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The BigDFT project started in 2005 with the aim of testing the advantages of using a Daubechies
wavelet basis set for Kohn-Sham density functional theory with pseudopotentials. This project led
to the creation of the BigDFT code, which employs a computational approach with optimal features
for flexibility, performance and precision of the results. In particular, the employed formalism has
enabled the implementation of an algorithm able to tackle DFT calculations of large systems, up
to many thousands of atoms, with a computational effort which scales linearly with the number
of atoms. In this work we recall some of the features that have been made possible by the pecu-
liar properties of Daubechies wavelets. In particular, we focus our attention on the usage of DFT
for large-scale systems. We show how the localised description of the KS problem, emerging from
the features of the basis set, are helpful in providing a simplified description of large-scale elec-
tronic structure calculations. We provide some examples on how such simplified description can be
employed, and we consider, among the case-studies, the SARS-CoV-2 main protease.

I. INTRODUCTION

Since their foundation, disciplines like computational
physics and quantum chemistry have had to deal with the
question of the computational reliability of results. The
reliability of a given approach can be defined in terms of
two key concepts, namely “accuracy”, i.e. the ability of
the model to predict quantities which can be externally
verified, e.g. through experiment, and “precision”, i.e. the
ability of the employed numerical approach to find the
solution to a given physical model. A precise approach
should therefore reduce the computational uncertainties
of quantities extracted from a well-defined model, and
provide reference results which can be compared to other
computer codes employing the same model. For theoret-
ical approaches wherein no analytic solution exists, re-
ducing the computational uncertainty is the only way to
shed light on the predictive power of the model. The
accuracy of a result with respect to experimental data
may therefore only be reliably quantified if the computa-
tional uncertainty is significantly lower than the observed
discrepancy.

Density functional theory (DFT) [1, 2] has had
widespread success for simulating a range of materials,
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from molecules to solids, and has therefore become the
most popular approach to electronic structure simula-
tions. While the accuracy of DFT is dominated by the
approximations made to the exchange-correlation (XC)
functional, the precision of a given simulation depends
on a number of factors, in particular the choice of basis
set. Thus two different DFT codes might use the same
physical formalism (including the same XC functional),
but differ in results due to the use of different numeri-
cal approaches. In order to compare results across DFT
codes, careful attention must therefore be paid to the pre-
cision of the results, as seen for example in the DeltaCode
project in which a systematic comparison of a number of
periodic DFT codes was undertaken [3].

In this context, an important distinction should be
made between codes which use systematic and non-
systematic basis sets. A systematic basis set allows one
to calculate the exact solution of the Kohn-Sham (KS)
equations with arbitrarily high precision by increasing
the number of basis functions. In other terms, the nu-
merical precision of the results is related to the number
of basis functions used to expand the KS orbitals. With
such a basis set it is thus possible to obtain results which
are free of errors related to the choice of the basis, elim-
inating a source of uncertainty. As such, it is highly de-
sirable to have at hand a computational formalism which
is able to provide, at the same time:
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• a set of reliable results, which can be systematically
improved by the end-user, in view of increasing –
when needed – the precision of the calculations;

• a flexible approach, in which the desired models can
be explicitly implemented without having to deal
with correction terms and intrinsic approximations;

• an efficient computer program, which enables the
optimal use of computational resources, especially
in the context of high performance computing;

• the ability to connect together different levels of
theory, where various approaches might be linked
within a given computational setup.

In 2005, the EU FP6-STREP-NEST BigDFT project
funded a consortium of four European laboratories
(L_Sim, CEA-Grenoble, France; Basel University,
Switzerland; Louvain-la-Neuve University, Belgium; and
Kiel University, Germany), with the aim of develop-
ing a novel approach for DFT calculations based on
Daubechies wavelets [4]. Beyond building a DFT code
from scratch, the objective of this three-year project was
to test the potential benefit of a new formalism in the
context of electronic structure calculations.

This project was motivated by the fact that
Daubechies wavelets exhibit a set of properties which
make them ideal for a precise and optimized DFT ap-
proach. In particular, their systematicity provides a re-
liable basis set for high-precision results, whereas their
locality (both in real and reciprocal space) is highly de-
sirable to improve the efficiency and the flexibility of the
treatment. Indeed, a localized basis set allows the op-
timization of the number of degrees of freedom for a
required accuracy, which is highly desirable given the
complexity and inhomogeneity of systems under inves-
tigation nowadays. Moreover, an approach based on lo-
calized functions makes possible to explicitly control the
nature of the boundaries of the simulation domain, al-
lowing complex environments like mixed boundary con-
ditions and/or systems with a net charge.

We organize this contribution as follows. We first
present some basic illustrations of the properties of
Daubechies wavelets, and their peculiarities in the con-
text of computational discretization of three-dimensional
KS operators. To this aim we present the KS formal-
ism in BigDFT, briefly outlining the main features of the
Poisson Solver implemented in the code. We will then
explain in more detail how the solution of the KS prob-
lem is implemented in the code and how the properties
of wavelets enable the realization of a computational al-
gorithm whose time-to-solution is linearly scaling with
the number of atoms in the system. We will also explain
how this formalism is useful in the context of the tradi-
tional cubic scaling KS approach, which is also available
in the same computer program. Then we will outline a
few examples of how the capabilities of treating systems
of many thousands of atoms in the DFT formalism en-
ables novel investigation paradigms, with the ability to –
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Figure 1: Least asymmetric Daubechies wavelet family
of order 2m = 16. Note that both the scaling function
φ(x) and the wavelet ψ(x) are different from zero only

within the interval [1−m,m].

at the same time – reduce the complexity of the computa-
tional description and gain insights into the interactions
between a system’s constituents. The BigDFT software
package presents also an innovative software approach
for releasing and distributing the code. We will illus-
trate this approach together with some comments and
examples of how the code features optimal capabilities
for massively parallel supercomputers. We will conclude
with some perspectives on ongoing work.

II. WAVELETS AS A COMPUTATIONAL BASIS
SET

Wavelet basis sets have rarely been used for electronic
structure calculations, with most efforts having been de-
voted to their use in all-electron calculations, e.g. in
MRChem [5] and most applications of MADNESS [6].
Since such a basis is therefore rather uncommon, we ex-
plain here its use in the context of KS-DFT calculations.
While referring the reader to Ref. 7 for an exhaustive pre-
sentation of how wavelet basis sets can be used for numer-
ical simulations, we here summarize the main properties
of Daubechies wavelets, with a special focus on the rep-
resentation of the objects (wavefunctions and operators)
involved in the KS-DFT formalism. We will start by il-
lustrating the principles of one-dimensional Daubechies
wavelets basis.

A. Daubechies Wavelets

Every wavelet family comprises a scaling function
φ, and a second function ψ, which is properly called
a wavelet. Fig. 1 illustrates the least asymmetric
Daubechies wavelet family of order 2m = 16, the basis
set which is used in the BigDFT code. These functions
feature a compact support [1 − m,m] and are smooth
and therefore also localized in Fourier space. The use of
Daubechies wavelets families is guided by different crite-
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ria. Daubechies wavelets represents the best compromise
between compact support, smoothness and orthogonality
for a wavelet family. We chose the family of the order 16
as it is the most compact one which has a degree of conti-
nuity of at least two. Nonetheless, such a family exhibits
polynomial exactness of degree 8, which means that it is
able to represent exactly the Taylor expansion of a Kohn
Sham orbital up to the eighth order. Such an observa-
tion, combined with the Magic Filter method (see [8]),
enables an accurate and efficient approach for the eval-
uation of the kinetic and potential energy in KS-DFT
calculations.

A basis set is simply generated by the integer trans-
lates of the scaling and wavelet functions, with arguments
measured in units of the grid spacing h. For instance, a
1D domain of extension L, centered at x = 0, can be
spanned by the following set of N scaling functions,

〈x|φi〉 ≡ φi(x) =
1√
h
φ
(x
h
− i
)
, i = −N/2, . . . , N/2 ,

(1)
where h = L/(N − 1) is the (uniform) grid spacing. The
basis set can be completed by the addition of the trans-
lates of the wavelet functions ψi. These functions form
an orthogonal basis set:

〈φi|φj〉 = δij = 〈ψi|ψj〉 , 〈φi|ψj〉 = 0 . (2)

The most important feature of any wavelet basis set is
related to the concept of multiresolution. Such a feature
builds upon the following scaling equations (or “refine-
ment relations”):

φ(x) =
√

2
∑
j

hj φ(2x−j) ; ψ(x) =
√

2
∑
j

gj φ(2x−j) ,

(3)
which relate the wavelet representation at a given res-
olution to that at twice the resolution, and so on. Ac-
cording to the standard nomenclature, the sets of the hj
and gj = (−1)jh−j coefficients are called low- and high-
pass filters, respectively. A wavelet family is therefore
completely defined by its low-pass filter. In the case of
Daubechies-2m wavelets, j ∈ [1−m,m].

The representation f(x) of a function in the above de-
fined basis set is given by:

f(x) =

N/2∑
i=−N/2

ci φi(x) +

N/2∑
i=−N/2

di ψi(x) , (4)

where the expansion coefficients are formally given by
ci ≡ 〈φi|f〉, di ≡ 〈ψi|f〉. Using the refinement equations
(3), one can map the basis appearing in Eq. (4) to an
equivalent one including only scaling functions on a finer
grid of spacing h/2.

B. One-Dimensional Operators with Daubechies
Wavelets

The multiresolution property plays a fundamental role
also for the wavelet representation of differential opera-
tors. For example, it can be shown that the exact matrix
elements of the kinetic operator can be written in the
form of a circular matrix, namely:

Tij = Ti−j ≡ −
1

2

∫
dxφi(x)∂2φj(x) , (5)

and are equal to the entries of an eigenvector of a ma-
trix which solely depends on the low-pass filter (see e.g.
Ref. 7).

Daubechies-2m wavelets exhibitm vanishing moments,
thus any polynomial of degree less than m can be rep-
resented exactly by an expansion over the sole scaling
functions of order m. For higher order polynomials the
error is O(hm), i.e. vanishingly small as soon as the grid
is sufficiently fine. Hence, the difference between the rep-
resentation of Eq. (4) and the exact function f decreases
as hm. The discretization error due to Daubechies-
2m wavelets is therefore controlled by the grid spacing.
Among all the orthogonal wavelet families, Daubechies
wavelets feature the minimum support length for a given
number of vanishing moments.

Given a potential V known numerically on the points
{xk} of a uniform grid, it is possible to identify an ef-
fective approximation for the potential matrix elements
Vij ≡ 〈φj |V |φi〉. It has been shown [8, 9] that a quadra-
ture filter {ωk} can be defined such that the matrix ele-
ments given by

Vij ≡ 〈φj |V |φi〉 =
∑
k

ωk−i V (xk)ωk−j , (6)

yield excellent accuracy with the optimal convergence
rate O(h2m) for the potential energy. The same quadra-
ture filter can be used to express the grid point values of
a (wave)function given its expansion coefficients in terms
of scaling functions:

f(xk) =
∑
i

ci ωk−i +O(hm) ; (7)

ci =
∑
k

f(xk)ωk−i +O(hm) . (8)

As a result, the potential energy can equivalently be com-
puted either in real space or in the wavelet space, i.e.
〈f |V |f〉 =

∑
k f(xk)V (xk)f(xk) ≡

∑
ij ciVijcj . The

quadrature filter elements can therefore be considered
as the most reliable transformation between grid point
values f(xk) and scaling function coefficients ci, as they
provide exact results for polynomials of order up to m−1
and do not alter the convergence properties of the basis
set discretization. The filter {ωk} is of length 2m and
is defined unambiguously by the moments of the scal-
ing functions (which in turn depend only on the low-pass
filter) [7].
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Using the above formulae, the (so far one-dimensional)
Hamiltonian matrix Hij = Tij + Vij can be constructed.
Note that, in contrast to other discretization schemes (fi-
nite differences, plane waves etc.), in the wavelet basis
set neither the potential nor the kinetic terms have di-
agonal representations. Instead, Ĥ is represented by a
band matrix of width 2m.

C. Three-Dimensional Wavelet Basis

For a three-dimensional description, the simplest basis
set is obtained by a set of products of equally spaced
scaling functions on a grid of grid spacing h′

φi,j,k (r) = φ(x/h′ − i)φ(y/h′ − j)φ(z/h′ − k) . (9)

In other words, the three-dimensional basis functions
are a tensor product of one-dimensional basis functions.
Note that we are using a cubic grid, where the grid spac-
ing is the same in all directions, but the following de-
scription can be straightforwardly applied to general or-
thorhombic and non-orthorhombic grids.

The basis set of Eq. 9 is equivalent to a mixed basis
set of scaling functions on a twice coarser grid of grid
spacing h = 2h′

φ0
i,j,k(r) = φ(x/h− i)φ(y/h− j)φ(z/h− k) (10)

augmented by a set of 7 wavelets

φ1
i,j,k(r) = ψ(x/h− i)φ(y/h− j)φ(z/h− k)

φ2
i,j,k(r) = φ(x/h− i)ψ(y/h− j)φ(z/h− k)

φ3
i,j,k(r) = ψ(x/h− i)ψ(y/h− j)φ(z/h− k)

φ4
i,j,k(r) = φ(x/h− i)φ(y/h− j)ψ(z/h− k) (11)

φ5
i,j,k(r) = ψ(x/h− i)φ(y/h− j)ψ(z/h− k)

φ6
i,j,k(r) = φ(x/h− i)ψ(y/h− j)ψ(z/h− k)

φ7
i,j,k(r) = ψ(x/h− i)ψ(y/h− j)ψ(z/h− k) .

This equivalence follows from the fact that, from Eq. (3),
every scaling function and wavelet on a coarse grid of
spacing h can be expressed as a linear combination of
scaling functions at the fine grid level h′ and vice versa.

In a simulation domain, there are therefore three cate-
gories of grid points: those which are closest to the atoms
(“fine region”) carry one (three-dimensional) scaling func-
tion and seven (three-dimensional) wavelets; those which
are further from the atoms (“coarse region”) carry only
one scaling function, corresponding to a resolution which
is half that of the fine region; and those which are even
further away (“empty region”) carry neither scaling func-
tions nor wavelets. To determine these regions of dif-
ferent resolution, we construct two spheres around each
atom a; a small one with radius Rfa = λf · rfa and a large
one with radius Rca = λc · rca (Rca > Rfa). The values of
rfa and rca are fixed for each atom type, whereas λf and
λc can be specified by the user in order to control the

Figure 2: Example simulation grid for a molecule with
coarse (fine) grid points depicted in (gold) blue.

accuracy of the calculation. The fine (coarse) region is
then given by the union of all the small (large) spheres,
as shown in Fig. 2. Hence in BigDFT the basis set is
controlled by three user specified parameters; systematic
convergence of the total energy is achieved by increasing
the values of λc and λf while reducing the value of h.

III. KS-DFT FORMALISM WITH WAVELETS

In this section we describe how a Daubechies wavelet
basis may be used to solve the KS equations. We first
introduce some notations relating to the operators which
have to be discretized in Daubechies wavelets. The en-
ergy of the system in the KS formalism can be defined
by

E[λ, ρc, F, {ψi}] = −1

2

∫
dr tr

(
∇2 |r〉 〈r|F

)
+ tr (FVext[λ]) + Exc[ρ+ ρc] + EH [ρ] + αXEX [F ]

=
∑
i

fi〈ψi|HKS [ρ, ρc, λ]|ψi〉

−EH [ρ]−αXEX [F ]+Exc[ρ+ρc]−
∫

drρ(r)Vxc[ρ+ρc](r) ,

(12)

where we have indicated with fi the occupation num-
bers associated with the KS wavefunctions ψi, which
determine the density ρ(r) = F (r, r), where F (r, r′) =∑
i fiψ

∗
i (r)ψi(r

′) is the density matrix operator in real
space. Such occupation numbers are functionally depen-
dent on the KS energy fi = f(εi), as by definition the
KS orbitals satisfy the eigenvalue problem of HKS . The
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KS Hamiltonian is defined as

HKS [ρ, ρc, λ]

≡ −1

2
∇2 + VH [ρ] + Vxc[ρ+ ρc] + αXD̂X + Vext[λ].

(13)

The exact exchange term EX [F ] and the associated Fock
operator D̂X are introduced in Sec. III C. An alternative
definition of the operator HKS can be given as the func-
tional derivative of the total KS energy functional with
respect to the density matrix operator:

HKS(r, r′) ≡ δEKS
δF (r, r′)

. (14)

The external potential Vext, which contains local and
non-local pseudopotential (PSP) terms, depends on a set
of electron-independent parameters λ which model the
system under analysis, e.g. the atoms positions. The
core charge density ρc[λ] also depends on these variables,
but it is assumed to be independent of the KS orbitals.
BigDFT efficiently treats Gaussian pseudopotentials of
the Goedecker-Teter-Hutter (GTH) and Hartwigsen-
Goedecker-Hutter (HGH) [10–13] types, since the intrin-
sic separability of both the basis set and Gaussian pseu-
dopotentials allows for the simplification of several 3D
operations into a sum of 1D products. The approxima-
tion of the all-electron KS quantities induced by the PSP
terms has been shown to be much less severe than the
exchange and correlation terms. Such PSP have proven
to yield all-electron precision for most of the quantities
of interest in ground-state DFT calculations, as can be
seen in the DeltaTest initiative [3], where an accuracy of
0.1 meV/atom – the best among the PSP calculations –
can be obtained for the set of atoms belonging to the first
three rows of the periodic table, or in Ref. 13 where we
show that the accuracy of the G2-1 and S22 test sets is
comparable with all-electron calculations made by highly
precise Gaussian basis sets.

A. Poisson Solver

In Eq. 13 the Hartree potential VH [ρ] depends on the
charge density from the Poisson’s equation, which in
atomic units, in vacuum, reads ∇2V = −4πρ . Having
efficient algorithms to solve the Poisson equation is there-
fore essential. The large variety of situations in which
this equation can be found require us to face this prob-
lem with different choices of boundary conditions (BC) in
mind. The long-range behavior of the inverse Laplacian
operator makes this problem strongly dependent on the
BC of the system.

In Refs. 14–16, a novel method for solving the screened
and unscreened Poisson’s equation in vacuum with free,
fully periodic, surface-like and wire-like BC was pre-
sented, including non-orthorhombic cells. Such a method
is direct (rather than iterative) in that the solution along

the isolated directions is found in its integral form using
the Green’s function method. For instance, in the case
of a fully isolated system (or “cluster-like”),

V (~r) = 4π

∫
d3~r′G(µ0; |~r − ~r′|)ρ(~r′), (15)

where ~r = (x, y, z). Homogeneous Dirichlet BC (V = 0
at |~r| → ∞) along the isolated directions are explicitly
enforced by the selection of the Green’s function.

The method has been in use for a few years in a num-
ber of ab initio codes (see the references cited in Ref. 16)
and has proven to be highly efficient and accurate in
every application attempted to date. It is based on a
representation of ρ and V in interpolating scaling func-
tions (ISFs), which allows any sort of periodicity to be
modelled in the most natural, clean and mathematically
rigorous way. ISFs – arising in wavelet theory [7] – enjoy
several properties which make them superior to other ba-
sis sets. For instance, the representation in terms ofm-th
order ISFs make the first m moments of the continuous
and discrete charge distributions coincide [8]. As a con-
sequence the representation is definitely faithful (more
than just convenient), since the different moments of the
charge distribution capture the major features of the po-
tential. Moreover, ISFs are genuinely localized due to
their compact support (the length of which is equal to
2m) and endowed with the refinement relations which
easily allow for switching from a representation on a grid
with spacing h to a doubly refined grid with spacing h/2.

The inclusion of such functionalities is motivated by
the strong theoretical, experimental and technological in-
terest in the characterization of nanostructured materi-
als, since solving Poisson’s equation is only one of the
many steps involved in state-of-the-art computer simula-
tions and is repeated several times. Moreover, in the con-
text of KS-DFT and extensions thereof, there are quan-
tities which are computed via convolution integrals very
similar to that in Eq. (15): for instance, the exact ex-
change term arising within those generalizations of KS-
DFT employing orbital-dependent or hybrid functionals
(see Ref. 17 and references therein), or the coupling-
matrix in time-dependent DFT (TDDFT) [18]. In this
respect, the electrostatic problem of concern here pro-
vides the paradigm for many other computations, even
well beyond the scope of electrostatics.

B. Soft-Sphere Implicit Solvation Model

This high-degree of flexibility makes the BigDFT Pois-
son solver library optimal for calculations of polarized
systems or systems with non Born-von Karman bound-
ary conditions, such as material surfaces and isolated
molecules. Nonetheless, the computational study of mat-
ter in various environments is a continuously growing
field in solid state physics and chemistry. Systems of
interest are for instance molecules, clusters or surfaces in
contact with solvents [19]. An alternative to the explicit
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inclusion of a wet environment is its implicit descrip-
tion, while still treating the other parts of the system
explicitly on an atomic quantum level [20]. Such an ex-
plicit/implicit treatment requires three main ingredients:

1. a dielectric cavity represented by a proper function
ε(r) mimicking the surrounding solvent of a solute
as a continuum dielectric;

2. a solver for the generalized Poisson equation [21]

∇ · ε(r)∇φ(r) = −4πρ(r), (16)

where φ(r) is the potential generated by a given
charge density ρ(r);

3. a model for the non-electrostatic terms to the total
free energy of solvation.

The dielectric function ε(r) has to take the value of one
where the solute is placed to solve a vacuum-like quantum
problem, and the bulk dielectric constant ε0 outside.

The “soft-sphere” model developed by Fisicaro et
al. [22] and implemented in BigDFT improves
upon previous solvation approaches (see e.g. Tomasi’s
method [23]). Model features are: accurate forces and
a numerical cost comparable to standard vacuum calcu-
lations; feasible extensive potential energy surface (PES)
explorations; a small number of model parameters; exact
treatment of molecular or slab-like geometries; and the
ability to treat neutral and charged molecules simultane-
ously in order to tackle complex interfaces (e.g. a double
layer).

The interface between the quantum-mechanical so-
lute and the surrounding environment is described by
a fully continuous permittivity built up with atomic-
centered “soft” spheres. This approach combines many
of the advantages of the self-consistent continuum solva-
tion model [24] in handling solutes and surfaces in con-
tact with complex dielectric environments or electrolytes
in electronic-structure calculations. In addition, it is able
to describe accurately both neutral and charged systems.

We developed, tested and implemented within the
BigDFT suite a solver for the generalized Poisson
(Eq. 16) and the Poisson-Boltzmann equations to treat
neutral and ionic solutions, respectively [21]. The solver
for the solution of the generalized Poisson equation and
the linear regime of the Poisson-Boltzmann is based on
a preconditioned conjugate gradient scheme. It allows
for the iterative solution of the minimization problem
with some ten iterations of the ordinary Poisson equation
solver. In addition, a self-consistent procedure solves the
non-linear Poisson-Boltzmann problem. Both solvers ex-
hibit very high accuracy and parallel efficiency and allow
for the treatment of free, slab and wire-like boundary
conditions.

The continuous function, describing the variation of
the permittivity, allows for the analytic computation of
the non-electrostatic contributions to the solvation free
energy that are described in terms of the quantum sur-
face. The capability of treating arbitrary molecular or

slab-like geometries as well as charged molecules is key
to tackling electrolytes within mixed explicit/implicit
frameworks. Within the soft-sphere model two param-
eters are sufficient to give a mean absolute error of only
1.12 kcal/mol with respect to the experimental aqueous
solvation energies for a set of 274 neutral solutes. For
charged systems, the same set of parameters provides
solvation energies for a set of 60 anions and 52 cations
with an error of 2.96 and 2.13 kcal/mol, respectively, im-
proving upon previous literature values.

The soft-sphere model has been already applied to the
study of molecular doping of silicon [25], the interface
of fluorite terminations with water [26] and the investi-
gation of wet environment effects for ethanol and water
adsorption on anatase TiO2 (1 0 1) surfaces [27]. The
latter example is presented as a case study in Sec. VA.

C. (Exact) Exchange and Correlation Terms

The calculation of the exact exchange energy EX re-
quires a double summation over all the N occupied or-
bitals

EX [F̂ ] = −1

2

∑
σ

∫
dr dr′

Fσ(r, r′) Fσ(r′, r)

|r− r′|

= −1

2

∑
i,j,σ

fi,σfj,σ

∫
dr dr′

ρσij(r) ρσji(r
′)

|r− r′|
, (17)

where we have defined ρσij(r) = ψ∗j,σ(r)ψi,σ(r). The diag-
onal (i = j) contribution to EX exactly cancels out the
Hartree electrostatic energy EH [ρ]. The action of the
Fock operator D̂X to be added to the KS Hamiltonian
directly stems from the EX definition:

D̂X |ψi,σ〉 =

∫
drdr′

δEX [F̂ ]

δFσ(r, r′)
ψi,σ(r′) |r〉

= −
∑
j

∫
drfj,σV

σ
ij (r)ψj,σ(r) |r〉 , (18)

where we have defined

V σij (r) =

∫
dr′

ρσji(r
′)

|r− r′|
, (19)

that is the solution of the Poisson’s equation ∇2V σij =
−4πρσij . In a KS-DFT code which searches for the ground
state orbitals, one has to repeatedly evaluate, during the
SCF procedure, for a given set of ψi,σ(r), the value of EX
as well as the action of the corresponding Fock operator
D̂X on the entire set of occupied orbitals.

D. Atomic Forces

The atomic forces are, by definition, the opposite of the
derivative of the total energy with respect to the atom
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position. In this notation we should thus calculate

dE

dλ
=
∑
i

fi〈ψi|
dVext

dλ
|ψi〉

+
∑
σ

∫
dr

dρσc (r)

dλ
V σxc[ρ+ ρc](r) . (20)

Clearly, numerically, the set of |Ψi〉 is expressed in a finite
basis set. This means that the action of HKS can in
principle lie outside the span of the |Ψi〉. We can define
therefore a residual function

|χi〉 = HKS |Ψi〉 − εi |Ψi〉 , (21)

which represents the deviation of the numerical KS or-
bital from being the exact KS orbital. By definition
〈Ψj |χi〉 = 0 ∀i, j. The norm of this vector, once projected
on to the basis set used to express |Ψi〉, is often used as a
convergence criterion for the ground state energy. How-
ever, even though the basis set is finite, the orthogonality
of KS orbitals holds exactly. It is thus easy to show that
the numerical atomic forces are defined as follows:

−dEBS
dRa

=−
∑
i

fi 〈Ψi|
∂HKS

∂Ra
|Ψi〉

− 2
∑
i

Re

(〈
χi

∣∣∣∣ ∂Ψi∂Ra

〉)
, (22)

where the first term of the right hand side of the above
equation is the Hellman-Feynman contribution to the
forces.

Let us now suppose that the KS Hamiltonian and or-
bitals are expressed in a basis set which is complete
enough to describing the orbitals and their derivatives
within a targeted accuracy. For a Daubechies basis in
the traditional BigDFT approach, this happens when the
grid spacing h is such as to describe the PSP and orbital
oscillations and the radii λc,f is such as to contain the
decreasing tails of the wavefunctions. In this case the
norm of |χi〉 can be reduced within the same basis set
such as to meet this targeted accuracy. Therefore the
projection of

∣∣∣ ∂Ψi∂Ra

〉
onto the basis set used for the cal-

culation can be safely neglected as it is associated to the
same numerical precision. When the basis set is complete
enough to express also

∣∣∣ ∂Ψi∂Ra

〉
, then the atomic forces can

be evaluated by the Hellmann-Feynman term only, as the
remaining part is proportional to the desired accuracy.

IV. IMPLEMENTATION IN BIGDFT

We have presented so far the way in which the KS oper-
ators can be discretized in Daubechies wavelets. We will
now present the computational approach implemented in
BigDFT, starting from the chosen discretization of the
KS orbitals.

A. Nearsightedness and Support Functions

In our approach the KS orbitals are expressed as a lin-
ear combination of intermediate, possibly minimal, ba-
sis functions |φα〉, also referred to as support functions
(SFs):

|Ψi(r)〉 =
∑
α

cαi |φα(r)〉 . (23)

In other terms, we assume that the density matrix of the
system F̂ can be defined from a set of localized SFs as
follows:

F̂ ≡
∑
i

f(εi) |Ψi〉 〈Ψi| =
∑
α,β

|φα〉Kαβ〈φβ | , (24)

with a SF overlap matrix Sαβ = 〈φα|φβ〉, which can be
chosen to have a unit diagonal and where Kαβ is the
so-called density kernel. This kernel is related to the
density matrix formulation of Hernández and Gillan [28],
and has to be thought of as functionally dependent on
the KS Hamiltonian, namely K = K[HKS ]. The den-
sity matrix F (r, r′) decays exponentially with respect to
the distance |r − r′| for systems with a finite gap or for
metals at finite temperature [29–35]; for metals at zero
temperature it decays algebraically [36]. Therefore in
these cases it can be represented by strictly localized ba-
sis functions. A natural and exact choice for these would
be the maximally localized Wannier functions (MLWFs)
which have the same exponential decay [37]. In our case,
the localized functions are constructed in situ during the
self-consistency cycle in terms of an underlying wavelet
basis set.

A support function φα(r) can thus be expanded in the
wavelet basis as follows:

φ(r) =
∑
i1,i2,i3

si1,i2,i3ϕi1,i2,i3(r)

+
∑

j1,j2,j3

7∑
l=1

d
(`)
j1,j2,j3

ψ
(`)
i1,i2,i3

(r). (25)

We have here indicated with ϕj1,j2,j3(r) = ϕ(x−j1)ϕ(y−
j2)ϕ(z− j3) the tensor product of three one-dimensional
scaling functions, whereas ψ(`)

j1,j2,j3
(r) are the seven tensor

products containing at least one one-dimensional wavelet.
The sums over i1, i2, i3 (j1, j2, j3) run over all grid
points where scaling functions (wavelets) are centered.
These points are associated with regions of low and high
resolution levels, respectively, as described in Sec. II C.

B. Localization Regions

Thanks to the nearsightedness principle, it is possi-
ble to define an approach in which the computational
cost is linear scaling (LS) with respect to the number of
atoms, N , rather than the cubic scaling (CS) which arises
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when extended KS orbitals are used. Such approaches
allow one to go beyond the treatment of a few hundred
atoms as is typically seen with O(N3) DFT approaches
and instead treat systems containing several thousands of
atoms. This has the benefit of also opening up the treat-
ment of new types of materials and simulations using a
pure quantum mechanical approach, as discussed e.g. in
Refs. 38 and 39. TheO(N) formalism implemented in the
BigDFT code exploits the possibility that, for systems
with suitable electronic structure, the support functions
φ can be optimized while preserving their strict locality,
namely such as their support is within a pre-defined lo-
calization region. A similar approach is for example used
in the ONETEP [40] and Conquest [41] codes.

For large systems where the nearsightedness principle
guarantees that a local description of the orbitals is pos-
sible, the large number of degrees of freedom offered by
the wavelet basis is a waste. It is therefore advantageous
to build a minimal basis formed of localized (e.g. atom
centered) functions. Of course, these functions will also
be expanded in terms of the underlying wavelet basis, but
to strictly impose locality, they will be expressed only in
a subset of this global basis set. To do so we set to zero
all scaling function and wavelet coefficients if they lie out-
side of a sphere with radius Rloc around the point Rα on
which the function is centered:

si1,i2,i3 = 0 ⇐ |R(i1,i2,i3) −Rα| > Rloc (26)
dj1,j2,j3 = 0 ⇐ |R(j1,j2,j3) −Rα| > Rloc.

Here R(i1,i2,i3) is the position of the grid point (i1, i2, i3)
andRα that of the atom on which the minimal basis func-
tion φα(r) is centered. These localization regions can still
contain various resolution levels, as they are constructed
on top of the global simulation domain. The index α is
instead used in the following formulae to label kets that
are associated to SFs.

In other terms, instead of working directly with
the function |φα〉, we work with the localized function
L(α)|φα〉, where the definition of the localization pro-
jector operator in the Daubechies basis space is, as de-
scribed:

L(α)
i1,i2,i3;j1,j2,j3

= δi1j1δi2j2δi3j3θ(Rloc−|R(i1,i2,i3)−Rα|) .
(27)

from which it becomes apparent that such a projection
operator L(α) explicitly depends on the localization ra-
dius Rloc and the localization region center Rα. Clearly,
if |φα〉 is localized around Rα and Rloc is large enough,
L(α) leaves |φα〉 unchanged and no approximation is in-
troduced to the KS equations.

It is important to emphasize that, since the Daubechies
basis set is independent of Rα, |φα〉 depends on the cen-
ter of the localization region by the introduction of the
projector L(α):

|φα〉 = L(α)|φα〉 . (28)

By taking the derivative of this equation with respect to

Rβ it is easy to find

(
1− L(α)

)
| ∂φα
∂Rβ

〉 = δαβ
∂L(α)

∂Rα
|φα〉 . (29)

Let us now employ this result in the calculation of the
atomic forces. When the KS orbitals are expressed in
terms of the SFs, the non Hellmann-Feynman term can
be written as follows:

Fa − F(HF )
a = −2

∑
αβ

Re
(
Kαβ

)〈
χβ

∣∣∣∣ ∂φα∂Ra

〉
(30)

where the SF residue is

|χα〉 = HKS |φα〉 −
∑
jρσ

cρj εjc
σ
j Sσα |φρ〉 . (31)

This result would be completely identical to Eq. (22)
when no localization projectors are applied on the SF.
Therefore the only term of the forces which cannot be
captured by the localization regions is the part which is
projected outside the localization regions (but still inside
the computational domain of the CS approach). The
extra Pulay term due to the localization constraint is
therefore

F(P ) = −2
∑
αβ

Re
(
Kαβ

)〈
χβ

∣∣∣∣ (1− L(α))

∣∣∣∣ ∂φα∂Ra

〉
.

(32)
From Eq. (29) we obtain

F(P ) = −2
∑
αβ

Re
(
Kαβ

)〈
χβ

∣∣∣∣ ∂L(α)

∂Ra

∣∣∣∣φα〉 (33)

and from Eq. (27) we derive:

∂L(α)

∂Rβ i1,i2,i3;j1,j2,j3

= δαβδi1j1δi2j2δi3j3
R(i1,i2,i3) −Rα

Rloc

× δ(Rloc − |R(i1,i2,i3) −Rα|) . (34)

Therefore if the support functions are zero at the border
of the localization region, there is no Pulay term in the
atomic forces.

The Hellman-Feynman force, given by the expression

FHFa = −
∑
i

fi

〈
Ψi

∣∣∣∣ ∂H∂Ra

∣∣∣∣Ψi〉
= −

∑
α,β

Kαβ

〈
φα

∣∣∣∣ ∂H∂Ra

∣∣∣∣φβ〉 , (35)

involves only the functional derivative of the Hamiltonian
operator, which is independent of the localization regions.
The CS and the LS implementations of the atomic forces
are therefore identical.



9

C. Overview of Linear Scaling Algorithm

The BigDFT code may therefore express the solution of
the KS problem in two ways. The traditional approach,
which has a computational overhead that scales cubically
with the number of atoms in the system and therefore
called the cubic scaling algorithm, expresses directly the
KS orbitals Ψi in wavelet basis. In this case only the KS
optimization loop is needed, and no localisation projec-
tion operator Lα is considered. The orbitals are directly
labelled by their index i.

The linear scaling approach in BigDFT instead consists
of two optimization loops, as depicted by the flowchart
in Fig. 3. The SF and kernel optimization loops are in-
dependent of each other, with the number of iterations,
convergence criteria etc. specified independently.

Although additional approximations are introduced in
the LS approach compared to the extended KS orbitals
used in the CS approach, excellent agreement between
total energies and forces calculated with the LS and CS
approaches has been demonstrated for a range of materi-
als and system sizes [42, 43]. A number of examples are
given in table III. Furthermore, systematic convergence
remains possible – as the value of Rloc is increased, both
the total energy and forces converge towards the CS re-
sult. For example for a fullerene molecule it was shown
that for SF radii of 7.4 Å the total energies agree to within
0.1 meV, while the forces show better than 1 meV/Å
agreement [42]. Thus, in addition to the wavelet basis
parameters, the user should take care to ensure the lo-
calization radii (which may be varied independently for
different atomic species) are large enough for the required
accuracy. In some cases it may also be desirable to in-
crease the number of SFs per atom, although in the ma-
jority of cases a minimal basis is sufficient, e.g. 4 SFs per
C/N/O atom, 1 SF per H atom. Indeed, all the systems
in table III use a minimal SF basis apart from bulk Si.

Aside from the basic SF parameters, a number of ad-
ditional options are available in LS-BigDFT to allow for
additional flexibility, such as whether or not to impose or-
thogonality on the SFs. Given the number of additional
parameter choices compared to the CS approach, it is
worth asking to what extent the choice of computational
parameters depends on the system in question. Where a
very high accuracy or optimal parallel performance are
required it is important to carefully converge with re-
spect to parameters such as the SF radii. Nonetheless
we have demonstrated that a common set of parameters
may be used to achieve consistent accuracy and robust
performance across a wide range of systems [43]. Such
parameters might easily be accessed by using the appro-
priate input profile, which have been defined to give a
suitable set of parameters for a number of common use-
cases.

optimize SFs

atomic
orbitals

optimize K

energy
& forces

Figure 3: Flowchart summarizing the high-level
algorithm used in LS-BigDFT.

D. Direct Minimization Approach

We have seen that the support functions or the KS or-
bitals are represented in a Daubechies wavelet basis and
are therefore susceptible to be optimized in the LS and
CS algorithm respectively. We present in the following
the main algorithm which is employed for their optimiza-
tion.

The KS Hamiltonian HKS [ρ, ρc, λ] is the operator
which defines the band-structure energy functional

EBS [λ, ρc, ρ, {ψi}] =
∑
i

fi〈ψi|HKS [ρ, ρc, λ]|ψi〉 =

= tr
(
F̂ ĤKS

)
. (36)

Let us now impose that the wavefunctions have to be or-
thogonal with a certain Hermitian metric operator Ŝ[λ]
(not to be confused with the SF overlap matrix), that is
〈ψi|Ŝ|ψj〉 = δij . For norm-conserving PSPs, frozen core
and/or all-electron calculations S is the identity oper-
ator, whereas it is a non trivial quantity for projector
augmented wave (PAW) [44] and ultrasoft PSPs.

Orthogonality is imposed via the following Lagrangian

L[{ψi},Λ] = E −
∑
ij

Λij

(
〈ψi|Ŝ[λ]|ψj〉 − δij

)
. (37)

As always for Lagrange multiplier techniques, minimi-
sation with respect to Λ leads to the orthogonality con-
straint. Only the Hermitian part of the matrix of the La-
grange multiplier coefficients Λij should contribute, due
to the Hermiticity of Ŝ. Minimization of this Lagrangian
under variation of the KS orbitals 〈ψi| leads to the equa-
tion:

0 =
δL

δ〈ψi|
= fi |HKSψj〉 −

∑
j

Λij Ŝ[λ]|ψj〉 . (38)
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Multiplying Eq. (38) by 〈ψk| leads to the
condition on the Hermitian part of Λik =
1
2 (fi + fk) (〈ψk |HKSψi〉+ 〈ψi|HKSψk〉). Convergence
is achieved when the average norm of the Lagrangian
derivative is below an user-defined numerical tolerance.

E. Support Function Optimization

In principle, the optimization of KS orbitals in the ba-
sis of the support functions should minimize the total
energy. This is in fact equivalent to minimizing the band
structure energy, i.e.

min
φα

∑
α,β

Kαβ 〈φα |HKS |φβ〉 . (39)

The KS Hamiltonian HKS does not commute with the
L(α) operators. Therefore when calculating L(α)|HKSφβ〉
the localization constraint has to be relaxed before apply-
ing the Hamiltonian operator. Practically, this is done as
follows. When applying the Hamiltonian, the value of the
cutoff radius Rloc must be increased by half of the convo-
lution filter length times the grid spacing, corresponding
to a buffer region of eight grid points around the localiza-
tion region. These buffers are initialized to zero, but the
convolution will result in non-zero values in those regions.
When the scalar product with another basis function is
evaluated, it is therefore important to keep this buffer
zone. Therefore, given a set of truncation radii Rloc, the
KS Hamiltonian can be explicitly evaluated within the
applied truncation scheme, preserving the variationality
of the result.

As discussed, the SFs used in LS-BigDFT are strictly
localized (numerical) functions which are expressed in a
Daubechies wavelet basis. Starting from an atomic or-
bital (AO) input guess, they are optimized by minimiz-
ing the target function Ω = tr

(
F̂ Ĥc

)
subject to the

orthonormality condition of the KS orbitals,

〈Ψi |Ψj〉 =
∑
α,β

cαi Sαβc
β
j = δij . (40)

The operator Ĥc = ĤKS [ρ]+V̂c is the sum of the density-
dependent KS Hamiltonian plus a confining operator V̂c
such that

〈φα| V̂c |φβ〉 = δαβ 〈φα| V̂ αc |φα〉 , (41)
V αc (r) = cα|r−Rα|4 . (42)

We therefore have to minimize the following functional:

Ω = tr
(
F̂ Ĥc

)
−
∑
α,β,i,j

Λij

(
cαi c

β
j 〈φα |φβ〉 − δij

)
(43)

where the coefficients Λij are determined by the relation:∑
i,j

cαi c
β
j Λij =

∑
ρσ

Kαρ 〈φσ |HKS |φρ〉S−1
σβ . (44)

Together with this constraint, we impose the localiza-
tion condition |φα〉 = L(α)|φα〉 on the SFs. The func-
tional to be minimized therefore becomes

Ω−
∑
α

〈
φα

∣∣∣ 1− L(α)
∣∣∣ `α〉 , (45)

where the components of the vector |`α〉 =(
1− L(α)

)
|`α〉 are the Lagrange multipliers of the

constraints. The stationary condition on the functional
0 =

∣∣∣ δΩ
δ〈φα|

〉
provides the following gradient:

|gα〉 =
∑
β

KαβL(α)HKS |φβ〉

−
∑
βρσ

Kαρ 〈φσ |HKS |φρ〉S−1
σβL

(α) |φβ〉

=
∑
βρ

KαρS
1/2
ρβ

[
L(α)HKS

∣∣∣φ̃β〉

−
∑
σ

〈
φ̃σ

∣∣∣HKS

∣∣∣ φ̃ρ〉L(α)
∣∣∣φ̃σ〉] , (46)

which is explicitly localized (|gα〉 = L(α) |gα〉). The gra-
dient is here expressed in terms of the orthogonalized sup-
port functions

∣∣∣φ̃α〉 = S
−1/2
αβ |φβ〉. The localization con-

dition can therefore be imposed more easily by applying
the constraint on (quasi-) orthogonal support functions,
i.e. Sαβ = δαβ . This further simplifies the evaluation
of the gradient. To ensure good compromise between lo-
cality and flexibility, in general the orthogonality is not
ensured strictly for the support functions, but it is in-
serted in the gradient to provide a search direction which
optimise the diagonality of the overlap matrix.

Such a minimization proceeds applying the same guide-
lines of the direct minimization approach of Sec. IVD, by
assuming unit values for the occupation numbers. The
coefficient cα is dynamically adjusted during the basis
set optimization procedure. This approach has the ef-
fect of keeping the SFs confined in their localization re-
gions, centered on the position Rα, while reducing the
KS band structure energy. Usually the position Rα of
support function α coincides with the position Ra of the
atom a where φα is initially centered at the beginning
of the SCF optimization procedure. To some extent this
enables one to associate φα to a particular atom a.

As illustrated in Fig. 4, this procedure results in a set of
SFs which have adapted to their local chemical environ-
ments. For a molecular calculation, we therefore obtain
a minimal set of molecular orbitals that, by construc-
tion, exactly represent the occupied KS orbitals. The
SF basis also has a non-zero projection to the unoccu-
pied orbitals subspace, although in general the unoccu-
pied KS orbitals are not expected to be well represented.
Although the SFs resulting from LS-BigDFT are entirely
numerical and are therefore not constrained to any par-
ticular form, nonetheless even in extended systems they
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generally retain some resemblance to AOs, and are thus
referred to as e.g. s-like SFs.

F. Preconditioning

As already mentioned, direct minimisation of the total
energy is used to find the converged wavefunctions. The
gradient gi of the total energy with respect to the i-th
wavefunction |Ψi〉 is given by

|g̃i〉 = P
(

1

fi

δL

δ〈ψi|

)
, (47)

where we indicate with P a preconditioning operator that
is employed to facilitate the convergence of the wavefunc-
tion. Given the gradient direction at each step, several
algorithms can be used to improve convergence. In our
method we use either a preconditioned steepest-descent
algorithm or a preconditioned DIIS method [45]. These
methods work very well to improve the convergence for
non-zero gap systems if a good preconditioner is avail-
able.

The preconditioning gradient |g̃i〉 which approximately
points in the direction of the minimum is obtained by
solving the linear system of equations obtained by dis-
cretizing the equation

(−1

2
∇2 + aα(r−Rα)4 − εα) |gprecα 〉 = − |gα〉 , (48)

adding an extra term to account for the confining po-
tential if present, where εα is an appropriate eigenvalue.
The values εα are approximate eigenvalues obtained by
a subspace diagonalization in a minimal basis of atomic
pseudopotential orbitals during the generation of the in-
put guess. For isolated systems, the values of the εα for
the occupied states are always negative, therefore the op-
erator of Eq. (48) is positive definite.

Eq. (48) is solved by a preconditioned conjugate gradi-
ent (CG) method. The preconditioning is done by using
the diagonal elements of the matrix representing the op-
erator 1

2∇
2 − ε in a scaling function-wavelet basis. The

inclusion of the confining potential adds only a small
overhead to the preconditioning equation as it can be
evaluated via wavelet convolutions. A typical number of
CG iterations necessary to obtain a meaningful precon-
ditioned gradient is 5.

In a direct minimisation scheme, the convergence cri-
terion should then be based on the constrained gradient

|gi〉 =
1

fi

δL

δ〈ψi|
= |HKSψj〉

− 1

2

∑
k

(
1 + η

fk
fi

)
(〈ψk |HKSψi〉+ 〈ψi|HKSψk〉) ,

(49)

which should be zero at the stationary state. Such a
definition enables one to define the direct minimization

scheme also for finite temperature occupations or even
KS orbitals that do not contribute to the total energy, as
their converged occupation number would be 0. When
both ψi and ψk correspond to occupied states, clearly
fk
fi

= 1 and we set η = 1. We assume the same limit
for the case in which both states are unoccupied. Also
we notice that, close to convergence, the Hamiltonian
matrix elements are diagonally-dominant, i.e. we expect
that 〈ψi|HKSψk〉 ' δikεi. For this reason, in order to
precondition the gradient, we set η = 0 when the value
fi is smaller than one half, such as to exclude the con-
tribution of the occupied states from the gradient of the
empty states. The value of η is set to -1 when fi is oc-
cupied and fk 6= fi, such as to remove the off-diagonal
contribution from the wavefunction update. As already
explained η = 1 in all the other cases.

G. Density Kernel Optimization

Given a recipe for optimizing the SFs, the question re-
mains of how to find the density kernel for a given set of
SFs. Three options are available in BigDFT: diagonal-
ization, direct minimization and the Fermi Operator Ex-
pansion (FOE). The first two approaches retain explicit
reference to the KS wavefunctions, while FOE works di-
rectly with the density kernel. As such, FOE is the pre-
ferred approach when strict linear scaling behaviour is
required.

The first approach is straightforward and uses stan-
dard linear algebra routines in LAPACK, or optionally
SCALAPACK, to solve the generalized eigenproblem de-
fined by the SF Hamiltonian and overlap matrices. Al-
though such an approach is of course not linear scaling,
it can be useful as a benchmark approach, while the min-
imal size of the SF basis means that the computational
cost is low compared to diagonalizing in the full wavelet
basis.

The direct minimization approach works directly with
the KS wavefunctions, but avoids explicit diagonaliza-
tion by instead minimizing the band structure energy,
subject to appropriate orthogonality constraints, as de-
scribed in Ref. 42. The direct minimization approach
does not scale as well with respect to the system size
(see Ref. 42), however it may nonetheless be preferred to
FOE in certain cases. Notably, a few unoccupied states
may be straightforwardly included in both the SF and
kernel optimization steps, and so direct minimization is
typically used for cases where it is important to have a
SF basis which is capable of accurately representing the
lowest unoccupied molecular orbital (LUMO).

Finally, in the FOE approach [46, 47] the density kernel
is expressed as a function of the SF Hamiltonian matrix,
i.e. K = f(H), where f is the Fermi function. The Fermi
function is written as an expansion of Chebyshev polyno-
mials, in such a way as to allow the K to be constructed
using only matrix vector multiplications. This is com-
bined with sparse matrix algebra, as implemented in the
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Figure 4: Schematic illustrating different approaches in BigDFT for the example of anthracene. Shown as an
example are an extended KS orbital from the CS approach (left), select unoptimized AOs used as a starting guess in
the LS approach (centre) and select resulting optimized SFs which constitute an accurate minimal basis in the LS

approach. Note that the colours are used only to highlight different SFs, while the localization regions are spherical.

CheSS library [48], resulting in LS behaviour, while it
can also be used to treat metallic systems at a (small)
finite temperature [49]. The use of a finite temperature
can also be used to ensure robust convergence even when
the gap of a system closes due to a poor initial guess,
bond breaking, or when computing charged systems.

The LS behaviour of BigDFT when using the FOE
approach has been demonstrated for a number of mate-
rials, for systems containing up to tens of thousands of
atoms [42, 43, 49, 50]. An example is given in Fig. 18,
with further discussion concerning performance consid-
erations such as the crossover point with respect to cubic
scaling BigDFT in Section VIIIC.

H. Suitability of Linear Scaling Approach

The SF basis of BigDFT offers numerous benefits for
linear algebra based code bottlenecks. The in situ op-
timized approach allows for the accuracy of a large ba-
sis, while keeping the number of basis functions similar
to the size of a minimal basis, leading to small matri-
ces even for large systems. The use of strictly localized,
quasi-orthogonal basis functions further ensures that the
matrices used are sparse and well conditioned. In Tab. I,
we report the matrix dimensions and sparsities for four
different systems: a 1CRN protein [51] in gas phase, a
pentacene cluster, a 1L2Y protein [52] in solution, and a
cluster of water molecules.

System Natoms NSFs H NNZ S NNZ K NNZ

1CRN 642 1623 22.09 9.40 37.20
Pentacene 6876 19482 2.89 1.04 5.70
1L2Y 1942 4045 5.90 2.13 11.57
Water 1719 3438 9.43 3.43 18.30

Table I: Matrix properties of four example systems.
NNZ refers to the percentage of non-zero elements in the
Hamiltonian (H), overlap (S), and density kernel (K).

The benefits of this basis set are further reflected in
the spectral quantities of these matrices, as shown in
Tab. II. We see that the spectral width of the overlap
matrix is quite low, reflecting how well conditioned the
basis is. The ratio of the band gap to the spectral width
of the Hamiltonian is also relatively high, which leads
to huge efficiency gains for diagonalization-free methods.
The lower this ratio, the more polynomials that are re-
quired in order to approximate the Fermi function of the
Hamiltonian. BigDFT’s matrices require few polynomi-
als, similar to what would be needed for minimal basis
calculations with Gaussians or tight binding calculations,
as was shown in a head to head comparison when using
density matrix purification techniques [53].

System S Width H Width (eV) Gap (eV) Gap To Width

1CRN 0.9557 47.0783 1.9977 0.0424
Pentacene 0.9852 42.2971 1.0323 0.0244
1L2Y 0.8936 47.9860 1.3682 0.0285
Water 0.4496 40.8961 7.7297 0.1890

Table II: Spectral properties of four example systems.
The “Gap To Width” is the ratio of the band gap to the

spectral width of the Hamiltonian.

Sparse matrices are stored in a custom Segment Stor-
age Format, which groups together consecutive non-zero
values in a matrix row. This format not only reduces
the storage overhead of a matrix, but also can improve
the performance of matrix-vector multiplication by us-
ing calls to dense operations. The Hamiltonian matrix
is replicated across processes and columns of the den-
sity matrix are distributed. This data distribution allows
each column to be computed independently to improve
parallel performance.

As mentioned in Sec. IVG, the diagonalization free
method of choice in BigDFT is the Fermi operator ex-
pansion based on matrix vector multiplication. This ap-
proach is usually far more expensive than those based on
recursive polynomial expansions such as density matrix
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purification [54]. However, the high sparsity, relatively
low dimension, and good conditioning of BigDFT’s ma-
trices enables a more tailored choice of algorithm and
parallelization scheme. This novel approach is made pos-
sible by the unique properties of the Daubechies wavelet
basis set employed in BigDFT.

V. CUBIC SCALING APPROACH IN BIGDFT

We have already introduced the CS approach of
BigDFT as the explicit expression of the KS orbitals in
the Daubechies wavelets basis, without localisation con-
straint. Such an approach is very useful as it provides
the complete basis set limit of the (PSP) KS problem in
the absence of localization constraint and with explicit
boundary conditions. This approach present optimal fea-
tures of precision vs. computational performance, which
may prove useful in many cases. We here present as an
illustration the study of the formation energy of a defect
in a slab-like system with hybrid functionals and with
continuum polarizable models.

A. Case Study: Oxygen Vacancy Formation
Energies on the Anatase TiO2 (1 0 1) Surface

Titanium dioxide (TiO2) has gained interest in recent
years for its applications in clean energy and in carbon-
free production of hydrogen [55]. Various technological
areas include photoassisted water splitting [56], photo-
catalysis [57], solar energy conversion [58] and photo-
electrocatalytic environmental cleanup [59]. In particular
its anatase phase has superior oxidation and photocat-
alytic properties. The anatase (1 0 1) surface (A101) is
the most stable and, as a consequence, the majority sur-
face for nanocrystals. In order to better understand the
photocatalytic events on anatase surfaces it is of utmost
importance to comprehend at an atomistic level the rela-
tive energetics of various surface defect configurations as
well as the interactions of ambient molecules with ideal
or defective surface sites [60–64]. Defects play a key role
for photocatalytic processes [65, 66], whereas both shal-
low and deep localized trap states can be introduced by
crystal defects into the wide band-gap (3.2 eV) of the
anatase polymorph [67].

From this side, it is important to properly model elec-
tronic states lying at or within the semiconductor band-
gap. DFT calculations with the semilocal functional
Perdew-Burke-Ernzerhof (PBE)[68] tend to overdelocal-
ize electrons of strongly correlated systems that feature
localized d- or f-orbitals [69]. As a consequence the band-
gap is underestimated and localized states do not fall in
between the valence and conduction states. Electron lo-
catization becomes even more important in nonstoichio-
metric systems, such as those containing oxygen vacan-
cies. The additional two electrons of a surface oxygen
vacancy may localize on nearby Ti atoms, reducing Ti4+

to Ti3+ [70, 71]. The use of hybrid functionals or the
DFT+U approach have proven to be effective to correct
such electron delocalization and to correctly describe the
material properties [72–74].

Oxygen vacancies are the main defects at the anatase
(1 0 1) surface, playing a fundamental role for the TiO2

surface reactivity. Among all possible vacancy configura-
tions at surface sites, the most stable are represented by
an oxygen vacancy at the outermost two-fold coordinated
oxygen surface site belonging to the first trilayer (named
surface vacancy or Vsurf

O ), and an oxygen vacancy at the
bulk lattice site belonging to the second trilayer (named
subsurface vacancy or Vsub

O ). Both oxygen vacancies are
depicted in Fig. 5. In order to evaluate their relative
stability, we extracted formation energies for the oxygen
vacancy from the total energy of the defective Etot(def)
and the stoichiometric Etot(no def) anatase A101 surface:

Eform(VO) = Etot(def)− Etot(no def) +
1

2
µ(O2). (50)

The chemical potential of µ(O2) is taken to be the total
energy of an isolated O2 molecule.

The anatase TiO2 (1 0 1) surface was modeled with six
trilayers of a 4×1 supercell (288 atoms in total) with pe-
riodic dimensions of 15.18 Å and 10.43 Å. Fig. 5 shows
the whole A101 surface. A six trilayer slab and a 4×1
supercell with a fixed bottom layer has provided a fully
reliable balance between computational efficiency and ac-
curacy [66, 75, 76]. The 4×1 periodicity prevents spuri-
ous interactions with periodic images of the defects or
the adsorbed organic molecule in the periodic directions
x and y (z is considered orthogonal to the surface plane,
i.e. along the [1 0 1] crystal direction). Surface boundary
conditions, where periodic replicas for the atomistic sys-
tem are imposed only on the x and y surface directions,
have been set for all surface calculations. The wavelet
basis functions were distributed on an adaptive uniform
mesh with a resolution of h := hx = hy = hz = 0.40 bohr
for all calculations. Due to the large sizes of the system,
only the Γ point has been used for the k -space integra-
tion in all geometry optimizations. We employed soft
norm-conserving PSPs including non-linear core correc-
tions [10, 13] to describe the core electrons along with
a PBE0 [77] functional hybrid XC functional as imple-
mented in the LibXC [78] library. BigDFT takes ad-
vantage of the highly efficient graphics processing unit
(GPU) implementation of a real-space based algorithm
for the evaluation of the exact exchange, which reduces
the cost of hybrid functional calculations in systematic
basis sets, without any approximation, by nearly one or-
der of magnitude [17]. To make energetic comparisons,
we performed all runs with equivalent parameter settings
and convergence criteria. All energetics refer to the final
relaxed structures.

Formation energies are 3.17 eV for Vsurf
O , and 2.94 eV

for Vsub
O , with a difference of 0.23 eV. As a consequence,

a subsurface vacancy is energetically favorable with re-
spect to surface vacancies. A previous study with a hy-
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Figure 5: Depiction of the six trilayers 4×1 supercell
for the anatase TiO2 (1 0 1) surface. O: red; Ti: cyan;
surface O vacancy Vsurf

O : green; subsurface O vacancy
Vsub

O : brown.

brid screened exchange functional reports similar results,
obtaining a difference in stability of 0.30 eV [73]. This re-
sult also agrees with previous DFT studies using the PBE
functional where the formation energy of a subsurface
vacancy on anatase TiO2 (1 0 1) surface was found to be
0.40 eV lower than a defect on surface sites [27, 65, 66, 73].

When the anatase TiO2 (1 0 1) surface interfaces with
a wet environment, the stability of vacancy defects or
adsorbed species lying at the solid/liquid interface can
be modified [27]. In a recent study of the interface of
water and ethanol with the A101 surface [27], we show
that the proper inclusion of the wet environment in the
methodological scheme is fundamental for obtaining reli-
able results. Calculations are based on structure predic-
tions [25, 26, 79] at a DFT level for molecules interacting
with the perfect and defective anatase (1 0 1) surfaces un-
der both vacuum and wet conditions. The soft-sphere im-
plicit solvation model is used to describe the polar char-
acter of the two solvents [20–22]. As a result, we find that
surface oxygen vacancies become energetically favorable
with respect to subsurface vacancies at the solid/liquid
interface. This aspect is confirmed by ab initio molecu-
lar dynamics simulations with explicit water molecules.
Ethanol molecules are able to strongly passivate these
vacancies, whereas water molecules only weakly interact
with the (1 0 1) surface, allowing the coexistence of sur-
face vacancy defects and adsorbed species. Infrared and
photoluminescence spectra of anatase nanoparticles ex-
posing predominantly (1 0 1) surfaces dispersed in water
and ethanol support the predicted molecular-surface in-

teractions, validating the whole computational paradigm.

VI. OPPORTUNITIES ARISING FROM
LINEAR SCALING IN WAVELETS

Beyond a means of achieving linear scaling, the local-
ized SF basis also offers other advantages, both as a tool
for analysis and as a means of further reducing the com-
plexity and thereby the computational cost of treating
large systems. Specifically, the SF basis permits two sep-
arate, but related approaches:

1. the reduction of computational cost by exploiting
similarity between fragments in both molecular and
periodic systems;

2. the identification and exploitation of independent
fragments for building QM/MM models.

Both approaches centre around a fragment-like descrip-
tion wherein a system is divided into subsystems, which
might or might not considered to be quasi-independent.
Importantly, the SFs can also be used to define indicators
which enable one to assess the similarity and/or separa-
bility of fragments and thereby determine to what extent
such a description is valid. In the following we describe
the two approaches and their associated indicators.

A. Fragment Approach

As discussed above, the SFs facilitate a LS approach,
such that simulations of 1000s of atoms are possible.
Nonetheless, one might ask if it is possible to also reduce
the prefactor? A significant portion of the computational
cost is due to the SF optimization, which cannot easily be
avoided since it is essential for achieving high accuracy.
However, since the SFs adapt to their chemical environ-
ment, for systems with many SFs in similar environments
one might imagine taking advantage of this similarity. To
this end, we have developed a fragment-based approach,
which is applicable to both molecular [80] and extended
systems [50]. In both cases, the system is divided into
a number of fragments, which in the molecular case are
quasi-independent and in the extended case are inter-
acting pseudo-fragments. If a system has repeated frag-
ments then one can reduce the computational cost.

Before further discussing the fragment approach it is
useful to consider under which circumstances SFs are sim-
ilar. In other words, how should one define the (pseudo-
)fragments? For weakly interacting supramolecular sys-
tems it is reasonable to assume that the SFs will be sim-
ilar between molecules. For example, the SFs associated
with the O atom in one water molecule within a droplet
are similar to those associated with O atoms in other
molecules, so that a water molecule represents a good
choice of fragment. For a periodic solid, on the other
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hand, one might assume that SFs associated with equiv-
alent atoms are in similar environments, e.g. all Si atoms
in bulk Si, so that a single Si atom might be treated as a
pseudo-fragment. However, other systems are less intu-
itive, e.g. where there is a defect or an edge. It is therefore
useful to have a quantitative measure of SF similarity. To
this end we use the onsite overlap matrix [50], defined as

Sonsite
αβ ≡ 〈RT Rα→R0φα|RT Rβ→R0φβ〉 , (51)

in other words the overlap between two SFs, originally
centered on Rα and Rβ , which have been rototranslated
by the matrices R and T to be on a site of centre R0.
Thus Sonsite

αβ = 1 implies that φα and φβ are identical,
having both the same character (s, px, etc.) and local
chemical environment.

In Fig. 6a we show the optimized SFs for a pentacene
molecule, which might be used to generate template SFs
for longer (finite or periodic) acenes. If we consider pairs
of C atoms as pseudo-fragments (with their associated
H atoms), then we can define two inequivalent bulk-like
pseudo-fragment types, i.e. which are unaffected by the
edges. One can see that SFs near the edges differ from the
equivalent bulk-like fragments, as is confirmed by Sonsite

(Fig. 6b). We have previously shown that Sonsite is corre-
lated with the error induced by a given pseudo-fragment
setup in quantities such as the total energy for the ex-
amples of SiC nanotubes and defective graphene [50, 81].
In other words, the smaller the threshold for 1− Sonsite,
the smaller the error compared to using fully optimized
SFs. In this system, such an approach may be used to
determine which fragments may be treated as bulk-like
and which correspond to distinct edge regions. A smaller
threshold for (1−Sonsite)max results in larger edge regions
and vice versa, as demonstrated in Fig. 6d. Finally, the
error induced by a given fragment setup may be tested
by retaining correctly optimized SFs for the edge frag-
ments, and replacing the remainder with the bulk-like
fragments, as shown in Fig. 6c. As can be seen, there is
indeed a correlation between the selected threshold and
the induced error. Thus, if one chooses the threshold ac-
cording to the desired accuracy, Sonsite can be used to
define a satisfactory pseudo-fragment setup. For exam-
ple in this case, a threshold of 10−3 results in an error
of 12 meV/atom. For molecular fragment calculations an
alternative indicator is more appropriate for informing
the fragmentation of a system. This is presented in the
following section.

Having chosen an appropriate (pseudo-)fragment
setup, the fragment approach consists of three steps:

1. template calculation: optimize the SFs for each
template fragment T via a full LS calculation.

2. SF replication: replicate the SFs from the tem-
plate fragments for the full system, rototranslating
as needed to account for differing orientations be-
tween template and system fragments.

3. full calculation: perform a LS calculation of the
full system using the replicated SFs, keeping the
SFs fixed and only optimizing the density kernel.

The procedure is illustrated in Fig. 7 for both molecular
and extended (pseudo-)fragments. Since the calculation
on the full system involves the use of a fixed SF basis, sig-
nificant computational savings can be made by avoiding
the need for SF optimization. Steps one and three rely
only on the standard machinery of LS-BigDFT. The sec-
ond step can be automated given both a means of detect-
ing and performing the rototranslations. The appropriate
rototranslation is found by defining a cost function:

J
(
RT→S

)
=

1

2N

N∑
a=1

||RS
a −

N∑
b=1

RT→Sab RT
a ||2 , (52)

where N is the number of atoms in the fragment and
R
T (S)
a are the coordinates of the template (system) frag-

ment. The optimal transformation may be found by min-
imizing the cost function [82–84]. The rototranslation
itself is achieved via an accurate and efficient wavelet-
based interpolation, described in Ref. 80.

So far we have considered rigid fragments. If there
are significant deviations between the template and sys-
tem fragments’ geometries, then the fragments should no
longer be treated as the same, since the associated SFs are
not similar. However, we often want to allow small defor-
mations. Thankfully, the cost function J not only already
takes into account deformations, but also provides an in-
dication of the similarity between fragment geometries.
Like Sonsite, J is correlated with the error induced by a
given fragment setup [50, 81], and can therefore be used
as an indicator of whether a given setup is appropriate.
Unlike Sonsite, J requires only atomic information, and so
can be calculated without performing a LS calculation.
When the differences between fragments is dominated by
the atomic structure, e.g. in the case of a defect introduc-
ing local distortions in a periodic material, J is therefore
particularly useful. As an example, in Fig. 8 we show the
correlation between J and the induced error for noisy SiC
nanotubes, where the template SFs were generated in a
pristine nanotube. As can be seen, despite being based
purely on geometric information, the value of J is indeed
a good indicator for the induced error since it is domi-
nated by the random distortions in the atomic structure.

The fragment approach has thus far been applied to a
range of molecular and extended systems [50, 80, 81, 85]
and, provided an appropriate fragment setup is chosen,
has been shown to give good accuracy for quantities in-
cluding densities of states (DoS) (see e.g. Fig. 18c), trans-
fer integrals and total energies. In Table III we show the
total energies for a range of systems, calculated using cu-
bic, linear and fragment approaches. While the induced
error relative to fully optimized SFs depends on the sys-
tem, fragment setup etc. in the majority of cases it is of
the order of 10 meV/atom or lower. The computational
cost of the fragment approach also depends strongly on
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(a) Select optimized SFs and definition of two distinct
bulk-like pseudo-fragment types (coloured boxes).

0 2 4 6 8 10 12
d(Å)

10−6

10−5

10−4

10−3

10−2

1−
So

ns
ite

(b) 1 − Sonsite
ij vs. distance d along x-axis, where i runs over

SFs associated with atoms in the highlighted fragments of
Fig. 6a and j is over all SFs. Matrix elements are only shown
between SFs belonging to C atoms with the same y-coordinates
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(c) Error in energy relative to the full linear scaling result for
the fragment setups of Fig. 6d, where the SFs associated with
the edge-like fragments in each setup are the correct optimized

SFs and the SFs associated with all other atoms are those
coming from the bulk-like fragments defined in Fig. 6a. The
error bars denote the range of values of (1 − Sonsite)max which

would give the same fragment setup.

(d) Different pseudo-fragment setups, where the
threshold determines the extent of the edge fragments:
if any values of 1 − Sonsite between a given fragment

instance and the equivalent bulk-like fragment are above
the threshold, (1 − Sonsite)max, then that fragment is
considered to be distinct and therefore treated as
edge-like, otherwise it is considered to be bulk-like.

Figure 6: Schematic illustrating the use of the onsite overlap matrix in setting up a pseudo-fragment calculation
starting from a pentacene template calculation, following which the SFs could be reused for a longer acene.

the system and setup in question, however as shown in
e.g. Figs. 16d and 18a, the computational cost is typi-
cally at least 5 times lower than for a full linear scaling
calculation, and in some cases the savings are consider-
ably higher. Finally, we note that the forces are more
sensitive to the calculation setup than the total energies.
In many cases they are therefore not reliable when using
the fragment approach, and so we have thus far focused

on energies rather than forces.

B. Complexity Reduction

In this paper, we have so far shown how BigDFT’s
linear scaling capabilities enable calculations on large
systems. Nonetheless, these calculations remain compu-
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Table III: Comparison of total energies, E, and root mean squared forces, F calculated using the cubic, linear and
fragment (‘frag’) approaches for a range of systems with different boundary conditions (‘bcs’). The forces are

sometimes unreliable in the fragment approach and so only energies are given. The number of atoms, Natom is given
for the full system (‘sys’), the template (‘temp’) calculation and for an individual fragment, while the number of
distinct fragment types, Ntype is also given. The errors in energy and forces are defined as the error introduced by

the additional approximation, i.e. ∆Elinear = Elinear − Ecubic and ∆Efragment = Efragment − Elinear.

E ∆E F ∆F
Natom eV/atom meV/atom eV/Å meV/Å

bcs sys temp frag Ntype cubic linear frag linear frag cubic linear linear
Molecular fragments
pentacene dimera free 72 36 36 1 -100.97 -100.96 -100.96 7.9 6.3 0.25 0.25 20.8
anthracene clusterb free 216 24 24 1 -96.98 -96.96 -96.95 18.7 6.3 1.00 1.00 24.7
CBPc free 2480 62 62 1 -119.38 -119.36 -119.35 20.1 10.2 0.09 0.07 23.3
Pseudo-fragments
polyacenea periodic 60 36 2/4 2 -108.73 -108.72 -108.70 9.1 12.6 0.04 0.03 9.2
bulk Sid periodic 512 216 1 1 -191.49 -191.46 -191.46 25.4 5.4 0.00 0.00 2.8
graphenee surface 576 112 4 1 -179.13 -179.11 179.11 11.4 3.8 0.01 0.00 13.3
nanoribbone surface 576 108 18 1 -178.64 -178.63 -178.63 10.2 0.1 0.06 0.10 35.4
SiC nanotubef periodic 392 168 28 1 -130.80 -130.79 -130.79 9.6 3.3 0.01 0.01 9.3

SiC nanotubef free 392
168

28
6

-130.73 -130.72
-130.67

9.9
44.0

0.00 0.01 12.7224 8 -130.71 7.0
280 10 -130.71 4.8

a Calculations were performed with LDA, h = 0.4 bohr, 4(1) SFs per C(H) atom and Rloc = 7 bohr with fragment setups as
depicted in Fig. 7. b Calculations were performed with PBE, h = 0.4 bohr, 4(1) SFs per C(H) atom and Rloc = 6 bohr.

c Calculation details as described for Fig. 18. d Calculation details as described for PBE calculations in Fig. 16.
e Computational details are given in ref. 81. f Computational details are given in ref. 50.

tationally intense, and it is unrealistic (if not unneces-
sary) to expect DFT calculations to replace commonly
used forcefield methods, as a full statistical sampling of
a system’s configuration space (free energy calculations,
molecular dynamics, etc.) remains expensive. It is thus
crucial for us to develop analysis tools which use the re-
sults of large scale DFT calculations to gain new kinds
of insight into the emergent properties of systems.

One such tool we have developed in this spirit is a com-
plexity reduction framework [86, 87] which takes large
scale calculations, and uses them to decompose systems
into coarse grained fragments. This fragment generation
procedure is based on two metrics:

• the purity indicator which measures the quality of
a fragment;

• the fragment bond order which quantifies inter-
fragment interactions.

Both of these measures can be cheaply computed di-
rectly from the single particle density matrix, and can be
used to automatically partition a system into fragments,
design embedding environments for QM/MM type ap-
proaches, and produce graph-like views of a system.

Here we describe two example applications of this ap-
proach. For the first, we consider the problem of describ-
ing the interaction of a molecule with its surrounding
solvent environment. While BigDFT’s implicit solvation
model can effectively mimic solvation effects (Sec. III B)
without the need for sampling, it nonetheless can be de-
sirable to perform calculations including explicit solvent

molecules when solvent properties differ significantly near
the surface of the solute (e.g. the role of structural wa-
ters in proteins). However, including a large number of
solvent molecules in a system can greatly increase the
computational cost. Using BigDFT’s complexity reduc-
tion framework, we can efficiently quantify solute-solvent
interactions, and use this information to design minimal
solvation shells. Fig. 9 shows an example of such a cal-
culation using an RNA molecule in solution. When the
RNA molecule is computed without solvent, the dipole
is significantly different than when computed in solution.
To define a suitable environment, we compute the frag-
ment bond order between each solvent molecule and the
RNA. We then build an environment by including all
fragments until the sum of the fragment bond order of
the remaining fragments falls below some cutoff. By in-
cluding enough solvent molecules (values around 10−3),
we can automatically generate the appropriate environ-
ment to reproduce the dipole.

For our second example, we consider the problem of
describing the active site of a protein. Here we consider
a Laccase enzyme, which is known to have an active
site involving four copper atoms [88]. One copper sits
alone, and is used to oxidize substrates that dock with
the protein. This electron is then transfered to a three
copper ring, where it is finally used to reduce H2O to
O2. A coarse grained view of this electron transfer, and
knowledge of the participating amino acids, might shed
insight into this mechanism, and how this enzyme might
be tuned for application. To generate such a view, we
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replicate support functions

Template Calculation

optimize support functions

Fragment Calculation

xed support functions

(a) Molecular Fragment Approach: a pentacene molecule
used as a template for a pentacene dimer.

Template Calculation

optimize support functions

Fragment Calculation

xed support functions

replicate support functions

(b) Pseudo-Fragment Approach: a pentacene molecule used
as a template for polyacene. Since the polymer is in periodic
boundary conditions no edge pseudo-fragments are needed.

Figure 7: Schematic illustrating the fragment approach
for molecular and extended systems. The boxes indicate

a (pseudo-)fragment, while the colour refers to the
fragment type.

compute the fragment bond order between those copper
atoms and each of the amino acids of the system. We
then construct a graph, where amino acids and copper
atoms are nodes, and edges are defined using the bond
order as a guide, as drawn in Fig. 10.

VII. BIGDFT FORMALISM FOR THE STUDY
OF BIOLOGICAL SYSTEMS: APPLICATION TO

SARS-COV-2 MAIN CONSTITUENTS

Given the critical situation facing the world at the
moment, several researchers belonging to different sci-
entific communities and groups worldwide are working
on SARS-CoV-2, in particular on the protease and spike
protein. The protease is in fact found within the virus
core along with the nucleocapsid protein and RNA. It is

Figure 8: Correlation between the average value of the
cost function J and the induced error for

pseudo-fragment calculations of noisy periodic SiC
nanotubes, where the SFs from a pristine nanotube are
used as a basis for nanotubes with varying amounts of
random noise. The line represents a linear fit to the

data. Additional details are give in ref 50.
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Figure 9: The error in the dipole of an RNA molecule
when computed in different solvation environments
defined by the fragment bond order. The value
computed using the full system was 38.8 a.u..

an essential enzyme for the life-cycle of the virus since
it produces structural and functional proteins that are
required for the maturation and replication of the virus.
As such it is an important antiviral drug target since
if its function is inhibited the virus remains immature
and non-infectious. Using fragment based screening, re-
searchers have identified a number of small compounds,
which bind in the active-site of the protease, which can be
used as a starting point for the development of protease
inhibitors, see e.g. Refs. 89 and 90.

Thanks to the development of the BigDFT code and
its LS approach, we have the possibility to model the
electronic structure of the protease in contact with a po-
tential docked inhibitor, and provide new insights on the
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Figure 10: A graph view of the active site of a Laccase
enzyme. Nodes are defined as the amino acids and

copper atoms, and edges are drawn between fragments
which share an embedding environment, as defined by
the fragment bond order measure. Nodes are labelled

by their amino acid type, with the lone copper labeled a
CUL, and the ring coppers as CUR.

interactions of the potential PIs with the protease by
selecting specific amino-acids that are involved in the in-
teraction and characterizing their polarities. This new
approach we propose is complementary to the docking
methods used up to now and based on in-silico research
of the inhibitor. We have started a series of calculations,
taking advantage of the PDB structures available, that
will be presented elsewhere. In this section, our main ob-
jective is to show a simplified demonstration of a compu-
tational approach based on the fragmentation approach
described in the above section, that would be accessible
to other scientific communities, like biologists or medici-
nal chemists, who may be able to extract new ideas from
data presented as follows.

A. Fragmentation of Biological Systems: the Main
Protease of SARS-CoV-2

Biological systems are naturally composed of frag-
ments such as amino-acids in proteins or nitrogenous
bases in DNA. We show in this example the SARS-CoV-
2 main protease (PDB ID 6LU7) in complex with an
N3 Inhibitor. Such a structure is made of a dimer of two
identical sub-units, each one with a docked inhibitor. We
made our calculation by presenting only one monomer,
made of 4732 atoms, depicted in Fig.11. Such a biologi-
cal system is made of two chains: one associated with the
amino acids which belong to the enzyme, and the second
associated with the inhibitor.

As already stated, with our approach we are able to
evaluate whether the amino acid-based fragmentation is
consistent with the QM computational setup. such sys-
tem has already been analyzed at a QM level of theory

Figure 11: The atomistic representation of the
SARS-CoV-2 main protease monomer employed in the
present case-study, together with the amino-acidic

sequences (bottom part of the figure). Here we see two
chains: the main enzyme chain and the amino-acid

chain that is associated to the inhibitor (the second AVL
sequence). Amino-acids and respective atoms which
belong to the same QM fragment are colored with the

same color.

with fragment molecular orbital technique 91, where the
fragmentation of the system have to be imposed before-
hand following chemical intuition. Here, to evaluate the
reliability of the model we have at our disposal the pu-
rity indicator that gives us, for each fragment, the level
of confidence with which such a fragment can be con-
sidered as an independent unit of the system. This is
an important indicator for the end-user, as it enables to
evaluate the quality of the information associated with
a given fragment. Usually, a cutoff of 0.05 is employed,
that has proven to provide meaningful physico-chemical
results in most circumstances (see Refs. 86 and 87). Such
values are presented in Fig.12, with a color code show-
ing their fulfillment with a cutoff value of 0.05, that has
proven to provide meaningful physico-chemical results in
most circumstances (see Refs. 86 and 87). We see that
the Guanine fragments, in particular, are not classified
as pure in our scheme. This would imply that such frag-
ments should be merged with their neighbors in order
to be considered as meaningful QM entities. This is a
typical situation as the Guanine is the only amino-acid
that does not have a lateral structure, therefore it wants
to connect itself to the other. In the same figure, a re-
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Figure 12: Pertinence of the QM fragmentation based
on the amino acids. Each amino acid is associated with
a fragment, and the value of the purity indicator is then

extracted (Top panel). These values can then be
mapped to the sequence chains of the system (Middle
panel). Fragments which have a value larger than the

employed cutoff are then re-fragmented with
neighboring fragments and merged together. The

fragmentation (Bottom panel) is made such that each
fragment has a purity indicator below the desired

cutoff. Amino-acids and respective atoms which belong
to the same QM fragment are colored with the same

color, whereas white amino-acids are already associated
with pure fragments. In Fig. 11 the system has instead
been re-fragmented with a much tighter cutoff (a purity
indicator of 0.025), which results in a smaller number of

QM fragments.

fragmentation of the system that fulfills the cutoff of 0.05
is presented.

B. Population Analysis of the System After the
QM Calculation: Role of Implicit Solvation

After a given fragmentation is identified, we know that
we may decompose the system’s observables in terms of
the fragments. The fragment population analysis that

has been introduced in Refs. 86 and 87 can then be em-
ployed. This would enable the association of the systems
constituents values like the charge state and the polar-
ity with a simple and straightforward interpretation. For
instance, we may extract the charge population on each
of the amino-acid of the systems, as depicted in Fig. 13.
Thanks to our efficient implementation of continuum sol-
vents, we are able to perform the same calculation in
electrostatic cavity, to understand the role that the (im-
plicit) solvent may have in the protonation states of the
system’s residues. Results are shown in Fig. 13, where
we see that the amino-acid charge are actually influenced
by the presence of the employed environment.

C. Evaluating the section of the system that
interacts with the inhibitor

We have seen in the Laccase example how a coarse
grained view of the system is important. Since we now
have presented QM observables on the system’s frag-
ments, which are based on a population analysis of the
electronic density of the system, projected on the amino-
acid. A novel quantity that our approach enables to ad-
dress is the possibility of quantifying the strength of the
chemical interaction between the different fragments. It
is possible to select a target region and identify which
fragments of the systems interact by sharing some elec-
trons with this region. We can reconstruct the fragmen-
tation of the system in a way such as to focus on the
active site in a specific portion of the protein. In this
example, we will focus around the inhibitor. We show in
Fig. 14 which are the section of the aminoacidic sequence
that have a non-negligible interaction with the fragments
that belong to the chain of the inhibitor. Such represen-
tation can be transformed in a graph-like view like in the
case of Fig.10, where the interacting fragments may be
also characterized by their QM charge.

VIII. PARALLEL PERFORMANCE AND
COMPUTING ARCHITECTURES

A. CPU Performance

BigDFT incorporates a hybrid MPI/OpenMP paral-
lelization scheme, with parts of the code also having been
ported to GPUs, as described in the following section.
For both CS and LS BigDFT the MPI parallelization is
at the highest level with the KS orbitals, or in the latter
case SFs, divided between MPI tasks. There is therefore
a fundamental limit on the number of MPI tasks that
should be used for a given system (proportional to the
number of atoms and k-points), as there should always
be at least one orbital (SF) per MPI task for the cubic
(linear) scaling approach. In order to reduce the MPI
communication, two different data distributions are used
to divide the orbitals/SFs among the tasks depending on



21

Figure 13: Charges on the amino-acids calculated by
the fragment population analysis (first two top panels),
and their difference with respect to a implicit solvent

calculation which is performed with the same technique
of the study in Sec.VA, in the two bottom panels. For

simplicity we have employed the aminoacid-based
fragmentation to present the data.

the operation involved, such that each task is either re-
sponsible for a fixed number of orbitals, or for all orbitals
which are defined over a given set of grid points.

OpenMP is used to parallelize operations at a finer
grained level. This allows the code to scale to a higher
number of CPU cores, and is also important on architec-
tures where memory is a limiting factor, since the use of
OpenMP and a threaded BLAS library allows all proces-
sors on a given node to be exploited. Further details on

Figure 14: Value of the fragment bond order between
the inhibitor and the amino-acids of the enzymatic
sequence. In the bottom panel we show a graph

representation of the fragments which interacts most
with the inhibitor, where the amino-acids are also

colored by following the charge color code as per Fig. 13

the parallelization scheme, including a discussion of how
good load balancing is optimized in the LS case are given
elsewhere [42, 43, 92, 93].

Thanks to the hybrid parallelization approach and the
efficient properties of wavelets, it is possible to simulate
up to a few hundred atoms even on a workstation. For
example Fig. 15a shows the timing breakdown for a PBE
calculation on 428 atoms of a periodic disordered Ga2O3

structure on a 16 core workstation. Such a calculation is
memory intensive but takes only of the order of an hour
for a single point calculation, with the time dominated
by the linear algebra and convolutions. Therefore, even
without supercomputer access, CS BigDFT might offer
some advantages in terms of performance. Nonetheless,
BigDFT is primarily designed with massively parallel ar-
chitectures in mind, and as is also shown in Fig. 15a, the
same calculation takes only a few minutes on 16 nodes of
Archer.
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(a) CPU only PBE timings for 428 atoms of a periodic
disordered Ga2O3 structure on a 16 core Intel Xeon 6130
workstation using 16 MPI tasks and 2 OpenMP threads,
compared to 16 nodes on Archer using 6 MPI tasks and 4

OpenMP threads per node. Calculations took 21
self-consistent iterations to converge.
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(b) CPU-GPU PBE and PBE0 timings for the TiO2 slab
presented in Sec.VA, using 144 nodes on Daint (with GPU
acceleration for PBE0). The slab contains 287 atoms (1149
KS orbitals) and the calculations took 12 self-consistent

iterations to converge. For the PBE0 calculation there are
660,675 different solutions of the Poisson’s equation per SCF
iteration, but thanks to GPU acceleration it can nonetheless

be executed in less than 10 minutes.
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(c) Comparison of the walltime needed to perform a full SCF
loop and to write the support function matrices on the disk
for the SARS-CoV-2 main protease calculations, that are

presented in Sec. VII, made on 8 nodes of the Rome partition
of Irene supercomputer. Computing times are similar between
vacuum and implcit solvent (IS), even slightly lower for IS,
but mostly due to fluctuation in the network performance.

Figure 15: Performance of cubic scaling BigDFT for different systems, XC functionals, parallelization modes and
architectures. Calculations are at the Γ point only and walltimes are for single-point ground state calculations.

In order to explore the parallel performance in more
detail, in Fig. 16 we show the performance of different
modes of BigDFT for bulk silicon on Archer. Aside from
the choice of method, the parallel performance also de-
pends on the system in question, including the bound-
ary conditions and simulation parameters. Nonetheless,
similar trends will hold. In particular, it can be seen
that the hybrid MPI/OpenMP approach results in good

scaling up to a number of cores which is significantly
higher than would be possible for a pure MPI approach.
Specifically, for Γ-point calculations of large supercells a
speedup is achieved up to around 256 nodes. For larger
systems it is possible to achieve speedups for much larger
numbers of cores (within a pure CPU approach), for ex-
ample speedups have been demonstrated for more than
20,000 cores for around 14,000 atoms of DNA [43] and on
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(a) Cubic scaling PBE calculation in an 8 atom unit cell
with 4x4x4 k-points.
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(b) Cubic scaling PBE calculation in a 512 atom
supercell at the Γ-point.
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(c) Cubic scaling PBE0 calculation in a 512 atom
supercell at the Γ-point.
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(d) Linear scaling PBE calculation in a 512 atom
supercell at the Γ-point. The time is shown for three
scenarios, while speedup and efficiency are shown only

for the AO case.

Figure 16: Parallel performance for bulk Si on Archer using 6 MPI tasks and 4 OpenMP threads per node, including
walltime, speedup, efficiency and fit to Amdahl’s law. There are three LS scenarios: a standard atomic orbital

(‘AO’) SF input guess, a guess whereby the SFs are generated for a Si atom in the centre of an isolated cluster of 17
Si atoms (‘Si17’), and for the pseudo-fragment approach with optimized SFs from a 216 atom supercell reused as a

fixed basis (‘fragment’). h = 0.43 bohr, with 9 SFs per atom and Rloc = 8 bohr for LS calculations.

more than 65,000 cores for hybrid functional calculations
of 768 atoms of UO2 [50].

It is also worth noting the absolute walltime. For bulk
Si, 512 atoms is below the crossover point between cu-
bic and linear scaling BigDFT, i.e. the cubic scaling ap-
proach is still faster than the linear scaling approach.
This is because fully periodic systems generally have a
higher crossover point, while a large number of SFs per
atom are required to achieve a reasonable accuracy. Fur-
ther discussion on the crossover between cubic, linear and
fragment approaches is presented in Sec. VIII C. The cu-
bic approach takes less that two minutes walltime for a
complete single point calculation with PBE. In the case of
a hybrid functional this increases significantly, however it
is nonetheless possible to complete a single point calcula-
tion on such a large supercell in a little more than an hour
even within a CPU-only approach. Further savings might
be expected in a GPU-based approach (see Sec. VIII B).
The LS walltime is reduced when the pseudo-fragment
approach is used to generate an input guess from a small
molecular cluster, and even further when the SFs from a
smaller supercell are used without further optimization,
although the walltime remains higher than the cubic ap-
proach.

B. GPU Acceleration

Figure 17: Increase in the code performance with
various GPU architectures for the calculation of the
exact exchange operator on a system of 32 water

molecules.

In the past few years, the possibility of using Graphic
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Processing Units for scientific calculations has raised a
lot of interest. A technology initially developed for home
PC hardware has rapidly evolved in the direction of pro-
grammable parallel streaming processors. The features
of these devices, in particular the very low price to per-
formance ratio, together with the relatively low energy
consumption, make them attractive platforms for inten-
sive scientific computations.

The operations of BigDFT are well suited for GPU
acceleration. For example, the computational nature of
3D separable convolutions allows efficient routines which
may benefit from GPU computational power. The par-
allelization scheme of BigDFT also is optimal in this
sense: GPUs can be used without affecting the nature
of the communications between the different MPI pro-
cesses. This is in the same spirit as the multi-level
MPI/OpenMP parallelization. Porting has been done
within the Khronos’ OpenCL standard, which allows
for multi-architecture acceleration. We have therefore
at hand a multilevel parallelized code, combining MPI,
OpenMP, OpenCL and CUDA (for the FFT and linear
algebra), which can work on state-of-the-art hybrid su-
percomputers. Thanks to OpenCL porting, even hetero-
geneous architectures are at hand. Further details on the
implementation and performance of BigDFT with GPUs
are given in Refs. 17, 93, and 94.

The operations which have to be explicitly ported to
GPUs are a set of separable three-dimensional convolu-
tions. For a code with the complexity of BigDFT, the
evaluation of the benefits of using a GPU-accelerated
code must be performed at three different levels.

Initially, one has to evaluate the effective speedup pro-
vided by the GPU kernels with respect to the corre-
sponding CPU routines which perform the same oper-
ations. This is the “bare” speedup, which of course, for
a given implementation, depends on the computational
power which the device can provide. It has to be kept in
mind that vendors, who do not know about the details
of the full code, are only able to provide bare speedups.

At the second level, the “complete” speedup has to
be evaluated; the performances of the whole hybrid
CPU/GPU code should be analyzed with respect to the
pure CPU execution. Clearly, this result depends on the
actual importance of the ported routines in the context
of the whole code (i.e. following Amdahl’s law). This
is the first reliable result of the actual performance en-
hancement of porting the code to GPUs. For a hybrid
code which originates from a single-core CPU program,
this is the last level of evaluation.

However, for a parallel code, there is still another step
which has to be evaluated. This is the behavior of the
hybrid code in a parallel (or massively parallel) environ-
ment. Indeed, for parallel runs the picture is complicated
by two things. First the management of the extra level of
communication which is introduced by the PCI-express
bus, which may interact negatively with the underlying
code communication scheduling (MPI or OpenMP for ex-
ample). The second is the behaviour of the code for a

number of GPU devices which is lower than the number
of CPU processes which are running. In this case the
GPU resource is not homogeneously distributed – man-
aging this fact adds an extra level of complexity. The
evaluation of the code at this stage contributes at the
“user level” speedup, which is the actual time-to-solution
speedup. Such considerations are not specific to BigDFT,
and thus may be useful for any developer of complex
codes like those typically used in scientific computing.

One area where the use of GPUs within BigDFT is par-
ticularly advantageous is for hybrid XC functional calcu-
lations. Hybrid functional calculations of periodic solids
in systematic basis sets typically incur a very high com-
putational cost relative to semi-local functionals, such
that calculations on large systems are prohibitively ex-
pensive in a well converged basis set. The ratio γ of
walltimes between a hybrid functional (e.g. PBE0) and
equivalent semi-local functional (e.g. PBE) thus gives an
indicator of the affordability of a hybrid functional calcu-
lation. Using a recently implemented GPU approach in
BigDFT, γ has been shown to be significantly lower when
using GPUs compared to a CPU-only implementation.
As an example, for 324 atoms of UO2 γ = 14.4, while
γ = 4.1 in the equivalent GPU calculation [17]. Such an
approach enables production calculations on large sys-
tems with hybrid functionals, as for example the case
study on TiO2 presented in Sec. VA. In Fig. 15b we
show an example of the timings for this system, using
both PBE and PBE0. While the PBE0 calculation incurs
a significantly higher cost for both the Poisson solver and
communications, the ratio remains modest.

Another advantage which emerges from the usage of
GPU acceleration is that the code can benefit from ar-
chitectural evolutions, which are still very effective in the
domain of GPGPU computing. As an illustration, we
show in Fig. 17 the capability of the code to be adapted
to the different generations of GPU cards by showing
the speedup and walltime (in seconds) for the calculation
of the Fock exchange operator for a system of 32 water
molecules (128 KS orbitals) with respect to a single-node
calculation with 32 CPU cores. These runs were acceler-
ated by using 4 GPU cards per node.

C. Scaling with System Size

Thanks to both the favourable properties of the
wavelet basis set and the efficient parallelization de-
scribed above, it is already possible to treat several hun-
dred atoms using the cubic scaling approach in BigDFT.
It is therefore worth asking the question as to when it
is useful to switch to the LS approach. In other words,
where is the crossover point between the two approaches?
As an example, we compare the performance of the cubic,
linear and fragment approaches for 4,4’-N,N’-dicarbazole-
biphenyl (CBP), which is a typical host material for or-
ganic LEDs. We consider a number of disordered clusters
of CBP with increasing size. Since the molecules inter-
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act relatively weakly within the cluster and there is only
a single template repeated many times, this provides an
excellent test case for the fragment approach. Indeed,
the fragment approach was originally motivated by the
goal of simulating such systems [85].

As can be seen from Fig. 18 the (occupied) DoS is
in remarkable agreement between the three approaches,
confirming the suitability of the fragment approach for
treating such types of systems. In Fig. 18 we also show
both the walltime and memory scaling, demonstrating
the expected scaling behaviour for each method. Here
we limit the simulations to around 5000 atoms, how-
ever LS-BigDFT has been tested for systems sizes of
around 30,000 atoms. Thanks to both wavelet prop-
erties and efficient parallelization, the cubic approach
is already able to treat more than 2000 atoms. The
crossover point between cubic and linear scaling BigDFT
is around 1000 atoms for the walltime and significantly
lower for memory usage, although these depend strongly
on the properties of the system, including the dimension-
ality [81] and the simulation parameters. As can be seen,
the prefactor for the walltime is significantly lower for
the fragment approach compared to the linear, reducing
both the crossover and the computational cost of treating
large systems. There is a small increase in the memory
requirements of a fragment calculation, which is due to
the SF load balancing being less well optimized in frag-
ment calculations.

IX. SOFTWARE APPROACH

From version 1.8.0 of BigDFT, which can
be downloaded using the command git clone
https://gitlab.com/l_sim/bigdft-suite, the
build system of BigDFT has been modified. Instead of
building the code with one single configure line, the code
is now built as a suite of different packages.

In Fig. 19 we see how the BigDFT code is separated
into packages. The figure describes the interdependencies
among these packages. The packages might be separated
into upstream contributions (i.e. not associated to the de-
velopers of BigDFT) and native contributions. We have
used a build suite tool based on the Jhbuild project,
which is regularly used by developers of the “gnome”
project. We have re-adapted/added some of the func-
tionality of the Jhbuild package to meet the needs of
our package.

The most important upstream packages which are em-
ployed in the BigDFT code are

libyaml: this library is used to parse the ‘yaml
<http://yaml.org/>’ Markup language, which is
used in the BigDFT input files;

PyYaml: ‘<https://pyyaml.org/>’: this is a Python
module which makes it possible to convert Yaml
into python objects. This part is mainly used for

postprocessing purposes as the BigDFT logfile also
comes in the Yaml format;

libXC: this library [78] handles most of the XC func-
tionals which can be invoked from BigDFT runs;

GaIn: this library handles analytic integrals of common
operators between Gaussian Functions. It does not
perform low-level operations and can be linked sep-
arately;

The native libraries arising from the BigDFT project
are:

futile: a library handling most common Fortran low-
level operations, like memory managment, profiling
routines and I/O operations. It also supports Yaml
output and parsing for Fortran programs. It ad-
ditionally provides wrappers routines to MPI and
linear algebra operations. This library is used ex-
tensively in BigDFT packages;

CheSS: A module for performing the Fermi Opera-
tor Expansion via Chebyshev Polynomials, re-
leased as a separate project on ‘Launchpad
<https://launchpad.net/chess>’

psolver: a flexible real-space Poisson Solver based on In-
terpolating Scaling Functions. It constitutes a fun-
damental building block of the BigDFT code, and
it can also be used separately and linked to other
codes. It also internally uses the “futile” library for
I/O.

libabinit: : this is a subsection of files coming from the
ABINIT [95] software package, to which BigDFT
has been coupled since the early days. It han-
dles different parts like symmetries, ewald correc-
tions, PAW routines, density and potential mixing
routines and some molecular dynamics minimizers.
Also some XC functionals, initially natively imple-
mented in the “ABINIT” code, have been coded in
this library. This library also uses the “futile” code,
through the (experimental) PAW section.

BigDFT: the core routines of the software suite.

spred: a library for structure prediction tools, which is
compiled on top of BigDFT routines.

In previous versions of BigDFT, all these different pack-
ages were compiled with the same configuration instruc-
tions. With the present version, each of the code sections
described above can be considered as a separate package
(some more are upcoming), which improves modularity
between code sections and reduces side-effects. In addi-
tion, each package can now be compiled with different
build and installation instructions, and even using differ-
ent build systems.
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(c) Occupied DoS for 2480 atoms, alongside the (scaled)
single molecule DoS. Gaussian smearing of 0.1 eV has been
applied and the spectra have been aligned to the HOMO.

(d) Depiction of 1 molecule (left) and 4960 atom structure
(right) of CBP with C/N/H atoms depicted in

grey/blue/white.

Figure 18: Time and memory scaling for PBE single point calculations of disordered clusters of CBP [85]. The DoS
is also shown for the different methods, the corresponding total energies are given in Table III. h = 0.45 bohr, with
4 (1) SFs per C/N (H) atom and Rloc = 6 bohr. Simulations used 48 nodes on Archer, with 6 MPI tasks and 4

OpenMP threads per node.

A. PyBigDFT Computational Approach

The diverse capabilities of BigDFT can lead to elabo-
rate calculation workflows as users attempt to study in-
creasingly complex systems. In particular, when studying

large systems we anticipate users programmatically de-
signing and refining their systems of interest over many
calculation cycles. To facilitate such complex work-
flows, we have introduced high level Python bindings for
BigDFT in the form of PyBigDFT. These bindings fo-
cus on input preparation, running calculations, and post-
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Figure 19: Interdependencies between the various packages of the BigDFT suite
.

processing the results.
The fragment capabilities of BigDFT, introduced in

Sec. VI, lead to a three level view of a system:

• Atoms – the lowest level view of a system. Atoms
are dictionary-like objects. This makes it possible
to store any type of observable computed over the
course of a calculation.

• Fragments – a list of atoms. Fragments are deco-
rated with accessors to fragment level observables,
as well as methods for rototranslation.

• System – a named collection of fragments.

Helper routines are provided for these data structures
such as file I/O using common formats, interaction with
visualization programs, and conversion to data struc-
tures used in other Python libraries commonly employed
in computational chemistry (OpenBabel [96], ASE [97],
etc).

When a system has been built, calculations can then
be performed using the following classes:

• Inputfile – while input files for BigDFT are simply
Yaml files and could be stored as a dictionary, the

Inputfile class provides additional helper routines
for common calculation parameters.

• Logfile – similar to Inputfile, a Logfile is also just
a Yaml file, and this class exposes that interface
along with helper routines to access commonly used
information.

• SystemCalculator – given an input file and a sys-
tem, this class invokes the BigDFT code, and places
the results into a Logfile.

Once a calculation has been completed, quantities of
interest can be extracted using the post-processing facil-
ities provided in PyBigDFT. These post-processing fea-
tures are a mix of pure Python routines and wrappers for
Fortran utility programs which can perform more com-
putationally demanding analysis. We encourage users to
perform all calculations through these high level bind-
ings, particularly in the form of Python notebooks. This
results in complete, reproducible, and self documented
artifacts to accompany a calculation result, ensuring an
increased reliability of any calculation. To this end,
we aim to provide alongside publications using BigDFT
notebooks which reproduce the workflow used, particu-
larly in the case where new functionalities are introduced.
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See for example Refs. 50, 87, and 98. The benefits of
such an approach go far beyond reproducibility. Indeed,
we do not anticipate that many readers will simply take
a provided notebook, run it, and be satisfied. Rather, we
believe the main benefit of this approach lies in compu-
tational continuity. By combining an all in-one-workflow
with PyBigDFT’s built-in features for lazy evaluation, it
becomes possible to quickly build on top of a previous re-
sult, and to check its reliability by performing additional
predictions and analysis.

X. OVERVIEW OF FUNCTIONALITIES IN
BIGDFT

A number of functionalities are available within
BigDFT, although some are currently only available
within e.g. CS BigDFT. The current status of core func-
tionalities is summarized in Tab. IV, which also high-
lights developments which are currently in progress.

Beyond these functionalities, BigDFT has also been
widely used within the context of structure prediction
approaches such as minima hopping [99, 100], enabled by
the programs of the spred library, see Refs. 26, 27, 101–
115. In such cases a precise calculation of the total ener-
gies is required, for which the CS BigDFT is well suited,
while the parameters used in a typical LS calculation are
not suitable for obtaining accurate energetic orderings
where different structures are very close in energy [43].

One active area of development which is worth high-
lighting is the treatment of excited states. Time-
dependent DFT is available within CS BigDFT [98],
although currently only local density approximation
(LDA) [116] calculations are possible. Aside from TD-
DFT, constrained DFT (CDFT) [117] is also avail-
able for the treatment of charge-transfer (CT) excita-
tions [80]. The CDFT implementation has also been
used to calculate on-site energies in a large disordered
host-guest supramolecular material typically used for or-
ganic LEDs [85]. Work extending the CDFT approach for
the treatment of local excitations (LE) is also currently
underway, with the aim of providing a computationally
efficient approach to simulating both CT and LE states
in large systems. Since CDFT has been implemented
within the framework of the fragment approach, this re-
quires the existence of a fixed SF basis which has enough
degrees of freedom to also represent excited states. As
discussed in Sec IVG, the direct minimization approach
can be used to generate a SF basis which is capable of
representing a few unoccupied states. We are also ex-
ploring other approaches to generating SFs for excited
states.

XI. PERSPECTIVE

Daubechies wavelets have a number of favourable prop-
erties which make them an ideal basis set for electronic

Table IV: Current status of the various core
functionalities which are available in BigDFT.

cubic linear fragment
Parallelization
MPI 4 4 4
OpenMP 4 4 4
GPU 4 8a 8a

Pseudopotentials
GTH/HGH 4 4 4
Trouiller Martin norm-conserving in progress
PAW 4 in progress
Boundary Conditions
free/wire/surface/periodic 4 4 4
non-orthorhombic cells in progress
Electronic Structure
k-points 4 8 8
metals 4 4 4
spin polarization 4 4 4

Functionals
semi-local functionals 4 4 4

hybrid functionalsb 4 in progress
Environments
empirical Van der Waals 4 4 4
explicit chargesc 4 4 4

external electric fieldd 4 4 4
electrostatic embedding 4 4 4

Dynamics
geometry optimizations 4 4 8
molecular dynamics 4 4 8

Post-processing
projected densities of states 4 4 4
charge analysis 4 4 4

Excitations
time-dependent DFTe 4 8 8
constrained DFT in progress 4
a Possible but not advantageous (no hot spot operations).

b Γ-point only. c Meaningful for free BC only.
d Meaningful in isolated directions only. e LDA only.

structure calculations. In this work we have outlined the
use of such a basis set for density functional theory calcu-
lations, as implemented in the open source BigDFT code.
Through examples presented here and referenced within
the text, we have shown how the combination of a wavelet
basis set with an implementation designed for massively
parallel machines allows for efficient and accurate calcu-
lations of hundreds of atoms, even within a traditional
cubic scaling approach. Such a treatment also allows
for the simulation of relatively large systems using hy-
brid functionals, particularly where GPUs are available,
while the availability of different boundary conditions al-
lows for the straightforward treatment of molecules, sur-
faces and solids. A number of functionalities are avail-
able in BigDFT, including dynamics, explicit charges and
electric fields and implicit environments, while there are
ongoing developments in e.g. the treatment of excited
states.

Going beyond the cubic scaling approach, the localized
nature of wavelets is also highly suitable for a linear scal-
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ing approach, wherein the nearsightedness of matter is
exploited by imposing localization on the system via the
use of a minimal set of localized support functions. Such
an approach further expands the applicability of BigDFT
to systems containing several thousand atoms, and has
been shown to converge reliably for a range of materi-
als. The localized support function based approach may
also be further exploited to define a fragment approach,
in which the computational cost may be significantly re-
duced by exploiting repetition in molecular or periodic
systems.

The treatment of such large systems brings new types
of problems within the reach of first principles simula-
tions. However, such simulations also bring new chal-
lenges, for example the increased size of the configuration
space associated with complex materials containing large
numbers of atoms. Furthermore, as well as treating large
lengthscales it is desirable to treat also long timescales,
which remains unfeasible within a purely quantum me-
chanical approach, so that QM/MM approaches are re-
quired. To this end, the support function approach al-
lows not only the treatment of large enough systems to
test and validate QM/MM approaches, but can also be
used to analyze and fragment a system without requir-
ing any a priori knowledge of the system. This offers
a route to reduce the complexity of QM calculations of
large systems and thereby inform the setup of multiscale
simulations.

In the context of large scale electronic structure simu-
lations, a wavelet-based approach therefore offers another
significant advantage in that it facilitates the implemen-
tation of a range of approaches designed to treat different
system sizes, as illustrated in Fig. 20. The existence of
such a comprehensive framework with a single underly-
ing formalism means that each successive approximation
is applied in a systematic and controlled manner. There-
fore, one can easily test and validate the approximations
between different levels of theory. For example, QM/MM
simulations may be benchmarked with respect to frag-
ment calculations, which may be compared with full lin-
ear scaling calculations and so on. Furthermore, we have
also introduced a number of indicators which can be used
to predict whether or not a particular approximation is
appropriate for a given system.

The development and improvement of a comprehensive
multi-scale framework is an ongoing priority for BigDFT.
As with other developments in BigDFT, a key aspect of
this is a module-based approach which aims towards sus-
tainable software development. In tandem with the im-
plementation of new approaches, we also aim to prioritize
both accessibility and reproducibility of new functionali-
ties, by providing jupyter-notebooks demonstrating how
such functionalities may be used via the PyBigDFT inter-
face. Further information on BigDFT may be found on
the website [118] and in the documentation [119], while
the code may be downloaded from GitLab [120].
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