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I.1. Definition

A binary quantum gate is a unitary operation on two qubits,
e.g. a unitary map H2 ⊗H2 → H2 ⊗H2, where H2 is a hilbert
space of dimension 2 × 2. A basis of H2 ⊗H2 is

{|00⟩, |10⟩, |01⟩, |11⟩}.

C-gate: let A and B be two qubits. Let M be a unitary quantum
gate acting on B . The controlled-M gate (or C-M gate) is the
binary gate acting on A⊗ B defined as follow

C-M =

(
1 0
0 0

)
⊗ IB +

(
0 0
0 1

)
⊗M,

where IB is the identity operator on qubit B . A C-gate is the
operation such that M is applied to B only if the qubit A is in the
state |1⟩.
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I.1. Definition

Important example: C-NOT gate.

C-NOT =

(
1 0
0 0

)
⊗
(

1 0
0 1

)
+

(
0 0
0 1

)
⊗
(

0 1
1 0

)
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


ÛC-NOT |00⟩ = |00⟩, ÛC-NOT |01⟩ = |01⟩,

ÛC-NOT |10⟩ = |11⟩, ÛC-NOT |11⟩ = |10⟩.

ÛC-NOT

(
1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(|00⟩+ |11⟩) .
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I.2. Circuit representation of a C-gate

C-U gate where the controlled qubit is A.

Example: C-NOT gate.

NOT quantum gate
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I.2. Circuit representation of a C-gate

C-NOT gate where the controlled qubit is A.

A C-NOT gate might be seen as a way to implement the XOR
classical gate.
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I.3. Importance of the C-NOT gate

Theorem: All quantum circuits can be constructed using only
C-NOT gates and single-qubit gates.

C-NOT gate is self inverse

(C-NOT) · (C-NOT) = I⊗ I.

Ref: Elementary gates for quantum computation, Physical Review
A, 52, 5, 3457-3467 (1995).
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II.1. The Toffoli gate

The Toffoli gate, originally devised as a universal, reversible
classical logic gate by Toffoli, is especially interesting because
depending on the input, the gate can perform logical AND, XOR
and NOT operations, making it universal for classical computing.

Toffoli is often referred to a "controlled-controlled-NOT" gate
(C2-NOT).

Ref: Reversible Computation, T. Toffoli, Cambridge, MA, p.36
(1988).
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II.1. The Toffoli gate

The circuit diagramm of a Toffoli gate is the following

Toffoli is self inverse

Toffoli · Toffoli = I⊗ I⊗ I.
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II.1. The Toffoli gate

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Theorem: All quantum circuits can be constructed (in some
approximated sense) using only Hadamard gates and Toffoli gates.

Ref: Both Toffoli and controlled-NOT need little help to do
universal quantum computation, Yaoyun Shi, Quantum Information
and Computation, 3, 1, 84-92 (2003).
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II.1. The Toffoli gate

Example: A classical half-adder compute the sum and carry for
two bits x1 and x0.
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II.1. The Toffoli gate

Quantum half-adder.
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II.2. Logical gates

AND logical gate.
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II.2. Logical gates

OR logical gate.
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II.3. Boolean circuits

Let note Fn = {0, 1}n. A boolean function f : Fn → Fm can’t be a
unitary operation. The number of inputs do not equal the number
of outputs, so the map is not invertible.

However, it is in fact possible to construct a quantum circuit that
performs the same function than any classical boolean circuit.
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II.3. Boolean circuits

Let f : Fn → Fm a boolean function with k gates. It is possible to
construct a quantum circuit, R̂ , that performs the same function.

This quantum circuit uses O(k) gates and requires q = O(k)
additional qubits, so-called ancilla qubits, only used for the
calculation. These ancilla qubits are not part of the quantum
register, and are all initially in the pure state |0⟩. Then, such a
circuit outputs n + q −m garbage qubits.

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 24 / 66

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


II.3. Boolean circuits
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II.3. Boolean circuits

To obtain the invert R̂−1 of R̂ , one just has to take the mirror
image of the circuit R̂ . This is used to "recycle" the ancilla qubits,
so that they are reset to |0⟩.
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II.3. Boolean circuits

So a quantum circuit emulating a boolean circuit that performs the
function f : Fn → Fm has the following structure
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II.4. SWAP gate

SWAP =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
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II.4. SWAP gate

A SWAP gate might be implemented with 3 C-NOT gates

|x ⟩ ⊗ |y ⟩ C12−→ |x ⟩ ⊗ |y ⊕ x ⟩
C21−→ |x ⊕ (y ⊕ x)⟩ ⊗ |y ⊕ x ⟩ = |y ⟩ ⊗ |y ⊕ x ⟩
C12−→ |y ⟩ ⊗ |(y ⊕ x)⊕ y ⟩ = |y ⟩ ⊗ |x ⟩
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II.4. C-Z gate

C-Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

|x ⟩ ⊗ |y ⟩ CZ−→ (−1)x ·y |x ⟩ ⊗ |y ⟩.

|x ⟩ and |y ⟩ play symmetric roles.
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II.4. C-Z gate
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II.4. C-Z gate

Since |x ⟩ and |y ⟩ play symmetric roles, a C-Z gate is then
represented as follow
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II.5. Orcale

Oracles are used in the context of query complexity. We assume to
have access to an Oracle, for example a physical device that we
cannot look inside, but to which we can pass queries and which
returns answers.

On a classical computer, the Oracle is given by a function f

f : Fn −→ Fm.

On a quantum computer, the oracle must be unitary.
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II.5. Orcale

The operator Ôf is a quantum oracle which can be seen as a
unitary operator which performs the map

Ôf |x ⟩ ⊗ |y ⟩ = |x ⟩ ⊗ |y ⊕ f (x)⟩,

with |x ⟩ ∈ H2n and |y ⟩ ∈ H2m .
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II.5. Orcale

Example: for f : {0, 1}n −→ {0, 1}, we can construct Ûf as
follow.

|y ⟩ is an ancilla qubit.
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II.5. Orcale

For |y ⟩ = 1√
2
(|0⟩ − |1⟩), then

Ôf |x ⟩ ⊗ |y ⟩ = (−1)f (x) |x ⟩ ⊗ |y ⟩ .

Then, forgetting the ancilla qubit, Ûf |x ⟩ = (−1)f (x) |x ⟩. In such a
case, Ûf is a phase oracle.
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II.5. Orcale

Demonstration:

Ôf |x ⟩ ⊗ |y ⟩ =
1√
2

(
Ôf |x ⟩ ⊗ |0⟩ − Ôf |x ⟩ ⊗ |1⟩

)
,

=
1√
2
(|x ⟩ ⊗ |0 ⊕ f (x)⟩ − |x ⟩ ⊗ |1 ⊕ f (x)⟩) ,

Ôf |x ⟩ ⊗ |y ⟩ = 1√
2

{
|x ⟩ ⊗ (|0⟩ − |1⟩) if f (x) = 0
|x ⟩ ⊗ (|1⟩ − |0⟩) if f (x) = 1

,

Ôf |x ⟩ ⊗ |y ⟩ = 1√
2

{
|x ⟩ ⊗ |y ⟩ if f (x) = 0
− |x ⟩ ⊗ |y ⟩ if f (x) = 1

,

such that
Ôf |x ⟩ ⊗ |y ⟩ = (−1)f (x) |x ⟩ ⊗ |y ⟩ .
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III.1. Deutsch algorithm

Let consider a function f : {0, 1} −→ {0, 1}. There is four
possibilities for f{

f (0) = 0
f (1) = 1︸ ︷︷ ︸
identity

,

{
f (0) = 1
f (1) = 0︸ ︷︷ ︸
swap

,

{
f (0) = 0
f (1) = 0

,

{
f (0) = 1
f (1) = 1︸ ︷︷ ︸

constant function

.

The function f is said to be balanced if f (0) ̸= f (1).
The function f is said to be constant if f (0) = f (1).

With a classical computer, one need to evaluate the function f
twice to determine whether it is balanced or constant.
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III.1. Deutsch algorithm

Example: f is constant : f (0) = f (1) = 1.

N̂f =

(
0 0
1 1

)
, N̂f |0⟩ = |1⟩, N̂f |1⟩ = |1⟩.

N̂f is not unitary: N̂†
f N̂f ̸= I. N̂f does not preserve the norm and

consequently the probability.
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III.1. Deutsch algorithm

One constructs a quantum gate to realize f with a unitary operator
Ûf

Ûf |x ⟩ ⊗ |y ⟩ = |x ⟩ ⊗ |y ⊕ f (x)⟩.

|x ⟩ is the qubit on which one wants to evaluate the function f . |y ⟩
is a control qubit, allowing the operation to be unitary. ⊕ is a XOR
operation.
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III.1. Deutsch algorithm

Ûf is reversible
Ûf †Ûf = I.

Ûf Ûf |x ⟩⊗ |y ⟩ = Ûf |x ⟩⊗ |y ⊕ f (x)⟩ = |x ⟩⊗ |(y ⊕ f (x))⊕ f (x)⟩.

Or

(y ⊕ f (x))⊕ f (x) = y ⊕ (f (x)⊕ f (x))

= y ⊕ 0
= y
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III.1. Deutsch algorithm

Remark:
∀k ∈ {0, 1}, k ⊕ k = 0.

Ûf is unitary and might be used to evaluate f .

If the control qubit |y ⟩ = |0⟩, then

|x ⟩ ⊗ |y ⊕ f (x)⟩ = |x ⟩ ⊗ |0 ⊕ f (x)⟩,

so that
|x ⟩ ⊗ |y ⊕ f (x)⟩ = |x ⟩ ⊗ |f (x)⟩.
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III.2. Implementation of Deutsch algorithm

The circuit diagram of the implementation of Deutsch-algorithm is
the following

|ψ4 ⟩ =
(
Ĥ ⊗ I

)
Ûf

(
Ĥ ⊗ Ĥ

)(
I⊗ X̂

)
|00⟩.
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III.2. Implementation of Deutsch algorithm

|ψ0 ⟩ = |00⟩, |ψ1 ⟩ = |01⟩,

|ψ2 ⟩ =
(
Ĥ ⊗ Ĥ

)
|01⟩ = 1

2

((
1 1
1 −1

)
⊗
(

1 1
1 −1

))((
1
0

)
⊗
(

0
1

))

|ψ2 ⟩ =
(
|0⟩+ |1⟩√

2

)
⊗
(
|0⟩ − |1⟩√

2

)
=

|00⟩ − |01⟩+ |10⟩ − |11⟩
2

.
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III.2. Implementation of Deutsch algorithm

Oracle:

|ψ3 ⟩ = Ûf |ψ2 ⟩ = |x ⟩
(
|0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩√

2

)
.

For any state |x ⟩ in a pure state.

If f (x) = 0, |ψ3 ⟩ = |x ⟩
(
|0 ⊕ 0⟩ − |1 ⊕ 0⟩√

2

)
= |x ⟩

(
|0⟩ − |1⟩√

2

)
,

If f (x) = 1, |ψ3 ⟩ = |x ⟩
(
|0 ⊕ 1⟩ − |1 ⊕ 1⟩√

2

)
= |x ⟩

(
|1⟩ − |0⟩√

2

)
.
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III.2. Implementation of Deutsch algorithm

So finally

|ψ3 ⟩ = (−1)f (x) |x ⟩
(
|0⟩ − |1⟩√

2

)
.

If |x ⟩ = |0⟩+ |1⟩√
2

, then

|ψ3 ⟩ = Ûf
|0⟩√

2

(
|0⟩ − |1⟩√

2

)
+ Ûf

|1⟩√
2

(
|0⟩ − |1⟩√

2

)
,
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III.2. Implementation of Deutsch algorithm

|ψ3 ⟩ =

(
(−1)f (0) |0⟩+ (−1)f (1) |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
.

If f is constant: |ψ3 ⟩ = (±1)
(
|0⟩+ |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
.

If f is balanced: |ψ3 ⟩ = (±1)
(
|0⟩ − |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
.
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III.2. Implementation of Deutsch algorithm

Applying finally an Hadamard gate on each qubit

|ψ3 ⟩ =

(
(−1)f (0) |0⟩+ (−1)f (1) |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
.

If f is constant: |ψ4 ⟩ = (±1) |0⟩
(
|0⟩ − |1⟩√

2

)
.

If f is balanced: |ψ4 ⟩ = (±1) |1⟩
(
|0⟩ − |1⟩√

2

)
.
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III.2. Implementation of Deutsch algorithm

If f is constant: |ψ4 ⟩ = (±1) |0⟩
(
|0⟩ − |1⟩√

2

)
.

If f is balanced: |ψ4 ⟩ = (±1) |1⟩
(
|0⟩ − |1⟩√

2

)
.

The measurement of the first qubit permits to determine
unambiguously if the function f is balanced or constant. The
Deutsch problem consists in determining whether a function
f : {0, 1} −→ {0, 1} is balanced or constant. A classical computer
requires two solicitation of the Oracle, while a quantum algorithm
requires only one solicitation of the oracle to get the result. That’s
a direct consequence of the quantum parallelism.
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III.3. Deutsch-Josa algorithm

In the case of Deutsch-Josa algorithm, a more general case is
considered with a function f : {0, 1}n −→ {0, 1}.

f is balanced if half of the inputs return 0 and the others
return 1.
f is constant if f only returns 0 or 1.
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III.3. Deutsch-Josa algorithm

The Deutsch-Josa algorithm is based on the same principle than the
Deutsch algorithm (case n = 1), with the following implementation

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 57 / 66

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


III.3. Deutsch-Josa algorithm

Classical solution: we need to ask the Oracle at least twice, but if
we get twice the same value, we need to ask again... corresponding
to at most N

2 + 1 = 2n−1 + 1 queries of the Oracle, with n the
number of input bits and N = 2n the number of realizable bit
string.

The quantum solution with the Deutsch-Josa algorithm
needs only one query !!!
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III.3. Deutsch-Josa algorithm

Proof:
Initial state:

|ψ0 ⟩ = |0⟩⊗n |0⟩ = |000 · · · 00⟩ |0⟩.

Preparation of the ancilla qubit with a X̂ gate:

|ψ1 ⟩ = |0⟩⊗n |1⟩.
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III.3. Deutsch-Josa algorithm

Hadamard gate on the quantum register input:

|ψ2 ⟩ =
(
Ĥ⊗n |0⟩⊗n

)
⊗
(
|0⟩ − |1⟩√

2

)
.

And

Ĥ⊗n |0⟩⊗n =
1√
2n

∑
x∈{0,1}n

(−1)⟨x |0⟩ |x ⟩ = 1√
2n

∑
x∈{0,1}n

|x ⟩,

so that |ψ2 ⟩ is a superposition of all states as follow

|ψ2 ⟩ =

 1√
2n

∑
x∈{0,1}n

|x ⟩

⊗
(
|0⟩ − |1⟩√

2

)
.
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III.3. Deutsch-Josa algorithm

Oracle:

|ψ3 ⟩ = Ûf |ψ2 ⟩ =
1√
2n

∑
x∈{0,1}n

|x ⟩ ⊗
(
|0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩√

2

)
,

|ψ3 ⟩ =

 1√
2n

∑
x∈{0,1}n

(−1)f (x) |x ⟩

⊗
(
|0⟩ − |1⟩√

2

)
.
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III.3. Deutsch-Josa algorithm

Hadamard gate on the quantum register:

|ψ4 ⟩ =

Ĥ⊗n

 1√
2n

∑
x∈{0,1}n

(−1)f (x) |x ⟩

⊗
(
|0⟩ − |1⟩√

2

)
,

|ψ4 ⟩ =

 1√
2n

∑
x∈{0,1}n

(−1)f (x)Ĥ⊗n |x ⟩

⊗
(
|0⟩ − |1⟩√

2

)
,

|ψ4 ⟩ =

 1√
2n

∑
x∈{0,1}n

(−1)f (x)
1√
2n

∑
K∈{0,1}n

(−1)⟨K |x⟩ |K ⟩

⊗
(
|0⟩ − |1⟩√

2

)
,

|ψ4 ⟩ =

 ∑
K∈{0,1}n

 1
2n

∑
x∈{0,1}n

(−1)f (x)+⟨K |x⟩

 |K ⟩

⊗
(
|0⟩ − |1⟩√

2

)
,
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III.3. Deutsch-Josa algorithm

Let define

CK =
1
2n

∑
x∈{0,1}n

(−1)f (x)+⟨K |x⟩ , and |ϕ⟩ =
∑

K∈{0,1}n
CK |K ⟩.

Then

|ψ4 ⟩ = |ϕ⟩ ⊗
(
|0⟩ − |1⟩√

2

)
.

The state |ϕ⟩ is measured at the end: probability to measure the
string |000 · · · 000⟩

P(y = 00 · · · 00) = |⟨00 · · · 00|ϕ⟩ |2 .
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III.3. Deutsch-Josa algorithm

P(y = 00 · · · 00) =

∣∣∣∣∣∣
∑

K∈{0,1}n
CK ⟨00 · · · 00|K ⟩

∣∣∣∣∣∣
2

= |C00···00|2 ,

=

∣∣∣∣∣∣ 1
2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Or ∑
x∈{0,1}n

(−1)f (x) =


+2n if f (x) = 0
−2n if f (x) = 1
0 if f (x) is balanced

,

then

P(y = 00 · · · 00) =
{

1 if f (x) is constant
0 if f (x) is balanced
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III.3. Deutsch-Josa algorithm

So
P(y = 00 · · · 00) = 1 for a balanced function,

P(y = 00 · · · 00) = 0 for a constant function.

If the function is neither balanced nor constant, then

P(y = 00 · · · 00) ∈ ] 0, 1 [ .

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 65 / 66

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a
Creative Commons “Attribution-
NonCommercial-NoDerivatives 4.0
International” license.

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Binary quantum gates
	Definition
	Circuit representation of a C-gate
	Importance of the C-NOT gate

	Examples of multiqubit gates
	The Toffoli gate
	Logical gates
	Boolean circuits
	SWAP gate
	Oracle

	Deutsch-Josa algorithm
	Deutsch algorithm
	Implementation of Deutsch algorithm
	Deutsch-Josa algorithm


