and consider the different results of a transport measurement through the device, which is depicted in figure 3.3 and that consists of a metallic ring (in a magnetic field) contacted by four contacts. The different setups of the measurement shonw on the right-hand side of the figure may seem quite unusual since we are commonly used to a two-contact measurement, where the source and drain (the contacts used to drive a current I through the device) are also the contacts by which we measure the voltage drop V , which allows us to obtain the conductance G = I/V . However, this is not necessary and one is perfectly allowed to use two other contacts, such as the blue ones in the setups sketched in figure 3.3 to measure a voltage drop, and reserve the source and drain (red contacts in the figure) just for the current. One needs to emphasise two experimental facts. First, the three measured conductance curves as a function of the applied magnetic field are clearly different from one another although the conductor remains the same. Only the arrangement of the contacts is changed. Second, while they seem to show some random fluctuations, they are perfectly reproducible, i.e. another run for the conductance measurement after a certain time reproduces the conductance curve provided that one keeps the arrangement of current and voltage contacts. Furthermore, there exist some relations between the measurements. Indeed, the first and the last curve happen to be identical if one changes the orientation of the magnetic field B → -B.

Based on these experimental facts, we must accept that the relation G = I/V is too simple to account for the complex experimental situation, we have just encountered. Instead, we must admit that the conductances and the resistances depend on the manner how the device is contacted to the L l e , we expect Ohm's law to remain valid, in line with the conductance (3.44), which one may measure as the ratio between the current I in the conductor and the voltage drop V 1 -V 2 in the contacts. (Lower panel) For a ballistic conductor, there is yet a current through the conductor, but the voltage difference between the contacts is not necessarily zero so that the conductance could take a finite value. However, if we are capable -via a non-invasive measurement -of measuring the voltage drop between the two positions indicated by the black arrows, there is no voltage drop due to the absence of relaxation processes, and the corresponding conductance should thus diverge.

outer world, via the contacts and their arrangement. Quite generally, the conductance is thus a tensor

G ij,kl = (R ij,kl ) -1 = I ij V k -V l = I V k -V l (3.46)
where the indices i and j denote the source and the drain, respectively, and V k and V l are the respective electrostatic potentials in the contacts k and l. Usually, we limit ourselves to a single source and a single drain, i.e. only two contacts are used to inject or collect current in the device so that I i = I = -I j . This means that we do not have other contacts or current "leakages" where electrons could disappear or emerge in the device.

Formally, this means that all other contacts than the source and the drain have an infinite internal resistance and are used only to measure a voltage drop.

In order to further appreciate the central role of the conductance and to set the stage for the following discussions of this chapter, let us take a closer look at the two 2D conductors shown in figure 3.4, connected by the source (at voltage V 1 ) and the drain (at V 2 ) -one is taken to be a usual diffusive conductor (upper panel) and the other one is ballistic (lower panel). For the diffusive conductor, with L l e , we may use Ohm's law and the conductance should be G = 2(e 2 /h)π(W/λ F )(l e /L) for electrons with a twofold spin degeneracy (g = 2). How about the ballistic conductor? There is also a current I injected at the source that passes through the device and that is collected at the drain. Indeed, all electrons injected at the source make their path through the conductor and reach the drain since there are no scatterers that allow the electrons to be backscattered. Naively, one may expect a zero resistance for this situation and thus a divergent conductance. However, this would require that the source and the drain be at the same electrostatic potential, V 1 = V 2 . As we show below, this constraint is too strong. One may indeed put one contact to the ground, while the other one is at a different potential, in which case the conductance takes a finite value

G = I/(V 1 -V 2 ).
Notice that this is the classic measurement setup where source and drain are also the contacts, where we measure the voltage drop and thus a conductance or resistance. We may imagine, nevertheless, that we are capable of measuring the voltage difference between two positions in the conductor (indicated by the black arrows in figure 3.4) in a non-invasive manner, i.e. without disturbing the electrons and their wave functions on their path through the conductor. What result would you expect for the voltage difference between these two positions? The inevitable answer to this question is: ∆V = 0. The reason is the following. Consider an electron injected at the source. This electron must be at thermodynamic equilibrium with the source, i.e. its energy is given by the chemical F -eV 1 of an electron at the Fermi level F plus the electrostatic potential -eV 1 imposed in the contact. Similarly an electron injected at the drain is at thermodynamic equilibrium with the latter and thus has an energy F -eV 2 . The case of an electron injected at the drain may, at first sight, seem contradictory since the drain is used to collect the current. This is, however, only an average statement: there may be a difference in the density of electrons n 1 injected in the source and that n 2 injected in the drain so that there is a net current flowing between source and drain. If we now measure the potential of the electrons in the conductor at a fixed position x, we will obtain

V (x) = n 1 (x)V 1 + n 2 (x)V 2 n 1 + n 2 , (3.47)
where n 1/2 (x) is the density of electrons at the position x that are at the

potential V 1/2 . Naturally, we have n 1 (x = 0) = n 1 and n 2 (x = L) = n 2 .
Since we consider ballistic transport, the density of electrons moving from the source to the right is independent of the position since there is no obstacle that could scatter an electron back to the source, while in a diffusive conductor n 1 (x) would decrease once the position x is further away from the source. Similarly, the density of electrons injected at the drain turns out to be constant over the ballistic conductor so that V (x) = V is constant over the length of the conductor. Therefore, we find ∆V = 0 for the voltage difference between the two black arrows regardless of the distance between them! We revisit this somewhat sketchy argument in more quantitative detail below in the discussion of the chemical-potential profile of electrons in diffusive and ballistic conductors, in section 3.4.1.

From this qualitative discussion, we may retain two important things. First, as mentioned above, there is no means to measure the (single) conductance of a conductor, but the conductance depends on the arrangement and the nature of the contacts used to measure it. If we measure the conductance between the source and the drain, via the voltage drop between precisely these two contacts, we measure a finite conductance, while we would measure an infinite conductance between two additional (non-invasive) contacts situated at the black arrows in figure 3.4. Second, in contrast to diffusive transport, the result may be independent of the device geometry. This is clearly the case for the latter four-terminal conductance associated with a zero resistance, and we show below that this is also the case for the former ballistic two-terminal conductance.

Classical ballistic vs. diffusive transport -Sharvin conductance

In order to obtain a first idea about the ballistic (two-terminal) conductance measured between the source and the drain, we consider classical ballistic electrons for the moment. They can pass from one d-dimensional volume A to a second one B via a slit of surface S = W d-1 . The setup is sketched in figure 3.5(a). The electronic densities in the resrvoirs are determined by the chemical potentials µ A and µ B , respectively, and the latter can be tuned by the voltages

V A/B , µ A/B = F -V A/B .
One obtains for the electronic densities directly from the density of states ρ( ) and the Fermi-Dirac occupation factor f ( , µ = F -eV A/B ),

n A/B = d ρ( )f ( , F -eV A/B ) n -eV A/B ∂n ∂µ , (3.48) 
where we have made a Taylor expansion of the occupation factor to linear order in e|V A/B | F . Furthermore, we have defined the average density at the Fermi level n = d ρ( )f ( , F ), (3.49)

and we obtain from the symmetry of the Fermi-Dirac under exchange of and µ in the argument (3.2),

∂n ∂µ = d ρ( ) ∂f ∂µ = d ρ( ) - ∂f ∂ ρ( F ), (3.50) 
where we have again used the zero-temperature expression (3.34) of the derivative of the occupation factor. The above discussion of the densities in the two reservoirs and of their relation to their respective densities of states turns out to be fruitful in the analysis of the current. Let us first consider the particle current that passes through the slit from A to B. It is given by the density n A of particles in the reservoir A times the surface of the d -1-dimensional slit S times the average velocity in the x-direction v x + . Indeed, the particles the particles arrive at a random angle at the slit, but the x-component must evidently be positive in order to pass to the other reservoir B. This is indicated by the subscript + at the average velocity.5 Similarly, the particle current from B to A is given by n B S times the average velocity in the -x-direction, v x - which is up to a sign the same as that in the +x-direction, v x -= -v x + . The net particle current is therefore given by

I p = (n A -n B )S v x + = -e(V A -V B ) ∂n ∂µ S v x + -e(V A -V B )ρ( F )S v x + .
(3.51) Now remember that we are interested in the charge current rather than in the particle current of electrons, but both are simply related by the electric charge -e so that the net electric current at low temperatures finally becomes

I = e 2 ρ( F )S v x + (V A -V B ), (3.52)
and we may immediately read off the ballistic conductance

G bal = I V A -V B = e 2 ρ( F )S v x + , (3.53) 
which is also called Sharvin conductance. This result shows clearly, as mentioned above, that the ballistic conductance (for the moment, in the classical regime) is finite and does not diverge in this two-terminal measurement!

dN θ = n A Sv x dt dΩ S d ,
where S d is again the surface of the unit sphere in d dimensions, which plays the role of the integrated solid angle, and dΩ(θ) is an infinitesimal solid angle at an angle of incidence θ. The particle current is then given by I p = dN/dt integrated over the solid angle, and the average velocity reads

v x + = + dΩ(θ) S d v cos θ,
where the subscript + at the integral indicates that we only consider positive values of cos θ, and v is the modulus of the average velocity, which is given by the temperature in a classical gaz, mv 2 = dk B T , or by the Fermi velocity v F for the electron gaz in the degenerate limit T T F .

Sharvin and diffusive conductances in 2D conductors

Let us be a little bit more quantitative about this result and evaluate it for a 2D conductor, for which the density of states (3.6) reads

ρ( ) = 4π h 1 λ F v F (3.54)
and S = W . We still need to evaluate the average electronic velocity in the x-direction, the modulus of which is simply the Fermi velocity since we consider the zero-temperature limit of the electron gaz here,

v x + = 1 2π π/2 -π/2 dθv F cos θ = v F π , (3.55) 
where we have used S 2 = 2π and dΩ(θ) = dθ in d = 2 dimensions. The 2D Sharvin conductance may thus be written as

G bal = 2 e 2 h 2W λ F . (3.56)
We may want to compare this result to the corresponding diffusive conductance (3.44) in two dimensions,

G diff = 2 e 2 h π W λ F l e L .
(3.57)

One notices that, apart from a difference in the geometric prefactor (2 instead of π), the main difference is the factor l e /L, which is absent in the Sharvin conductance of a ballistic conductor. This is indeed expected since the mean free path ceases to be a relevant length scale once the system size is smaller than the mean free path. As a thumb rule, one might this obtain the ballistic conductance from the diffusive one by omitting the diffusion factor l e /L. As a consequence, we realise that the conductance is independent of the length of the conductor, in contrast to Ohm's law.

While the Sharvin conductance is a classical quantity, obtained by considering electrons as classical particles, it bears already a hint of quantum mechanics. Indeed, similarly to the derivation of the conductance (3.44) we have used some ingredients from quantum mechanics in the form of the Pauli exclusion principle for fermions, which has been taken into account in the form of the Fermi-Dirac occupation factor. For this reason we can write the Sharvin conductance (as well as the classical diffusive one) in terms of the Fermi wavelength. This Fermi wavelength is precisely the bridge to a quantum-mechanical interpretation of Sharvin's result since it is the wavelength associated with an electron at the Fermi level. One may therefore also interpret the ratio 2W/λ F as the number of transverse modes of wavelength λ F that match the width W of the slit. Indeed, the slit imposes boundary conditions to the wave passing through it, in analogy with an optical wave guide: the wave function must vanish at the edges of the slit, as it is the case for waves with a transverse wavelength that is a multiple of twice the width [see figure 3.5(b)]. As we show below in a full quantum treatment of the quantum ballistic regime L l e L φ , the expression (3.56) for the Sharvin conductance remains valid in this regime if we take the integer part of the ratio 2W/λ F , which indicates the number of modes below the Fermi level that contribute to the quantum transport.

Conductance through a 1D wire and the Landauer formula

Before presenting a full calculation of the conductance through a quantum wire, let us briefly evaluate the Sharvin conductance (3.53) in an arbitrary dimension d. The density of states at the Fermi level is then given by the general expression (3.6), with

ρ( ) = 2 h S d 1 λ d-1 F v F , (3.58) 
and we still need to evaluate the average velocity

v x + v F = 1 S d + dΩ(θ) cos θ. (3.59)
The solid angle dΩ can indeed be evaluated from the following geometric consideration: in 3D, it would simply be a circumference of a disk of radius sin θ, while in a general dimension d the circumference of the disk needs to be replaced by the surface S d-1 of the unit sphere in d -1 dimensions, and its radius is given by sin

d-2 θ, dΩ(θ) = dθS d-1 sin d-2 θ. (3.60)
We can thus perform the integration to obtain the average velocity, with the help of

+ dΩ(θ) cos θ = S d-1 π/2 0 dθ cos θ sin d-2 θ = S d-1 /(d -1), 6 so that we have v x + v F = S d-1 (d -1)S d , (3.61)
and the explicit form of the Sharvin conductance for electrons in d dimensions thus reads

G bal = 2 e 2 h S d-1 d -1 W λ F d-1 = 2 e 2 h A d-1 W λ F d-1 , (3.62)
where

A d = S d /d
is the volume of the unit sphere in d dimensions. For d = 2 (and A 2 = π), we retrieve the expression (3.56) for the 2D Sharvin conductance.

We finish this section on classical ballistic transport with a short notice on the apparent contradiction of this regime with respect to the length scales at work. We have seen that the ballistic regime is that of devices with a system size smaller than the mean free path L l e , while the classical regime requires the system size to be larger than the phase-coherence length L L φ . However, we have also argued that the phase-coherence length is larger than the mean free path so that there is in principle not much space for the classical ballistic regime. Indeed, the reader may consider the above discussion of this regime as a purely academic exercise to get prepared for the study of transport in the quantum ballistic regime and to appreciate the disappearence of one length scale that comes along with the loss of a well-defined conductivity as a relevant microscopic quantity here. However, this is a little bit too harsh, and we will see in the discussion of a milestone experiment in section 3.6 that the regime of classical ballistic transport may be reached in the so-called quantum point contact, a lateral constriction of a 2D high-mobility electron gas, at high temperatures.

Single-channel conductance

In the preceding section, we have seen that, in order to define a conductance, we need not only to take into account the intrinsic properties of the Figure 3.6: Quantum transport through a 1D quantum wire. The system, which may be diffusive or ballistic (region named "scatterer"), is connected to the source and drain (called contacts, terminals or reservoirs) via ballistic wires (leads).

conductor, but the manner how the latter is connected to the outer world is highly relevant. We therefore discuss now the electric transport through a 1D quantum wire, which may be viewed as the paradigmatic example of quantum transport, connected to two electric contacts that are the source and the drain. The setup is shown in figure 3.6, and let us be precise about the different elements. The system, which is here generally considered to be a diffusive quantum wire (gray part in the figure) is connected via ballistic leads to the source and the drain, by which the current I is driven through the system. Naturally, the source and drain are electric contacts that are also called terminals or reservoirs due to their thermodynamic role in the electronic transport. Indeed, we consider that an electron that is injected into the conductor at one of the contacts to be in thermodynamic equilibrium with the contact, i.e. the injected electron is at the temperature T i and the chemical potential µ i = F -eV i of electrons in the contact i, which thus plays the role of a thermodynamic particle reservoir. The chemical potential can to some extent be varied by the electrostatic voltage V i applied to this contact, and we generally consider that the associated energy -eV i is much smaller than the Fermi energy, e|V i | F . Now that we have fixed the terminology, we make some futher assumptions about the system and the contacts. First, the system is supposed to be either ballistic or diffusive, but we consider only elastic scattering. The electrons thus remain phase-coherent during the full time they remain in the conductor, leads included. On the other hand, we suppose that the electrons that enter into a contact lose their phase memory and get thermalised in the bath. As already mentioned above, an electron leaving the contact is at thermodynamic equilibrium with the contact, i.e. it is injected at the temperature T and the chemical potential µ = F -eV of the contact. There is thus no coherence between an incoming and an outgoing electron in the contact, which we call Ohmic contact. We may consider in some occasions "non-invasive contacts", in which case the electron does not lose its phase coherence during a passage in this contact, but we specify such situation explicitly. Otherwise, we always mean an Ohmic contact or a thermodynamic reservoir when we speak about a contact.

As one sees from the setup shown in figure 3.6, we are now confronted with a problem of 1D quantum mechanics the bases of which are treated in any introductory class of quantum physics. The scatterer may be viewed as a potential barrier, and we may thus appeal to the phenomenon of quantummechanical tunneling through a barrier described by a tunneling amplitude t that yields the transmission coefficient T = |t| 2 . Let us consider the current density through the barrier carried by an electron in the state |k, s , in a parabolic band, transmitted from the left contact to the right one,

j k = -e m Re ψ * R ∂ i∂x ψ R , (3.63) 
where

ψ R = t √ L e ikx (3.64)
is the transmitted part of the wave function on the right-hand side of the scattering region. If we allow the transmission coefficient to depend on the energy k of the state, as it is usually the case, this yields

j k = -e k mL |t| 2 = -e v k L T ( k ) (3.65)
for the current density in the state |k, s regardless of its spin orientation s. 7

7 While we have derived this expression for a 1D electron in a parabolic band, it is valid more generally if we use Eq. (3.24) for a single state in the band n,

j n,k = - e L R u n (k)|v|u n (k) R = - e L ∂E n (k) ∂k T ( k ),
where |u n (k) R = t|u n (k) is the transmitted part of the Bloch state |u n (k) , and we have made use of Eq. (3.26) for the average velocity in a Bloch state. For our illustration, however, we stick to a single-band model with a parabolic dispersion to simplify the discussions, keeping in mind that the generalisation is then straight-forward.

Since we are in one spatial dimension, the current is identical to the current density. We obtain the current from the left to the right contact by summing over all states with a positive wave vector, k > 0,

I → = -2 e 2 L k>0 v k T ( k )f ( k , F -eV 1 ), (3.66)
where the factor of two reflects the two-fold spin degeneracy, and the Fermi-Dirac occupation factor takes into account that the transmitted electrons are originally injected in the left contact with an electrostatic potential V 1 . This current is partially compensated by the electrons injected in the right contact (at V 2 ) and transmitted through the scattering region to the left contact

I ← = -2 e 2 L k<0 v k T ( k )f ( k , F -eV 2 ), (3.67) 
i.e. they have a negative wave vector, k < 0. Since v -k = -v k , the total current is simply given by

I = I → + I ← = -2 e 2 L k>0 v k T ( k ) [f ( k , F -eV 1 ) -f ( k , F -eV 2 )] , (3.68)
which may be rewritten in terms of the 1D density of states ρ( ) = 2/π v( ),

I = -e d ρ( ) 2 v( )T ( ) [f ( , F -eV 1 ) -f ( , F -eV 2 )] = - e h T ( ) [f ( , F -eV 1 ) -f ( , F -eV 2 )] . (3.69)
Notice the different factors of two. The original factor for the spin is absorbed in the definition of the density of states, but we must only take half of the density of states since the original sum runs over the positive wave vectors only. The negative ones are discarded although they are taken into account in the definition of the density of states, which therefore needs to be devided by two. More importantly, we see that the velocity v( ) has completely disappeared from the expression of the current. Indeed, the original velocity, which stems from the current density, is cancelled by that in the denominator of the density of states.

A series expansion of the Fermi-Dirac occupation factor allows us to obtain the standard form of the electric current,

I = G(V 1 -V 2 ), with the conductance G = 2 e 2 h d - ∂f ∂ T ( ). (3.70)
This is the Landauer formula for quantum conductance at an arbitrary temperature and it may be brought into its zero-temperature (T T F ) form with the usual replacement of the derivative of the Fermi-Dirac occupation factor by the Dirac δ-function (3.34),

G = 2 e 2 h T ( F ). (3.71)
This is a remarkable result! The Landauer conductance of a diffusive quantum conductor is given in terms of the universal quantum of conductance G 0 , which we have already introduced in Eq. (3.45), and a pure transmission coefficient T . The factor of two simply reflects the two-fold spin degeneracy. If we consider the ballistic limit, T = 1, we see that the quantum transport of electrons in a single band is entirely given by (twice) the quantum of conductance, regardless of the sample geometry, that is the length of the wire in the present example! Moreover, in line with Sharvin's classical ballistic treatment of the last section, the conductance is finite and does not diverge. This means that the two-terminal resistance does not vanish even in the ballistic regime. As we have mentioned above, this is somewhat at odds with our intuitions, and several questions should be raised naturally. First, if there is a finite resistance, there must be a potential drop somewhere since V 1 = V 2 . Where does that take place? Second, related to the first question, there is some power dissipated, P = I(V 1 -V 2 ). Again, where? Finally, one may ask the question how to measure the conductance/resistance of the scatterer itself. Can one define something like an intrinsic conductance? As for the last question, we have already had a glimpse at it. It is at the origin of the distinction between the two-terminal and the four-terminal resistance, as shown in figure 3.4, where the black arrows indicate additional, but noninvasive contacts used to measure the potential drop inside the conductor. The detailed answer to these questions is the object of the next paragraphs. 

µ m = (µ 1 + µ 2 )/2.

Profile of the chemical potential in a ballistic conductor

In order to understand the position of the potential drop, we first consider a fully ballistic conductor in the two-terminal configuration, such as that shown in the lower panel of figure 3.4. As we know by now, the rightmoving electrons are in thermodynamic equilibrium with the left contact, i.e. they have a chemical potential µ 1 , while left-moving electrons share the chemical potential µ 2 with the right reservoir. What is the average chemical potential µ m in the conductor? A first well-educated guess would be to take the arithmetic average of the chemical potentials

µ m = µ 1 + µ 2 2 and V m = V 1 + V 2 2 (3.72)
For the moment, let us just accept this result, which will be proven in detail in the next paragraph. Naturally, this is the average potential all over the conductor since it is ballistic. There is thus no potential drop and no resistance inside the conductor, and the inevitable consequence of this fact is to attribute a resistance to the two contacts, where the potential drops from

V 1 to V m and from V m to V 2 [see figure 3.7].
The contact resistance is therefore given by

R c = V 1 -V m I = V m -V 2 I = h 4e 2 (3.73)
per contact, that is half of the ballistic two-terminal resistance. This is indeed in line with our intuition and Kirchhoff's laws that tell us that the total resistance is the sum of resistances in series, and here the two contact resistances may be viewed as being in series. Furthermore, the dissipated power is

P = I(V 1 -V 2 ) = (2e 2 /h)T ( F )(V 1 -V 2 ) 2
, and it is equally dissipated at the two contacts.

Profile of the chemical potential in a diffusive conductor

Let us now investigate the more complex situation where the conductor is diffusive, yet connected to the reservoirs via ballistic leads. In contrast to the ballistic situation, the potential is no longer constant all along the conductor due to backscattering events represented by the dashed blue lines in figure 3.8. As a consequence, some right-moving electrons -the elastically backscattered ones -are at the potential µ 2 instead of µ 1 . While the potential may change in the diffusive part of the conductor, it remains then constant in the ballistic leads. In order to calculate the associated electrostatic potentials V A and and V A in the leads A and B, respectively, as a function of V 1 and V 2 (the potentials in the source and the drain) and the transmission coefficient T , we first calculate the electronic densities n A and n B in the leads. The density in the lead A may be calculated in the usual manner, with the help of the density of states and the Fermi-Dirac occupation factor. It consists of three parts:

(i) the density of electrons injected from the left contact at the potential V 1 ;

(ii) that of electrons reflected by the scattering region -these electrons are at the same potential since the scattering is supposed to be elastic -; (iii) the density of electrons transmitted through the scattering region from the right contact at the potential V 2 ,

n A = 1 2 d ρ( )(1 + R)f ( , F -eV 1 ) + 1 2 d ρ( )T f ( , F -eV 2 ) n( F ) - e 2 d ρ( ) - ∂f ∂ [(1 + R)V 1 + T V 2 ] n( F ) - e 2 ρ( F ) [(1 + R)V 1 + T V 2 ] , (3.74) 
where R = 1-T is the reflection coefficient and where we have used again the series expansion of the occupation factor under the assumptions

e|V i | F and T T F . Furthermore n( F ) = d ρ( )f ( , F
) plays the role of an average density in the conductor, in the absence of a potential bias, V 1 = V 2 = 0. As in the calculation of the conductance through a quantum wire, the factors 1/2 are due to the fact that we must only consider electrons with a fixed sign of the wave vector, k > 0, and thus take again only half of the density of states. If we consider a thermodynamic equilibrium in the lead A, the density may also be written in terms of the chemical potential

µ A = F -eV A in the lead A, n A = d ρ( )f ( , F -eV A ) n( F ) -eρ( F )V A .
(3.75)

Notice that this average potential V A is that of all electrons in the lead A, regardless of its direction of propagation, so that the factor of 1/2 is now absent. This average potential may now be obtained by identifying the two expressions obtained above,

V A = 1 2 [(1 + R)V 1 + T V 2 ] , (3.76) 
and an analogous argument for the lead B yields

V B = 1 2 [T V 1 + (1 + R)V 2 ] . (3.77)
Notice first that, in the ballistic limit with T = 1 and R = 0, we obtain

V A = V B = (V 1 + V 2 )/2,
in agreement with the average potential used above in the calculation of the potential in a ballistic quantum wire. Furthermore, we see from these two expressions that the potential difference between the leads is related to that between source and drain via the reflection coefficient,

V A -V B = R(V 1 -V 2 )
. This allows us now to calculate the four-terminal conductance/resistance

G 4 = I V A -V B = 2 e 2 h T R and R 4 = G -1 4 = h 2e 2 R T , (3.78)
while the two-terminal conductance is still given by the Landauer formula (3.71), G 2 = (2e 2 /h)T . In order to see that the four-terminal resistance can indeed be interpreted in terms of an intrinsic resistance of the (diffusive part of the) conductor, we may investigate the resistances in series that are associated with the potential drops. As it is clear from figure 3.8, there are three regions where the potential changes: in addition to the central diffusive region, the potential drops again at the contacts. Quite generally, the additivity of the resistances "in series" is simply a consequence of the sum of potential differences over the entire conductor. Since the full resistance between source and drain is given by the two-terminal resistance R 2 = (V 1 -V 2 )/I, we may cut the conductor into two parts at a position x, where we consider the potential to be V x . There are now two potential drops, one between the source and x and one between x and the drain, with the associated resistances

R 1,x = V 1 -V x I and R x,2 = V x -V 2 I , (3.79) 
where the current remains the same in both denominators because we do not have any electron leakage over the conductor, and one immediately finds the additivity of the resistances

R 2 = R 1,x + R x,2 . (3.80)
As a consequence of the additivity of the resistances, we see that the twoterminal resistance R 2 can now be decomposed into three parts corresponding to the three regions where the potential changes: the two contact resistances R c and the intrinsic four-terminal resistance related to the potential drop in the diffusive part between the leads. We thus obtain the two-terminal resistance where the contact resistance is the same as that (3.73) obtained in the ballistic regime, R c = h/4e 2 per contact. In summary, we thus need to subtract, in an experimental measurement of the two-terminal resistance, the contact resistances from the measured result in order to obtain the intrinsic resistance of a conductor, which we identify with the four-terminal resistance. This is noteworthy since the contact resistance is rarely discussed in electronic transport. This distinction between intrinsic four-terminal and two-terminal resistance is indeed often not necessary if the contact resistance becomes negligible with respect to the intrinsic one. In a macroscopic transport measurement, one may indeed neglect the contact resistance which is then not given by R c = h/4e 2 but by R c = h/4M e 2 where M = (2W/λ F ) d-1 1 is the number of channels in the conductor connected to the macroscopic contact (of width W ), as we show in detail below in section 3.6.

R 2 = 2R c + R 4 = h 2e 2 1 + R T = h 2e 2 1 T , ( 3 

Scattering and transfer matrices

In the preceding section, we have argued in detail that the description of electric transport in small conducting devices in the mesoscopic regime must be revisited with respect to Ohm's law, and we have seen that the conductance, in units of the quantum of conductance, is then essentially given by a transmission coefficient T . We may however ask ourselves the reasonable question under which circumstances one retreives Ohm's law from Landauer's approach. This is the aim of the present section. In order to make this connection, which is based on the study of a large number of individual scatterers in a 1D quantum wire, it is useful to introduce the so-called transfer-matrix formalism, which is itself based on the scattering matrix S. The latter relates the incoming to the outcoming waves in a scattering process, as it is shown in figure 3.9. Consider the outgoing wave o on the left-hand side. It has two contributions, one coming from the incoming wave i on the left-hand side that is reflected by the scatterer with an amplitude r and one from the incoming wave i on the right-hand side transmitted by the scatterer with an amplitude t , o = ri + t i .

(3.82)

Similarly the outcoming wave o on the right-hand side has a transmitted component ti from the incoming wave on the left-hand side and a reflected one r i from that on the right-hand side,

o = ti + r i . (3.83)
The scattering matrix thus reads

S = r t t r . (3.84)
There are some constraints imposed on the scattering matrix. Indeed, the current is be conserved, i.e. |i| 2 + |i | 2 = |o| 2 + |o | 2 , so that the scattering matrix must be unitary, S † S = 1. This implies the intuitive result Notice that we have already used the last property implicitly in the derivation of the Landauer formula, where we have used the same transmission coefficient for the left-and right-moving electrons in the diffusive region of the quantum wire. Another constraint is imposed by time-reversal symmetry that yields the so-called reciprocity relations for the elements of the scattering matrix in the presence of a magnetic field. This constraint is discussed in detail in the next chapter.

R + T = R + T = 1, ( 3 
While the scattering matrix is useful in the description of a global scattering process, it is less convenient when we want to investigate several scattering processes in series. Indeed, in this case we prefer to relate the waves on the right-hand side to those on the left-hand side because multiple scattering processes can then be viewed as a concatenation of individual processes that is represented by a simple matrix product. The transfer matrix is defined as

o i = M i o = t -rr t r t -r t 1 t i o , (3.87) 
where the matrix elements in the last expression are readily obtained from those of the scattering matrix. Two successive scattering events that are described each by a scattering matrix M 1 and M 2 yield a new scattering matrix

M = M 1 M 2 . (3.88)
If we consider the lower right element of the matrix M, we obtain de transmission amplitudes

t = t 1 t 2 1 -r 1 r 2 and t = t 1 t 2 1 -r 1 r 2 , (3.89)
in terms of the transmission and reflection amplitudes of the two individual scatterers.8 

In the following paragraphs, we investigate these relations both in a full quantum-mechanical treatment and in the high-temperature regime, where we may neglect quantum coherence. While the second regime allows us to retrieve Ohm's law for classical diffusive transport, the former treatment allows us to understand the so-called Anderson localisation, which is a quantum phenomenon that yields insulating behaviour in 1D disordered systems.

From the Landauer formula to Anderson localisation in a 1D conductor

In a first step, we propose a slightly different perspective on the composition law (3.89) for transfer matrices, which may be viewed as the electronic analogue of the optical Fabry-Pérot interferometer. The transmission amplitude Figure 3.10: Transmission through a system that consists of two scatterers. In addition to the direct transmission given by the amplitude t 1 t 2 , we may have multiple reflection in the region between the two scatterers. This is the electronic analogue of a Fabry-Pérot interferometer.

may indeed be viewed as a sum of multiple reflection events between the two scatterers; instead of a direct transmission given by the product t 1 t 2 , an electron may also be backscattered by the second scatterer and then on the back side of the first scatterer. These events are associated with the amplitudes r 2 and r 1 , respectively. In addition to the direct transmission, we therefore need to take into account one round of the electron between the scatteres and a total amplitude of t 1 (r 2 r 1 )t 2 as well as, more generally, n rounds with an amplitude t 1 (r 2 r 1 ) n t 2 . This is sketched in figure 3.10, and the sum of all contributions yields the geometric series

t = ∞ n=0 t 1 (r 2 r 1 ) n t 2 = t 1 t 2 1 -r 2 r 1 , (3.90)
which is precisely the result (3.89) obtained by matrix multiplication. The transmission through multiple scatterers is therefore similar to optical Fabry-Pérot interferometers in series.

In order to make a connection with the (two-and four-terminal) resistance, we are interested in the transmission coefficient rather than in the amplitude,

T = |t| 2 = T 1 T 2 1 + R 1 R 2 -2 √ R 1 R 2 cos θ , (3.91)
where the angle θ takes into account the phases, which are acquired during the reflection processes, as well as the phase associated with the free propagation in the region between the scatterers. The intrinsic four-terminal resistance (3.78) then reads

R = h 2e 2 1 -T T = h 2e 2 R 1 + R 2 -2 √ R 1 R 2 cos θ T 1 T 2 h 2e 2 R 1 + R 2 T 1 T 2 (3.92)
where we have taken the average cos θ 0 in the last step. This average is motivated by the fact that we are searching a composition law for the resistances associated with each of the scatterers, which are themselves randomly spaced. This yields a random phase θ, so that it averages out in the cosine function. Notice that the last equation may be rewritten as

R = R 1 + R 2 + 2R 1 R 2 2e 2 h or 1 + 2 R R 0 = 1 + 2 R 1 R 0 1 + 2 R 1 R 0 ,
(3.93) in terms of the resistance quantum R 0 = h/2e 2 . From this expression, we may already conclude that the resistance grows faster than that expected on the basis of Ohm's law, because R > R 1 + R 2 . This growth is entirely due to the quantum interferences. The last expression is then easily generalised to n scatterers,

1 + 2 R R 0 = 1 + 2 R 1 R 0 n , (3.94) 
where R 1 is the (average) intrinsic resistance associated with a single scatterer. In order to make a connection with the length of the conductor, we may use the following argument in orders of magnitude: since the distance between the scatterers is given by the mean free path l e , there are n L/l e scatterers in the diffusive conductor of length L. Introducing the localisation length L 0 = l e /(R 1 /R 0 ) and using (1 + x) n e xn in the large-n limit, we obtain

R(L) = h 4e 2 e 2L/L 0 -1 (3.95)
for the resistance of a diffusive wire of length L. We notice that this resistance of the 1D conductor diverges as soon as its length exceeds the localisation length L 0 . This localisation, first described by P. W. Anderson in 1958, is at the origin of an insulating behaviour of electrons in diffusive 1D systems. It has later been investigated in 2D and 3D systems as a function of the disorder strength, and it was shown that the resistance diverges logarithmically in 2D while in 3D disordered systems there is a metal-insulator transition at a critial strength of the disorder. However, a quantitative discussion of this phenomenon, which is central in random media, is far beyond the scope of these classes.

From the Landauer formula to Ohm's law

As we have seen in the last paragraph, the full quantum treatment of a diffusive 1D conductor does not allow us to retrieve Ohm's law because even if the electrons were orignally free, i.e. there are available states at the Fermi level to allow for electronic transport, they get localised due to quantum inteferences in multiple scattering events as soon as the system size exceeds the localisation length. One may nevertheless make a connection with Ohm's law if we consider the setup sketched in figure 3.10 in terms of transmission and reflection coefficients instead of their respective amplitudes. While we allow still for multiple reflections in the regions between the scatterers, we consider them to be classical now. This approach is justified as soon as we are at sufficiently high temperatures so that the electrons immediately lose their phase memory on the average distance l e between two scatterers. In this case, we obtain the transmission coefficient

T = T 1 T 2 1 -R 1 R 2 , (3.96) 
which may be rewritten as

1 -T T = 1 -T 1 T 2 + 1 -T 2 T 2 ⇔ R T = R 1 T 1 + R 2 T 2 . (3.97)
The last expression indicates directly that the intrinsic resistances associated with each of the scatterers R i = (h/2e 2 )R i /T i add up to give the total resistance, and in the case of n ∼ L/l e scatterers, one obtains

R = h 2e 2 i R i T i h 2e 2 L l e ρ, (3.98) 
where we have defined an average dimensionless resistance ρ = R i /T i . We realise from this result that the resistance shows some similarity with Ohm's law in that the resistance grows linearly with the system length. In order to complete this link with Ohm's law, we still need to show that the resistance is also inversely proportional to the cross section S = W d-1 . This requires a generalisation of the present approach, illustrated in the framework of a 1D conductor, to higher dimensions. It is the object of the multi-channel conductance, which is treated in the following section. 

Multi-channel conductance

In the preceding section, we have obtained the Landauer formula (3.70) for electronic transport in a single 1D band. Let us now consider the situation of a 2D conductor of width W , under the assumption that this width be much smaller than the length of the conductor, W L [see figure 3.11(a)]. We have already seen at the end of section 3.1 that the confinement of a 2D electron gas in the y-direction yields a family of 1D bands

n (k x ) = 2 k 2 x 2m + ny , (3.99) 
where ny indicates the quantised energy due to the confined motion in the y-direction.9 These bands are sketched in figure 3.11(b). These bands are associated with different transverse modes, with n y -1 nodes in the wave function φ ny (y), which is the y-component of the full wave function

ψ ny,kx (x, y) = 1 √ L φ ny (y)e ikxx .
(3.100)

Let us now generalise the Landauer formula -or more precisely its expression in the zero-temperature limit -in order to account for the fact that in a diffusive quantum wire, there is now the possibility for an electron to be scattered from a mode b (in the left lead) to a mode a (in the right lead). We still consider elastic scattering processes that are allowed as long as the bottom of the two bands associated with the two modes a and b remain below the Fermi level [see figure 3.11(b)] because then both bands cross the Fermi energy. The transmission of a mode b into a mode a may now be associated with a transmission amplitude t ab and a transmission coefficient T ab = |t ab | 2 , in analogy with the case of a 1D wire with a single mode discussed in section 3.4.1. Before proceeding, let us fix the terminology. We have already insisted in section 3.3 on the role of the contact, which we also call terminals or reservoirs. In addition to those, we now have different electronic modes that we also call channels inside the conductor due to the lateral confinement. The situation depicted in figure 3.11(a) thus corresponds to a multi-channel conductor in the two-terminal configuration. We may thus write down the Landauer formula for the multi-channel two-terminal conductance

I = G(V 1 -V 2 ) with G = 2 e 2 h a,b T ab = 2 e 2 h trtt † , (3.101) 
where the sum runs over all allowed modes (below the Fermi level). This generalised formula indicates that all scattering events from one channel b to another channel a contribute to the conductance as long as it is a forwardscattering process that is taken into account precisely by the transmission coefficient. In the last step, we have made use of a matrix description, where trtt † indicates the trace of a product of matrices t whose elements are the transmission amplitudes t ab . If we consider the ballistic limit, there is naturally no inter-mode (or inter-channel) scattering, and an electron injected at the source into the left lead in the mode b remains in this channel all through the conductor. The transmission coefficients are therefore diagonal T ab = δ a,b , so that the ballistic two-terminal conductance becomes

G bal = 2 e 2 h b = 2 e 2 h M, (3.102)
where M is simply the number of modes whose energy minima remain below the Fermi level. This number is indeed readily evaluated since we must simply require ny ≤ F . If we consider the lateral (square) confinement, this condition is equivalent to k y = (π/W )n y ≤ k F , and the number of modes is simply given by the integer part of the ratio k

F W/π = 2W/λ F , M = Int k F W π = Int 2W λ F . (3.103)
As promised, we thus obtain the very same result (3.56) for Sharvin's conductance as in the classical ballistic description if we replace the ratio 2W/λ F by its integer part, which plays the role of the number of modes below the Fermi level! Notice that we have already implicitly made use of a multichannel version of the conductance even in the context of a single-channel conductor, because of the spin. One may also consider the two spin states as two channels that are at the origin of the factor of two in our expressions for the the conductance. One may therefore equally speak, in the present context, of 2M channels, or more generally gM channels if we are confronted with a g-fold internal degeneracy. In the following parts of these classes, we will rather speak aboout M two-fold degenerate channels unless the spin degeneracy is explicitly lifted, e.g. by a prominent Zeeman effect. Again, this result can be generalised to higher dimensions in which case simply the mode counting changes. Consider, for example, three spatial dimensions, where the transverse motion is quantised in, say, the x-and ydirection while we keep plane-wave states in the z-direction. We then need to count the number of modes

2 π 2 2mW 2 (n 2 x + n 2 y ) ≤ F ⇔ π W n 2 x + n 2 y ≤ k F , (3.104)
and the last equation can be viewed as the number of states, which occupy each a 2D volume of (W/π) 2 , inside the positive quadrant of a circle (2D sphere) of area πk 2 F /4. The number of modes in a 3D conudctor of cross section S = W 2 is then given by

M = Int πW 2 λ 2 F , (3.105)
and generally we have for a d-dimensional conductor

M = Int A d-1 k d-1 F /2 d-1 (π/W ) d-1 = Int A d-1 W d-1 λ d-1 F , (3.106)
in terms of the volume A d of the d-dimensional unit sphere. This result agrees again perfectly with that obtained from the classical ballistic calculation of the Sharvin conductance (3.62) in d spatial dimensions if we replace the geometric ratio

A d-1 W d-1 /λ d-1
F by its integer part, which represents the number of modes.

Conductance through a quantum point contact

The above multi-channel Landauer conductance has found a remarkable experimental proof (in 1988 by B. J. van Wees et al.) in the two-terminal conductance measured in a quantum point contact (QPC) in a high-mobility 2D electron gas that shows ballistic transport over the full system size, i.e. between the two contacts [see figure 3.12(a) for the setup]. The QPC is defined by gate electrodes fabricated on top of the GaAs/AlGaAs heterostructure, and the application of a voltage (the gate voltage) allows one to modify the density below the gates. These regions can be fully depleted so that one creates a bottleneck in the 2D electron system at the centre between the source and drain contacts. The gate voltage V allows then for a definition of the width W of the constriction. The measured two-terminal conductance is depicted in figure 3.12(b) in units of 2e 2 /h as a function of the applied gate voltage. The largest (negative) gate voltages are found on the left-hand side of the figure and correspond to low values of the QPC width, while the width is increased towards the right-hand side. The different curves, which are offset for a better visibility, correspond to different temperatures, between 0.3 K and 4.2 K.

At low temperatures, one clearly sees that the conductance increases in steps of 2e 2 /h upon increase of the gate voltage and thus enhancement of the QPC width, as one would expect indeed on the basis of Eq. (3.102). Indeed, if one increases the width of the constriction, the number of modes M increases because the bottom of the associated bands is shifted below the Fermi level. Furthermore, the discrete change in the number of modes upon increase of the QPC width is washed out at higher temperatures, where the system behaves more and more classically and where one thus retrieves the classical Sharvin conductance. We may even be more quantitative about this crossover to the classical result if we appeal to the finite-temperature version (3.70) of the Landauer formula, which in the multi-channel case reads

G bal = 2 e 2 h d M ( ) - ∂f ∂ , (3.107) 
where M ( ) = n Θ(n ) counts the number of modes below the energy . In the zero-temperature limit, we naturally retrieve Eq. (3.101). We may rewrite the above expression by integration by parts, with ∂M/∂ = n δ(n ), so that one obtains

G bal = 2 e 2 h n f ( n , F -eV ). (3.108)
The form of the measured steps is therefore given by the temperature-rounded form of the Fermi-Dirac occupation factor

f ( n , F -eV ) = 1 e ( n-F )/k B T + 1 . (3.109)
As an order of magnitude, we may say that the crossover between the quantum and classical regimes occurs once the typical energy scale 2 /mW 2 equals the thermal energy k B T . In order to obtain this energy scale numerically, we may report it to the Rydberg, which is the typical (atomic) energy scale 2 /m 0 a 2 B ∼ 10 eV at the Bohr radius a B ∼ 10 -10 m, where m 0 is the bare electron mass. The band mass for GaAs is m/m 0 0.068 and the experimental estimate for the width is ∼ 100 nm (even if the latter changes via the which corresponds to a temparature in the Kelvin range, in agreement with the observed quantum-to-clasical crossover in figure 3.12(b).

Experimental evidence for a crossover from ballistic to diffusive transport

The multichannel Landauer approach allows us to make a first connection between the conductance and geometric effects since the number of modes M ∼ W d-1 is determined by the typical size of the cross section. It is a bridge between the pure quantum limit, which the Landauer formalism was designed for, and the classical Sharvin conductance for a ballistic conductor. Interestingly, one may also retrieve the diffusive Drude limit in the large-L limit. In order to see this point, let us rephrase the arguments we have elaborated above in section 3.5 for the single-channel limit. First, the contact resistance needs to be modified, and one naturally has (3.111) now that we have M channels. The argument is the same as for a single channel: the full two-terminal conductance is 2M e 2 /h if we consider a ballistic wire, and the potential drop happens at the two contacts, whence the associated resistance. The total resistance is then given by the sum of the contact resistances and the intrinsic four (3.112) in terms of some dimensionless average resistance ρ = R i /T i associated with a scatterer in the multi-channel case. We notice that Eq. (3.112) now interpolates between the ballistic and the diffusive regime. It saturates for L l e at the value for the ballistic two-temrinal conductance, while it crosses over to the Drude result R ∝ L/W d-1 in the large-channel limit L l e . This crossover has indeed been measured experimentally by S. Tarucha et al. in 1993, who studied the evolution of the resistance in quantum channels etched in 2D GaAs/AlGaAs quantum gases for three values of the width and several values of their length. Each measured value in figure 3.13 thus corresponds to a different sample. The width is so large that there are several hundreds of channels below the Fermi level, in which case one may make no distinction between the Sharvin and the Landauer multi-channel conductances. 10 The resistance saturates well at a value in agreement with the Sharvin resistance for ballistic transport in the small-length limit, while above some 10 µm it crosses over to a behaviour linear in the channel length, in agreement with the Drude formula and Ohm's law.

R c (M ) = h 4M e 2 ,
-terminal resistance R diff (h/2M e 2 ) i R i /T i (h/2M e 2 )(L/l e )ρ R = 2R c (M ) + R diff = h 2M e 2 1 + L l e ρ ,

Notions and concepts to retain

• conductance and conductivity, resistance and resistivity 10 Indeed, the channel width is one order of magnitude larger than that in the previously discussed experiment of the QPC in figure 3.12, so that the characteristic temperature for the quantum-to-classical crossover is reduced by two orders of magnitude, i.e. in the 10 mK range, while the experiments were performed at 1.5 K.

• Drude model and Einstein relation for the conductivity in the classical diffusive limit

• ballistic vs. diffusive transport

• Sharvin conductance/resistance
• transport in a 1D quantum wire, contacts/terminals/reservoirs, leads

• Landauer formula

• multi-channel (-mode) transport and multi-channel generalisation of the Landauer formula

• two-terminal and four-terminal resistance, contact resistance

• quantum point contact (QPC)
Chapter 4

Conduction in multi-terminal quantum devices: Landauer-Büttiker formalism

In the preceding chapter, we have discussed the basics of quantum electronic transport in the mesoscopic regime. We have seen that it is more appropriate, especially in the ballistic limit, to discuss this type of transport in terms of conductances and resistances rather than in terms of conductivity and resistivity. Most saliently, we have noticed that the outcome of a resistance measurement depends significantly on the manner how the system is connected to the outer world. While we have mainly discussed the socalled two-terminal geometry, with a quick glimps at a specific four-terminal configuration, we present here a generalisation of Landauer's approach to multi-terminal systems, within a formalism proposed by M. Büttiker. This is the so-called Landauer-Büttiker formalism. This formalism has proven to be extremely fruitful in the understanding of fundamental effects, such as the quantum Hall effect (Chap. 5) or the quantum spin Hall effect, which is the experimental manifestation of a 2D topological insulator (Chap. 7).

The general formalism is presented in the next section (section 4.1) along with some general properties, in the absence and in the presence of a magnetic field. The formalism is then illustrated in section 4.2 for three-terminal and in section 4.3 for four-terminal devices. 

Landauer-Büttiker formalism for multiterminal systems

A typical multi-terminal device is sketched in figure 4.1(a) along with an experimental example in figure 4.1(b) that consists of a quantum wire contacted by 12 contacts. As in the two-terminal example discussed in the previous chapter, we consider that the contacts are thermodynamic reservoirs at a chemical potential µ i = F -eV i which can be tuned to some extent by an electrostatic potential V i , where we still take the limit e|V i | F . While one may generally use all contacts to inject a current into the device, we stick to only two contacts, the source and the drain, where there is current flow. The sign of the current is defined as positive if it flows into the conductor, and we thus have I S = I at the source and I D = -I at the drain if there is no current leakage that would violate current conservation.

In order to investigate the conduction properties of such multi-terminal systems, let us just rewrite the Landauer formula for a two-terminal device represented in figure 4.2(a) in a slightly different manner. For the current in the source, we can formally rewrite the Landauer formula (at T T F ) as

I 1 = I = -2 e h T (µ 1 -µ 2 ) = 2 e 2 h T (V 1 -V 2 ) = 2 e 2 h [(1 -R 11 )V 1 -T 12 V 2 ] ,
(4.1) where we reinterpret R 11 = R as the reflection coefficient into the contact 1 and T 12 = T as the transmission coefficient from the contact 2 to 1. Similarly, we can rewrite the Landauer formula in the form of a balance equation in the contact 2 (drain),

I 2 = -I = 2 e 2 h T (V 2 -V 1 ) = 2 e 2 h [(1 -R 22 )V 2 -T 21 V 1 ] , (4.2) 
with the reflection coefficient R 22 = R into the contact 2 and the transmission coefficient T 21 = T from contact 1 to contact 2. For the moment, we have not gained anything by this rewriting of the Landauer formula in a more complicated manner, apart from unveiling an emergent matrix structure

I 1 I 2 = 2 e 2 h (1 -R 11 ) -T 12 -T 21 (1 -R 22 ) V 1 V 2 (4.3)
that allows us to generalise more easily the Landauer formula to a situation with more than two contacts. Notice furthermore, that the two balance equations in the two contacts bear exactly the same information. Mathematically, this means that the two linear equations are not independent so that the (conductance) matrix in the above equation has a vanishing determinant.

In order to generalise the Landauer formula, we first consider the threeterminal device shown in figure 4.2(b), where contact 1 is chosen to be the source and 2 to be the drain, while there is no current flowing in contact 3. In order to obtain the balance equation, we may count the contributions: there is first the injection into the conductor from the source lowered by the back-scattered part at the potential V 1 , (1 -R 11 )V 1 , and second the parts transmitted from the contacts 2 and 3 at their respective potentials, -T 12 V 2 and -T 13 V 3 . One thus obtains for the balance in contact 1

I 1 = I = 2 e 2 h [(1 -R 11 )V 1 -T 12 V 2 -T 13 V 3 ] . (4.4)
Similar balance equations are obtained for the other contacts, and the general Landauer-Büttiker formula in the case of N contacts reads

I i = 2 e 2 h (M i -R ii )V i - j =i T ij V j , (4.5)
for the contact i. Several comments need to be made. First, we have smuggled in a factor M i that denotes the number of modes in the lead connected to contact i below the Fermi level, in order to have directly an expression for the multi-channel case. We therefore need to reconsider the range of the reflection coefficients R ii , which may now take values between zero and M i . Furthermore, we have are confronted with several transmission coefficients T ij that denote the transmission from the contact j to the contact i and that are generally different from one another. The role of the ususal equation T = 1 -R needs to be reconsidered in the multi-terminal case since there is not only one transmission and one reflection coefficient. Finally, we have already mentioned in the two-terminal case that the two balance equations in the two contacts are essentially the same. There is thus some redundancy, as we show in detail in the next paragraph. Notice finally that the Landauer-Büttiker formula (4.5) is indeed a matrix equation that can be rewritten in the form

I = G V , (4.6)
with the conductance matrix

G = 2 e 2 h      (M 1 -R 11 ) -T 12 . . . -T 1N -T 21 (M 2 -R 22 ) . . . -T 2N . . . -T 32 . . . . . . -T N 1 . . . . . . (M N -R N N ),      (4.7)
for a conductor connected by N contacts.

Reference potential and current conservation

The above-mentioned points about the transmission and reflection coefficients and the redundancy of the balance equations. Indeed, in the twoterminal case, Eqs. (4.1) and (4.2) are equivalent. This is due to the invariance of the equations under the change of the reference potential. If we shift V j → V j + V 0 by the same potential V 0 in all contacts, the conduction should not change, i.e. the currents should remain unaltered, I i → I i + ∆I i with ∆I i = 0. If we subsitute this into Eq. (4.5), we obtain

∆I i = 0 = 2 e 2 h (M i -R ii ) - j =i T ij V 0 , (4.8)
which is nothing other than the intuitive statement that there is no current flowing through the conductor if all contacts are at the same potential. This yields

M i -R ii = j =i T ij , (4.9)
which generalises the equation 1 -R = T in the one-channel two-terminal setup discussed in the previous chapter. Equation (4.5) can thus be rewritten in the form

I i = 2 e 2 h j =i T ij (V i -V j ). (4.10)
This tells us that the sum over all elements of each row of the conductance matrix (4.7) is equal to zero. In order to obtain the entire redundancy of the N balance equations for a conductor connected to N contacts, we also need to consider current conservation. If we omit any current leakage in the conductor apart from the contacts, we have i I i = 0. Therefore we have

i j =i T ij V i = i j =i T ij V j . (4.11)
This double sum excludes just the terms where i = j, and we can thus rewrite the term on the left-hand side as i j =i T ji V j by a simple change of variable in the sum so that we obtain

i j =i T ji V j = i j =i T ij V j . (4.12)
This equation is valid for any choice of the electrostatic potentials and therefore also for the very special choice V j = 0 and V i = 0 if i = j. As a consequence the sum remains the same if we exchange the indices

i =j T ij = i =j T ji , (4.13)
and the sum over a column of the conductance matrix (4.7) therefore vanishes as much as the sum over any row of the matrix. While these two properties may seem similar from a mathematical point of view, they are physically quite different. In one case, it is the invariance of the system upon a change of the reference potential (and thus the choice of the zero in energy of the thermodynamic potentials), while in the other case we need to appeal to current conservation. As a consequence of these properties, which are due to the above-mentioned redundancy of the balance equations, the conductance matrix has a vanishing determinant det (G) = 0, (4.14) in a agreement with the conclusions drawn from the two-terminal geometry. This is, at first sight, a drawback because we cannot simply invert the conductance matrix in order to obtain the multi-terminal resistances. We will see, however, that this problem can be circumvented in many situations, namely in the three-terminal and four-terminal geometries, discussed in sections 4.2 and 4.3, respectively, as well as in the Hall geometry with six terminals in the quantum Hall, anomalous quantum Hall and quantum spin Hall effects, presented in the following chapters.

The role of a magnetic field and Onsager reciprocity relations

Before we investigate the conductance matrix and the related multi-terminal resistances in some particular geometries, let us continue to examine some general properties of the conductance matrix (4.7). A particularly important property is revealed in the presence of a magnetic field. In order to approach this situation, it turns out to be convenient to appeal again to the scattering matrix and its behaviour under time-reversal symmetry. Indeed, the conduction through the conductor connected by N contacts can be viewed as a scattering process described in terms of an N × N generalisation of the scattering matrix (3.84), schematically represented in figure 4.3. The diagonal elements s ii of the scattering matrix are nothing other than the reflection amplitudes, so that we have R ii = |s ii | 2 for the reflection coefficients, while the transmission coefficients T ij = |s ij | 2 are given by the off-diagonal elements of the scattering matrix, for i = j. We have already seen that the scattering matrix must be unitary, S † S = 1, to account for current conservation. We thus have,

     o 1 o 2 . . . o N      = S(B)      i 1 i 2 . . . i N      and      i 1 i 2 . . . i N      = S † (B)      o 1 o 2 . . . o N      , (4.15)
where the argument in the scattering matrix denotes the magnetic field, which we take into account explicitly here. Notice that the latter equation can also be understood in a slightly different manner if we consider timereversal symmetry that inverts the arrows in figure 4.3 and thus exchanges the incoming and outgoing waves in the scattering process. The scattering matrix can then be analysed in the light of the Schrödinger equation in the presence of a magnetic field,

Hψ(r, t; A) = (-i ∇ -eA(r)) 2 2m + V (r) ψ(r, t, A) = i ∂ ∂t ψ(r, t, A),
(4.16) where we have explicitly taken into account the vector potential A in the argument of the wave function, with B = ∇ × A. Let us now take the complex conjugate of this equation,

(-i ∇ + eA(r)) 2 2m + V (r) ψ * (r, t, A) = i ∂ -∂t ψ * (r, t, A). (4.17)
This equation indicates that the wave function ψ * (r, t, A) is the solution of the same Hamiltonian if we change t → -t and invert the sign of the magnetic field, B → -B (and thus the vector potential, A → -A), i.e.

ψ * (r, -t, -A) = ψ(r, t, A), (4.18)

or else for the incoming and outgoing components of the wave function in the scattering process (4.15)

o j (t, B) = i * j (-t, -B). (4.19)
This symmetry, which is called time-reversal symmetry and that is discussed in more detail in section ?? at the beginning of chapter 7, needs to be respected by the scattering matrix. If we change the orientation of the magnetic field, we therefore need to transpose the scattering matrix, and the transmission and reflection coefficients inherit this symmetry, i.e.

T ij (B) = T ji (-B) and R ii (B) = R ii (-B). (4.23)
These relations are also called Onsager reciprocity relations. As a consequence of the reciprocity relations, the scattering and the conductance matrices are symmetric in the absence of a magnetic field,

s ij (B = 0) = s ji (B = 0) and T ij (B = 0) = T ji (B = 0). (4.24)
Along with Eq. (4.9), which expresses the diagonal elements of the conductance matrix in terms of the off-diagonal ones, the conductance matrix thus has N (N -1)/2 independent elements for B = 0, while it has (N -1) 2 independent elements at non-zero magnetic fields.

The fact that the transmission coefficients are not symmetric under the exchange of the contacts i ↔ j in the presence of a magnetic field may seem somewhat disturbing. Indeed, in the elaboration of the Landauer formula in the preceding chapter, we have made use of the fact that the transmission coefficient from the source to the drain is the same as that from the drain to the source, i.e. T 12 = T 21 . Notice that this remains true because we considered the two-terminal configuration for which the conductance matrix is thus a 2 × 2 matrix. In this case the sums in Eq. (4.13) contain only one element, and we have T 12 = T 21 regardless of the magnetic field. As a consequence, the two-terminal conductance

G 2 (B) = 2 e 2 h T 12 = G 2 (-B) (4.25)
is symmetric under the change of orientation of the magnetic field. That this is indeed the case can be seen from figure 4.4(a), where the two-terminal conductance through a metallic ring is shown as a function of the magnetic field. The measured conductance displays Aharonov-Bohm oscillations the origin of which is not the relevant issue here, but rather the fact that the curve is perfectly symmetric under the exchange B → -B. This needs to be contrasted with the four-terminal conductance through the same type of device, which we have already encountered in figure 3.3 and that is reproduced in figure 4.4(b) for a direct comparison. Clearly, neither of the three curves has G ij,kl (-B) = G ij,kl (B). However, comparison between the first and the third conductance curve indicates that G 14,23 (B) = G 23,14 (-B), i.e. the curves are identical if the change in the orientation of the magnetic field is accompanied by an exchange of the pair of contacts that serve as drain and source with those used to measure the voltage drop. While, this result arises from a full calculation of the four-terminal resistance (see section 4.3), it can be understood physically in a simple manner. In the absence of a magnetic field, there should be no difference between the contact arrangements in the first and the third line so that G 14,23 (B = 0) = G 23,14 (B = 0) because the system is rotation-symmetric around the axis that cuts the ring in two halfs in the x-axis. A simple continuous rotation by 180 • around this axis would thus change the arrangement of the first line into that of the third one. This symmetry is broken by the magnetic field in the direction perpendicular to the plane, and the rotation by 180 • precisely changes the orientation of the magnetic field.

The general Onsager reciprocity relations usually involve the resistances R ij,kl = 1/G ij,kl associated with the above-mentioned conductances and read

R ij,kl (B) = R kl,ij (-B).
(4.26)

Some other properties of the conductance matrix

While the reciprocity relations are certainly the most relevant properties of the conductance matrix, there are two further aspects that may be of practical interest. The first one is concerned with the balance in a contact i that is neither the source nor the drain and in which we have I i = 0. In this case, one obtains directly from Eq. (4.10) Millman's theorem

V i = j =i T ij V j j =i T ij , (4.27)
Conduction in multi-terminal quantum devices 123 which states that the potential in a non-current-carrying contact is given by the weighted sum of the potentials in the contacts j connected by the transmission coefficients T ij to i.

Finally, let us consider the dissipated power in the system. Since all scattering events in the conductor are considered to be elastic, the electrons keep their energy during their passage through the conductor. The power is therefore dissipated only in the contacts,

P = i I i V i .
(4.28)

One first notices that the dissipated power is independent of the reference potential as we should have expected. Indeed, if we change all potentials V i → V i + V 0 by a constant value V 0 , the power does not change because we have i I i = 0 due to current conservation. We may now replace the current in the expression by the expression (4.10) so that one finds

P = 2 e 2 h i j =i T ij (V i -V j )V i = 2 e 2 h i j =i T ji (V i -V j )V i , (4.29) 
where we have made use of j =i T ij = j =i T ji in the first term and a simple change of indices i j =i T ij V i V j = i j =i T ji V i V j in the second term. 1 We may therefore add the two sides of the identical expressions in the last equation and devide it by two to obtain the power

P = e 2 h i j =i (T ij + T ji )(V i -V j )V i = - e 2 h i j =i (T ij + T ji )(V i -V j )V j ,
(4.30) where the last term has again been obtained by an exchange of the indices i and j. Again, we may take the half sum of the latter two expressions, and we eventually obtain

P = e 2 2h i j =i (T ij + T ji )(V i -V j ) 2 . (4.31)
First, notice that, contrary to the resistances, the dissipated power does not depend on the orientation of the magnetic field because it is the symmetric combination of the transmission coefficients, T ij + T ji , that enters the expression (4.31). Second, it is apparent from this equation that the dissipated power is positive since the transmission coefficients T ij = |s ij |2 are positive, and so is the square of the potential differences.

Conductance through a three-terminal device

After this discussion of the general properties of the conductance matrix, let us now consider in detail the three-terminal device shown in figure 4.5. The Landauer-Büttiker formula (4.5) is then given in terms of a 3×3 conductance matrix,

  I -I 0   = 2 e 2 h   (T 12 + T 13 ) -T 12 -T 13 -T 21 (T 21 + T 23 ) -T 23 -T 31 -T 32 (T 31 + T 32 )     V 1 V 2 V 3   . (4.32)
As we have already mentioned, there are not three independent equations, but only two, and we may thus omit one of the lines from the matrix equation. For computational convenience, 2 we omit the first line. Furthermore, we have seen that we may choose one of the potentials to be zero, e.g. V 3 = 0, in which case one may also omit the last column of the conductance matrix.

The remaining 2 × 2 matrix may then be easily inverted, in order to obtain the related resistances, and one thus has

V 1 V 2 = h 2e 2 1 D -T 32 -(T 21 + T 23 ) T 31 -T 21 -I 0 , (4.33)
in terms of the determinant

D = T 21 T 32 + T 31 (T 21 + T 23 ) (4.34) = T 21 (T 31 + T 32 ) + T 31 T 23 = (T 21 + T 31 )(T 21 + T 23 ) -T 21 T 12 ,
where we have rewritten the expression in two different manners that turn out to be useful in the following.

The above matrix expression allows us to easily obtain the various resistances In contrast to these resistances, we may also investigate the two-terminal resistance

R 12,ij = V i -V j I , (4.35) such as R 12,13 = V 1 I = h 2e 2 T 32 D and R 12,32 = -V 2 I = h 2e 2 T 31 D , (4.36 
R 12,12 = V 1 -V 2 I = h 2e 2 T 32 + T 31 D .
(4.41)

As we have already seen, the denominator in this resistance is invariant under B → -B, and so is the numerator, so that we obtain the invariance of the two-terminal resistance

R 12,12 (B) = R 12,12 (-B), (4.42)
as one would have expected. Furthermore, we may obtain the two-terminal conductance from this expression,

G 3 = 1 R 12,12 = 2 e 2 h D T 32 + T 31 = 2 e 2 h T 21 + T 31 T 23 T 31 + T 32 , (4.43)
where we have used the second-last expression of the determinant (4.34).

Notice that this expression of the two-terminal conductance in the threeterminal geometry is different from that

G 2 = 2 e 2 h T 21 (4.44)
in the two-terminal geometry, which we have obtained in the last chapter! Even if the third contact is not used for any measurement in the present two-terminal conductance, it affects the conductance. Indeed, the result for G 3 may be interpreted as the addition of two contributions, one that stems from the direct transmission from contact 1 to 2 (given by G 2 ), while a second contribution represents the contribution from electrons that "visit" the contact 3 before being transmitted to contact 2. Both contributions add up as one would expect for conductances in series. Furthermore, the contribution from the passage in contact 3 may be viewed as an incoherent contribution due to the thermalisation of the electrons transmitted from 1 to 3 with the electrons in the reservoir 3.

Notice finally that we retrieve the two-terminal conductance in the twoterminal geometry if we reduce drastically the transmissions from 1 to 3 and from 3 to 2. For the sake of the argument, let us consider no magnetic field and a symmetric transmission, T 13 = T 23 = 1. In this case, the incoherent contribution from the passage through the contact 3 becomes

T 31 T 23 T 32 + T 31 = 2 , (4.45)
and the two-terminal conductance thus reads

G 3 = 2 e 2 h T 21 + 2 → G 2 for → 0. (4.46)
This last argument in terms of an infinitesimal coupling of the third contact to the conductor (or a vanishing invasiveness) allows us also to clarify an aspect that might seem counterintuitive: equation (4.43) indicates that in addition to the direct transmission from the source and the drain, T 21 , there is an incoherent contribution due to electrons that passes by the third contact. This should indeed astonish us: adding a third contact to the conductor increases the conductance even if we have added a source of decoherence? This is actually only an apparent contradction since we must reconsider the meaning of the transmission T 21 . In order to illustrate this point, let us consider B = 0 for simplicity so that the conduction matrix becomes symmetric. Furthermore, let us consider that there is no reflection into the source and the drain, i.e. R 11 = R 22 = 0. Since the coupling to the third contact is still given by the transmission coefficient T 13 = T 23 = , it would be a mistake to associate with the vanishing reflection a perfect transmission T 21 = M because we need to respect the sum rules (4.9). In view of the conductance matrix

G = 2 e 2 h   M -T 21 - -T 21 M - - - M -R 33   , (4.47)
we immediately see that the sum rule imposes a reduced value

T 21 = M -, (4.48) 
along with R 33 = M -2 . The reduction of the transmission coefficient T 12 is therefore larger than the incoherent contribution (4.45), and we have

G 3 = 2 e 2 h M - 2 . (4.49)
While this value still converges to the ballistic two-terminal case G 2 = 2M e 2 /h in the limit where → 0, we clearly see that G 3 is smaller than G 2 . 

Conductance through a four-terminal device

The above treatment of the conductance matrix in the three-terminal geometry and the calculation of the resistances may be directly transferred to the four-terminal geometry. Indeed, the discussion of the three-terminal geometry may be viewed as a warm-up for this more interesting situation, where we can revisit some aspects already mentioned in the previous chapter on the conductance through a quantum wire and where we may be confronted with negative resistances. The setup is depicted in figure 4.6. As before, the contacts 1 and 2 are the source and the drain, respectively, while there is no current flowing in the floating contacts 3 and 4. The Landauer-Büttiker formula is now given in terms of a 4 × 4 matrix,

    I -I 0 0     = 2 e 2 h     (M 1 -R 11 ) -T 12 -T 13 -T 14 -T 21 (M 2 -R 22 ) -T 23 -T 24 -T 31 -T 32 (M 3 -R 33 ) -T 34 -T 41 -T 42 -T 43 (M 4 -R 44 )         V 1 V 2 V 3 V 4     , (4.50) 
i.e. in terms of four equations, one of which is again redundant. As in the case of the three-terminal geometry, we omit the first line of the matrix equation as well as the last column (by choosing V 4 = 0) so that we need to invert a 3 × 3 matrix in order to obtain the (six) different resistances R 12,ij = (V i -V j )/I. The reduced system of equation therefore reads

  -I 0 0   = 2 e 2 h   -T 21 (T 21 + T 23 + T 24 ) -T 23 -T 31 -T 32 (T 31 + T 32 + T 34 ) -T 41 -T 42 -T 43     V 1 V 2 V 3   ,
(4.51) and its inversion yields the voltages

  V 1 V 2 V 3   = h 2e 2 D   a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33     -I 0 0   , (4.52)
in terms of the determinant

D = -T 21 T 32 T 43 -T 41 j T 2j i T 3i -T 23 T 31 T 42 -T 21 T 42 j T 31 -T 31 T 43 j T 2j + T 23 T 32 T 41 , (4.53) 
and the matrix elements a ij are the adjoint elements of Tji , where Tji is the element in line j and row i of the reduced matrix in Eq. (4.51). Naturally, the expressions we need to handle are more cumbersome, but the structure is relatively simple. In a first step, let us investigate the sign of the determinant. Just by looking at its expression and knowing that the transmission coefficients are all positive, you may bet that the determinant is negative: the only positive term is the last one. You have then bet on the right horse. The determinant is indeed negative because this last term cancels an identical one that occurs in the sum of the second term of the determinant. We may therefore use the modulus of the determinant and simply change -I → I on the right-hand side of Eq. (4.52) to avoid sign problems in the calculations. Out of the six different resistances, there are two that are of special interest here: the two-terminal resistance R 12,12 , which is related to the voltage drop in the source and drain, and the four-terminal resistance R 12,34 , which measures the voltage drop between the floating contacts 3 and 4, i.e. between the contacts where no current is flowing into or out of the conductor. The four-terminal resistance R 12,34 is also sometimes called a non-local resistance. In order to obtain this resistance, we simply need to evaluate Similarly, we obtain for the two-terminal resistance

R 12,34 = V 3 -V 4 I = V 3 I = h 2e 2 a 31 |D| . ( 4 
R 12,12 = V 1 -V 4 I = h 2e 2 a 11 -a 21 |D| = h 2e 2 j =3 T 3j i =4 T 4i -T 34 T 43 |D| .
(4.57) Here, the patient reader may start to be a bit frustrated. Matrix inversion is a cumbersome bookkeeping task that yields lengthy expressions, and we yet do not know anything about the transmission coefficients. Indeed, the transmission coefficients would need to be calculated within a microscopic quantum treatment of the scatterer that is not the object of the present classes. However, as we show below, these expressions bear already relevant information about the system, such as the possibility to obtain negative resistances, and we can furthermore make a connection with the quantum transport through a quantum wire, where we have first introduced the distinction between the two-and four-terminal resistances, albeit in an approach, where we considered the contacts 3 and 4 (connecting the ballistic leads) to be non-invasive (see section 3.4.1).

Test of the Onsager reciprocity relations

Let us first investigate the two resistances (4.56) and (4.57) in the light of the reciprocity relations according to which the two-terminal resistance must be symmetric if we change the orientation of the magnetic field, while this is generally not the case for the four-terminal resistance. Indeed, the determinant is invariant, D(-B) = D(B), as one may check directly from its expression (4.53). Notice that this property is inherited from the full conductance matrix, where we have G ij (-B) = G ji (B), i.e. the conduction matrix simply needs to be transposed if we change B to -B. However, the determinant is invariant under matrix transposition. Furthermore, the numerator in Eq. (4.56) is invariant because the first term contains the sum over rows of the conductance matrix, for which we have j =i T ij = j =i T ji and the second term in the numerator is symmetric under the exchange of the indices. We thus retrieve 

Negative four-terminal resistances

A particular situation may arise in which the four-terminal resistance, in contrast to the two-terminal one, can become negative. That the two-terminal resistance is always positive is apparent when looking at the expression (4.57), where the negative last term is compensated by one of the terms in the (positive) sum in the numerator. From a mathematical point of view, a negative four-terminal resistance requires simply that the transmission between 1 and 3 as well as that between 2 and 4 are reduced with respect to the transmission between 1 and 4 and that between 2 and 3, T 31 T 42 < T 32 T 41 . What does this mean from a physical point of view? For the sake of the argument, we consider the B = 0 case here so that the transmission from i to j is the same as that from j to i. In a usual situation, with the naming of the contacts as in figure 4.6, the voltage contact 3 is spatially closer to the source 1 than to the drain 2, while the voltage contact 4 is closer to the drain than to the source.

If we consider a normal diffusive conductor, the transmission between two contacts is then inversly proportional to the distance, and the voltage drop
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is expected to be monotonic over the conductor. This situation is depicted in figure 4.7(c), in which case one would measure a positive four-terminal resistance. However, let us assume that for some reason the transmission from the source to the contact 4 and that from the drain to contact 3 is larger than that from the source to contact 3 (and that from the drain to contact 4), in contrast to our naïve expectations. In this case, sketched in figure 4.7(d), the chemical potential (and thus the voltage) in contact 4 is better equilibrated with that of the source, while the voltage in contact 3 is closer to its value in the drain. Since we then have

V 3 < V 4 , while V 1 > V 2
, one naturally obtains a negative resistance. While this situation is at odds with our intuitions that stem from a classical diffusive conductor, it may arise in a quantum conductor due to quantum-mechanical interference effects if the latter suppress the transmission T 13 and T 24 with respect to T 14 and T 23 . Such negative four-terminal resistances have indeed been measured experimentally, as shown in figure 4.7. The represented setup consists of a metallic (single-wall) carbon nanotube that is connected to two gold contacts which serve as the source and the drain. The voltage contacts consist of other metallic (multi-wall) carbon nanotubes. The measured four-terminal resistances (devided by the two-terminal resistances) at different temperatures are shown in figure 4.7(e), as a function of the gate voltage that allows one to change the electronic density and thus the Fermi level in the conductor. One clearly notices that the four-terminal resistance becomes negative at certain values of the gate voltage in the low-temperature limit, while the effect disappears at high temperatures. Figure 4.7(f) shows the low-temperature resistance in another device. The fact that the four-terminal resistance is no longer negative at higher temperatures indicates the quantum origin of the effect, i.e. quantum interferences are responsible for a better transmission over larger distances, as mentioned above.

Non-invasive four-terminal device

In this final section, we revisit, in view of the Landauer-Büttiker formalism, the potential landscape of a diffusive conductor in the four-terminal geometry, which we have discussed in section 3.4.1). The setup is sketched in figure 4.8 and coincides with the situation shown in figure 3.8. We suppose that there is no magnetic field present so that T ij = T ji . As before, the contacts 1 and 2 are the source and drain, respectively, and they are connected to the diffusive conductor by ballistic leads. The transmission through the diffusive region is characterised by the coefficient T , while describes the "invasiveness" of the contacts 3 and 4. It can be viewed as the transmission to the ballistic leads, but it should not be mixed up with the transmission coefficient to the source or the drain. In order to see this, let us consider the transmission coefficient from the source 1 to contact 3. An electron can naturally be transmitted directly, and that yields a contribution . However, it can also indirectly reach the contact 3 if it remains in the lead (with a probability 1 -) before being reflected by the scatterer (the diffusive part of the wire) with a probability R = 1 -T and than reach the contact (again with the probability ). The transmission coefficient is then given by

T 13 = + (1 -)R = T 24 , (4.61) 
if we neglect multiple backscattering processes between the contact 3 and the diffusive part. By symmetry, this is also the transmission coefficient from the drain to contact 4. Furthermore, the direct transmission from the source to the drain is then given by

T 12 = (1 -)T (1 -) (4.62)
and that from the source to contact 4 (and from the drain to contact 3) by

T 14 = T 23 = (1 -)T , (4.63)
by the same probability multiplication as explicited for the coefficient T 13 . If we inject these expressions in the general expressions (4.57) and (4.56) we obtain, after a cumbersome but straight-forward calculation

R 12,12 = h 2e 2 1 T + 2 2 - (4.64)
for the two-terminal resistance and

R 12,34 = h 2e 2 R T + 2 - (4.65)
for the four-terminal resistance.

Let us interpret these two results in the different limits, starting with the limit where → 0. This is the limit, where the contacts 2 and 4 are barely coupled to the leads so that they can be considered as non-invasive. We discussed this limit in the framework of the quantum wire in section 3.4.1, and we retrieve the Landauer formula

R 12,12 = h 2e 2 1 T and R 12,34 = h 2e 2 R T , (4.66) 
in agreement with Eqs. (3.78) and (3.81).

In the opposite limit, with → 1, where the contacts are perfectly coupled to the leads, we find

R 12,12 = h 2e 2 1 T + 2 and R 12,34 = h 2e 2 1 T , (4.67) 
in agreement with the sum of resistances in series and Ohm's law. To see this point, we may decompose the two-terminal resistance into three parts

R 12,12 = V 1 -V 3 I + V 3 -V 4 I + V 4 -V 2 I = R bal 13 + R 34 + R bal 42 . (4.68)
Indeed, the fact that = 1 indicates that all electrons that arrive in the diffusive part from the source inevitably pass through the contact 3 (at the potential V 3 , which they keep until they arrive in the scattering region). Similarly all electrons are indirectly transmitted from the drain to the diffusive part, passing by the potential V 4 . The transmission from contact 3 to 4 is therefore effectively that of the conductor in the two-terminal geometry R 12,12 = h/2e 2 T (in the limit = 0), while that from 1 to 3 (and 4 to 2) is conductor (a GaAs quantum wire) has been measured as a function of the invasiveness of the contacts 3 and 4 (A and B) in the figure. The particularity of these contacts is that they are also formed of GaAs quantum wires, whose transmission can be controlled by side gates. The inset of the figure shows the ratio between the four-terminal resistance R 12,34 ( ) as a function of and the two-terminal resistance in the absence of the contacts 3 and 4, R 12,12 ( = 0). From the general expressions (4.64) and (4.65) in the limit

T = 1, R 12,34 ( ) = h 2e 2 2 - and R 12,12 ( ) = h 2e 2 2 + 2 - , (4.72)
we obtain the ratio R 12,34 ( )

R 12,12 ( = 0) = 2 - , (4.73)
in agreement with the measured values. Notice that our expressions represent the single-channel case, while the experiment has been performed on a quantum wire of finite width. Both resistances therefore need to be devided by the number of channels M (V ) (i.e. the number of electronic bands below the Fermi level), which can be controlled by the gate voltage, as we have seen in section 3.6. This is at the origin of the step-like increase of the twoterminal resistance as a function of the (negative) gate voltage (see figure 4.9), but it does not affect the measured ratio between the two resistances.

Notions and concepts to retain

• multi-terminal devices and Landauer-Büttiker formalism

• conductance matrix

• relations between transmission and reflection coefficients (current conservation and reference potential)

• Onsager reciprocity relations in the presence of a magnetic field • Millman's theorem

• dissipated power in the contacts

• negative four-terminal resistances

• invasiveness of contacts

Chapter 5

Quantum Hall effects

One of the key experiments in quantum mesoscopic physics is definitely the quantum Hall effect, which is observed in high-mobility 2D electron systems in a strong perpendicular magnetic field. The effect, which was discovered by K. v. Klitzing in 1980(Nobel Prize in 1985), consists of the appearance of plateaus in the Hall resistance, at precisely quantised values R H = h/M e 2 , where M is an integer. A typical Hall-resistance curve is shown in figure 5.1.

In view of the terminology introduced in the preceding chapters, the Hall resistance is a transverse four-terminal resistance R H = R 14,35 , measured between, e.g, the contacts 3 and 5, while the contacts 1 and 4 are the source and the drain, respectively. The Hall resistance is accompanied by another longitudinal resistance, which is also a four-terminal resistance R L = R 14,56 and that vanishes whenever the Hall resistance shows a plateau. On the basis of the knowledge acquired in the preceding chapters, we can already see that the transport must be ballistic through the device and that the integer M counts the relevant channels even if we do not know yet where the current flows through the device. The answer to this question and an understanding of the origin of this ballistic transport is the aim of this chapter. Notice that the quantisation of the Hall resistance is so precise that the effect is used nowadays as the resistance standard. Furthermore, this so-called integer quantum Hall effect (IQHE), which denotes the effect when M is an integer number, is accompanied in high-mobility samples by its fractional brother, the fractional quantum Hall effect (FQHE), which occurs at rational values of M . While this effect merits a discussion of its own -it is the prototype of topological phases that occur due to strong electronic correlations -it will not be covered in these lecture notes, where we concentrate on non-interacting 139 electronic systems, as mentioned in the introduction. The present chapter aims at an understanding of the quantum Hall effect in the framework of the Landauer-Büttiker formalism introduced in the preceding chapter. It is furthermore based on Landau quantisation, that is the quantisation of the electronic energy in the presence of a magnetic field. Indeed, the cyclotron motion of 2D electrons is reminiscent of a harmonic oscillator, and Landau quantisation similarly yields discrete albeit highly degenerate energy levels. Their degeneracy is given by the number of flux quanta threading the 2D plane, as we show explicitly below. Landau quantisation is the object of section 5.2, after a short reminder of the classical Hall effect treated within the Drude model (section 5.1). Once an integer number of Landau levels is completely filled, the Fermi level resides between two adjacent Landau levels and one expects the system to be insulating since adding an electron comes with a cost in energy that is given by the Landau-level separation. Naturally, this is a very particular type of insulator since we need to interpret the Landau levels as infinitely flat bands. Moreover, this is only half of the truth. As we show in section 5.3, the Landau levels are bent upwards in energy upon approaching the edges of the system and thus cross the Fermi level there. These crossings are at the origin of metallic edge states that allow the electrons to travel from one contact to the other. Most saliently, these edge states happen to be chiral, i.e. the direction of propagation is imposed by the orientation of the magnetic field so that backscattering is suppressed. Indeed, backscattering would require that an electron could travel across the insulating bulk from one edge to the other, and such processes are exponentially suppressed in the distance between the edges. As a consequence, the edge transport is ballistic, as one may have already inspected from the precise resistance quantisation mentioned above. Such ballistic transport via the edge channels is then discussed in detail within the Landauer-Büttiker formalism in section 5.4.

This chapter on the quantum Hall effect is central since it also serves as a bridge to the physics of topological insulators that is discussed in the following chapters. Indeed, the dichotomy between an insulating bulk and metallic edges is at the heart of the so-called bulk-edge correspondance, which characterises topological materials. This central role played by the quantum Hall effect justifies the length of the present chapter of which the reader should be averted. Furthermore, we have chosen, in contrast to many textbooks, a gauge-independent approach to Landau quantisation. While this approach is perhaps a little bit lengthier than a direct solution of the Landau-level problem by fixing a particular gauge for the vector potential, it unveils the physical structure of the effect. First, it allows us to treat the edge states and the localised states in the bulk on an equal footing with the help of smoothly varying electrostatic potentials. Second, this approach happens to be useful in a completely different context, namely that of edge states in topological materials discussed in chapter 7.

Figure 5.2: Sketch of a 2D electron system in a perpendicular magnetic field B. Due to the deviation of electrons by the magnetic field, one obtains a charge gradient between opposite edges when one drives a current through the system by the contacts C1 and C4. This gradient yields a voltage drop between the two edges and thus a Hall resistance that one may measure between the contacts C3 and C5. In the classical Hall effect, the Hall resistance varies linearly with the magnetic field.

Classical Hall effect

Let us first briefly remember the classical Hall effect, which E. Hall discovered in 1879. When one drives a current I through a metallic film, e.g. through the contacts C1 and C4 in figure 5.2, the electrons are deflected by the magnetic field due to the Lorentz force. This yields a charge difference between the upper and the lower sample edge and thus a voltage drop V H that can be measured between the contacts C3 and C5, for example. One thus obtains the Hall resistance R H = V H /I = B/en el , which is proportional to the applied magnetic field B and inversly proportional to the 2D charge density en el . Notice that the classical Hall effect is still used today to measure the carrier density and charge in metals.

The effect can be understood in the framework of the Drude model, which we have already encountered in the introduction and that is based on Newton's equation of motion. The latter needs to account for the Lorentz force in addition to the force due to the electric field,

dp dt = -e E + p m × B - p τ , (5.1)
in terms of the band mass m and the relaxation time τ . As before, one obtains a linear relation between the current density and the electric field if we search for the stationary solution dp/dt = 0,

σ 0 E x = en el m [-p x -(ω C τ )p y ] σ 0 E y = en el m [(ω C τ )p x -p y ] , (5.2) 
where we have introduced the cyclotron frequency

ω C = eB m (5.3)
and the same Drude conductivity σ 0 = n el e 2 τ /m as in the introduction. The cyclotron frequency turns out to be an essential quantity. In the case of free electrons with a parabolic dispersion, it is the frequency associated with the harmonic cyclotron motion, and the reminscence of the present system of electrons in a strong magnetic field with the harmonic oscillator indicates that the energy levels obtained within a quantum treatment depends on ω C , as we show in detail below.

In order to obtain the Drude model for electrons in a magnetic field, we bring again the above equations of motion into the standard form

E = ρj,
(5.4) in terms of the current density j = -en el v = -en el p/m. The resistivity is now a matrix quantity, as much as the conductivity,

ρ = 1 σ 0 1 ω C τ -ω C τ 1 and σ = ρ -1 = σ 0 1 + (ω C τ ) 2 1 -ω C τ ω C τ 1 .
(5.5) The off-diagonal element of the resistivity matrix represents the Hall resistivity, . Furthermore, we are interested in the Hall resistance, which is a transverse resistance, and the width of the conductor is thus given by the length itself.

ρ H = ω C τ σ 0 = B en el . ( 5 

A hint of quantum mechanics

Notice that we may also write the conductivity and the resistivity (5.5) in terms of the mobility µ = eτ /m if we replace

ω C τ = µB.
(5.7)

This equation turns out to be a useful relation both for the following parts and experimentally in the experimental determination of the mobility in diffusive metals. Indeed, once the cyclotron frequency outcasts the inverse scattering time, an electron can make a full circle without being scattered. From a quantum-mechanical point of view one may then expect novel effects because the associated wave function can connect with itself, and this is at the origin of quantum oscillations that occur when ω C τ 1.1 In order to understand this point, without appealing to a full quantum treatment that may be found in the following section, let us consider this point within a semiclassical framework of Bohr-Sommerfeld quantisation. As for the Bohr model for atoms, a closed trajectory2 in phase space needs to satisfy the quantisation condition

dr • p = h(n + γ),
(5.8) in terms of the integer number n. This ensures the single-valuedness of the wave function everywhere on the trajectory. Here, γ is a geometric phase, and h = 2π is the Planck constant. As a consequence of the linear relation between the (cyclotron) radius R C of the circular trajectory and the velocity, the Bohr-Sommerfeld quantisation rule yields a quantised radius3 

R C = l B 2(n + γ),
(5.9) in terms of the magnetic length

l B = eB .
(5.10) Not only the velocity, but also the (semiclassical) wave vector depends on the cyclotron radius, ω C R C = v = k/m, the wave vector (at the Fermi level) inherits from the cyclotron radius its quantisation,

k F k n = l -2 B R C = l -1 B 2(n + γ).
(5.11)

Furthermore, this yields the energy quantisation

E n = E(k n ).
As an example, we may take a look at a parabolic isotropic band, e.g. in GaAs in the vicinity of the Γ-point, with E(k) = 2 (k 2 x + k 2 y )/2m. In this case, the semiclassical quantisation scheme yields, with k = k 2

x + k 2 y → k n , the discrete energy spectrum

E n = 2 k 2 n 2m = 2 ml 2 B (n + γ) = ω C (n + γ).
(5.12)

Similarly, we obtain for the graphene dispersion E = ± vk

E n = ± v l B 2(n + γ).
(5.13)

While this semiclassical treatment yields indeed the correct form of the energy spectra, only the full canonical quantum treatment, presented in section 5.2, provides naturally the correct values for the geometric phases, which happen to be γ = 1/2 for a parabolic band and γ = 0 for Dirac fermions.

The semiclassical approach allows us to already understand the appearance of quantised energy levels that are called Landau levels and an intriguing effect discovered by Shubnikov and de Haas in 1930. They observed that, at large magnetic fields with ω C τ > ∼ 1 or µB > ∼ 1, the longitudinal resistance starts to oscillate, as it is schematically shown in figure 5.3(a), while the Hall

The tangential velocity may then be rewritten as v = ω C R C u θ , in terms of the tangential unit vector u θ , and one thus finds

dr•p = 2πeBR 2 C -e dr•A(r) = 2πeBR 2 C -e dσB = 2πeBR 2 C -eπR 2 C B = πeBR 2 C ,
where we have made use of Stoke's theorem to replace the line integral over the vector potential by a surface integral over the enclosed (homogeneous) magnetic field. The surface being πR C , substitution into Eq. (5.8) and devision by 2πeB yield the result. resistance remains linear. 4 The effect is due to the above-mentioned energy quantisation and can be qualitatively understood on the basis of the Einstein relation (3.37) for diffusive transport discussed in section 3.2, σ = e 2 Dρ(E F ).

(5.14)

The longitudinal conductivity is proportional to the density of states, which we have sketched in figure 5.3(b) for our case. Since this density of states consists of more or less large peaks centred around the Landau levels E n , the longitudinal conductivity starts to oscillate as a function of the magnetic field.

Every time that a Landau level crosses the Fermi level, there is a maximum in the density of states and thus in the conductivity. Notice that the onset of the Shubnikov-de-Haas oscillations at ω C τ = µB c 1 is commonly used to determine experimentally the mobililty of metals.

Landau quantisation

The quantisation of the energy of a 2D electron in a perpendicular magnetic field is nowadays known under the name Landau quantisation after the Soviet physicist L. Landau who published his calculations in 1930. However, names do often not reflect the original calculation, and it is the case here, as Landau pointed out himself in his publication. Indeed, the more complicated calculation of the energy spectrum of a relativistic (Dirac) particle in a strong magnetic field had been published before by the Italian physicist I. Rabi (in 1928), who himself mentioned in his publication the "well-known" result of energy levels for non-relativistic electrons in a magnetic field. Landau thus repeated these calculations, not to understand this level quantisation in itself, but in the perspective of understanding the diamagnetism of metals, i.e. the tendency of a metal to form an orbital magnetisation that is oriented opposite to the magnetic field. Landau diamagnetism is indeed one of the most central manifestations of Landau quantisation, along with the quantum Hall effect and its precursor, Shubnikov-de-Haas oscillations, which were discovered just some months after Landau's work.

As mentioned above, Landau chose free non-relativistic particles with a parabolic dispersion in his original calculation. Here, we choose a more general approach based on a Bloch Hamiltonian H(k) in the low-energy limit such as to treat electrons with a parabolic band and those in graphene (and yet others) on an equal footing. Notice that we cannot a priori use the full Bloch Hamiltonian due to the presence of the vector potential A(r). It necessarily depends linearly on the position r in order to provide a homogeneous magnetic field B = ∇ × A(r) and thus violates Bloch's theorem that requires periodic potentials. We have a certain freedom in the choice of the vector potential, called gauge choice. 5 The most popular gauges are the Landau gauge

A L (r) = B(-y, 0, 0) (5.15)
and the symmetric gauge

A sym (r) = B 2 (-y, x, 0), (5.16)
both of which respect the Coulomb gauge ∇ • A = 0 of electromagnetism.

We have already discussed, in chapter 2, that the low-energy limit involves an expansion of the Bloch Hamiltonian in |q|a around some particular points in the first Brillouin zone, e.g. the Γ-point in the case of GaAs or Si and around the K-and K -points in graphene or boron nitride. The hypothesis we need to make to account for the magnetic field is that it does not invalidate the full band structure but quantises the energy only in a tiny window around the Fermi level. This is equivalent to requiring that the Heisenberg uncertainty in the wave-vector components in the presence of the magnetic field be small on the scale of the inverse lattice spacing a. As we have seen above, the magnetic field provides us with a novel length scale that is the magnetic length (5.10)

l B = e|B| 26 nm/ |B|[T],
(5.17) which will accompany us throughout this chapter. We show below explicitly that its inverse is the order of magnitude for the uncertainty in the wave vector |q| ∼ l -1 B so that the above low-energy (or small wave-vector) condition reads |q|a ∼ a/l B 1. Since in most materials, we have a < ∼ 1 nm, this condition is satisfied in most materials, 6 and, as we discussed in sections 2.2.1 and 2.3, the condition |q|a a validates the low-energy expansion of the Bloch Hamiltonian.

Landau quantisation is now achieved in three steps.

1. Start with the Bloch Hamiltonian in the low-energy limit. Here, we 6 Indeed, experimentally accessible fields are in the 45 T range for continuous fields in hybrid magnets and ∼ 100 T for pulsed fields, while fields up to roughly 200 T may be achieved in semi-destructive experiments where the coils used to produce the magnetic field are blown up (but usually not the probe). From a theoretical point of view, a magnetic length that is on the order of the lattice spacing is interesting and yields a fractal spectrum that is called Hofstadter butterfly and that can be probed to some extent in superstructures. However, as interesting this situation may seem, it is beyond the scope of these introductory nots on the quantum Hall effect.

concentrate on 2D electrons with an approximately parabolic dispersion

H(q) = 2 q 2 2m , (5.18) 
with q 2 = q 2 x + q 2 y , such as in semiconductor heterostructures, and on 2D Dirac fermions (2.71)

H ξ (q) = ∆ v(ξq x -iq y ) v(ξq x + iq y ) -∆ = v(ξq x σ x + q y σ y ) + ∆σ z .
(5.19) that we may encounter in graphene (with ∆ = 0) and boron nitride (∆ = 0).

2. In order to take into account the magnetic field, we make use of the Peierls substitution, q → q + eA(r), in the low-energy Hamiltonian,

H B = H(q + eA/ ).
(5.20)

3. Remember that the wave vector is the lattice momentum p = q that does not commute with the argument r of the vector potential so that we need to take into account quantum mechanics seriously via the canonical commutation relations,

[x µ , p ν ] = i δ µ,ν , et [x µ , x ν ] = 0 = [p µ , p ν ] = 0.
(5.21)

Peierls substitution and quantisation

Let us spell out the above recipe in more detail, namely the second and third steps. First, the Peierls substitution is the lattice equivalent of the usual minimal coupling of a free charge carrier to the electromagnetic field, which you have encountered in your quantum-mechanics classes,

p → Π = p + eA(r) = mv, (5.22)
in terms of the velocity v of the free particle. In the case of a lattice electron, the situation is more envolved since we should, in principle, take into account the vector potential before adding the periodic potential. However, this is a formidable task that has not yet found an analytic solution because we can no longer use Bloch's theorem, as we have mentioned above. It must therefore be viewed as an approximate scheme that consists of two steps. First, we interpret the wave vector as a quantum mechanical operator that is the conjugate of the position operator which intervenes in the argument of the vector potential. Second, we couple this operator minimally to the vector potential,

k → p → Π = k + eA(r), (5.23)
which is justified in the above-mentioned limit of small flux through the unit cell that is equivalent to a/l B 1. Let us now consider quantum mechanics in the form of the commutation relations (5.21), which induce the following commutation relations for the components of the operator Π

= (Π x , Π y ), [Π x , Π y ] = [p x + eA x (r), p y + eA y (r)] = e ([p x , A y (r)] -[p y , A x (r)]) = e ∂A y ∂x [p x , x] + ∂A y ∂y [p x , y] - ∂A x ∂x [p y , x] - ∂A x ∂y [p y , y] = -i e ∂A y ∂x - ∂A x ∂y = -i eB z = -i 2 l 2 B sgn(B), (5.24) 
where we condider the magnetic field to be parallel to the z-axis, and the sign sgn(B) = B/|B| its orientation: we have sgn(B) = + for an orientation along the positive z-axis and sgn(B) = -if it points towards the negative z-axis. Here, we have made use, in the second line, of the operator relation (5.25) between an operator C and a (derivable) function of another operator f (D). 7 It is noteworthy that the relation

[C, f (D)] = ∂f ∂D [C, D] if [C, [C, D]] = [D, [C, D]] = 0
[Π x , Π y ] = -i 2 l 2 B sgn(B) (5.26)
7 More precisely, we have made use of a generalisation to gradients of this relation,

[C, f (D 1 , ..., D n )] = n j=1 ∂f ∂D j [C, D j ] if [C, [C, D j ]] = [D k , [C, D j ]] = 0 for all j, k.
has been obtained without specifying a gauge for the vector potential. It is indeed gauge-invariant since the operator Π, which is proportional to the physical velocity, is gauge-invariant itself. Furthermore, we notice that the two components Π x and Π y form a pair of conjugate variables as do the pairs x and p x or y and p y . This allows us to introduce ladder operators, in close analogy with the quantum-mechanical treatment of the harmonic oscillator

a = l B √ 2 (Π x -iΠ y ) et a † = l B √ 2 (Π x + iΠ y ) (5.27) or Π x = √ 2l B (a † + a) et Π y = i √ 2l B (a † -a).
(5.28)

With this definition of the ladder operators at hand, we obtain the slightly unusual commutation relations [a, a † ] = sgn(B), (5.29) which depend on the orientation of the magnetic field in the z-direction. In order to obtain the more conventional commutation relations, one therefore needs to exchange a ↔ a † if one changes the orientation of the magnetic field.

Let us emphasise an essential point about Landau quantisation that may seem quite unusual at first sight: while we started with a two-dimensional quantum-mechanical problem that is described in terms of two pairs of conjugate variables -x and p x on the one-hand side and y and p y on the other side -the Hamiltonian H B (Π x , Π y ), after the Peierls substitution, depends only on one pair of conjugate variables, Π x and Π y or, equivalently, a and a † . The system has somewhat mysteriously become one-dimensional as if we had lost information. This cannot be the case, and we will see in section 5.2.4 that there exists a second pair of conjugate variables that commutes with the Hamiltonian and can thus be seen as a symmetry.8 However, before discussing this symmetry and the resulting degeneracy of the Landau levels, let us first explicitly calculate some Landau-level spectra.

Landau levels of electrons in a parabolic band

We start with the standard case of Landau levels for electrons with a parabolic band that we consider to be isotropic. Upon Peierls substitution, the Hamiltonian (5.18) becomes

H B = 1 2m Π 2 x + Π 2 y = ω C a † a + 1 2 , (5.30)
where we have used the expression (5.28) for the operator Π in terms of ladder operators as well as the commutation relations [a, a † ] = 1. 9 Furthermore, we have used the expression

ω C = e|B| m = ml 2 B (5.31)
for the cyclotron frequency in terms of the magnetic length. 10 One thus obtains the quantum-mechanical spectrum of a 1D harmonic oscillator

E n = ω C n + 1 2 , (5.32)
in terms of the integer n, which is the eigenvalue of the number operator a † a, a † a|n = n|n .

(5.33)

In contrast to the spectrum, the states |n and their associated wave functions depend explicitly on the gauge of the vector potential. Their expressions for the Landau gauge are derived in section 5.2.5, but for the moment, we are only interested in the spectrum, which is depicted in figure 5.4 Notice that the quantum-mechanical result for the Landau-level spectrum agrees with the semiclassical Bohr-Sommerfeld quantisation, which gave the result (5.13), E n = ω C (n + γ). However, the full quantum-mechanical treatment allows us also to determine the geometric phase γ = 1/2. 9 In order to simplify the notations, we consider here a magnetic field oriented in the positive z-direction.

10 Contrary to the classical case, we consider the cyclotron frequency to be positive in order to avoid the cumbersome modulus in the expression when the cyclotron frequency is related to an energy. 

Landau levels of 2D Dirac fermions

Let us now calculate, with the same recipe, the Landau levels for the Dirac Hamiltonian (5.19). With the help of the Peierls substitution, one finds

H ξ B = ∆ ξv(Π x -iξΠ y ) ξv(Π x + iξΠ y ) -∆ , (5.34)
where we remind the reader that the index ξ = ± denotes the valleys K and K around which the Bloch Hamiltonian has been expanded. In terms of ladder operators, the Hamiltonian may be rewritten as

H K B = ∆ √ 2 v l B â √ 2 v l B â † -∆ and H K B = ∆ - √ 2 v l B â † - √ 2 v l B â -∆
(5.35) in the valleys K and K , respectively.

Before diagonalising the Hamiltonians to obtain their spectra, it should be emphasised that the Hamiltonian in the K valley is related to that in K by the simple interchange a ↔ a † (apart from an unimportant sign in the off-diagonal terms that does not affect the spectra). This is reminiscent to the change in the orientation of the magnetic field and can be related more fundamentally to time-reversal symmetry that will be discussed in more detail in chapter 7: upon time reversal, the sign of the wave vector is changed k → -k, i.e. the valleys K and K are exchanged. Similarly, the magnetic field is odd under time-reversal symmetry and its orientation must equally change.

The spectrum is obtained by solving the eigenvalue equation (5.36) in terms of spinorial eigenstates ψ λ,n;ξ = u λ,n;ξ v λ,n;ξ , (5.37) dictated by the 2 × 2 matrix form of the Hamiltonian (5.35). In the K valley (ξ = +), the eigenvalue equation thus yields two coupled equations

H ξ B ψ λ,n;ξ = E ξ λ,n ψ λ,n;ξ ,
∆ -E K λ,n u λ,n;K + √ 2 v l B av λ,n;K = 0 √ 2 v l B a † u λ,n;K -∆ + E K λ,n v λ,n;K = 0 (5.38)
for the two spinor components. Substituting the first equation into the second one tells us that

2 v l B 2 a † av λ,n;K = E K2 λ,n -∆ 2 v λ,n;K , (5.39) 
i.e. the second spinor component v λ,n;K is an eigenstate of the number operator a † a, that is proportional to |n . This yields the spectrum

E K λ,n = λ ∆ 2 + 2 2 v 2 l 2 B n, (5.40) 
for the integers n = 0. The case n = 0 needs a special treatment. Indeed, the upper component u λ,n;K of the spinor (5.37) is related to the lower one by

u λ,n;K = - √ 2 v l B (∆ -E K λ,n ) av λ,n;K ∝ |n -1 , (5.41)
as one may directly see from the first line of equation (5.38). Thanks to the ladder operator a, this component is thus proportional to the eigenstate |n -1 of a † a because we have v λ,n;K ∝ |n . The upper spinor component must therefore vanish in the case n = 0.

Landau levels with n = 0 Before calculating the n = 0 Landau level explicitly, let us finish the discussion of the eigenstates ψ λ,n;K for n = 0. We have just seen that they are of the form

ψ λ,n;K = c λ,n;K |n -1 d λ,n;K |n , (5.42)
and we thus have to determine the relative amplitudes which respect the normalisation |c λ,n;K | 2 + |d λ,n;K | 2 = 1. However, this is the same calculation as that of the spin-1/2 particle in a magnetic field treated in basic quantum mechanics (see e.g. the book by Jean-Louis Basdevant and Jean Dalibard).

With the help of the trigonometric functions

sin θ λ,n = v l B √ 2n ∆ 2 + 2( v/l B ) 2 n and cos θ λ,n = ∆ ∆ 2 + 2( v/l B ) 2 n ,
(5.43) we thus find

ψ λ=+,n;K = cos θ λ,n 2 |n -1 sin θ λ,n 2 |n and ψ λ=-,n;K = -sin θ λ,n 2 |n -1 cos θ λ,n 2 |n .
(5.44) Until now, we have only discussed the states in the K valley, but we do not need to redo explicitly the calculations for the other valley. Indeed, we have seen that the Hamiltonian in the other valley K is obtained by exchanging the ladder operators a and a † . Just by inspecting the corresponding system of equations

∆ -E K λ,n u λ,n;K - √ 2 v l B a † v λ,n;K = 0 - √ 2 v l B au λ,n;K -∆ + E K λ,n v λ,n;K = 0 (5.45)
in the K valley, one notices that this is the same system of equations as that for the K valley upon exchange of the components u λ,n and v λ,n accompanied by a slight change of the parameters (5.46) This amounts to adding π to the angle θ λ,n;K , θ λ,n;K = θ λ,n;K + π, (5.47) in the expressions of the spinors (5.45). While the Landau-level spectrum is not affected by this change, so that we can write in a compact manner (5.48) evidencing clearly the twofold valley degeneracy of the "relativistic" Landau levels, the spinors in the K valley read

u λ,n ↔ v λ,n , ∆ ↔ -∆ et v ↔ -v.
E ξ λ,n = λ ∆ 2 + 2 2 v 2 l 2 B n for n = 0,
ψ λ=+,n;K = cos θ λ,n 2 |n -sin θ λ,n 2 |n -1 and ψ λ=-,n;K = -sin θ λ,n 2 |n -cos θ λ,n 2 |n -1 .
(5.49) Notice that, for graphene with ∆ = 0, we have θ λ,n = π/2 for each energy level with n = 0 thanks to the equations (5.43) and consequently cos(θ λ,n /2) = sin(θ λ,n /2) = 1/ √ 2. In the absence of a gap (for massless Dirac fermions such as in graphene), the Bloch wave functions have therefore the same weight on the two components, i.e. on the two sublattices of the graphene lattice, a property that the spinors in a magnetic field inherit from the B = 0 case.

Landau levels with n = 0

Let us now concentrate on the fate of the n = 0 Landau levels. If we take a closer look at the form of the spinors (5.44) and (5.49), we notice that the upper component vanishes for an electron in the K valley, as a consequence of the relation (5.41) for the ladder operators, a|n = 0 = 0, while for electrons in the K valley, it is the lower component that is zero. This means that Kvalley electrons only occupy the B sublattice while K electrons reside solely on the A sites, as long as we consider electrons in the n = 0 Landau level, and the associated spinors thus become

ψ n=0;K = 0 |n = 0 and ψ n=0;K = |n = 0 0 . (5.50)
In contrast to the other Landau levels with n = 0, the spectrum now depends explicitly on the valley index ξ, as one may directly inspect from equations (5.38) and (5.45), the n = 0 level sticks to the top of the valence band in the K valley, E n=0,K = -∆, and it is glued to the conduction-band bottom in This result should astonish us greatly! While the spectrum, in the vicinity of each of the valleys, is perfectly particle-hole symmetric in the absence of a magnetic field, particle-hole symmetry is broken at B = 0 if we consider any of the valleys separately. This highly unusual situation, which is depicted in figure 5.5 for both valleys, is the prototype of an anomaly, and one speaks of the parity anomaly in the present case. Notice that the spectrum retrieves its particle-hole symmetry if we superpose the levels of both valleys. Moreover, the anomaly also disappears if the gap vanishes, ∆ = 0, such as in graphene, where then E ξ n=0 = 0. The most important points to retain from this discussion of the n = 0 Landau levels are (i) the valley degeneracy: while all Landau levels are twofold valley degenerate for n = 0, this is not the case for n = 0, where the valley degeneracy is lifted by a non-zero gap parameter, ∆ = 0; (ii) their dispersion with the magnetic field: the energy (5.51) of the n = 0 Landau levels does not depend on the value of the magnetic field, while that of the other levels with n = 0 grows monotonically with the B field according to equation (5.48).

Experimental evidence for graphene Landau levels

From the above discussion, it is clear that the electrons with a parabolic band dispersion yield a different Landau-level spectrum as compared to relativisitc electrons in graphene. In the former case, equation (5.32) indicates that the energy of the Landau levels grows linearly with the magnetic field, while the levels for electrons in graphene (with ∆ = 0) disperse as the square root of the magnetic field, E λ,n ∝ λ √ Bn, according to equation (5.48). This difference is indeed measurable in so-called magneto-optical spectroscopy that is sensitve to inter-Landau-level transitions; each time the incoming photon is in resonance with a transition from an occupied level n to an unoccpied one n ± 1, it can be absorbed by exciting an electron.11 

In the case of a single parabolic band, there is only one possible absorption line observable at the cyclotron energy ω C . Indeed, only one transition is possible from n to n + 1, if the Fermi level lies in between these two Landau levels. This phenomenon is known under the name cyclotron resonance, and its linear-in-B behaviour has been observed in many systems. The magnetooptical absorption properties of graphene are remarkably different. First, due to the presence of a conduction and a valence band, there are many transitions from an occupied Landau level n to an unoccupied one n ± 1, e.g. if the former resides in the valence and the second in the conduction band and if the system is charge neutral. Second, the absorption lines inherit their √ B dispersion from the Landau levels, and one thus expects absorption peaks at the energies

∆ n = √ 2 v l B √ n + √ n + 1 ∝ √ B.
(5.52)

These expectations have been experimentally verified in infrared magnetooptical spectroscopy at the Grenoble High-Magnetic-Field Laboratory, in 2007. The results are shown in figure 5.6, where one notices the particular evolution of the absorption peaks as a function of the magnetic field, in agreement with equation (5.52). When the energy of the absorption peaks is plotted as a function of the square root of the magnetic field, one obtains a perfectly linear behaviour [see figure 5.6(c)]. The only fitting parameter is the slope, which is given by the velocity parameter v. On the basis of these experimental results, this parameter has been found to be 1.03 × 10 6 m/s, in excellent agreement with theoretical estimates [Sadowski et al., Phys. Rev. Lett. 97, 266405 (2007)].

Degeneracy of Landau levels

Until now, we have only been interested in the Landau-level spectrum, which has been obtained with the help of the Peierls subsitution (5.22). As mentioned above, these levels are in a certain sense one-dimensional because the Hamiltonian is determined by only one pair of conjugate variables, Π x and Π y . However, since we know that the system is two-dimensional, there must exist a second pair of conjugate variables that needs to be taken into account to complete the quantum-mechanical problem of electrons in a strong magnetic field even if the Hamiltonian does not depend on these variables. This is the origin of a strong degeneracy of the Landau levels that must not be mixed up with the usual internal degeneracies (such as the spin, or perhaps also the valley degrees of freedom), but it is more correctly to be viewed as an orbital degeneracy.

In order to understand this orbital degeneracy from a physical point of view, let us adopt again the semiclassical perspective according to which the energy of the electron is determined by the (discrete) radius of the classical circular trajectory. In contrast to its radius, the energy of the trajectory does not depend on the position R of the centre of the cyclotron motion, due to the homogeneity of the magnetic field. Let us therefore decompose the position of the electron as the sum

r = R + η (5.53)
of the centre of the cyclotron orbit R (also called guiding centre and its position η on the circular trajectory (cyclotron variable). The latter cyclotron variable is perpendicular to the tangential velocity v of the electron, η = v × u z /ω C , where u z is the unit vector in the z-direction. Furthermore, the velocity is nothing other (apart from the mass m) than the gauge-invariant momentum, Π = mv, so that we have

η = 1 eB Π × u z ⇔ η x = Π y eB and η y = - Π x eB , (5.54) 
and one obtains the equivalent commutation relations

[η x , η y ] = 1 e 2 B 2 [Π x , Π y ] = -il 2 B .
(5.55)

We notice that it is equivalent to write the Hamiltonian in terms of the components of Π or of η, and in the case of a parabolic band we have

H = Π 2 x + Π 2 y 2m ⇔ H = 1 2 mω 2 C (η 2 x + η 2 y ).
(5.56)

From a classical point of view, the guiding centre is an integration constant obtained from the integration of the classical equations of motion or, equivalently, a constant of motion. Translated to quantum mechanics, a constant of motion is an observable that commutes with the Hamiltonian, so that we would expect

[X, H B (Π)] = [Y, H B (Π)] = 0.
(5.57) This is indeed the case, since the above commutation is induced by the commutation relations (5.59) as one may verify by straight-forward calculation. 12 12 To see that the components of the guiding centre commute indeed with those of the gauge-invariant momentum, one may calculate, e.g.,

[X, Π x ] = [X, Π y ] = [Y, Π x ] = [Y, Π y ] = 0 (5.58) or, equivalently, [X, η x ] = [X, η y ] = [Y, η x ] = [Y, η y ] = 0,
[X, Π x ] = [x -η x , Π x ] = [x, p x + eA x (r)] - 1 eB [Π y , Π x ] = [x, p x ] -i eB eB = 0,
where we have used equation (5.54) in the second and the commutation relation (5.26 in the third step. Similarly, one may show with the help of equation (5.54) that

[Y, Π x ] = [y -η y , Π x ] = [y, Π x ] + 1 eB [Π x , Π x ] = [y, p x + eA x (r)] = 0,
as well as the other two relations.

We thus see that the guiding centres, which are constants of motion, represent a symmetry from a quantum-mechanical viewpoint. As we have already anticipated above, this symmetry can be interpreted as a particular form of translation symmetry, which stricto sensu is broken by the position dependence of the vector potential in the Hamiltonian. However, since the magnetic field is homogeneous, one would expect the restoration of translation symmetry in some manner, and this is precisely given by the guidingcentre operators. Most saliently, the two components of the guiding-centre operator do not commute, and one finds 13 [X, Y ] = il 2 B sgn(B).

(5.60)

As simple as it is, this last equation has extremely rich consequences for quantum-Hall systems. First, we see that it constitutes indeed the second pair of conjugate variables required in a 2D quantum system. Second, one may understand the effective translation symmetry inside a Landau level from equation (5.60), which indicates that one may interpret the component X of the guiding-centre operator as the generator of translations in the ydirection and Y as the generator in the x-direction. 14 These translation properties turn out to be responsible also for the so-called Hall drift in the presence of an additional electrostatic potential, which is discussed in detail in section 5.3 below. Third, the commutation relations (5.60) are responsible for the macroscopic degeneracy of the Landau levels.

In order to understand this degeneracy quantitatively, remember that any commutation relation between observables induces a Heisenberg uncertainty relation. In our case, the commutation relation (5.60) indicates that 13 One obtains this relation directly from [x, y] = 0 and the commutators (5.55) and (5.59),

0 = [x, y] = [X + η x , Y + η y ] = [X, Y ] + [η x , η y ] + [X, η y ] + [η x , Y ] = [X, Y ] -i e|B| sgn(B).
14 The associated translation operators would be exp(-iy 0 X/l 2 B ) for a translation by y 0 and exp(ix 0 Y /l 2 B ) for a translation by x 0 . Notice, however, that here the translations in orthogonal directions do not commute. This unusual behaviour, as compared to translations in the absence of a magnetic field, is the hallmark of the (non-Abelian) magnetic translation group. A detailed discussion of this group is, however, far beyond the scope of the present lecture notes.

∆X∆Y ∼ l 2

B . This means that the centre of the cyclotron motion is blurred over a minimal surface Σ on the order of l 2 B . Actually, it is even possible to show that this surface is given precisely by ∆X∆Y = Σ = 2πl 2 B , (5.61) as a consequence of the Gaussian character of the harmonic-oscillator wave functions. Instead of providing a full proof of this statement, which turns out to be quite involved, we verify it below, in section 5.2.5, by calculating the wave functions for a particularly chosen gauge (the Landau gauge) for the vector potential. In order to obtain the number of quantum states per Landau level, it is sufficient to divide the total surface S occupied by the 2D sample by this minimal surface Σ occupied by single quantum state,15 

N B = S Σ = S 2πl 2 B = S × |B| h/e .
(5.62)

This last expresssion is particularly transparent: it indicates that the number of quantum states per Landau level is given by the total number of flux quanta threading the 2D surface S of the sample. Indeed, the magnetic field B is nothing other than a flux density, and we may also define the useful quantity

n B = 1 2πl 2 B = |B| h/e (5.63)
as the flux density in units of the flux quantum φ 0 = h/e that characterises the orbital degeneracy of the Landau levels. Notice that this degeneracy has been obtained by considering only the guiding-centre operator R and the non-commutativity of its components, independently of its energy spectrum. Indeed this is an essential property of Landau levels: the orbital degeneracy N B of the Landau levels is independent of the B-field dispersion of the latter. Apart from their internal degeneracy (spin and/or valley degeneracy), graphene Landau levels therefore have the same orbital degeneracy as electrons in GaAs heterostructures with a parabolic dispersion relation, and they depend only on the strength of the magnetic field.

The orbital degeneracy turns out to be an essential ingredient in the understanding of the quantum Hall effect, that is of the formation of plateaus in the Hall resistance at special values of the magnetic field. As we discuss in detail below, these values correspond to situations where a certain number of Landau levels are completely filled. In order to characterise this situation, it turns out to be fruitful to introduce a quantity that defines the filling of the Landau levels. Since electrons are fermions, this quantity is given by the ratio between the total number of electrons N el and the number of flux quanta (or alternatively by the ratio between their respective densities),

ν = N el N B = n el n B = 2πl 2 B n el = hn el e|B| ,
(5.64) called the filling factor. If the filling factor is an integer, ν = n, the n lowest Landau levels are indeed completely filled16 while all other levels are empty. Notice that the filling factor is defined without appealing to the internal degeneracies but only on the basis of the orbital degrees of freedom associated with the guiding centre. If e.g. spin and/or valley degrees of freedom need to be taken into account in the form of a g-fold internal degeneracy, all Landau levels occur as g copies of n. In this case, the condition of having the n lowest Landau levels completely filled, with a Fermi level between the Landau levels n -1 and n, must reflect the number of copies so that ν = gn (5.65) then. In GaAs heterostructures, where one only needs to consider the spin degree of freedom, we have g = 2, while we have g = 4 in the case of graphene, where the twofold spin degeneracy is accompanied by the twofold valley degeneracy.17 

Now it should be great time for the reader to protest. We all know that the spin degeneracy is naturally lifted in the presence of the magnetic field due to the Zeeman effect, which has not at all been taken into account in the discussion of the Landau-level spectrum until now. Indeed, the Zeeman effect lifts the spin degeneracy of the Landau levels by the energy

∆ Z = gµ B B,
(5.66)

where µ B = e /2m 0 is the Bohr magneton. Notice first that the mass that characterises the Zeeman effect is the bare electron mass m 0 , while the Landau-level spectrum (in the case of GaAs) depends on the band mass. Furthermore, the g-factor depends on the material environment; while it is 2 in vacuum as well as in graphene, its value and sign can change for electrons in materials such as GaAs, where we have g = -0.44. If we consider the ratio between the band and the bare electron mass m/m 0 = 0.068 in GaAs, we find that the Zeeman effect in this material is suppressed by a factor ∆ Z / ω C = gm/m 0 1/70 with respect to the Landau-level spacing. It is in this sense that the Landau levels can be taken as almost spin-degenerate.

The relative role of the Zeeman effect is yet smaller in graphene than in GaAs heterostructures. Even if the Landau-level spacing -here between the Landau levels n = 0 and n = ±1 -scales as √ B, while the Zeeman effect depends linearly on the magnetic field, ∼ B, the latter is roughly two orders of magnitude smaller than the energy scale √ 2 v/l B for fields up to 10 T. Let us discuss a last consequence of the presence of this second pair of conjugate variables that is closely related to the orbital degeneracy: it is essential in the complete description of the quantum states and their associated wave functions. For the moment, these states are characterised only by the the Landau-level quantum number n (and possible indices due to the internal degrees of freedom), |n in the case of electrons in a parabolic band and ψ λ,n;ξ in the case of Dirac fermions. However, they need to be completed in a tensor product by a quantum number which is associated with the components of the guiding-centre operator and that we generically call µ here. In order to obtain this quantum number, one may formally use the commutation relation (5.60), [X, Y ] = il 2 B sgn(B), in the same manner as for the components Π for Dirac fermions. Notice that, in practice, the meaning of this second quantum number µ and of the associated states and wave functions depends on the gauge chosen for the vector potential. The above-mentioned ladder operators emerge naturally in the symmetric gauge, while in the Landau gauge the second quantum number is naturally associated with the wave vector in a certain spatial direction, which remains a constant of motion.

Hamiltonian and wave functions in the Landau gauge

The above results have been obtained in a rather modern approach to the Landau-level spectrum that is based on canonical quantisation. This approach has been chosen here because it is apparently gauge-invariant, and consequently all results obtained are gauge-invariant. This is, however, not the traditional approach chosen in many textbooks that is based on fixing a particular gauge, usually the Landau gauge, and then solving the quantummechanical problem. Not only for completeness but also because it provides a special illustration of the results obtained above, the present section revisits this approach in which we fix the vector potential in the Landau gauge (5.15), A = B(-y, 0, 0). In view of our previous approach, the components of the gauge-invariant momenta thus read

Π x = p x -eBy et Π y = p y , (5.68)
and, similarly, the components of the guiding-centre operator are

X = x - p y eB et Y = p x eB .
(5.69)

Remember that the latter are constants of motion, and furthermore none of the components explicitly depends on the x-component of the position operator r. Its conjugate variable p x is thus itself a constant of motion, as one immediately sees also from the last equation, Y = p x /eB, or else yields a good quantum number since also the Hamiltonian naturally commutes with it, [p x , H B ] = 0. The eigenstates of p x -these are nothing other than the plane-wave states in the x-direction -are therefore also eigenstates of the Hamiltonian, which reads

H B = Π 2 x + Π 2 y 2m = (p x -eBy) 2 2m + p 2 y 2m = 1 2 mω 2 C (y -y 0 ) 2 + p 2 y 2m , (5.70) 
where we have defined y 0 = p x /eB, which is precisely the eigenvalue of the guiding-centre component Y and that can be used itself as a good quantum number. It is equivalent to p x = k x , and it is our second quantum number which we have called µ (in its generic form) in the last section. This is itself a remarkable result, in line with what we have already understood: the Hamiltonian is that of a 1D harmonic oscillator, but here we explicitly see that it is a harmonic oscillator in the y-direction centred around the position y 0 that is determined by the momentum p x = k x in its perpendicular direction. The fact that y 0 is a constant of motion is apparent from the fact that the energy of a harmonic oscillator does not depend on the position of its origin. The eigenstates are thus given by the tensor product between the 1D harmonic-oscillator states |n and the plane-wave states |k x in the x-direction, |n, k x , and the associated wave functions can thus be written in terms of the Hermite polynomials H n (y -y 0 ),

ψ n,kx (y, x) = x, y|n, k x ∝ e ikxx √ L H n (y -k x l 2 B )e - (y-kxl 2 B ) 2 2l 2 B , (5.71) 
where we have omitted the normalisation constant which is of no interest here.

Let us now check whether we retrieve the same degeneracy of the Landau levels as that in equation (5.62), obtained on the basis of our general approach. In order to do so, we consider a rectangular sample18 with the extensions L x and L y in the x-and y-directions, respectively, so that the total surface is given by S = L x L y . The finite extension in the x-direction can be taken into account by choosing periodic boundary conditions for the plane waves in this direction so that we retrieve the usual quantisation

k x = 2π L x m x (5.72)
for the associated wave vector, in terms of the integer m x , which can be used to count our states. What are its possible values? We have already seen that the x-component of the wave vector is linearly related to the (average) position y 0 of our harmonic-oscillator wave function in the y-direction. In order to account for the chosen sample geometry, this position must be restricted to the sample width L y , e.g. by 0 ≤ y 0 ≤ L y . This automatically restricts the possible values of the wave vector to the interval 0 ≤ k x ≤ L y eB/ so that its maximal value is given by

k x,max l 2 B = 2π L x m x,max l 2 B = L y .
(5.73)

Naturally, the maximal value m x,max of the integer m x coincides with the number of states per Landau level in the thermodynamic limit, and one thus finds

m x,max = L x L y 2πl 2 B = N B , (5.74) 
i.e. one retrieves the total number of flux quanta threading the 2D sample, in agreement with equation (5.62) obtained on the basis of our general arguments.

Extended and localised states in an electrostatic potential

Until now, we have extensively discussed Landau quantisation, i.e. the quantisation of the 2D electronic energy into highly degenerate Landau levels in the presence of a strong magnetic field. We have seen that the large degeneracy is a consequence of a symmetry reminiscent of translation symmetry if one appeals to the position of the centres of the electrons' circular motion, the so-called guiding centres R = (X, Y ) which commute with the Hamiltonian. However, there is yet a link to establish between this Landau quantisation (in terms of energy) and conductance quantisation, which gives rise to the observed plateaus in the Hall resistance. As a guideline through the remaining chapter, let us spoil the result: the (integer) quantum Hall effect manifests itself when an integer number of Landau levels is completely filled, i.e. when the filling factor ν = n is an integer. For the moment, we forget about internal degeneracies to simplify the already complex discussion and set g = 1.

Towards the end of this chapter, we lift this simplification and discuss explicitly the role of the spin and valley degeneracies. As a consequence of the relation (5.64), this condition is encountered at particular values of the magnetic field if we fix the electronic density n el . 19 In this case the Fermi level is situated between two Landau levels. Consider for the moment that these Landau levels are energy bands. Indeed, this assumption is not that far-fetched because we have seen in the previous section, where we studied the Landau-level problem in the Landau gauge, that the levels n = n (k x ) can be viewed as bands as a function of the wave vector k x , which constitutes the second quantum number in addition to the level index n. In this sense, Landau levels are perfectly flat 1D energy bands as a function of the wave vector k x .

Since the Fermi level lies between two levels, say n and n + 1 in the "band gap" [see figure 5.7(a)], the system is supposed to be an insulator. However, as we show below, the energy of the Landau levels is bent upwards when we approach the sample edges, at y ∼ 0 and y ∼ L y , which may be modelled in terms of a confinement potential V (y) that is zero inside the sample and increases strongly at the sample edges. In our analogy between Landau levels and 1D electronic bands, the latter acquire a dispersion because the wave vector (in the x-direction) is linearly related to the position in the y-direction, V (y k x l 2 B ) as we have seen above. The 1D bands thus inevitably cross the Fermi level at the edges, where one thus finds metallic 1D edge channels. Moreover, we shall see below that the sense of propagation in these metallic edge channels is imposed by the orientation of the magnetic field perpendicular to the plane. The edge channels are therefore chiral, and as a consequence the electrons cannot be backscattered at the same edge. For an electron to be backscattered would require that it be transferred from one edge to the opposite one via the bulk of the sample, but such transfers are strongly suppressed unless the edges are locally brought together, e.g. by a constriction such as a quantum point contact. In the absence of backscattering, the electronic transport along the sample edges is therfore ballistic so that the associated conductance is perfectly quantised. It is e 2 /h for each of the M = n + 1 channels formed by the n + 1 occupied Landau levels that succesively cross the Fermi level at the sample edges [see . The spectrum may be viewed as a family of 1D bands (as a function of the wave vector in the x-direction) that are flat in the bulk of the sample and acquire dispersion at the sample edges, where the levels are bent upwards. Consequently, all Landau levels successively cross the Fermi level E F when approaching the edge. At the crossing points y n max , they form conducting edge channels. (b) Sketch of the filling: upon approaching the sample edge, the Landau levels, which are filled up to the n-th level in the bulk (ν = n + 1), are successively emptied. This yields steps in the electronic density (in the absence of interactions that have a tendency to smoothen the abruptness of the steps). Due to the bending of the Landau levels ∂V /∂y 0 ∝ ∂V /∂k x , all edge states have a drift velocity of the same sign, i.e. the same chriality. Finally, in order to observe a plateau in the Hall resistance, i.e. a resistance that does not vary over a substantial range of the magnetic field in the vicinity of integer values of ν, we need to ensure that the additional electrons promoted to a higher, originally unoccpied, Landau level upon decrease of B (or the additional holes if one increases B) do not contribute to the electric transport. Indeed, we show in the remainder of this chapter that these additional charges get trapped on closed equipotential lines that characterise the electrostatic potential formed by underlying (charged) disorder. Let us now put together, step by step, these different ingredients.

Guiding-centre dynamics

As we have seen in the above sketch of the explanation of the quantum Hall effect, the basic additional ingredient, which we need to consider from now on, is an electrostatic potential V (r). This potential is used to model both the sample edges, which are described by a strong increase of the potential there (confinement potential), as well as to represent a disorder potential (see sketch in figure 5.8). How does this position-dependent potential affect Landau quantisation described in the previous section? One first notices that it breaks translation invariance explicitly, and the loss of this symmetry is expected to lift the Landau-level degeneracy. Indeed, the components of the guiding-centre operators X and Y , which are constants of motion in the absence of a position-dependent potential, do no longer commute with the full Hamiltonian

H = H B (Π x , Π y ) + V (r = R + η) because [X, H] = [X, V (R + η)] = [X, Y ] ∂V ∂Y = il 2 B sgn(B) ∂V ∂Y and similarly [Y, H] = -il 2 B sgn(B) ∂V ∂X , (5.75) 
where we have used the commutation relation (5.25) between an operator and the function of another operator, as well as the commutator (5.60) between the components X and Y . One notices a second consequence of the potential, related to the lifted orbital degeneracy: the guiding centres acquire themselves dynamical properties since they are no longer constants of motion. Indeed, if we appeal to the Ehrenfest theorem, 20 we see that the average velocities associated with the guiding-centre components are given by Ẋ

= 1 i [X, H] l 2 B sgn(B) ∂V ∂Y and Ẏ = 1 i [Y, H] - l 2 B sgn(B) ∂V ∂X .
(5.76)

These equations have a transparent interpretation: on the average, the guiding centre follows in time the equipotential lines in a direction that is imposed by the orientation of the magnetic field (Hall drift), Ṙ ⊥ ∇V.

(5.77)

20 Remember your basic quantum-mechanics classes, where it was shown that the average time evolution of an observable A is given by its commutator with the Hamiltonian,

i Ȧ = [A, H] .
This is represented in figure 5.8) by the curly lines which indicate that the semiclassical circular motion evolves into cycloids due to the Hall drift experienced by the guiding centres.

As simple as this last result may seem, it is the cornerstone in understanding the quantum Hall effect. The Hall drift allows us to understand that an electron in the sample bulk is trapped (or localised) on equipotential lines around a summit or a valley of the potential landscape and thus does not contribute to the electric transport probed by the contacts at the sample edges. 21 We may illustrate this trapping with a hike in the mountains. Imagine that we are lazy hikers and do not allow ourselves to change altitude during our walk. Certainly, we then only turn in circles either around a summit or a valley. The length of this closed path can be substantial and it can take us quite long to get back to the original position, but we cannot cross the mountains. Actually, this is not quite true. It is true for an overwhelming amount of paths, but there exists at least one path at a certain altitude that we do not specify here that allows us to pass the mountains (or that allows an electron to pass the bulk of the sample from one edge to the opposite one) without turning in circles. This phenomenon is called percolation, and it turns out to be most relevant in understanding the transitions between the plateaus in the Hall resistance.

While these extended percolating states are rare in the bulk of the sample, they are naturally found at the sample edges where they connect the different electric contacts. These edge states are responsible for the quantised ballistic transport in the quantum Hall effect. Furthermore, we see from equation (5.76) that the sense of propagation of the guiding centres, i.e. the Hall drift, is imposed by the orientation of the magnetic field. While this chirality is not so important for the sense of propagation for the localised states in the bulk,22 which do not contribute to the electric transport, it is essential for the edge transport.

Confinement potential and edge states

Let us discuss in more detail the edge states and their chirality by considering a confinement potential that depends only on the y-component of the position, V conf (y). Within an (approximate) diagonalisation of the Hamiltonian, taking into account this potential, the Landau gauge A L = B(-y, 0, 0) imposes itself as the natural choice because it respects translation invariance in the x-direction in line with the symmetry imposed on the confinement potential. This means that the wave-vector component k x remains a good quantum number, as we have seen in section 5.2.5. The Hamiltonian is directly diagonalised if we use the approximation (5.78) where we neglect the second term, as we have already implictly done in equation ( 5.76) for the more general (disorder) potential. This approximation is fully justified if the electrostatic potential varies slowly in space,

V conf (y) V conf (y 0 = k x l 2 B ) + δV (y 0 ; a, a † ),
|∇V | ∆ n-1,n R C , (5.79) 
where ∆ n-1,n is the spacing between adjacent Landau levels (we have ∆ n-1,n = ω C for a parabolic band) and R C = l B √ 2n + 1 is the cyclotron radius.23 Since, within the approximation V conf (y) V conf (y 0 ), the Hamiltonian is already diagonal, we may immediately write down the spectrum, which reads

δV (y 0 ; a, a † ) ∂V ∂y 0 η y = - ∂V ∂y 0 l B √ 2 (a † + a),
where we have expressed η y = -Π x /eB [see equation (5.54)] in terms of the ladder operators (5.28). If we treat this term in perturbation theory, we notice that the first-order term vanishes, n|δV (y 0 )|n = 0, since the ladder operators are not diagonal in the number basis, n|a ( †) |n = 0. One therefore needs to consider the second-order term, which yields a contribution

δV (y 0 ) (2) ∼ ∂V ∂y 0 2 R 2 C ∆ n-1,n . 
(5.80)

This term is negligible as long as | δV (y 0 ) (2) | ∆ n-1,n , which is nothing other than the condition (5.79).

(for an underlying parabolic band)

E n,kx = ω C n + 1 2 + V conf (k x l 2 B ).
(5.81)

We recognise, here, the two points mentioned already above: (i) the degeneracy of the Landau levels in the wave vector k x is lifted, as one may explicitly see from the second term; and (ii) we obtain again a family of 1D electronic bands where the dispersion in k x is given by the confinement potential. One may then also attribute a group velocity to the states |n, k x , in the x-direction,

v x = ∂E n,kx ∂k x = ∂V conf ∂y l 2 B sgn(B) = 1 eB ∂V conf ∂y , (5.82)
which is nothing other than the drift velocity, which we have already encountered in the form of equation ( 5.77) for a general potential: the sense of propagation, which is the chirality, is simply given by the sign of the group velocity. It is imposed by the gradient of the potential in the y-direction, which naturally changes from one edge to the other, as well as by the orientation of the magnetic field. 24Notice finally that, since all Landau levels are bent upwards at the sample edge, the n completely filled Landau levels (for a filling factor ν = n) successively cross the Fermi level there (see figure 5.7). These levels therfore form n 1D metallic channels at the edge. Furthermore, as we have mentioned above, the gradient ∂V conf /∂k x , and thus the group velocity, is the same for all n levels so that these 1D metallic channels are chiral. These metallic channels need to be contrasted with the states one obtains when a Landau level crosses the Fermi level somewhere in the bulk of the sample. In this case, the crossing between the Landau and the Fermi levels forms a closed line and thus a localised non-current carrying state, as we have seen above. Now, what about an impurity -a scatterer -situated at the edge? Naturally there are then possible scattering mechanisms, but they couple only the n edge channels among one another that all have the same chirality. Only forward-scattering from a channel a to a channel b is therefore possible, while backscattering does not exist if one considers a single edge. Indeed, the Figure 5.9: Hall bar with six contacts. The current is driven through the system by the contacts 1 (source) and 4 (drain), which are also used in the measurement of the two-terminal resistance, while the remaining contacts are used to measure the different four-terminal resistances. In order to measure the longitudinal resistance, one uses two contacts at the same sample edge, that is two contacts that are not separated by the source or the drain. Here, we have chosen the contacts 2 and 3 to measure the longitudinal resistance R L (in blue). The transverse Hall resistance R H (in red) is measured between two contacts (e.g. 3 and 5) at opposite edges, i.e. separated by the source or the drain. The magnetic field is chosen to be oriented into the +z-direction so that a clock-wise chirality is imposed on the edge channels. channels with opposite chirality are spatially separated from the former by a macroscopic distance since they are situated at the other edge, unless they are artificially brought together in local constriction. It is in this sense that the edge channels are ballistic: backscattering at the same edge is forbidden by the chirality of the metallic edge channels.

Understanding the quantum Hall effect within the Landauer-Büttiker formalism

With the former discussion of edge channels, we are now armed to understand the quantum Hall effect within the Landauer-Büttiker formalism introduced in the last two chapters. We consider for the moment a GaAs heterostructure, where the Landau-level spectrum is formed from a single parabolic band to fix the overall picture. The specific case of graphene is then discussed later on, in section 5.4.4. We situate the Fermi level between the Landau levels n -1 and n. If we take into account the twofold spin degeneracy of the Landau levels, this situation corresponds to an integer filling factor ν = 2n, and consequently to M = 2n edge channels. In the spirit of the Landauer-Büttiker formalism, we make a clear distinction between the two-terminal and the different four-terminal resistances. We have already mentioned, in the introduction to this chapter, that the Hall resistance and longitudinal resistance are four-terminal resistances, which are mainly defined within the Hall-bar geometry with six terminals, sketched in figure 5.9. We use a convention where the contacts are enumerated in a clockwise manner starting with 1 for the source, and contact 4 is the drain.

In order to specify the different resistances, recall that the Landauer-Büttiker formula (4.5), I i = j G ij V j , can be written with the help of the conductance matrix (5.83) in terms of the quantum of conductance, e 2 /h. 25 With this convention of the sign in the conductance matrix, its off-diagonal elements are directly given in terms of the transmission coefficients T ij from contact j to contact i, while the diagonal elements are formally defined as

G = (G ij ) = - e 2 h (T ij ),
T ii = -(M -R ii ).
(5.84)

As a consequence of the chirality of the edge channels, there is no backscattering so that R ii = 0, and the diagonal elements of the conductance matrix are thus directly given in terms of the number of edge modes M . What about the other elements, i.e. the transmission coefficients T ij in the j-th line? Again due to the chirality of the edge channels, which we have chosen to be clockwise (a magnetic field oriented in the +x-direction) in figure 5.9, the contact i only receives electrons transmitted from the contact i -1, so 25 In contast to the general discussion of the Landauer-Büttiker formalism in chapter 4, we do not absorb the factor of 2 for the spin degeneracy into the quantum of conductance, but we take it into account in the number of channels M = 2n. This is more practical in the discussion of a possible spin-degeneracy lifting, e.g. due to the Zeeman effect, as well as in view of the study of the quantum anomalous and spin Hall effects in chapter 7.

that the only non-zero off-diagonal elements of the conduction matrix are given by T ij = T i,i-1 δ j,i-1 .

(5.85)

Remember from multi-channel scattering (see section 3.6) that this coefficient is given by the sum T i,i-1 = a,b T i,i-1;ab of all the transmission coefficients from the mode b (in the terminal i -1) to mode a (in the terminal i).

Since there may be scatterers at the edge, this transmission matrix is not necessarily diagonal. However, since this transmission matrix must reflect the absence of backscattering, R ii = 0, we can use the same argument as in the discussion of the general constraints imposed on the conduction matrix in section 4.1 that the currents must be independent of the reference potential.

The sum over all elements in the conduction matrix must therefore still vanish so that we find

T i,i-1 = a,b T i,i-1;ab = -M (5.86)
as for fully ballistic channels, even if we allow for forward-scattering events at the edge. The conduction matrix finally reads

G QHE (B) = e 2 h         M 0 0 0 0 -M -M M 0 0 0 0 0 -M M 0 0 0 0 0 -M M 0 0 0 0 0 -M M 0 0 0 0 0 -M M         , (5.87)
where we have explicitly put the magnetic field in the argument. Indeed, one can immediately verify the reciprocity relations: while the conduction matrix is apparently not symmetric, we obtain from equation (4.23),

T ij (B) = T ji (-B), G QHE (-B) = G t QHE (B).
(5.88)

This reciprocity relation has now a transparent physical interpretation in terms of the chirality of the edge channels. As mentioned above, we invert the chirality (the sense of propagation along the edge channels) if we change the orientation of the magnetic field B → -B. In this case, the contact i no longer receives electrons transmitted from contact i-1 but from contact i+1. This simply amounts to transposing the conduction matrix, in agreement with the Onsager reciprocity relation (4.23).

In order to obtain the different resistances R 14,ij = (V i -V j )/I, let us first fix the maximal possible number of voltages V i in the different contacts. In order to do so, we start investigating contacts with no current flow, i.e. the contacts different from the source and the drain. For the contacts i = 2, 3, 5 and 6, the Landauer-Büttiker thus yields

I i = 0 = e 2 h M (V i -V i-1 ), (5.89)
that is the potential in the contact i must be the same as in the preceding contact i -1,

V i = V i-1 . (5.90)
This is a special form of Millman's theorem (4.27), which we have encountered in chapter 4. Consequently, all contacts (2 and 3) on the upper sample edge are at the same potential V as the source (contact 1), and similarly the potentials in the contacts at the lower edge (5 and 6) coincide with that V in the drain (contact 4). This result may be understood on physical grounds: since the contacts 2 and 3 are only filled by electrons from the source without any electron loss in the contacts, they must be at thermodynamic equilibrium with the source and thus necessarily at the same chemical potential. For the same reason, the contacts 5 and 6 are at equilibrium with the drain. The above results for the potentials already allow us to obtain the longitudinal resistances, which are measured by a voltage drop either between the contacts 2 and 3 or 5 and 6,

R L = R 14,23 = V 2 -V 3 I and R L = R 14,56 = V 5 -V 6 I .
(5.91)

There is thus no potential drop, because V 2 = V 3 = V and V 5 = V 6 = V , as we have just mentioned, and the longitudinal resistance therefore vanishes (5.92) as one expects for a ballistic four-terminal resistance and in agreement with experimental observation (see figure 5.1).

R L = 0,
In order to obtain the Hall resistance, we may choose, as in figure 5.9, the contacts 3 and 5 to measure the voltage drop, 26 R H = (V 3 -V 5 )/I = (V -V )/I. In order to obtain this resistance, we also require a relation between the current and the two different voltages.27 This is obtained by using the Landauer-Büttiker formula in one of the current contacts, e.g. the source where one finds

I 1 = I = e 2 h M (V 1 -V 6 ) = e 2 h M (V -V ).
(5.93)

One may thus immediately read off the Hall resistance, (5.94) which agrees with the values of the plateaus measured in the Hall resistance (see again figure 5.1).

R H = R 14,35 = V 3 -V 5 I = V -V I = h e 2 M ,
To complete this discussion of the resistances, let us finally calculate the two-terminal resistance R 2t = R 14,14 measured between the source and the drain. One readily finds

R 2t = R 14,14 = V 1 -V 4 I = V -V I = h e 2 M , (5.95) 
i.e. one finds the same result as for the Hall resistance. This has actually led to some confusion among physicists, who would normally interpret R 2t as a longitudinal resistance. However, there is no contradiction because one should not mix up two-and four-terminal resistances, as we know by now on the basis of the Landauer-Büttiker formalism. Indeed, the result simply reflects the fact that we are confronted with a ballistic conductor composed of M channels, whose two-terminal conductance is precisely given by the inverse of the resistance in equation (5.95).

Appearance of plateaus in the Hall resistance and percolation picture

The above Landauer-Büttiker treatement of the edge conductance allows us to understand the signature of the quantum Hall effect: a quantised Hall resistance, R H = h/e 2 M , accompanied by a vanishing longitudinal resistance, R L = 0. However, strictly speaking, this reasoning is valid only at precise values of the filling factor and does not yet indicate the evolution of the resistances if we sweep the filling factor around these precise values, ν = M = 2n. Indeed, precisely at these values, we have M = n el × 2πl 2 B = hn el /eB, which, substituted into equation (5.94), yields

R H = h M e 2 = h νe 2 = B en el (5.96)
that is nothing other than the classical value of the Hall resistance! This is a somewhat frustrating result in view of the length of this chapter until now: all this effort to get back to the starting point? Burn the author of these notes on stake! Fortunately (also for the author), this is not the case, and we have almost arrived at the end of our journey to a complete understanding of the quantum Hall effect.

In order to understand the quantisation of the Hall resistance over a larger range of magnetic field around its value corresponding to an integer filling ν = 2n, we need to take into account the trapping (or localisation) of electrons or holes by impurities in the sample that we have already mentioned above in section 5.3. Let us consider figure 5.10 to illustrate the appearance of plateaus in the Hall resistance. There, the three different columns (a), (b) and (c) correspond to three different filling factors. The first column (a) refers to the situation, which we discussed in the preceding subsection and where the magnetic field corresponds precisely to the filling factor ν = 2n = M . In this case, the Fermi level is situated precisely in the gap between the Landau levels n -1 and n, as it is shown in the first line, where we represent the density of states corresponding to eventually disorder-broadened Landau levels. The second line is a screenshot of the filling of the Landau level n -1, which is no longer completely flat but is given by a potential landscape with valleys and summits. Precisely at ν = 2n, this level is naturally empty. The values of the longitudinal resistance R L = R xx (in red) and of the Hall resistance R H = R xy (in blue) are shown in the last line. These are the values R L = 0 and R H = h/M e 2 , which we have just calculated within the Landauer-Büttiker formalism.

Let us now slightly vary the magnetic field. In our illustration in the second column of figure 5.10, we lower the magnetic field such as to increase a bit the filling factor ν + δν. Indeed, the degeneracy of each Landau level is slightly lowered so that all electrons no longer fit into the lowest n Landau levels, and some electrons are therefore promoted to the Landau level n, which was formerly unoccupied. This is represented in the first line of column (b) of figure 5.10, where the Fermi level is now situated in the level n in its lower tail. If we take into account the potential landscape, the electrons occupy preferentially its minima (the valleys) for energetic reasons, where they form puddles. Since each electronic state occupies a minimal surface of Σ = 2πl 2 B , these puddles grow if we increase further the filling factor, by lowering the magnetic field. These puddles are shown in the second line of column (b).

What can we say about the transport properties? The edge states, which are responsible for the electronic transport precisely at ν = 2n, are uneffected by this successive filling of the valleys in the potential landscape. Furthermore, even if the electrons at the equipotential lines delimiting the puddles (the cuts of the Fermi level and the potential landscape) acquire dynamical properties due to the Hall drift, they only turn in circles around the puddles, as we have seen above. Since these puddles are situated in the bulk and neither connected among each other nor to the sample edges, these electrons cannot contribute to the electronic transport, which remains therefore entirely controlled by the edge states. This means that the transport properties, represented by the longitudinal and Hall resistances, remain unaltered as compared to the original situation of an integer filling factor shown in column (a). The values of both the longitudinal and the Hall resistances thus remain pinned at their original value even if we have lowered the magnetic field, as it is shown in the last line of column (b). The same argument holds true for holes in the Landau level n -1 that we would have created had we lowered the filling factor by increasing the magnetic field. This is the origin of the plateau in the Hall resistance: its value remains pinned at its precisely quantised value h/M e 2 even if we sweep the magnetic field around its value corresponding to ν = 2n.

If the filling factor is further increased, a value is reached where the Hall resistance jumps from the plateau at R H = h/M e 2 to R H = h/M e 2 , here with M = M + 2. This can also be understood qualitatively from column (c) of figure 5.10. Indeed, the puddles become macroscopic when a substantial fraction of the potential landscape of the Landau level n is filled. They may then connect the opposite edges. Via the equipotential lines delimiting these macroscopic puddles, an electron can now be transmitted from the upper edge, where it has been injected by the left contact, to the lower edge, via these extended states in the bulk of the sample as opposed to those at the sample edges. This is pictorially represented in the first line of column (c), where the closed equipotential lines and the associated localised electronic states are represented by circles in the density of states (in the tails of the disorder-broadened Landau levels), while the extended states are represented by open lines at the centre of the Landau levels. Since the sense of propagation is opposite at the lower edge as compared to the upper one, the electron is therefore reflected to the left contact so that the transport is no longer ballistic. Indeed, these backscattering processes across the bulk of the sample yield a non-zero reflection coefficient. This leakage of electrons furthermore causes a voltage drop at the upper edge, i.e. the chemical potential is no longer constant all along this edge, and one therefore obtains a non-zero longitudinal resistance, as it is shown in the last line of column (c).

The picture of the quantum Hall effect, summarised in figure 5.10, is also called the percolation picture because the puddles percolate over macroscopic distances (bridging the sample edges) at the plateau transition. The percolation picture has found quite a spectacular experimental proof in scanningtunneling-spectroscopy measurements the results of which are reproduced in figure 5.11. Scanning-tunneling spectroscopy is a special mode of the scanning-tunneling microscope (STM), where the mobile atomically sharp tip of the STM sweeps the sample, measuring the tunneling current locally at each position. In the spectroscopic mode, the tunneling current is measured (at each position) as a function of the voltage between the STM tip and the sample. If the quantum state at the associated energy -eV above the Fermi level is unoccupied in the sample, the electron can tunnel easily from the tip into this state, and the tunneling current is proportional to the number of available states, which is nothing other than the (local) density of states. More precisely, one measures the differential tunneling conductance dI/dV in order to increase the contrast.

This type of measurements turns out to be quite involved. In order to obtain a measurable current, a significant tunnel effect is required. However, the effect varies exponentially with the distance between the tip and the electronic system, but as we have seen in the introduction (chapter 1), high-mobililty 2D electron systems are usually obtained at the interface in semiconductor heterostructures and thus situated at a substantial distance from the crystal surface. In order to circumvent this problem, experimentalists from Aachen, Germany, have fabricated a particular heterostructure based on (negatively doped) InSb, where the 2D electron gas is situated relatively close to the crystal surface so that the tunnel effect is substantial. Their measurements, which are reproduced in figure 5.11, allow one to measure the metallic states that delimit the electronic puddles in the bulk of the sample and thus to map out the equipotential lines of the potential landscape. Panels (a)-(g) display the tunneling conductance of the sample in a square of size ∼ 150×150 nm 2 , as a function of the voltage V between the tip and the sample. Panel (h) shows the (spatially) integrated tunneling conductance, which is proportional to the density of states of a (disorder-broadened) Landau level; here, it is in the lower spin branch of the Landau level n = 0, where the measurements have been performed. In figures 5.11(a) and (b), one clearly notices the closed equipotential lines around the potential minima. These equipotential lines grow in size when their energy approaches the value at the centre of the Landau level, where the density of states has its maximum, as shown in panel (h). The corresponding maps (c), (d) and (e) clearly show this increase in size, and one notices in figure 5.11(d) the formation of a network of extended states percolating through the bulk of the sample and thus connecting points over macroscopic distances. This is precisely the situation, which is required for a transition between plateaus in the Hall resistance, accompanied by a non-zero longitudinal resistance, as we have argued in the paragraphs above. Upon futther increase of the voltage, one now probes localised states again in the form of closed equipotential lines situated in the upper tail of the broadened Landau level.

The role of the quantum Hall effect in metrology

In the preceding section, we have learnt about the essential role played by disorder in the quantum Hall effect, which should astonish us a lot. On the basis of our knowledge about quantum phenomena in general and quantum conductance in particular, we would expect ballistic transport in the absence of disorder that inevitably induces scattering. However, in the context of the quantum Hall effect, we have seen that disorder is necessary to trap the electrons (or holes) on the equipotential lines of the disorder potential if the filling factor is sweeped away from its integer value ν = 2n = hn el /eB, which allowed for the formation of M = 2n edge channels. This point needs to be stressed: without disorder, one would not be able to pin the resistances and thus to obtain de values R H = h/e 2 M , e.g. for the Hall resistance, in terms of the universal constants e, h and the integer n. Notice that the precise form of the potential landscape does not enter in this argument as long as the equipotential lines around the valleys and the summits of the potential are closed. Indeed, one observes that in samples with an increased electron mobility, i.e. in samples with lower disorder, the size of the plateaus shrinks so that the latter are less well defined. In conclusion, contrary to a "normal" situation in quantum physics, the quantum Hall effect requires a disordered system in order to measure with high precision a quantum effect! This is probably a unique situation in physics, and it has an extremely important implication: it allows us to define with high precision the unit of resistance.

Soon after the discovery of the quantum Hall effect, scientists have realised this technological potential of the quantum Hall effect. Consequently, they decided at the 1990 International metrological conference "Conférence Générale des Poids et des Mesures" to use the quantum Hall effect (more precisely its occurence at ν = 2) as the standard of the resistance unit, dismissing the original Ohm to retirement. Indeed, its value is fixed in 1990 by the Klitzing R K-90 = h e 2 = 25 812, 807 Ω.

(5.97)

Later, in 2018, the Conférence des Poids et des Mesures decided to use only fundamental constants as the basic units, and the Klitzing is now a derived unit, defined by the fundamental units e and h.

5.4.3

The role of the spin in the quantum Hall effect and appearance of plateaus at ν = 2n + 1

Until now we have considered that all Landau levels (in GaAs heterostructures) are twofold spin-degenerate as a consequence of the relatively weak Zeeman effect (see discussion in section 5.2.4). While this assumption is often justified, it ceases to be valid when the magnetic field is sufficiently strong to separate in energy the two spin branches of the last occupied Landau level.

In this case, one observes quantum Hall plateaus also at odd-integer filling factors ν = 2n + 1, as it is shown in figure 5.12(a). This is most naturally explaned by the Zeeman effect and its spin splitting by an energy ∆ Z ∝ B that increases linearly with the magnetic field [see also equation (5.66)], even if this energy scale is much smaller than the Landau-level separation. In order to observe a quantum Hall effect associated with the different spin branches of the Landau levels, both the thermal energy and the energy associated with the disorder potential must be smaller than the Zeeman splitting, k B T, δE dis ∆ Z . Notice that the Zeeman effect is on the order of ∆ Z ∼ 3...4 K at 10 T (or 0.25...0.3 meV), i.e. on the same order of magnitude as the temperature at which the measurements shown in figure 5.12(a) have been carried out.

If we take into account the Zeeman effect, the above picture of the quantum Hall effect remains unaltered at even-integer filling factors ν = 2n, as it is shown in figure 5.12(b): the Fermi level is placed between two adjacent Landau levels (between n -1 and n), and the occupied Landau levels contribute two channels each at the sample edges, associated with the two spin orientations. The only consequence of the Zeeman effect on the edge channels is a slight local separation of the channels at the edge. In contrast to even-integer filling factors, the Fermi level may also be placed in between the two spin branches of the last Landau level n if the Zeeman effect is sufficiently strong. This situation, which corresponds to an odd-integer filling factor ν = 2n + 1, is sketched in figure 5.12(c) where only the lowest spin branch of the Landau level n is occupied. This Landau level gives therefore rise to only one edge channel while all other n Landau levels contribute two edge channels, for the two spin orientations. This is the origin of the quantum Hall plateaus at odd-integer filling factors ν = 2n + 1, which are nevertheless not as well developped as the plateaus at even-integer fillings as a consequence of the smaller Zeeman energy as compared to the gap between adjacent Landau levels, as one may notice in figure 5.12(a).

Relativistic quantum Hall effect in graphene

The structure of the Landau levels that we have obtained from the quantisation of Dirac fermions [see equation (5.48)] allows us to understand finally the particularities of the quantum Hall effect in graphene, first measured in 2005 by the Manchester group around Geim and Novoselov [Novoselov et al., Nature 438, 197 (2005)], who received the 2010 Nobel Prize in Physics for their various milestone-experiments in graphene research, and by the group at Columbia University around Kim and Störmer 28 [Zhang et al., Nature 438, 201 (2005)]. The measurements of the latter group are reproduced in figure 5.13. In panel (a), one notices the usual signature of the quantum Hall effect -the appearance of plateaus in the Hall resistance accompanied by a vanishing longitudinal resistance -when the magnetic field is varied while the electronic density is kept constant. In comparison with 2D electron systems in GaAs heterostructures, it is much easier to sweep also the electronic density by the capacitive effect, with the help of the so-called gate voltage that is applied between the graphene sample and a metallic back gate separated from the graphene sheet by an insulating layer. The measurement of the Hall and longitudinal resistances at a fixed magnetic field (of 9 T), as a function of the gate voltage is shown in panel (b). Also here, one observes plateaus in the Hall resistance accompanied by zeros in the longitudinal resistance. Most saliently the plateaus are found at filling factors

ν = ±(4n + 2),
(5.98) in contrast to the quantum Hall sequence ν = 2n (in the absence of a Zeeman effect) in GaAs heterostructures. How can we understand this difference? One should first notice that the filling factors at which the quantum Hall effect occurs change in steps by four. This can be easily understood by the degeneracy of the graphene Landau levels, which show a twofold valley degeneracy in addition to the usual spin degeneracy, as we have discussed in section 5.2.4. In the absence of the Zeeman effect, which is again vanishingly small in the shown sample as compared to disorder broadening of the Landau levels, 29 the graphene Landau levels are therefore fourfold degenerate. However, there is an additional offset of two in the filling-factor sequence. In order to understand this offset, let us remember that the Fermi level must be situated in the gap between two adjacent Landau levels in order to observe a quantum Hall effect. This is not the case at charge neutrality, where n el = 0 is identical to ν = n el /n B = 0. In the absence of a magnetic field, charge neutrality means that the Fermi level is situated exactly at the band contact points K and K , i.e. between the upper cone of the dispersion relation corresponding to the conduction band and the lower cone (valence band). In the presence of a quantising magnetic field, we can therefore already say that all Landau levels at positive energy (λ = +) are empty, while all levels at negative energy (λ = -) are fully occupied. However, as we have seen in section 5.2.3, the special n = 0 Landau level is formed precisely at zero energy even if there are no quantum states at zero magnetic field due to the vanishing density of states. This level must therefore be half-filled with electrons (or, equivalently, half-filled with holes) at charge neutrality, and the Fermi level is thus situated at the centre of this Landau level n = 0. If we recall the above discussion of the general features of the quantum Hall effect, this situation is at odds with the appearance of a quantum Hall effect, which requires indeed a Fermi level between adjacent Landau levels. Since the n = 0 Landau level (for massless Dirac fermions, with ∆ = 0) is itself fourfold degenerate, the filling factor must be ν = 2 for the first quantum Hall effect to occur because the n = 0 Landau level is then completely filled and the Fermi level lies in between the levels n = 0 and n = 1. Similarly, we may argue in terms of holes, in which case the first quantum Hall effect occurs at ν = -2, for the same reasons. In conclusion, the n = 0 Landau level, which remains at zero energy regardless of the strength of the magnetic field and that is half-filled at charge neutrality (n el = 0), is responsible for the filling-factor offset of ∆ν = ±2 in the quantum Hall sequence (5.98) in graphene, while the steps in four reflect the fourfold spin-valley degeneracy of the Landau levels. Chapter 6

Notions and concepts to retain

Introduction to topological matter

In chapter 2, we recalled the elements of the band structure formed by electrons in a periodic lattice given by the underlying atomic crystal. Bloch's theorem allows us to obtain their spectrum which consists of energy bands. These latter can be seen as energy levels of the Bloch Hamiltonian that vary continuously as a function of the wave vector, which is a good quantum number because of the discrete translation symmetry on the lattice. The calculation of energy bands has been, and still is, a major occupation of (numerical) studies in material sciences, be it in the framework of tight-binding models or density-functional calculations. This analysis of the band structure provides us indeed with a lot of information about the materials under scrutinity, and above all whether we are confronted with metals or insulators (or semiconductors if the gap is relatively small). Furthermore, the density of states, which is obtained directly from the band structure (and the dimensionality of the system, see section 3.1 in chapter 3), bears important information about the thermodynamical properties or yet possible instabilities of the electronic system, e.g. due to electronic interactions or coupling to other degrees of freedom. As an example, one might cite Stoner's criterion for the occurance of ferromagnetism due to electron-electron interactionsthe criterion appeals to the product of the coupling constant and the density of states, which must be larger than a critical value -or else electron-phonon coupling that is at the origin of superconductivity in a large number of materials.

Beyond these valuable pieces of information obtained from the spectrum, wave functions also inform us about a number of properties in electronic systems. These properties are more subtle to grasp, from a theoretical as well as from an experimental point of view, and have for quite a long time not been treated in the reference text books of condensed-matter physics. It is only since about 2005 that this community of physicists has become more and more interested in the properties encoded in the Bloch states. The latter unveil indeed relevant geometric and topological properties of electrons restricted to a single electronic band. Even if electrons are dynamically restricted to a single electronic band, e.g. if one considers only adiabatic processes excluding quantum jumps to other bands, those other bands are nevertheless present and "communicate" with the electrons in the band of interest. We show below that this communication involves virtual transitions (as opposed to quantum transitions) of the electron to these other bands. This type of banc coupling is taken into account by the so-called Berry curvature, which is a geometric phase in the quantum mechanical wave function that the electrons acquire in adiabatic processes within a single band. The Berry curvature provides indeed information about the geometry of the electronic bands and their states and yields, once integrated over the entire first Brillouin zone, a topological invariant: the Chern number.

After a historical introduction to topological concepts in condensed matter, especially in the context of the classification of defects (section 6.1), we introduce the Berry connection, Berry curvature and Berry phase -often also called Berry-ology in a somewhat nonchalant manner -as well as the Chern number, in the description of electronic bands (section 6.3). In section 6.4, we apply these concepts to a massive Dirac fermion. We have already seen that Dirac fermions are responsible for the low-energy properties of certain materials, such as graphene, and they emerge indeed naturally in the wider class of topological materials. They allow us to describe the electronic bands in the the vicinity of topological phase transitions, from a local point of view in reciprocal space, without resorting to a complete calculation of the Berry curvature over the entire first Brillouin zone. Dirac fermions also allow us to obtain a simple (qualitative) description of topological insulators and the bulk-edge correspondence in 2D materials (or the bulk-surface correspondence in 3D materials),1 which is the hallmark of topological materials. We finish the present chapter with a discussion of a correction to the electronic group velocity in Bloch bands -one can indeed still find in a large number of textbooks that the group velocity is given by

v n = 1 ∇ k E n (k).
However, Karplus and Luttinger understood, already in the 1950's long before Berry's seminal work on geometric phases, that this formula is incomplete and that an additional term must be added. In modern terms, this additional term is proportional to the Berry curvature, which is coupled to the time derivative of the wave vector. The understanding of the Karplus-Luttinger anomalous velocity is at the heart of section 6.5, where we approach this corrrection in the context of adiabatic pumping in a 1D crystal.

Topology in condensed-matter physicsdefect classification

As much as the topological description of electronic bands is a rather modern field of condensed-matter research, topological concepts have been used since the 1970's, especially in the classification of defects. From a general point of view, mathematical topology groups geometric objects into classes -called homotopy classes -where two objects, which we will consider for illustration made of a malleable material, can be deformed into each other by continuous deformations if they belong to the same class. For example, a cup (with its handle) can be continuously deformed into a donut (or torus) or into the black marble sculpture in the "Grand Hall" of our beloved Alma Mater (see figure 6.1). In contrast, this cup, or any of the objects in the class in question, cannot be deformed into a balloon (or a sphere) -to do so, one would need to cut the handle of the cup in order to get rid of the hole, which is the common property between the objects of the homotopy class to which the cup and the torus belong. In the same way, a pretzel (with two holes) cannot be obtained by a continuous deformation from an object like the torus. Without formalizing this point for the moment, we notice that the different homotopy classes of objects are characterised by the number of holes that their elements have. This number plays the role of a topological invariant and remains a (topologically) protected quantity under the effect of continuous deformations. In other words, this invarant is necessarily an integer in the same way that there is no half-hole.

Characterisation of topological defects in order parameters

Naturally, in Physics, we are less interested in objects such as those described above than in quantities that describe for example a phase of matter. A theory that describes with great success the phases of matter and transitions between them is precisely given by Landau's theory. According to this theory, a phase transition is accompanied by the disappearance of an order parameter when we vary a control parameter (such as temperature) that drives the transition. 2 In the context of magnetism, for example, the order parameter is the magnetisstion M (r) which takes a constant value everywhere in space in the ferromagnetic phase at low temperature (see the left-hand side of figure 6.2). This ferromagnetic order cedes its place at high temperature (above the critical temperature T c ) to a disordered paramagnetic phase, where the order parameter vanishes, M (r) = 0. Let us examine now the symmetries of the encountered phases. Indeed, the phase transition is accompanied by a broken symmetry at low temperature: the disordered phase is symmetric in that the spins that form the paramagnetic phase point in all directions in space, whereas the ferromagnetic phase is ordered. This latter phase consists of spins that all point in the same direction in order to give a non-zero magnetisation, M (r) = M 0 . However, since no direction is a priori preselected due to the isotropy of space, this phase breaks the SO(2) symmetry of the original rotations. The order Figure 6.2: Phase transition between a ferromagnetic and a paramagnetic phase (with disordered spins), as a function of temperature. The magnetisation plays the the role of an order parameter -it is nonzero in the ferromagnetic phase at low temperature and disappears at the critical temperature T c to give way to a high-temperature paramagnetic phase with M = 0. parameter, i.e. the macroscopic magnetisation of the set of spins, disappears at the critical temperature which describes the transition (figure 6.2). Let us now try to characterise the low-energy excitations of the ordered system and start with the collective excitations. These are excursions of the order parameter [here the magnetisation M (r)] around its value M 0 when the r position changes in space. In the present case of a ferromagnet, these collective excitations are the long-wavelength spin waves (see figure 6.3). In fact, the Goldstone's theorem tells us that the energy of these collective excitations tends to zero in the limit of very long wavelengths. Without proving this theorem, the vanishing energy at long wavelengths can be understood relatively easily. In this limit, the spin wave becomes a global rotation of the magnetisation of M 0 → M 0 . However, such a state has the same energy as the starting state because of the SO(2) rotation symmetry of the model.

In addition to these collective spin-wave excitations, the order parameter can be disturbed in a more local and violent manner. Let us imagine a local disappearance (at a position r 0 ) of the order parameter with a kind of monopole in its neighbourhood, where all the spins point for example in the direction of the vector associated with their position with respect to r 0 . This yields a hedgehog pattern [see figure 6.4(a)] if we consider all spins on a sphere with r 0 at its center. This "magnetic monopole" is precisely a topological defect, which can be characterised by the lasso rule that we owe to the French physicist Kléman. This rule stipulates that, to catch a ddimensional defect in a d-dimensional space, one needs a lasso of dimension In order to catch a magnetic monopole (of dimension d = 0) in a 3D ferromagnet, one then needs a lasso of dimension r = 2, i.e. a sphere that can encompass the defect. We may already anticipate that it is sufficient to analyze the order parameter on the surface of the sphere (our lasso) to know whether the lasso hunter has caught a topological defect or not. If for example all the spins on this sphere point in a perpendicular direction away from its centre, the hunter has indeed caught a magnetic monopole [see figure 6.4(a)].

Mathematically, this is formalized by maps (functions) from one compact space to another one. Let us consider again our ferromagnetic system, where we are interested in the evolution of the magnetisation when the whole sphere that envelopes the defect is explored. To each point on this sphere S 2 (the positions r), we associate another vector -the magnetisation M (r) -which itself lives on a sphere S 2 . Indeed, a point on this last sphere represents a possible orientation of the magnetisation, and the latter can thus be seen as a map from one sphere S 2 (that of the positions in real space) to another sphere S 2 M (that of spin orientations),3 

(d) (e) (f) 
M : S 2 → S 2 M . (6.2)
It turns out that these maps are characterised by an integer number4 that describes the number of times that the magnetisation wraps up its sphere S 2 M when all the sphere S 2 of the positions (i.e. the lasso) is explored. This integer is actually a topological invariant that cannot be changed via continuous deformations.

To illustrate this point, let us consider an even simpler case: a vortex. A vortex is precisely a defect of an order parameter such as that of a 2D superconductor. The superconductor is characterised by a complex N -particle wave function with a well-defined phase θ, which takes values between 0 and 2π. By identifying 0 and 2π, due to the periodicity of the phase, the latter can be represented by a position on the unit circle, i.e. by an angle. According to the rule (6.1) of the lasso hunter, we need, in order to catch this d = 0 dimensional defect in a d = 2 dimensional space, a r = 1 dimensional lasso, that is to say a real loop, and the term "lasso" now takes on its full meaning. The order parameter of the superconductor at a point r in the 2D plane is therefore the phase which can be represented by an arrow indicating the phase on the unit circle. The superconductor is thus analogous to a 2D ferromagnet with a magnetisation that is also constrained in the equatorial plane of the Bloch sphere.5 From a mathematical point of view, the topological defects can again be classified by maps, but this time we deal with maps from the S 1 space (the lasso surrounding the defect) to the S 1 M space that is the unit circle, which represents the superconducting phase,

θ : S 1 → S 1 M . (6.3) 
These maps are also classified by an integer, π 1 (S 1 ) = Z. To unveil the meaning of this integer, we may consider closed paths (the lassos) in the 2D space and take a look at the phase (the XY magnetisation) at each of the positions, in two patterns sketched in the figures 6.4(b) and (c). It is clear from the naked eye that the two patterns represent two different vortices, which we try to understand by closed paths in the lasso-hunter image. Let us first consider the blue path in figure 6.4(b) as well as its image [figure 6.4(d)] on the circle S 1 M . Figure 6.4(b) indicates that the image of this path does not explore the full circle. It can thus be contracted to a single point, which corresponds to a zero winding number (or topological invariant). This reflects the simple fact that the blue path in figure 6.4(b) does not surround the (topological) defect. The situation changes when we take a look at the green path in the same figure that now surrounds the vortex. Indeed its image on the circle S 1 M [figure 6.4(e)] now explores the whole circle in a counter-clockwise direction (and the reverse direction of the oriented path in position space). We thus assign a vorticity of -1 (this is the invariant or topological charge) to this defect, which is an anti-vortex. Figure 6.4(c) shows a vortex with a vorticity +1, and its identification is done in the same way as for the anti-vortex. To do so, we analyse the image of the path on the circle S 1 M [figure 6.4(f)]. This image covers the circle in a clockwise direction and thus in the same direction as the path S 1 in position space. Notice finally that there are vortices with vorticity larger than 1 -in this case, the image of the path around the topological defect covers the circle S 1 M several times. This number of windings is precisely the meaning of the topological invariant π 1 (S 1 ) = Z, which represents here the vorticity.

Back to the quantum Hall effect

In the previous chapter, we saw that the quantum Hall effect shows a very high robustness to the disorder potential: the charged impurities in the bulk of the sample trap the electrons by forcing them to follow the equipotential lines of the disorder-potential landscape, and the electric transport involves only the extended states which are located at the edges of the sample. These states being chiral, the transport is directional in that the direction is imposed by the orientation of the magnetic field. It should be noted that these edge states and thus the electric transport in the quantum Hall effect, i.e. for filling factors close to ν = n, are not affected by the concrete form of the disorder potential in the bulk -indeed if one potential landscape is replaced by another one, this only changes the positions where the bulk electrons are trapped, but it does not affect the transport at the edges.

We have already understood that the number of completely filled Landau levels conditions the number of edge channels. In 1982, Thouless, Kohmoto, Nightingale and Nijs (TKNN) showed that the number of Landau levels can be seen as a topological invariant, in a similar way to the topological invariants introduced earlier in this chapter, in the characterisation of topological defects. Here, we do not reproduce the calculations giving rise to this topological number, but we discuss in the following sections a similar invariant in the framework of the Berry curvature. Most saliently, the quantum Hall effect indicates us a very general phenomenon of topological matter: the topological bulk invariant (here the number of completely filled Landau levels) conditions the edge properties (here the number of chiral channels). This is a manifestation of the bulk-edge correspondence that we will examine in more detail and in a constructive way in section 7.5 of the next chapter. The quantum Hall effect can thus be seen as the prototype of a topological insulator: it is a bulk insulator (in 2D) because of the position of the Fermi level between two adjacent Landau levels, accompanied by a (1D) edge conductor. Let us recall that the chiral 1D character of the edge states is at the origin of the precise conductance quantisation and consequently that of the Hall resistance. The great robustness of these edge states is the manifestation of what is called topological protection due to the topological invariant which, being an integer, cannot be changed continuously.

Berry-ology -Berry phase, connection and curvature

In this section, we discuss the electronic bulk properties of a topological material, in terms of the geometric properties of its band structure. The goal is to understand how the Chern number emerges as the natural topological invariant which describes the different energy bands obtained in band-structure calculations, namely in tight-binding calculations that have been recalled in the chapter 3. The content of this section is based on the work by TKNN, which we have already mentioned above, as well as that by Berry in 1984.

In particular, we follow Berry's work, which is conceptually easier to grasp and that allows for a comparison with known quantities of electromagnetism. Indeed, we will find here quantities analogous to the vector potential, magnetic field and magnetic flux, but in reciprocal space. The discussion is again based on the Bloch states6 |u n (k) , which are solutions of the Schrödinger equation (2.31),

H(k)|u n (k) = E n (k)|u n (k) , (6.4) 
in terms of the Bloch Hamiltonian H k . We shall see in this section that, on a closed path in the reciprocal space of wave vectors k, the states |u n (k) evolve in a remarkable manner when they are forced to remain in the same band: in addition to the usual dynamical phase, the states acquire a geometric phase that encodes the topological properties of the band. To introduce the idea schematically, we may consider the |u n (k) states as maps of the first Brillouin zone T d , which can be seen as a d-dimensional torus and thus as a compact space (because of the periodicity of the reciprocal lattice), to the space of the N motif spinor states (2.32) associated with the Hilbert subspace

E n of the n-th band, |u n (k) : T d → E n . (6.5)
Note that the space E n is also compact because of the periodicity of the wave functions. 7 We are then interested in the images (in the space E n ) of the different closed paths in T d . More precisely, we consider a continuous evolution of the states |u n (k) along these paths. Remember from the discussion in section 2.2.3 that this would not be a meaningful task in the space of Bloch wave functions that are all orthogonal at different wave vectors in reciprocal space, Ψ n,k |ψ n ,k = δ n,n δ bk,k , because of the plane-wave factors in their wave functions. This is no longer the case of the Bloch states |u n (k) , which may thus be expanded as

|u n (k + dk) = |u n (k) + ∇ k |u n (k) • dk = |u n (k) + |∇ k u n • dk, (6.6) 
The last equation illustrates only a notation to avoid possible confusions in the sequel. Indeed, the state |∇ k u n is the Hilbert-space state obtained by taking the gradient of the state |u n (k) . As the gradient is a linear operator, the state thus obtained is also part of the Hilbert space E n . Notice, however, that it is not a Hermitian operator that would satisfy A = A † : contrary to the Hermitian operators, which can be applied to the right ket as well as to the left bra, this is not the case for the gradient, for which such a change comes along with a sign change,

u n (k)|∇ k u n = -∇ k u n |u n (k) . (6.7)
This convention of including the gradient in the ket thus allows us to avoid a confusion, which does not occur for Hermitian operators. Recall that the gradient is an anti-Hermitian operator -equation (6.7 is precisely a consequence of this anti-Hermiticity -, and in order to make it Hermitian, we have to multiply it by a factor i.

In the following, we will focus on this continuous evolution of states on a path in wave-vector space.

Adiabatic transport in reciprocal space

In order to spell out the program invoked above, we may consider a path in reciprocal space along which an electron evolves adiabatically. This means that the path k(t) can be parametrised by a time t and that the variation of the wave vector is sufficiently slow. Quantitatively, we consider time scales larger than that given by the (inverse) gaps between the band n which hosts the electron and its adjacent bands, T /min|E n (k) -E m (k)|. We can then use adiabatic theory, i.e. we exclude quantum jumps from one band to another, and the electron remains throughout this process in its initial band n. If the quantum state at time

t = 0 is |ψ(t = 0) = |u n (k 0 ) , it is then given by |ψ(t) = e iγ(t) |u n (k(t)) , (6.8) 
at a later time t. This means that it is necessarily an eigenstate of the Bloch Hamiltonian parameterised by the wave vector k(t),

H(k(t))|u n (k(t)) = E n (k(t))|u n (k(t)) , (6.9) 
while its phase γ(t) remains to be evaluated, using the Schrödinger equation

i d dt |ψ(t) = H(k(t))|ψ(t) .
(6.10)

The left-hand side gives t) , (6.11) and the right-hand side may be written

i d dt |ψ(t) = i i γ|u n ((k(t)) + k • |∇ k u n e iγ(
H(k(t))|ψ(t) = e iγ(t) E n (k(t))|u n (k(t)) , (6.12) 
which, by multiplying the last two equations from the left with the bra

u n (k(t))|, gives γ = i k • u n (k(t))|∇ k u n (k(t)) - 1 E n (k(t)). (6.13)
The integration of this last equation from t = 0 to t = T then gives

γ(T ) -γ(t = 0) = T 0 dt dk dt i u n (k(t))|∇ k u n (k(t)) - 1 T 0 dtE n (k(t)) = C dk • A n (k) - 1 T 0 dtE n (k(t)). (6.14)
The last term is the simple dynamic phase that the quantum system acquires during its time evolution. The first term is of a different nature and much less common. It is a geometric phase, given by the line integral of the Berry connection, defined as

A n (k) = i u n (k)|∇ k u n , (6.15) 
over the path C in reciprocal space. Let us finally note that we are interested in closed paths rather than in open ones in view of a topological description of the band E n (k), so that k(T ) = k(t = 0) = k 0 . The geometric phase, which is called Berry phase, on the closed path C is then written8 

Γ(C) = C dk • A n (k). (6.16)
This expression strongly resembles the Aharonov-Bohm phase, which we have briefly mentioned in the introduction, Γ AB = e dr • A(r), (6.17) accumulated by an electron on a closed path in direct space (of positions).

The Berry connection thus plays the role of a vector potential vector in reciprocal space (of wave vectors) and the Berry phase that of an Aharonov-Bohm phase. It seems then natural to ask oneself whether there is also the analog of a magnetic field. This is indeed the case: it is the Berry curvature which is obtained by taking the rotational (with respect to the wave vector) of the Berry connection (6.18) This somewhat barbaric notation indicates that we must take the vector product with respect to the gradients of the wave functions. It can also be written component by component (with µ, ν, σ = x, y, z)

B n (k) = ∇ k × A n (k) = i ∇ k u n | × |∇ k u n .
B n (k) σ = i µνσ ∂ kµ u n |∂ kν u n , (6.19) 
where µνσ is the antisymmetric Levy-Civita tensor9 and where we adopt the Einstein convention that the sum over all repeated (Greek) indices is implicit. As, in 2D materials, the Berry curvature is a vector oriented in the z-direction, this expression can be written as

B z n (k) = i ∂ kx u n |∂ ky u n -∂ ky u n |∂ kx u n .
(6.20)

Berry curvature

We have seen, in the previous paragraphs, that the Berry curvature emerges from the restriction of the electron dynamics to a single band, in the context of adiabatic transport. This may seem a bit abstract, and we try to give here a more physical illustration of this quantity, which can be interpreted in the context of inter-band coupling. Indeed, even if the electron always stays in the same band, the other neighbouring bands influence its motion. It is precisely this influence that is taken into account by the Berry curvature.

In perturbation theory, this would be a second-order process where the electron can explore the other bands via virtual processes, that means virtual transitions to and from the other bands without involving a true quantum jump.

We know from electromagnetism that the magnetic field is gauge-invariant while the vector potential is not. This is also the case for the Berry curvature which is gauge-invariant while the Berry connection depends on the chosen gauge. This last dependence is manifested during a phase change in the wave function, |u n (k) = exp(iφ k )|u n (k) -this is a gauge transformation if the phase φ k does not introduce an additional singularity in the wave function. The Berry connection is then written

A n (k) = -∇ k φ k + A n (k), (6.21) 
where A n (k) = i u n (k)|∇ k u n is the connection associated with the transformed state. On the other hand, we have

B n (k) = B n (k), (6.22) 
because ∇ k × ∇ k φ k = 0, due to the absence of singularities in the phase φ k , i.e. the phase is a differentiable function.

In order to make manifest the gauge invariance of the Berry curvature, it is useful to get rid of a formulation of it in terms of wave-function gradients. Such a gauge-invariant formulation of the Berry curvature can be found by inserting the closure relation

m |u m (k) u m (k)| = 1
in the equation (6.19), where we sum over all bands,

B n (k) σ = i µνσ m ∂ kµ u n |u m (k) u m (k)|∂ kν u n = i µνσ m =n ∂ kµ u n |u m (k) u m (k)|∂ kν u n + ∂ kµ u n |u n (k) u n (k)|∂ kν u n .
(6.23)

In the last line, we have put apart the term for m = n and restrict the sum to run over the other bands m = n. As a consequence of equation (6.7), the last term of equation (6.23), which we have isolated from the sum, is therefore symmetric under the exchange of the components k µ and k ν ,

∂ kµ u n |u n (k) u n (k)|∂ kν u n = ∂ kν u n |u n (k) u n (k)|∂ kµ u n . (6.24)
Now, since the tensor µνσ is itself anti-symmetric under this exchange, it follows that the sum over the last term of equation (6.23) gives zero.

We still need to evaluate the matrix element u m |∂ kν u n , where we have omitted the argument k in order to lighten the notations. This matrix element can be calculated using the Bloch Hamiltonian H = H(k) and its eigenvalue equation

E m u m |∂ kν u n = u m |H|∂ kν u n (6.25) = u m |∂ kν (H|u n ) -u m ∂H ∂ kν u n = u m |∂ kν (E n |u n ) -u m ∂H ∂k ν u n = ∂E n ∂ kν u m |u n + E n u m |∂ kν u n -u m ∂H ∂ kν u n ,
where we have used the Schrödinger equation in the first and third lines.

Let us first consider the situation with m = n, in which case the first term of the last line is zero because of the orthogonality of the wave functions, u m |u n = 0. Consequently, we find

(E m -E n ) u m |∂ kν u n = -u m ∂H ∂ kν u n (6.26)
or equivalently

u m |∂ kν u n = u m ∂H ∂kν u n E n -E m = u m |v ν | u n E n -E m , (6.27) 
where we have used the expression (2.45),

v ν (k) = 1 ∂H ∂k ν , (6.28) 
for the velocity operator in the Bloch basis. We finally notice that, for m = n, the auxiliary calculation (6.25) reproduces simply the group velocity of the n-th band, 

u n ∂H ∂k ν u n = u n |v ν (k)|u n = ∂E n ∂k ν . ( 6 
E n (k(t)), which is E n (k 0 ) = E n (k(T ))
, at the beginning of the path (t = 0) as well as at the end (t = T ). The blue curve indicates the image E(k(t)) of the path k(t). In the framework of perturbation theory, the system undergoes, all along the path, virtual transitions (red arrows) towards the other bands, here E m (k).

Using this formulation of the matrix elements, we can rewrite the Berry curvature in terms of the velocity operators in the Bloch basis,

B n (k) σ = i µνσ m =n u n ∂H ∂ kµ u m u m ∂H ∂ kν u n [E n (k) -E m (k)] 2 (6.30) = i 2 µνσ m =n u n |v µ | u m u m |v ν | u n [E n (k) -E m (k)] 2 ,
i.e. without using wave-function gradients.

In order to understand in more detail the particular expression (6.30) of the Berry curvature, we can interpret it in the light of perturbation theory. Here, we are dealing with infinitesimal perturbations on the path in reciprocal space. Indeed, by expanding the Bloch Hamiltonian (6.31) the first term can be seen as the non-perturbed Hamiltonian H 0 and H = dk • ∇ k H as the perturbation. Quantum-mechanical perturbation theory teaches us that the wave function |u n (k + dk) , which is the eigenstate of the Hamiltonian H(k + dk), is written to first order as

H(k + dk) = H(k) + dk • ∇ k H,
|u n (k + dk) = |u n (k) + m =n |u m (k) u m (k)|dk • ∇ k H|u n (k) E n (k) -E m (k) . (6.32)
Now the direct expansion [see the equation (6.6)] of the wave function gives us

|u n (k + dk) = |u n (k) + |∇ k u n • dk, (6.33) 
from which we get the same result,

u m |∇ k u n = u m |∇ k H|u n E n (k) -E m (k) , (6.34) 
as that obtained above [equation (6.27)].

The above argument does not provide us with new results but allows us to interpret the Berry curvature in a complementary picture that is sketched in figure 6.5. By following the C path in the first Brillouin zone, the electron adiabatically changes its energy and always remains in the same band E n (k). On the other hand, it undergoes virtual transitions to neighbouring bands E m (k), as it is stipulated by perturbation theory. Even if we consider adiabatic processes in which an electron cannot jump between the energetically separated bands, the distant bands nevertheless affect the dynamics of the particles restricted to a single band via virtual transitions that are taken into account by the Berry curvature. It follows that the Berry curvature is necessarily zero in (tight-binding) models with a single band. Indeed, we can convince ourselves of this fact directly by looking at the formula (6.30). It is a special case of a fundamental property of the Berry curvature : when it is summed over all the bands, the total curvature must vanish. This is indeed the case, as for each value of the wave vector k, we have the sum rule 10 n B n (k) = 0.

(6.35)

10 This can be seen directly in the formula (6.30) : by summing over the index n, the term

n m =n u n ∂H ∂ kµ u m u m ∂H ∂ kν u n [E n (k) -E m (k)] 2
is symmetric with respect to the exchange ν ↔ µ while νσ is antisymmetric, hence the cancellation of the sum.

Chern number

The Berry curvature allows us to define a topological invariant. Indeed, it inherits a periodicity in reciprocal space from the periodicity of the Bloch wave functions, |ψ n,k , if the Bloch states are defined via the unitary transformation (2.39), |u n (k) = exp(-ik • r)|ψ n,k . Due to its periodicity, the Berry curvature can be viewed as a compact manifold M so that

B n (k) : T d → M, (6.36) 
where T d represents the compactified first Brillouin zone, which is isomorphic to a d-dimensional torus in a (d+1)-dimensional space, as we have mentioned above. From now on, we discuss d = 2, in which case the Berry curvature is a periodic one-component function because it only possesses a z-component.

The maps can then again be characterised by an integer that plays the role of our topological invariant. In the present case, this invariant is called first Chern number (or TKNN invariant), and it is obtained by integrating the Berry curvature over the entire first Brillouin zone,

C n = 1BZ d 2 k 2π B z n (k) ∈ Z (6.37)
To appreciate this point, it is useful to pass again by the analogy with electromagnetism. We have already mentioned that the Berry curvature can be seen as a magnetic field in reciprocal space. Recall that the magnetic flux through a surface S is obtained by integrating the vector potential on the border ∂S of this surface

φ = ∂S dr • A(r), (6.38) 
which gives the Aharonov-Bohm phase Γ AB = 2πφ/φ 0 , in terms of flux quantum φ 0 = h/e. In the same way, we can define the Berry flux (6.39) which is identical to the Berry phase Γ(C) = 2πΦ(C) modulo a factor 2π. By Stokes' theorem, these integrals are equivalent to surface integrals of the magnetic field or of the Berry curvature, and the Berry flux can be written as (6.40) where Σ is the reciprocal-space surface enclosed by the path C. We will henceforth refer to this second formulation, which is equivalent to the first one if one can define a global gauge for the vector potential (the Berry connection).

Φ(C) = C dk • A n (k),
Φ(C) = Σ d 2 kB z n (k),
Without going into the mathematical details, this is not always possible, especially in the case we are interested in here -we speak of an obstruction.

Indeed, when such a global gauge cannot be found, there are singularities in the Berry connection which can be seen as magnetic monopoles. As we know, these magnetic monopoles do not exist in classical electromagnetism, but Dirac has noticed that they are quite possible in quantum mechanics. They manifest themselves by a quantized flux through a closed surface around the monopole,

Φ(C) = 2πC n , (6.41) 
where C n is precisely the first Chern number (6.37). This Chern number, introduced as a topological invariant (TKNN) associated with Bloch bands, may seem rather formal at first sight. However, it is, in the same way as the Berry curvature, a highly relevant quantity from a physical point of view. On the one hand, it classifies the topologically different phases and consequently the transitions between these phases. As it is an integer, it is a truism to say that it cannot change continuously. This means that the band structure itself cannot change continuously between two topologically different phases: in order to change the Chern number associated with a Bloch band, it is necessary that this last band crosses another one. This gives rise to crossing points between bands during a topological transition which we have already encountered in the context of massless Dirac fermions, as in graphene. This link between topological phase transitions and Dirac fermions is the subject of the next section.

More concretely, the Berry curvature gives rise to a corrective term to the group velocity of the electrons in the band E n (k). The velocity acquires a transverse component, and so does the conductivity of the electrons in the band. This is very similar to the Hall effect, and, indeed, there is even a quantized version of this effect in the form of the quantum anomalous Hall effect and the quantum spin Hall effect. While the appearance of the Berry term in the anomalous Karplus-Luttinger velocity is discussed at the end of this chapter, the Landauer-Büttiker-type transport in the quantized versions of these effects is presented in the next chapter, where we review some spectacular experiments carried out in materials of a completely new generation.

Berry curvature of a massive Dirac fermion and "half Chern number"

As we mentioned at the end of the previous section, a topological phase transition manifests itself by a crossing between (at least two) bands so as to allow for a discrete change of the Chern number. The simplest case consists then of a 2D two-band model,11 which may be treated, in the vicinity of the topological phase transition, in terms of a Dirac fermion in the continuum limit. In this case, the continuum Dirac fermion is obtained by expanding the two-band model around the wave vector at which the band crossing occurs.

In order to appreciate this point, let us first consider a semiconductor with a direct gap at q = 0, where the two "bands are inverted". Directly at this point, the Hamiltonian is simply written as

H(q = 0) = ∆ 0 0 -∆ , (6.42) 
and the energy of the two states (bands) is ±∆. This very simple model allows us to define what we mean by band inversion: it occurs when the gap parameter ∆ changes its sign, while it necessarily goes through the value ∆ = 0 where the two states are degenerate. This particular value ∆ = 0 happens to determine the topological phase transition, which is described in more detail in the next section. In order to take into account the neighbourhood of this point in reciprocal space, it is sufficient to add a complex function f (q) in the off-diagonal elements of the Hamiltonian. This complex function couples the two states. As we are interested only in the neighbourhood of the contact point, we can expand this function to lowest order in q, and this yields

f (q) (v 1 • q + iv 2 • q), (6.43) 
where v 1 and v 2 are real parameters (of the physical dimension of a velocity). It can be shown (but we will not do it here) that there always exists a frame of reference so that v 1 = (v 1 , 0) and v 2 = (0, v 2 ), and we still simplify the discussion by choosing

|v 1 | = |v 2 | = v.
12 Moreover, we omit for the moment a possible dispersion in the diagonal terms which is not of interest here. 13 We thus realize that the Hamiltonian in the vicinity of the (avoided) crossing point at q = 0 is nothing other than that of a Dirac fermion [see the equation (2.71) of the section 2.3],

H ξ (q) = ∆ ξ v(q x -iξq y ) ξ v(q x + iξq y ) -∆ , (6.44) 
where we recall that ξ = ± keeps track of the valley. 14 We notice here that the bands are well separated when ∆ = 0, and indeed ∆ = 0 denotes the transition between two (topologically) distinct phases depending on whether ∆ is positive or negative. The Dirac Hamiltonian can also be cast into the form

H ξ (q) = ε(q) cos θ ξ sin θe -iξφ ξ sin θe iξφ -cos θ , (6.45) 
where ε(q) = ∆ 2 + 2 v 2 q 2 and cos θ = ∆ ε(q) , sin θ = vq ε(q) , tan φ = q y q x , (6.46) in terms of the modulus q = |q| of the wave vector. We have already seen that the spectrum of the Hamiltonian consists of two branches (λ = ±), given by E λ (q) = λε(q), independent of the valley ξ, but we are more particularly interested here in the eigenstates, which can be written as

|u ξ λ=+ = cos θ 2 ξ sin θ 2 e iξφ and |u ξ λ=-= -ξ sin θ 2 e -iξφ cos θ 2 . (6.47)
12 This can always be obtained by doing a scale transformation of the components of the wave vector.

13 One can also show that the dispersive terms on the diagonal scale like q 2 . We will get back to this kind of terms in the model proposed by Bernevig, Hughes and Zhang in section 7.4.

14 This is natural because we will see in the following, based on very general arguments, that Dirac fermions emerge in pairs in electronic band structures. Moreover remember that we have seen, in the concrete case of graphene and boron nitride, that there are two low-energy Dirac fermions, located at K and K at the corners of the first Brillouin zone.

These expressions for the eigenstates help us to easily calculate the Berry connection

A λ,ξ (q) = i u ξ λ |∇ q u ξ λ . (6.48)

Let us first calculate the gradient for the branch (band) of positive energy,

|∇ q u ξ + = -1 2 sin θ 2 ∇ q θ ξ 1 2 cos θ 2 ∇ q θ + sin θ 2 (iξ∇ q φ) e iξφ , (6.49) 
which gives15 

u ξ + |∇ q u ξ + = iξ sin 2 θ 2 ∇ q φ. (6.50)
In the same way, we find for the negative-energy branch

u ξ -|∇ q u ξ -= -iξ sin 2 θ 2 ∇ q φ, (6.51) 
and thus for the Berry connection

A λ,ξ (q) = -ξλ sin 2 θ 2 ∇ q φ = - ξλ 2
(1 -cos θ)∇ q φ. (6.52) Equation (6.52) allows us to obtain the Berry curvature associated to a massive Dirac fermion.16 

B λ,ξ (q) = ∇ q × A λ,ξ (q) = λξ 2 [∇ q cos θ × ∇ q φ -(1 -cos θ)∇ q × ∇ q φ] = λξ 2 ∇ q cos θ × ∇ q φ (6.53)
As cos θ = ∆/ ∆ 2 + 2 v 2 q 2 , we find directly

∇ q cos θ = - 2 v 2 ∆ ε(q) 3 q. (6.54)
Furthermore, we have 17

∇ q φ = 1 q 2   -q y q x 0   , (6.55) 
and consequently B λ,ξ (q) = B z λ,ξ (q)u z , with

B z λ,ξ (q) = - λξ 2 2 v 2 ∆ ε(q) 3 = - λξ 2 2 v 2 ∆ (∆ 2 + 2 v 2 q 2 ) 3/2 = - λξ sgn(∆) 2 λ2 C
(1 + λ2 C q 2 ) 3/2 , (6.56) where sgn(∆) denotes the sign of the gap parameter ∆ and where we introduced a characteristic length

λC = v |∆| = m D v , (6.57) 
in terms of the Dirac mass m D = |∆|/v 2 . It is indeed clear from its definition that the physical dimension of the Berry curvature is the square of a length.

In the case of a Dirac fermion, this characteristic length has a very particular interpretation: it is the Compton length of relativistic quantum mechanics (modulo a factor 2). Recall that the Compton length (for an electron of mass m 0 ) is given by λ C = h/m 0 c, in terms of the speed of light c. We have already mentioned, in the context of graphene, that this velocity is replaced by the Fermi velocity, as it can be seen in equation (6.57). In high-energy physics, the Compton length, which is λ C = 2.4 × 10 -12 m, is a lower limit of subatomic resolution in optical spectroscopy (X-rays or γ-rays).

Physically, a photon with a wavelength given by the Compton length has an energy E = hc/λ C = m 0 c 2 which equals the mass energy of an electron. This means that a photon of this wavelength (or more precisely of its half) 17 This can be calculated indirectly, by first calculating

∇ q tan φ = 1 cos 2 φ ∇ q φ =   -q y /q 2 x 1/q x 0  
because tan φ = q y /q x . Also, we have cos φ = q x /q, hence the result.

possesses a sufficient energy to create an electron-positron pair. 18 In our condensed-matter-physics situation, a photon with a wavelength of h/2m D v would have sufficient energy to promote an electron from the valence band to the conduction band, separated by the gap 2∆. Such transitions are in contradiction with our basic hypothesis that the electron remains in its band during adiabatic processes. Note that this conceptual link between the Compton length and the Berry curvature is not unexpected: in both cases, it is a measure of coupling between bands if one interprets the the positron branch as the valence band and thus of the limit of validity for adiabatic processes. If we are confronted with processes that require length scales below the Compton length, the adiabatic theorem breaks down. Equation (6.56) indicates a reciprocity relation between the value of the Berry curvature at q = 0 and its width in wave-vector space: when the value of the Berry curvature B λ,ξ (q = 0) = -λξλ 2 C /2 is increased, by increasing the Compton length (for example by decreasing the gap between the bands), the width of the curvature is reduced in reciprocal space; q C = 1/λ C is indeed the characteristic wave vector at which the Berry curvature has half of its maximal value. This reciprocity is manifested in the calculation of the Berry phase, which is

Γ(q) = |q |≤q d 2 q B λ,ξ (q) = - λξ sgn(∆) 2 2πλ 2 C q 0 dq q 1 (1 + λ2 C q 2 ) 3/2 = -λξ sgn(∆)π 1 - 1 1 + λ2 C q 2 (6.58)
on a circular path of radius q. The Berry flux associated with this Dirac fermion can be easily calculated in the limit q → ∞, and one finds

Cλ,ξ = Γ(q → ∞) 2π = - 1 2 λξsgn(∆), (6.59) 
which is independent of the characteristic length λC . Notice that this total flux is reminiscent of the Chern number, which we introduced in the previous section [see equation (6.37)] and that is obtained by integrating the Berry curvature over the entire first Brillouin zone. In the latter situation, we have argued that this flux must be an integer and not a half-integer number as that obtained in the present case. However, this is no contradiction: now the flux does not need to be an integer because we have calculated the flux of a Dirac fermion in the continuum limit where the first Brillouin zone has been replaced by a non-compact space. Indeed, the integral in equation (6.58) is performed over the whole space R 2 (in the limit q → ∞). Nevertheless this calculation is valid when the Berry curvature of a Dirac fermion is concentrated in a region of size 1/λ C 1/a, where 1/a is the characteristic separation between different Dirac points in the first Brillouin zone. 19 The Berry curvature for boron nitride (gapped graphene) with a constant gap ∆/t = 0.1, calculated for the model (2.64), is shown in figure 6.6(a). There we see that the Berry curvature is highly concentrated around the points at K and K while it vanishes in the other locations of the first Brillouin zone. This validates our hypothesis that we can add directly the contributions from the two valleys to obtain the full Chern number. For comparison, figure 6.6(b) shows the characteristic shape of the Berry curvature in the vicinity of a single valley, according to equation (6.56).

Let us analyze further the result (6.59). The fact that a Dirac fermion contributes ±1/2 to the total Chern number, which must be an integer if we consider the whole first Brillouin zone, indicates that Dirac fermions necessarily come in pairs in periodic band structures. This phenomenon has been studied for the first time by Nielssen and Ninomiya in 1983, in the framework of quantum-field theory, and is called the fermion doubling theorem. While it came as a surprise in high-energy physics, where physicists tried to analyse the Dirac equation numerically on a lattice, it arises naturally in band-structure calculations, such as in graphene, where we have seen that the Dirac fermions are located at the inequivalent K and K points at the corners of the first Brillouin zone.

From now on, we are going to call the quantity C half Chern number. While it is a rather suspicious quantity from a pure mathematical point of view, it turns out to be quite a practical concept in the discussion of topological phase transitions. The Chern number of a band is then obtained by summing the half Chern numbers in all valleys ξ,

C λ = ξ Cλ,ξ = - λ 2 ξ ξsgn(∆ ξ ). (6.60)
This expression directly indicates that it is necessary to have gap parameters ∆ ξ which themselves change sign from one valley ξ to another one in order to obtain a non-zero Chern number, C λ = 0. Note that this is not the case for boron nitride, where the sign of ∆ is the same in both valleys K and K , a situation represented in figure 6.6. In the following, we speak of an inverted gap when the sign of ∆ is opposite in the two different valleys. We emphasise that this gap inversion is not visible if we consider only the band spectrum which depends only on the modulus square of the gap, |∆|. This link between gap inversion and Chern insulator (or topological insulator) happens to be extremely fruitful in the description of topological phases and topological phase transitions, which we discuss in the next section, as well as in the understanding of the bulk-edge correspondence (see section 7.5 of the following chapter).

Description a topological phase transition in terms of a half Chern number

We have seen, in the previous section, that the half Chern number associated with a massive Dirac fermion provides us with relevant information about the band structure. In particular the sum of the different half Chern numbers of a band λ yields its Chern number. The latter is the topological invariant which distinguishes the different topological phases: one speaks of two different topological phases when their Chern numbers, or more generally their topological invariants, are different. Of course, talking about phases only makes sense if the band which interests us is specified. We therefore place the Fermi level in the gap between the two bands so as to have an insulator, and it is the Chern number of the completely filled band that determines the topological phase. 20 Since the Chern number is necessarily an integer, it cannot be changed continuously in a transition between two different topological phases. Now we have seen in the previous section that the Chern number can be changed by changing the half Chern number of a Dirac fermion, that is to say by reversing the sign of its gap parameter. This requires to be able to act, by some theoretical button (to be specified eventually), on the gap parameter of only one of the Dirac fermions, let us say the one in the ξ valley, while that in the other valley -ξ is not affected (this Dirac fermion is thus a pure spectator of the transition). We have sketched this situation in figure 6.7. The transition takes place when ∆ ξ = 0, which separates a region of parameters with ∆ ξ < 0, with a half Chern number Cλ,ξ = λ/2 in the band λ, from a region with ∆ ξ > 0, or Cλ,ξ = -λ/2. As it should be, the Chern number changes then by one, i.e. ∆C λ,ξ = 1. We insist on the fact that the gap vanishes directly at the transition, and the bands now touch each other in an isolated point in the first Brillouin zone. We recall that ∆ ξ = 0 means the presence of massless Dirac fermions: two types of insulator (with ∆ = 0) are then separated by a semimetal (with ∆ = 0) that then resembles the situation we have encountered in graphene. In the following, we call the insulator with a Chern number C λ=-= 0 a trivial insulator while the one with C λ=-= 0 is called Chern insulator. This is our first example of a topological insulator. Gap closing is the quintessence of a topological phase transition in band structures: a topological phase transition is associated with the emergence of a massless Dirac fermion in the band structure. We will study in the next chapter explicit models illustrating such a situation, in the framework of the Haldane and the Kane-Mele models.

Adiabatic pumping and Karplus-Luttinger anomalous velocity

Before discussing explicit models that show topological phase transitions, we will end this chapter with a curiosity associated with the Berry curvature: the latter alters the (average) velocity of a wave packet in the n-th band, which is written

ṙn = 1 ∇ k E n (k) -k × B n (k), (6.61) 
where r n is here an average position of the wave packet in the n-th band. The first term is nothing else than the usual group velocity (3.26) while the second one is the so-called anomalous Karplus-Luttinger velocity, which we will study in the following. Before going into the calculations, let us notice the symmetry with respect to the other semi-classical equation which determines the electron dynamics and that is simply the more familiar Newton equation,

k = -e E -eṙ n × B, (6.62) 
where E = -∇ r Φ(r) is an electric field emanating from a scalar potential Φ(r) and B the magnetic field. The equation (6.61) then corroborates our interpretation of the Berry curvature in terms of a magnetoelectric field in reciprocal space, in comparison with Newton's equation (6.62).

In order to establish the anomalous contribution to the average velocity of an electron, we proceed similarly to the gauge-invariant formulation of the Berry curvature presented in section 6.3.2. We consider first a 1D Hamiltonian H(q, t) with parameters that can vary in time. At each instant, the states |u n (q, t) form a complete basis satisfying the stationary Schrödinger equation

H(q, t)|u n (q, t) = E n (q, t)|u n (q, t) , (6.63) 
where q is the 1D wave vector which will be identified with k x in the following. We adopt a first-order perturbative treatment for the state

|ψ n (q, t) = e iγ(t) |u n (q, t) -i m =n
|u m (q, t) u m (q, t)| un (q, t) E n (q, t) -E m (q, t) . (6.64)

Contrary to the initial discussion of the Berry phase in section 6.3 [see equation (6.8)], we now take into account possible quantum jumps between the bands during the evolution of the wave packet. 21 The last term in equation (6.64) indeed indicates that the |ψ n state has corrective components in the m = n bands. We now evaluate the average velocity in the state |ψ n (q, t) using the relation (6.28),

v(q, t) = 1 ∂H(q, t) ∂q , (6.65) 
between the velocity operator and the Bloch Hamiltonian H(q, t), v n (q, t) = ψ n (q, t)|v(q, t)|ψ n (q, t)

1 u n (q, t) ∂H(q, t) ∂q u n (q, t) +i m =n u m (q, t) ∂H(q, t) ∂q u n (q, t) un (q, t)|u m (q, t) E n (q, t) -E m (q, t) + c.c., (6.66) 
where we have omitted terms beyond linear order in 1/(E n -E m ). Note that the first term can be written as 1 u n (q, t) ∂H(q, t) ∂q u n (q, t) = 1 ∂E n (q, t) ∂q , (6.67)

which is nothing else than the usual group velocity obtained in equation (6.29). The terms in the second line of equation ( 6.66) then give the anomalous velocity, which we can write down in a simpler way using un (q, t)|u m (q, t) = u n (q, t) ∂H(q,t) ∂t u m (q, t)

E n (q, t) -E m (q, t) , (6.68) which is obtained in the same way as equation (6.27) by replacing the derivative with respect to k ν with ∂/∂t. We thus find for the average velocity v n (q, t) = 1 ∂E n (q, t) ∂q (6.69) +i m =n u n (q, t) ∂H ∂t u m (q, t) u m (q, t) ∂H ∂q u n (q, t) [E n (q, t) -E m (q, t)] 2 + c.c.

In the expression of the velocity (6.69) we recognise in the second term an expression that is very similar to that of the Berry curvature in its gaugeinvariant formulation (6.30). One just has to replace the wave vector q → k x and the time dependence by k y . In order to see this link in more detail, let us get back to the 2D case and consider that the time dependence comes from an electric field applied in the y-direction. We can then use the Peierls substitution with k(t) = q + (e/ )A(t), where the homogeneous vector potential gives rise to the electric field ∂A/∂t = -E = -Eu y . Because both quantities are spatially homogeneous, the presence of the vector potential does not affect the symmetry properties of the system given by the discrete translations, and thus Bloch's theorem remains valid. This is to be contrasted with the situation of a homogeneous magnetic field the vector potential of which depends (linearly) on the position and thus breaks the discrete translation symmetry, as we discussed in the previous chapter where we revisited Landau quantisation. The band structure and the Berry curvature are therefore not affected by this potential, and the components of the wave vector may finally be written k x (t) = q x = q and k y (t) = q y -(e/ )Et. This implies for the derivatives (6.70) so that the velocity (6.69) in the x-direction becomes (6.71) as we saw at the beginning of the section in the framework of the semiclassical equations of motion (6.61).

∂ ∂q = ∂ ∂k x , ∂ ∂t = ky ∂ ∂k y = - e E ∂ ∂k y ,
v x n (k) = 1 ∂E n (k) ∂k x +i ky m =n u n (k) ∂H ∂ky u m (k) u m (k) ∂H ∂kx u n (k) [E n (k) -E m (k)] 2 + c.c. = 1 ∂E n (k) ∂k x -ky B z n (k),

Quantum anomalous Hall effect

Note that the last equation (6.71) can be written in terms of the electric field as (6.72) or, in a vector notation, as

v x n (k) = 1 ∂E n (k) ∂k x + e EB z n (k),
v n (k) = 1 ∇ k E n (k) + e E × B n (k). (6.73)
The last term gives rise to a drift insofar as the anomalous velocity in the x-direction is affected, through the Berry curvature, by the electric field in the y-direction. This is strikingly reminiscent of the Hall effect. Indeed, we are confronted, here, with an anomalous Hall effect. In order to make this connection explicit, let us recall that the current density is obtained by summing over all the occupied states, and the contribution of the n-th band reads

j n = - e S occ. v n (k) = - e occ. d 2 k (2π) 2 ∇ k E n (k) - e 2 E × occ.
d 2 k (2π) 2 B n (k), (6.74) where occ denotes the integral over all occupied states and S is the total area. The second term gives a transverse conductivity in the form (6.75) which is called anomalous Hall conductivity. Written in this form, it is not yet quantized -it is only a fraction of the Chern number -because the integral is taken only over the occupied states of the band. On the other hand, when the n-th band is completely filled, the integral includes all the wave vectors of the first Brillouin zone, and consequently the Hall conductivity of a fully occupied band is quantized, (6.76) in terms of the Chern number C n . Let us finally emphasise that in the case of a completely filled band, the first term of the equation (6.74) does not contribute to the conductivity because of the periodicity of the energy in reciprocal space. This is an unexpected result, to say the least: a completely filled band, with a non-zero Chern number, can conduct a current (in the direction transverse to the applied electric field) even if it is separated by a gap from the other bands. We are thus confronted with some kind of chimera: a conducting insulator which probably represents the most remarkable phenomenon associated with a topological insulator. More precisely, it is called a Chern insulator, because the conductivity is determined by the Chern number. On the other hand, the calculation which provided this strange result does not tell us where the associated current flows. A look at the quantum Hall effect suggests that the current flows again at the sample edges. We will show in detail in the next chapter, where we discuss different types of 2D topological insulators, that this well-educated guess turns out to be the right one.

σ H = e 2 h occ. d 2 k 2π B z n (k),
σ H = e 2 h 1BZ d 2 k 2π B z n (k) = e 2 h C n ,
We thus notice at the end of this chapter that the Berry curvature and the Chern number -two concepts introduced in a relatively abstract way within adiabatic transport -give rise to physically relevant and measurable phenomena. On the one hand, the topological classification of the bands via the Chern number (each number represents a different homotopy class) allows us to describe topological phase transitions: because the Chern number varies discontinuously, the gap between two adjacent bands must close during a topological phase transition. Exactly at the transition a massless Dirac fermion emerges. On the other hand, the Berry curvature plays an important role in the electronic transport as it intervenes in the anomalous (Karplus-Luttinger) velocity. It bends the trajectories of the electrons in a way similar to a real magnetic field, and one obtains an anomalous (quantum) Hall effect. In the same way as for the quantum Hall effect, in the presence of a magnetic field, the appearance of the anomalous Hall effect requires a broken time-reversal symmetry -otherwise there would not be a privileged direction for the drift that is at the origin of the transverse conductivity. The discussion of the role time-reversal symmetry plays in topological materials as well as of concrete models that realise a quantum anomalous Hall effect are the focus of the next chapter, where we discuss 2D topological insulators.

Notions and concepts to retain

• topological invariants, homotopy classes • Berry-ology (Berry connection, curvature, phase and flux), Chern number

• half Chern number, fermion doubling

• topological phase transitions and gap closing

• adiabatic pumping, Karplus-Luttinger anomalous velocity, (quantum) anomalous Hall effect

Chapter 7

Isolants topologiques bidimensionnels

Dans le chapitre précédent, nous avons introduit -de manière assez abstraite -la classification topologiques des matériaux avec des structures de bandes électroniques issues du théorème de Bloch. Le chapitre présent est dédié à l'illustration de ces concepts nouveaux par des modèles bidimensionnels (2D) concrets de liaisons fortes. Le premier est le modèle de Haldane : il s'agit d'un modèle de liaisons fortes sur un réseau en nid d'abeille, comme le graphène, avec des sauts entre deuxièmes plus proches voisins qui accumulent un flux magnétique même si le flux total à travers le système est nul. En effet, déjà en 1988, c'est-à-dire bien avant l'avènement des isolants topologiques et du graphène, le théoricien Haldane (Prix Nobel de Physique en 2010) s'est aperçu que son modèle permet de décrire la situation exposée en fin de chapitre 6 : un effet Hall quantique (anomal) en l'absence de champ magnétique. La répartition du flux magnétique indique néanmoins que la symétrie par renversement est brisée, situation rarement rencontrée dans des systèmes électroniques non magnétiques. 1 C'est seulement en 2005 que les théoriciens Kane et Mele ont eu l'idée de généraliser le modèle de Haldane afin de restaurer cette symétrie en jouant sur les deux orientations de spin. En bref, le modèle de Kane et Mele consiste en deux copies du modèle de Haldane, l'une pour le spin ↑ et l'autre pour le spin ↓ qui forment chacune un isolant topologique de type Haldane. Kane et Mele ont compris que, pour réaliser une telle situation, il faut chercher des matériaux avec un fort couplage spin-orbite qui assure une dépendance de la dynamique des électrons sur réseau en fonction de l'orientation de leur spin. En effet, ils ont d'abord construit leur modèle sur la base du graphène, qui n'a malheureusement qu'un faible couplage spin-orbite. Peu de temps après, Bernevig, Hughes et Zhang (également des théoriciens) ont proposé qu'une telle situation, décrite par une variante du modèle de Kane et Mele, puisse être rencontrée dans des hétérostructures à base de CdTe et HgTe. Comme il s'agit toujours de deux copies du modèle de Haldane, l'isolant topologique de Kane et Mele, ou plutôt celui à base de CdTe/HgTe, devrait se manifester par un nouveau type d'effet Hall quantique anomal : alors que les spins d'une orientation subissent une dérive dans la direction imposée par la courbure de Berry, les spins opposés sont soumis à une courbure de Berry inversée et subissent alors une dérive dans l'autre direction. Ce lien entre la direction de propagation et l'orientation du spin est à la base de l'effet Hall quantique de spin.

Une compréhension approfondie de ces deux effets, l'effet Hall quantique anomal et l'effet Hall quantique de spin, sur la base des modèles de Haldane et de Kane et Mele, est le but de ce chapitre. De plus, nous verrons, via la correspondance volume-bord, que le transport s'effectue à nouveau aux bords des échantillons, comme pour l'effet Hall quantique. Comme nous avons déjà évoqué le rôle central que joue la symétrie par renversement du temps dans cette physique, nous commençons ce chapitre par une brève introduction à cette symétrie et sa manifestation dans des matériaux.

Symétrie par renversement du temps

Depuis longtemps, les physicien•ne•s se posent la question de la flèche du temps : que se passe-t-il lorsque le cours du temps est renversé ? Objectivement, il y a une direction prévilégiée : les gens vieillissent et ne rajeunissent pas, une tasse peut se briser lorsqu'elle tombe par terre, mais les débris ne reforment pas la tasse. Dans le monde macroscopique, il n'y a donc pas de symétrie par renversement du temps, et cela pourrait sembler idiot de se poser cette question. Or beaucoup de lois fondamentales de la physique microscopique sont invariantes par renversement du temps. On n'a même pas besoin de chercher du côté de la physique quantique : les lois de la mécanique classique sont invariantes étant donné qu'elles sont décrites par des dérivées secondes en temps.

Analysons donc comment certaines quantités physiques de base se transforment lorsque le sens du temps est renversé. Naturellement, on a t → -t pour le temps et r → r pour la position, car cette dernière reste inchangée sous cette opération. En mécanique quantique, une telle transformation s'effectue par un opérateur T qui agit dans l'espace de Hilbert, et les règles de transformation sont naturellement 

T ẋl T -1 = T 1 i [x l , H] T -1 .
Or nous avons d'un côté T ẋl T -1 = -ẋl et d'un autre

T 1 i [x l , H] T -1 = T 1 i T -1 T [x l , H]T -1 = T 1 i T -1 [x l , H] = T 1 i T -1 i ẋl .
Si le renversement du temps était un opérateur unitaire, avec T iT -1 = i, cela mènerait au résultat absurde que ṙ = -ṙ. C'est encore l'anti-linéarité (7.8) qui assure le bon signe.

Le carré d'un opérateur anti-unitaire, comme le renversement du temps, a la propriété remarquable de posséder des valeurs propres ±1, Pour avoir des forces invariantes par renversement du temps, les champs et les potentiels doivent alors se transformer comme

T 2 |ψ ± = ±|ψ ± , ( 7 
T ET -1 = E, T V (r)T -1 = V (r) et T BT -1 = -B, T A(r)T -1 = -A(r). (7.22)
En effet, cela assure que les lois de Maxwell sont invariantes par renversement du temps aussi.

Théorème de Kramers

Nous sommes désormais armés pour comprendre le théorème de Kramers qui indique que les électrons (et généralement les fermions de spin demi-entier) arrivent toujours par paires dans des systèmes invariants par renversement du temps. Avant de discuter ce théorème dans le contexte de la théorie des bandes électroniques, considérons tout d'abord un hamiltonien H quelconque qui soit invariant par renversement du temps, Comment cette propriété se traduit-elle maintenant dans le cas du hamiltonien de Bloch H s (k) pour les électrons de spin ↑ (s = +) ou ↓ (s = -) ? La condition (7.23) doit en effet être récrite comme Il y a néanmoins des points particuliers dans la première zone de Brillouin, où les bandes sont forcément doublement dégénérées si la symétrie par renversement est respectée et si le spectre satisfait donc à la propriété (7.28). Le premier point particulier est facilement identifié : comme à ces points particuliers k = -k, il s'agit du point Γ (k = 0) au centre de la première zone de Brillouin, avec E n,s (0) = E n,-s (0), i.e. les deux branches de spin de la bande n se croisent forcément à ce point. Mais ce n'est pas le seul point possible ! Rappelons que le spectre est périodique dans l'espace réciproque, et il faut donc identifier les vecteurs d'onde séparés par un vecteur G du réseau réciproque,

T HT -1 = H, (7.23 
T H s (k)T -1 = H * -s (-k) = H s (k) (7.
k ∼ k + G, E n,s (k) = E n,s (k + G). (7.29)
Les bandes se croisent donc forcément en des points qui satisfont 

k TRIM = -k TRIM + G ⇔ k TRIM = G 2 . ( 7 
T H s (k)T -1 = H * -s (-k) = H s (k) = H -s (k) (7.32) et E ↑ (k) = E ↓ (k) = E ↑ (-k) = E ↓ (-k) (7.
B z n (-k) = i ∂ kx u n (k)|∂ ky u n (k) * -k x ↔ k y (7.36) = i ∂ ky u n (k)|∂ kx u n (k) -k x ↔ k y = -B z n (k),
où nous avons utilié la propriété φ|ψ * = ψ|φ du produit scalaire. En présence de la symétrie par renversement du temps et en l'absence d'un couplage spin-orbite, la courbure de Berry pour une seule bande est alors une fonction anti-symétrique. Cela indique que le nombre de Chern associé à cette bande, qui est l'intégrale de la courbure de Berry sur toute la première zone de Brillouin, est forcément nul. Par conséquent [voir l'équation (6.76)], la conductivité de Hall est nulle et on ne peut avoir d'effet Hall quantique anomal.

Regardons maintenant la symétrie de la courbure de Berry pour un système où la dégénérescence de spin des bandes est levée (sauf aux TRIM) par un couplage spin-orbite, tout en respectant la symétrie par renversion du temps. Dans ce cas, l'équation (7.27) implique (7.37) et nous pouvons utiliser la propriété T φ|T ψ = ψ|φ (7.38) pour un opérateur anti-unitaire. 7 Comme la dérivée par rapport au vecteur d'onde k x/y commute avec l'opérateur T , il s'en suit que

B z n,-s (-k) = i ∂ kx T u n,s (k)|∂ ky T u n,s (k) -k x ↔ k y ,
B z n,-s (-k) = i T ∂ kx u n,s (k)|T ∂ ky u n,s (k) -k x ↔ k y (7.39) = i ∂ ky u n,s (k)|∂ kx u n,s (k) -k x ↔ k y = -B z n,s (k).
La symétrie par renversement du temps n'impose donc pas l'anti-symétrie de la courbure de Berry associée à une seule branche de spin de la bande n, mais elle relie les deux branches de spin opposés. Cela implique que l'intégrale de la courbure de Berry de chaque branche de spin sur toute la première zone de Brillouin peut différer de zéro. Par conséquent, nous pouvons associer un nombre de Chern à chacune des branches de spin, 

C n,s = 1BZ d 2 k 2π B z n,s ( 
T φ|T ψ = j (T φ) * j (T ψ) j , avec (T ψ) j = (U Kψ) j = k U j,k ψ * k et (T φ) * j = (U Kφ) * j = l U * j,l φ l ,
où nous rappelons que l'opérateur T consiste en un opérateur unitaire U et une conjugaison complexe K. Le produit scalaire s'écrit alors

T φ|T ψ = j,k,l ψ * k U * j,l U j,k φ l = j,k,l ψ * k U † l,j U j,k φ l = k,l ψ * k δ k,l φ l = ψ|φ , où nous avons utilisé l'unitarité U † = U -1 et j (U -1 ) l,j U j,k = δ k,l .
qui s'annule alors forcément. En conclusion, la symétrie par renversement du temps prohibe un effet Hall quantique anomal car, si la branche de spin ↑ est entièrement remplie avec un niveau de Fermi au-dessus, la branche de spin ↓ l'est nécessairement aussi. En revanche, il est possible d'avoir un courant de spin transverse. En reprenant les arguments de la section 6.5.1 du chapitre précédent, il pourrait y avoir une densité de courant de spin (transverse),

j H spin = 2S occ. [v n,↑ (k) -v n,↓ (k)] = 1 4π E × occ. d 2 k 2π B n,↑ (k) -B n,↓ (k) ,
(7.43) où nous avons juste considéré, dans l'équation (6.74), la partie transverse qui dépend de la courbure de Berry. Pour un système qui respecte la symétrie par renversement du temps et donc la propriété (7.39) de la courbure de Berry, la conductivité de spin transverse (de Hall) s'écrit donc Avant de présenter ce modèle étape par étape, donnons une brève motivation pour ce dernier. En effet, nous cherchons un système modèle qui permette de décrire de manière simple une transition de phase topologique à l'aide d'un paramètre de contrôle. Nous avons déjà vu, dans la section 6.4.1, comment une telle transition peut se décrire dans le cadre des fermions de Dirac massifs -la figure 7.2 reproduit le schéma 3.9 d'une transition de phase topologique. Rappelons qu'il faut alors agir sur l'un des deux fermions de Dirac (dans la vallée ξ) indépendamment de celui dans l'autre vallée (-ξ). Ceci est seulement possible si la symétrie par renversement du temps est brisée : sinon les bandes respecteraient la symétrie E n (k) = E n (-k), comme nous l'avons vu plus haut, ce qui prohibe d'agir sur un seul des fermions de Dirac. C'est justement le saut complexe entre deuxièmes plus proches voisins qui nous permet d'échapper à cette symétrie, et nous verrons que la phase φ servira comme un tel paramètre de contrôle de la transition de phase topologique.

σ H spin = 1 2π occ. d 2 k 2π B n,↑ (k) 

Modèle de liaisons fortes

Le modèle de Haldane est un modèle de liaisons fortes sur un réseau en nid d'abeille. Les sauts entre plus proches voisins sont décrits par le hamiltonien h BB (k) = -∆ + 2t

H(k) = h AA (k) h AB (k) h BA (k) h BB (k) (7.46) avec les éléments hors diagonaux h BA (k) = h AB (k) * = -t 1 + e ik•a 1 + e ik•
3 j=1 cos(k • b j + φ) (7.50) = -∆ + 2t 3 j=1 [cos(k • b j ) cos(φ) -sin(k • b j ) sin(φ)]
où nous avons pris en compte, en plus des sauts entre deuxièmes plus proches voisins, l'énergie -∆ sur les sites B du réseau.

Quid des sauts entre sites du sous-réseau A ? En se plaçant sur un site de ce sous-réseau, nous remarquons que le saut dans la direction a 1 est dans la direction de la flèche alors qu'il y est opposé dans les directions a 2 et a 3 . C'est donc précisément le contraire des sauts sur le sous-réseau B, et il s'en suit

h AA (k) = ∆ + 2t 3 j=1 cos(k • b j -φ) (7.51) = ∆ + 2t 3 j=1 [cos(k • b j ) cos(φ) + sin(k • b j ) sin(φ)]
pour l'élément de matrice correspondant, en tenant compte de l'énergie ∆ sur les sites du sous-réseau A. Décomposé sur les matrices de Pauli, le hamiltonien du modèle de Haldane s'écrit alors (7.52) où σ = (σ x , σ y , σ z ), σ 0 est la matrice unité ici, et nous avons défini les fonctions

H(k) = h 0 (k)σ 0 + h(k) • σ,
h 0 (k) = 2t 3 j=1 cos(k • b j ) cos(φ), h x (k) = -t [1 + cos(k • a 2 ) + cos(k • a 3 )] , h y (k) = -t [sin(k • a 2 ) + sin(k • a 3 )] , et h z (k) = ∆ + 2t 3 j=1 sin(k • b j ) sin(φ). (7.53)
Cette décomposition a deux avantages. Premièrement, elle nous permet d'obtenir directement le spectre

E λ (k) = h 0 (k) + λ| h(k)|, (7.54) 
où λ = ± désigne les deux bandes. Deuxièmement, elle montre facilement que le modèle de Haldane brise la symétrie par renversement du temps. En effet, si nous avions cette symétrie, l'équation (7.32), H * (-k) = H(k), nous imposerait que les fonctions h 0 (k), h x (k) et h z (k) soient des fonctions paires en k alors que h y (k) devrait être impaire en raison du caractère imaginaire de la matrice de Pauli σ y . On remarque que h z (k) pose problème ici car le sinus est une fonction impaire, et h z (k) est paire seulement si sin(φ) = 0, i.e. pour φ = 0 et φ = π de sorte que les sauts entre deuxièmes plus proches voisins sont réels. L'évolution du spectre d'énergie, en variant le paramètre de saut t , est montrée sur la figure 7.4 pour une phase φ = π/3 et un paramètre de gap ∆ = t/2. Même si cette valeur de la phase brise génériquement la symétrie par renversement du temps, le spectre reste naturellement symétrique pour t = 0 [schéma (a)], où nous retrouvons le spectre du nitrure de bore discuté dans la section 2.3 (voir la figure 2.7). En revanche, pour une valeur non nulle (mais petite), le spectre n'est clairement plus symétrique, E(-k) = E(k), comme il est montré sur la figure 7.4(b) pour t /t = 0.18. En effet, le gap est diminué dans la vallée K alors qu'il reste grand dans la vallée K , qui s'avère être la vallée spectatrice, i.e. où le gap ne se ferme pas lors de la transition. Nous retrouvons ici la situation décrite schématiquement sur la figure 7.2(a). À t /t = 1/9 [schéma (c) de la figure 7.4], nous observons la transition de phase topologique avec la fermeture du gap dans la vallée K, comme on l'a esquissé sur la figure 7.2(b), et il se rouvre tout en s'inversant pour t /t > 1/9 [schéma (d)].

Pour voir qu'il s'agit vraiment d'une transition de phase topologique avec une inversion du gap dans la vallée K, il nous reste à déterminer le signe du gap qui change lors de la transition. Ceci est l'objet de la section suivante où nous discutons la limite continue du modèle de Haldane en termes de fermions de Dirac, que nous avons introduits dans la section 6.4 du chapitre précédent.

Origine physique de la phase dans les paramètres de saut Avant de continuer cette analyse, discutons une origine physique possible du saut complexe entre deuxièmes plus proches voisins, qui est jusqu'à présent seulement une curiosité mathématique. Nous avons déjà rencontré une situation où un électron acquiert une phase lors d'un déplacement dans l'espace : c'est le cas pour l'effet Aharonov-Bohm en présence d'un flux magnétique, comme cela est discuté dans la section 1.3 du poly de Gilles Montambaux. Cette phase acquise entre les positions k et l est simplement l'intégral du potentiel vecteur φ k,l = (e/ ) l k dr • A au cas où il y a un potentiel vecteur, et sur un chemin fermé cette phase représente alors le flux total Φ/(h/e) à l'intérieur du chemin. Quand Haldane a proposé son modèle, il a considéré une situation peu habituelle où le flux magnétique total à travers chaque hexagone du réseau est nul comme il n'y a pas de champ magnétique externe, mais où il y a néanmoins un flux inhomogène. Physiquement, Haldane a suggéré que cette situation pourrait se produire s'il y a un petit moment magnétique (par exemple attaché à un atome étranger) situé au milieu de chaque hexagone. 10Afin de se convaincre que le flux net à travers chaque hexagone est en effet nul, séparons la flèche qui relie les deuxièmes plus proches voisins en trois parties égales, chacune contribuant une phase φ = φ/3,11 et calculons le flux à travers les différentes surfaces de l'hexagone. Sur la figure 7.5, on remarque que l'hexagone central, entouré par les lignes reliant les deuxièmes plus proches voisins, est traversé par un flux 6φ = 2φ car tous ses six bords (bleus) sont orientés dans le sens des aiguilles d'une montre, et chaque bord contribue φ = φ/3 au flux total. Regardons maintenant la contribution venant des six 

Description dans la limite continue

Il reste à prouver que le système décrit par le modèle de Haldane change en effet de nature topologique lorsque le gap se ferme dans une des vallées. Pour cela nous développons de nouveau le hamiltonien au voisinage de chacune des vallées K et K à l'ordre le plus bas. Les termes hors diagonaux ont déjà été discutés dans la section 2.3 du chapitre 2 et donnent dans la limite continue h AB (ξK + q) = h * BA (ξK + q) = v(ξq x -iq y ), (7.55) avec v = 3ta/2 . Dans la discussion des termes diagonaux, nous pouvons nous limiter au terme h z (k), car le terme h 0 (k) se couple à la matrice unité et ne porte aucune information topologique -il déplace seulement le spectre dans sa globalité (en fonction de k). Le terme d'ordre zéro dans le développement s'écrit alors (7.56) avec le paramètre de gap effectif (7.57) où nous avons utilisé

h z (ξK) = ∆ + 2t 3 j=1 sin(ξK • b j ) sin(φ) = m ξ v 2 ,
m ξ v 2 = ∆ -ξ3 √ 3t sin(φ),
K • a 1 = -K • a 2 = 2π 3 et K • a 3 = 4π 3 (7.58)
[voir les équations (2.67) de la section 2.3], K = -K et sin(ξ2π/3) = -sin(ξ4π/3) = ξ √ 3/2. Finalement, nous retrouvons de nouveau des fermions de Dirac massifs aux points K (ξ = +) et K (ξ = -) décrits par le hamiltonien avec une région d'incertitude (entre les lignes en pointillé) due à l'incertitude de la détermination exacte du maximum de distribution.

H H ξ (q) = m ξ v 2 v(ξq x -iq y ) v(ξq x + iq y ) -m ξ v 2 , ( 7 

Modèle de Kane et Mele -restauration de la symétrie par renversement du temps

Dans la section précédente, nous avons vu comment une transition topologique entre un isolant trivial et un isolant topologique peut être réalisée dans le cadre du modèle de Haldane, qui requiert que la symétrie par renversement du temps soit brisée. En l'absence d'un champ magnétique, cette brisure de symétrie nécessite des moments magnétiques ou la formation d'un (anti-)ferromagnétisme. Autant que cette situation peut en effet être rencontrée dans les systèmes artificiels tels que des atomes froids dans des réseaux optiques, la présence de magnétisme rend les systèmes électroniques extrêmement complexes, tant sur un plan expérimental où il faut savoir maîtriser les paramètres qui rentrent en jeu que sur un plan théorique où le magnétisme rend la modélisation conceptuellement plus compliquée. Comme nous l'avons évoqué plus haut, il existe une classe de matériaux isolants topologiques qui ne nécessitent pas une brisure de la symétrie par renversement du temps si l'on fait appel au couplage spin-orbite qui est naturellement présent dans un grand nombre de matériaux. Dans cette section, nous discutons une situation qui a été imaginée par Kane et Mele en 2005 qui étudiaient le graphène avec un tel couplage spinorbite. Dans leur modèle, ils considéraient le modèle de Haldane pour des spins ↑ ainsi que le complexe conjugué de ce modèle pour les spins ↓. Pour les électrons de spin ↓, cela consiste notamment à renverser le sens des flèches indiquant la phase accumulée par les électrons de spin ↑ lors des sauts entre deuxièmes plus proches voisins (voir la figure 7.5). Le modèle est donc décrit par un hamiltonien 4 × 4 7.9. Par construction, la symétrie par renversement du temps est respectée et se manifeste par la symétrie (7.28) des bandes, E s (k) = E -s (-k), et chaque paire de bandes par orientation de spin représente le spectre du Un modèle plus réaliste a été proposé par Bernevig, Hughes et Zhang (modèle BHZ) en 2006. Ils étaient motivés par des puits quantiques à base de tellure de mercure (HgTe) et tellure de cadmium (CdTe). En effet, CdTe est un matériau isolant tout à fait ordinaire -sa structure de bande est représentée à droite de la figure 7.10(A) au voisinage du point Γ, centre de la première zone de Brillouin. Il y a une bande de conduction (appelée Γ 6 ) qui est doublement dégénérée alors que la bande de valence (Γ 8 ) est constituée de deux branches qui sont également doublement dégénérées et qui se croisent au TRIM Γ. Il est à noter que ces deux bandes ne sont pas décrites par le vrai spin mais par un pseudospin (↑ et ↓), ce qui est aussi une conséquence du couplage spin-orbite. En effet, la bande Γ 6 est issue d'orbitales atomiques de caractère s qui n'ont donc pas de moment angulaire (L = 0). La double dégénérescence est ainsi simplement due à la composante du spin, m J = ±1/2. En revanche, les orbitales atomiques à l'origine des bandes Γ 8 sont de caractère p (L = 1), et le moment angulaire total est J = L + S = 3/2. Par conséquent, les bandes Γ 8 sont constituées de deux branches doublement dégénérées, l'une pour m J = ±1/2 et l'autre pour m J = ±3/2.

H 4×4 (k) = H ↑ (k) 0 0 H ↓ (k) , ( 7 
La structure de bandes du HgTe [à gauche de la figure 7.10(A)] est bien plus riche. Remarquons d'abord que les bandes Γ 8 et Γ 6 sont inversées, ce qui, comme nous l'avons vu plus haut, est un ingrédient pour avoir un isolant topologique. En revanche, les deux branches de la bande Γ 8 n'ont pas le même signe dans la courbure, et HgTe est ainsi un métal tridimensionnel.

Afin d'obtenir un isolant (2D), on peut fabriquer une hétérostructure où une couche de HgTe est entourée de deux couches (épaisses) de CdTe isolant [voir la figure 7.10(B)]. Le confinement dans la direction z de l'empilement des couches a pour conséquence la formation d'un gaz électronique 2D (dans les directions x et y). En raison du confinement, les bandes de HgTe sont quantifiées dans la direction z comme pour un puits quantique. Nous nous intéressons aux premiers états de confinement13 appellés E1 pour la bande Γ 6 et H1 pour la bande Γ 8 . Si l'épaisseur d de cette couche est faible (par rapport à une valeur critique d c ), le niveau de l'état H1 associé à la branche de masse plus lourde (m J = ±3/2 de la bande Γ 8 reste en-desssous de celui de l'état E1 de la bande Γ 6 . C'est alors comme si l'inversion de bande du HgTe n'est pas effective en raison d'un confinement trop fort. Ce n'est seulement dans des puits large (d > d c ) que les états E1 et H1 sont inversés comme leurs bandes associées, et on retrouve à ce moment-là un isolant topologique 2D.

Essayons maintenant de comprendre la structure de bandes dans le puits quantique sur la base d'une approche constructive autour du point Γ. Les états E1, qui arrivent par paires avec m J = ±1/2, ont en soi une dispersion, en l'absence de couplage aux autres états, E E1 (q) = E E1 (d) + 2 q 2

x + q 2 y 2m E (7.72) alors que les états H1 (et H1 ), de moment angulaire J = 3/2, arrivent comme un quartet. Comme l'état confiné de plus basse énergie de ce quartet (H1) est celui avec la masse la plus élevée (m J = ±3/2), on peut omettre les états H1 associés à m J = ±1/2 (de masse plus faible) de la construction du modèle de basse énergie car ils sont plus éloignés en énergie du niveau de Fermi (vers les énergies négatives). La bande des états H1 disperse alors comme

E H1 (q) = E H1 (d) -2 q 2 x + q 2 y 2m H , (7.73) 
le signe négatif devant la partie dispersive indiquant qu'il s'agit d'une bande de type trou. Rappelons que la largeur du puits, i.e. de la couche en HgTe, détermine la position en énergie des bandes 2D. En effet, pour un confinement en puits carré (infini), nous avons à q = 0

E E1 (d) = E E1 (d = ∞) + π 2 2 m E d 2 et E H1 (d) = E H1 (d = ∞) - π 2 2 m H d 2 , ( 7 
.74) c'est-à-dire que, même si l'ordre des bandes est inversé dans le matériaux volumique HgTe, avec E E1 (d = ∞) < E H1 (d = ∞), ce n'est pas forcément le cas dans une constriction, où le confinement rétablit l'ordre "naturel". Pour la base des états {|H1, m J = 3/2 , |E1, m J = 1/2 , |H1, m J = -3/2 , |E1, m J = -1/2 }, nous pouvons construire un hamiltonien 4 × 4 qui est simplement diagonal. Cela pourrait sembler un peu tiré par les cheveux, mais cela s'avère utile quand nous prenons en compte le couplage entre les différents états qui devient effectif en s'éloignant du point Γ, i.e. pour q = 0. Rappelons que les états E1 ont un caractère s alors que les états H1 ont un caractère p -afin de les coupler il faut alors fournir un moment angulaire ∆L z = 1 dans l'élément de couplage. Ainsi seulement les états |E1, m J = 1/2 et |H1, m J = 3/2 sont couplés d'un côté et |E1, m J = -1/2 et H1, m J = -3/2 de l'autre, via un terme v(q x ± iq y ). 14Notre hamiltonien consiste ainsi en deux blocs découplés, q), en raison de la symétrie par renversement du temps. Attention ! le nombre quantique s =↑, ↓ ne représente pas ici le vrai spin ! Il s'agit plutôt d'un pseudospin qui désigne les deux blocs, s =↑ pour les valeurs positives de m J (m J = 1/2 et 3/2) et s =↓ pour les valeurs négatives (m J = -1/2 et -3/2), même si les deux blocs restent reliés par la symétrie par renversement du temps comme pour un vrai spin. De plus, nous avons indiqué de manière explicite que l'épaisseur d de la couche de HgTe détermine les énergies E E1 (d) et E H1 (d) à q = 0. Notons enfin que le hamiltonien (7.76) peut se mettre sous sa forme canonique,

H BHZ (q) = H ↑ (q) 0 0 H ↓ (q) (7.75) avec H ↑ (q) = E H1 (d) -2 q 2 x +q 2 y 2m H v(q x -iq y ) v(q x + iq y ) E E1 (d) + 2 q 2 x +q 2 y 2m E (7.76) et H ↓ (q) = H * ↑ (-
H s (q) = h 0 (q)σ 0 + ∆(d) -q 2 2m v(sq x -iq y ) v(sq x + iq y ) -∆(d) + q 2 2m , (7.77) où h 0 (q) = E 0 (d) - 2 q 2 2M (7.78)
est un décalage des bandes en énergie qui ne joue aucun rôle dans la description topologique en raison de la matrice unité σ 0 , où nous avons redéfini les paramètres

1/M = (1/m H + 1/m E )/2, 1/m = (1/m H -1/m E )/2, E 0 (d) = [E H1 (d) + E E1 (d)]/2 et ∆(d) = [E H1 (d) -E E1 (d)]/2.
Afin de se convaincre qu'il s'agit à nouveau à faire d'un isolant topologique, calculons la phase de Berry -comme c'est un modèle continu, nous allons identifier le flux de Berry à travers toute la surface R 2 avec le nombre de Chern. Par rapport à nos calculs de la section 6.4 de la phase de Berry associée à un fermion de Dirac massif, le paramètre de gap du modèle BHZ est lui-même une fonction du vecteur d'onde. Pour cette raison, il est finalement plus simple de calculer la phase de Berry à l'aide de la connexion de Berry Γ λ,s (q) = |q |=q dq • A λ,s , (7.79) sur un chemin circulaire de rayon q. Ici, la connexion de Berry pour la bande λ et l'orientation du spin s se calcule de la même manière que dans la section 6.4, ce qui donne la formule (6.52),

A λ,s (q) = - sλ 2 [1 -cos θ(q)]∇ q φ, (7.80) si nous remplaçons cos θ(q) = ∆(d) -2 q 2 /2m [∆(d) -2 q 2 /2m] 2 + 2 v 2 q 2 (7.81)
Comme |q |=q dq • ∇ q φ = 2π, nous trouvons alors pour la phase de Berry sur un chemin circulaire de rayon q Γ λ,s (q) = -2πλs 1 -cos θ(q) 2 (7.82) et pour la contribution au nombre de Chern

C λ,s = Γ λ,s (q → ∞) 2π = -λs 1 -cos θ(q → ∞) 2 . (7.83)
Nous remarquons ici une différence importante par rapport au nombre de Chern d'un fermion de Dirac massif : le calcul exposé à la section 6.4 donne un nombre ±1/2, en raison de la limite cos θ(q → ∞) = 0. Ici, la limite est cos θ(q → ∞) = -1 en raison du terme quadratique en q sur la diagonale du hamiltonien (7.77) qui domine le comportement dans la limite q → ∞. Afin de décrire cette correspondance volume-bord, nous avons choisi une approche particulière qui est motivée par les transitions de phases topologiques discutées dans la section 6.4.1 et le schéma 3.9, repris sur la figure 7.2. Rappelons que la transition de phases topologique est contrôlée par le gap dans l'une des deux vallées où se trouvent les fermions de Dirac massifs : lorsque le paramètre de gap ∆ ξ=+ change de signe, le nombre de Chern change de ±1, et le système évolue par exemple d'un isolant trivial (avec un nombre de Chern nul) vers un isolant de Chern avec un nombre de Chern non nul (±1). Dans cet exemple, le paramètre de gap change de signe dans l'espace des paramètres. Et s'il changait de signe dans l'espace des positions à travers une interface ? Considérons donc une interface (à x = 0) entre un isolant topologique avec un gap inversé, ∆ ξ (x < 0) < 0, et un isolant trivial, pour ∆ ξ (x > 0) > 0. Le gap doit forcément se fermer à x = 0 où nous retrouvons donc un état (semi-)métallique, i.e. conducteur, décrit par un fermion de Dirac sans masse. Aussi simple que cette image semble être, elle est juste et sera notre fil conducteur dans l'étude de la correspondance volume-bord et des états de bord chiraux.

Fermion de Dirac massif avec un changement de masse à une interface

Pour garder la discussion la plus simple possible, nous illustrons ces idées à nouveau par le modèle de Haldane dans la limite continue, en omettant le spin pour le moment. De plus nous ne prenons en compte qu'un seul bord de l'échantillon à x = 0, tout en gardons en tête qu'il y a un deuxième à x = -L pour un échantillon de largeur L. Nous reviendrons sur ce deuxième bord plus tard. La situation d'une telle interface est représenté sur la figure 7.11, où nous supposons une variation du gap sur une interface de largeur qui soit suffisamment grande par rapport à une longueur caractéristique intrinsèque liée aux fermions de Dirac massifs. Cette longueur caractéristique n'est autre 

H ξ bord = ∆ ξ (x/ ) v(ξq x -iq y ) v(ξq x + iq y ) -∆ ξ (x/ ) . (7.86)
Avant de calculer le spectre de ce hamiltonien, nous pouvons déjà inspecter sa forme générale. En raison de la variation dans la direction x et de la non commutativité [x, q x ] = i, la composante q x du vecteur d'onde cesse d'être un bon nombre quantique alors que le système garde son invariance par translation dans la direction y. Par conséquent, nous nous attendons à une famille de bandes unidimensionnelles indexées par un nombre quantique n dû à la quantification du mouvement des électrons dans la direction x, E ξ,n (q y ). Afin de diagonaliser le hamiltonien (7.86), nous échangeons d'abord les matrices de Pauli σ y et σ z , ce qui se résume à une transformation unitaire U = exp(iπσ x /4) sous la forme d'une rotation par π/2 autour de l'axe x, 

H ξ bord = U H ξ bord U -1 = vq y vξq x + i∆ ξ (x/ ) vξq x -i∆ ξ (x
H ξ=+ bord = v q y √ 2 â † S √ 2 â S -q y (7.91)
si c'est dans la vallée ξ = + que le gap change de signe à travers l'interface et Nous reviendrons sur cette condition un peu plus loin après avoir discuté le spectre que nous avons déjà calculé dans la section 5.2.3, et qui s'écrit E ξ λ,n (q y ) = λ v q 2 y + 2n/ 2 S (7.94)

H ξ=- bord = v q y - √ 2 â S √ 2 â † S -q y (7.92)
16 Le hamilonien possède ce qui s'appelle une super-symétrie, et la solution fait appel à des fonctions hypergéométriques.

17 Afin de simplifier les notations, nous omettons désormais le prime qui indique la rotation dans l'espace des matrices de Pauli, car cela n'affecte pas le spectre.

pour les états n = 0 et E ξ n=0 (q y ) = ξ vq y (7.95) pour l'état n = 0 qui s'avère être l'état de bord le plus important. Le spectre de ces états de bord est montré sur la figure 7.12. En effet, il est chiral dans la mesure où sa vitesse de groupe dans la direction y perpendiculaire à l'interface est uniquement déterminée par la vallée dans laquelle le gap change de signe, Notons enfin les états massifs supplémentaires qui correspondent au niveaux de Landau n = 0 dans notre analogie avec les fermions de Dirac massifs en présence d'un champ magnétique. Leur présence est également due au changement du signe du gap à travers l'interface,20 mais leur forme et leur existence dépendent de la modélisation de l'interface. On remarque en effet que leur échelle d'énergie caractéristique v/ S ∝ 1/ √ dépend de la largeur effective de l'interface : si cette largeur est diminuée, les états massifs sont poussés vers des énergies plus élevées et disparaissent dans les bandes de volume, comme il est montré sur la figure 7.12. Nous pouvons donc utiliser comme condition de visibilité du dernier état massif n que son énergie minimale à q y = 0 soit inférieure à celle de la bande de conduction (du volume) Dans cette section, nous nous sommes concentrés sur la situation d'un isolant topologique avec un nombre de Chern ±1 qui donne lieu à un état de bord chiral. Comme nous l'avons vu dans le chapitre précédent, ce n'est pas exclusif : il existe des structures de bandes où certaines bandes peuvent avoir un nombre de Chern plus élevé. Nous ne discutons pas ce cas en détail ici, mais nous donnons seulement quelques arguments qualitatifs comment l'image change dans ce cas. Il y a deux façons d'avoir un nombre de Chern C = ±N . Premièrement, nous pouvons considérer une situation où les termes hors diagonaux du hamiltonien de volume et du bord (7.86) contiennent un terme (q x ± iq y ) N qui cause un N -tuple enroulement de la sphère de Bloch lorsque le système explore le plan R 2 . Dans ce cas, on trouve des puissances (â ( †) ) N des opérateurs d'échelle dans notre image d'une variation douce du paramètre de gap. Cela a pour conséquence que tous les N états ou bandes unidimensionnelles E ξ n (q y ) avec n = 0, ..., n -1 sont des états chiraux. Deuxièmement, nous pouvons considérer un système avec N paires de fermions de Dirac massifs, où dans chacune des paires la masse d'un fermion change de signe afin de donner un état chiral par paire. Ces deux images sont en effet équivalent si le N -tuple zéro dans la partie hors diagonale du hamiltonien est scindé en N zéros avec la même chiralité. Comme pour l'effet Hall quantique entier, où le nombre de niveaux de Landau joue le rôle du nombre de Chern, un nombre de Chern C = ±N donne alors N états de bord chiraux.

v y = 1 ∂E ξ n=0 ∂q y = ξv. ( 7 
(v/ S ) √ 2n < ∆. ( 7 
En conclusion, nous avons vu surgir, avec la correspondance volume-bord, une autre ressemblance entre les isolants topologiques et l'effet Hall quantique : la présence d'états de bord chiraux et topologiquement protégés. Dans le cas de l'effet Hall quantique, il y a autant d'états de bord chiraux que de niveaux de Landau en-dessous du niveau de Fermi, alors que nous trouvons ici, pour un matériau topologique qui change de nombre de Chern par une unité à travers une interface, un état chiral. Comme pour l'effet Hall quantique, nous verrons dans les sections suivantes que les états de bord servent de canaux de conduction pour le transport électronique dans ces systèmes, à la fois dans le cas de l'effet Hall quantique anomal ainsi que dans celui de l'effet Hall quantique de spin. signe dans la dispersion des états chiraux qui devient E ξ n=0,L (q y ) = -ξ vq y , (7.99) où l'indice L indique qu'on est situé sur le bord à x = -L.

Nous remarquons alors que le sens de propagation (la vitesse de groupe) s'inverse sur le bord opposé [voir la figure 7.13(a)], en accord avec nos attentes basées sur l'analogie avec l'effet Hall quantique, où le sens de propagation est renversé lors d'une inversion du champ magnétique (voir la discussion de la section 5.3). Comme la dispersion des états massifs ne dépend pas du signe du paramètre de gap, qui intervient au carré dans l'équation (7.94), leur spectre est identique aux deux bords de sorte que chaque état massif est maintenant doublement dégénéré. Notons enfin que la dispersion des états chiraux est souvent schématiquement rajoutée dans la structure de bande du système 2D, comme il est indiqué sur la figure 7.13(c) pour le modèle de Haldane.

Mise en évidence de l'effet Hall quantique anomal et des états de bord chiraux

Nous sommes maintenant confrontés à la même situation que pour l'effet Hall quantique entier à un facteur de remplissage ν = 1 : le volume de l'échantillon est isolant tandis que les bords sont conducteurs avec un état chiral par bord qui croise le niveau de Fermi qui se trouve dans le gap entre la bande de valence et la bande de conduction. Comme pour l'effet Hall quantique entier, il est alors légitime de considérer que l'effet Hall quantique anomal est dû à un transport électronique par les bords qui servent de canaux de conduction dans une image de Landauer et Büttiker, discutée au chapitre 2 du poly de Gilles Montambaux. Ceci a été mis en évidence de manière spectaculaire, en 2015, dans des expériences de transport mésoscopique dans un composé ferromagnétique 2D par le groupe de Goldhaber-Gordon à l'Université de Stanford. Il s'agit du matériaux (Cr 0.12 Bi 0.26 Sb 0.62 )Te 3 d'une épaisseur de 10 nm sur un substrat de GaAs. En raison de l'ordre ferromagnétique des spins dans ce film, la symétrie par renversement du temps est brisée même en l'absence du champ magnétique. Dans les expériences, un champ magnétique est néanmoins appliqué afin d'orienter cette aimantation. L'échantillon avec une géométrie à six terminaux est montré sur la figure 7.14(a). Les mesures de la résistance longitudinale et de Hall sont représentées sur la figure 7.14(b) en fonction du champ magnétique. Si l'aimantation du matériau est orienté dans la direction +z, un effet Hall quantique anomal décrit par un nombre de Chern C = +1 est observé de sorte que la résistance de Hall est +h/e 2 ,23 comme nous l'avons vu plus haut. Cette résistance est mesurée aussi lorsque le champ magnétique tend vers +0 -elle saute abruptement à la valeur -h/e 2 pour une valeur du champ magnétique d'environ -150 mT, c'est-à-dire l'aimantation résiste au champ magnétique opposé sur une certaine gamme (indiqué par sweep left sur la figure), ce qui est la manifestation de l'hystérésis dans des matériaux ferromagnétiques. On retrouve une situation identique lorsqu'on commence avec un champ magnétique qui oriente l'aimantation dans la direction -z, ce qui a pour effet un nombre de Chern C = -1 et donc une résistance de -h/e 2 , aussi quand le champ tend vers -0.

La pertinence des états de bord pour le transport électrique est mise en évidence dans les mesures présentées sur la figure 7.14(c) que nous pouvons analyser à l'aide du formalisme de Landauer et Büttiker. Les contacts 1 et 6 servent de source et de drain par lesquels passe le courant I.24 Comme pour l'effet Hall quantique entier, la matrice de conductance, qui relie les tensions (potentiel électriques) aux contacts k au courant du contact j par I j = G jk V k [voir l'équation (2.69) du poly de Gilles Montambaux], est relativement simple,

G(C = +1) = e 2 h         1 0 0 0 0 -1 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 -1 1         , (7.100)
parce que seulement des contacts voisins dans une direction sont connectés en raison de la chiralité de l'état de bord. Ici nous avons choisi une aimantation orientée dans la direction +z avec un nombre de Chern C = +1 associé. Notons que la matrice de conduction pour le nombre de Chern inversé (une aimantation dans la direction -z) s'obtient par transposition de G(C = +1), 

G(C = -1) = t G(C = +1), ( 7 
I j = G jk V k donne 0 = e 2 h (-V k-1 + V k ), (7.102) 
où k = 0 indique le contact 6 en raison de la cyclicité. Pour cette raison, nous trouvons que les potentiels dans les contacts de 2 à 5 sont identiques à celui dans le contact 1, (7.103) comme nous l'avons déjà vu dans le cas de l'effet Hall quantique.25 Regardons maintenant l'équation pour le contact 1 auquel est injecté un courant I dans l'échantillon,

V 2 = V 3 = V 4 = V 5 = V 1 ,
I = e 2 h (V 1 -V 6 ), (7.104) 
qui détermine le potentiel V 6 . Cela nous permet d'évaluer la résistance à deux terminaux, (7.105) ainsi que celle à quatre terminaux

R 16,16 = V 1 -V 6 I = h e 2 ,
R 16,36 = V 3 -V 6 I = V 1 -V 6 I = h e 2 (7.106)
en accord avec les valeurs mesurées sur la figure 7.14(c). Dans la dernière ligne, nous avons utilisé l'identité V 1 = V 3 [voir l'équation (7.103)], pour la configuration actuelle. À quel changement pouvons-nous nous attendre pour une aimantation inversée ? Comme nous l'avons déjà mentionné, le nombre de Chern change de signe, et il faut alors utilser la matrice de conductance (7.101). Par conséquent, toutes les tensions des contacts 2 à 5 sont désormais à l'équilibre avec le contact 6, Alors que la résistance à deux terminaux n'est pas affectée par ce changement du sens de la chiralité des états de bord, la résistance à quatre terminaux entre les contacts 3 et 6 vaut désormais En nous plaçant maintenant sur le bord à x = -L, nous pouvons directement inspecter les propriétés physiques de ce cas. Comme pour le modèle de Haldane, il faut inverser les chiralités pour les états n = 0 (pour les deux orientations de spin) par rapport aux états au bord x = 0, en raison du changement de sign du paramètre de gap. Cela a pour conséquence des états avec une dispersion Afin de calculer les résistances et de comprendre les mesures expérimentales, construisons d'abord la matrice de conductance. Comme le système peut maintenant être vu comme la somme de deux modèles de Haldane où les différentes orientation du spin déterminent la chiralité des états de bord, la matrice de conduction est simplement la somme des deux matrices de conduction (7.100) et (7.101),

V 2 = V 3 = V 4 = V 5 = V 6 . ( 7 
R 16,36 = V 3 -V 6 I = 0, ( 7 
H s=+ bord = v q y √ 2 â † S √ 2 â S -q y et H s=- bord = v q y - √ 2 â S √ 2 â † S -q y , ( 7 
E s n=0,x=-L (q y ) = -s vq y , ( 
G QSHE = G(C = +1) + G(C = -1) = e 2 h         2 -1 0 0 0 -1 -1 2 -1 0 0 0 0 -1 2 -1 0 0 0 0 -1 2 -1 0 0 0 0 -1 2 -1 -1 0 0 0 -1 2         .
(7.112) Au lieu d'inverser cette matrice pour obtenir les résistances, nous considérons à nouveau les contacts dans lesquels il n'y a pas de courant. Dans ces contacts k, l'équation 0 = e 2 h (-V k-1 + 2V k -V k+1 ), (7.113) relie le potentiel V k aux potentiels dans les contacts voisins, et la tension (7.114) est simplement la demi-somme des potentiels dans les contacts adjacents. Mettons, pour simplifier le raisonnement, V 1 = 0 et V 2 = V , ce qui donne directement V 3 = 2V et V 4 = 3V , à l'aide de l'équation (7.114). Pour trouver les potentiels dans les autres contacts, nous pouvons faire appel à la symétrie miroir du système par rapport à l'axe qui relie les contacts 1 et 4 : 27 les potentiels V 6 et V 5 sont alors respectivement identiques à V 2 et V 3 , et nous trouvons pour l'ensemble

V k = V k-1 + V k+1 2 
V 1 = 0, V 2 = V, V 3 = 2V, V 4 = 3V, V 5 = 2V, V 6 = V.
(7.115) Ce résultat est en soi remarquable par rapport à la situation de l'effet Hall quantique et de l'effet Hall quantique anomal : les potentiels ne restent pas constant le long d'un bord entre les contacts par lesquels on fait passer le courant ! La présence de contacts sur ces bords, même s'il n'y a pas de perte de charges par un courant non nul, affecte les potentiels. Cela trouve son origine dans les états hélicaux. Regardons par exemple le contact 2, qui est à la fois en communication avec le contact 1 (auquel le courant est injecté) et avec le contact 3 qui est lui même connecté au contact 4 (le drain). Il est alors naturel de considérer que les deux canaux qui arrivent au contact 2 ne sont pas au même potentiel -en revanche, ils s'équilibrent à ce contact, d'où un potentiel associé qui est la moyenne de ceux dans les contacts 1 et 3, comme l'indique l'équation (7.114).

Considérons maintenant l'équation matricielle pour le contact 1 27 Ceci peut aussi se voir de manière explicite en introduisant un potentiel auxiliaire V 6 = V . À l'aide de l'équation (7.114), nous obtenons V 5 = 2V et V 4 = 3V . Mais comme nous avons déjà trouvé que V 4 = 3V , il faut identifier V = V . Ceci montre la force de l'image de Landauer et Büttiker qui préconise une définition des résistances par une bonne identification des contacts par lesquels passe le courant et par lesquels les tensions sont mesurées. La valeur de ces résistances dépend alors crucialement de l'arrangement de ces contacts sur l'échantillon.

I = e 2 h (-V 6 + 2V 1 -V 2 ) = -2 e 2 h V. ( 7 

Notions à retenir

• symétrie par renversement du temps et sa manifestation dans la structure de bandes et la courbure de Berry, opérateurs anti-unitaires

• effets Hall quantiques anomal et de spin

• modèles de Haldane, de Kane et Mele, de Bernevig-Hughes-Zhang

• hétérostructure de CdTe/HgTe/CdTe

• correspondance volume-bord

• états de bord chiraux et hélicaux

Chapter 8

Matériaux topologiques tridimensionnels

Dans les chapitres précédents, nous nous sommes intéressés aux matériaux 2D et à leur classification topologique à l'aide de la courbure de Berry. Cette dernière peut également décrire certaines propriétés géométriques des matériaux tridimensionnels (3D), mais il faut alors prendre sérieusement en compte son caractère vectoriel encodé dans l'équation (6.19). Nous essayons de donner, dans le chapitre présent, un aperçu non exhaustif des matériaux topologiques 3D tout en faisant appel à l'équation de Dirac. Nous avons vu que dans les matériaux 2D, cette équation peut être représentée à l'aide des matrices de Pauli 2 × 2. Ce n'est plus le cas en trois dimensions de l'espace, où il faut faire appel à des matrices 4 × 4, comme Dirac l'a remarqué lors de ses travaux dans les années 1920. Nous commençons donc ce chapitre avec un rappel de l'équation de Dirac et sa formulation historique (section 8.1) avant de discuter son utilité dans le contexte des isolants topologiques 3D. De manière analogue aux systèmes 2D, où le caractère topologique de la structure de bande se manifeste par des bords chiraux, nous retrouvons ici des états de surface chiraux dans le gap qui sont topologiquement protégés. La correspondance volume-bord, discutée dans la section 7.5 se manifeste alors par la présence d'états de surface métalliques même si le volume reste isolant. Ces états ont été mis en évidence dans des expériences de photoémission ainsi que de transport à la surface. Finalement, il y a une autre phase inhabituelle de la matière dans des matériaux 3D. Il s'agit des semimétaux de Weyl qu'on peut comprendre grosso modo comme du graphène 3D avec des fermions sans masse. Il s'agit 285 à nouveau d'une manifestation d'un phénomène de la mécanique quantique relativiste -en effet, pour des particules sans masse, le mathématicien et physicien théorique allemand Weyl a montré que l'équation de Dirac peut posséder une symétrie chirale qui permet une description de ses particules (appelées fermions de Weyl ) en termes de hamiltonien matriciel 2×2, comme pour les fermions 2D. Nous introduisons la physique des fermions de Weyl dans la section 8.3.

Un peu d'histoire -l'équation de Dirac 3D

Nous avons vu, en cours de mécanique quantique (tronc commun), qu'il y a deux formulations de la mécanique quantique : la formulation matricielle due à Heisenberg ainsi que la formulation ondulatoire de Schrödinger. Ces deux formulations ont finalement été unifiées dans le formalisme de Dirac. On peut se demander pourquoi Schrödinger, qui était un expert de la physique des ondes, a mis à peu près un an pour trouver cette formulation qui semble pourtant bien plus intuitive que celle de Heisenberg. Rappelons la démarche de Schrödinger qui est basée sur la connaissance des ondes de de Broglie Notons que la substitution (8.2) s'avère très compliquée dans le cas d'une relation de dispersion relativiste car nous aurions affaire à une racine carré d'opérateurs différentielles. Il y a une solution évidente à ce problème, qui a en effet été proposée sous le nom d'équation de Klein-Gordon ou équation de Schrödinger relativiste : lever l'équation (8.3) au carré avant d'utiliser la substitution (8.2). Or, cela pose un nouveau problème car cela mène à une équation d'onde qui fait intervenir une dérivée seconde en temps. Afin de décrire un système quantique et son évolution dans le temps, il ne faut alors pas seulement spécifier la fonction d'onde initial ψ(r, t = 0) (à l'instant t = 0) mais aussi sa dérivée ∂ t ψ(r, t = 0).3 C'est le théoricien anglais Dirac, en 1928, qui se montra audacieux en proposant une solution pour le moins inhabituelle à l'aide de ce qui peut être qualifié de "truc de la racine farfelue" ; prenons la racine de l'équation (8.3) de la manière suivante : Cette dernière représentation a un avantage dans la description des particules de masse nulle (m = 0) car le hamiltonien se scinde en deux secteurs (diagonaux) qui ne communiquent pas entre eux. C'est Weyl qui s'est aperçu de cette redondance et qui a ainsi montré que les fermions sans masse (dits de Weyl ) peuvent être représentés par des matrices de Pauli 2 × 2 alors que les particules de masse non nulle nécessitent l'introduction de matrices 4 × 4. Nous allons voir dans la suite que les deux cas jouent un rôle inattendu en matière condensée dans la description des isolants topologiques 3D, qui requièrent précisément des matrices 4 × 4, ou encore dans la description des semimétaux de Weyl 3D où les croisements de bandes sont protégés par l'impossibilité d'ouvrir un gap (de masse) dans une description par des matrices 2 × 2. Avant de discuter son utilité dans des matériaux topologiques, revenons sur le hamiltonien de Dirac (8.11) ou (8.12) en physique quantique relativiste. Comme le hamiltonien consiste en une matrice 4 × 4, il est clair que 5 Afin de prouver ce point, il faut se rappeler que le déterminant d'un produit de deux matrices ne dépend pas de leur ordre dans ce produit, i.e. det(α i α j ) = det(α j α i ). D'un autre côté, nous avons en raison de l'anti-commutation, det(α i α j ) = det(-α j α i ) = (-1) N det(α j α i ), où nous avons considéré des matrices N × N dans le dernier pas. Il s'en suit nécessairement (-1) N = 1, i.e. N = 2n doit être un entier pair. 

Isolants topologiques 3D et états de surface

Nos discussions des isolants topologiques du chapitre précédent ainsi que l'analyse de l'équation de Dirac en trois dimensions d'espace nous permettent d'aborder maintenant la physique des isolants topologiques 3D. Comme dans le cas 2D, un isolant topologique 3D est un isolant de volume accompagné d'états métalliques qui émergent à la surface du matériau ou lorsqu'il est interfacé avec un isolant trivial (ou plus généralement un matériau qui possède un invariant topologique différent). Nous n'allons pas spécifier, ici, les différents invariants topologiques 3D mais nous nous contentons de notre image d'une transition de phase topologique (décrite dans la section 6.4.1) et son utilité dans la description d'une interface (voir la section 7.5). Rappelons qu'une transition de phase topologique est accompagnée de la fermeture d'un gap et peut être décrite dans le cadre d'un fermion de Dirac massif dont le terme de masse (ou le paramètre de gap) change de signe en s'annulant à la transition. Cela reste valable pour les isolants topologiques 3D, avec la complication de devoir décrire ce fermion de Dirac dans le cadre d'un hamiltonien de Dirac matriciel 4 × 4. L'état de surface peut donc être modélisé à l'aide d'un terme de masse H masse = βm(z)c 2 (8.14) qui change de signe à travers l'interface que nous choisissons perpendiculaire à l'axe z ici. Comme pour les états de bord des matériaux 2D, la non-commutation entre la position z et la composante q z du vecteur d'onde quantifie le mouvement dans cette direction en niveaux d'indice (λ, n) alors que le mouvement reste libre dans les directions x et y dans l'interface. Nous trouvons ainsi une famille de bandes 2D, E ξ λ,n (q x , q y ), qui décrivent ces états de surface, et comme nous le verrons plus loin, l'état avec n = 0 est à nouveau un état chiral métallique qui disperse dans le gap de volume.

Expériences de photoémission resolue en angle

Contrairement aux isolants topologiques 2D, qui ont d'abord été étudiés experimentalement dans des mesures de transport, la première famille d'isolants topologiques 3D -les alliages binaires Bi (1-x) Sb x -sont des matériaux trop désordonnés pour être de bons isolants dans le volume. Il y a donc beaucoup de court-circuits lorsqu'on tente de sonder les états de surface par des mesures de transport. C'est par des mesures spectroscopiques -la photoémission resolue en angle (ou ARPES pour angle-resolved photoemission spectroscopy en anglais) -que des isolants topologiques 3D ont d'abord été mis en évidence, en 2008[Hsieh et coll., Nature 452, 970 (2008)]. La technique d'ARPES est basée sur l'effet photoélectrique qui permet de détecter un électron éjecté d'un matériau par un photon incident. La connaissance de l'énergie et l'impulsion du photon et la mesure de l'énergie et l'impulsion (via l'angle) de l'électron émis donnent directement accès à la structure de bande E n (q) d'un matériau par les lois de conservation d'énergie et d'impulsion.6 

Correspondance volume-bord en 3D

Essayons maintenant de décrire les isolants topologiques 3D et leurs états de surface à l'aide du modèle de fermions de Dirac 3D ou plus précisément une variante des modèles (8.11) ou (8.12). Par rapport à ces derniers, il faut se rappeler que, dans les matériaux, les composantes de la fonction d'onde spinorielle et donc du hamiltonien désignent des orbitales ainsi que le spin physique alors que dans l'équation de Dirac les composantes autres que le spin physique 1/2 peuvent être choisies de manière arbitraire, comme il est stipulé par les représentations équivalentes (8.11) et (8.12) dans la section 8.1. De plus, le hamiltonien de Dirac décrivant les bandes de basse énergie doit respecter la symétrie par renversement du temps qui n'est pas brisée dans la famille des composés à base de Bi et Sb mentionnée précédemment. Un hamiltonien qui respecte ces conditions a été proposé par Zhang, Kane et Mele, Phys. Rev. B 86, 081303(R) (2012), pour décrire les électrons de basse énergie dans Bi 2 Se 3 autour du point Γ, où se trouve le gap direct, H 3DTI (q) = ∆τ z ⊗ I + vq z τ y ⊗ I + vτ x ⊗ (q y σ x -q x σ y ) (8.15) =     ∆ 0 -i vq z v(q y + iq x ) 0 ∆ v(q y -iq x ) -i vq z i vq z v(q y + iq x ) -∆ 0 v(q y -iq x )

i vq z 0 -∆    

Ici les matrices de Pauli τ j représentent des orbitales7 et les matrices σ j représentent le vrai spin, qui intervient dans ce modèle en raison du couplage spin-orbite. Au lieu de discuter l'origine de ce modèle, vérifions deux propriétés essentielles.

1. Il s'agit bien d'une représentation d'un fermion de Dirac massif (de masse m = ∆/v 2 ), car les matrices τ z ⊗ I, τ y ⊗ I, τ x ⊗ σ y et τ x ⊗ σ x anti-commutent toutes entre elles et satisfont alors l'algèbre de Clifford.

2. La symétrie par renversement du temps est respectée, car H 3DTI (q) = H * 3DTI (-q) en se souvenant que cette symétrie inverse l'orientation du spin [voir l'équation (7.6) du chapitre précédent], i.e. T σ j T -1 = -σ j , pour les composantes représentées par les matrices de Pauli σ j . En revanche, les matrices de Pauli τ j représentent un degré de liberté orbitalaire et ne sont pas affectées par la symétrie par renversement du temps T τ x/z T -1 = τ x/z , mise à part la matrice τ y qui se transforme comme T τ y T -1 = -τ y , en raison de son caractère purement imaginaire.

De la même manière que pour les isolants 2D, on peut décrire l'état de surface à l'aide d'une inversion de gap dans un intervalle de largeur . Nous choisissons cette surface avec un vecteur normal selon l'axe z. Comme dans la section 7.5, ceci nous permet de modéliser la surface (à z = 0) par un gap (8.18) dont le spectre consiste en une famille de bandes 2D localisées à la surface (z = 0) (8.19) pour n = 0, comme nous l'avons vu dans le chapitre précédent et où le vecteur d'onde dans la surface es défini comme q = (q x , q y ). De nouveau, l'état avec n = 0 est spécial : les fonctions d'onde associées n'ont que deux composantes non nulles, (8.20) et l'état de surface chiral est alors décrit par le hamiltonien 2 × 2 H n=0 surface = -v(q y σ x -q x σ y ). (8.21)

H surface = v       0 q y + iq x √ 2 S â 0 q y -iq x 0 0 √ 2 S â √ 2 S â † 0 0 -(q y + iq x ) 0 √ 2 S â † -(q y -iq x ) 0      
E n (q) = v |q | 2 + 2n/ 2 S ,
ψ n=0 (q ) =     0 0 u ↑ (q ) u ↓ (q )     ,
Nous remarquons qu'il s'agit d'un hamiltonien de Dirac pour des fermions 2D de masse nulle. En comparaison avec les fermions de Dirac dans le graphène, il y a quelques différences remarquables.

De nouveau, le changement de signe dans le gap a pour conséquence d'échanger les opérateurs â et â † dans le hamiltonien (8.18). Il en résulte que les deux premières composantes de la fonction d'onde sont maintenant non nulles. Le hamiltonien dans le sous-espace avec n = 0 est ainsi le même que celui (8.21) mais avec un signe global opposé.

3. Les états de surface avec n = 0 sont également chiraux, mais la chiralité ne se manifeste ici pas par un sens de propagation bien défini comme c'est le cas pour des canaux unidimensionnels. La chiralité désigne maintenant l'orientation du spin lorsqu'un électron tourne autour du point de contact à q = 0. Dans la bande d'énergie positive (bande de conduction de l'état de surface), le spin tourne dans le même sens que le vecteur d'onde (voir la figure 8.3), alors qu'il tourne dans le sens inverse dans la bande de valence.

4. Comme pour les isolants topologiques, l'existence des états chiraux ne dépend pas de la façon de modéliser la surface. Ils persistent aussi dans la limite → 0 d'une interface abrupte, contrairement aux états massifs, avec n = 0, dont l'énergie est poussée dans les bandes de volume dans cette limite.

Expérience d'effet Hall quantique relativiste à la surface

Au-delà des mesures spectroscopiques, les états de surface chiraux ont été mis en évidence de manière spectaculaire avec l'observation d'un effet Hall quantique. Imaginons pour le moment qu'une barre de Hall puisse être créée sur une seule surface d'un isolant topologique 3D. À quoi devrions-nous nous attendre lors d'une mesure de la résistance de Hall au vu de nos connaissances de l'effet Hall quantique dans le graphène (section 5.2.3) ? De la même manière que dans ce dernier composé, la physique de basse énergie est décrite par une équation de Dirac 2D pour des fermions sans masse, à la différence que nous ne trouvons qu'un seul fermion à la surface sur laquelle la mesure de l'effet Hall quantique s'effectuerait. En revanche, dans le graphène nous avons observé un quadruplet de fermions de Dirac sans masse, en raison de la double dégénérescence de vallée en plus de la double dégénérescence de spin. À la surface d'un isolant topologique les niveaux de Landau, formés en raison du champ magnétique perpendiculaire, gardent alors seulement leur dégénérescence orbitale, donnée par le nombre de quanta de flux traversant la surface, et l'effet Hall quantique devrait alors se manifester à des facteurs de remplissage de ν = ±(n + 1/2), (8.22) ce qui aurait pour conséquence une résistance de Hall de R xy = ±h/e 2 (n + 1/2). Or cette mesure, qui représente une expérience de pensée, est confrontée à un problème : pour former une barre de Hall, il faudrait avoir un isolant topologique avec une seule surface conductrice. Mais comme la surface opposée est également conductrice et forcément connectée à la première par des côtés latéraux qui sont eux-mêmes conducteurs, une mesure de transport sonde aussi la réponse de la surface opposée, qui donne la même contribution aux conductances. C'est alors comme si tous les niveaux de Landau (5.48) étaient doublement dégénérés, en raison de la réponse simultanée des deux surfaces, et la résistance de Hall devrait plutôt être quantifiée comme Ici, le champ magnétique est fixé à B = 14 T, et la concentration des porteurs à la surface est contrôlée par une tension de grille V G avec une grille métallique à 23 nm au-dessus du film. La tension de référence V CN P est celle où le niveau de Fermi se trouve au point de contact entre les bandes de conduction et de valence de l'état de surface chiral (point de neutralité de charge). Les figures (c), (d), (g) et (h) montrent les valeurs des conductivités déduites des résistances. La quantification correspond à des facteurs de remplissage ν = ±1 sur la figure (c), en accord avec l'équation (8.23) lorsque les deux surfaces contribuent de manière identique à la résistance de Hall. En revanche, la grille a un effet plus important sur la surface de dessus du film, en raison de sa plus grande proximité, que sur la surface de dessous. C'est le cas pour le deuxième échantillon où le point de neutralité de charge (le point de Dirac) et par conséquent le niveau de Landau n = 0 de la surface de dessus ne se trouve pas à la même énergie que celui de la surface de dessous. Cela a pour effet un effet Hall quantique aussi à ν = 0, visible sur la figure 8.4(g) avec l'émergence d'un plateau à σ xy = 0.

Semimétaux de Weyl

Dans les sections précédentes, nous avons trouvé une description des isolants topologiques 3D en termes de fermions de Dirac massifs décrits par un hamiltonien matriciel 4×4. Comme nous l'avons vu dans la discussion de l'équation de Dirac en trois dimensions d'espace (section 8.1), nous rencontrons une situation particulière pour des fermions de Weyl sans masse décrits dans le cadre d'un hamiltonien 2 × 2. En matière condensée, une telle description trouve en effet son intérêt dans des semimétaux de Weyl dont nous donnons une introduction succincte ici. Le hamiltonien de Weyl s'obtient sur la base du hamiltonien de Dirac dans la représentation de Weyl (8.12) pour m = 0 limitée à un seul des blocs 2 × 2, H W = (v x q x σ x + v y q y σ y + v z q z σ z ), (8.24) où nous avons tenu compte de la possibilité que les vitesses de Fermi ne sont pas forcément les mêmes dans les trois directions d'espace. Dans le contexte de la physique des hautes énergies, où l'espace est homogène et isotrope, cette distinction est sans fondement, mais il s'agit ici d'une description de basse énergie de la structure de bande d'un matériau qui n'est généralement pas isotrope. 8 Le hamiltonien (8.24) donne lieu à deux bandes (λ = ±) E λ (q) = λ v 2 x q 2 x + v 2 y q 2 y + v 2 z q 2 z (8.25) avec un point de contact à q = 0, que nous appelons point de Weyl. Rappelons que le vecteur d'onde désigne un vecteur d'onde dans la limite continue par rapport à un point k w situé quelque part dans la première zone de Brillouin, qui n'est pas forcément un point de haute symétrie cristalline. En revanche, comme il a déjà été mentionné dans le contexte de l'équation de Dirac 3D dans la section 8. 

E λ (q) = λ v 2
x (q x -q 0 x ) 2 + v 2 y (q y -q 0 y ) 2 + v 2 z (q z -q 0 z ) 2 , (8.27) où nous avons défini q 0 j = -∆ j / v j , pour j = x, y, z. Le terme perturbatif (8.26) a donc pour seul effet de déplacer le point de Weyl au vecteur d'onde q 0 sans ouvrir de gap. Cette conclusion reste valable si les paramètres ∆ j deviennent des fonctions du vecteur d'onde q, comme cela peut se voir facilement à l'aide d'un développement en série.

8 Une forme encore plus générale de ce hamiltonien si le hamiltonien de Bloch à deux bandes H(k) = h(k) • σ a un point de contact entre les bandes au vecteur d'onde k w . Lors d'un développement de ce hamiltonien à l'ordre linéaire autour de k w , nous obtenons

H W = j v j • qσ j , où v j = ∇ k h j (k)| kw et q = k -k w .
Afin de retrouver la forme (8.24) du hamiltonien de Weyl, il faut alors faire une rotation du référentiel (accompagnée d'une transformation unitaire qui redéfinit l'axe de quantification du "spin") de sorte que les axes coïncident avec les axes principaux du tenseur de vitesse v j = (v j1 , v j2 , v j3 ), de manière similaire au tenseur d'inertie utilisé dans la description des rotations d'un corps rigide en mécanique. Notons enfin qu'il est également possible, à l'ordre linéaire, de rajouter un terme v 0 • qI au hamiltonien qui brise la symétrie particule-trou en inclinant les cônes de Dirac. La discussion de cette particularité est au-delà de la portée de ces notes de cours même si elle s'avère être d'une très grande richesse pour l'étude des propriétés relativistes des matériaux en question.

Courbure de Berry d'un fermion de Weyl et monopôles magnétiques

Afin de caractériser ces fermions de Weyl de manière topologique, considérons une surface d'énergie constante, comme par exemple la surface de Fermi lorsqu'elle ne coïncide pas exactement avec le point de Weyl qui est singulier, et calculons le flux de Berry à travers cette surface (8.28) où n q désigne le vecteur normal à l'élement de surface autour du point q.

C W = d 2 q 2π n q • B λ (q),
La surface d'énergie constante est un ellipsoïde dans l'espace réciproque qui englobe le point de contact. Nous avons déjà calculé la courbure de Berry d'un fermion de Dirac 2D dans la section 6.4 [voir l'équation (6.56)], et la composante z de la courbure de Berry se trouve alors à l'aide de cette équation en substituant ∆ → v z q z , B z λ (q) = -λξ 2 |v x v y |v z q z (v 2

x q 2 x + v 2 y q 2 y + v 2 z q 2 z ) 3/2 , (8.29) où ξ ne désigne ici plus la vallée mais le signe du produit des deux vitesses v x et v y , ξ = sgn(v x v y ). Les autres composantes vectorielles de la courbure de Berry s'obtiennent de manière simple, sans faire de calculs, par symétrie -comme le choix de l'axe de quantification z pour le "spin" σ est arbitraire, on aurait par exemple pu choisir la matrice σ x comme étant diagonale au lieu de σ z . Ceci se résume à changer simplement les indices de composantes, et une composante arbitraire s'écrit alors

B j λ (q) = -λ v x v y v z 2 q j (v 2
x q 2 x + v 2 y q 2 y + v 2 z q 2 z ) 3/2 . Ce monopôle quantifié joue le rôle de charge topologique dans le contexte des semimétaux de Weyl. Il s'agit d'un véritable défaut topologique à q = 0 dans la courbure de Berry qui a la forme d'un champ 3D, comme le stipule l'équation (8.31). Suivant la caractérisation des défauts topologiques, introduite dans la section 6.1, il s'agit d'un défaut ponctuel (de dimension d = 0) qui vit dans un espace de dimension d = 3. Afin de le caractériser ou de l'enlacer, il nous faut alors, en accord avec la règle du lasso (6.1), un "lasso" de dimension r = 2. C'est précisément la surface fermée d'énergie constante sur laquelle on intègre la courbure de Berry, et la quantification est simplement donnée par le nombre d'enroulement de la sphère S 2 de la courbure de Berry lorsqu'on explore toute la sphère S 2 (ou l'ellipsoïde avant la transformation d'échelle des vecteurs d'onde) dans l'espace réciproque à énergie constante.

Semimétaux de Weyl et arcs de Fermi

De la même manière que pour les fermions de Dirac 2D, il n'est pas possible de créer un seul point de contact entre deux bandes qui formerait un fermion de Weyl en raison du monopôle associé, et il faut donc au moins avoir un deuxième fermion de Weyl de charge opposée. Que l'apparition de fermions de Weyl soit limitée à une seule paire dépend à nouveau de la symétrie par renversement du temps. Si elle est respecté, les fonctions h x (k) et h z (k), 9 Dans le contexte d'un hamiltonien de Weyl généralisé obtenu par un développement limité autour du point de contact (voir note en bas de page précédente),

H W = j v j • qσ j ,
cette charge topologique est donnée par le signe du produit mixte des trois vitesses, qui entrent dans le hamiltonien de Bloch à deux bandes H(k) = h(k) • σ, sont forcément paires autour d'un TRIM alors que h y (k) est impair. Ceci exclut déjà l'apparition d'un fermion de Weyl à un TRIM, et nous savons que, s'il y a un fermion de Weyl à k w , il y en a forcément un aussi à -k w . En raison de la parité des fonctions h j (k), nous trouvons donc que les vitesses v x et v z sont de signe opposé dans les deux vallées alors que v y a le même signe. Il s'en suit que la charge topologique, de par le produit mixte v x v y v z , a également le même signe dans les deux vallées. Afin d'avoir un semimétal dans des matériaux respectant la symétrie par renversement du temps, il faut donc au moins un quadruplet de fermions de Weyl. Cela devient encore plus compliqué quand il faut prendre en compte la symétrie ponctuelle des matériaux (les rotations discrètes autour d'un point). À titre d'exemple, le matériau arsénure de tantale (TaAs), qui a été expérimentalement identifié comme le premier semimétal de Weyl en 2015 [Xu et al., Science 349, 613 (2015)], possède 24 points de contact décrits chacun par un hamiltonien de Weyl au voisinage du niveau de Fermi. Afin de simplifier la discussion des semimétaux de Weyl, considérons donc un modèle le plus avec une seule paire de fermions de Weyl de charge topologique opposée, k z du vecteur d'onde, que nous traitons comme un paramètre : pour chaque valeur de k z , nous avons alors un fermion de Dirac massif dans le plan k x -k y avec un gap donné par ∆ kz = ∆ -2 k 2 z /2m 0 . Comme nous l'avons vu dans la section 6.4, nous pouvons caractériser, d'un point de vue topologique, cette famille de fermions de Dirac par la courbure de Berry (par rapport au plan 2D) (8.38) ce qui donne lieu à un feuillet dans l'espace (k z -k y )-énergie entre les points de Weyl (voir la figure 8.7). 12 L'arc de Fermi peut maintenant se comprendre facilement lorsque la structure de bande est remplie jusqu'au niveau de Fermi. Cela donne clairement les deux surfaces de Fermi (sphériques) disconnectées 11 L'autre cas nécessiterait une connexion entre les points de Weyl, le long de l'axe k z , coupant les bords de la première zone de Brillouin, ce qui ne change rien à l'argument suivant, mais ce qui complique l'illustration.

C W = -λsgn(v 1 • (v 2 × v 3 )).
H 2W = ∆ - 2 k 2 z 2m 0 v(k x -ik y ) v(k x + ik y ) -∆ +
B λ,kz (k ) = - λ 2 2 v 2 ∆ kz (∆ 2 kz + 2 v 2 k 2 ) 3/2 , ( 8 
12 Par le même traitement discuté dans la section 7.5 en termes d'opérateurs d'échelle, nous pouvons également avoir des familles d'états de bords massifs (n = 0) si la surface perpendiculaire à l'axe k x est suffisamment graduée, i.e. si le paramètre ∆ y varie lentement. La description de ces états, esquissés par les feuillets jaunes sur la figure 8.7, est au-delà de la portée de ces notes de cours introductrices. autour de chacun des points de Weyl entre bandes dans le volume, ce qui se manifeste, à la surface, par deux cercles autour des points projetés sur cette surface. Mais ce n'est pas tout : le niveau de Fermi coupe naturellement aussi le feuillet E kz (k y ) entre les deux points de contact, et c'est précisément cette coupe qui est l'arc de Fermi.

Notons enfin que, dans notre discussion simplifiée, les arcs de Fermi sont des lignes droites reliant les surfaces de Fermi autour des points de Weyl alors que l'osbervation expérimentale indique des arcs courbés (voir la figure 8.6). Ceci est dû au manque de dispersion du feuillet E kz (k y ) dans la direction k z . Il y a plusieurs façons d'obtenir une dispersion dans la direction k z , comme par exemple par l'application d'un champ magnétique parallèle à la surface ou encore une rotation de la structure de bande dans cette interface sur une certaine largeur. Une autre possibilité serait une vitesse v(k z ) qui dépend elle-même de la composante k z du vecteur d'onde : même si la topologie protège l'état chiral, sa pente n'est pas protégée et peut dépendre de la manière comment la surface est modélisée.
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Figure 1

 1 Figure 1.2: (a) Parabolic energy-momentum (dispersion) relation of a free classical particle. (b) Energy bands (energy as a function of the lattice momentum) for electrons in silicon. The capital letters on the x-axis indicate different points in reciprocal spacethat are connected by straight lines to allow for a two-dimensional plot of the energy bands while the lattice momentum q is a three-dimensional vector. The dark grey region indicates an energy window in which there are no electronic states. This energy window is called the gap.

Figure 1 . 3 :

 13 Figure 1.3: Sketch of a concuctor of length L and cross section S, as in figure 1.1.

Figure 1 . 6 :

 16 Figure 1.6: Continuous deformation of a coffee mug into a donought and into the sculpture in the "Grand Hall" of École Polytechnique. All objects belong to the same homotopy class, characterised by the genus g = 1, which counts the number of holes here.This means that all different objects (with a single) hole have the same global topological invariant even if they have locally different surfaces given by the geometric curvature K(r).

  ) Photo of the apparatus used at C2N, Palaiseau (France), to perform the electron lithography. (d) and (e) Examples of lithographically obtained nanocircuits (from Institut Néel, Grenoble. (d) Nanowires connected to metallic contacts (light gray regions). (e) Square lattice of nanowires. The width of the nanowires is on the order of 50 nm and the lateral size of a square is 640 nm.

  Figure 1.9: (a) Principles of molecular-beam epitaxy (MBE) in ultra-high vacuum. The elements that constitute the final compound are heated in ovens, and their flux towards the substrate is regulated by shutters. The crystal is grown (atomic) layer by layer on the substrate that is heated from behind such as to ensure a controled growth. (b) Sketch of the potential in the upper (conduction) band of a semiconductor heterostructure that consists of GaAs (for z > 0), an AlGaAs spacer at z < 0 of thickness s and n-type doped AlGaAs of width d. The structure is then protected by a GaAs cap layer. (c) Schematic cut of the MBE chamber and its ovens. (d) Photo of the MBE apparatus at C2N, Palaiseau (France).
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 1 Figure 1.10: (a) Exfoliation of graphene. A graphite chip is thinned by repeated folding and unfolding of the scotch tape on which the chip is placed, and a last exfoliation takes place by putting the scotch tape on an insulating substrate on which some graphitic layers are thus deposited. (b) Search for graphene layers by optical microscopy. The thinner the layer, the lower is the contrast between the covered and the empty parts of the substrate.

Figure 1 .

 1 Figure 1.11: (a) Examples of exfoliated 2D materials beyond graphene. (b) Nanodevice based on an MoS 2 monolayer encapsulated in boron-nitride (BN) layers.
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 21 Figure 2.1: Decomposition of the kagomé lattice. Left: allowed lattice translations (violet arrows) -these translations reproduce the lattice as one may see from the inset (violet box). The translation displaces the dashed violet box to the box delimited by the continuous violet line. The latter box is perfectly superposed with the original lattice pattern, as well as for all other translations that connect sites of the same color. Right: forbidden translation connecting sites of different color. The translated box clearly shows that the lattice periodicity is not conserved by this translation since the pattern in the box is not superposed with that of the original lattice. The underlying Barvais lattice, formed by sites of the same color, is a triangular lattice, and the basis (unit cell) consists of three sites of different color connected by the vectors δ 1 and δ 2 (in the circle of the left panel).

Figure 2

 2 Figure 2.3: Wigner-Seitz construction of the frist Brillouin zone of the square lattice (left panel) and the triangular lattice (right panel). The blue vectors a 1 and a 2 indicate the primitive lattice vectors of the direct lattice, while a * 1 et a * 2 are those of the reciprocal lattice. The gray lines, which are perpendicular to the reciprocal-lattice vectors and cut the latter at half-way, delimit the first Brillouin zone.
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 25 Figure 2.5: Non-Bravais lattice composed of two square sublattices A and B. The sublattice B is displaced by a vector δ m with respect to sublattice A. Bloch wave function are constructed on each of the sublattices that serve as a basis, and a Bolch wave function for the whole lattice may be obtained by a quantum-mechanical superposition. The prefactors in this superposition determine the relative weight of the wave functions on the two sublattices.

Figure 2

 2 Figure 2.6: (a) Crystal structure of graphene and boron nitride. The unit cell is depicted by the blue area and spanned by the primitive lattice vectors a 1 and a 2 . The vectors e 1 , e 2 and e 3 connect the nearest-neighbour sites which belong to different sublattices. The honeycomb lattice consists of two triangular sublattices A and B that are both occupied by carbon atoms in the case of graphene and by different atoms (boron and nitrogen) for boron nitride. (b) Frist Brillouin zone of the underlying triangular lattice. The center is the Γ-point, while the corners of the hexagonal first Brillouin zone represent two inequivalent points K and K . The other corners of the hexagon are connected to one of the two points by the reciprocal lattice vectors a * 1 and a * 2 (or combinations of them). The centers of the borders of the hexagon are the M -points, three of which are inequivalent.
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 2 Figure 2.7: (a) Band structure of graphene. The valence band touches the conduction band at zero energy at the points K et K , at the corners of the first Brillouin zone. Each of the bands has a width of 3t.The inset shows a zoom on the band structure in the vicinity of the band contact points, where the bands disperse linearly in the wave vector q, which is defined with respect to the points K and K . This is reminiscent of massless ultra-relativistic particles (electrons in the conduction band) and anti-particles (holes in the valence band). (b) Band structure of boron nitride. The conduction and valence bands are well separated in energy, but the gap is smallest at the points K and K , where it is given by 2∆.

Figure 3

 3 Figure 3.1: (a) Family of 2D bands obtained by dimensional reduction due to confinement of the electronic motion in the z-direction. (b) Associated density of states. Each 2D band yields a constant contribution to the density of states provided that the energy is larger than that of the band bottom.

  and we obtain the announced result.

Figure 3

 3 Figure 3.2: (a) Full band in the absence of an electric field. The states at the wave vectors k and -k have the same energy but opposite velocities v n (-k) = -v n (k) so that there is no net current flow due to the pairwise cancellation of the velocities. (b) In the presence of an electric field, all states are shifted by ∆k so that some states are now situated outside the first Brillouin zone. However, these states have equivalent ones inside the first Brillouin zone via a translation of a reciprocal-lattice vector a * (in red).

Figure 3 . 3 :

 33 Figure 3.3: Conductance through a ring as a function of the magnetic field threading the surface surrounded by the ring, for three different arrangements of the contacts. Two of the contacts (in red) serve as the source and drain by which one drives the current through the device, while the other two (in blue) allow one to measure the voltage drop. After A. Benoit et al., Phys. Rev. Lett. 57, 1765 (1986).
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 3 Figure 3.4: 2D conductor. (Upper panel) In the case of a diffusive conductor, of length

Figure 3

 3 Figure 3.5: (a) Classical ballistic transport between two reservoirs. The two reservoirs A and B are at the chemical potentials µ A and µ B , respectively. They may exchange electrons through the slit in a wall separating the reservoirs. This slit plays the role of the conductor. The densities in the resrvoirs are given by n A and n B . (b) Analogy with a wave guide, where half the wavelength of the transverse mode must be a multiple of the width W .

Figure 3 . 7 :

 37 Figure 3.7: Potential profile in a ballistic conductor. Electrons injected into the conductor from the left contact remain at their energy given by the chemical potential µ 1 of the left reservoir. Similarly, electrons injected on the left contact remain at an energy µ 2 . If we want to define an average chemical potential (in red) in the conductor, it is given by µ m = (µ 1 + µ 2 )/2.
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 38 Figure 3.8: Potential profile in a diffusive conductor. Electrons injected into the con-ductor from the left contact remain at their energy given by the chemical potential µ 1 of the left reservoir. Similarly, electrons injected on the left contact remain at an energy µ 2 . Due to backscattering by the diffusive central region, some left-moving electrons are now at the potential µ 1 and some right-moving ones at µ 2 (dashed blue lines). The average potential (in red) is therefore no longer constant over the whole length of the conductor, and the potential V A in the left lead is generally different from that V B in the right lead.

  Figure 3.9: Schematic view of the scattering matrix S, which relates the incoming waves i and i (in blue) to the outgoing ones o and o (in red).

  .85) in terms of the reflection and transmission coefficients R = |r| 2 , R = |r | 2 , T = |t| 2 and T = |t | 2 , and |t| = |t | and |r| = |r |.(3.86) 

Figure 3 .

 3 Figure 3.11: (a) Sketch of a 2D conductor of with W connected in the two-terminal geometry. In the scattering region an electron that was originally in the mode b (in the left lead) can be scattered into another mode a in the right lead. The associated transmission amplitude is given by t ab . (b) Family of 1D bands associated with the conductor. The modes correspond to the states of the different bands n y , each of which contributes to the electric transport as long as its band bottom is situated below the Fermi energy F .

Figure 3 .

 3 Figure 3.12: (a) Sketch of a quantum point contact. The high-mobility 2D electron gas at a GaAs/AlGaAs interface is ballistic between the two contacts but depleted below two electrodes called the gates. An application of a gate voltage allows one to define a constriction at the centre of the 2D electron gas of a width W that is controled by the gate volatege V . (b) Measurement of the conductance through the device as a function of the gate voltage. The curves correspond to different temperatures and are offset for a better visibility. Adapted from B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).

Figure 3

 3 Figure 3.13: Experimental evidence for the crossover from ballistic to diffusive transport as a function of the channel length in GaAs/AlGaAs quantum wires. The measured resistances are plotted as a function of the channel length for several values of the conductor width (W = 2, 4 and 8 µm).For short systems, the resistance saturates at the ballistic (Sharvin) limit while it crosses over to a linear increase for larger values of L. Adapted from S.Tarucha et al., Phys. Rev. B 47, 4064 (1993).

Figure 4

 4 Figure 4.1: (a) Sketch of a four-terminal conductor. The four contacts i = 1, 2, 3 and 4 are characterised by the chemical potentials µ i = F -eV i and connected to the conductor by ballistic leads (white regions of the device). The conductor itself (shaded area) is taken to be diffusive and the flux φ through the conductor indicates the presence of a possible magnetic field that breaks time-reversal symmetry. In general, there may be currents I i injected into the conductor by each of the terminals. (b) Example of an experimental multi-terminal device.

Figure 4

 4 Figure 4.2: (a) Sketch of a two-terminal conductor. The currents flowing into the conductor are I 1 = I and I 2 = -I. (b) Three-terminal conductor contacted by ballistic leads to the contacts 1,2, and 3, at the respective chemical potentials µ j = F -eV j .In this case, we choose 1 and 2 to be the source and the drain, respectively, with I 1 = I and I 2 = -I, while there is no current passing through contact 3.
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 43 Figure 4.3: Schematic view of the scattering matrix S, which relates the incoming waves i n (in blue) to the outgoing ones o n (in red) in a multi-terminal (here four-terminal) device.

  If we now rewrite the equation (4.15) explicitly in terms of the wave functions, o(t, B) = S(B) i(t, B) and S † (B) o(t, B) = i(t, B), (4.20) inversion of the sign in t and B, along with complex conjugation, of the second equation yields S † * (-B) o * (-t, -B) = i * (-t, -B). (4.21) In view of the time-reversal-symmetry relation (4.19), a comparison with the first equation of (4.20) tells us that S † * (-B) = S(B), i.e. S † (B) = S * (-B) or in components s ij (B) = s ji (-B). (4.22)

Figure 4

 4 Figure 4.4: (a) Measured two-terminal conductance through a metallic ring in a magnetic field. After L. Angers et al., Phys. Rev. B 75, 115309 (2007). (b) same as figure 3.3, fourterminal conductances through a metallic ring for different arrangements of the contacts. After A. Benoit et al., Phys. Rev. Lett. 57, 1765 (1986).
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 45 Figure 4.5: Sketch of a conductor in the three-terminal geometry. The current is driven through the device via the source i = 1 (I 1 = I) and the drain i = 2 (I 2 = -I), while there is now current flowing into the contact 3, I 3 = 0.

  ) due to our choice V 3 = 0. Let us check how these resistances evolve under the change of the orientation of the magnetic field. The determinant D remains invariant, D(B) = D(-B), (4.37) as one may immediately see from its last expression in Eq. (4.34), with the help of (i) T ij (-B) = T ji (B) and Eq. (4.13) T 21 (B) + T 31 (B) = T 12 (B) + T 13 (B) = T 21 (-B) + T 31 (-B). (4.38) Similarly, T 21 +T 23 is invariant under B → -B, and so is the symmetric term T 21 T 12 . However, since generally T 32 (B) = T 32 (-B) and T 31 (B) = T 31 (-B), the resistances are not invariant, R 12,13 (B) = R 12,13 (-B) and R 12,32 (B) = R 12,32 (-B). (4.39) However, we see from Eq. (4.36) that the resistances remain invariant if the change in the orientation of the magnetic field is accompanied by an exchange of the contact 2 with 3, and 1 with 3, respectively, R 12,13 (B) = R 13,12 (-B) and R 12,32 (B) = R 32,12 (-B), (4.40) in agreement with the general reciprocity relations (4.26).
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 46 Figure 4.6: Sketch of a conductor in the four-terminal geometry. The current is driven through the device via the source i = 1 (I 1 = I) and the drain i = 2 (I 2 = -I), while there is now current flowing into the contacts 3 and 4, I 3 = I 4 = 0.

R

  12,12 (B) = R 12,12 (-B), (4.58) as in the three-terminal geometry and as it is expected on general grounds, while this is not the case for the four-terminal resistance,R 12,34 (B) = R 12,34 (-B), (4.59)since generally T ij = T ji . However, we haveR 12,34 (-B) = R 34,12 (B), (4.60)in agreement with the property discussed above that the change in the orientation of the magnetic field must be accompanied by an exchange of the current and voltage contacts. This property can be explicitly checked if we change 1 ↔ 2 and 2 ↔ 4, in line with the four-terminal measurement.
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 47 Figure 4.7: Four-terminal measurement of a (single-wall) carbon nanotube that shows negative four-terminal resistances. (a) Image of the device. (b) Sketch of the setup. The source and the drain are metallic (gold) contacts while the contacts 3 and 4 used to measure the voltage drop consist of metallic (multi-wall) nanotubes. (c) Sketch of the potentials in the contacts for a usual diffusive conductor that yield a positive four-terminal resistance R 4pt = R 12,34 > 0. (d) Sketch of the inverted situation, where the potential in contact 4 is higher than in contact 3, such that one measures a negative four-terminal resistance R 4pt < 0. (e) Measured four-terminal resistance (devided by the two-terminal resistance) of a device at different temperatures, showing negative resistances at low temperatures. (f) Low-temperature measurement of another device. After Gao et al., Phys. Rev. Lett.95, 196802 (2002).
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 48 Figure 4.8: Sketch of a conductor in the four-terminal geometry, connected by ballistic leads to the source and the drain. The contacts 3 and 4 are connected to the leads on both sides of the diffusive conductor, and their transmission is controlled by the value which describes the "invasiveness". When → 0, these contacts are non-invasive, while they are fully Ohmic for = 1.
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 51 Figure 5.1: Experimental signature of the quantum Hall effect. Instead of a lineardependence on the magnetic field, as expected from for the classical Hall effect (dashed gray line), the Hall resistance measured by the potential drop V y between the contacts 3 and 5 in the device (schematically represented in the inset) shows plateaus at quantised values R h = h/e 2 M . If M is an integer, the effect is called integer quantum Hall effect (IQHE), while one speaks of the fractional quantum Hall effect (FQHE) if M = p/q is a rational number, in terms of the integers p and q. The plateaus in the Hall resistance are accompanied by a vanishing longitudinal resistance, measured by the potential drop V x between the contacts 5 and 6. The current is driven through the device by the contacts 1 (source) and 4 (drain).

  .6) It is noteworty that the Hall resistivity coincides with the Hall resistance, the latter being related to the former by a geometric aspect ratio, R H = (L/W d-1 )ρ H , for a conductor of length L and width W in d dimensions. In the present case of a 2D conductor (d = 2), resistivity and resistance are dimensionally equivalent [ρ] = [R], as well as the conductivity and the conductance, [σ] = [G]

Figure 5

 5 Figure 5.3: (a) Sketch of the Hall and the longitudinal resistances, the latter of which starts to oscillate above a characteristic magnetic field B c . (b) Sketch of the density of states, where the energy levels are broadened by disorder (continuous line: weak disorder; dashed line: stronger disorder).

Figure 5

 5 Figure 5.4: Landau-level spectra (a) for a parabolic band, E n = ω C (n + 1/2), and (b) for graphene electrons (2D massless Dirac fermions), E λ,n = λ (v/l B ) √ 2n. In the absence of a mass term, the Landau levels for Dirac fermions are twofold valley-degenerate.
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 55 Figure 5.5: Landau levels for massive Dirac fermions (gapped graphene), on the left for the valley K and on the right for the valley K .
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 56 Figure 5.6: Magneto-optical transmission spectra. The relative transmission is normalised with respect to the transmission in the absence of a magnetic field. (a) Transmission lines at a fixed value of B = 0.4 T, as a function of the photon energy. The minima in the tranmission indicate absorption peaks where a photon with the according energy is absorbed while exciting an electron within an optically active inter-Landau-level transitions (n → n ± 1, see inset). (b) Evolution of the absorption peaks upon variation of the magnetic field, for the B and C transitions. (c) Evolution of the energy of the absorption peaks (measured transmission minima) with the square root of the magnetic field for the transitions A, B and C. From Sadowski et al., Phys. Rev. Lett. 97, 266405 (2007).

  x and Π y to define a pair of ladder operators b and b † , with [b, b † ] = 1 and b † b|µ = µ|µ . This yields the completed quantum states |n ⊗ |µ = |n, µ (5.67) in the case of Landau levels for a parabolic band dispersion and ψ λ,n;µ;ξ = ψ λ,n;µ;ξ ⊗ |µ , i.e. ψ λ,n;µ;K = c λ,n;K |n -1, µ d λ,n;K |n, µ in the valley K et ψ λ,n;µ;K = c λ,n;K |n, µ d λ,n;K |n -1, µ in the valley K
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 57 Figure 5.7: Evolution of Landau levels at the sample edge modelled by a confinement potential V (y) in the y-direction. (a) Landau-level spectrum as a function of the position y y 0 = k x l 2 B. The spectrum may be viewed as a family of 1D bands (as a function of the wave vector in the x-direction) that are flat in the bulk of the sample and acquire dispersion at the sample edges, where the levels are bent upwards. Consequently, all Landau levels successively cross the Fermi level E F when approaching the edge. At the crossing points y n max , they form conducting edge channels. (b) Sketch of the filling: upon approaching the sample edge, the Landau levels, which are filled up to the n-th level in the bulk (ν = n + 1), are successively emptied. This yields steps in the electronic density (in the absence of interactions that have a tendency to smoothen the abruptness of the steps). Due to the bending of the Landau levels ∂V /∂y 0 ∝ ∂V /∂k x , all edge states have a drift velocity of the same sign, i.e. the same chriality.
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 58 Figure 5.8: Sketch of the potential landscape in a quantum-Hall sample. Charged impurities give rise to an electrostatic potential in the bulk of the sample that is represented by equipotential lines. Edge confinement can be modelled by (open) equipotential lines that follow the sample edges and that connect the left contact (at a chemical potential µ L ) to the right one (at a chemical potential µ R ). The left curly arrows indicate the sense of propagation along the equipotential lines, which is imposed by the orientation of the magnetic field (here in the +z-direction.

  figure 5.7(b)], similarly to the ballistic quantum wire studied in section 3.4.1 of chapter 3. The measured Hall resistance turns out to be precisely that associated with this ballistic conductance M e 2 /h, as we show below with the help of the Landauer-Büttiker formalism introduced in the last chapter.Finally, in order to observe a plateau in the Hall resistance, i.e. a resistance that does not vary over a substantial range of the magnetic field in the vicinity of integer values of ν, we need to ensure that the additional electrons promoted to a higher, originally unoccpied, Landau level upon decrease of B (or the additional holes if one increases B) do not contribute to the electric transport. Indeed, we show in the remainder of this chapter that these additional charges get trapped on closed equipotential lines that characterise the electrostatic potential formed by underlying (charged) disorder. Let us now put together, step by step, these different ingredients.

Figure 5 .

 5 Figure 5.10: Percolation picture of the quantum Hall effect. The columns (a), (b) and (c) correspond to differnt values of the filling factor, varying from ν = n (a) to ν = n + δν (b) and ν n + 1 (c, for a half-filled level n if we take into account the spin degeneracy of each Landau level). The first line represents the filling in a diagram representing the density of states, where every Landau level is broadened by disorder. The second line shows the filling of the electrostatic potential landscape of the (originally unoccupied) Landau level n. The light blue areas represent electronic puddles, i.e. the potential minima (or valleys of the potential landscape) filled with electrons, and the dark blue contours respresent the equipotential lines delimiting the puddles. The associated transport measurements for the Hall resistance R H = R xx (red) and the longitudinal resistance R L = R xy (blue) are sketched in the last line, in comparison with the classical Hall resistance (green).

Figure 5 .

 5 Figure 5.11: Experimental verification of the percolation picture within scanningtunneling spectroscopic measurements on a 2D electron gas in negatively doped InSb. The differential conductance dI/dV is locally measured, where I is the tunneling current and V the voltage between the STM tip and the sample. This allows one to probe the metallic states in the system (here the equipotential lines of the impurity potential) at different energies eV above the Fermi level. The differential conductance dI/dV (r) at the position r is proportional to the local density of states, that is the density of states at this position, and sweeping the STM thus allows one to map out the potential landscape of a Landau level (here the lower spin branch of the n = 0 level). Panels (a)-(g) show local maps (on a square of roughly 150 × 150 nm 2 ) upon increase of the voltage V . Panels (c), (d) and (e) show maps close to the percolation threshold, where the equipotential lines (or the edges of the puddles if the Fermi level is at this energy) are extended over larger and larger distances. (h) Density of states integrated spatially (corresponding to the lower spin branch of the n = 0 level). The letters indicate the voltages at which the maps (a)-(g) have been obtained. (i) Numerically calculated local density of states for a potential landscape sharing the same characteristics as the measured one. (j) Map of the measured density of states in the upper spin branch of n = 0 close to the percolation threshold (on a larger scale). From Hashimoto et al., Phys. Rev. Lett. 101, 256802 (2008).
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 5 Figure 5.12: (a) Mesurement of the longitudinal and Hall resistances showing that the twofold spin degeneracy is lifted at high magnetic fields. Plateaus from the ν = 2n series are indicated by the blue numbers while the red numbers denote plateaus at ν = 2n + 1, due to a lifted spin degeneracy. The measurements are performed at T = 1.9 K. Adapted from Suddards et al., New J. Phys. 14, 083015 (2012). (b) Sketch of the Landau-level spectrum at an even-integer filling factor corresponding to a complete filling of all spin branches until the level n -1. (c) in the case of an odd-integer filling, only the lowest spin branch of the last Landau level (here n) is filled (in addition to the lower-lying Landau levels), corresponding to an odd number of edge channels M = 2n + 1 = ν. The Zeeman effect (possibly enhanced by interaction effects) needs to be sufficiently strong to separate sufficiently in energy the spin branches and to place the Fermi level between them.

Figure 5 .

 5 Figure 5.13: Measurement of the quantum Hall effect in graphene (in the Hall-bar geometry). (a) Measurement of the longitudinal and Hall resistances at an electronic density that is fixed by the back gate, as a function of the magnetic field. (b) Measurement of the same resistances at a fixed magnetic field (at 9 T), now as a function of the back-gate voltage that allows one to vary the electronic density in the graphene sample. (c) Sketch of the Landau levels and their associated density of states. From Zhang et al., Nature 438, 201 (2005).
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 61 Figure 6.1: Continuous deformation of a coffee mug into a torus... or the sculpture in the "Grand Hall".
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 63 Figure 6.3: Collective excitation (spin wave) of a ferromagnet. The magnetisation M (r) changes spatially and explores a certain part of the Bloch sphere around its equilibrium value M 0 .
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 64 Figure 6.4: Topological defects. (a) Magnetic monopole (topological defect of a 3D ferromagnet). All spins point in a direction away from the centre of the sphere, which encompasses the defect. (b) Vortex of negative charge in the XY model. (c) Vortex of positive charge in the XY model. (d) Image of the blue path of figure (b) in the space S 1 M of the order parameter (XY phase or angle between the spin and the x-axis). (e) Image of the green path of figure (b) in the space S 1 M . (f) Image of the red path of figure (c) in the space S 1 M .

  Figure 6.5: Left: closed path that an electron follows adiabtically in the first Brillouin zone. Right : projection of the path onto the n-th band. During the course of the path, the system changes adiabatically its energyE n (k(t)), which is E n (k 0 ) = E n (k(T )), at the beginning of the path (t = 0) as well as at the end (t = T ). The blue curve indicates the image E(k(t)) of the path k(t). In the framework of perturbation theory, the system undergoes, all along the path, virtual transitions (red arrows) towards the other bands, here E m (k).

Figure 6

 6 Figure 6.6: (a) Berry curvature, calculated over the entire first Brillouin zone for the complete gapped-graphene model (∆ = 0, or boron nitride), according to equation (2.64), for ∆/t = 0, 1. The wave vectors are measured in units of 1/a and the Berry curvature in units of a 2 . The Berry curvature is concentrated around the points K and K at the corners of the first Brillouin zone, with opposite contributions, while it vanishes in the rest of the first Brillouin zone. These contributions can then be summed up individually, because 1/λ C 1/a, as we have assumed in the continuum limit. (b) Berry curvature of a single massive Dirac fermion calculated in the low-energy model, using equation (6.56), for λC = 10a. Adapted from J.-N. Fuchs et al., Eur. Phys. J. B 77, 351 (2010).
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 67 Figure 6.7: Topological phase transition. We assume that we have at our disposal a (theoretical) button that allows us to continuously change the gap parameter ∆ ξ=+ in the ξ = + valley while the other valley (ξ = -) is not affected by this change. It is purely a spectator. (a) There is a massive Dirac fermion (with ∆ ξ=+ < 0) in the ξ = + valley which contributes Cλ=+,ξ=+ = 1/2 to the Chern number (of the conduction band). Here, the spectator valley contributes herself Cλ=+,ξ=-= -1/2 to the Chern number, which thus vanishes. (b) The gap closes (∆ ξ=+ = 0) at the transition, where the contribution to the Chern number is undefined. (c) The gap opens again but with ∆ ξ=+ > 0 ("inverted gap"). Consequently, the Dirac fermion contributes Cλ=+,ξ=+ = -1/2 to the Chern number, which is then C λ=+ = -1 for the conduction band, since the contribution from the spectator valley has not changed, Cλ=+,ξ=-= -1/2. Let us recall that, in the valence band, the contributions are opposite to those of the conduction band, because of the sum rule (6.35).
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  observables. Nous avons déjà rencontré ce genre de transformations dans le cadre de la mécanique quantique de base lors de la description d'une symétrie (voir aussi la section 2.1 et la discussion des symétries discrètes d'un réseau de Bravais). Ces symétries sont normalement représentées par des opérateurs unitaires, U † = U -1 (voir le cours de Manuel Joffre, PHY430, et le chapitre 2 du poly). Or le physicien hongrois Wigner a montré en 1931 que non seulement les transformations unitaires mais aussi les transformations anti-unitaires peuvent décrire une symétrie. 2 Il s'agit donc d'une transformation anti-linéaire, c'est-à-dire qu'il faut combiner la transformation unitaire à une conjugaison complexe K, U a = U K, (7.3) pour obtenir un opérateur anti-unitaire U a . Essayons maintanant de comprendre si l'opérateur T par renversement du temps est un opérateur unitaire ou anti-unitaire. Nous savons que cet opérateur doit satisfaire les propriétés suivantes :r = T rT -1 = r et p = T pT -1 = -p, (7.4) c'est-à-dire que l'impulsion est inversée en raison du renversement de la flèche du temps, autant la position reste inchangée sous cette transformation. Quid des moments angulaires ? Comme le moment cinétique est le produit (vectoriel) de la position et de l'impulsion, il se transforme comme T LT -1 = -L, (7.5) ce qui doit également être le cas pour le spin S des particules, T ST -1 = -S, (7.6) le spin étant une forme particulière du moment cinétique. De plus, il faut s'assurer que les règles de quantification restent les mêmes sous renversement du temps, i.e. les règles de commutation doivent rester invariantes,[x l , p k ] = i δ k,l et T [x l , p k ]T -1 = T (i δ k,l ) T -1 . (7.7) Or nous avons T [x l , p k ]T -1 = -[x l , p k ] commeseulement les composantes de l'impulsion changent de signe. Pour obtenir les mêmes relations de commutation, il faut que T iT -1 = -i, (7.8) ce qui est précisément assuré par la conjugaison complexe si l'opérateur T est choisi comme un opérateur anti-unitaire. 3 Ce point peut aussi se voir à travers les équations du mouvement induites par les commutateurs. Naturellement, il faut s'assurer que ṙ = p /m autant que ṙ = p/m pour une particule libre décrite par le hamiltonien H = |p| 2 /2m, qui est clairement invariant par renversement du temps, H = H. Sinon, on ne retrouverait pas les équations du mouvement classiques par le théorème d'Ehrenfest. Rappelons les équations de Heisenberg ẋl

T 2 =

 2 .9) ce qui peut être illustré à l'aide d'une construction explicite de l'opérateur renversement du temps. Pour cela, construisons un opérateur qui satisfasse les équations (7.5) et(7.6). Rappelons que les composantes d'un moment cinétique (angulaire ou spin) doivent satisfaire aux règles de commutation[L x , L y ] = i L z et [S x , S y ] = i S z . (7.10)Il faut qu'une des composantes soit imaginaire pure -par convention, on choisit L y et S y -alors que les autres sont réelles. Dans ce cas, nous avonsT L y T -1 = -L y et T S y T -1 = -S y (7.11)par la conjugaison complexe si l'opérateur unitaire U laisse les composantes L y et S y invariantes,U L y U -1 = L y et U S y U -1 = S y , (7.12) tout en changeant U L x/z U -1 = -L x/z et U S x/z U -1 = -S x/z . (7.13) Or, un tel opérateur existe sous la forme d'une rotation par π autour de l'axe y (voir le chapitre 4 du poly de Manuel Joffre), U = e -iπJy/ , (7.14) où J y = L y + S y représente la composante y du moment cinétique total. L'opérateur recherché s'écrit alors T = e -iπJy/ K. (7.15) Alors que le moment cinétique orbital L est caractérisé par un nombre entier, le spin peut prendre des valeurs demi-entières. Par conséquent, en utilisant l'axe y, de manière un peu inhabituelle, comme axe de quantification, i.e. en prenant les états propres de S y , S y |s, m y = m y |s, m y , les nombres quantiques m y sont entiers si le spin s l'est et demi-entiers si le spin est lui-même un demi-entier. L'application de T 2 sur ces états donne alors T 2 |s, m s = e -2iπJy/ |s, m y = e -2iπmy |s, m y = ±|s, m y , (7.16) avec le signe + pour des particules de spin entier (bosons) et le signe -pour des particules de spin demi-entier (fermions). Ce que nous avons montré ici de manière abstraite, peut s'illustrer de manière plus directe dans le cas des spin s = 1/2, avec S y = ( /2)σ y , en termes de la matrice de Pauli σ y . Dans ce cas, le développement en série de 4 U = e -iπσy/2 = -iσ y K(-iσ y )K = -iσ y (-iσ y )K 2 = -σ 2 y = -1, (7.19) comme iσ y est réel et K 2 = 1. Terminons cette section avec une remarque sur le comportement des champs électromagnétiques sous l'opération de renversement du temps. Nous avons déjà évoqué plus haut que les lois newtoniennes sont invariantes par renversement du temps, ce qui a pour conséquence que les forces F le sont aussi T FT -1 = F. (7.20) Que cela implique-t-il pour les forces électromagnétiques ? La force exercée sur une particule chargée de masse m et de charge e est donnée par mr = e (E + v × B) .

  ) avec un état propre |ψ . Il est d'abord à noter que si |ψ est un état propre du hamiltonien H, T |ψ l'est aussi -c'est justement le sens d'une symétrie. Il reste alors à montrer que |ψ et T |ψ ne sont pas colinéaires, c'est-à-dire que T |ψ = c|ψ où c est un nombre complexe. La preuve du théorème de Kramers se fait par l'absurde : admettons le contraire, qu'il n'y a pas de dégénérescence, i.e. que T |ψ = c|ψ , et appliquons une deuxième fois l'opérateur T . D'un côté, nous avons T 2 |ψ = -|ψ (7.24) comme nous considérons un état fermionique. L'autre côté de l'équation donnerait T (T |ψ ) = T c|ψ = c * T |ψ = c * c|ψ = |c| 2 |ψ , (7.25) où nous avons utilisé le fait T agit sur c par conjugaison complexe. Ceci mènerait alors à la condition absurde |c| 2 = -1, ce qui montre que |ψ et T |ψ sont des états linéairement indépendants et que les niveaux d'énergie de H sont donc doublement dégénérés.
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 71 Figure 7.1: Illustration du théorème de Kramers pour des bandes électroniques dans un système invariant par renversement du temps. Alors que la dégénérescence de spin des bandes peut généralement être levée, le théorème de Kramers nous assure que les deux branches de spin (bleue pour le spin ↑ et rouge pour le spin ↓) de chaque bande se croisent nécessairement en des points de la première Brillouin qui sont invariants par renversement du temps. Il s'agit des impulsions invariantes par renversement du temps (TRIM) Γ au centre et G/2 aux bords de la première zone de Brillouin, et les branches de spin respectent la symétrie E n,↑ (k) = E n,↓ (-k).
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 72 Figure 7.2: Transition de phase topologique (reprise de la figure 3.9). Nous considérons avoir à notre disposition un bouton théorique (paramètre de contrôle) qui nous permet de changer continûment le paramètre de gap ∆ ξ=+ dans la vallée ξ = + alors que la vallée (ξ = -) n'est pas affectée par ce changement. Elle est purement spectatrice.
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 73 Figure 7.3: Modèle de Haldane. À gauche : lors d'un saut de k à l l'électron acquièrt une phase φ et -φ pour le saut inverse de l à k. À droite : représentation des sauts entre deuxièmes plus proches voisins sur le réseau en nid d'abeille où nous avons rajouté un troisième vecteur de Bravais (redondant) a 3 = a 1 -a 2 .
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 74 Figure 7.4: Bandes d'énergie dans le modèle de Haldane en faisant varier le saut entre deuxièmes plus proches voisins t . Les énergies sont tracées en unités de t, et nous avons choisi un paramètre de gap de ∆/t = 0, 5 ainsi qu'une phase φ = π/3. Les figures principales montrent les bandes pour k y = 0 alors que les figures inserrées donnent un aperçu de la structure de bande complète en fonction de k x et de k y . (a) Pour t = 0, nous retrouvons le spectre du nitrure de bore invariant par renversement du temps. (b) À t /t = 0.07, le gap dans la vallée K est diminué par rapport à celui à K (vallée spectatrice). (c) Le gap est complètement fermé à t /t = 1/9 0, 11. (d) À t /t = 0, 18 le gap s'est à nouveau ouvert, tout en s'inversant (changeant de signe).
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 75 Figure 7.5: Répartition de flux à travers un hexagone dans le modèle de Haldane.
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 76 Figure 7.6: Diagramme de phase du modèle de Haldane en fonction de φ et ∆/t . Les phases sont caractérisées par le nombre de Chern, et on rappelle schématiquement les bandes d'énergie correspondantes.
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 77 Figure 7.7: Réalisation du modèle de Haldane dans un réseau optique. (a) Arrangement des lasers et des miroirs. (b) Esquisse de la première zone de Brillouin avec la position des points de Dirac. (c) Fraction d'atomes se trouvant dans la deuxième bande (∼ bande de conduction) après une oscillation de Bloch en fonction du paramètre de gap ∆ AB à φ = 0. (d) Fraction d'atomes dans la deuxième bande en fonction de la phase φ à ∆ AB = 0. D'après Jotzu et al., Nature 515, 237 (2014).
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 78 Figure 7.8: Mesure expérimentale du diagramme de phase du modèle de Haldane. En mesurant le maximum de la fraction d'atomes transférés à la bande supérieure lors d'une oscillation de Bloch en fonction de ∆ AB et φ [partie (b)], on peut mesurer les lignes de transition du diagramme de phase [partie (c)]. D'après Jotzu et al., Nature 515, 237 (2014).
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 79 Figure 7.9: Structure de bandes du modèle de Kane et Mele. La paire de bandes bleues représente les bandes des électrons de spin ↑ et la paire des bandes rouges celles des électrons de spin ↓.

Figure 7 .

 7 Figure 7.10: Reprise de Bernevig et al., Science 314, 1757 (2006). (A) Structure de bande de HgTe (à gauche) et de CdTe (à droite) au voisinage du point Γ. Le niveau de Fermi se trouve à énergie nulle. Alors que CdTe est un isolant trivial, les bandes Γ 6 et Γ 8 sont inversées pour HgTe. Il s'agit pourtant d'un métal et non pas d'un isolant topologique comme les deux bandes Γ 8 ont des courbures différentes tout en se touchant au TRIM Γ. (B) Hétérostructure CdTe/HgTe/CdTe. En raison de leur symétrie les mêmes bandes doivent être connectées dans les deux matériaux, avec une inversion dans la partie HgTe au milieu, où la quantification de confinement a pour effet la quantification du mouvement dans la direction z de l'empilement. Si la largeur d de la couche HgTe est en-dessous d'une valeur critique d c , le niveau de trou H1 (ligne en tirets rouge, associé à la bande Γ 8 , en rouge) reste plus bas en énergie que le niveau électronique E1 (tirets bleus, associé à la bande Γ 6 , en bleu) de sorte que l'inversion de bandes n'est pas effective. Cela change pour des largeurs d > d c où le niveau E1 se trouve désormais en-dessous du niveau de trou H1. Dans ce cas, la couche de HgTe est un isolant topologique 2D dû au confinement dans la direction z et à la libre propagation dans le plan xy.

Figure 7 .

 7 Figure 7.11: Changement de signe du gap ∆ ξ dans la vallée ξ à travers une interface entre un gap inversé à gauche (∆ ξ < 0) et un gap direct à droite (∆ ξ > 0). Nous considérons une interface de largeur dans laquelle le gap varie effectivement.

Figure 7 .

 7 Figure 7.12: Esquisse des états de bord : état de surface chiral (topologique) n = 0 (ligne rouge) et états massifs pour n = 0 (lignes bleues). En bleu, nous avons également indiqué les états de volume avec le paramètre de gap ∆.

  Figure 7.13: (a) Géométrie d'une barre avec un deuxième bord à x = -L. Nous y avons rajouté la variation du paramètre de gap dans ce dispositif (courbe rouge). (b) Dispersion des états de bord pour le cas où le gap change de signe aux bord dans la vallée ξ = +. Il y a désormais deux états chiraux : à x = 0, nous avons un état de bord avec une vitesse de groupe v dans la direction y parallèle au bord (ligne continue) et à x = -L un état de vitesse -v (ligne en pointillé). (c) Rajout des états de bord dans la structure de bande originale, les autres bandes indiquant les bandes de volume.

Figure 7 .

 7 Figure 7.14: Mesures de l'effet Hall quantique anomal dans un isolant topologique 2D à base de (Cr 0.12 Bi 0.26 Sb 0.62 )Te 3 . (a) Image de l'échantillon. (b) Mesure des résistances longitudinales et transverses en fonction du champ magnétique qui sert à orienter l'aimantation du système. Les directions sweep indiquent l'évolution du champ magnétique qui détermine, via une hystérésis, l'histoire du système. (c) Résistances à deux terminaux R 16,16 et à quatre terminaux R 16,36 en fonction de l'évolution du champ magnétique.Le courant passe par les contacts 1 et 6. On trouve une quantification très proche de h/e 2 pour ce qui correspond à la résistance de Hall alors que ce qui correspond à la résistance longitudinale s'annule, même en l'absence du champ magnétique. D'aprèsBestwick et al., Phys. Rev. Lett. 114, 187201 (2015).

  Figure 7.15: (a) Structure de bande d'un isolant topologique avec symétrie de renversement du temps, E ↑ (k) = E ↓ (-k). Il y a deux paires d'états de bord. Sur le bord à x = 0 (traits pleins), les états issus des deux spins différents ont une chiralité opposée (états hélicaux ) qui est inversée au bord à x = -L (traits en pointillé). (b) Orientation des états sur l'échantillon.
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 716 Figure 7.16: Mesures de l'effet Hall quantique de spin dans une configuration à six terminaux, dans deux puits quantiques CdTe/HgTe/CdTe de taille différentes. Les résistances sont tracées en fonction d'une tension de grille V * qui sert à contrebalancer un éventuel dopage accidentel. D'après Roth et al., Science 325, 325 (2009).

  en très bon accord avec les valeurs mesurées (voir la figure 7.16). Remarquons enfin qu'il est plus difficile, dans le cas d'un effet Hall quantique de spin, de parler d'une résistance transverse de Hall. Alors que les arguments basés sur la courbure de Berry et le nombre de Chern indiquent une résistivité de Hall nulle (voir les sections 7.1 et 7.3), nous remarquons que la résistance à quatre terminaux qui, à titre d'exemple, fait intervenir les contacts 2 et 5, R 14,25 =V 2 -V 5 nulle. En revanche, la résistance transverse s'annule lors d'une mesure de la tension entre deux contacts arrangés de manière symétrique sur des bords opposés, comme par exemple entre les contacts 2 et 6 (ou 3 et 5), R 14,26 = R 14,35 = 0.(7.120)

  (formulées en 1924) ψ(r, t) ∝ exp[i(Et -p • r)/ ], où l'énergie est liée à la pulsation de l'onde, E = ω, et l'impulsion à son vecteur d'onde, p = k. Afin d'obtenir l'équation de Schrödinger, il suffit d'interpréter l'équation relativement simple par rapport à celle de Heisenberg qui est mathématiquement plus lourde. 1 Naturellement, reprocher à Schrödinger d'avoir mis un an pour trouver la mécanique ondulatoire montre plutôt l'arrogance d'une personne du XXIème siècle qui utilise quotidiennement la mécanique quantique. On peut néanmoins avancer une raison possible : la relativité dont les scientifiques avaient connaissance déjà à cette époque. Or l'équation de départ (8.1) est non relativiste, et le "bon" point de départ aurait été la relation relativiste, connue à l'époque, 2 E = m 2 c 4 + p 2 c 2 (8.3) pour une particule libre de masse m et où c est la vitesse de la lumière.

E

  = mc 2 + pc. (8.4) Bien évidemment, cette expression n'a aucun sens car on ne peut pas faire la somme d'un scalaire et d'un vecteur ! Afin d'y remédier, Dirac a introduit des objets mathématiques auxiliaires β et α = (α x , α y , α z ) E = βmc 2 + α • pc, (8.5) ce qui permet maintenant d'utiliser la substitution (8.2) afin d'obtenir l'équation de Diraci ∂ ∂t ψ(r, t) = βmc 2 -i cα • ∇ ψ(r,t), (8.6) qui a comme solution des ondes planes ψ(r, t) ∝ exp[i(p•r-Et)/ ]. Quelle est la nature de ces nouvelles quantités β et α ? D'un point de vue de la dimension physique, nous constatons qu'il s'agit d'objets purement mathématiques sans unité. Afin de les spécifier davantage, il faudrait lever au carré cette équation, ou plutôt l'équation (8.5),E 2 = β 2 m 2 c 4 + (α 2 x p 2 x + α 2 y p 2 y + α 2 z p 2 z )c 2 + i=x,y,z (βα i + α i β)p i mc 3 + i =j (α i α j + α j α i )p i p j c 2 .(8.7)Afin d'obtenir l'équation de départ, E 2 = m 2 c 4 + p 2 c 2 , il faut que tous les termes mixtes qui font intervenir des produits p x p y , p x p z , p y p z , et p i m de la deuxième ligne (avec i = x, y, z) s'annulent. Cela nécessite que les produits vérifientα i α j + α j α i = 0 et βα j + α j β = 0, (8.8) pour i = j, alors que α 2 j = 1 et β 2 = 1. (8.9) Nous mesurons alors le prix à payer pour le truc de Dirac : ses objets auxiliaires sont des objets mathématiques qui anti-commutent et qui doivent donc être représentés par des matrices. Ces matrices doivent en plus être hermitiennes afin que le hamiltonien le soit aussi, et la dernière équation nous indique qu'elles sont unitaires. Si l'on rénomme β = α 0 , les équations (8.8) et (8.9) peuvent s'écrire de manière compacte {α µ , α ν } = 2δ µ,ν , (8.10) où µ = 0, 1, 2, 3 (avec l'identification des indices x = 1, y = 2 et z = 3) et les accolades désignent l'anti-commutateur {A, B} = AB + BA entre deux matrices (ou opérateurs) A et B. L'équation (8.10) décrit une algèbre de Clifford. Nous connaissons déjà un jeu de matrices qui satisfont cette algèbre : ce sont les trois matrices de Pauli σ x , σ y et σ z . Or, comme ces matrices forment aussi une base (avec la matrice unité I) de toutes les matrices 2 × 2 hermitiennes, nous ne pouvons construire une troisième matrice 2 × 2 hermitienne qui anti-commute avec les trois matrices de Pauli. Autant les matrices de Pauli suffisent alors pour décrire l'équation de Dirac en deux dimensions d'espace, avec α 0 = σ z , α 1 = σ x et α 2 = σ y , 4 il faut chercher une représentation par des matrices plus grandes en trois dimensions spatiales. Or, pour représenter l'algèbre de Clifford par des matrices, il faut faire appel à des matrices 2n × 2n, et la dimension minimale des matrices en trois dimensions d'espace est donc 4 × 4. 5 Il y a plusieurs représentations possibles des matrices 4×4. Génériquement, on peut se servir d'un deuxième jeu de matrices de Pauli, τ x , τ y et τ z (et la matrice unité I), et faire les produits tensoriels avec le premier jeu, τ i ⊗σ j , afin d'obtenir quatre matrices 4 × 4 qui anti-commutent. Au vu du grand nombre de ces matrices, nous avons plusieurs choix (ou représentations) possibles pour les matrices α µ . Par exemple, la représentation standard, β = τ z ⊗ I et α j = τ x ⊗ σ j , donne un hamiltonien H r.st. = mc 2 I cp • σ cp • σ -mc 2 I . (8.11) Alternativement, la représentation (dite de Weyl ) β = -τ x ⊗I et α j = τ z ⊗σ j , donne lieu à un hamiltonien de la forme H r.W = cp • σ -mc 2 I -mc 2 I -cp • σ . (8.12)

  les fonctions d'onde sont maintenant des spineurs à quatre composantes. La diagonalisation du hamiltonien nous donne deux bandes d'énergie doublement dégénérées E λ (p) = λ m 2 c 4 + p 2 c 2 . (8.13) En matière condensée ou en théorie des bandes, nous avons aujourd'hui l'habitude de ce jeu de bandes qui décrivent d'un côté la bande de conduction λ = + (des électrons) et de l'autre la bande de valence λ = -, mais ce n'était pas le cas en 1928 quand Dirac a proposé son équation. Beaucoup de scientifiques ne l'ont pas pris au sérieux justement pour cet "artefact" de solutions d'énergie négative ! Cela n'avait pas de sens autant que Dirac montrait une certaine audace à l'époque en postulant que ces solutions d'énergie négative décrivent physiquement une mystérieuse anti-particule (ici le positron de charge +e opposée à celle de l'électron). Pourtant son interprétation audacieuxe s'est avérée être la bonne, avec la découverte expérimentale du positron par Andersen quatre ans plus tard en 1932. Notons que le concept d'anti-particule rentrait en résonance précisément avec l'établissement de la théorie des bandes dans les solides par Bloch (également en 1928), où les anti-particules paraissent naturellement sous la forme de trous (notion introduite par Peierls) dans des bandes de valence de courbure (et donc de masse) négative. Il est enfin à noter que les deux bandes, d'énergie positive et négative, sont doublement dégénérées : c'est précisément la double dégénérescence de spin qui émerge de manière naturelle via les matrices de Pauli σ, qui représentent le spin 1/2 des fermions décrits par l'équation de Dirac.
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 81 Figure 8.1: Mesure des états de surface de Bi 2 Se 3 par la technique d'APRES à la surface (111). La figure (a) montre l'évolution de la surface de Fermi de l'état de surface (dans le plan k x -k y ) en fonction d'un dopage (en trous) par l'absorption de NO 2 . La figure (b) montre l'énergie de cet état à k y = 0, en fonction de k x . Seuls les états occupés sont observables. Notons que sur les figures à gauche sont visibles aussi quelques états de la bande de conduction de volume (cercle plein). D'après Hsieh et al., Nature (London) 460, 1101 (2009).
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 82 Figure 8.2: Calculs numériques de structures de bandes pour Sb 2 Se 3 (a), Sb 2 Te 3 (b), Bi 2 Se 3 (c) et Bi 2 Te 3 (d). Il s'agit ici des bandes 2D sur la surface (111) de cette famille de matériaux. La barre sur les lettres, Γ, M et K indique respectivement la projection des points Γ, M et K de la première zone de Brillouin sur cette surface. D'après Zhanget al., Nat. Phys. 5, 438 (2009).

  ∆(z/ ) = ∆ tanh(z/ ),(8.16) qui varie entre une valeur négative, -∆ pour z/ 0, et positive, ∆ pour z/ 0. Ce modèle peut être traité de la même manière que le modèle 2D discuté dans la section 7.5, en linéarisant le gap ∆(z/ ) ∆z/ , et nous rappelons donc les calculs de manière succincte ici. Afin de retrouver une représentation canonique en termes d'opérateurs d'échelle et de longueur effective S la transformation unitaire U = exp(iπτ y ⊗ I/4) qui échange les matrices de Pauli τ x et τ z . Ceci donne un hamiltonien
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 83 Figure 8.3: Chiralité du fermion de Dirac sans masse à la surface d'un isolant topologique 3D. L'orientation du spin de l'électron est liée à son vecteur d'onde : à énergie constante dans la bande de conduction, le spin tourne dans le même sens que le vecteur d'onde lorsqu'il fait un tour sur la surface de Fermi autour du point q = 0 (dans le sens inverse des aiguilles d'une montre). D'après Hasan et Kane, Rev. Mod. Phys. 82, 3045 (2010).

  . avec un dénominateur impair au lieu de demi-entier. Ceci a en effet été trouvé de manière expérimentale, et nous reproduisons sur la figure 8.4 les résultats d'une expérience de Yoshimi et al. de 2015 sur un film d'isolant topologique (Bi (1-x) Sb x ) 2 Te 3 d'une épaisseur de 8 nm. Les figures 8.4(a) et (b) montrent respectivement les mesures de résistances longitudinale et de Hall pour un film avec une concentration de x = 0, 84 de Sb, et (e) et (f) montrent les mêmes résistances pour un film avec x = 0, 88.
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 84 Figure 8.4: Mesure de l'effet Hall quantique à la surface d'un isolant topologique 3D.

  (a) et (b) montrent les résistances longitudinales et de Hall, en fonction d'une tension de grille, d'un film de (Bi (1-x) Sb x ) 2 Te 3 avec x = 0, 84 et (e) et (f) celles d'un film avec une concentration x = 0, 88. (c) et (d) montrent respectivement les conductivités obtenues par les résistences (a) et (b), de même que (g) et (h) montrent celles associées à (e) et (f). Le schéma (i) représente les niveaux de Landau des états de surface chiraux lorsque le point de neutralité de charge des deux surfaces se trouve à la même énergie, alors que les énergies du point de neutralité de charge [et du niveau de Landau n = 0)] sont différentes sur les surfaces opposées sur le schéma (j). D'après Yoshimi et al., Nat. Comm. 6, 6627 (2015).

  Berry peut s'écrire de manière plus compacte à l'aide d'une transformation d'échelle des vecteurs d'onde, q = (|v x |q x , |v y |q y , |v z |q z ), de sorte que B λ (q) = -λsgn(v x v y v z un résultat remarquable ! En comparaison avec l'électromagnétisme, la courbure de Berry a la forme d'un champ généré par un monopôle, plus précisément par un monopôle magnétique en raison du lien intime entre la courbure de Berry et le champ magnétique. Ce monopôle, que nous avons déjà rencontré dans l'introduction aux concepts topologiques dans la section 6.1, est quantifié et donné par le flux de Berry (8.28) à travers la surface d'énergie constante,9 C W = -λsgn(v x v y v z ). (8.32)
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 85 Figure 8.5: Schéma des bandes d'énergie obtenues par le hamiltonien (8.33). La dispersion est isotrope dans le plan k x -k y représenté par un seul axe k dans ce plan. Au voisinage des deux points de contacts se trouvent les fermions de Weyl de charge topologique opposée. Si l'on considère la structure de bande comme celle assiciée à un système 2D (en fonction de k x et k y ), où la composante k z du vecteur d'onde joue le rôle d'un paramètre, le paramètre de gap est inversé entre les deux points.

  0 et m 0 > 0, ce hamiltonien donne une structure de bande avec deux fermions de Weyl situés aux points k w = (0, 0, √ 2∆m 0 / ) et -k W (voir la figure 8.5).10 Le développement en série autour des points ξk w , donne le hamiltonien (8.24) dans les deux vallées avec une vitessev z = -ξ 2∆/m 0 (8.34) dépendant de ξ. La charge topologique C ξ W = λξ sgn(v) (8.35)est alors de signe opposé dans les deux vallées, comme attendu. Le modèle (8.33) nous permet de comprendre une propriété remarquable des semimétaux de Weyl : l'apparition d'arcs de Fermi à la surface 2D de ces matériaux. Ce terme désigne la situation inhabituelle d'une surface de Fermi qui n'est pas fermée. Normalement, la surface de Fermi sépare les états occupés des états inoccupés et sa projection à la surface du matériau devrait alors donner lieu à une ligne fermée. Or, ce n'est pas le cas dans les semimétaux de Weyl, où ces arcs relient les différents points de Weyl projetée sur la surface du cristal et ont été mesurés par ARPES. Ceci est montré sur la figure 8.6, où nous reproduisons les mesures spectroscopiques de Xi et al. sur la surface (001) d'un cristal de TaAs qui contient plusieurs points de Weyl [figure 8.6(E)] à l'intérieur de la première zone de Brillouin. Leur projection sur la surface (001) est montrée sur la figure (G), avec des arcs de Fermi calculés numériquement, ce qui reproduit bien les arcs mesurés [figure8.4(H)]. Comment pouvons-nous comprendre les aspects principaux de ces mesures, i.e. l'apparition d'un arc de Fermi et non pas d'une ligne fermée, dans le cadre de notre modèle ? Pour cela, nous interprétons le hamiltonien (8.33) comme une famille de hamiltoniens 2D indexés par la composante 10 Nous pouvons nous convaincre que ce modèle brise la symétrie par renversement du temps si k = 0 est un TRIM. Dans ce cas, h x (k) devrait être une fonction paire, ce qui n'est pas le cas. Si k = 0 n'est pas un TRIM, la symétrie par renversement du temps nous obligerait d'avoir une deuxième paire de fermions de Weyl, en accord avec les arguments qui font appel à la charge topologique.

Figure 8 . 6 :

 86 Figure 8.6: Observation par la technique ARPES des arcs de Fermi sur une surface du semimétal de Weyl TaAs. (E) Position des points de contact dans la première zone de Brillouin. (G) Première zone de Brillouin projetée sur la surface (001) du cristal mesurée par ARPES, dont les résultats sont montrés sur la figue (H). D'après Xu et al., Science 349, 613 (2015).

  .36) qui change de signe sur la ligne k z aux points de Weyl ±k W . Cela implique que le demi-nombre de Chern C λ,kz = -λ 2 sgn(∆ kz ) (8.37) y change de signe également. Selon notre discussion de la section 6.4.1, nous avons alors affaire à une transition de phase topologique le long de l'axe k z reliant les deux points de Weyl, avec un gap inversé soit entre les deux points de Weyl (pour |k z | ≤ √ 2∆m 0 / ) ou à l'extérieur. Considérons que le paramètre de gap soit inversé entre les deux points de Weyl. 11 Selon la correspondance volume-bord discutée dans la section 7.5, cela implique l'existence d'un état de bord si le système est délimité dans une direction différente de k z . Pour des raisons d'illustration, nous choisissons l'axe k x . Nous trouvons alors, à chaque valeur de k z ∈ [-√ 2∆m 0 / , √ 2∆m 0 / ] où le paramètre de gap est inversé, un état de bord chiral avec une dispersion dans la direction k y E kz (k y ) = vk y ,

Figure 8 . 7 :

 87 Figure 8.7: Apparition schématique de l'arc de Fermi. Le système est restreint dans la direction x alors que les deux points de Weyl sont positionnés sur l'axe k z . La famille d'états de bords, paramétrés par la composante k z et dispersant dans la direction k y , donne lieu au plan de couleur rose. Si l'interface est graduée, avec un paramètre de gap qui y varie lentement, on peut aussi avoir des états de surface à énergie plus élevée (feuillets jaunes), qui correspondent à des nombres quantiques n = 0, comme pour les isolants topologiques. D'après Mukherjee et al., Phys. Rev. B 100, 195412 (2019).
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  the reciprocal lattice is spanned by the primitive vectors a * i and has nodes at the positions G µ = µ 1 a * 1 + ... + µ d a * d , where µ = (µ 1 , ..., µ d ) is a set of d positive or negative integers. The basis vectors of the two lattices, direct and reciprocal, are related by the "orthogonality" relations a

i • a * i = 2πδ i,i .

(2.19) While this might yet seem awfully formal, consider a displacement of the Bloch wave function in reciprocal space by a reciprocal-lattice vector, i.e. we "translate" the wave vector k by the quantity G µ , k → k + G µ . You may immediately see from the definition of the Bloch wave function (2.11), the relation (2.19

Table 2 . 1 :

 21 Comparison between the original basis of the periodoc Hamiltonian and the

	Bloch basis.

  .54)As mentioned above, a 31 is the adjoint element of the upper right element -T 23 of the reduced conduction matrix (without the unit 2e 2 /h), and it is thus given by the determinant a 31 = T 31 T 42 -T 32 T 41 ,

					(4.55)
	so that				
	R 12,34 =	h 2e 2	T 31 T 42 -T 32 T 41 |D|	.	(4.56)

  propres comme T change k en -k et le spin s en -s. Il en résulte une symétrie du spectre où l'énergie de l'état |u n,-s (-k) doit forcément être la même que celle de l'état |u n,s (k) ,

		26)
	pour un hamiltonien de Bloch invariant par renversement du temps et
	T |u n,s (k) = |u n,-s (-k)	(7.27)
	pour les états E n,s (k) = E n,-s (-k).	(7.28)
	Au vu de ce résultat, il y a deux commentaires à faire.	
	1. Les bandes ne sont pas forcément dégénérées pour tout vecteur d'onde
	: à chaque valeur du vecteur d'onde k, il y a deux états s = + et s = -
	sans que l'on ait forcément E n,+ (k) = E n,-(k). Dans les modèles de
	liaisons fortes discutés jusqu'à présent, c'était pourtant le cas, d'où une
	double dégénérescence de spin de chaque bande. En revanche, ce n'est
	plus le cas si la dynamique des électrons sur le réseau dépend elle-même
	de l'orientation du spin, situation rencontrée dans des matériaux avec
	un couplage spin-orbite conséquent.	
	2. L'indice s désigne normalement le spin, s = ±, selon un axe de quan-
	tification. Mais ce n'est pas nécessairement le cas : il désigne plus
	généralement un degré de liberté interne qui peut prendre deux valeurs
	(on parle d'un degré Z 2 ). Par exemple dans le cas d'un couplage
	spin-orbite, ce nombre quantique peut représenter un degré de liberté
	plus compliqué parce que le spin (ou son axe de quantification) peut
	dépendre de la valeur du vecteur d'onde. Cela dit, nous considérons
	dans la suite ce degré comme la composante z du spin, afin de ne pas
	compliquer la discussion. 5	

  .30) Nous identifions donc, à l'intérieur de la première zone de Brillouin, quatre (en 2D) ou huit (en 3D) impulsions invariantes par renversement du temps (en anglais time-reversal-invariant momenta, ou TRIM ), et le théorème de Kramers y impose une double dégénérescence ou, c'est équivalent, un croisement de bandes à ces points. Cette situation est esquissée sur la figure 7.1. Nous retenons alors que la dégénérescence de spin de chaque branche peut être levée en principe, même en l'absence d'un effet Zeeman, mais si la symétrie par renversement est respectée, les branches de spin se croisent aux TRIM.

	et le spectre s'écrit alors E ↑ (k) = E ↓ (k), pour tout vecteur d'onde k. Dans	
	ce cas la symétrie par renversement du temps (7.26) impose l'identité	
	Symétrie par renversement du temps dans des systèmes sans cou-
	plage spin-orbite	
	Il est légitime de se demander si de telles situations où la dégénérescence
	est levée seulement aux TRIM existent. En effet, dans les modèles de li-
	aisons fortes que nous avons étudiés jusqu'à présent (graphène ou nitrure de
	bore, réseau carré ou triangulaire), les sauts entre sites ne dépendent pas de
	l'orientation du spin. Dans ce cas, le spin se manifeste simplement par une
	double dégénérescence globale des bandes calculées dans le modèle de liaisons
	fortes, c'est-à-dire	
	H ↑ (k) = H ↓ (k)	(7.31)

  33)pour le spectre. Les bandes sont alors symétriques sous k → -k et montre une double dégénérescence de spin globale.Comment est-ce qu'on peut échapper à cette identité relativement ennuyeuse, qui ne permettrait pas, comme nous le verrons plus loin, d'avoir des structures de bandes topologiquements intéressantes dans des systèmes qui respectent la symétrie par renversement du temps ? Comme nous l'avons évoqué plus haut, il faut introduire une dépendance des paramètres de saut de l'orientation du spin des électrons qui se déplacent sur le réseau. C'est précisément le couplage spin-orbite qui assure cette propriété. Sans rentrer dans les détails, le couplage spin-orbit trouve son origine dans la mécanique quantique relativiste et indique que la trajectoire d'un électron peut dépendre de l'orientation de son spin. En effet, via le couplage spin-orbite le produit vectoriel entre l'impulsion p de l'électron et un champ électrique (local) E agit comme un champ magnétique local, et le couplage spin-orbite donne ainsi une contributionH SO = λ SO (p × E) • σ (7.34) au hamiltonien, où σ représente le spin, et λ SO est une constante qui mesure ce couplage. 6 Notons enfin que le terme de spin-orbite (7.34) respecte la symétrie par renversement, T H SO T -1 = H SO , comme il fait intervenir le produit de l'impulsion et du spin qui sont impairs sous T alors que les autres termes sont pairs et λ SO est réel afin que l'opérateur soit hermitien. Nous terminerons cette section sur la symétrie par renversement du temps avec une discussion de son implication pour la courbure de Berry. Regardons d'abord le cas plus simple d'une bande électronique sans spin (par exemple dans le cas d'un modèle de liaisons fortes avec des sauts indépendants du spin). Dans ce cas, les états propres associés à la bande E n (k) se transforment comme |u n (-k) = T |u n (k) = |u n (k) * , (7.35) sous l'action de l'opérateur T , car seule la conjugaison complexe est pertinente, et la courbure de Berry se transforme, à l'aide de l'équation (??), comme

	7.1.2 Courbure de Berry dans des systèmes respectant
	la symétrie par renversement du temps
	Bref aperçu du couplage spin-orbite

  Nous avons déjà utilisé implicitement cette propriété dans le cas sans spin, où l'opérateur T est reduit à la conjugaison complexe, mais elle est valable plus généralement. Considérons le produit scalaire dans une base orthonormale

			k),	(7.40)
	qui n'est plus nécessairement nul comme dans le cas d'une courbure anti-
	symétrique (7.36) d'une bande avec une dégénérescence de spin pour tout
	vecteur d'onde. Notons que la propriété (7.39) de la courbure de Berry
	implique que			
		C n,↑ = -C n,↓ ,	(7.41)
	c'est-à-dire que les nombres de Chern des deux branches de spin de chaque
	bande sont opposés, de même que les contributions à la conductivité de Hall
	σ H =	e 2 h	(C n,↑ + C n,↓ ) = 0,	(7.42)

7

  Autant que la deuxième situation est plus naturelle et régulièrement rencontrée dans des matériaux, l'inclusion du spin et du couplage spin-orbite rend les systèmes plus complexe. Nous commençons donc notre présentation des modèles concrets par un système simple qui ne prend pas en compte le spin et qui brise explicitement la symétrie par renversement du temps. 8 C'est en effet en 1988 que le théoricien Haldane a proposé un modèle de liaisons fortes qui représente une variante du graphène que nous avons introduit aux chapitre 2. En plus des sauts t entre plus proches voisins, il prend en compte des sauts entre deuxièmes plus proches voisins t exp(±iφ) -le caractère complexe, encodé dans la phase exp(±iφ) de ces sauts, où le signe sera spécifié plus loin, est justement à l'origine de la brisure de symétrie par renversement du temps.

					(7.44)
	et, dans le cas d'un isolant, sa valeur est quantifiée,	
	σ H spin =	1 2π	n occ.	C n,↑	(7.45)
	ce qui est à l'origine de l'effet Hall quantique de spin que nous discuterons
	en détail dans la section 7.5.3.				
	7.2 Modèle de Haldane -un isolant topologique
	en l'absence de symétrie par renversement
	du temps				
	Comme nous l'avons vu dans la section précédente, des bandes topologique-
	ment intéressantes émergent seulement (i) si la symétrie par renversement
	du temps est brisée ou (ii) si le matériau présente un fort couplage spin-
	orbite.				

  a 2 du graphène. Ce qui est nouveau dans le modèle de Haldane, ce sont les

  .59) avec un paramètre de gap (ou une masse) dépendant de la vallée. Rappelons que cette dépendance du gap de l'indice de vallée est une conséquence directe de la brisure de symétrie par renversement du temps. Une observation importante consiste en la possibilité de changer le signe du gap dans une des deux vallées en faisant varier le paramètre de saut t ou la phase φ. En se plaçant, comme pour la figure de la structure de bande (figure7.4), à une valeur 0 < φ < π, le gap dans la vallée K change de signe à une valeur de 12 Alors que le signe de la masse dans la vallée K reste toujours + (pour ∆ > 0), celui de la masse dans la vallée K change de signe entre + pour t < t c etpour t > t c . Il en suit que le nombre de Chern total estC λ = 0 pour t < t c et C λ = λ pour t < t c ,(7.62) et nous avons bien une transition de phases topologique décrite par un changement de nombre de Chern lorsque le gap se ferme. Le diagramme de phase complet du modèle de Haldane est tracé sur la figure 7.6 en fonction des paramètres φ et ∆/t , en rappelant schématiquement la structure de bande associée à chacune des phases. Les lignes de transition représentent la condition (7.60), équivalente à l'équation Chern non nul montre l'effet Hall quantique anomal lorsque le niveau de Fermi se situe dans le gap entre les bandes. C'est aussi le cas ici, et la phase désignée par C λ = -λ montre alors une conductivité de Hall de σ H = e 2 /h (comme c'est la bande de valence λ = -qui est remplie) alors que la phase avec C λ = λ a une conductivité de Hall de σ H = -e 2 /h même s'il n'y a pas de champ magnétique externe. C'est pour cette raison que Haldane a parlé, dans le contexte du système présent, d'un effet Hall quantique sans champ magnétique ou d'un effet Hall quantique anomal -mais, comme nous le savons désormais, il faut une brisure de la symétrie par renversement du temps. Ce raisonnement nous explique en effet la présence d'une conductivité de Hall non nulle pour un isolant topologique de type Haldane (aussi appelé isolant de Chern), mais il ne nous indique pas par où le courant passe. Nous verrons plus tard, dans la section 7.5, que l'analogie avec le véritable effet Hall quantique peut être poussée encore plus loin, et c'est à nouveau aux bords que se trouvent les canaux de conduction.

	alors que le gap dans la vallée K reste toujours positif si l'on considère des
	valeurs positifs de t . Pour voir que cela représente vraiment une transition de
	phase topologique, rappelons [voir l'équation (??)] que le nombre de Chern
	de la bande λ s'écrit comme la somme des deux demi-nombres de Chern
	associés aux deux vallées,			
	C λ = -	λ 2	[sgn(m K ) -sgn(m K )].	(7.61)
		(∆/t ) c = ±3 √ 3 sin(φ),	(7.63)
	et ces lignes délimitent donc les phases topologiques des isolants topologique-
	ment triviaux. Nous avons remarqué dans la section 6.5.1 qu'un isolant
	topologique avec un nombre de	
	t c =	∆ 3 sin(φ) √ 3	(7.60)

  Avant de se tourner vers des systèmes moins artificiels que le modèle de Haldane et la discussion des états de bord, nous présentons une expérience élégante qui a permis de réaliser, en 2014, le modèle de Haldane[Jotzu et al., Nature 515, 237 (2014)]. Il ne s'agit pas d'un système "naturel" de la matière condensée mais plutôt d'une simulation via un réseau optique, généré par des lasers qui forment des ondes stationnaires à l'aide de miroirs. En raison de l'interaction dipolaire, les atomes placés dans ce réseau se positionnent dans les minima (ou maxima) du potentiel optique. Si les atomes sont piégés dans les creux du champ de lumière, le paramètre de saut t est lié à la barrière de potentiel entre deux creux. Le dispositif expérimental est représenté sur la figure 7.7(a). Contrairement au modèle de Haldane sur un réseau en nid d'abeille, il s'agit ici d'une variante avec une géométrie carrée, ce qui donne lieu à une première zone de Brillouin carrée [voir la figure 7.7(b), où la position des points de Dirac est également représentée]. Des miroirs positionnés sur des éléments piézoélectriques permettent d'imprégner la phase φ aux sauts de deuxièmes plus proches voisins, et la variation des amplitudes des lasers permet de modifier également le paramètre de gap ∆ = ∆ AB qui désigne la différence en énergie sur site entre les deux sous-réseaux. Dans l'expérience décrite ici, des atomes de 40 K remplissent le bas de la structure de bande autour du point Γ, dans ce qui correspond à la bande de valence dans les systèmes électroniques. Les atomes subissent une accélération dans induite par une force F , k x = k x,0 + F t, et se déplacent ainsi dans l'espace réciproque. Notons que, lorsque les atomes traversent le bord de la première zone de Brillouin, ils réapparaissent au bord opposé en raison de la périodicité de l'espace réciproque. Ceci donne lieu au phénomène d'oscillations de Bloch. Dans l'expérience, on mesure la fraction d'atomes qui, lors d'un cycle complet d'une oscillation de Bloch, se trouvent dans la bande supérieure (bande de conduction). Le phénomène derrière ce transfert est l'effet tunnel de Landau-Zener à travers le gap qui sépare les bandes : la fraction d'atomes transférés est alors maximale quand le gap entre les bandes est nul et peut donc être abaissée à l'aide de l'ouverture du gap ∆ AB . Pour φ = 0, cette fraction d'atomes est montrée sur la figure 7.7(c). Or nous pouvons aussi ouvrir un gap avec ∆ AB = 0 en faisant varier la phase φ, comme le stipule la formule (7.57). Comme la fraction d'atomes transférés dans la bande supérieure ne dépend que du module du gap, nous nous attendons alors à une symétrie φ ↔ -φ, ce qui est en effet trouvé expérimentalement[voir la figure 7.7(d)].Finalement, il est possible de faire varier à la fois le paramètre ∆ AB et la phase φ. En mesurant le maximum de la distribution d'atomes transférés à la bande supérieure, cela permet de déterminer l'ensemble des valeurs pour qui le gap se ferme, ce qui correspond à vérifier expérimentalement l'équation

		7.2.3 Réalisation expérimentale du modèle de Haldane
		avec des atomes froids	
	(7.63),	∆ ξ = ∆ AB -ξ3 √	3t sin(φ) = 0.	(7.64)
	Le résultat est montré sur la figure 7.8, où le diagramme de phase du modèle
	de Haldane est bien reproduit, en comparaison avec le diagramme obtenu
	théoriquement (figure 7.6). Les points indiquent les valeurs mesurées alors
	que la ligne continue montre la ligne de transition attendue théoriquement

  × 2 H s (k). Comme ces derniers sont des modèles de Haldane, nous pouvons directement faire appel à la limite continue, où nous trouvons maintenant un total de quatre fermions de Dirac massifs, deux avec un spin s =↑ et deux avec un spin s =↓ repartis sur les deux vallées.Afin de comprendre le modèle de Kane et Mele dans la limite continue, nous pouvons nous limiter à la discussion du terme diagonal, qui, dans le cas du modèle de Haldane est donné par l'expression (7.57) pour les particules de spin ↑, ), et le signe de la matrice de Pauli σ y en raison de la conjugaison complexe, ce terme est invariant sous la symétrie par renversement du temps. Le terme de masse diagonal ne dépend pas du vecteur d'onde, mais uniquement du produit ξs de l'indice de vallée et du spin [voir aussi l'équation (7.68)]. Comme la symétrie par renversement du temps change les deux à la fois, leur produit reste invariant, et le modèle de Kane et Mele (7.69) respecte effectivement cette symétrie.La structure de bande générique du modèle de Kane et Mele est esquissée sur la figure

	.65) ↓ (-k) = où la symétrie par renversement du temps (7.26) nous impose H * √ 3t sin(φ). Comme les flèches des sauts directionnels et par conséquent les phases sont (7.66) renversées pour les électrons de spin ↓, nous trouvons alors pour la masse H ↑ (k) pour les hamiltoniens 2 m ξ,↑ v 2 = ∆ -ξ3 associée m ξ,↓ v 2 = ∆ + ξ3 √ 3t sin(φ). (7.67)

Si les variables de spin sont représentées par des signes, s = + pour ↑ et s = -pour ↓, le terme diagonal peut se récrire comme

m ξ,s v 2 = ∆ -ξs 3 √ 3t sin(φ),

(7.68)

alors que les termes hors diagonaux ne dépendent pas de l'orientation du spin. Par conséquent, le hamiltonien pour les quatre fermions de Dirac correspondant aux quatre combinaisons des indices ξ et s peut s'écrire de manière compacte H KM ξ,s = v(ξsq x σ x + q y σ y ) + m ξ,s v 2 σ z , (7.69) en termes de matrices de Pauli. Testons d'abord si cet hamiltonien respecte vraiment la symétrie par renversement du temps. Le premier terme, qui ne dépend pas de l'orientation du spin, le fait effectivement : comme il faut à la fois changer le signe des impulsions (i.e. les vecteurs d'onde), ce qui implique un changement de l'indice de vallée ξ → -ξ (ou K ↔ K

  Le nombre de Chern total C λ = ξ,s C λ,ξ,s est nul, ainsi que la conductivité de Hall comme nous l'avons vu dans la section 7.1.2, mais le nombre de Chern par branche de spin n'est pas forcément nul ! Comme pour le modèle de Haldane, le nombre de Chern de la branche de spin s peut être Malgré l'annulation de la conductivité de Hall, nous pouvons pourtant parler d'une transition de phase topologique quand C λ,s passe de 0 à une valeur ±1. Comme nous l'avons discuté dans la section 7.1.2, cette dernière situation correspond à un effet Hall quantique de spin avec une conductivité de spin transverse quantifiée. Nous verrons dans la section 7.5 que cet effet Hall quantique de spin se manifeste également, comme l'effet Hall quantique anomal, par des canaux de bord particuliers et une conduction bien décrite par le formalisme de Landauer et Büttiker. Mais avant de décrire ces propriétés de transport et la correspondance volume-bord, nous tenons à introduire un autre modèle pour l'effet Hall quantique de spin qui décrit mieux la situation expérimentale dans des matériaux existants.Kane et Mele ont proposé leur modèle avec l'idée de pouvoir décrire une situation réaliste dans le graphène lorsqu'on tient compte du couplage spinorbite. Il s'avère que ce couplage est très faible dans le graphène en raison de la faible masse des atomes de carbone -des estimations ultérieures ont montré que l'ordre de grandeur de ce couplage serait de quelques µeV, loin des échelles d'énergie (∼meV) qui peuvent être sondées dans des échantillons de graphène. Le modèle de Kane et Mele est donc aujourd'hui utilisé comme l'exemple paradigmatique d'un isolant topologique respectant la symétrie par renversement du temps plutôt qu'un modèle réaliste.

	7.4 Modèle de Bernevig-Hughes-Zhang
			).	(7.70)
	C λ,s = -	λs 2	[sgn(m K,s ) -sgn(m K ,s )] = ±1.	(7.71)

  Pour cette raison, on trouve maintenant un nomber entier, C λ,s = -λs, (7.84) ce qui veut dire qu'il n'y a pas forcément un deuxième point dans la première zone de Brillouin qui fournit une contribution non nulle à la courbure de Berry et au nombre de Chern. Nous soulignons que le signe relatif entre le gap ∆(d) et le terme quadratique 2 q 2 /2m est essentiel -si le signe est positif, comme c'est le cas pour d < d c , le nombre de Chern sera nul, ce qui indique un isolant trivial, comme attendu par construction du modèle et l'inversion du gap. De plus, en raison de la symétrie par renversement du temps, les nombres de Chern des deux branches de pseudospin s sont opposés et se compensent alors comme dans le modèle de Kane et Mele. En comparaison avec ce dernier, la différence principale consiste en le nombre de points qui sont essentiel : dans le cas du modèle de Kane et Mele, il y a quatre fermions de Dirac en total (deux vallées et deux orientations du spin). En revanche, dans le modèle BHZ décrivant les hétérostructures de CdTe/HgTe, nous avons juste les deux orientations de pseudospin qui importent à un seul point (le point Γ) dans la première zone de Brillouin. Ces hétérostructures de CdTe/HgTe étaient à l'origine de la première expérience de l'effet Hall quantique de spin, que nous discuterons en détail dans la section 7.5.3. Nous avons déjà vu, dans le contexte de l'effet Hall quantique, que les électrons forment un état isolant dans le volume (avec un niveau de Fermi entre deux niveaux de Landau adjacents, avec en plus quelques électrons ou trous supplémentaires qui sont localisés par le désordre). En outre, le système possède autant de bords conducteurs que de niveaux de Landau remplis en-dessous du niveau de Fermi. C'est une manifestation de la correspondance volume-bord que nous détaillerons dans cette section. Il s'agit d'un phénomène général dans des matériaux topologiques où l'invariant topologique (comme le nombre de Chern) détermine le nombre de canaux de bord métalliques. En plus, le signe de cet invariant nous indique le sens de propagation des charges dans ces canaux qui sont donc chiraux.

	7.5 Correspondance volume-bord

  .96) De plus, l'énergie de cet état de bord (7.95) ne dépend que des paramètres intrinsèques du système volumique et non pas de la façon dont on modélise cette interface ; en effet, il survit aussi dans la limite → 0 d'une interface abrupte.18 Comme sa présence est due uniquement à l'inversion du gap dans la vallée ξ et comme il traverse forcément le gap de volume, on l'appelle aussi état chiral topologique. C'est la présence de cet état que nous avons en tête lorsque nous parlons de la correspondance volume-bord dont l'argument peut être résumé de la manière suivante : En raison d'un changement du nombre de Chern à travers une interface de deux isolants topologiques différents, i.e. de nombres de Chern différents, il faut inverser le paramètre de gap (la masse du fermion de Dirac massif) dans une des vallées ξ à cette interface, l'autre vallée restant spectatrice sans changement de signe de gap. Indépendamment de la forme explicite de l'interface, 19 il en résulte un état de bord chiral topologiquement protégé qui traverse forcément le gap entre la bande de valence et la bande de conduction du matériau volumique.

  Nous sommes maintenant bien armés pour comprendre la situation plus complexe des isolants topologiques qui ne brisent pas la symétrie par renversement du temps. Historiquement, ils ont été étudiés avant les isolants de Chern, décrits dans la section précédente. Nous utilisons à nouveau, comme modèle générique, le modèle de Kane et Mele dans la limite continue. Nous avons vu, dans la section 7.3, que la structure de bande est doublée par rapport à celle du modèle de Haldane -en raison du couplage spin-orbite, E ↑ (k) = E ↓ (-k) (voir la figure 7.9). Que cela implique-t-il pour les états de bord ? Nous avons déjà discuté ce qui se passe dans le volume lors d'une transition de phase topologique dans ce cas : alors que le gap se renverse dans la vallée ξ pour les électrons de spin ↑, tout en gardant celui dans la vallée -ξ intact, le gap dans la vallée -ξ est inversé pour les électrons de spin ↓. Sur le bord à x = 0, la modification du gap peut toujours être modélisée, par exemple, à l'aide de la formule (7.85), sauf qu'elle intervient à la fois dans le hamiltonien H ξ bord pour le spin ↑ et dans le hamiltonien H -ξ bord pour le spin ↓. Considérons, pour simplifier la discussion, que les électrons de spin ↑ (s = +) changent de gap dans la vallée ξ = + et ceux de spin ↓ (s = -) dans la vallée ξ = -. Dans ce cas, le hamiltonien (7.91) décrit le spin s = + et le hamiltonien (7.92) le spin s = -,

	.108)
	ce que nous retrouvons bien sur la courbe bleue à droite de la figure 7.14(c).
	7.5.3 États hélicaux aux bords d'un isolant topologique
	avec symétrie par renversement du temps -effet
	Hall quantique de spin

  .109) de sorte que les états chiraux n = 0 ont une dispersion 26 Cette situation est représentée sur la figure7.15 par des traits continus (en bleu pour le spin ↑ et en rouge pour le spin ↓). Notons que c'est en accord avec ce à quoi nous nous attendons pour un système invariant par renversement du temps. Sans spin, il ne pourrait y avoir d'état chiral au bord, car il aurait fallu choisir une direction de propagation bien définie, ce qui est interdit par la symétrie par renversement du temps qui nécessite ainsi un deuxième état se propageant dans la direction opposée. En revanche, c'est le cas dans le modèle de Kane et Mele (ou aussi dans le modèle BHZ) où l'existence de ce deuxième état est assurée par le deuxième spin orienté dans le sens opposé par rapport au premier, comme il se le doit pour un système respectant la symétrie par renversement du temps.

	E s n=0,x=0 (q y ) = s vq y	(7.110)

sur le bord à x = 0, avec une vitesse de groupe v s (x = 0) = sv dans la direction y. Notre modélisation de l'interface nous fournit donc une paire d'états de bord propageant dans des directions opposées le long du bord, et leur chiralité (sens de propagation) est liée à l'orientation du spin des électrons. On parle dans ce cas d'états hélicaux.

  Mise en évidence de l'effet Hall quantique de spin et des états de bord hélicaux De la même manière que pour l'effet Hall quantique anomal, discuté dans la section précédente, nous sommes maintenant en mesure de comprendre l'effet Hall quantique de spin dans l'image des états hélicaux. L'effet a été observé dans des mesures de transport par le groupe de Molenkamp à l'Université de Würzburg en 2006 dans des puits quantiques de CdTe/HgTe/CdTe discutés dans la section 7.4. Au lieu de discuter ces premières expériences, nous montrons sur la figure7.16 une expérience par le même groupe de l'année 2009 qui a mis en évidence le rôle essentiel des états de bord hélicaux jouent pour cet effet. La figure montre des mesures de résistance à deux et à quatre terminaux en fonction d'une tension de grille V * appliquée entre le puits quantique et une grille métallique parallèlement au système. Cette tension sert à bien placer le niveau de Fermi dans le gap entre la bande de conduction et la bande de valence dans la partie HgTe qui est un isolant 2D avec un gap inversé, comme nous l'avons vu dans la section 7.4. De plus, la géométrie de l'échantillon avec les contacts et leur numérotation est schématiquement représentée. Le courant passe par les contacts 1 et 4 qui servent respectivement de source et de drain.

	7.111)
	opposée par rapport à celle des états au premier bord, comme il est indiqué
	par des traits en pointillé sur la figure 7.15.

  1, le point de contact est protégé contre l'ouverture d'un gap, contrairement au cas 2D, ouvrir un gap. Pour apprécier ce point, considérons un terme perturbatif δH = ∆ x σ x + ∆ y σ y + ∆ z σ z , (8.26) et étudions son effet sur le spectre qui devient

I do not know about your cognitive capacities, but personally I have difficulty in visualising a four-dimensional object.

Here, a quantum state is a state in which all quantum numbers are fixed, be they orbital or internal degrees of freedom such as the electronic spin. Sometimes one encounters another convention in the literature, where only orbital degrees of freedom define the quantum state, which can then host two electrons, one with spin up and one with spin down.

This is usually the case even at room temperature since a gap on the order of one electron-volt corresponds to temperatures in the 10 000 K range.

This can easily be achieved in silicon by phosphorus substitution. Phosphorus has one valence electron more than silicon and shares it easily with the rest of the crystal.

Notice, however, that generally the mean free path does not diverge when one approaches zero temperature. Even if the density of static defects should then tend to zero, they are quenched, i.e. the time it takes for the lattice to reach the thermodynamic ground state with zero defects diverges itelf.

Remember that the microscopic world of atoms is governed by the Angstrom scale, Å= 10 -10 m.

If you prefer, you may inverse right and left here... It does not really matter in this case.

In the following, we will make this bold assumption and neglect the inevitable lattice defects or surfaces unless stated explicitly.

If one uses one arbitrary node as the origin of the full lattice, one of these vectors is zero, and in our example of the kagomé lattice one formally has δ 3 = 0.

We use these states |R j as a basis of our Hilbert space that is thus of dimension N . Strictly speaking, these states are only orthogonal if we can neglect the overlapR j |R j = d d rφ * a (r -R j )φ a (r -R j )between different sites j = j on the lattice, which we consider to be itself d-dimensional. In the following, we make this assumption not because it is generally valid but to simplify the discussions. The critical reader may be reassured that this is a good approximation in many situations and that in most cases overlap corrections can be taken into account without doing harm to the overall structure of the tight-binding model, which we use here.

This is just the Dirac "bra and ket" notation of the equation T a l φ a (r -R j ) = φ a (r -(R j -a l )) in terms of the wave functions φ a (r -R j ) = r|R j .

If you think about it, you will notice that if the hopping parameters were not equal for a l and -a l , nearest neighbours related by these vectors are no longer inequivalent, and one would need to redefine a larger Bravais lattice with these two neighbours as the basis.

This naming is a little bit unfortunate since the term "continuum limit" is also frequently used to denote the limit of a crystal of size L with periodic boundary conditions. As you have learnt in your statistical-physics classes (e.g PHY433), the wave vector in the same direction is then given by k = 2πp/L, in terms of the integer p, and the continuum limit is defined by L → ∞ in this case. In the present lecture notes, however, we always consider this limit, and we use the term "continuum limit" to denote wave vectors the modulus of which is small with respect to the inverse lattice spacing, |k|a 1.

In the following, we use the term sites generically to denote sites and orbitals, to keep the discussion as simple as possible.

The secular equation is a polynomial of order N basis in the energy E.

In many cases, this is a good approximation, and corrections due to the non-zero overlap between the sublattice wave functions can be taken into account in modified effective Bloch Hamiltonians. However, as in many approximate schemes, there exist subtle counter-examples that we exclude here in a first discussion of Bloch states.

This is often used in a more general framework where all hopping parameters connecting sites separated by the same distance are set equal. However, this need not necessarily be true in all situations, e.g. if the orbitals are oriented in different directions with respect to the vector connecting the sites. Here, we omit this difficulty since there is no specific orientational distinction in the cases we consider in these classes.

Chemically, these bonds are as strong as those in diamond, making graphene one of the most resistant materials even if it is extremely thin (one atom thick).

Remember that the reciprocal lattice is defined with respect to the periodic Bravais lattice in real space, which underlies the general lattice (here, the honeycomb lattice).

In order to obtain this value, quantum-chemical calculations need to be performed that do not interest us here.

This is actually not the case in graphene, where the hopping amplitude between nextnearest neighbours is roughly one order of magnitude smaller than t. However, in this first

A more detailed account of the Dirac equation and its role in condensed-matter physics may be found in Chap. 8, in the framework of 3D topological insulators and Weyl semimetals.

Sometimes one defines also D( ) = L d ρ( ) as the density of states, but we stick to the other convention here and use the density of states per unit volume throughout these classes.

Remember that Θ(x) = 1 for x ≤ 1 and Θ(x) = 0 for x > 0.

The multi-band case is obtained by direct generalisation.

To be more quantitative, the number of particles dN θ that passes from A to B through the slit at an angle θ in an infinitesimal time interval dt is given by

Notice that we have to integrate the angle θ now only in a interval [0, π/2] since we have taken into account its "negative values" already in the surface S d-1 . Otherwise, we would count twice the solid angle.

Notice that, in principle, we need to take into account the free propagation of the (electronic) waves between the two scattering events. Indeed, we do not have o 1 = i 2 for the outgoing wave o 1 after the first scattering event and the incoming one i 2 at the second scatterer, but rather o 1 exp(iφ 12 ) = i 2 , where the phase φ 12 = k F l 12 takes into account this free propagation in terms of the ballistic path l 12 ∼ l e separating the two scatterers. However, these phases can be absorbed into the phases of the different transmission and reflection amplitudes so that we do not write them down explicitly.

Remember that for a simple square potential, we have ny = 2 π 2 n 2 y /2mW 2 .

Indeed, the expression is symmetric under the exchange of the indices ↔ j because so is V i V j , and the double sum runs over all pairs of indices that are not identical.

Unfortunately, this convenience sometimes arises only later, after some trials.

To simplify the discussion we consider B > 0 here so that the cyclotron frequency is a positive quantity. Otherwise we would need to appeal to the modulus of the frequency that renders the notations a bit cumbersome.

This is a semiclassical notion since you know that trajectories cease to be relevant in canonical quantum mechanics.

Even if this point is not essential for the remainder of these classes, we provide in this footnote the explicit calculation of this radius. In a first step, we need to express the momentum p in the Bohr-Sommerfeld formula in terms of the (tangential) electron velocity v since both are no longer directly proportional to each other (even for electrons with a parabolic dispersion relation) because of the presence of the vector potential, p = mv -eA(r).

Notice that these Shunikov-de-Haas oscillations are also visible in figure

5.1 belowB ∼ 1 T.

Remember from your classes on electromagnetism that adding the gradient of a function Λ(r) to the vector potentialA(r) → A (r) = A(r) + ∇Λ(r),does not change the magnetic field since ∇ × ∇Λ(r) = 0.

As we discuss below, this symmetry can be viewed as an effective translation symmetry. Even if, strictly speaking, translation symmetry is broken by the position dependence of the vector potential in the Hamiltonian, the magnetic field is spatially homogeneous. The effective translation symmetry is related to the homogeneity of the magnetic field as we show in detail in section 5.2.4.

We do not prove the optical selection rules n → n ± 1, here, because this is beyond the scope of the present lecture notes even if it is not complicated to show. Just take it for granted.

Notice that this argument is reminiscent of that usually invoked in statistical physics in order to count the number of (quantum) states in phase space. The latter is generated by the positions and momenta of the N particles and divided into (hyper-)volumes of size h 3N . This partition of phase space is equally a consequence of the commutation relations (5.21) for the associated position and momentum operators.

Attention! the index of the last fully occupied Landau level is n -1 due to the convention according to which the lowest Landau level has the index n = 0.

We shall see that ν = 4n does actually not correspond to the filling factor sequence at which the quantum Hall effect is observed in graphene. While the jumps in the filling factor indeed follow this law, as multiples of four, the measured series reads ν G = 4n + 2, i.e. the jumps are displaced by a factor of two. The origin of this displacement is discussed below in section 5.4.4.

This is the geometry for which the Landau gauge is the natural gauge choice.

Naturally, one may also fix the magnetic field and vary the electronic density. However, from an experimental point of view, this is more complicated to achieve in general, apart from graphene where the electronic density can be easily changed with the help of a back gate due to the capacitive charging effect.

Notice that these equipotential lines can be much longer than the typical magnetic length so that the term localised states may lead to confusion. Even if they are extended on length scales much larger than the magnetic length, they are considered as localised states as long as they are closed (semiclassical) trajectories for the guiding centres that do not connect opposite sample edges.

If one changes the orientation of the magnetic field, one simply changes the sense of the drift around a summit or a valley.

This approximation may be justified by a series expansion of the potential around y 0 , using y = y 0 + η y . At linear order, one finds

More precisely, it is the product of the charge and the B-field that matters. To be exhaustive, we mention that the sense of propagation naturally also changes when we change the sign of the charge of the carriers.

As it is clear from the potentials in the different contacts, one obtains the same Hall resistance via a measurement between 2 and 5, 3 and 6, or 2 and 6.

Notice that there is only one voltage to determine because we can always choose a reference potential that sets one of the voltages to zero.

Störmer had already received the 1998 Nobel Prize in Physics for the discovery of the fractional quantum Hall effect, together with his colleague Tsui and the theoretician Laughlin.

Notice that additional quantum Hall effects at other fillings have later been measured in graphene samples of higher mobility, indicating a lifted spin (and also valley) degeneracy.

Here, we use the term bulk-edge correspondence generically regardless of the dimensionality of the system.

Here, we do not provide a complete review of Landau's theory, because it is not the object of the course, but we limit ourselves only to a few aspects relevant for the discussion of topological properties.

We have introduced the index M to show that this second sphere is associated with the orientations of the magnetisation even if it has the same structure as the sphere S 2 that encloses the defect.

For mathematicians, this is the fundamental group π 2 (S 2 ) = Z.

This model is also called the 2D XY model.

Remember that we use the term Bloch states for the eigenstates in the Bloch basis, which represent the periodical part of the Bloch wave functions, see discussion in sections 2.2.2 and 2.2.3.

Formally, it is the projective space CP N motif -1 of complex numbers -the N motif components of the states |u n (k) are indeed complex numbers. On the other hand, these N motif complex components are not all independent: they are constrained by the normalisation as well as the irrelevance of the global phase of the wave functions. Mathematically, this is the essence of the projective space CP N motif -1 , where we identify all the complex vectors v (with N motif components) which differ only by a complex multiplicative number z, i.e. all v if v = z v.

The dynamic phase is of no interest here.

Recall that the antisymmetric tensor is xyz = 1 as well as for any cyclic permutation of indices and -1 for any anti-cyclic permutation, while it is 0 if the same index occurs twice.

Often a system with N bands can be decomposed into several systems with two bands. Even if this is not always the case, we adopt this viewpoint here, for the sake of a first simplified approach.

The terms proportional to ∇ q θ cancel out in the scalar product.

The second term of the first line is indeed zero. One can show, e.g. with the help of the Cauchy-Riemann differential equations in spherical coordinates, that ∇ q φ = 2πδ 2 (q) in terms of the delta function, i.e. this term only contributes when q = 0. However, we have cos θ = 1 at q = 0.

This process is called Compton scattering. Strictly speaking, this diffusion takes place only in the vicinity of a massive spectator particle, such as a nucleus, in order to preserve the momentum in this scattering process. Indeed, the electron-positron pair could be described in its rest frame, i.e. in the frame of reference in which its centre of mass is at rest, and the total pair momentum is zero. This is in contradiction with the photon that gave birth to this pair and whose momentum p = E/c ≥ 2m 0 c is non-zero in any frame of reference, hence the need for a heavier object to absorb this momentum.

Typically a is on the order of the lattice spacing, but this is not a necessary condition.

This choice is arbitrary for the moment, but it is natural when we consider the associated transport properties which is the subject of the next section.

Dans des matériaux ferromagnétiques ou anti-ferromagnétiques, la symétrie par renversement du temps est spontanément brisée par les interactions.

Nous avons vu, en mécanique quantique, qu'une symétrie laisse invariant l'élément de matrice ψ|O|ψ d'une observable O invariante sous cette symétrie. En revanche, Wigner a considéré le cas plus approprié, notamment en théorie quantique des champs, d'une invariance des probabilités de transition. Ces probabilités sont données par le module carré de ces éléments de matrice. Par conséquent, des opérateurs anti-unitaires sont tout aussi appropriés pour représenter une symétrie que les opérateurs unitaires.

C'est par ailleur correct dans le contexte du couplage spin-orbite dit intrinsèque.

Le nombre quantique Z 2 émerge de la diagonalisation de ce terme, et il coïncide avec la composante z du spin, i.e. s =↑, ↓ au cas où le champs électrique est associé à un potentiel qui varie dans le plan xy, de même que l'impulsion p pour des systèmes 2D. Dans ce cas le produit vectoriel p × E est orienté selon l'axe z pour toutes les impulsions, et c'est alors l'axe de quantification naturel pour le spin. C'est le cas considéré ici, de sorte que le degré Z 2 est simplement identifié à la composante z du spin, comme nous l'avons évoqué plus haut. Notons que c'est le cas pour ce que l'on appelle le couplage spin-orbite intrinsèque alors qu'on peut rencontrer la situation d'un champ électrique dans la direction z, par exemple lorsque notre système 2D est couplé à un substrat en-dessous alors qu'il n'y en a pas au-dessus (couplage de type Rashba). Nous omettons cette possibilité dans la suite.

Cela veut dire que le spin n'entre que par un facteur 2 prenant en compte sa double dégénérescence.

À l'aide de cette récriture, nous avons le même signe relatif entre k • b j et φ pour tous les termes, ce qui allège les notations.

Notons qu'à l'heure où ces lignes sont écrites, plusieurs groupes expérimentaux essaient de produire une telle situation en couvrant du graphène par des atomes magnétiques.

C'est un choix de jauge légitime, mais pas unique : il existe d'autres choix de jauge.

Dans le cas de l'ensemble des paramètres choisis pour la figure 7.4 [∆/t = 0, 5 et sin(φ = π/3) = √ 3/2], le gap se ferme alors à t c = 1/9 0, 11, situation décrite sur le schéma (c) de la figure.

Pour rappel, il s'agit des états n = 1 de la série E Γ,± = ± 2 π 2 n 2 /m ± d 2 de deux bandes labelisées par ± (ici : + pour la bande Γ 6 dans la partie HgTe et -pour la bande Γ 8 .

Des termes d'ordre supérieur pourraient être pris en compte afin de coupler les autres états, mais ces termes ne semblent pas être pertinents dans la description d'un puits quantique de HgTe.

C'est la seule longueur qui peut se construire à l'aide des paramètres intrinsèques du système.

Ceci peut se voir aussi dans l'approche originale choisie par Jackiw et Rebbi en

1976, Phys. Rev. D, 13, 3398 (1976).19 Ici, nous avons choisi une simple variation linéaire du paramètre de gap, à titre d'exemple, mais les conclusions restent valables plus généralement.

Ces états ont déjà été remarqués par deux chercheurs soviétiques, Volkov et Pankratov, dans les années 1980 bien avant l'avènement des isolants topologiques. Pour cette raison les états massifs avec n = 0 sont aussi appelés états Volkov-Pankratov.

Cette condition est aussi en accord avec le nombre d'états liés trouvés dans la solution exacte du modèle avec la variation (7.85) du gap.

Les états massifs ne nous intéressent plus dans la suite où nous nous concentrons sur le transport électrique par les états chiraux.

La précision de la quantification de la résistance est de l'ordre d'un pour cent. C'est loin des précisions atteintes dans l'effet Hall quantique entier, mais c'est une première expérience qui montre une telle quantification pour l'effet Hall quantique anomal.

Attention à l'ordre dans la numérotation des contacts ! Dans le poly de Gilles Montambaux, nous utilisons les numéros 1 et 2 respectivement pour la source et le drain.

Naturellement, nous avons aussi le droit de mettre ce potentiel à zéro.

Nous ne nous intéressons pas aux états de bord massifs ici, qui arrivent maintenant avec une double dégénérescence de spin.

Il est à souligner que le calcul matriciel ne faisait pas partie du bagage des scientifiques du début du XXème siècle.

On omet le potentiel dans la suite parce qu'on s'intéresse aux particules libres.

Notons néanmoins que cette équation est toujours utilisée en théorie quantique des champs dans la description des particules bosoniques.

En effet, nous retrouvons ainsi, si ces matrices sont substituées dans l'équation (8.5), le hamiltonien de Dirac 2D H 2D = mc 2 σ z + cσ • p qui décrit par exemple les électrons dans le graphène (m = 0) ou dans le nitrure de bore (m = ∆/c 2 ), voir l'équation (2.71) dans la section 2.3.

Pour plus d'information sur la technique ARPES, voir par exemple le livre d'Henri Alloul et le cours PHY552A.

Il s'agit des orbitales p z de Bi et de Se qui sont couplées, la valeur propre |+ de τ z représentant l'orbitale p z de Se et |-celle de Bi.

Nous trouvons maintenant un seul fermion de Dirac (sans masse) à la surface et non pas deux. Ceci est dû à notre géométrie d'un espace semi-infini.

Si une deuxième surface est prise en compte à z = -L, comme pour le cas 2D, on y trouve également un fermion de Dirac sans masse.

Conduction in multi-terminal quantum devices

that of a ballistic conductor in the two-terminal geometry, with the resistance R bal 13 = R bal 42 = h/2e 2 . This yields the ratio R 12,34 R 12,12 = 1 1 + 2T (4.69)

for the two resistances. The latter statement is also in line with Millman's theorem (4.27) for the contacts 3 and 4. The potentials are given by

because = 1 yields T 12 = 0, T 13 = 1, T 14 = 0, T 23 = 0, T 24 = 1 and T 34 = T , as one may see directly from the general expressions. We therefore obtain the relation between the potential differences

To finish this section on the four-terminal resistance, we present the experiment depicted in figure 4.9, where the four-terminal resistance of a ballistic

Notions à retenir

• isolants topologiques 3D, états de surface chiraux (= fermions de Dirac 2D sans masse)

• fermions de Dirac massifs 3D et fermions de Weyl

• semimétaux de Weyl

• monopôles magnétiques

• arcs de Fermi