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Abstract

This note presents some general issues about the finite element approximation of variational
inequalities of the first kind, with focus on the obstacle problem as a prototype. It is targeted
for a small course at the graduate level. It supposes some basic knowledge of the mathematical
theory behind finite elements.
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1 Introduction

Variational inequalities are useful to model many problems from physics or engineering [19, 22, 29].
However they rarely enter into graduate courses of numerical analysis. The object of this small note is
to present the numerical analysis of the obstacle problem, when discretized with finite elements. The
obstacle problem is indeed the ideal prototype of variational inequality, and is maybe the simplest one.

We denote by Hs(·), s ∈ R, the Sobolev spaces. For an open subset D of Rn, the usual norm of
Hs(D) is denoted by ∥ · ∥s,D. The space H1

0 (D) is the subspace of functions in H1(D) with vanishing
trace on ∂D. . The letter C stands for a generic constant, independent of the discretization parameters.

2 The obstacle problem

We recall here the setting of the obstacle problem, which is described in more details in, e.g., [15, 22].
Let Ω ⊂ Rn, n = 1, 2, 3, be the domain, supposed to be an open bounded polytope, simply connected
and with a Lipschitz boundary. We define

a : H1
0 (Ω)×H1

0 (Ω) → R
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as the bilinear form given by:

a(u, v) :=

∫
Ω

∇u · ∇v, ∀ u, v ∈ H1
0 (Ω),

and the linear form

L(v) :=

∫
Ω

fv, ∀ v ∈ H1
0 (Ω),

for a source term f ∈ L2(Ω). We consider a given obstacle function Ψ : Ω → R, which is supposed to
satisfy Ψ ∈ H2(Ω) and Ψ ≥ 0, as in [15]. The obstacle problem in weak form consists in finding

u ∈ K : a(u, v − u) ≥
∫
Ω

f(v − u), ∀ v ∈ K, (1)

with
K :=

{
v ∈ H1

0 (Ω) : v ≤ Ψ a.e. in Ω
}
.

The problem (1) admits a unique u solution from Stampacchia’s theorem [2], and u is also the unique
minimizer on K of the convex quadratic functional

J : V ∋ v 7→ 1

2
a(v, v)− L(v) ∈ R.

Problem (1) in strong form, reads: find u : Ω −→ R solution to:
−∆u ≤ f in Ω,

u = 0 on ∂Ω,

u ≤ Ψ in Ω,

(u−Ψ)(∆u+ f) = 0 in Ω.

(2)

If the domain Ω is convex and f = 0, it can be proven that u ∈ H1
0 (Ω)∩H2(Ω) [4, 31]. More regularity

can not be expected in general because of the inequality constraints inside Ω [15].

3 A direct finite element discretization

Let Th be a family of simplicial meshes of the domain Ω (h := maxT∈Th
hT where hT is the diameter

of T ). The family of meshes is supposed regular in Ciarlet’s sense [15]. Let Vh be a family of Lagrange
finite element spaces of degree one indexed by h. The formal definition of this space is:

Vh := {vh ∈ C (Ω) ∩H1
0 (Ω) : vh|T ∈ P1(T ), ∀ T ∈ Th}.

Let Nh be the set of the nodes of the mesh and we can define a discrete convex set associated with Vh

and the obstacle function Ψ:

Kh := {vh ∈ Vh : vh(a) ≤ Ψ(a), ∀a ∈ Nh}.

Remark first that the above definition is meaningful. Indeed, the assumption Ψ ∈ H2(Ω) combined
with the Sobolev embedding Theorem ensure that Ψ is continuous: its pointwise values are well defined.
Remark also that, in general, Kh ̸⊂ K, see [15]. The inclusion Kh ⊂ K occurs only in special cases,
for instance if Ψ is a concave function.

The discrete problem is as follows:

uh ∈ Kh : a(uh, vh − uh) ≥
∫
Ω

f(vh − uh) ∀ vh ∈ Kh, (3)

and it admits a unique solution, still from Stampacchia’s theorem [2], and uh is also the unique
minimizer on Kh of the functional J .
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4 A priori error estimate

Let us see now the approximation error. First, the following abstract error estimate is a simplified
version of Falk’s Lemma [15, 20, 23]:

Proposition 4.1 Suppose that the solution u ∈ K to Problem (1) belongs to H2(Ω). Then the solution
uh to Problem (3) satisfies the a priori error estimate:

∥u− uh∥1,Ω ≤ C

(
inf

vh∈Kh

(∥u− vh∥21,Ω + ∥u− vh∥0,Ω) + inf
v∈K

∥v − uh∥0,Ω
)
, (4)

with C > 0 independent from h and u.

Proof. Let vh ∈ Kh. First we use the ellipticity of a(·, ·), combined with the Cauchy-Schwarz
inequality:

α∥u− uh∥21,Ω ≤ a(u− uh, u− uh)

= a(u− uh, (u− vh) + (vh − uh))

≤ C∥u− uh∥1,Ω∥u− vh∥1,Ω + a(u− uh, vh − uh),

where α > 0 is the ellipticity constant of a(·, ·). Then we use the Young inequality:

α

2
∥u− uh∥21,Ω ≤ C2

2α
∥u− vh∥21,Ω + a(u, vh − uh)− a(uh, vh − uh). (5)

Since vh belongs to Kh, and since uh is the solution to (3), there holds:

−a(uh, vh − uh) ≤ −L(vh − uh).

As well, since u is also solution to (2), we get after using u ∈ H2(Ω) and the Green formula:

a(u, vh − uh) =

∫
Ω

(−∆u)(vh − uh) =

∫
Ω

(−∆u− f)(vh − uh) +

∫
Ω

(f)(vh − uh).

In other terms:

a(u, vh − uh) =

∫
Ω

(−∆u− f)(vh − uh) + L(vh − uh).

We take into account the previous considerations and then obtain from (5):

α

2
∥u− uh∥21,Ω ≤ C2

2α
∥u− vh∥21,Ω +

∫
Ω

(−∆u− f)(vh − uh). (6)

So we need to bound the last term, that we rewrite as follows:∫
Ω

(−∆u− f)(vh − uh) =

∫
Ω

(−∆u− f)((vh − u) + (u− uh))

Let us consider the first part of the term above, and we apply Cauchy-Schwartz inequality:∫
Ω

(−∆u− f)(vh − u) ≤ ∥∆u+ f∥0,Ω∥vh − u∥0,Ω.

There remains ∫
Ω

(−∆u− f)(u− uh) =

∫
Ω

(−∆u− f)((u−Ψ) + (Ψ− uh)).

We apply the complementarity condition from (2) and get:∫
Ω

(−∆u− f)(u− uh) =

∫
Ω

(−∆u− f)(Ψ− uh).
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We take v ∈ K, and there reminds to rewrite Ψ− uh as Ψ− uh = Ψ− v + v − uh:∫
Ω

(−∆u− f)(u− uh) =

∫
Ω

(−∆u− f)(Ψ− v) +

∫
Ω

(−∆u− f)(v − uh).

With the property Ψ− v ≥ 0 combined with (−∆u− f) ≤ 0 (see (2)), we deduce:∫
Ω

(−∆u− f)(Ψ− v) ≤ 0.

As a result, we have the bound:∫
Ω

(−∆u− f)(u− uh) ≤
∫
Ω

(−∆u− f)(v − uh)..

We apply the Cauchy-Schwarz inequality above and collect the previous results, in order to get from
(6):

α

2
∥u− uh∥21,Ω ≤ C2

2α
∥u− vh∥21,Ω + ∥∆u+ f∥0,Ω(∥vh − u∥0,Ω + ∥v − uh∥0,Ω). (7)

The abstract bound (4) follows after taking the infimum over Kh and the infimum over K. □

For another proof, see for instance [15, Theorem 5.1.1]. Now the main result is:

Theorem 4.1 Let Ω ⊂ Rn, 1 ≤ n ≤ 3, be an open bounded polytope, connected and with Lipschitz
boundary. Let u ∈ K ∩ H2(Ω) and uh ∈ Kh be the solutions to problems (1) and (3), respectively.
There holds

∥u− uh∥1,Ω ≤ Ch∥u∥2,Ω. (8)

Proof: From the above Falk’s Lemma, see (4), and since Ihu ∈ Kh, where Ih is the Lagrange
interpolation operator mapping onto Vh, we get

∥u− uh∥21,Ω ≤ C

(
∥u− Ihu∥21,Ω + ∥u− Ihu∥0,Ω + inf

v∈K
∥v − uh∥0,Ω

)
. (9)

Remark that, if Kh ⊂ K (if Ψ is concave for instance), the first two terms in (9) are bounded
by Ch2 and the second infimum disappears. So bound (8) holds. However, in the general case Kh is
nonconforming and we need to bound the last term.

Still from standard approximation bounds, the first two terms in (9) are bounded by Ch2. To
bound the infimum on K, we set v := min(uh,Ψ). First we assess that v ∈ H1(Ω). Indeed there holds
Ψ ∈ H1(Ω), and the minimum of two functions in H1(Ω) remains in H1(Ω), see, e.g., [33, Lemma
1.1] or [31]. . Moreover, because of the assumption 0 ≤ Ψ, we have v = 0 on ∂Ω and v ≤ Ψ, which
guarantees that v ∈ K. Now set

Sh := {x ∈ Ω, Ψ(x) < uh(x)}.

If x /∈ Sh, then v(x) = uh(x) by definition. So

∥v − uh∥20,Ω =

∫
Ω

(v − uh)
2 =

∫
Sh

(Ψ− uh)
2.

Since uh ∈ Kh we have uh(a) ≤ Ψ(a) = IhΨ(a),∀a ∈ Nh. So IhΨ− uh ≥ 0 in Ω. Let us take x ∈ Sh,
and let us bound:

0 < |(uh −Ψ(x)| = (uh −Ψ)(x)

= (uh − IhΨ)(x) + (IhΨ−Ψ)(x)

≤ (IhΨ−Ψ)(x).

Therefore there holds

∥v − uh∥20,Ω =

∫
Sh

(Ψ− uh)
2 ≤

∫
Sh

(IhΨ−Ψ)2 ≤ ∥Ψ− IhΨ∥20,Ω.
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Because of the assumption Ψ ∈ H2(Ω), we can bound

∥Ψ− IhΨ∥0,Ω ≤ Ch2|Ψ|2,Ω.

As a result we obtain
inf
v∈K

∥v − uh∥0,Ω ≤ Ch2

and the final bound (8) follows. □

5 A Nitsche finite element approximation

Though the discrete problem (3) is quite simple, a global variational inequality on the whole domain
is cumbersome for practical implementation, and, for this reason, alternative formulations based on
Lagrange multipliers, augmented lagrangian or penalty are preferred. Here we suggest an alternative
formulation inspired from Nitsche’s method [32] and that have been proposed and studied recently in
[5, 8, 27]. Following [5], the Kuhn-Tucker conditions described in (2) can equivalently be reformulated
as

∆u+ f = γ
[
(−Ψ+ u) + γ−1(∆u+ f)

]
+
, (10)

with γ an arbitrary positive function on the domain Ω, and where [·]+ denotes the positive part
operator (defined, for x ∈ R, by [x]+ = max(0, x)). In this section, for k = 1, 2, we define

Vh := {vh ∈ C (Ω) ∩H1
0 (Ω) : vh|T ∈ Pk(T ), ∀ T ∈ Th}.

As a result, the finite element space Vh can be made either of piecewise linear (k = 1) or piecewise
quadratic (k = 2) functions.

Each simplex T of the mesh Th is supposed to be closed, and we denote by T̊ the interior of T .
We define a piecewise polynomial discrete Laplacian as follows, for every vh in Vh, and every simplex
T ∈ Th:

(∆hvh)|T̊ := ∆(vh|T̊ ).
The value of ∆hvh on the facets of the mesh is of no importance, and can be set in practice to 0, for
instance. Observe that, for k = 1, ∆hvh = 0. A Nitsche-type method for the discretization of the
obstacle problem (2) reads: find uh ∈ Vh such that

a(uh, vh) +

∫
Ω

γh
[
−Ψ+ uh + γ−1

h (∆huh + f)
]
+
vh = L(vh), (11)

for all vh ∈ Vh. Above the function γh is defined cell-wise as follows:

γh|T̊ :=
γ0
h2
T

,

where γ0 > 0 is the Nitsche parameter. Again, the value of γh on the facets of the mesh is of no
importance, and can be set in practice to 0, for instance.

Standard arguments allow to assess, that, for γ0 large enough, Problem (11) is well-posed, with
optimal a priori error bounds that can be established. See [5, 8, 27] for more details. In practice,
formulation (11) is of interest because it transforms a constrained problem with inequalities to an
unconstrained problem, without regularization and without extra unknowns. The resulting problem
is easy to solve using for instance a semi-smooth Newton method. Indeed, at iteration n ≥ 1 of the
semi-smooth Newton method, one simply solves the tangent problem: find δuh ∈ Vh such that

a(δuh, vh) +

∫
Ω

γhH(−Ψ+ un
h + γ−1

h (∆hu
n
h + f))(δuh + γ−1

h ∆hδuh)vh = R(un
hvh), (12)

for vh ∈ Vh, where H(·) is the Heaviside function (defined, for x ∈ R, by [x]+ = max(0, x)/|x|, if x ̸= 0,
and multivalued at x = 0) and where un

h is the approximation of uh at the Newton iteration number
n. The expression of the residual above is given by:

R(uh; vh) = L(vh)− a(uh, vh)−
∫
Ω

(
γh

[
−Ψ+ uh + γ−1

h (∆huh + f)
]
+
vh, (13)

for uh, vh ∈ Vh.
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6 Final comments

A few remarks to conclude this note.

1. Even for the direct approximation of the variational inequality, there can be many alternatives to
the choice we presented, that consists in imposing the constraint u ≤ Ψ nodal-wise. For instance,
one can impose an integral constraint on each simplex on the mesh.

2. Convergence results of the finite element approximation without rates can be found for instance
in [22].

3. Conversely to what happens for linear boundary value problems, error estimates in the L2(Ω)-
norm of order O(h2) for the finite element approximation (3) can not be expected in general.
See the reference [14] for some counter-examples.

4. Recent results of convergence in the L∞(Ω)-norm can be found in [13].

5. Some classical a posteriori error estimates of the obstacle problem have been studied in [1, 7, 34],
and this is still a very active field. See for instance the recent works [18, 21, 24, 25, 27, 28].

6. The obstacle problem is involved in many applications, such as membrane contact, elastoplastic
torsion or cavitation modelling, just to mention of few ones. For a recent illustration, see for
instance [25], with some numerical experiments done with scikit-fem [26].

7. The techniques presented in this note can be adapted for the elastoplastic torsion problem with
a constant source term, since it can be reformulated as an obstacle problem, where the function
Ψ represents the distance to the boundary [3]. Note however that the assumptions here are
stronger (the distance function does not belongs to H2(Ω) in general), so the analysis needs to
be adapted. See [8, 10] for the details, as well as [9] when the source term is non-constant. For
the adaptation of Nitsche’s method in the context of variational inequalities, see for instance
[11, 12] and references therein.

8. Recent works have concerned the study of high order methods / polytopal methods such as the
Hybrid High Order method (HHO) or the Virtual Element Method (VEM) in the context of
variational inequalities, see for instance [16, 17] (HHO) or [35] (VEM) for the obstacle problem.
For Nitsche’s method, see for instance [6] (HHO) or [30] (VEM).
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