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Berstein-Vazirani algorithm is a restricted version of Deutsch-Josa algorithm.

Instead of distinguishing between two different classes of functions, it tries to learn a string encoded in a function. One is given an oracle implementing a function f f : {0, 1} n -→ {0, 1}.

It is given that f (x) is a dot product between x and a secret string

Classicaly, it requires to evaluate n times the function f (x), with

x = 2 k , k ∈ {0, 1, • • • , n -1}. f (1000 • • • 00) = s 1 , f (0100 • • • 00) = s 2 , . . . f (0000 • • • 01) = s n ,
Thanks to Bernstein-Vazirani algorithm, only one query is needed with a quantum computer.

Introduction

A simple example of a problem that fits into the query complexity model is unstructured search on a set of N elements, in which only on element is marked. In this problem, we are given a function f :

{x i , i ∈ 0, N -1 } -→ {0, 1},
with the promise that it exists only one p ∈ 0, N -1 such that f (x p ) = 1, and for q ̸ = p, f (x q ) = 0.

Then, x p is the "marked" element.

Our task is to output x p , f being given by an Oracle.
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It is intuitively clear that the unstructured search problem requires about N queries the be solved classically.

Let A be a classical algorithm which solves the unstructured search problem on a set of N elements with a failure probability ≲ 1/2. Then, A makes O(N) queries in the worst case.

Grover (1997): there is a quantum algorithm which solves the unstructured search problem using O( √ N) queries.

For simplicity, we assume that N = 2 n , n ∈ N (this is not an essential restriction). Thus, we associate any element of {x i } with an n-bits string. We are given access to

f : {0, 1} n -→ {0, 1},
with the property that f (x p ) = 1 for a unique element x p . We use a quantum circuit on n qubits with an initial state

|ψ 0 ⟩ = |0 ⟩ ⊗n .
Let Ĥ denote the Hadamard gate, and let Û0 denote the n-qubit operation which inverts the phase of only |0 ⟩ ⊗n To describe Grover's algorithm, we introduce unitary operators

Û0 |0 ⟩ ⊗n = -|0 ⟩ ⊗n Û0 |x ⟩ = |x ⟩ for |x ⟩ ̸ = |0 ⟩ ⊗n (1)
Î|ψ ⟩ = I -2 |ψ ⟩⟨ ψ| and R|ψ ⟩ = -Î|ψ ⟩ = 2 |ψ ⟩⟨ ψ| -I,
where I is the identity operator, and |ψ ⟩ is an arbitrary state.

Î|ψ ⟩ can be seen as an inversion around |ψ ⟩ operation, while R|ψ ⟩ can be seen as a reflection around |ψ ⟩ operation. 

R|ψ ⟩ |ϕ ⟩ = α |ψ ⟩ -β ψ ⊥ ⟩.
Ûf is an Oracle such that

Ûf |x ⟩ = (-1) f (x) |x ⟩,
where one forgets the ancilla qubit required for unitary evolution.

In the unstructured search problem with a marked element x p Ûf = Î|xp ⟩ .

Kenneth Furthermore,

Ĥ⊗n Û0 Ĥ⊗n = Ĥ⊗n I -2 |0 ⟩ ⊗n ⟨ 0| ⊗n Ĥ⊗n = I-2 Ĥ⊗n |0 ⟩ ⊗n ⟨ 0| ⊗n Ĥ⊗n .
Introducing the |+ ⟩ state defined as follow

|+ ⟩ = Ĥ⊗n |0 ⟩ ⊗n = 1 √ 2 n x∈{0,1} n |x ⟩,
one obtains immediately D = -Î|+ ⟩ . After T iterations, the final state |ψ f ⟩ measured is the following

|ψ f ⟩ = D Ûf T Ĥ⊗n |0 ⟩ ⊗n = D Ûf T |+ ⟩, = -Î|+ ⟩ Î|xp ⟩ T |+ ⟩ = -R|+ ⟩ R|xp ⟩ T |+ ⟩, |ψ f ⟩ = -R|+ ⟩ R|xp ⟩ T |+ ⟩ .
Kenneth 2 For two orthogonal states, R|ψ ⊥ ⟩ = -R|ψ ⟩ . Demonstration:

-R|ψ ⟩ α |ψ ⟩ + β ψ ⊥ ⟩ = -α |ψ ⟩ + β ψ ⊥ ⟩ = R|ψ ⊥ ⟩ α |ψ ⟩ + β ψ ⊥ ⟩ 3 If |ξ ⟩ is in the plan defined by two orthogonal states |ϕ ⟩ and ϕ ⊥ ⟩ R|ϕ ⟩ |ξ ⟩ = ⟨ϕ|ξ⟩ |ϕ ⟩ -⟨ϕ ⊥ |ξ⟩ ϕ ⊥ ⟩.
Demonstration is straightforward. The iteration has to be stopped when |ξ ⟩ is close as much as possible to |x p ⟩. We start with |ξ ⟩ = |+ ⟩, so the initial angle between |ξ ⟩ and |x p ⟩ is π 2 -γ. We can calculate γ as follow

cos γ = ⟨x p |+ ⊥ ⟩ , sin γ = ⟨x p |+⟩ = 1 √ N , (2) 
because

|+ ⟩ = 1 √ N x∈{0,1} n |x ⟩.
For large N,

sin γ ≈ γ ≈ 1 √ N . Introduction to Quantum Computing 2022 -2023 29 / 102
So the number of iterations M required to move from an angle π 2 -γ down to approximately 0 is

M ≈ π 2 -γ 2γ = π 4γ - 1 2 ≈ π 4 √ N - 1 2 .
So in the limit where N ≫ 1,

M ≈ π 4 √ N .
The number of iteration with a quantum algorithm scales as √ N while with a classical algorithm, it scales as N.
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After T iterations, the angle between |ξ ⟩ and |x p ⟩ is

γ T = π 2 -(2T + 1) arcsin 1 √ N ,
so the probability of obtaining the outcome |x p ⟩ when we measure it is precisely

|⟨ξ|x p ⟩ | 2 = cos 2 γ T = sin 2 (2T + 1) arcsin 1 √ N .
Maximising this by taking T as the nearest integrer to

π 4 arcsin 1 √ N - 1 2 = π 4 √ N - 1 2 -O 1 N .
We have access to x p with a probability 1 -O Let's define the state |S ⟩ as follow

|S ⟩ = 1 √ M x∈S |x ⟩ .
Then,

Î|S ⟩ = (I -2 |S ⟩⟨ S|) |+ ⟩ = |+ ⟩ -2   1 M x,y ∈S |x ⟩⟨ y |     1 √ N x∈{0,1} n |x ⟩   . So Î|S ⟩ = |+ ⟩ - 2 √ N x∈S |x ⟩ = I -2 ΠS |+ ⟩ = Ûf |+ ⟩. Kenneth MAUSSANG Introduction to Quantum Computing 2022 -2023 36 / 102
Thus, after T iterations, we have

|⟨ξ|S⟩ | 2 = cos 2 γ T = sin 2 (2T + 1) arcsin M N .
To obtain an overlap with |S ⟩ close to 1, it requires T iterations with

T ≈ π 4 N M .
At the end of the algorithm, one get an element of the subset S at the measurement (a uniformly random distribution of elements of S) with a probability |⟨ξ|S⟩ | 2 . For M = N 4 , we again measure an element of S with certainty using only one query. Now the number of marked elements is not known (noted M ′ ). In that case, one first runs the algorithm assuming there is only 1 marked element. If it fails, try again assuming there are 2 marked elements. Then 4, 8, etc... The total number of queries used is roughly

log 2 N k=0 π 4 N 2 k = π 4 √ N log 2 N k=0 2 -k/2 = O √ N .
If the number of marked elements is M ′ , at least one of the iterations must choose a guess M for M ′ such that

M ′ 2 ≤ M ≤ 2M ′ .
This corresponds to a value of T which is within a factor of about √ 2 of the optimal value

T ′ ≈ π 4 N M ′ . Kenneth MAUSSANG Introduction to Quantum Computing 2022 -2023 40 / 102 Since 2T ′ + 1 arcsin M ′ N = π 2 + O M ′ N , then sin 2 (2T + 1) arcsin M ′ N = sin 2 2T +1 2T ′ +1 (2T ′ + 1) arcsin M ′ N = sin 2 2T +1 2T ′ +1 π 2 + O M ′ N ,
which is lower-bounded by a strictly positive constant of M is small with respect to N.

Repeating the whole algorithm O (1) times, and checking each time whether the returned element is marked, allos to achieve an arbitrary high success probability.

This algorithm might still have a high probability of failing in the case where M = O (N). To find a marked element in this case, we can just sample O (1) random values of f (x) classically ; we will find a marked element with high probability. The idea of Grover's algorithm might be generalized to an algorithm for finding heuristic solutions to any problems. This algorithm is known as amplitude amplification.

Imagine we have N = 2 n possible solutions, of which a subset S are "good", and we would like to find a good solution. As well as having access to a "checking" algorithm f as before, where f (x) = 1 if and only if x is marked, we now have access to a "guessing" algorithm Â, which has the job of producing potential solution to the problem.

It performs the map

 |0 ⟩ ⊗n = x∈{0,1} n α x |x ⟩, with α x ∈ C. Kenneth MAUSSANG Introduction to Quantum Computing 2022 -2023 44 / 102
After applying Â, the probability that we would obtain a good solution after measurement is

p = x∈S |α x | 2 .
We may consider  as an heuristic try for output of a good solution. We can use f afterwards to check whether a claimed solution is actually good. If we repeated the algorithm  until we got a good solution, the expected number of trials we would need is

O 1 p . Let introduce |ψ ⟩ = Â |0 ⟩ ⊗n ,
and

|G ⟩ = ΠS |ψ ⟩ ∥ ΠS |ψ ⟩∥ , with ΠS = x∈S |x ⟩⟨ x|.
The previous analysis is still valid, replacing |+ ⟩ with |ψ ⟩ and |S ⟩ with |G ⟩. The first operation applied is equivalent to Î|G ⟩ and the second is equivalent to -Î|ψ ⟩ .

We start with the state |ψ ⟩ and rotate it toward |G ⟩. The angle γ moved at each step is such that

sin γ = ⟨ψ|G ⟩ = ∥ ΠS |ψ ⟩∥ = √ p ,
so the number of iterations required to move from |ψ ⟩ to |G ⟩ is We now introduce an important unitary transformation which is used in a number of different contexts in quantum information theory the quantum Fourier transform (QFT) over Z N , where Z N is the ensemble of integer modulo N.

O 1 √ p ,
QFT might be seen as a generalization of the Hadamard gate, which has the following map

Ĥ⊗n = 1 √ 2 n (|0 ⟩⟨ 0| + |1 ⟩⟨ 0| + |0 ⟩⟨ 1| -|1 ⟩⟨ 1|) ⊗n .
The QFT map is the following

QN |x ⟩ = 1 √ N y ∈Z N ω x•y N |y ⟩ ,
where ω N = e 2iπ N , but x • y is the product of x and y as integer of Z N .
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Exemple:

Q 2 = 1 √ 2 1 1 1 -1 , Q 3 = 1 √ 3    1 1 1 1 e 2iπ 3 e -2iπ
3

1 e -2iπ 3 e 2iπ 3    , Q 4 = 1 2     1 1 1 1 1 i -1 -i 1 -1 1 -1 1 -i -1 i     .
Note that the QFT is unitary.

Demonstration: Let consider the inner product of rows x and z 

1 N y ∈Z N ω x•y N * ω z•y N = 1 N y ∈Z N ω (z-x)•y N . Kenneth MAUSSANG
|0 ⟩ ⊗N |0 ⟩ ⊗M 1) -→ 1 √ N x∈Z N |x ⟩ |0 ⟩ ⊗M 2) -→ 1 √ N x∈Z N |x ⟩ |f (x) ⟩.
When the second register is measured, we receive an answer, say z. Since f is periodic and one-to-one,

∃x 0 such that f (x 0 ) = z. Consequently ∀x ∈ Z N such that f (x 0 ) = z, ∃j ∈ Z such that x = x 0 + jr .
The state collapses then to something of the following form

r N N r -1 j=0 |x 0 + jr ⟩,
which means there is N/r states in a period. If l 0 is coprime to r , we could cancel the fraction k N and output the denominator. For a integer, b picked-up uniformly at random from 0 to an the probability that b is coprime to a is

O 1 log (log a)
.

The, if we repeat the procedure O (log (log r )) = O (log (log N)) times, we are likely to find the period r . In classical computing, error correcting codes preserves classical bits. Quantum error correcting code will preserve a qubit |ψ ⟩ in quantum computing.

Let consider an error affecting one or more qubits is simply an arbitrary (unknown) unitary operator N applied to those qubits ( N is a noise operator). The classical bit-flip is an example, and corresponds to the application of the operator X . The first three qubits are called input qubits. The last two qubits are called output qubits.

|ϕ 1 ⟩ = |x 1 ⊕ x 2 ⟩, |ϕ 2 ⟩ = |x 1 ⊕ x 3 ⟩.
x 1 ⊕ x 2 and x 1 ⊕ x 3 are invariant under the flipping of all the bits of x.
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In the case of Ẑ noise, Ẑ = 1 0 0 -1 , the syndrome measurement always return 00, so the error correction operation does nothing and the Ẑ error is not corrected. But

Ẑ = Ĥ X Ĥ,
where Ĥ is the Hadamard gate. Thus Ẑ acts in the same way as X , up to a change of basis.

If we use the same code as before, but perform this change of basis for each qubit, we obtain a code which corrects against Ẑ errors. In other words, we now encode |ψ ⟩ as α |+ + + ⟩ + β |---⟩, with

|+ ⟩ = |0 ⟩ + |1 ⟩ √ 2 and |-⟩ = |0 ⟩ -|1 ⟩ √ 2 .

X

  |0 ⟩ = |1 ⟩ and X |1 ⟩ = |0 ⟩.

  

  

  For any states |ψ ⟩, |ϕ ⟩, and any state |ξ ⟩ in the plan defined by |ψ ⟩ and |ϕ ⟩, the states R|ψ ⟩ |ξ ⟩ and R|ϕ ⟩ |ξ ⟩ remain in this plan.
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1 N using O √ N queries (for small x, arcsin x ≈ a + O x 3 ). n , and Card(S) = M. Ûf is still related to a reflection operator, but now an inversion around a M-dimensional subspace Ûf = I -2 ΠS , where ΠS = x∈S |S ⟩⟨ S|,

is the projector on the subspace generated by S.

  which is a quadratic improvement.

	Introduction Introduction			
	Bernstein-Vazirani algorithm Bernstein-Vazirani algorithm		
	Grover's algorithm Grover's algorithm			
	Grover's algorithm in the case of multiple marked elements Grover's algorithm in the case of multiple marked elements	
	Phase estimation Phase estimation			
	Quantum Fourier Transformation Quantum Fourier Transformation		
	Periodicity determination with QFT Periodicity determination with QFT		
	Phase estimation Phase estimation		
	Shor's algorithm Shor's algorithm			
	Kenneth MAUSSANG	Introduction to Quantum Computing	2022 -2023	50 / 102

Apply a Hadamard gate to each qubit of the quantum register, providing the state

-2023
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Similarly

Then, Ûf operation behaves like a reflection around |S ⟩ operator for any states in the subspace spanned by |+ ⟩ and |S ⟩.

The whole of the previous analysis goes through, except that now the angle γ moved at each step satisfies
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Amplitude amplification algorithm:

We are given access to  and Ûf .

1 Apply  to initial state |0 ⟩ ⊗n .

2 Repeat the following operations T times, for some T to be determined

3 Measure all the qubits and output the result.
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Or r -1

Given that ω N N = 1, the inner product is then 0 if z ̸ = x, and 1 otherwise (z = x). More generally, for any integer j,

Then the QFT is unitary.

The QFT is a similar transformation than the Discrete Fourier Transformation (DFT) used for classical computation and signal processing, up to the non standard normalization of 1/ √ N.

Let consider a function

The goal is to determine r . Apply QN to the first register.

Kenneth MAUSSANG

Apply Ôf to the two registers (the Oracle).

Measure the second register.

Apply QN to the first register.

Measure the first register ; let the answer be k.

Simplify the fraction k N as far as possible and return the denominator.
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After we apply the QFT, we get the state

Observe that, as r divides N,

This state is then equivalent to

This state might be rewrite as follow

When me perform the final measurement, we receive an outcome

for some l 0 picked uniformly at random from {0, We have a probabilistic procedure which succeeds with probability p ; the probability that it fails every time over R repetitions is exactly

so it suffices to take R = O 1 p to achieve ∼ 99% success probability. Each time the algorithm returns a claimed period, we can check whether it is really a period of the function using two additional queries of the Oracle. Each use of the quantum algorithm therefore makes 3 queries of Ôf so it makes O (log (log N)) queries in total. Let consider an operator Â, of eigenvectors ⃗ x and eigenvalues λ

Bernstein

In the case of a unitary matrix Shor's algorithm

If N = p k for p prime, return p.

Determine the order k of q modulo N. (Phase estimation).

If k is odd, repear from step 3.

Write k = 2l and determine q l mod N with 1 < r < N. 

The operator Ê might be implemented as follow After the application of

The circuit proposed performs the following map

If one measures the two output qubits, we learn both x 1 ⊕ x 2 and x 1 ⊕ x 3 without disturbing the input qubits. 

The result of measuring the output qubits is known as the syndrome. What are the syndromes of different noise operators N applied to |E (ψ) ⟩ ? If N = I, we always measure 00. If N = X ⊗ I ⊗ I, we always obtain 11.

Kenneth MAUSSANG
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Syndrome measured for different bit-flip noise:

If the error occurs on a single qubit, it is possible to detect it, and apply the corresponding bit-flip operation on the corresponding qubit to restore the original encoded state α |000 ⟩ + β |111 ⟩.

On the other hand, if bit flip errors occurs on more than one qubit, one does not detect them. But it does no longer protects against X errors !!! It is possible to concatenates these two codes. We first encode |ψ ⟩ = α |0 ⟩ + β |1 ⟩ using the code protecting against phase flips, and then encode each of the resulting qubits using the code that protects against bit flips. In other words, we perform the following map The single qubit |ψ ⟩ is now encoded using 9 qubits.

These qubits can naturally be split into three blocks, each of which encodes one qubit of the state

To decode this encoded state, first the decoding circuit for the bit-flip code is applied to each block. Assuming at most one bit-flip error has occurred in each block, the result will be the state α |+ + + ⟩ + β |---⟩, perhaps with a Ẑ error applied to one of the qubits. This state can then be mapped back to α |0 ⟩ + β |1 ⟩ using the decoding algorithm for the phase-flip code.