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Stationary Gaussian noises
Noises in microwave and optical oscillators

Frangois Bondu

September 2024

Institut FOTON, UMR6082, CNRS / Université de Rennes, Rennes, France

Introduction : noisy measurements

In experimental sciences, time domain noises and signals are not easily analyzed
simultaneously without a proper model. In this document we name “signal” a
deterministic continuous time data, giving an information; a “noise” has a ran-
dom nature; a “measurement” is the collected data where the signal is buried
or covered with noise. Mathematically, a measured deterministic signal is al-
most always continuous with time variable ¢, and its Fourier transform also
continuous; whereas the transform of a noise is not continuous nor derivable
at any point on the frequency axis f. These mathematical struggles are prop-
erly handled with concepts such as power spectral density, signal-to-noise ratio,
matched filtering. We present the not-well-known definition of a time domain
noise by Cramér with a Stieltjes-Fourier integral; we recall the power spectral
density estimator discovered by Thomson, not spread enough, except in the geo-
physics community. We will see that the signal-to-noise is not necessarily easy
to appreciate on time domain measurements. This document will not address
the noises specific to digitization. We will only consider linear time-invariant
systems measuring a scalar real valued data.

This document aims at improving the knowledge of hopefully useful models
for students dealing with experimental devices.

This document is strongly influenced by the professional practice of the
scientific communities in which I participate: gravitational wave detectors, in-
strumentation with systems incorporating microwaves and lasers, noises in in-
struments, optoelectronics instrumentation design.

Keywords

Measurements; experimental physics; instrumentation; microwaves; continuous
lasers; amplitude noise; phase noise; frequency noise; Friis formula; thermal
noise; shot noise; amplified spontaneous emission (ASE).



1 Stationary Gaussian noise model

1.1 Continuous variables

Let’s consider n(t) a real valued noise with zero average. Following the ini-
tial works on Brownian noise of P. Lévy, A. Kolmogorov and N. Wiener, H.
Cramér described a continuous noise with a Stieltjes-Fourier integral (eq. (11)
in [1]), a linear superposition of infinitesimal sinusoidal waveforms with random
amplitudes :

n(t) = / " Ay (F)VZ cos(2r 1+ b0 (1)) (1)

when defined with positive frequencies values only; with negative frequencies
we have the equivalent writing:

o0

n(t)= [ dnals) expliz) 2)

—00

where the complex valued amplitude is defined by :

V2

dnc(f) = 7 dnrms(f) exp(ld)n(f)) (3)

The Stieltjes-Fourier integral is not a Fourier transform. Technically the
Stieltjes integral [ f(x)dg(x) exists if dg(z) is a finite increment function. The
variables dn.(f) have the properties :

e since n(t) is a real valued function,
dng(f) = dne(—f) (4)
where x* is the complex conjugate of x;

e the spectral components at two different frequencies are independent vari-
ables: (dn.(f) dn.(f")) =0if f # f with f, f* > 0;

e The power spectral distribution power spectral density (PSD) S, (f) is
defined by the variance:

Sp(f)df = <|dnrm8(f)|2> = 2<|dn0(f)|2> (5)

where (z) is the statistical ensemble average of variable x.

e the spectral components may be decomposed into two real valued quadra-
tures dny.(f) and dng.(f) with dn.(f) = dn;.(f) + idng.(f); These
quadratures are random variables with a Gaussian distribution, have a
zero average and identical variances:

(Jdnze(HI?) = (ldnae(HI?) = 150 dr. ©)

Therefore the quantity |dn,..s(f)| follows a Rayleigh distribution.



Remarks:

1.2

It is usual to index S with the variable whose PSD is measured. For
example the PSD of a phase noise ¢(t) is written S, (f).

dn.(f) is a random variable, discontinuous at all f; the PSD is determin-
istic, continuous and derivable, except at some points if pure sinusoidal
components are considered.

The noise n(t) does not display, in the general case, a Gaussian distribu-
tion, except if it is a white noise. In a « Gaussian » noise, the quadratures
dnic(f) and dnge(f) are the variables with a Gaussian distribution.

If the physical measurement n(¢) has a unit u: [n(t)] = u, then the unit
of the PSD [S,,(f)] = u?/Hz. Whatever the unit of u, the 1/Hz is a tag
for a PSD and never simplified. Specifically, for a time domain frequency
noise v(t), measured in Hz, the PSD has the unit [S,] = Hz?/Hz.

Some communities prefer to use standard deviation rather than variances.
The “linear spectral density” is simply

n(f) =/ Sn(f). (7)

If [n(t)] = u, then [n(f)] = u/vVHz. There is a tradition of using power
spectral densities in radiofrequency and microwave communities and linear
spectral densities in instrument design.

The PSD can be expressed in log scales, favored in the microwave com-
munity:

Sp.ap = 20log,, (A(f)) = 101log,, (Sn(f)) [dBu?/Hz] (8)

The equation 5 differs by a factor of 2 with the one used in the probability
literature [1], Sgp,.(f) = {|dnc(f)|?) . Indeed, in probability theory, both
negative and positive frequencies are considered, the PSD is “bilateral”.
In experimental sciences, one considers only positive frequencies: S, (f) =
2Sinn(f) : the PSD is “monolateral”.

The “power” in the expression “power spectral density” is not, in probabil-
ity theory, a physical power in watts, but a variance. If n(¢) is a voltage
measured across a resistor, the physical dissipated power dissipated at the
frequency f in a bandwidth df is:

py = Sl )

and 7n(f)y/df represents the root mean square (r.m.s.) value of the voltage
at frequency f.

Digitized and sampled quantities

The kth sample of a digital series (or of a sampled noise with period Tj)
writes [2]:



Fn
n[k] :/ dZ(f) exp(i2w fkTs) (10)

—Fyn
where the Nyquist frequency Fy is defined with Fiy = 1/(2T;). The Cramér
formula for a digitized noise is then:

Sulf) df =2(|dZ(f)*) (1)

where S,,(f) corresponds to the mono-lateral power spectral density.

1.3 White and colored noises

A “white noise” is a continuous random variable where S, (f) = Sy is constant
with f.

A pink noise is such that S, (f) = «/f, with « a positive constant.

A “Brownian” noise is equivalent to a white noise filtered by an integrator.
Its PSD is then S, (f) = a/f2.

2 Estimators of PSD

The mathematical statisticians define the PSD with the ensemble average (x) of
a very large number of identical systems. In the laboratory we rather most often
have only one system, or at best a small numbers or “identical” systems. The
noise is not measured on an infinite duration. Thus there is no way to “measure”
the PSD, one has to use estimators as reliable as possible. The question of bias
and estimator variance is of importance: the paper by Thomson in 1982 [3]
discusses the good properties of estimators. The estimators in experimental
sciences that I know of always consider only positive frequencies (monolateral
spectral densities). Before going into the description of estimators the concept
of filter equivalent noise bandwidth is going to be useful later on.

2.1 Filter equivalent noise bandwidth (ENB)

The ENB of a filter helps to understand the frequency resolution of PSD esti-
mators.

Let’s consider a white noise feeding a low-pass filter H(f). The output is a
noise with a finite power < s2,,, >. The equivalent noise bandwidth ENByp
is the bandwidth of an equivalent filter with constant transmission |H,,q.| in
that band, and transmission is null outside this band, so that the same power
< §2,u > is measured:

[T JHOF
ENBLP_/O df Hmax(f)|2. (12)

For a simple first order low pass filter with cut-off frequency fq, of response
time 7 = 1/(27 fy), the ENB is:

s 1
ENBip =fo— = —. 1
LP f02 . (13)



Note that the ENB is not the 3 dB bandwidth. If the filter w(f) is used for
convolution in the frequency domain, then the ENB is defined with:

0o 2
w
ENBwindow :/ de”Q
—oo  |Wiaa(f)]
Such a filter analyses the frequencies atfo — f and fy + f for which the
input noise spectral density is not zero: it is necessary to take into account the

negative frequencies of that window.

(14)

2.2 Estimators with autocorrelation function
2.2.1 Einstein-Wiener-Khintchine theorem

A continuous real valued noise variable n(t) is written, using equation 4 and
equation 2:

n(t) = [ dni(~1) expliznse)

and with a variable change f — —f

n(t) = /dnj(f) exp(—i27 ft).

The autocorrelation function is

Co(1) = (n(t)n(t+71)) = <</ dn.(f) exp(i27rft)> (/ dn’(f’) exp(—i2nf'(t + T))>>

and becomes after distribution of terms

Colr) = / / (dne(£)dns (£7)) exp(—i2n fr) 6(f — F)
and then )
Cp(r) = /df §Sn(f) exp(—i2mf).

We thus have the theorem [4, 5, 6] giving the monolateral power spectral
density as a Fourier transform of the autocorrelation function:

/ o (t) exp(—i2m ft) dt — %sn( f. (15)

H. Cramér notes [1] that this theorem has convergence issues for some func-
tions where spectral densities are however well defined.

2.2.2 Use

A too fast analysis would like to estimate the autocorrelation of time domain
data to produce PSD: use ergodicity, estimate the auto-correlation of a finite
sample and take the Fourier transform of that function. This would be the
source of multiple bias errors. The problem of “spectral leaks” (see below 5.2)
will not be taken seriously. This is not to be used, except for a white noise
(where it is useless).
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Figure 1: Slicing of the data for Welch method

2.3 Periodogram

This method is now completely obsolete. It consisted is computing a Fourier
transform of the measurement n(t) on a finite time interval [0,7], and then
smoothing its square modulus. The energy is not conserved and there are mul-
tiple biases. In that version, it is not used anymore; it is superseded by the
Welch method.

2.4 "Welch method
2.4.1 Definition

This method [7] is very popular, heavily used in commercial measurement in-
struments and in data processing software (Matlab, Python).

It consists in K measurements on slices of duration T of a stationary noise
n(t) starting from time ¢o, cf. figure 1:

ni(t) = n(to+ kT — aonpT) (16)

where 0 < agp < 1 is a superposition factor (often equal to zero) and
k =0,...,K — 1 indexes the segment number. The data are sampled with a
sampling period T, with M samples on each segment, so T' = MT,. On each
segment data are numbered with m =0,..., M — 1.
The power spectral density estimator is then:

A 27,2
Sn(f) = T

%Z [FFT (ny[m] x w[m])[? (17)
k

where w[m] is an apodization window defined on the [0, T] interval. For the
noise power to be conserved, the window needs to conserve it for a white noise.
As the variance of a white noise has to be conserved, the window normalization
needs to be:

%/Twz(t) dt =1 (18)
0



and for a digitized window:

M-—1
w?[m] = M. (19)

m=0

One of the most popular window is the Hann window:

Whtann] = @ e (1) (20)

A factor K = 20 gives a good smoothing of the PSD estimator. The Hann
window in Python scipy.signal.windows.hann() or numpy.hanning() is not cor-
rectly normalized for PSD estimation.

2.4.2 Frequency resolution in Welch’s method

A window ENB is the actual frequency resolution of a PSD estimator. We
aim at computing the ENB of a window in equation 14. We note @(t) the
window average. Most windows have a maximal value in the frequency domain
at f = 0, so that Wy (f) = w(f = 0) = Tw(t), using the definition of the
Fourier transform. The numerator of equation 14 is computed using Parseval
theorem, . .

| e = [t (21)

so that using a window normalization, the window ENB is:

1

ENBWin OW — a1 — /1o °
T Tla(t)[?

Hence for the Hann window one has the frequency resolution:

1,5

ENBHann(f) - T

(23)

For a digitized window the ENB calculation uses:

2
ENB, .o — MM.
> wln]|

The frequency resolution is bigger than the frequency spacing AF = 1/(MT).

(24)

2.4.3 Use with sampled data

Python With sampled data, scipy.signal.welch() returns a frequency vector
and a vector of PSD data.
The input parameters are:

e the vector x:(nTy) of sampled data, with n =0,..., N — 1 and N = len(z),
e fi = 1/Tsthe sample frequency (default value fs =1 Hz),

e window="hann’ default window,



e nperseg=None: default segment length is M =256 points. To get K=20
averages, one needs to define nperseg=len(x) /K.

e noverlap=None: segments do not overlap by default. If segments overlap,
the statistical independence of data is not verified anymore, so that there
is no real advantage to have agyp # 0.

e nft=None: FFT length, by default identical to the segment length (no
zero padding).

e detrend="None’: the non-default ’detrend’=linear gives better results if
the data has non-zero slopes on segments, for example on a red-colored
noise.

e return_onesided=True: returns the monolateral spectral density for real-
valued data.

e scaling=’density’: the PSD is calibrated in u?/Hz coherent with a mono-
lateral PSD; the scaling=’spectrum’ would return the Fourier transform
in u?, to make an easy read of the amplitude of lines if necessary.

axis=-1 selects the axis for computing in case of multidimensional data.

Matlab The PSD command is named «pwelch». The number of averages is
controlled by the nfft parameter.

Use notes

e The maximal frequency of the spectrum is the Nyquist frequency fs = 21

i

The interval between to successive frequencies (’bin’) is AF = 7= =
The frequency resolution of the spectrum is slighly bigger than AF, see
later.

o If avoyip = 0, each of the frequencies inside a bin frequency of width AF
gets a different phase on different segments, so that they FFT’s modulus
are statistically independent.

o With aovip = 0, the interval between to successive frequencies is AF =

% = TK . Thus for a given measurement time, increasing the number of

averages increases this interval.

e In case of a red-colored noise, the first two points of a spectrum (frequen-
cies AF and 2AF) often have a strong bias, cf. 5.2, possibly because of the
calibration (equation 14) becoming unaccurate. To avoid a wrong physical
interpretation of these biased values, I would recommend to deliberately
not display them.

2.4.4 Windows and spectral leaks

Historically, the first windows were thought as to smooth the data gently to zero
on the segment sides, thus the name of “apodization”. But the real problem is
the one of spectral leaks. Indeed, as a noise data is sampled and multiplied with
a window wr, the data used for calculations is actually



n’[m] = n[m] X wy[m] (25)

so that in the frequency space we have a convolution:

dn’(f) = dn(f) x wr(f). (26)
Then the real spectrum is convoluted, as shown in [3]:
SulP) = [ dr (s = PP S, (1)
0

Note that there is no way to avoid this effect: since a window has a finite
duration, its spectrum can not be a Dirac function.The mixing of spectral com-
ponents is not avoidable and biases the spectral components. The window wp
is designed to reduce this “leaking” effect. The evaluation of windows one has
to compare their spectral performance [8]:

e Different windows have different ENB.

e The spectral leaks are reduced if the first sidelobe has a low relative am-
plitude (-32dB for a Hann window), and if the following sidelobes have a
steep slope (1/f3 for a Hann window), efficient in the case of red-colored
noise or in the presence of sinewaves in the noise data.

e The total leak is expressed with
ENB/2

Lo df ()P
Jo dffw(H)2

its value for a Hann window is €jeax =17,9 %.

(28)

€leak — 1-—

e The is a trade-off between frequency resolution and spectral leakage.

There is no “no window option”. The rectangular window wr(¢t) = 1 has
an ENB= 1/T, the first sidelobe is at -13 dB, and the sidelobe slope is 1/f:
the rectangular window is poor for PSD estimation for a colored noise or in the
presence of sinewaves. There had been multiple researches for the “best” window,
cf. for example [9]. However, the window really minimizing the spectral leaks
is the Slepian window, as we will see in the next section.

2.5 Thomson method

The Thomson PSD estimator is also called “multitaper spectrum”. To my knowl-
edge, it is not widely used except by geophysicists. It does not seem to be
implemented in commercial spectrum analyzers, although it would present ad-
vantages, for a given measurement time. The biases are better controlled. For
identical average number, the frequency resolution and smallest frequency acces-
sible are much better than with Welch method. An error bar of PSD is available.
A PSD can be provided with a reliability estimate. The difficulty is with the
computation of the window; however, there have been many recent works by
the mathematicians to have fast and accurate Slepian windows available.

The Welch estimator slices the total measurement time 7}, = KT into K
segments of length M points, each segment providing a statistical independent
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Figure 2: Spectral response of the rectangular and Hann windows

data for the PSD estimate; the total number of points is N = K M. The Thom-
son estimator uses orthogonal windows on a unique data segment, providing
the statistical independency of the estimates. D. Thomson, to reduce spectral
leakage, noted that the specification is to maximize the window energy in a low
frequency band. The functions verifying this property are the “Slepian” func-
tion set, also called “prolate spheroidal wave functions” of order 0 [10, 11, 12].
The functions, defined on a finite segment, are orthogonal to each other. They
are the eigenfunctions of the convolution with a cardinal sinus. The functions
look like Hermite-Gauss function; they are actually a generalization of these
functions on a finite duration interval.

The frequency resolution is a free parameter to be chosen. The factor “ NW”
is the factor that multiplies the frequency spacing /N7, (for a Hann window,
NW = 1,5). The number of averages will be roughly

K=|2xNW|-1

where |x] is the integer part of the real z: the choice of NW impacts the
average number. To have an equivalent of the Welch method, NW = 10,5 will
take into account 20 averages.

The Slepian function of order 0 v is the one that maximized the energy
of the interval [-NW/NTs, NW/NTs|. The concentration factor is noted Ag;it is
the eigenvalue of the correlation with a cardinal sinus; is it also the amount of
energy in the targeted frequency band. The second function 1 is the second
function orthogonal to 1y to maximize the function in the frequency interval,
etc. The values \g, Ay,... are very close to 1 for & < K, and very close to 0 for
the following orders. The factor (1 — \g) is the out-of-band energy leakage that
will contribute to biases in the PSD estimate.

These functions are then ideal as windows. They are named as PSWF (Prolate

10
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Figure 3: Slepian windows (prolate spheroidal wave functions of order 0) with
indices 0 to 3. For the low order functions, the total spectral leak, much better
than Hann functions, is actually limited by numerical resolution.

Spheroidal Wave Function) in the frequency domain. The Fourier transform of
a Slepian function is a Slepian function with same order (but different scaling
factors). The Fourier transforms are orthogonal on the maximum frequency
concentration interval, and on the total frequency axis |—oo,+oco[. The dis-
crete versions of the functions are called DPSS (Discrete Prolate Spheroidal
Sequence).

The 1982 Thomson paper is very reach and worth a read. This method allows
to give an error bar of PSD [13]. It gives a “stability” value, equivalent of a 2,
ratio at each frequency bin of number of degrees of freedom to twice the number
of used windows [3]. If this number is significantly below 1 on a frequency
interval, the PSD is probably biased. There is no such reliability estimate for
the Welch method. The Thomson paper might be confusing at times. G. Prieto
has written a whole book describing all steps “multitaper spectrum estimation”,
2008, availaible on demand, that describes the proper steps in the “adaptative
weighing” flavor.

Python implementation

The Thomson method can be implemented with several flavors, based on differ-
ent weighting of the windows for different indices [14]. The first method gives an
equal weight to all windows; the second consists in weighting the windows with
the eigenvalues; a third gives an adaptative weight to windows, in function of
the context of other parts of the spectrum. This last one is the more robust for
colored noises. The “multitaper” parameter implements this option since 2022
[15, 16]. It can also implement coherence functions (cf. section 5.2) and transfer
functions. This package relies on the default DPSS implentation in Python.
The function scipy.signal.windows.dpss() uses the algorithm recommended
in old “numerical recipes” versions [17], with the computation of eigenvalues and
eigenvectors of a tridiagonal matrix. The function with option 'norm=2’ should
be multiplied by v/M to have a correct calibration as a window. The function

11
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Figure 4: Slepian and Hann windows comparison

scipy.signal.windows.dpss() returns erroneous functions for M > 92681. It is
not optimal for computing speed and accuracy, function orthogonality is not so
good for high indices close to K, and eigenvalue accuracy not very good if the
number of points is several thousands.

Recent researches in mathematics give a development of DPSS on a basis of
Legendre polynomials to give a fast and accurate evaluation of PSWF [18, 19].
To our knowledge, no implementation of this in Python is available yet.

2.6 Comparison of Welch and Thomson estimators

For K = 20 averages and a Hann window, the frequency resolution with a Hann
window on a total measurement time 7' is:

15K
T

whereas with the same number of averages, on the same measurement du-
ration, the frequency resolution for NW = K/2 is

ENBWelch,Hann - (29)

ENBmultitaper - g ~ % (30)

In these conditions, the frequency resolution is 3 times better for the Thom-
son estimator.

For identical frequency resolution NW = 1,5 K, the Thomson estimator
has better biases and reduced variance compared to the Welch estimator, and
gives access to lower spectral frequencies. The Thomson estimator should take
precedence other the Welch one, now that calculation difficulties are overcome.

Even when the NW parameter is small, the Slepian window is much bet-
ter than the Hann one, cf. figure 4. The Hann window has a leak value of
17,9 %; with similar frequency resolution on a segment, NW=1.5, the order 0
Slepian window has a leak of 0.11%; With a slightly bigger frequency resolution,
NW=3.5, the spectral leak is 6,3.10"° . Within the Welch method, the Slepian

window should be preferred, when this window is available.

12



3 Noise in linear time-invariant systems

3.1 Independent noise sources

Given nq (t) and nz(t) two stationary noises, each described by a Fourier-Stieltjes
integral, the sum of the two noises writes :

n(t) = ma () + na(t) = / (@ni(f) + dna(f)) exp(izefr).  (31)

If dny(f) and dna(f) are statistically independent variables it comes imme-
diately that

Sn(f) = Snl(f) +Sn2 (f) (32)

The two variances add up, hence the power spectral densities add up.

3.2 Noise through a system element

Given h a linear, time-invariant (LTT) system, for two input signals x(t) and y(t)
and two real valued factors «v and 3, by definition,

h(ax(t) + By(t)) = ah (z(t)) + Bh (y(t)) (33)
(linearity) and
if 2(t) gives an output ,y¢(t), then z(t + 7) gives and output @, (t +7) (34)
(time-invariance). The eigenvalues of such systems are the functions exp(i2n ft):

h(exp(i2n ft)) = H(f) exp(i2w ft) (35)

where H(f) is the Fourier transform of the impulse response h(t). Then for a
noise described by a Fourier-Stieltjes integral n;, (¢), using equation 33 one gets

H(n(t)) = / (dnin (F)H(f)) expli2nft). (36)

It is immediately apparent that the output power spectral density of system
H has power spectral density

Snout(f) = Sn,in(f) x [H(f)* | (37)

fout (f) = Rin (f) x [H(f)] - (38)

Lets take the example of an integrator system H(f) = fo/(if). A white
noise at the input gives a Brownian noise at output ; the spectral noise density
at the output has a shape a/f?, where « is a positive constant.

Using equation 37 we demonstrate the formula for ENBpp for a low-pass
filter (equation 12). With a frequency independent (white noise) S;, at the
filter input of H(f), the output variance is

(o) = [ af Su < B

13
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Figure 5: Instrumentation with several noise sources and a signal input

and the variance of a filter with constant transmission |H,,..| on a frequency
bandwidth ENByp is

<520ut(t)> == |Hmax(f)|2 ENBLP.
The definition of ENBp follows.

3.3 Instrument noise budget

Let’s give an instrument subject to n,; independent parasitic noise sources, each
with a transfer function H;(f) between the source and the ingtrument measure-
ment channel, and a signal source with its transfer function, cf. figure 5.

Given the superposition principle seen above, the output noise will have a
power spectral density:

Sout () =D Sn (f) [Hi()]?. (39)

The signal has a transfer function H(f) with the measurement channel, also
named “instrument sensitivity”. Numerically it is possible to refer the noises as
referred to the signal input, in signal unit:

Suanlf) = T oS ) IHDI® (40)

The whole instrument is a sensor with noises sources referred to the input
as in figure 7.

In the jargon of some scientific communities this input-referred noise is called
“Instrument sensitivity” (gravitational wave detection for example). Following
the international vocabulary of metrology [20] it may be better named “detection
limit spectral density”. This curve is very useful, for a known expected signal,
to understand where the instrument performance has to be improved, cf. figure
6.

3.4 Sensors
3.4.1 dynamic range

The maximal value of a sensor is a voltage; its noise linear spectral density is
in V/v/Hz. The dynamic range is the ratio of the maximal value to the noise

14
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Figure 7: input referred noise of a sensor

linear spectral density, and is frequency dependent. In commercial datasheets
the “dynamic range” is often unitless, using non-specified additional parameters
such as supposed integration time of a filter of unknown shape. The commercial
practice of private companies would make the engineer life easier by giving both
transfer function and input-referred noise spectral density instead.

3.4.2 Input noises in electrical and optical sensors

Sensors are converting the physical quantity they measure into a voltage via
a transfer function M(f). The physical quantity is measured together with its
intringic noise. For example, an electrical voltage is measured together with
thermal noise; an antenna senses an electric field, together with its shot noise; an
optical beam is measured together with its shot noise. The sensor, often active,
also has intrinsic sources of noises, named “read-out noise”. All additional noises
present at the output are referred to the sensor input.

A voltage sensor will have a readout noise PSD Sy in V2/Hz. With a
known impedance R, for example in a 50 2 system in microwaves, it can be also
expressed as a power Sy /R in W/Hz. A photodiode senses an optical power;
the readout noise is thus in W?/Hz.

3.5 Noise in servo loops

A servo loop may be represented by one of the schematics in figure 8 where
M(f) is a sensor transfer function, A(f) actuator transfer function, and C(f)
the one for the electronic correction (PID for example).
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Figure 8: Several simple feedback loops

In a standard feedback loop as in fig. 8a, a sensor delivers a voltage m(t)
that is compared to a reference level or command e(t) to give an error ¢(t). The
correction circuitry filters the electrical signal to provide a correction signal
Scorr(t) to the actuator. The feedback loop may be used to attenuate the effect
of a perturbation signal b(¢) to give a more accurate output s(¢). In fig. 8c
a loop in a metrology experiment, the sensor (fig. 8b) compares two physical
quantities, a reference level e(t), ideally constant, and the system output s(t) .
The open loop transfer function is in both cases in the frequency domain:

Gro = M(f) C(f) A(f) (41)

In the case of a metrology loop, if the inputs are deterministic signals, then
the equations between of the Fourier transforms of the input signals (reference
and noise inputs) and the outputs (output physical quantity, measurable error
and correction signals) are:

1

soulf) = 7 st (1) + TG b(f) (42)
M M
e(f) = msref(f) T1x Gbob(f) (43)
Ghro Gho
Scorr(f) - %Tbc;bosrcf (f) - %1 —‘rbC;bo (f) (44)

The frequency dependence of transfer functions M, C, A, Gy, is omitted to
have lighter notations. For the Fourier frequencies such that |Gpo| > 1, the
correction signal is a sensor of s,.; and b with transfer function 1/A.
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If the perturbation noise b(t) and reference signal s,¢(t) are time domain
independent random variables described with Fourier-Stieltjes integrals, then
using equation 39 one can give the power spectral density of of physical quan-
tities and measurable voltages:

2 2

| G 1
Sl ) = o] S+ | S) (49
M 2 2
5.00) = | | Sucth)+ | | S (40)
1 Gy | 1 G |?
Scorr(f) - Z 1+ Gbo Srcf(f) + ‘Z 1+ Gbo Sb(f) (47)

S-(f) measures the ultimate performance of the feedback loop; an out-of-loop
measurement is often necessary in metrology to ensure the real performance. In
the context of metrology experiments, the feedback loop is realized because the
reference has a much smaller PSD than the perturbation, Sy(f) > Siet(f). Then
the correction signal in eq. 47 shows that the correction signal is a sensor of
Sy (f) with calibration factor 1/|A(f)[?. To really benefit of the full advantage
of the reference, one has to ensure that the loop gain |Gy, is large enough such
that Ser(f) > Sp(f)/|Grol?; then the physical output signal seu; follows the
reference Sout(f) ~ Sret(f)-

3.6 Spectrum analyzers
3.6.1 Electrical spectrum analyzers (ESA)

The «<RBW» (Resolution Bandwidth) of an electrical spectrum analyzer is the
frequency spacing; it is not the noise equivalent bandwidth. The “old” instru-
ments (cathodic screen, analog data processing) display the power in dBm in
a frequency band RBW. To convert into spectral density, the data has to be
calibrated with

10-3 10 2™/
~ ENB

The ration between RBW and ENB is instrument-dependent [23]! In “mod-
ern” instruments (color screen, digital data analysis, “FFT mode”,...) the ratio
between RBW and ENB is close to 1 (for a Gaussian filter the ratio is 1.056),
and taken into account for a display of calibrated data in V/v/Hz [24]. When
measuring phase noise, the instrument manual makes it clear if the display
is monolateral spectral density S,in dB rad®/Hz or bilateral spectral density
L, as(f) = Sy(f) —3dB in dBc/Hz. For instance the Rohde&Schwartz FSW
estimates Ly g4p(f).

Sy [W/Hz]. (48)

3.6.2 Optical spectrum analyzers (OSA)

The optical spectrum analyzers rarely precise the filter profile. The user’s man-
ual for Yokogawa AQ6380 makes it clear that the resolution bandwidth is defined
at -3 dB, it is not the ENB. The filter shape is unknown. The user is left with
measuring the OSA filter and compute its ENB, or approximate ENB to RBW.
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3.7 Phase and frequency noises

The “system” can be also a variable integration, for example between frequency
and phase. An oscillator output with phase noise is modeled with

s(t) = sosin (2mvot + (1)) (49)

where ©(t) is a noise function. The instantaneous phase of this oscillator is
O (t) = 27t + p(t) (50)
and the instantaneous frequency can be defined with [20]

1do 1 dy

= —— = -_— . ]-
27 dt Yo+ 27 dt (51)

Vinst (t)
There is therefore the transfer function ¢ f between phase noise and frequency
variations, and the relationship between PSD for phase and frequency noises:

Ssu(f) = 28, (). (52)

When considering the phase noise of microwave oscillators, historical rea-
sons (availability of electrical spectrum analyzer, where the carrier is displayed
without demodulation) have led to consider separately the noise sidebands at
+f et —f relative to the carrier vy frequency. In that case L(f) = S(f) /2 [20].
In that context, S, (f) is a monolateral PSD (only positive frequencies) whereas
L(f) is a bilateral PSD. L(f) is measured a single side band (SSB) relative
to the carrier. It is common in microwave community to take log scales. The
unit of S, 4p(f) = 10 log,;(S,) is then «dB rad?/Hz» in log scale, whereas
Lig(f) = Sy,ap — 3 dB is written « dBc/Hz», meaning that it shows the power
of one of the sidebands relative to the carrier.

3.8 Coherence
3.8.1 Definition

It is hazardous to draw conclusions from the similarity of time data , as shown by
several web sites on “spurious correlations”. In the frequency domain, it is pos-
sible to define if random data have a common phase relationship on a frequency
interval of finite length. It is then possible to draw a physical interpretation for
causality or common source. It can be very useful on instrumentation science to
debunk parasitic noise sources. If the coherence is close to 1, a transfer function
can be estimated. The coherence between to noises n, and n, is defined in the
frequency domain with:

[(dna (f) dny (f))] 2
(ldna(£)12) {|dny ()] %)

The statistical average on the numerator will tend to zero for uncorrelated
data, and C, , tends to 1 if noises are proportional to each other with a constant
phase delay. The coherence function is implemented on several vector signal
analyzers (VNA), for example on the SR780 from Stanford Research Systems.

Cuy =

(53)
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3.8.2 Crosscorrelations for phase noise measurements

The measurement of the phase noise ppyr of a high performance oscillator
can be compared to two different local oscillators. The coherence of ¢ pyr(t) —
vor1(t) and ¢pyr(t) —wora(t), if not zero, makes it possible to measure phase
noise below the phase noise floor of each of the local oscillators.

4 Signal to noise ratio

We want here to know in a measurement m(t) = s(t) + n(t) with how much cer-
tainty we have a signal s(t) embeded in a noise n(t). Within an instrumentation,
the presence of noise in the same bandwidth as the signal is unavoidable, either
being technical noises or fundamental noises (quantum noise, thermal noise).
All measurements are real-valued here.

4.1 Finite energy signals
4.1.1 Definition
The signal-to-noise ratio (SNR) is defined with:

S e2s))”
N _./0 5.(f) df. (54)

The signal-to-noise “ratio” is the sum of the ratios of signal power to noise
power per infinitesimal frequency bands. It has no physical units. Note that
the signal to noise is sum of ratios, not a direct ratio in the general case. This
formula holds for monolateral noise power spectral density. The factor of 2
stands for the negative frequencies of the Fourier transform of s(t).

In the case the time domain noise is white noise, then its spectral density is
frequency independent. Then the noise PSD can be factorized in the front of
the integral. Then, using Parseval’s theorem,

* 1s(t)]? dt
5 LLlrw .

In that specific case, the signal-to-noise is the ratio of the energy of the signal
to the noise PSD.
4.1.2 Signal to noise ratio and filtering

We want to know how filtering a signal and noise data stream improves or
degrades the signal to noise. The filter has a transfer function H(f). The noise
PSD becomes

Su())IH(HI,

whereas the signal PSD becomes
2(s(F)H(f)*df.

Then in the signal-to-noise ratio, as defined in equation 54, |H(f)|* simplifies
simultaneously on numerator and denominator. The signal to noise ratio is thus
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unchanged. Actually, with an analog filtering, a little noise will be added by the
filter, slightly degrading the signal to noise ratio.

In case of red-colored noise, the signal-to-noise can be quite good, even
if not visible by the eye. The SNR is not “what you see is what you get”.
Time domain data can be misleading to have an eye appreciation. At the
first detection of gravitational waves on LIGO detectors in September 2015, the
“signal” was visible by the eye on the interferometer dark fringe, an error signal of
a servo loop. However, when “calibrating” the data with the instrument transfer
function (cf. equation 40), the noise is red-colored and the signal disappears
in the noise. The publication [25] showed the calibrated time domain data
with a high-pass filter so that one may appreciate by the eye the signal shape.
Without the high-pass filtering, the signal would have been invisible. However,
the SNR as defined by equation 54 remained the same. There is no denial of the
pedagogical effect of a visible time domain data; but the scientific conviction
lies in the SNR and the associated false alarm rate.

4.1.3 Matched filtering

In a real data stream the measurement m(t) = s(t — tg) + n(t) does not allow
an immediate calculation of signal to noise, and the arrival date of the data tg
can be unknown. If the prototype signal is so(t) is known, then a matched filter
can answer the questions: is the signal present? when? what size? The signal
theory shows that the optimal linear filter has a frequency response [26]:

56(f)
Su(f)

If the noise is white, S,, is frequency independent, and the filter is, up to a
scale factor, the signal expected reversed in time. In the presence of noise alone
at the input, the output of a matched filter is a white noise.

The filter output will be monitored with a trigger level (for example 3 times
the signal prototype integrated square modulus); the output is maximal at the
signal arrival time; the output amplitude gives the signal amplitude with respect
to the prototype one, and is roughly also the signal to noise ratio.

A matched filter can be installed at the instrument output, for example m(t)
in fig. 5; the noise in that case is the output noise S,,(f). The measurement
can be calibrated by a convolution with a filter hc. (t)whose transfer function
is Hea(f) = 1/Hs(f); the noise in the matched filter formula is in that case
the noise referred to the input Sy, ;,,(f). The signal to noise ratio is identical in
both cases. The signal is easier to see “by the eye” in the case where the noise
is white.

hmatch (f) -

(56)

4.2 Finite power signals
4.2.1 Context

Carriers modulated in phase and/or in amplitude go through different elements
of a system: photodiode or antenna; propagation lines; amplifiers; filters; etc.
The modulated signal lies in a bandwidth [Fy— B/2, Fy+ B/2]. In these contexts
one assumes usually that the noise PSD in frequency independent.
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Nin (t) + 5in(T) Nout (£) + Soue(t)

Figure 9: A system with noise referred to the input

4.2.2 Definition

The signal to noise ration is the signal power to the noise PSD times the signal
bandwidth:

Psignal o <92(t)>
Pnoise B Sn X B

The Carrier-to-Noise ratio (CNR) is defined by:

o Psignal o <$2(t)>
CNR = PSDioe 5. (58)

The physical unit for CNR is Hz (or dB.Hz in logarithmic scale).

SNR =

(57)

4.2.3 Noise factor of a system element

A system element, for example an amplifier, may have multiple noise inputs.
The whole behavior, in the operating conditions (input signal amplitude, system
gain, saturation level, etc.) is modeled with an equivalent noise referred to the
input, as in figure 9. In these situations both the gain and noise noise PSD are
assumed to be frequency independent in the working bandwidth.

The noise factor describes the degradation of signal to noise while the input
noise PSD n;,(t) is equal to a pre-defined noise floor Sy, (f) = Sin.fioor [27] :

SNRm,ﬂoor

F= 59
SNRout ( )
The signal to noise ratio at the input is, using equation 57:
2
o <5in (t)>
SNRin floor = m (60)

and at the output, with G = ¢? being the power gain of the amplifier, and S,
the PSD of the amplifier noise referred to the input:

<G Sin2(t)>

SNRowu: = . 61
out G (Snc; + Sin,ﬁoor) x B ( )
The noise factor can also be expressed as:
F=1+ S”—G. (62)
Sin,ﬂoor
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The quantity F'—1 is the ratio of input referred noise PSD to the floor PSD.
For an electrical system, as the noise is proportional to temperature, the noise
figure is

Teﬁ'
290 K
where T is the effective noise temperature. The temperature describes the
noise in components in millimeter and submillimeter elements.
When expressed in dB, the noise factor becomes the noise figure:

Foomp =1+ (63)

Fyp = 10logyo(F). (64)

The PSD in equation 62 being positive whatever the component, even when the
component is a simple lossy propagation (G < 1), it is obvious that

F>1. (65)

F =1 would apply for a system not adding any noise at all. A filter with
F =2 (F;5 = 3 dB) degrades the signal to noise with a factor 2, if the input
signal is limited by its noise floor.

It is possible to find electrical amplifiers with F'<2. For example the amplifier
ZKL-33ULN-S+ at Mini-Circuits is a 400 MHz - 3 GHz amplifier with noise
figure of only 0,36 dB at 900 MHz. In the optical domain, the amplifiers operate
on the power (photons) instead on electromagnetic field; the noise figure is
always above 3 dB, for example the LNA-320 at Alnair. The development of
amplifiers “sensitive to the phase” under way will eventually have noise figures
smaller than 3 dB.

Note that an amplifier with a low noise factor is only needed if the input
entry is such that its noise PSD is close to the noise floor. Assume an input
with a noise PSD k times above the noise floor. Then the calculation of the
signal to noise degradation leads to:

SNRzn S’nG
=1
SNRout * Sn (66)
SnG
— 1 _—
+ kSn,ﬂoor (67)
F-1
=14+ —-.:
+— (68)

For example, for an electrical system, if k¥ = 10 and the amplifier used has a
noise factor F' = 2, the signal to noise degrades by a factor the very moderate
value of 1.1.

4.2.4 Friis’Formula - cascaded elements

Assume now a system with various elements, for example an electrical system
with antenna, amplifier, propagation cable, etc. It can be modeled as a chain
of elements as in figure 10.

The calculation of the noise PSD at the output leads to:

Sn,out = (Snzn +SnG1) X G1...G N +SnG2 X (GQGN) + ... +SnGN x Gy (69)
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1t element 2" element N element

Figure 10: System of cascades elements

so that the noise of the whole system referred to the input is:

Snfout
St = G X G (70)
— Syt Sy + 202 4 4 OnON (71)
i o G T GLGhs

Replacing with the formula 62 for noise factor:

SnGz’ = (Fz - 1)Sn7ﬂoor (72)
one gets the noise factor for the whole system [27]:
-1 Fy—1
Foys =F . 73
v e T e G e (73)

This formula shows that in a cascaded system, the noise factor of the first
stage, usually a front-end amplifier, is the most important one. If the first
element is a lossy propagation line, then the noise factor of the second element,
an amplifier, is the important one.

4.2.5 Reference floor noise in electrical systems

In a microwave system, the carrier wavelength is usually smaller that the propa-
gation lengths between the system elements. In that case the input and output
impedances of each elements are identical and set to 50 € to insure maximum
power transmission. A resistor R is modeled by a noiseless resistor in series with
a voltage source of random noise of PSD

Sy p = 4kpT,R [V /Hz] (74)

where kg is the Boltzmann constant, 7, the absolute temperature in Kelvins
(room temperature assumed to be 290K), Rs5o=>50 2. The voltage PSD is then
0,91 nV/v/Hz. This value is the order of magnitude of noises referred to the
input in very good operational amplifiers, for ex. LT1028 with 1,0 nV/ VHz.
The electrical power (physical power) PSD is then

S, = %V — 4kpT, [W/Hz]. (75)

The reference floor noise is defined by the following ideal setup: the input of
an instrument, assumed to be an ideal 50 Q) resistor, is connected with a source
with a noiseless 50 Q output impedance. The noise voltage generated by the
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instrument input noisy impedance is divided on two resistors in series, so the
reference noise floor voltage at the input is

Sy fioor = kT, Rso [V?/Hz]. (76)

and the corresponding power noise on the input resistor

Spfoor = kT, [V?/Hz]. (77)

In dBm this amounts to -174 dBm/Hz, the minimum noise level in any 50
Q system.

4.2.6 Reference floor noise in laser optics

The signal is carried on a field mode, an the electromagnetic field with a finite
transverse section. We define here an optical mode signal as a real valued
quantity (t) such that 12 is the instantaneous power (in watts). With that
signal, the reference floor is:

S@Z),ﬂoor = 2hPV0 [Vz/HZ] (78)

where hp is the Planck constant, and v the optical frequency of the carrier.

4.2.7 Phase and amplitude of oscillators in noise background

A measurement of an ideal pure sine signal in a white background noise will dis-
play amplitude and phase noise. In the frequency domain, the noise sidebands
with frequencies smaller than the carrier and higher than the carrier are uncor-
related. This creates simultaneous phase and amplitude noise. Let’s model a
sinewawe with noise with the equation:

m(t) = mov/2 cos(2mgt) + n(t) (79)

where mg is the root mean square value and n(t) a real valued stationary
noise with frequency independent PSD S,. The power of the signal, either
electrical or optical, is Py = mo?. The noise can be a reference noise floor or a
technical noise. A technical noise for electrical carriers can be a readout voltage,
the noise from an amplifier with a noise factor bigger than 1, etc. A technical
noise for optical carriers can be the amplified spontaneous emission level of an
amplifier, etc. The measurement can be rewritten:

m(t) = moﬁ (e”mot 4 e_iz””ot)+/ \/75 (dn(f + vo) +idng(f + vp)) 2ot

2
(80)
where S, = 4 (|dn;(f)|%) = 4(|dng(f)|?), cf. equation 6. The correspond-
ing analytical signal can be written:

m. =m 2wt 1 i/f_-l‘ljo . 27 ft
o = Moe + . (dni(f) +idng(f))e - (8D

mo Jr—_.,

Note that the limitation on the integral bounds has no practical limitation
as the signal bandwidth B is much smaller than the carrier frequency vy.

24



The relative amplitude noise is then:

1 = 27 ft
ne(t) = o /s dn(f)e (82)
——u
and the phase noise is:
1 I=t 27 ft
no(t) = - /f dng(f)ei® ¢, (33)
=

The usage is to consider the “relative intensity noise”, rather than the relative
amplitude noise, i.e. defined as the noise of |m,(t)|? ~ Py(1 + 2n,(t)). Thus

Sn
S = 84
RIN 2 (84)
and the phase noise is:
Sh
Sy = m. (85)
For a shot-noise limited monochromatic laser beam
2hl/0
S shot = 86
RIN shot 7 (86)
and
hI/Q
Sy = 2P, (87)

4.3 Measurements of mixed spectra

In practice, a measured data may include simultaneously stationary white noise
and “lines” (mains frequency multiples, resonances, etc.) and deterministic finite
signal. If the data is calibrated in spectral density (for example V/v/Hz), a
doubling of the time acquisition will reduce by two the frequency resolution;
the linear spectral density will be identical whereas line and signal amplitudes
will raise by a factor v/2, increasing signal to noise ratio. If the spectrum is
calibrated in measurement units (for example V'), then the line size will stay
identical whereas the noise amplitude will be v/2 smaller.
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5 Digital synthesis of noise with arbitrary PSD

It may be necessary in certain contexts to model a time domain series with a
given PSD.

5.1 Langevin’s motor

In the case where |H(f)|? is a square modulus of a rational fraction of polyno-
mials of variable if with real coefficients, then the noise n(t) may be described
as the convolution product

n(t) = h(t) «g(t) (88)

where g(t) is a Gaussian white noise with S; = 1/Hz and h(t) inverse Fourier
transform of H(f).

A digital implementation, with samples with period 7§, can be found with
a recursion equation in the form of 28]

n[k] =biglk] + baglk — 1] + ... + byg[k — N + 1] (89)
+agnlk — 1]+ ...+ aynlk — M + 1] (90)

which writes, with z transform, where z = exp (127 fTys),

n(z) = H(2)g(2) (91)
with
Cobi+boz 4 by N

H =
(2) 14+agz= 4+ ... +apyz"M+1

(92)

H(z) can be deduced from H(f) with, for example, a bilinear transformation,
as in Python scipy.signal.bilinear(). The recursion equation for n[k] is computed
with scipy.signallfilter(). For a first-order filter there is a recursion relation
simpler than the one with a bilinear transform, for a filter of amplitude 1, time
constant 7, sampling time T:

nlk] = e~/ "k — 1]+ (1 - e~/ glk] (93)
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5.2 Arbitrary PSD

The aim is to generate a time series with a given S, (f), for example proportional
to 1/f, not feasible with a Langevin motor. This is also useful to test various
PSD estimators.

The series will consist in 2N +2 points sampled with period T5. The frequency
step in the PSD is AF = 1/((2N + 2)Ty).

We use equation 6. The vector of n(f) for positive frequencies is generated
with a series of 2N random numbers with a normal Gaussian distribution. The
quadratures are multiplied with /.S, (f)AF /4. The two auxiliary degrees of
freedom are the average and semi-alternate sum at Nyquist frequency; these
values can be set to zero. The values for negative frequencies is set with complex
conjugation. The final inverse Fourier transforms gives the series. A Python
implementation is for example:

def PSD2TD (xPSD, fmin):
#PSD2TD (PSD, fmin)
generate time—domain data
for gaussian noise with given PSD

input :
PSD : an array of PSDvalues, equally spaced in frequency,
with interval fmin
array has length N
fmin: first frequency
other frequencies to be nxfmin
not zero!
output:
t: time vector
x: data evenly spaced in time, with interval Ts
for input of size N, time data has size 2N+2

FHFHF R FEHFFFFRFE

= xPSDxfmin /4 #variance for quadratures
len (xPSD)

vi = np.random.randn(N) # variance 1

vq = np.random.randn (N)

w = (vi + 1lj*vq)*np.sqrt(v)

Z <

7# length of returned time sequence
N return = 2x(len(w)+1)

# sampling time of returned time sequence
Ts = 1/(N_returnxfmin)

# compute time vector
= np. fft.irfft (np.concatenate (([0], w, [0])),N return)
# add 0 amplitude at 0 frequency
# add 0 amplitude at semi—alternate value
# exact Nyquist frequency

]
|

x = x*N _return
# correct for inverse fft factor

t = np.linspace (0,Ts*(N_return—1),N return)
# prepare time vector for plots

return t, x
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