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I. Introduction

We might divide quantum algorithms in two categories

Polynomial speed up Exponential speed up
Grover’s search Integer
Quantum walks Matrix Inversion

Graph algorithms Phase Estimation
Minimum finding Quantum Fourier Transform
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II. Bernstein-Vazirani algorithm

Berstein-Vazirani algorithm is a restricted version of Deutsch-Josa
algorithm.

Instead of distinguishing between two different classes of functions,
it tries to learn a string encoded in a function. One is given an
oracle implementing a function f

f : {0, 1}n −→ {0, 1}.

It is given that f (x) is a dot product between x and a secret string
s ∈ {0, 1}n modulo 2

f (x) = x · s = x1 · s1 + x2 · s2 + · · ·+ xn · sn.

Bernstein-Vazirani algorithm aims at finding s.
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II. Bernstein-Vazirani algorithm

Classicaly, it requires to evaluate n times the function f (x), with
x = 2k , k ∈ {0, 1, · · · , n − 1}.

f (1000 · · · 00) = s1,

f (0100 · · · 00) = s2,

...

f (0000 · · · 01) = sn,

Thanks to Bernstein-Vazirani algorithm, only one query is needed
with a quantum computer.
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II. Bernstein-Vazirani algorithm

Algorithm
1 Initialize a quantum register of n qubit in the state |0⟩⊗n

|ψ0 ⟩ = |0⟩⊗n.

2 Apply a Hadamard gate to each qubit of the quantum register,
providing the state

|ψ1 ⟩ =
1√
2n

2n∑
x=0

|x ⟩.

3 Apply the Oracle to the previous superposed state to obtain
the following state

|ψ2 ⟩ =
1√
2n

2n∑
x=0

(−1)f (x) |x ⟩.
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II. Bernstein-Vazirani algorithm

Algorithm
1 Apply Hadamard gate on each qubit of the quantum register.

If si = 1, it converts the state |−⟩ = 1√
2
(|0⟩ − |1⟩) to |1⟩. If

si = 0, it converts the state |+⟩ = 1√
2
(|0⟩+ |1⟩) to |0⟩.

|ψ3 ⟩ = |s1, s2, · · · , sn ⟩.

2 To obtain s, the classical measurement on the {|0⟩, |1⟩} basis
provides the result.
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II. Bernstein-Vazirani algorithm

Circuit diagram of Bernstein-Vazirani algorithm
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III.1. Grover’s problem - unstructured search

A simple example of a problem that fits into the query complexity
model is unstructured search on a set of N elements, in which
only on element is marked. In this problem, we are given a
function

f : {xi , i ∈ J0,N − 1K} −→ {0, 1},

with the promise that it exists only one p ∈ J0,N − 1K such that

f (xp) = 1, and for q ̸= p, f (xq) = 0.

Then, xp is the "marked" element.

Our task is to output xp, f being given by an Oracle.
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III.1. Grover’s problem - unstructured search

It is intuitively clear that the unstructured search problem requires
about N queries the be solved classically.

Let A be a classical algorithm which solves the unstructured search
problem on a set of N elements with a failure probability ≲ 1/2.
Then, A makes O(N) queries in the worst case.

Grover (1997): there is a quantum algorithm which solves the
unstructured search problem using O(

√
N) queries.

For simplicity, we assume that N = 2n, n ∈ N (this is not an
essential restriction). Thus, we associate any element of {xi} with
an n-bits string.
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III.2. Grover’s algorithm

We are given access to

f : {0, 1}n −→ {0, 1},

with the property that f (xp) = 1 for a unique element xp. We use a
quantum circuit on n qubits with an initial state

|ψ0 ⟩ = |0⟩⊗n.

Let Ĥ denote the Hadamard gate, and let Û0 denote the n-qubit
operation which inverts the phase of only |0⟩⊗n{

Û0 |0⟩⊗n = − |0⟩⊗n

Û0 |x ⟩ = |x ⟩ for |x ⟩ ≠ |0⟩⊗n (1)
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III.2. Grover’s algorithm

Grover’s algorithm:
1 Apply Ĥ⊗n ;
2 Repeat the following operation T times, for some T to be

determined later
1 Apply Ûf ;
2 Apply D̂ = −Ĥ⊗nÛ0Ĥ

⊗n.

3 Measure all the qubits and output the results.
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III.2. Grover’s algorithm

The overall operation performed, applied on the initial state |0⟩⊗n,
is unitary

D̂T Ĥ⊗n =
(
−Ĥ⊗nÛ0Ĥ

⊗n
)T

Ĥ⊗n.
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III.3. Analysis of Grover’s algorithm

To describe Grover’s algorithm, we introduce unitary operators

Î|ψ ⟩ = I− 2 |ψ ⟩⟨ψ| and R̂|ψ ⟩ = −Î|ψ ⟩ = 2 |ψ ⟩⟨ψ| − I,

where I is the identity operator, and |ψ ⟩ is an arbitrary state.

Î|ψ ⟩ can be seen as an inversion around |ψ ⟩ operation, while R̂|ψ ⟩
can be seen as a reflection around |ψ ⟩ operation. An arbitrary state
|ϕ⟩ can be expressed as

|ϕ⟩ = α |ψ ⟩+ β
∣∣∣ψ⊥ ⟩,

with (α, β) ∈ C and
∣∣ψ⊥ ⟩ belongs to the subspace perpendicular to

|ψ ⟩
⟨ψ|ψ⊥⟩ = 0.
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III.3. Analysis of Grover’s algorithm

Then
Î|ψ ⟩ |ϕ⟩ = −α |ψ ⟩+ β

∣∣∣ψ⊥ ⟩.

Î|ψ ⟩ has flipped the phase of the component corresponding to |ψ ⟩.
R̂|ψ ⟩ has the opposite effect

R̂|ψ ⟩ |ϕ⟩ = α |ψ ⟩ − β
∣∣∣ψ⊥ ⟩.

Ûf is an Oracle such that

Ûf |x ⟩ = (−1)f (x) |x ⟩,

where one forgets the ancilla qubit required for unitary evolution.
In the unstructured search problem with a marked element xp

Ûf = Î|xp ⟩ .
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III.3. Analysis of Grover’s algorithm

Furthermore,

Ĥ⊗nÛ0Ĥ
⊗n = Ĥ⊗n

(
I− 2 |0⟩⊗n⟨0|⊗n) Ĥ⊗n = I−2Ĥ⊗n |0⟩⊗n⟨0|⊗nĤ⊗n.

Introducing the |+⟩ state defined as follow

|+⟩ = Ĥ⊗n |0⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x ⟩,

one obtains immediately D̂ = −Î|+ ⟩ . After T iterations, the final

state |ψf ⟩ measured is the following

|ψf ⟩ =
(
D̂Ûf

)T
Ĥ⊗n |0⟩⊗n =

(
D̂Ûf

)T
|+⟩,

=
(
−Î|+ ⟩ Î|xp ⟩

)T
|+⟩ =

(
−R̂|+ ⟩R̂|xp ⟩

)T
|+⟩,

|ψf ⟩ =
(
−R̂|+ ⟩R̂|xp ⟩

)T
|+⟩ .
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III.3. Analysis of Grover’s algorithm

Properties:
1 For any states |ψ ⟩, |ϕ⟩, and any state |ξ ⟩ in the plan defined

by |ψ ⟩ and |ϕ⟩, the states R̂|ψ ⟩ |ξ ⟩ and R̂|ϕ ⟩ |ξ ⟩ remain in this
plan.

2 For two orthogonal states, R̂|ψ⊥ ⟩ = −R̂|ψ ⟩.
Demonstration:

−R̂|ψ ⟩

(
α |ψ ⟩+ β

∣∣∣ψ⊥ ⟩
)

= −α |ψ ⟩+ β
∣∣∣ψ⊥ ⟩

= R̂|ψ⊥ ⟩

(
α |ψ ⟩+ β

∣∣∣ψ⊥ ⟩
)

3 If |ξ ⟩ is in the plan defined by two orthogonal states |ϕ⟩ and∣∣ϕ⊥ ⟩
R̂|ϕ ⟩ |ξ ⟩ = ⟨ϕ|ξ⟩ |ϕ⟩ − ⟨ϕ⊥|ξ⟩

∣∣∣ϕ⊥ ⟩.

Demonstration is straightforward.
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III.3. Analysis of Grover’s algorithm

Consequently

|ψf ⟩ =
(
R̂|+⊥ ⟩R̂|xp ⟩

)T
|+⟩ .

Grover’s algorithm is based on successive rotations around
|xp ⟩ and

∣∣+⊥ ⟩, starting from the initial states superposition
|+⟩.
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III.4. Geometrical interpretation of Grover’s algorithm
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III.4. Geometrical interpretation of Grover’s algorithm

After each iteration, |ξ ⟩ moves closer to |xp ⟩. In fact, the
composition of two reflections around |xp ⟩ and

∣∣+⊥ ⟩ is a rotation.
Let not θ the angle between |ξ ⟩ and |xp ⟩, and γ the angle between
|xp ⟩ and

∣∣+⊥ ⟩.
After R̂|xp ⟩, |ξ ⟩ rotates by an angle 2θ anticlockwise. After R̂|+⊥ ⟩,

|ξ ⟩ rotates by an angle 2(θ − γ) clockwise. Thus, after R̂|+⊥ ⟩R̂|xp ⟩,
|ξ ⟩ rotates by an angle of

∆θ = 2θ − 2(θ − γ) = 2γ.

∆θ = 2γ .

After each iteration, the state has rotates within the plane defined
by |xp ⟩ and

∣∣+⊥ ⟩ by an angle of 2γ.
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III.5. Number of iterations

The iteration has to be stopped when |ξ ⟩ is close as much as
possible to |xp ⟩. We start with |ξ ⟩ = |+⟩, so the initial angle
between |ξ ⟩ and |xp ⟩ is π

2 − γ. We can calculate γ as follow{
cos γ = ⟨xp|+⊥⟩ ,
sin γ = ⟨xp|+⟩ = 1√

N
,

(2)

because
|+⟩ = 1√

N

∑
x∈{0,1}n

|x ⟩.

For large N,

sin γ ≈ γ ≈ 1√
N
.
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III.5. Number of iterations

So the number of iterations M required to move from an angle
π
2 − γ down to approximately 0 is

M ≈
π
2 − γ

2γ
=

π

4γ
− 1

2
≈ π

4

√
N − 1

2
.

So in the limit where N ≫ 1,

M ≈ π

4

√
N .

The number of iteration with a quantum algorithm scales as
√
N

while with a classical algorithm, it scales as N.
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III.5. Number of iterations

After T iterations, the angle between |ξ ⟩ and |xp ⟩ is

γT =
π

2
− (2T + 1) arcsin

(
1√
N

)
,

so the probability of obtaining the outcome |xp ⟩ when we measure
it is precisely

|⟨ξ|xp⟩ |2 = cos2 γT = sin2
(
(2T + 1) arcsin

(
1√
N

))
.

Maximising this by taking T as the nearest integrer to

π

4 arcsin
(

1√
N

) − 1
2
=
π

4

√
N − 1

2
−O

(
1
N

)
.

We have access to xp with a probability 1 −O
( 1
N

)
using O

(√
N
)

queries (for small x , arcsin x ≈ a+O
(
x3)).
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III.5. Number of iterations

Remark:
the optimum number of iteration is independent of xp.

A particular nice case, where we can determine an exact solution
for T , is for N = 4. Indeed,

arcsin
1
2
=
π

6
,

so if we plug in T = 1, the probability of getting xp at the outcome
is sin2 π

2 = 1.

So we get the right answer only after 1 query for 4 possibilities of
xp !
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IV.1. Number of marked elements known

Grover’s algorithm can also be used when there are M > 1 marked
elements. In this setting, the operator Ûf inverts the phase of
inputs elements x ∈ S , for S an unknown subset of {0, 1}n, and
Card(S) = M.
Ûf is still related to a reflection operator, but now an inversion
around a M-dimensional subspace

Ûf = I− 2Π̂S ,

where
Π̂S =

∑
x∈S

|S ⟩⟨S |,

is the projector on the subspace generated by S .

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 35 / 102

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


IV.1. Number of marked elements known

Let’s define the state |S ⟩ as follow

|S ⟩ = 1√
M

∑
x∈S

|x ⟩ .

Then,

Î|S ⟩ = (I− 2 |S ⟩⟨S |) |+⟩

= |+⟩ − 2

 1
M

∑
x ,y∈S

|x ⟩⟨y |

 1√
N

∑
x∈{0,1}n

|x ⟩

 .

So

Î|S ⟩ = |+⟩ − 2√
N

∑
x∈S

|x ⟩ =
(
I− 2Π̂S

)
|+⟩ = Ûf |+⟩.
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IV.1. Number of marked elements known

Similarly

Î|S ⟩ |S ⟩ = − |S ⟩ =
(
I− 2Π̂S

)
|S ⟩ = Ûf |S ⟩.

Then, Ûf operation behaves like a reflection around |S ⟩ operator
for any states in the subspace spanned by |+⟩ and |S ⟩.

The whole of the previous analysis goes through, except that now
the angle γ moved at each step satisfies

sin γ = ⟨S |+⟩ =

√
M

N
.
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IV.1. Number of marked elements known

Thus, after T iterations, we have

|⟨ξ|S⟩ |2 = cos2 γT = sin2

(
(2T + 1) arcsin

√
M

N

)
.

To obtain an overlap with |S ⟩ close to 1, it requires T iterations
with

T ≈ π

4

√
N

M
.

At the end of the algorithm, one get an element of the subset S at
the measurement (a uniformly random distribution of elements of
S) with a probability |⟨ξ|S⟩ |2.
For M = N

4 , we again measure an element of S with certainty using
only one query.
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IV.2. Number of marked elements unknown

Now the number of marked elements is not known (noted M ′). In
that case, one first runs the algorithm assuming there is only 1
marked element. If it fails, try again assuming there are 2 marked
elements. Then 4, 8, etc... The total number of queries used is
roughly

log2 N∑
k=0

π

4

√
N

2k
=
π

4

√
N

log2 N∑
k=0

2−k/2 = O
(√

N
)
.

If the number of marked elements is M ′, at least one of the
iterations must choose a guess M for M ′ such that

M ′

2
≤ M ≤ 2M ′.

This corresponds to a value of T which is within a factor of about
√

2 of the optimal value T ′ ≈ π
4

√
N
M′ .
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IV.2. Number of marked elements unknown

Since (
2T ′ + 1

)
arcsin

√
M ′

N
=
π

2
+O

(√
M ′

N

)
,

then

sin2

(
(2T + 1) arcsin

√
M ′

N

)
= sin2

(
2T+1
2T ′+1 (2T

′ + 1) arcsin
√

M′

N

)
= sin2

(
2T+1
2T ′+1

(
π
2 +O

(√
M′

N

)))
,

which is lower-bounded by a strictly positive constant of M is small
with respect to N.
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IV.2. Number of marked elements unknown

Repeating the whole algorithm O (1) times, and checking each time
whether the returned element is marked, allos to achieve an
arbitrary high success probability.

This algorithm might still have a high probability of failing in the
case where M = O (N). To find a marked element in this case, we
can just sample O (1) random values of f (x) classically ; we will
find a marked element with high probability.
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IV.3. Amplitude amplification

The idea of Grover’s algorithm might be generalized to an
algorithm for finding heuristic solutions to any problems. This
algorithm is known as amplitude amplification.

Imagine we have N = 2n possible solutions, of which a subset S are
"good", and we would like to find a good solution. As well as
having access to a "checking" algorithm f as before, where
f (x) = 1 if and only if x is marked, we now have access to a
"guessing" algorithm Â, which has the job of producing potential
solution to the problem.

It performs the map

Â |0⟩⊗n =
∑

x∈{0,1}n
αx |x ⟩,

with αx ∈ C.
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IV.3. Amplitude amplification

After applying Â, the probability that we would obtain a good
solution after measurement is

p =
∑
x∈S

|αx |2 .

We may consider Â as an heuristic try for output of a good
solution. We can use f afterwards to check whether a claimed
solution is actually good. If we repeated the algorithm Â until we
got a good solution, the expected number of trials we would need is
O
(

1
p

)
.
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IV.3. Amplitude amplification

Amplitude amplification algorithm:

We are given access to Â and Ûf .
1 Apply Â to initial state |0⟩⊗n.
2 Repeat the following operations T times, for some T to be

determined
1 Apply Ûf .
2 Apply −ÂÛ0Â−1.

3 Measure all the qubits and output the result.
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IV.3. Amplitude amplification

Let introduce
|ψ ⟩ = Â |0⟩⊗n,

and

|G ⟩ = Π̂S |ψ ⟩
∥Π̂S |ψ ⟩∥

, with Π̂S =
∑
x∈S

|x ⟩⟨x |.

The previous analysis is still valid, replacing |+⟩ with |ψ ⟩ and |S ⟩
with |G ⟩. The first operation applied is equivalent to Î|G ⟩ and the
second is equivalent to −Î|ψ ⟩.
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IV.3. Amplitude amplification

We start with the state |ψ ⟩ and rotate it toward |G ⟩. The angle γ
moved at each step is such that

sin γ = ⟨ψ|G ⟩ = ∥Π̂S |ψ ⟩∥ =
√
p ,

so the number of iterations required to move from |ψ ⟩ to |G ⟩ is
O
(

1√
p

)
, which is a quadratic improvement.
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V.1. Quantum Fourier Transformation

We now introduce an important unitary transformation which is
used in a number of different contexts in quantum information
theory

the quantum Fourier transform (QFT) over ZN ,

where ZN is the ensemble of integer modulo N.
QFT might be seen as a generalization of the Hadamard gate,
which has the following map

Ĥ⊗n =
1√
2n

(|0⟩⟨0|+ |1⟩⟨0|+ |0⟩⟨1| − |1⟩⟨1|)⊗n .

The QFT map is the following

Q̂N |x ⟩ = 1√
N

∑
y∈ZN

ωx ·y
N |y ⟩ ,

where ωN = e
2iπ
N , but x · y is the product of x and y as integer of

ZN .
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V.1. Quantum Fourier Transformation

Exemple:

Q2 =
1√
2

(
1 1
1 −1

)
, Q3 =

1√
3

1 1 1
1 e

2iπ
3 e

−2iπ
3

1 e
−2iπ

3 e
2iπ
3

 ,

Q4 =
1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

Note that the QFT is unitary.

Demonstration: Let consider the inner product of rows x and z

1
N

∑
y∈ZN

(
ωx ·y
N

)∗
ωz·y
N =

1
N

∑
y∈ZN

ω
(z−x)·y
N .
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V.1. Quantum Fourier Transformation

Or
r−1∑
k=0

xk =

{ 1−x r

1−x if x ̸= 1,
r if x = 1.

(3)

Given that ωN
N = 1, the inner product is then 0 if z ̸= x , and 1

otherwise (z = x). More generally, for any integer j ,

1
N

∑
y∈ZN

ωj ·y
N =

{
0 if j ̸= 0 [N],
1 if j = 0 [N].

(4)

Then the QFT is unitary.

The QFT is a similar transformation than the Discrete Fourier
Transformation (DFT) used for classical computation and signal
processing, up to the non standard normalization of 1/

√
N.
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V.2. Periodicity determination with QFT

Let consider a function

f : ZN −→ ZM ,

for (N,M) ∈ N2 such that
1 f is periodic: there is a r such that

∀x ∈ ZN , f (x + r) = f (x),

2 f is one-to-one on each period

∀(x , y) ∈ ZN such that |x − y | < r , f (x) ̸= f (y).

The goal is to determine r .
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V.2. Periodicity determination with QFT

The periodicity determination algorithm is the following. We start
in the state |0⟩⊗N |0⟩⊗M .

1 Apply Q̂N to the first register.
2 Apply Ôf to the two registers (the Oracle).
3 Measure the second register.
4 Apply Q̂N to the first register.
5 Measure the first register ; let the answer be k .
6 Simplify the fraction k

N as far as possible and return the
denominator.
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V.2. Periodicity determination with QFT

|0⟩⊗N |0⟩⊗M 1)−→ 1√
N

∑
x∈ZN

|x ⟩ |0⟩⊗M 2)−→ 1√
N

∑
x∈ZN

|x ⟩ |f (x)⟩.

When the second register is measured, we receive an answer, say z .
Since f is periodic and one-to-one,

∃x0 such that f (x0) = z .

Consequently

∀x ∈ ZN such that f (x0) = z ,∃j ∈ Z such that x = x0 + jr .

The state collapses then to something of the following form√
r

N

N
r
−1∑

j=0

|x0 + jr ⟩,

which means there is N/r states in a period.
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V.2. Periodicity determination with QFT

After we apply the QFT, we get the state

√
r

N

N
r
−1∑

j=0

∑
y∈ZN

ω
y ·(x0+jr)
N |y ⟩

 =

√
r

N

∑
y∈ZN

ωy ·x0
N

N
r
−1∑

j=0

ωj ·r ·y
N

 |y ⟩

Observe that, as r divides N,

ωr
N = e

2iπr
N = ωN

r
.

This state is then equivalent to

√
r

N

∑
y∈ZN

ωy ·x0
N

N
r
−1∑

j=0

ωj ·y
N
r

 |y ⟩
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V.2. Periodicity determination with QFT

N
r
−1∑

j=0

ωj ·y
N
r

= 0 unless y ≡ 0
[
N

r

]
, in other words, if y = l

N

r
, l ∈ Z.

This state might be rewrite as follow

1√
r

r−1∑
l=0

ω
l ·x0·Nr
N

∣∣∣∣l Nr ⟩.

When me perform the final measurement, we receive an outcome

k =
l0N

r
,

for some l0 picked uniformly at random from {0, · · · , r − 1} so

k

N
=

l0
r
.
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V.2. Periodicity determination with QFT

If l0 is coprime to r , we could cancel the fraction k
N and output the

denominator. For a integer, b picked-up uniformly at random from
0 to an the probability that b is coprime to a is

O
(

1
log (log a)

)
.

The, if we repeat the procedure O (log (log r)) = O (log (logN))
times, we are likely to find the period r .
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V.2. Periodicity determination with QFT

We have a probabilistic procedure which succeeds with probability p
; the probability that it fails every time over R repetitions is exactly

(1 − p)R ≤ e−pR ,

so it suffices to take R = O
(

1
p

)
to achieve ∼ 99% success

probability.
Each time the algorithm returns a claimed period, we can check
whether it is really a period of the function using two additional
queries of the Oracle. Each use of the quantum algorithm therefore
makes 3 queries of Ôf so it makes O (log (logN)) queries in total.
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V.3. Phase estimation

Phase estimation is an important quantum computing
primitive routine. Often used as an ingredient of more complex
algorithms:

integer factorisation ;
matrix inversion ;
quantum counting ;
quantum walks.
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V.3. Phase estimation

Let consider an operator Â, of eigenvectors x⃗ and eigenvalues λ

Âx⃗ = λx⃗ .

In the case of a unitary matrix

Û |x ⟩ = e2iπθ |x ⟩,

with |x ⟩ an eigenvector and θ the phase of the eigenvalue e2iπθ.
Phase estimation algorithm: given Û and |x ⟩, estimate θ.
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V.3. Phase estimation

The circuit diagram implementation of the phase estimation
algorithm is the following
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VI.1. Factoring

The most famous application of quantum computers

N = a× b −→ find a and b given N,

where a and b are prime numbers.

Important modern crypto-systems (e.g. RSA) rely on this problem
being intractable for computers. But a quantum computer can
solve it quickly !
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VI.1. Factoring

Exemple: the recommended key size for RSA is 2048 bits.

Best known classical algorithm ∼ 1 billion years.
Shor’s algorithm ∼ 100 seconds !!!! (QC at 1 GHz).

Reference:
A compare between Shor’s quantum factoring algorithm and
general Number Field Sieve, Hamdi et al..
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VI.2. Shor’s algorithm

Shor’s algorithm consists in reducing the problem of factoring to
the problem of period finding.

It uses a quantum algorithm for fast period finding.
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VI.2. Shor’s algorithm

Shor’s algorithm
1 If N is even, return f = 2.
2 If N = pk for p prime, return p.
3 Randomly choose 1 < q < N − 1.

If f = gcd(q,N) > 1, return f

4 Determine the order k of q modulo N. (Phase estimation).
If k is odd, repear from step 3.

5 Write k = 2l and determine ql mod N with 1 < r < N.
1 If 1 < f = gcd(r − 1,N) < N, return f .
2 If 1 < f = gcd(r + 1,N) < N, return f .
3 Else repeat step 3.
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VI.2. Shor’s algorithm

All steps, excepted step 4, can be performed efficiently by a
classical computer.

Given an n-bit integer

classical number field sieve: O
(
2n

1/3
)
.

Shor’s algorithm: O
(
n3).
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VII.1. Shor’s algorithm

In quantum mechanics, physical systems are described by
Hamiltonians. The evolution is given by Schrödinger’s equation

iℏ
d |ψ(t)⟩

dt
= Ĥ(t) |ψ(t)⟩.

For a stationnary hamiltonian, |ψ(t)⟩ = e−i Ĥt
ℏ |ψ(0)⟩

Hamiltonian simulation:
Given a Hamiltonian Ĥ, construct a quantum circuit that
approximates e−i Ĥt

ℏ .

There are a number of quantum algorithm that can do this
efficiently for certain type of Hamiltonian.
To simulate a classical system like a plane, a classical computer is
appropriated. But to simulate a quantum system like a molecule, a
quantum computer is better suited.
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VII.2. HHL

Named after Harrow, Hassidim and Lloyd, who invented it in 2008.
It attaks one of the most fundamental tasks in science: solving
systems of linear equations

Ax⃗ = b⃗, solve for x⃗ .

Classically: it takes polynomial time in the size of the matrix,
whereas HHL "solves" this problem in logarithmic time.

Quantum algorithm HHL: inputs |b ⟩ and Â, outputs quantum
state |x ⟩.
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VII.2. HHL

HHL algorithm outline
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VII.3. Applications

Solving systems of differential equations (finite element
method, FEM).
Data fitting.
Various tasks in machine learning (clustering, support-vector
machines, principal component analysis).

Run time: for a system of n equations.
classical: O

(
n3) ;

quantum: O
(
κs log nε

)
, with κ the condition number, s the

sparsity and ε the accuracy.
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VII.4. Applications

1 Experimental Quantum Computing to Solve Systems of Linear
Equations,
X.-D. Cai et al., Phys. Rev. Lett. 110, 230501 (2013).
Problem solved: 2 × 2 linear equations.
Qubits: photons (polarization).

2 A two-qubit photonic quantum processor and its application to
solving systems of linear equation,
S. Barz et al., Sci. Rep. 4, 6115 (2014).
Problem solved: 2 × 2 linear equations.
Qubits: photons (polarization).

3 Experimental realization of quantum algorithm for solving
linear systems of equations,
J. Pan et al., Phys. Rev. A 89, 022313 (2014).
Problem solved: 2 × 2 linear equations.
Qubits: NMR type qubits in a molecule of iodotrifluoroethylene
12C13CF3I.
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VII. Introduction

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 84 / 102

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


Quantum algorithms

1 Introduction

2 Bernstein-Vazirani algorithm

3 Grover’s algorithm

4 Grover’s algorithm in the case of multiple marked elements

5 Phase estimation

6 Shor’s algorithm

7 Hamiltonian simulation

8 Quantum error correction
Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 85 / 102

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


VIII. Quantum error correction

In classical computing, error correcting codes preserves classical
bits. Quantum error correcting code will preserve a qubit |ψ ⟩ in
quantum computing.

Let consider an error affecting one or more qubits is simply an
arbitrary (unknown) unitary operator N̂ applied to those qubits (N̂
is a noise operator). The classical bit-flip is an example, and
corresponds to the application of the operator X̂ .

X̂ |0⟩ = |1⟩ and X̂ |1⟩ = |0⟩.
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VIII. Quantum error correction

The process of correcting errors in a qubits state |ψ ⟩ might be
described as follow

Ê is an encoding unitary operator,
N̂ is a noise unitary operator,
D̂ is a decoding unitary operator,
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VIII. Quantum error correction

We encode some qubit state |ψ ⟩ in a larger state |E (ψ)⟩ using n
ancilla qubits (initially on the state |0⟩⊗n.

Some noise is applied through N̂, and later we decode the noisy
encoded state to produce a state |ψ′ ⟩.

Goal of the process: |ψ′ ⟩ ≈ |ψ ⟩
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VIII. Quantum error correction

Non cloning theorem: it is not possible to duplicate a state |ψ ⟩
in the general case

|ψ ⟩ ↛ |ψ ⟩ ⊗ |ψ ⟩ ⊗ |ψ ⟩ · · · ⊗ |ψ ⟩.

The error protection can’t be performed by cloning the state |ψ ⟩.
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VIII. Quantum error correction

Principle of error correction code: let consider
|ψ ⟩ = α |0⟩+ β |1⟩. Then, encode it as follow

|E (ψ)⟩ = α |000⟩+ β |111⟩.

Remark: it is not a cloning !

|ψ ⟩ ⊗ |ψ ⟩ ⊗ |ψ ⟩ = (α |0⟩+ β |1⟩)⊗3 .

The operator Ê might be implemented as follow
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VIII. Quantum error correction

The decoding algorithm for this code will be based on the following
circuit
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VIII. Quantum error correction

The first three qubits are called
input qubits. The last two qubits
are called output qubits.

|ϕ1 ⟩ = |x1 ⊕ x2 ⟩,

|ϕ2 ⟩ = |x1 ⊕ x3 ⟩.

x1 ⊕ x2 and x1 ⊕ x3 are invariant
under the flipping of all the bits
of x .

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 92 / 102

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


VIII. Quantum error correction

After the application of N̂

N̂ |E (ψ)⟩ = α |x1x2x3 ⟩+ β |x1x2x3 ⊕ 111⟩.

The circuit proposed performs the following map

(α |x1x2x3 ⟩+ β |x1x2x3 ⊕ 111⟩)⊗ |0⟩ ⊗ |0⟩

−→ (α |x1x2x3 ⟩+ β |x1x2x3 ⊕ 111⟩)⊗ |x1 ⊕ x2 ⟩ ⊗ |x1 ⊕ x3 ⟩.

If one measures the two output qubits, we learn both x1 ⊕ x2 and
x1 ⊕ x3 without disturbing the input qubits. The encoded state |ψ ⟩
is always of this form, even after arbitrary bit-flip errors are applied
to |E (ψ)⟩.
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VIII. Quantum error correction

|E (ψ)⟩ = α |000⟩+ β |111⟩.

Effect of bit-flip on |E (ψ)⟩(
X̂ ⊗ I⊗ I

)
|E (ψ)⟩ = α |100⟩+ β |011⟩,(

X̂ ⊗ X̂ ⊗ X̂
)
|E (ψ)⟩ = α |111⟩+ β |000⟩.

The result of measuring the output qubits is known as the
syndrome. What are the syndromes of different noise operators N̂
applied to |E (ψ)⟩ ?
If N̂ = I, we always measure 00.
If N̂ = X̂ ⊗ I⊗ I, we always obtain 11.

Kenneth MAUSSANG Introduction to Quantum Computing 2022 – 2023 94 / 102

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


VIII. Quantum error correction

Syndrome measured for different bit-flip noise:

N̂ Syndrome
I⊗ I⊗ I 00
I⊗ I⊗ X̂ 01
I⊗ X̂ ⊗ I 10
X̂ ⊗ I⊗ I 11
I⊗ X̂ ⊗ X̂ 11
X̂ ⊗ X̂ ⊗ I 01
X̂ ⊗ I⊗ X̂ 10
X̂ ⊗ X̂ ⊗ X̂ 00

If the error occurs on a single qubit, it is possible to detect it, and
apply the corresponding bit-flip operation on the corresponding
qubit to restore the original encoded state α |000⟩+ β |111⟩.
On the other hand, if bit flip errors occurs on more than one qubit,
one does not detect them.
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VIII. Quantum error correction

In the case of Ẑ noise,

Ẑ =

(
1 0
0 −1

)
,

the syndrome measurement always return 00, so the error correction
operation does nothing and the Ẑ error is not corrected. But

Ẑ = ĤX̂ Ĥ,

where Ĥ is the Hadamard gate. Thus Ẑ acts in the same way as X̂ ,
up to a change of basis.
If we use the same code as before, but perform this change of basis
for each qubit, we obtain a code which corrects against Ẑ errors. In
other words, we now encode |ψ ⟩ as α |+++⟩+ β |− − −⟩, with

|+⟩ = |0⟩+ |1⟩√
2

and |−⟩ = |0⟩ − |1⟩√
2

.
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VIII. Quantum error correction

The new encoding circuit is then
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VIII. Quantum error correction

and the decoding circuit
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VIII. Quantum error correction

But it does no longer protects against X̂ errors !!! It is possible to
concatenates these two codes.
We first encode |ψ ⟩ = α |0⟩+ β |1⟩ using the code protecting
against phase flips, and then encode each of the resulting qubits
using the code that protects against bit flips. In other words, we
perform the following map

|ψ ⟩ = α |0⟩+ β |1⟩,

−→ 1
2
√

2
(α (|0⟩+ |1⟩) (|0⟩+ |1⟩) (|0⟩+ |1⟩)

+ β (|0⟩ − |1⟩) (|0⟩ − |1⟩) (|0⟩ − |1⟩)) ,
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VIII. Quantum error correction

−→ 1
2
√

2
(α (|000⟩+ |111⟩) (|000⟩+ |111⟩) (|000⟩+ |111⟩)

+ β (|000⟩ − |111⟩) (|000⟩ − |111⟩) (|000⟩ − |111⟩)) ,

The single qubit |ψ ⟩ is now encoded using 9 qubits.

These qubits can naturally be split into three blocks, each of which
encodes one qubit of the state

α |+++⟩+ β |− − −⟩.

To decode this encoded state, first the decoding circuit for the
bit-flip code is applied to each block. Assuming at most one bit-flip
error has occurred in each block, the result will be the state
α |+++⟩+ β |− − −⟩, perhaps with a Ẑ error applied to one of
the qubits. This state can then be mapped back to α |0⟩+ β |1⟩
using the decoding algorithm for the phase-flip code.
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VIII. Quantum error correction

This quantum error-correcting code was the first such code
discovered. It was invented by Peter Shor in 1995, known as Shor’s
9 qubit code.
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