Kenneth Maussang #### ▶ To cite this version: Kenneth Maussang. Implementation of multiqubit gates Case of NMR. Master. Introduction to Quantum Computing, France. 2023, pp.55. hal-04423781 # HAL Id: hal-04423781 https://cel.hal.science/hal-04423781 Submitted on 29 Jan 2024 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Introduction to Quantum Computing Kenneth MAUSSANG Université de Montpellier 2022 - 2023 - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques - 1 Implementation of a C-NOT gate - Ising interaction - Two-qubit unitary evolution - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques - 1 Implementation of a C-NOT gate - Ising interaction - Two-qubit unitary evolution - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques #### I.1. Ising interaction Let consider an ensemble of N qubits labeled with i and j index. Those qubits interacts with an ising-type interaction (pair wise spin interaction) $$\hat{H}_{int} = -\sum_{i,j} J_{ij} \hat{Z}_i \hat{Z}_j,$$ where J_{ij} is the intensity of interaction between qubits i and j. #### I.1. Ising interaction It corresponds to a generic two-qubits interaction $$\hat{H}_{int} = -J\hat{Z}_1\hat{Z}_2,$$ with J > 0 for a ferromagnetic coupling, and J < 0 for an anti-ferromagnetic coupling. - 1 Implementation of a C-NOT gate - Ising interaction - Two-qubit unitary evolution - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques ## 1.2. Two-qubit unitary evolution Applying the hamiltonian $$\hat{H}_{int} = -J\hat{Z}_1\hat{Z}_2,$$ for a time T, the unitary evolution will be $$\hat{C}(\gamma) = e^{-i\frac{\gamma}{2}\hat{Z}_1\hat{Z}_2},$$ with $$\gamma = -\frac{2J}{\hbar}T.$$ $\hat{C}(\gamma)$ does not realize a C-NOT gate yet. Additionally, single qubit operations on each of the qubits are required to realize a C-NOT gate as follow $$e^{-i\frac{3\pi}{4}}\hat{R}_{X2}\left(\frac{3\pi}{2}\right)\hat{C}\left(\frac{3\pi}{2}\right)\hat{R}_{Z2}\left(\frac{\pi}{2}\right)\hat{R}_{X2}\left(\frac{\pi}{2}\right)\hat{R}_{Z2}\left(\frac{\pi}{2}\right)\hat{R}_{Z1}\left(\frac{\pi}{2}\right)\hat{C}\left(\frac{3\pi}{2}\right)$$ #### I.2. Two-qubit unitary evolution Circuit representation of a C-NOT gate made with a two-qubit interaction $\hat{C}\left(\gamma\right)$ Any physical two-qubit interaction that can produce entanglement can be tuned into a universal two-qubit gate (such as the C-NOT gate) when it is augmented by arbitrary single qubit operations. Ref: Bremner *et al.*, Physical Review Letter, **89**, 247902 (2002). - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of qubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of gubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques #### II.1. NMR quantum computing NMR is based on manipulation and measurement of nuclear spins. It's well adapted for quantum computing implementation and the first quantum calculation was implemented in NMR systems. #### Reference: Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature, **414**, 883-887 (2001). \Rightarrow factorization of 15 = 3 \times 5 in molecules by NMR. #### II.1. NMR quantum computing #### Introduction review articles - NMR techniques for quantum control and computation, Rev. Mod. Phys., 76 (2004) - Bulk spin-resonance quantum computation, Science, 275, 350 (1997) - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of qubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques - **Qubits:** nuclear spins 1/2 in $\vec{B_0}$ ($|\uparrow\rangle$ and $|\downarrow\rangle$ as $|0\rangle$ and $|1\rangle$). - Quantum gates: RF pulses and delay times. - Input: Boltzmann distribution of spins (room temperature). - Read out: detect spin states with RF coil. - **Coherence times:** easily several seconds. Nuclear spin in a static $\vec{B_0}$ field, with $\hat{\vec{I}}$ the nuclear spin operator and $\vec{B_0} = B_0 \vec{u_z}$, $$\hat{\mathcal{H}}_0 = -\hbar \gamma B_0 \hat{I}_Z = -\frac{\hbar \omega_0}{2} \hat{Z},$$ where ω_0 is the Larmor frequency: precession of the qubit around \vec{u}_Z at Larmor frequency. Case of $C_4F_5Fe(CH)_5(CO)_2$ - perfluorobutadienyl iron complex. Vendersypen *et al.*, Nature **414**, 883 (2001). Nuclei labeled in red are qubits (F and ¹³C), numbered in green. $$B_0 = 11,7T$$. I. L. Chuang et al., Proceedings of the Royal Society A 454, pp. 447-467 (1998). Even without qubit/qubit coupling, the Larmor frequency depends on the atoms. Those frequencies are shifted depending on the coupling with the chemical environment $$\mathcal{H}_0 = -\sum_{j=1}^n \hbar(1-\tilde{\sigma}_i)\gamma_i B_0 \hat{I}_Z^i = -\sum_{i=1}^n \frac{\hbar}{2} \omega_0^i (1-\tilde{\sigma}_i),$$ with ω_0^i the Larmor frequency of the nuclei i without qubit/qubit coupling and $\tilde{\sigma}_i$ the chemical frequency shift due to coupling with neighborhooding spins. $\tilde{\sigma}_i$ is used in analytical chemistry to determine the environment of an atom, while here it is used to address different qubits with different RF frequencies independently. **Exemple:** Larmor frequency at 11.7 T for different atoms | Atom | ω_0^i | |-----------------|--------------| | ¹ H | 500 MHz | | ¹³ C | 126 MHz | | ¹⁵ N | -51 MHz | | ¹⁹ F | 470 MHz | | ³¹ P | 202 MHz | with 500 MHz equivalent to 25 mK. Chemical shifts of the five F qubits of perfluorobutandienyl iron complexe Chemical shifts of the five F qubits of perfluorobutandienyl iron complexe - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of gubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques #### II.3. RF field interaction: single qubit rotation In the rotating frame and the rotating wave approximation, the hamiltonian becomes $$\hat{H}^{rot} = - rac{\hbar\delta}{2}\hat{Z} - rac{\hbar\omega_1}{2}\left(\cos\phi\hat{X} + \sin\phi\hat{Y} ight),$$ with $\delta=\omega_0-\omega_{RF}$ the detuning between RF and Larmor frequency, ϕ the phase of the RF field and $\omega_1=\gamma B_1$ where B_1 is the amplitude of the RF field. For n qubits of Larmor frequencies ω_0^i , gyromagnetic factor γ_i and $\omega_1^i = \gamma_i B_1$, frequency shift $\tilde{\sigma}_i$, one notes $$\delta_{i} = \omega_{0}^{i} \left(1 - \tilde{\sigma}_{i} \right) - \omega_{RF},$$ the detuning between RF and qubit i frequency, such that $$\widehat{\hat{H}}^{rot} = -\sum_{i=1}^{n} \frac{\hbar}{2} \delta_{i} \hat{Z}_{i} - \frac{\hbar}{2} \sum_{i=1}^{n} \left(\cos \phi \omega_{1}^{i} \hat{X}_{i} + \sin \phi \omega_{1}^{i} \hat{Y}_{i} \right).$$ #### II.3. RF field interaction: single qubit rotation Let call T the time during which the RF field is applied to the system of n qubits. It T is long enough, each spin resonance is non overlapping with the others. So if ω_{RF} is not close enough to a Larmor frequency corrected $\omega_0^i \left(1-\tilde{\sigma}_i\right)$, the effect of the RF field in negligeable. If $\omega_{RF} \approx \omega_0^i \left(1-\tilde{\sigma}_i\right)$, only the qubit i will be affected and rotate on the Bloch sphere. If qubits have different Larmor frequencies, it is possible to manipulate each qubit individually choosing the corresponding frequency. - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of gubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques When spins of different atoms are coupled, the coupling interaction energy usually results in level splitting. Consequently, the Larmor frequency of a qubit, corrected by the chemical frequency shift $\tilde{\sigma}_i$, will depend on the state of neighborhooding qubits. In other words, the resonance RF frequency of a qubit will depends on the state of the neighborhooding qubits. This phenomena is the key physical effect used to implement multiqubit gates. The coupling hamiltonian might be written as follow $$\hat{H}_J = \hbar \sum_{i < j} 4 J_{ij} \hat{I}_Z^i \hat{I}_Z^j,$$ $$\widehat{H}_J = \hbar \sum_{i < j} J_{ij} \widehat{Z}^i \widehat{Z}^j.$$ J > 0: antiferromagnetic interaction, J < 0: ferromagnetic interaction. Coupling constants of the five F qubits of perfluorobutandienyl iron complexe | i | $\omega_i/2\pi$ | $T_{1,i}$ | $T_{2,i}$ | J_{7i} | J_{6i} | J_{5i} | J_{4i} | J_{3i} | J_{2i} | |--|--------------------------|-----------|-----------|----------|-------------------|--------------------|------------------------------|----------|----------| | 1 | -22052.0 | 5.0 | 1.3 | -221.0 | 37.7 | 6.6 | -114.3 | 14.5 | 25.16 | | 2 | 489.5 | 13.7 | 1.8 | 18.6 | -3.9 | 2.5 | 79.9 | 3.9 | | | 3 | 25088.3 | 3.0 | 2.5 | 1.0 | -13.5 | 41.6 | 12.9 | | | | 4 | -4918.7 | 10.0 | 1.7 | 54.1 | -5.7 | 2.1 | | | | | 5 | 15186.6 | 2.8 | 1.8 | 19.4 | 59.5 | | ¹⁹ F ¹ | | 2 19F | | 6 | -4519.1 | 45.4 | 2.0 | 68.9 | 2 | | 13C | 13(| | | 7 | 4244.3 | 31.6 | 2.0 | | ¹⁹ F 3 | | 6 | <u> </u> | 2 | | At A | $B_0 = 11.7 \text{ T}$: | | | | > | ¹² C == | 13C | | 19F | | $\omega_{0,l}$ | $=/2\pi = 470 \text{ N}$ | ИHz | | | | | - | | 4 | | $\omega_{0,\mathrm{C}}/2\pi = 125\mathrm{MHz}$ | | | | | |) | | | | | $[\omega_i]$ | $/2\pi] = Hz, [7]$ |] = s, [c | /] = Hz | | | | $C_5 H_5$ | сo | | L. M. K. Vandersypen et al., Nature 414, 883 (2001) 5 resonances frequencies corresponding to 5 different qubits. **Orders of magnitude:** in the case of perfluorobutadienyl iron complex at 11,7T - Larmor frequency of F-type qubit \sim 470 MHz ; - chemical frequency shift $\sim 10-20$ kHz; - typical RF strength $\omega_1 \sim 2\pi \times 100$ kHz ; - typical level splitting due to qubit/qubit coupling $J \sim$ few 100 Hz max. $$\frac{100 \text{ Hz}}{470 \text{ MHz}} \sim 2 \cdot 10^{-7}, \quad \frac{100 \text{ Hz}}{10 \text{ kHz}} \sim 10^{-2}.$$ - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of qubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques ## II.5. Controlled-NOT gate in NMR Two spins A and B as qubits. C-NOT gate flips A is B is \downarrow . | Before | | | | | |--------------|---------------|--|--|--| | Α | В | | | | | \uparrow | ↑ | | | | | ↑ | \rightarrow | | | | | \downarrow | \uparrow | | | | | \ | + | | | | | After | | | | | |--------------|---------------|--|--|--| | Α | В | | | | | \uparrow | | | | | | \downarrow | \rightarrow | | | | | | \uparrow | | | | | ↑ | \rightarrow | | | | #### II.5. Controlled-NOT gate in NMR #### Sequence: Apply $\hat{R}_{Y,A}\left(\frac{\pi}{2}\right)$, wait for a delay $$\Delta t = \frac{\pi}{4J_{AB}},$$ and finally apply $\hat{R}_{X,A}\left(\frac{\pi}{2}\right)$. Let describe this sequence on the Bloch sphere of spin A in the rotating frame at the larmor frequency of A, ν_A (no coupling). The rotation direction depends on the control qubit. - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of qubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques Based on NMR method. Apply $\hat{R}_Y\left(\frac{\pi}{2}\right)$ pulse and measure spin relaxation signal A coil measures the free evolution of the spin to get access to the so-called free induction decay signal and afterwards the integrated signal or the spectrum by FFT Depending on the initial position of the equator of the Bloch sphere, the phase of the free induction decay will be different The initial angle φ on the Bloch sphere is measured by the FID signal in NMR. NMR is a phase sensitive detection method. A qubit state is measured with a as follow For a $|0\rangle$ state, $\varphi=0$ after the $\hat{R}_{Y}\left(\frac{\pi}{2}\right)$ pulse leading in a positive signal in the FFT of FID. For a $|1\rangle$ state, $\varphi=\pi$ after the $\hat{R}_{Y}\left(\frac{\pi}{2}\right)$ pulse leading in a negative Two coupled qubits in their four computational basis states have the following spectrum NMR detection signal (FFT of FID) depends on states. It's easier and faster experimentally to detect the sign of $S(\nu)$ rather than the frequency shift J_{AB} which is only of few hundreds of Hz. State detection is based on sign measurement of the NMR signal $S(\nu)$. - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of gubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques ## II.7. Example of Shor's algorithm Real sequence in practice for factorization with perfluorobutadienyl iron complex. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature, **414**, 883-887 (2001). \Rightarrow factorization of 15 $= 3 \times 5$ in molecules by NMR with Shor's algorithm. #### II.7. Example of Shor's algorithm Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature, **414**, 883-887 (2001). ## II.7. Example of Shor's algorithm Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature, **414**, 883-887 (2001). L. M. K. Vandersypen et al., Nature 414, 883 (2001) - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - NMR quantum computing - Manipulation of gubits and NMR - RF field interaction: single qubit rotation - Coupled spins - Controlled-NOT gate in NMR - Read-out in NMR - Example of Shor's algorithm - Quantum state tomography - 3 Molecules for quantum computing based on NMR techniques ### II.8. Quantum state tomography It is possible to reconstruct a state after a quantum calculation if it's not a pure state $|0\rangle$ or $|1\rangle$. It is however possible to reconstruct a quantum state if it is possible to produce it several times. The principle consists in applying different rotations to look at the qubits from different angle. It is called quantum state tomography. ## II.8. Quantum state tomography initial state no pulse after X₉₀ Andreas Wallraff, Quantum Device Lab - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques - Properties of molecules - Examples of molecules used - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques - Properties of molecules - Examples of molecules used #### III.1. NMR quantum computing A quantum computer is a known molecule with the following desired properties - spins 1/2 (¹H, ¹³C, ¹⁹F, ¹⁵N,...) ; - long T_1 's and T_2 's; - heteronuclear, or large chemical shifts (required to address different spin types independently); - good J-coupling netword (clock-speed); - stable, available, soluble,... - 1 Implementation of a C-NOT gate - 2 Example with NMR quantum computing - 3 Molecules for quantum computing based on NMR techniques - Properties of molecules - Examples of molecules used ### III.2. Examples of molecules used # III.2. Examples of molecules used This work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives 4.0 International" license. https://creativecommons.org/licenses/by-nc-nd/4.0/