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Analyse semi-classique, états cohérents, théorie

ergodique et un soupçon de “chaos quantique”

À destination d’un auditoire d’étudiants de 3ème cycle ayant une

formation en physique théorique ou en physique-mathématique, ce

cours a pour objet d’introduire d’une manière simple les outils et

résultats principaux de “l’analyse semi-classique”, comme un pont,

lorsque la constante de Planck peut être considérée comme petite,

entre les formalismes de la Mécanique Classique et de la Mécanique

Quantique.

En particulier on donnera une approche aussi “pédestre” que pos-

sible de l’analyse dite microlocale (dans l’espace de phase), des

transformations symplectiques et de leurs équivalents quantiques

du groupe “métaplectique”, de la propagation des états cohérents

(et états “comprimés”), du théorème d’Égorov pour la propagation

d’observables, de la quantification de Weyl et de la Transformation

de Wigner.

Dans un deuxième temps, après un rappel rapide des bases de la

théorie ergodique, on présentera des résultats importants dans le

domaine dit du “chaos quantique”, notamment le Théorème de

Schnirelman et des formules de trace type “Gutzwiller” (ou “Balian-

Bloch”).
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Chapitre 1

Quantum, Classical and Semiclassical
Observables

1.1 Hamiltonian Classical Mechanics

1.1.1 The Classical Hamiltonian Flow

X := IRn is the configuration space (n degrees of freedom)
Z := X ×X∗ is the phase space
q ∈ IRn is a generic point in configuration space
p ∈ IRn is a generic momentum
z := (q, p) is a generic phase space point
We define the symplectic form

Definition 1.1.1 Given two phase-space points z = (q, p) , z′ = (q′, p′),
their symplectic product is given by :

σ(z, z′) = q.p′ − p.q′ = z.Jz′ (1.1)

where the dot . denotes either scalar product in IRn or in IR2n, and J is the
2n× 2n symplectic matrix :

J =

 0 1l
−1l 0

 (1.2)

and 1l is the unit n× n matrix.
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Classical Hamiltonian H :
H : Z 7→ IR is regular enough. Basic example :

H(q, p) =
p2

2m
+ V (q)

of the usual kinetic plus potential energy function, (m > 0 being the mass
of a particle).
The Hamilton equations read :

q̇ = ∇pH ṗ = −∇qH (1.3)

and generate the “classical flow”

φtH : Z 7→ Z

(note that the overdot denotes differentiation with respect to time t).

φtH(q, p) = (q(t), p(t))

with initial data q(0) = q, p(0) = p, that is φ0
H = 1l (the identity map

in Z).

Note that : Cauchy-Lipschitz theorem ⇒ Local existence
More assuptions on H ⇒ Global existence of the flow.

Proposition 1.1.2 The classical Hamiltonian flow obeys the following in-
variance properties :
(i) σ is invariant under φtH :

σ(q(t), p(t)) = σ(q, p)

(ii) φtH preserves volumes of phase-space :

|φtH(M)| = |M |

where |M | denotes the Lebesgue measure of a set M ⊂ Z.
(iii) Energy conservation : the energy surface :

ΣE := H−1(E) = {z ∈ Z : H(z) = E}

is invariant under φtH

z ∈ ΣE ⇒ φtH(z) ∈ ΣE
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Definition 1.1.3 E is a critical energy for H if ∇zH = 0 on ΣE.

Definition 1.1.4 If E is not a critical value for H, we can define the Liou-
ville measure on ΣE :

dLE :=
dΣE

|∇zH|
(1.4)

where dΣE is the Euclidean measure on ΣE.

Lemma 1.1.5 Let E be a non-critical energy point for H. The Liouville
measure dLE is invariant under φtH .

Proof : let f be a regular function Z 7→ IR, with compact support, such that
its support doesn’t contain any critical value. We have :∫

Z
f(z)dz =

∫
IR
dE

(∫
dΣE

dLE(z)f(z)
)

Then ∀E0 we have :

d

dE

∫
E0≤H(z)≤E

f(z)dz =
d

dE

∫ E
E0

(∫
ΣE

dLE(z)f(z)
)

=
∫
ΣE

dLE(z)f(z)

Since φtH preserves volumes in Z, the measure dLE is also invariant under
φtH .

Definition 1.1.6 A is called a classical observable : if A : Z 7→ IR is
a sufficiently smooth function (say A ∈ S(IR2n))

Definition 1.1.7 The Poisson bracket of two classical observables A , B

is defined as follows :
{A,B} := ∇A . J∇B (1.5)

Lemma 1.1.8 Let A be a classical observable. We have :
d

dt
A(zt) =

d

dt
(A ◦ φtH)(z) = {H,A} ◦ φtH(z) (1.6)

Proposition 1.1.9 The Hamiltonian flow obeys the following properties :
(i) Equ (1.3) is equivalent to (1.6)
(ii) The Poisson bracket is invariant under φtH
(iii) A classical observable A is constant along a classical trajectory gene-
rated by φtH iff {A , H} vanishes along this trajectory.
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1.1.2 The symplectic structure of the Phase Space

Let M be a real 2n× 2n matrix, and denote by M̃ the transpose of M .

Definition 1.1.10 M is said to be a symplectic matrix if σ(Mz,Mz′) =
σ(z, z′) ∀z, z′ ∈ Z or equivalently

M̃JM = J (1.7)

Note that J is itself symplectic, since J̃ = −1l, J2 = −1l

Exercise Using the Pauli matrices

σ1 =

 0 1
1 0



σ2 =

 0 i

−i 0


σ3 =

 1 0
0 −1


construct for n = 1 as many symplectic matrices as possible, and give a
geometric interpretation.

Proposition 1.1.11 The set Sp(n) of all symplectic matrices is a multipli-
cative group. Furthermore, we have :
(i) detM = 1
(ii) the characteristic polynomial of M is recurrent, namely

P (λ) = λ2nP (1/λ)

where P (λ) := det(M − λ1l).

Corollary 1.1.12 Let M ∈ Sp(n). It λ is eigenvalue of M , then :
(i) 1/λ is also eigenvalue of M
(ii) λ̄ is also eigenvalue of M

Exercise It is often useful to decompose M into 4 blocks of n×n matrices :

M =

 A B

C D


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What are the properties that A,B,C,D must satisfy in order that M ∈
Sp(n) ?

BIBLIOGRAPHY
Abraham-Marsden : Foundations of mechanics

Arnold : Méthodes Mathématiques de la Mécanique Classique

1.2 Quantum dynamics

1.2.1 Known preliminaries

The traditional Hamiltonian for the Schrödinger equation is :

Ĥ = − h̄2

2m
∆ + V (x) (1.8)

Where ∆ is the laplacian in IRn, and V : IRn 7→ IR.
We shall put a hat on letters to mean that they are operators in the space
H := L2(IRn) of quantum states.

Mathematical digression : What is an Operator in a Hilbert space H ? It
is a linear application H 7→ H. In general, since H is of infinite dimension,
the operators are unbounded For example if n = 1 the operator X̂ :
ϕ(x) 7→ xϕ(x) is unbounded. Namely in order that xϕ ∈ H, it is necessary
that ϕ has enough decrease at infinity. Similarly P̂ : ϕ(x) 7→ −ih̄ d

dxϕ(x)
(where the last expression is defined a priori in a distributional sense since
L2 ⊂ L1

loc) is bounded provided the Fourier Transform of ϕ has enough
decrease at infinity. If an operator Â is unbounded, there nevertheless exists
a subspace of H called domain of Â and denoted D(Â) such that

ϕ ∈ D(Â) ⇒ Âϕ ∈ H

In general we are interested only in operators whose domains are dense inH.

For unbounded operators, the property of being selfadjoint is not equi-
valent to that of being hermitian :
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hermitian : 〈Âϕ , ψ〉 = 〈ϕ , Âψ〉 ∀ϕ, ψ ∈ D(Â)
selfadjoint We must have in addition that D(Â∗) = D(Â) where ϕ ∈
D(Â∗) if ∃g ∈ H such that 〈ϕ, Âψ〉 = 〈g, ψ〉 ∀ψ ∈ D(Â). g is unique
and denoted g := Â∗ϕ.
Above and in all that follows we use the following definition :

Definition 1.2.1 By 〈., .〉 we denote the usual scalar product in L2(IRn) :

〈ϕ, ψ〉 :=
∫
IRn
dxϕ̄(x)ψ(x)

BIBLIOGRAPHY
Kato Perturbation Theory for Linear Operators
Reed and Simon 1, Methods of Modern Mathematical Physics

Under rather general assumptions on the potential V :
one can show that Ĥ = − h̄2

2m∆ = V is essentially selfadjoint on C∞0 (IRn) and
therefore admits a unique selfadjoint extension in H that we call again
Ĥ for simplicity. (example this holds if
Hyp.1 V ∈ L2

loc(IR
n) and V is real and bounded from below.)

Remark Of course more complicated Hamiltonians can be studied, for
example including magnetic potentials, or more singular potentials like Cou-
lomb, or N -body Hamiltonians.

SCHRODINGER Equation

Let ψ be a “wavepacket” at time zero. The wavepacket at time t according
to the quantum evolution obeys the Schrödinger equation

ih̄
∂ψt
∂t

= Ĥψt (1.9)

with ψ0 = ψ.

Proposition 1.2.2 Under assumption Hyp1 above, equ. (1.9) admits a
unique solution for any t ∈ IR ψt ∈ H given by :

ψt = e−itĤ/ h̄ψ

Here the exponential operator UH(t) := e−itĤ/ h̄ is the unitary group in H
generated by the selfadjoint operator Ĥ (Stone Theorem)
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Definition 1.2.3 We shall call quantum observable any self-adjoint ope-
rator in H.

Definition 1.2.4 A time-dependent Quantum observable Ât is called Hei-
serberg observable if it is of the form :

Ât := UH(t)∗ÂUH(t) (1.10)

where Â is a quantum observable.

Clearly the so- called “Heisenberg representation” (evolution of obser-
vables), and the “Schrödinger representation” (evolution of quantum states)
are equivalent since, if D(Â) is invariant under the group UH(t), for any two
states ϕ, ψ ∈ D(Â), we have :

〈ϕ, Âtψ〉 = 〈ϕt, Âψt 〉

Definition 1.2.5 Given two quantum observables Â, B̂, with respective do-
mains D(Â) , D(B̂), we define the commutator of Â , B̂

[Â , B̂] := ÂB̂ − B̂Â

defined a priori in the sense of quadratic forms on D(Â)
⋂D(B̂). It is anti-

selfadjoint (under appropriate assumptions on the domains that we shall not
make precise here).

Lemma 1.2.6 Under “appropriate assumptions” on Â , Ĥ we have :

d

dt
Ât =

i

h̄
[Ĥ , Ât] (1.11)

in a suitable sense (that we shall not make precise here.)

We expect to get a simple correspondence rule between classical and
quantum observables. This starts with the so-called Bohr’s prescription,
namely the linear mappings :

A→ Â
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qj → Q̂j

pj → P̂j

where Q̂j (resp. P̂j) is simply the multiplication operator by xj (resp. the
differential operator −ih̄ d

dxj
). These basic operators obey the commutation

rule :
[Q̂j , P̂k] = ih̄δjk1l (1.12)

1l being the identity operator in H. This is called the Heisenberg incer-
tainty relation.

1.2.2 Complements on the theory of linear operators in an Hil-
bert space

In this section Â, B̂, Ĉ.... denote not necessarily selfadjoint operators in
an abstract Hilbert space H. Among “nice” bounded operators B(H), the
following are :
-the class of so-called compact operators B∞(H)
- the class of trace-class operators B1(H)
-the class of Hilbert-Schmidt operators B2(H)

A simple example of trace-class operator is the rank-one projection ope-
rator |ψ〉〈ψ|.
An example of an operator in B∞ \ B1 (and even in B2 \ B1) in dimension 1
is simply (Q̂2 + P̂ 2)−1.

Definition 1.2.7 Let H be a separable Hilbert space, and {ϕn}∞n=1 any or-
thonomal basis in H. Than for any positive Â ∈ B(H) one defines :

trÂ :=
∞∑
n=1
〈ϕn, Âϕn〉 (1.13)

which is a positive number, possibly infinite, and independent of the choice
of basis.

Definition 1.2.8 Let B̂ ∈ B(H). B̂∗B̂ is a selfadjoint positive operator
∈ B(H), and one defines |B̂| as

|B̂| := (B̂∗B̂)1/2 (1.14)

which is positive and bounded.
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Definition 1.2.9 Â ∈ B(H) is said to be trace-class (ie ∈ B1(H)) if

tr|Â| <∞ (1.15)

Lemma 1.2.10 ∀Â ∈ B1(H) one can define

trÂ =
∞∑
n=1
〈ϕn, Âϕn〉 (1.16)

where {ϕ}∞n=1 is an arbitrary orthonormal set (basis) of H. This definition
is independent of the chosen basis in H.

Definition 1.2.11 Â ∈ B(H) is said to be of Hilbert-Schmidt class (∈
B2(H)) if

tr(Â∗Â) <∞ (1.17)

We then have

‖Â‖2
2 := tr(Â∗Â) =

∞∑
m,n=1

|〈ϕn, Âϕm〉|2

for all orthonormal basis {ϕn}∞n=1 in H

Lemma 1.2.12
B1 ⊂ B2 ⊂ B∞ ⊂ B (1.18)

Exercise If H = L2(IRn) and Â ∈ B1(H) (resp ∈ B2(H)) has a “kernel”
K(x, y), then
trÂ =

∫
IRn dxK(x, x)

(resp ‖Â‖2
2 =

∫
IR2n dxdy|K(x, y)|2)

1.2.3 Weyl quantization

When the observables are not simply polynomial functions of Q̂, P̂ ,
the simple correspondence inherited from the Bohr’s prescription has to be
made precise. We shall not describe here the quantization question in full
generality. For more details see :
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Let f ∈ S(IR2n). One defines the so-called h̄- Symplectic Fourier
Transform of f as follows :

Definition 1.2.13

f̃h̄(z
′) := h−n

∫
Z
dzf(z)eiσ(z′,z)/h̄ (1.19)

Remark : Here and in all that follows one sets as usually in Physics
literature

h := 2πh̄

Exercise : Show that f̃h̄ ∈ S(IR2n) and

f(z) = h−n
∫
Z
dz′f̃h̄(z

′)eiσ(z,z′)/h̄ (1.20)

The idea of Weyl is simply to induce a correspondence by repacing z by
Ẑ = (Q̂, P̂ ) in equ (1.20) above in the exponential of the symplectic form.
One defines :

Definition 1.2.14 The unitary Weyl-Heisenberg translation opera-
tors are defined by :

T̂ (z′) := exp(iσ(Ẑ, z′)/h̄) = exp(i(p′.Q̂− q′.P̂ )/h̄) (1.21)

Exercise Show that

T̂ (q, 0)ψ = ψ(.− q)

F(T̂ (0, p)ψ) = (Fψ)(.− p)

are simply the operators of translation in coordinate space (resp. momentum
space), F being the Fourier Transform.

Definition 1.2.15 Given a classical observable A ∈ S(Z), we define the
Weyl quantization of A by :

Â := h−n
∫
Z
Ãh̄(z

′)T̂ (z′)dz′ (1.22)



13

Lemma 1.2.16 If A is real then its Weyl quantization Â is a symmetric
(and even selfadjoint ) operator.

Proposition 1.2.17 The Weyl-Heisenberg translation operators obey :
(i)

T̂ (z)∗ = T̂ (z)−1 = T̂ (−z)
(ii)

T̂ (z)T̂ (z′) = exp

−iσ(z, z′)

2h̄

 T̂ (z + z′)

(iii)

T̂ (−z)
 Q̂

P̂

 T̂ (z) =

 Q̂+ q

P̂ + p

 = Ẑ + z

(iv) ∀ψ ∈ H, z = (q, p) ∈ Z we have :

(T̂ (z)ψ)(x) = e−ip.q/2h̄+ip.x/h̄ψ(x− q)

We leave the proof to the reader as an exercise

Proposition 1.2.18 (i) Let A ∈ S(Z) be a classical observable. Then there
exists a unique bounded operator Â ∈ B(H) such that ∀ϕ, ψ ∈ H :

〈ϕ, Âψ〉 = h−n
∫
Z
Ãh̄(z)〈ϕ, T̂ (z)ψ〉dz

(ii) Âψ is given ∀ψ ∈ H by the explicit formula

(Âψ)(x) = h−n
∫
Z
dydpA(

x+ y

2
, p) exp(ip.(x− y)/h̄)ψ(y) (1.23)

(iii) Let K(x, y) ∈ S(IR2n) be an integral kernel for Â ∈ B(H) :

(Âψ)(x) =
∫
IRn
K(x, y)ψ(y)dy

Then Â is the Weyl quantization of a semiclassical symbol given by :

Ah̄(q, p) =
∫
IRn
K(q + x/2, q − x/2)e−ix.p/h̄dx

In the following we shall make precise the notion of semiclassical sym-
bol, or observable, in “nice” classes where the h̄- dependence (for small
enough h̄) is sufficiently controlable.
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1.2.4 Properties of the Weyl quantization, and semiclassical ob-
servables

Definition 1.2.19 γ = (γ1, γ2...γ2n) ∈ IN2n is a multiindex
A : IR2n 7→ IR is C∞ and

∂γ

∂zγ
A =

2n∏
k=1

∂γk

∂zγk

k

A

γ! := γ1!γ2!...γ2n!

|γ| = γ1 + γ2 + ...γ2n

A nice class of classical observables is the following :

Definition 1.2.20 A ∈ O(m) ∀m ∈ IR if A : Z 7→ IR is C∞ and if for all
mulitiindex γ, there exists C > 0 such that

| ∂
γ

∂zγ
A(z)| ≤ C(1 + z2)m/2

for all z = (q, p) ∈ Z z2 = q2 + p2

Lemma 1.2.21 (i)
⋂
mO(m) = S(Z)

(ii) Â∗ = Â

(iii)Â is a continuous application S(Z) 7→ S(Z), and S ′(Z) 7→ S ′(Z) where
S ′ denotes distributions on S

BIBLIOGRAPHY
Hörmander : The analysis of Partial Differential Operators
Robert : Autour de l’Approximation Semiclassique

The strong link between a classical symbol and its Weyl quantization is
expressed in the following result :

Theorem 1.2.22 Let Â be the Weyl quantization of a classical symbol A .
Then :
(i)Assume A ∈ O(0). Then Â ∈ B(H)
(ii) Assume A ∈ L2(Z). Then Â ∈ B2(H) and its Hilbert-Schmidt norm is
given by :

‖Â‖2 = h−n/2
(∫
Z
dz|A(z)|2

)1/2
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(iii) Assume A ∈ O(m) with m < −2n. Then Â ∈ B1(H) and its trace is
given by :

trÂ = h−n
∫
Z
dzA(z)

(iv) Assume A,B ∈ L2(Z) . Then ÂB̂ ∈ B1(H) and we have :

tr(ÂB̂) = h−n
∫
Z
dzA(z)B(z)

Proof : we shall limit ourselves to (ii)-(iv) the proof of (i) (The Calderon
-Vaillancourt Theorem) is more difficult. If A ∈ O(m) ∀m ≤ 0 or ∈ L2(Z),
then the integral kernel of the operator Â exists and equals :

Â(x, y) = h−n
∫
dpA(

x+ y

2
, p)ei(x−y).p/h̄

(ii) If A ∈ O(m) for some m < −2n, then we have the classical formula :

trÂ =
∫
IRn
dxÂ(x, x) = h−n

∫
Z
dxdpA(x, p) ≡ h−n

∫
Z
A(z)dz

(iii)

‖Â‖2
2 =

∫
dxdy|Â(x, y)|2

= h−2n
∫
dxdy|

∫
dpA(

x+ y

2
, p)ei(x−y).p/h̄|2 = h−2n

∫
dudv|

∫
dpA(v, p)eiu.p/h̄|2

= h−n
∫
dudp|A(v, p)|2

using the Plancherel Theorem.

(iv) If A,B ∈ L2(Z) then Â, B̂ ∈ B2(H), and thus their product is of trace
class.

tr(ÂB̂) =
∫
dx(

∫
dyÂ(x, y)B̂(y, x)) =

∫
dxdyÂ(x, y)B̂(y, x)

by the Fubini Theorem

= h−2n
∫
dxdydpdp′A(

x+ y

2
, p)B(

x+ y

2
, p′)ei(x−y).(p−p

′)/h̄

= h−2n
∫
dudvdpdp′A(v, p)B(v, p′)eiu.(p−p

′)/h̄

= h−n
∫
dvdpdp′A(v, p)B(v, p′)δ(p− p′) = h−n

∫
Z
dzA(z)B(z)
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The above theorem shows that the Weyl quantization establishes a very
convenient correspondence between the classical observables and the cor-
responding quantum observables, and that the decay properties in phase
space of the “classical symbol” imply suitable properties of the quantized
observables in the Hilbert spaceH : bounded, trace-class, Hilbert-Schmidt...

In most applications one considers often semiclassical observables
(also said “semiclassically admissible”) which are the Weyl quantization of
entire series in h̄ :

Ah̄ =
∞∑
0
h̄jAj

where the Aj are classical observables. This appears in particular when one
asks the following question :
given Â B̂ the Weyl quantization of two classical symbols A,B, what is
the classical symbol corresponding to the product Ĉ = ÂB̂ ? Since Â, B̂
do not commute, the “classical symbol” of Ĉ is not a priori real and thus
cannot be a classical symbol. It is however a semiclassical observable in
the following sense :

Definition 1.2.23 A is a semiclassical observable of weight m (belonging
to Ôsc(m)) if it is of the form :

A(h̄, z) :�
∞∑
0
h̄jAj(z) (1.24)

with Aj ∈ O(m) the convergence being true in the following sense :

| ∂
γ

∂zγ

A(h̄, z)−
N∑
0
h̄jAj(z)

 | ≤ CN h̄
N+1(1 + z2)N/2

CN being a constant independent on h̄, z, for any N . A0 (resp.A1) are called
the principal (resp. sub-principal) symbol. (like in music the fundamen-
tal, dominant, sub-dominant tunes...)

Proposition 1.2.24 Let A ∈ Ô(m) (resp. B ∈ Ô(p)) ; there exists a unique
semiclassical observable C ∈ O(m+ p) whose Weyl quantization satisfies

Ĉ = ÂB̂
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The Cj are given by the formula :

Cj = 2−j
∑

|α+β|=j

(−1)β

α!β!

 ∂β
∂qβ

∂α

∂pα
A

 ∂β

∂pβ
∂α

∂qα
B

 (1.25)

From the above result, which is simply deduced from simple algebra, we
deduce the nice corollary :

Corollary 1.2.25 Under the assumptions of Prop. (1.2.24), we recover the
well-known correspondence between the commutator of two quantum
observables and the Poisson bracket of the corresponding classical
observables :

i

h̄
[Â , B̂] ∈ Ô(m+ p)

and its principal symbol is nothing but {A , B}



Chapitre 2

Coherent States, Squeezed States,
Wigner and Husimi Distributions

There exists plenty of families of Coherent States, all relevant to Physics.
Among them, some live in the Hilbert space H = L2(IRn), others not, some
are Gaussian, others not... The more ancient ones come back to Schrödinger
himself (1926). For a more detailed and complete review see :

BIBLIOGRAPHY
Perelomov : Generalized Coherent States and their Applications

We shall introduce the Coherent States of the Harmonic Oscillator, which
are Gaussian wavepackets that minimize the Heisenberg Uncertainty Rela-
tion.

2.1 Coherent States of the Harmonic Oscillator

We have already introduced the operators of translation of Weyl-Heisenberg
(equ (1.20)). They monitorize the construction of coherent states, starting
from a given wavepacket denoted ϕ0 or |0〉 which is nothing but the ground
state of the Harmonic Oscillator. The Hamiltonian of the (isotropic) Har-
monic Oscillator is :

2K̂0 :=
1

2
(−h̄2∆ + Q̂2) (2.1)

and its ground state has the following form/

ϕ0(x) := (πh̄)−n/4 exp(−x
2

2h̄
) (2.2)

18
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Clearly, when using the following definition of Fourier Transform :

ũ(ξ) := h−n/2
∫
dxe−ix.ξ/h̄u(x) (2.3)

we have
ϕ̃0 = ϕ0

and
σxk

= σpk
= (h̄/2)1/2

where
σ2
xk

:= 〈ϕ0, Q̂
2
kϕ0〉

and
σ2
pk

:= 〈ϕ0, P̂
2
kϕ0〉

for any k between 1 and n, which shows that this wavepacket minimizes the
Heisenberg uncertainty relation

σxk
σpk

≥ h̄/2

T̂ (z) “translates” a wavepacket in phase-space by the vector z ∈ Z. We
define the coherent state by :

|z〉 = T̂ (z)|0〉 (2.4)

and will note it also by ϕz. Although the “pseudo-support” of ϕ0 is locali-
zed around the phase-space point 0, the “pseudo-support” of ϕz is localized
around z. We shall see later, after introduction of the “Wigner Trans-
form” how to give a precise meaning to this assertion.

The usual “creation” and “annihilation” operators a† and a respectively
(a† is nothing but the adjoint of a in H) are defined as follows :

Definition 2.1.1

a :=
Q̂+ iP̂√

2h̄
a† :=

Q̂− iP̂√
2h̄

(2.5)

From equ.(1.12) one immediately deduce :

[a , a†] = 1l (2.6)

Furthermore we have that ϕ0 is in the kernel of a, and more generally that :
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Lemma 2.1.2

a|z〉 =
q + ip√

2h̄
|z〉 (2.7)

for any z = (q, p) ∈ Z

Proof : it is convenient to introduce compex numbers associated to any
z = (q, p) ∈ Z :

α :=
q + ip√

2h̄
(2.8)

so that T̂ (z) can be rewritten as

T̂ (z) = eα.a
†−ᾱ.a (2.9)

We shall now make use of the following Baker-Campbell-Haussdorf relation :

Lemma 2.1.3 If Â, B̂ commute with their commutator we have :

eÂ+B̂ = e−
1
2 [Â,B̂]eÂeB̂ (2.10)

(omitting here the domain considerations of operators for simplicity).

When applied to equ.(2.9) they yield to :

T̂ (z) = e−
|α|2
2 eα.a

†
e−ᾱ.a (2.11)

Since a|0〉 = 0 it is easy to show that

a|z〉 = e−
|α|2
2 aeα.a

†|0〉 = e−
|α|2
2 [a, eα.a

†
]|0〉 (2.12)

and since
[a, eα.a

†
] = αeα.a

†
(2.13)

the result follows.

Proposition 2.1.4 Take any ψ ∈ H. Then the scalar product 〈z|ψ〉 ∈
L2(Z), and we have : ∫

Z
dz|〈z|ψ〉|2 = hn‖ψ‖2 (2.14)
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2.2 Squeezed States

They are some “cousins” of the coherent states, in the following senses :

-they minimize the uncertainty relations, but instead of having an isotro-
pic profile in phase space they appear to be “squeezed” in some direction,
and dilated in the conjugate direction.

-they are “generalized coherent states” in the sense of Perelomov

-whereas the coherent states are monitorized by the Weyl-Heisenberg
group which is the exponential of an anti-hermitian linear form in Q̂, P̂ ,
the Squeezed States are generated by unitary operators which are antiher-
mitian quadratic forms in Q̂, P̂

We shall introduce them here “physically” via the “creation and anni-
hilation” operators introduced above, and restrict ourselves to the case of
dimension equal to 1. Then we shall indicate briefly how they can be defi-
ned in an equivalent and more general setting via the metaplectic group
which implements in the “quantum world” the symplectic transformations
in canonical classical phase space.

Let β be a complex number of modulus smaller than 1 : |β| < 1. We
define the following complex number :

δ ≡ reiθ :=
β

|β|
tanh−1 |β| (2.15)

Ŝ(β) := exp

(
1

2
(δa†2 − δ̄a2)

)
(2.16)

δa†2 − δ̄a2 being antihermitian, Ŝ(β) is unitary and we have :

Ŝ(β)∗ = Ŝ(−β) (2.17)

In terms of operators Q̂ , P̂ of Quantum Mechanics, we have :

Ŝ(β) = exp

(
i

2
=δ(Q̂2 − P̂ 2)− i

2
<δ(Q̂.P̂ + P̂ .Q̂)

)
(2.18)

The Squeezd States are thus defined as follows :
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Definition 2.2.1
ψβ := Ŝ(β)ϕ0 (2.19)

Lemma 2.2.2 Define γ := 1−β
1+β . We have :

ψβ(x) =

(<γ
π

)1/4  1 + β̄

|1 + β|

1/2

exp(−γx
2

2
) (2.20)

We leave the proof of this lemma and of the important fact that <γ > 0
to the interested reader.

Lemma 2.2.3 On D(Q̂)
⋂D(P̂ ) we have the following identity :

Ŝ(β)aŜ(−β) = (1− |β|2)−1/2(a− βa†) ≡ a cosh |δ| − eiθa† sinh |δ| (2.21)

Indication of the proof : we shall make simply use of the following relation
for operators :

eABe−B = B +
n∑
1

1

n!
[A, [A, ...[A,B]]]

Examples and particular cases

• β ∈ IR, 0 < β < 1. Then γ ∈ IR,∈ (0, 1), thus ψβ(x) is an elongated
Gaussian, whereas its Fourier transform ψ̃β(ξ) is in the contrary a “squeezed
Gaussian”. Therefore the “phase-space profile” is an elongated ellipse along
the q-axis.

• ∀β complex, we have a similar picture, but the ellipse is turned by the
angle θ. Along the large and small axes of the ellipse, the state ψβ satisfies :

σqσp =
h̄

2

Important property Consider the following operators :

K̂0 :=
a†.a+ a.a†

4
(2.22)
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K̂+ :=
1

2
a†2 (2.23)

K̂− := K∗
+ =

1

2
a2 (2.24)

They are simply the generators of Lie -algebra SU(1,1), thus obeying the
following commutation rules :

[K̂0, K̂±] = ±K̂± (2.25)

[K̂−, K̂+] = 2K̂0 (2.26)

We have the following property :

Lemma 2.2.4

Ŝ(β)K̂0Ŝ(−β) = cosh(2r)K̂0 −
sinh(2r)

2
(K̂+e

iθ + K̂−e
−iθ)

Following Perelomov (see BIBLIOGRAPHY), and the above algebraic
properties, one can show that any time dependent Hamiltonian which is
quadratic in Q̂ P̂ , and therefore of the form :

Ĥ(t) = λ(t)K̂0 + µ(t)K̂+ + µ̄(t)K̂−

(where λ is real) generates via Schrödinger equation a unitary evolution
U(s, t) which can be expressed explicitly in terms of Ŝ(β(t)) and exp(iK̂0ζ(t)),
where functions β, ζ can be constructed from λ, µ.
This important property will intervene in a crucial way in the question of
“semiclassical” evolution of Coherent States, that will be studied in Chapter
3.

2.3 WIGNER distribution

We shall see in what follows that they are actually distributions in the
sense put forward by L. Schwartz ; what Wigner was actually looking
for was an equivalent of the classical probability distributions in phase-space
Z. That is, associated to any wavepacket (namely a quantum state) a dis-
tribution function in phase space that imitates the classical distribution
probability in phase-space.
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We recall that a classical probability distribution is a nonnegative func-
tion ρ : Z 7→ IR+ normalized to unity :∫

Z
ρ(z)dz = 1

and such that for any classical observable A ∈ C∞, the mean value of A in
this probability distribution is simply given by

ρ(A) ≡
∫
Z
dzA(z)ρ(z) (2.27)

In the Quantum world, given any Observable Â, and any two states
ϕ, ψ ∈ H, the mean value of Â with respect to these states is simply the
expectation value 〈ϕ, Âψ 〉 and one would like to get a distribution

(ϕ, ψ) → Wϕ,ψ(z) (2.28)

such that
〈ϕ, Âψ〉 =

∫
Z
dzA(z)Wϕ,ψ(z) (2.29)

for a suitable “distribution” Wϕ,ψ(z) in phase space. Of course it should be
antilinear in ϕ, linear in ψ, and obey (by taking Â = 1l) :∫

Z
dzWϕ,ϕ = ‖ϕ‖2 (2.30)

In order to proceed to the construction proposed by Wigner, let us come
back to a property of the Weyl quantization that we have not written yet.

Lemma 2.3.1 Let A ∈ L1(IRn). Then its Weyl quantization Â ∈ B(H),
and we have :

‖Â‖ ≤ (
2

h
)n
∫
Z
|A(z)|dz (2.31)

Proof :

hn|〈ψ, Âϕ〉| = |
∫
dxdydpA(

x+ y

2
, p)eip.(x−y)/h̄ψ̄(x)ϕ(y)|

= |
∫
dudvdpA(u, p)ψ̄(u− v

2
)ϕ(u+

v

2
)eiv.p/h̄|

≤
∫
dudp|A(u, p)|Supu,p|

∫
dvψ̄(u− v

2
)ϕ(u+

v

2
)eiv.p/h̄|
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≤
∫
dudp|A(u, p)|Supu

∫
dv|ψ̄(u− v

2
)ϕ(u+

v

2
)| ≤ 2n

∫
dudp|A(u, p)|‖ψ‖‖ϕ‖

using Cauchy-Schwarz inequality.

It follows from Lemma (2.3.1) that for any given ϕ ∈ H, the mapping
Wϕ,ϕ ≡ Wϕ : A ∈ S(Z) → 〈ϕ, Âϕ〉 ∈ IR via formula (2.29) with ψ = ϕ is a
tempered distribution in phase-space Z. Thus formula (2.29) is the defining
equation for the Wigner distribution associated to the pair (ψ, ϕ) ∈ H.
We have the following :

Lemma 2.3.2 (i)We have Wϕ,ψ ∈ L∞(Z) and it can be written as

Wϕ,ψ(q, p) = h−n
∫
IRn
dyϕ̄(q +

y

2
)ψ(q − y

2
)eip.y/h̄ (2.32)

= h−n
∫
Z
dz〈ϕ, T̂ (z)ψ〉eiσ(z,z′)/h̄

(ii) hnWϕ,ψ(z) is the Weyl symbol for the rank one operator |ψ〉〈ϕ|.

Proof : (i) We use the definition (1.2 15) of the Weyl quantization of a
symbol A :

〈ϕ, Âψ〉 = h−n
∫
dxdydpA(

x+ y

2
, p)ei(x−y).ph̄ϕ̄(x)ψ(y)

so that performing the change of variables (of Jacobian 1) x−y = u, x+y
2 =

v, we get :

〈ϕ, Âψ〉 =
∫
dpdqA(q, p)h−n

∫
dveip.u/h̄ϕ̄(q +

v

2
)ψ(q − v

2
) (2.33)

=
∫
Z
dpdqA(q, p)Wϕ,ψ(q, p)

or in other words,

〈ϕ, Âψ〉 = h−n
∫
Z
dzÃh̄(z)〈ϕ, T̂ (z)ψ〉

We now use the Plancherel Theorem for the symplectic-Fourier Transform
f → f̃h̄ :

=
∫
Z
dz′A(z′)Wϕ,ψ(z

′)

where
Wϕ,ψ(z

′) := h−n
∫
dz〈ϕ, T̂ (z)ψ〉e−iσ(z′,z)/h̄
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(ii) Clearly, if Πϕ,ψ := |ψ〉〈ϕ|, and if A ∈ S(Z) we get :

〈ϕ, Âψ〉 = tr(ÂΠϕ,ψ) ≡ h−n
∫
Z
dzA(z)B(z)

where B is the “Weyl symbol” of Πϕ,ψ, where we have used Theorem 1.2.22
(iv). We then identify hnWϕ,ψ as the Weyl symbol of Πϕ,ψ.

Question : What about the expected properties of Wϕ,ψ as a
possible probability distribution in phase-space ?, namely :

-positivity
-normalization to 1
- correct marginal distributions ?

Lemma 2.3.3 Let z = (q, p) ∈ Z, ϕ ∈ H, ‖ϕ‖ = 1. We have :

(i) ∫
IRn
dpWϕ(q, p) = |ϕ(q)|2 (2.34)

= probability amplitude to find the quantum particle at position q

(ii) ∫
IRn
dqWϕ(q, p) = |Fϕ(p)|2 (2.35)

= probability amplitude to find the quantum particle at momentum p

(iii) ∫
Z
dqdpWϕ(q, p) = 1 (2.36)

(iv) Wϕ(z) ∈ IR
(v) Wϕ(z) ≥ 0 ⇐⇒ ϕ is Gaussian, but can take negative values if ϕ is
not.

Proof of (i). Let f ∈ D be an arbitrary test function. We have :∫
IRn
Wϕ(q, p)f(p)dp = h−n

∫
dyϕ̄(q +

y

2
)ϕ(q − y

2
)
∫
dpeip.y/h̄f(y)

∫
dyϕ̄(q +

y

2
)ϕ(q − y

2
)(Ff)(y)



27

By taking for Ff an approximation of the Dirac distribution in y = 0,
we get the result. The proof of (ii) is similar, and the proof of (iii) follows
immediately.
The proof of (iv)-(v) is left to the reader as an exercise.

Lemma 2.3.4 Let a > 0 and ψ the normalized Gaussian wavefunction

ψ(x) = (
πh̄

a
)−n/4e−ax

2/2h̄

Then we have :

Wψ(q, p) = (πh̄)−n exp(−(aq2 +
p2

a
)/h̄) (2.37)

The proof is an easy calculus that we leave to the reader.

If a = 1 then ψ = |0〉 is the coherent state centered at 0, and its Wigner
function is an isotropic Gaussian centered in 0, which corroborates the as-
sertion that its “pseudo-support” is a ball of radius

√
h̄.

If a 6= 1 then ψ is a “squeezed state”, and the profile in phase-space is
an ellipse.

Proposition 2.3.5 Let ϕ, ψ be quantum states ∈ L2(IRn)
⋂
L∞(IRn) . Then

Wϕ,ψ ∈ L2(Z)
⋂
L∞(Z) and we have :

‖Wϕ,ψ‖L∞ ≤ (
2

h̄
)n‖ϕ‖2‖ψ‖2 (2.38)

and
‖Wϕ,ψ‖L2 ≤ h−n/2‖ϕ‖2‖ψ‖2 (2.39)

The proof of equ. (2.38) is a simple consequence of Lemma 3.2.2 (equ.
(2.32)). Let us now check equ. (2.39).∫

Z
dz|Wϕ,ψ(z)|2 = h−2n

∫
dqdp|

∫
dyeip.y/h̄ϕ̄(q +

y

2
)ψ(q − y

2
)|2
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But ϕ̄(q+ y
2)ψ(q− y

2) ∈ L
2(IRn, dy) so that via Plancherel Theorem we get :

h−n
∫
dp|

∫
dyϕ̄(q +

y

2
)ψ(q − y

2
)|2 =

∫
dy|ϕ̄(q +

y

2
)ψ(q − y

2
)|2

Moreover the RHS ∈ L2(IRn, dq), and therefore

‖Wϕ,ψ‖2
2 = h−n

∫
dqdy|ϕ̄(q +

y

2
)ψ(q − y

2
)|2 = h−n‖ϕ‖2‖ψ‖2

which completes the proof of the Proposition.

Proposition 2.3.6 Let ϕ, ψ be quantum states ∈ L2(IRn)
⋂
L∞(IRn) and

let Wϕ, Wψ be the associated Wigner functions. We have :

|〈ϕ, ψ〉|2 = hn(Wϕ,Wψ)L2(Z) (2.40)

The Wigner Transformation operates “as one wishes” in phase-space, ie
according to the scheme of classical mechanics :

Proposition 2.3.7 Let ϕ, ψ ∈ H, and T̂ (z), R̂(M) be respectively opera-
tors of the Weyl-Heisenberg and metaplectic group, corresponding respecti-
vely to
-a phase-space translation by vector z
-a symplectic tranformation in phase-space.

We have :
WT̂ (z′)ϕ,T̂ (z′)ψ(z) = Wϕ,ψ(z − z′) (2.41)

WR̂(M)ϕ,R̂(M)ψ(z) = Wϕ,ψ(Mz) (2.42)

Proof : We start from formula (2.32) (second line) and

R̂(M)−1σ(Ẑ, z)R̂(M) = σ(M−1Ẑ, z) = σ(Ẑ,Mz)

so that :

WR̂(M)ϕ,R̂(M)ψ(z) = h−n
∫
du〈ϕ, T̂ (Mu)ψ〉eiσ(z,Mu)/h̄ = Wϕ,ψ(Mz)

We end this section by an important result about coherent states :
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Proposition 2.3.8 Let |z〉 be a coherent state ; then ∀A ∈ S(Z) we have

lim
h̄→0

〈z|Â|z〉 = A(z) (2.43)

Proof : We have seen that Wϕ0
= (πh̄)−ne−(q2+p2)/h̄, and similarly

Wϕz
(q′, p′) = exp

−(q − q′)2

h̄
− (p− p′)2

h̄


But Wϕz

→ δ(z − z′) in distributional sense, which yields the result.

Physical Interpretation : The coherent states are those quantum states
which are at most localized in phase space around a given point in a ball of
radius

√
h̄. The classical symbol of an operator Â is nothing but the classical

limit h̄→ 0 of the expectation value 〈z|Â|z〉 of Â in the coherent state.

2.4 Husimi Distribution, and Anti-Wick Quantization

The coherent states are also often used in order to define another
quantization of classical observables, called Anti-Wick quantization in
the physical literature (and Berezin or Toeplitz in the mathematical one.)
Alike Weyl quantization, it associates to a classical observable (real) a
quantum one (selfadjoint), but it in addition preserves the positivity as
we shall see.

Definition 2.4.1 Let A ∈ S(Z) be a classical observable. One defines its
anti-Wick quantization Ǎ as

Ǎ :=
∫
Z
dzA(z)|z〉〈z| (2.44)

Lemma 2.4.2 If A(z) ≥ 0, then Ǎ ≥ 0 (in the sense of quadratic forms).

Proof : obvious since

∀ψ ∈ H, 〈ψ, Ǎψ〉 =
∫
Z
dzA(z)|〈 ψ|z〉|2 ≥ 0
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Proposition 2.4.3 For all A ∈ O(0) a classical observable (real), its anti-
Wick quantization Ǎ is a bounded selfadjoint operator in H (as the Weyl
quantization Â).

Proof : ∀ϕ, ψ ∈ H we have :

〈ϕ, Ǎψ〉 =
∫
Z
dzA(z)〈z|ψ〉〈ϕ|z〉

Thus :
|〈ϕ, Ǎψ〉| ≤ ‖A‖L∞(Z)

∫
Z
dz|〈z|ψ〉〈ϕ|z〉|

≤ ‖A‖L∞(Z)

(∫
Z
|〈z|ψ〉|2

)1/2 (∫
Z
dz|〈z|ϕ〉|2

)1/2
≤ hn‖A‖L∞(Z)‖ψ‖‖ϕ‖

Therefore ‖Ǎψ‖ ≤ hn‖A‖L∞(Z)‖ψ‖, ∀ψ ∈ H

The coherent states (sometimes called continuous overcomplete basis
of H) are also very useful to calculate the Trace of an operator :

Proposition 2.4.4 Let Â ∈ B1(H) be a (not necessarily selfadjoint) trace-
class operator . Then we have

trÂ = h−n
∫
Z
dz〈z|Â|z〉 (2.45)

The proof is left to the reader, who may use the integral kernel of Â :
Â(x, y), the formula trÂ :=

∫
Rn Â(x, x) and the formula :

ϕz(x) = (πh̄)−n/4 exp

(
−ip.q

2h̄
+
ip.x

h̄
− 1

2h̄
(x− q)2

)
(2.46)

Finally the coherent states are useful to define a “regularization” of
the Wigner distribution, called the Husimi distribution, and noted Hψ,
which to any quantum state ψ associates Hψ : Z 7→ IR+. Since it is non-
negative, it is a better candidate than the Wigner distribution to “imitate”
a classical probability distribution.

Definition 2.4.5 The Husimi distribution associated to any ψ ∈ H is :

Hψ(z) := h−n|〈z|ψ〉|2 (2.47)
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In fact Hψ(z) is nothing but a “regularization” of the Wigner distribu-
tion : since

|〈z|ψ〉|2 = hn(Wϕz
,Wψ)L2(Z)

and Wϕz
(z′) = Ψ0(z

′ − z) where Ψ0(z) is the normalized Gaussian

Ψ0(z) = (πh̄)−ne−z
2/h̄ (2.48)

of L1 norm equal to 1 we deduce :

Hψ = Wψ ∗Ψ0

In the following pages we present a comparative tableau of the Clas-
sical Mechanics, and Quantum Mechanics notions, recapitulating the two
previous Chapters.
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CLASSICAL WORLD

Z = IRn × IRn PHASE SPACE

z := (q, p) classical state of a par-
ticle

q : position or coordinate

p : momentum

Hamiltonian H = p2

2m + V (q)

Real

Phase-Space Evolution :
(q, p) → (qt, pt) = φtH(q, p)

φtH preserves Phase-Space vo-
lumes

Classical Observables

A : Z 7→ IR

Evolution of classical Obser-
vables

A ◦ φtH

Geometrical Tranformations

• Phase-space translations

QUANTUM WORLD

H = L2(IRn) Hilbert space of
quantum states

ϕ ∈ H “wavefunction”

Q̂

P̂ := −ih̄∇ self-adjoint Operators

Quantum Hamiltonian Ĥ :=
− h̄2

2m∆ + V (q)

Self-Adjoint

Quantum evolution : UH(t) :=

e−itĤ/h̄

Unitary Operator

Quantum Observables

Â : Weyl Quantization of A

Evolution of Quantum Obser-
vables

Ât := U ∗
H(t)ÂUH(t)

Unitary Transformations in H

• T̂ (z) := exp(iẐ.Jz/h̄) Weyl-
Heisenberg operator
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CLASSICAL WORLD
(continued)

•, J =

 0 1l
−1l 0

 represents ro-

tations of π
2

• General symplectic tranforma-
tions, ie

Preserve symplectic form
σ(z, z′) = z.Jz′

M : symplectic matrix 2n× 2n

Example M =

 eγ1l 0
0 e−γ1l


dilation/squeezing transformation

Multiplicative Group :
M = M1M2 symplectic

CLASSICAL STATE
Point z ∈ Z

Probability Distribution
in PHASE SPACE :

f : Z 7→ IR+

QUANTUM WORLD
(continued)

• F Fourier Transformation

• General operators of metaplec-
tic Group

iσ(Ẑ, z) generator of Weyl-
Heisenberg Group

B : 2n× 2n real symmetric
M = eJB → R̂(M) = eiẐ.BẐ/2h̄

D̂(γ) := exp iγ
2h̄(Q̂.P̂ + P̂ .Q̂))

R̂(M1M2) = R̂(M1)R̂(M2) is
Group

COHERENT STATE |z〉

WIGNER, HUSIMI
distributions

ϕ ∈ H, ‖ϕ‖ = 1
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CLASSICAL WORLD
(continued)

f(q, p) ≥ 0

∫
Z f(z)dz = 1

QUANTUM WORLD
(continued)

Wigner Distribution

→ Wϕ(q, p)
not ≥ 0 in general

Husimi Distribution

Hϕ(z) := |〈ϕ|z〉|2 ≥ 0

∫
Z dzWϕ(z) =

∫
Z dzHϕ(z) = 1



Chapitre 3

Semiclassical Propagation

One wants to study in which respect Bohr is right when he proposes
his famous correspondence principle which can be paraphrased in the
following way :
when the Planck constant h̄ is small as compared with a classical action
characteristic of the system, the Quantum Theory approaches the Classical
Newton’s Theory.

But, letting h̄ tend to zero in the equations of Quantum Mechanics is a
limit mathematically very singular, as we’ll show it ; and in particular the
limit h̄ → 0 doesn’t commute with the limit t → ∞, which is the limit
in which the properties of being possibly ergodic, hyperbolic, or “chaotic”
of the classical mechanics manifest themselves.

It is thus useful to study in detail this semiclassical limit, precisely in
link with the propagation in time properties of the system (semiclassical
dynamics or propagation).

In the seventies, Maslov and Hörmander introduced (independently) a
new tool particularly efficient, called microlocal analysis, which allows
to construct approximations of the Quantum Propagators via a class of
operators called Fourier-Integral-Operators. We shall sketch rapidly this
approach in Section 2, in link with the so called WKB method very famous
among physicists.

In the first Section we shall study more precisely the semiclassical propa-
gation of observables (Egorov Theorem), whereas Section 3 will be devoted
to the semiclassical propagation of the coherent states. These last properties

35
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will be particularly powerful in a rigorous approach of so-called “quantum
chaos problems” that will be introduced in Chapter 5.

3.1 Semiclassical Evolution of Observables

BIBLIOGRAPHY

Egorov : On canonical transformations of pseudodifferential operators

Theorem 3.1.1 Let H be a semiclassical Hamiltonian ∈ Osc(2) satisfying

|∂γzHj(z)| ≤ Cγ |γ|+ j ≥ 2 (3.1)

h̄−2(H −H0 − h̄H1) ∈ Osc(0) (3.2)

and let A be a classical observable ∈ O(m) for some m ∈ IR. We have :

(i) For sufficiently small h̄, Ĥ is essentialy-selfadjoint on S(IRn) and
therefore the quantum evolution operator

UH(t) := exp(−itĤ/h̄)

is unitary in H ∀t ∈ IR

(ii )∀t ∈ IR, Â(t) := UH(t)∗ÂUH(t) ∈ Osc(m)
Its semiclassical symbol has the following asymptotic expansion :

A(t) �
∑
j≥0

h̄jAj(t) Aj ∈ O(m)

uniformly in t ∈ [−T, T ]

A0(t, z) = A(φtH0
(z))

A1(t, z) =
∫ t
0
ds

{
A ◦ φsH0

, H1
}
φt−sH0

(z)

and a general explicit formula can be written for Aj(t, z) ∀j ≥ 2
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Note that the classical dynamics involved in this semiclassical expan-
sion is that induced by the principal symbol H0 of H. Under the assump-
tions of Theorem (3.1) the classical flow φtH0

exists globally in time. Namely
the vector field (∂pH0,−∂qH0) has a sub-linear increase at ∞, therefore no
classical trajectory can blow up in finite time.

Moreover one can show that A◦φtH0
∈ O(m) with the seminorm in O(m)

uniformly bounded for t ∈ [−T, T ]. We use the following notations :

A0(t, z) := A ◦ φH0
(z) (3.3)

Â0(t) is the Weyl quantization of A0(t, z).
Using the evolutions equations for H0 and Ĥ0 respectively, we get :

d

dt
UH(−s)Â0(t−s)UH(s) = UH(−s)

(
i

h̄
[Ĥ, Â0(t− s)]− ̂{H0, A0}φt−sH0

)
UH(s)

(3.4)
We have seen (corollary 1.2.25) that the principal symbol of i

h̄ [Ĥ, Â0(t− s)]
is {H0, A0(t− s)} and therefore the principal symbol of the RHS of (3.4) is
zero. By integrating (3.4) in s from 0 to t, we get :

UH(t)∗ÂUH(t)− Â0(t) = O(h̄)

By induction we obtain in this way the successive terms of the semiclassical
expansion of Â(t).

Corollary 3.1.2 We call ϕz a coherent state. Then for any observable A ∈
O(m) and all Hamiltonian as in Theorem 3.1, we have :

lim
h̄→0

〈UH(t)ϕz, ÂUH(t)ϕz〉 = A ◦ φtH0
(z) (3.5)

uniformly for y ∈ [−T, T ]

Proof : since ϕ := T̂ (z)ϕ0we have :

〈UH(t)ϕz, ÂUH(t)ϕz〉 = 〈ϕ0, T̂ (−z)UH(t)∗ÂUH(t)T̂ (z)ϕ0〉

so that if we denote as usual Π0 := |0〉〈0| the projector on ϕ0 = |0〉 the
RHS of equation above is nothing but

trΠ0T̂ (−z)UH(t)∗ÂUH(t) =
∫
Z
dz′Wϕ0

(z′)Bt,z(z
′)
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where Bt,z is the Weyl symbol of the operatorT̂ (−z)UH(t)∗ÂUH(t)T̂ (z). But
the principal symbol has been shown to be :

A ◦ φtH0
(z + z′)

Therefore, using the explicit Gaussian formula for Wϕ0
we get :

lim
h̄→0

〈UH(t)ϕz, ÂUH(t)ϕz〉 = lim
h̄→0

(πh̄)−n
∫
Z
dz′e−z

′2/h̄(A◦φtH0
)(z+z′) = A◦φtH0

(z)

This therefore generalizes to the case of semiclassical time-dependent ob-
servables the result ot Proposition 2.3. 8 :

The Heisenberg Observable UH(t)∗ÂUH(t) → A◦φH0
dyn. Class. Observable

as h̄→ 0,
H0 being the principal symbol of H.

3.2 WKB method / Microlocal Analysis

3.2.1 Reminders

The WKB approximation consists in looking for an integral Representa-
tion of a quatum state ψh̄(x) ∈ S ′(IRn) of the following form :

ψh̄(x) =
∫
Θ
dθeiΦ(x,θ)/h̄A(h̄, x, θ) (3.6)

Θ being an Euclidean space called “frequency variables set”, Φ being a real
phase, and A a complex amplitude of the following form :

A(h̄, x, θ) �
∑
j≥0

h̄jAj(x, θ) (3.7)

ψh̄ can also be the integral kernel of a quantum Observable or of a quan-
tum Propagator ; let, say, K(h̄, t;x, y) be the integral kernel of UH(t). It
obeys :

ih̄
∂

∂t
K(h̄, t;x, y) = (ĤK(h̄, t; ., y))(x) (3.8)

K(h̄, 0;x, y) = δ(x− y)
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In fact equ.(3.6) and (3.7) can be interpreted as a particular class of
so-called Fourier Integral Operators, whose prototype is the well-known
Fourier representation of Dirac distributions :

δ(x− y) = h−n
∫
IRn
ei(x−y).η/h̄dη

The study of Fourier Integral Operators together with that of Pseudo-
Differential Operators is an important branch of mathematics, more pre-
cisely of the Microlocal Analysis. We shall here, without entering the whole
complexity of the Fourier Integral Operators “machinery”, sketch rapidly
which sense can be attributed to expressions like (3.6). Then we shall focus
on the application of this scheme to an approximation of K(h̄, t;x, y).

3.2.2 Fourier Integral Operators, a brief sketch

Note by T (Φ, A, h̄) the distribution defined by equ. (3.6) :

(T (Φ, A, h̄), f) :=
∫
Θ×X

dxdθeiΦ(x,θ)/h̄A(h̄, x, θ)f(x) ∀f ∈ S(X) (3.9)

Note that regularity assumptions are necessary on Φ and A and also on
their decrease at infinity, in order to study their properties, together with
an assumption of the form :

∃C > 0 : C−1‖(x, θ)‖ ≤ ‖∇Φ.x‖ ≤ C‖(x, θ)‖ (3.10)

Here ‖z‖ := (1 + z2)1/2 which is not a norm. We can then attribute a
sense to distributions T by the method of stationary phase ie by estima-
ting the highly oscillatory integral (3.9) at points where ∇Φ(x, θ) 6= 0. We
then have

Definition 3.2.1 An FIO operator is a mapping defined on S(X) by :

I(Φ, A, h̄)f(x) :=
∫
Θ×X

dθdyeiΦ(x,θ,y)/h̄A(h̄, θ, x, y)f(y) (3.11)

Under suitable assumptions on Φ, A this defines a mapping of S(X) into
itself, and the product ot two FIO is a FIO.
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3.2.3 Applications to the semiclassical approximation of the quan-
tum Propagator

For quantum Hamiltonians Ĥ = −h̄2∆ + V acting in H, with regular
potentials growing at most quadratically at infinity, we look for semiclassical
expansions of K of the form :

K(h̄, t;x, y) = h−n
∫
X∗
dpei(S(t,x,p)−y.p)/h̄ ∑

j≥0
h̄jAj(t, x, p) (3.12)

with initial data (t=0) :
S(0, x, p) = x.p

A0(0, x, p) = 1

Aj(0, x, p) = 0 j ≥ 1 (3.13)

Due to Schrödinger equation (3.8), and reporting the expansion (3.12)
we get, at least fomally :

∂tS(t, x, p) +H(x,∇xS(t, x, p)) = 0 (3.14)

S(0, x, p) = x.p

which is Hamilton-Jacobi equation , together with transport equations
which we shall not write explicitly here.

Theorem 3.2.2 Let Ĥ be the Weyl quantization of a semiclassical Hamil-
tonian satisfying assumptions ot Egorov’s Theorem. Then ∃T > 0 small
enough such that :

(i)The Hamilton-Jacobi equation (3.14) has a unique solution S(t, x, p) ∀|t| <
T which is the generating function of the classical flow for H :

φtH(x, ∂xS(t, x, p)) = (∂pS(t, x, p), p) (3.15)

(ii)The transport equations define by induction the Aj’s in a unique way
∈ C∞([−T, T ]× Z) such that :

|∂kt ∂γzAj(t, z)| ≤ Ck,γ ∀k ∈ IN, γ ∈ IN2n (3.16)
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uniformly in [−T, T ]× Z.
(iii) ∀N ∈ IN, the FIO defined for t ∈ [−T, T ] :

UH,N(t)ϕ(x) = h−n
∫
Z
dpdyei(S(t,x,p)−y.p)/h̄

N∑
0
h̄jAj(t, x, p)ϕ(y) (3.17)

is bounded in H and is a good approximation of the quantum propagator :

Sup|t|≤T‖UH(t)− UH,N(t)‖B(H) = O(h̄N) (3.18)

The particular form of the FIO :∫
Z
dydηe(S(t,x,η)−y.η)/h̄Aj(t, x, η)ϕ(y)

allows one to make use of suitable “Calderon-Vaillancourt -type” Theorems
so that the FIO is bounded in H, for the given S and Aj’s, for t small
enough. However this proof is far from being trivial and we’ll skip it, and
don’t enter further into this “machinery”, prefering the method based on
coherent states which is closer to the physical intuition.

Moreover the fact that we are restricted to small values of t comes from
the fact that the FIO representation encounters caustic problems. We
shall briefly present these caustics in the following subsection.

3.2.4 What are Caustics ?

We have seen that the WKB approximation (which actually goes back to
Liouville, Green, Stokes and Rayleigh) allows an “imitation” of the passage
in physics optics of the propagation of light as an electromagnetic wave to its
propagation in terms of rays (geometrical optics). As in geometrical optics,
this description - as an approximation when the wavelength is short com-
pared to the dimension of material bodies it encounters - presents physical
and mathematical limitations known as “caustics”. This term is inherited
from the geometrical optics where it represents the envelope of the fa-
mily of rays : they can be visualized on a wall lighted par rays diffracted
by a smooth surface.
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One can show that the phase of wave oscillations along a given ray has
a discontinuity (of one quarter of wavelength) when passing through the
caustic.

We suall indicate more precisely what are caustics in the semiclassical
limit in order to better understand how to overcome the mathematical pro-
blems they introduce.

see BIBLIOGAPHY
Arnold : Méthodes Mathématiques de la Mécanique Classique

Assume the initial solution of the Schrödinger equation be of the following
form :

ψ(q) := A(q)eiS(q)/h̄

We associate to our initial data a Lagrangian manifold in phase-space,
namely a manifold of dimension n on which the symplectic form dq ∧ dp on
Z is identically zero :

p(q) := ∇S(q) (3.19)

is the momentum corresponding to our initial condition.

Lemma 3.2.3 For all differentiable function q → S(q) ∈ C1(IRn) the graph
of the function p(q) above is a Lagrangian manifold. Conversely if a
Lagrangian Manifold projects itself in an unique way on the configuration
space IRn, (namely is a graph), then it is defined by a genaration function
via formula (3.19)

If M is a Lagrangian Manifold for some initial condition of the form
above, then for t not too large the classical flow φtH transforms it into φtHM
which is again Lagrangian. This is no longer true in general if t becomes
large. The points of φtHM which project to some Q ∈ IRn are images by φtH
of in general several points of M. In other terms at point Q terminate two
or more trajectories of the classical particle whose initial data lie on M. The
points where the tangent plane to the manifold is of the form q = cst are
singular points. The set of such points form by projection on configuration
space an apparent contour called Caustic. To these points are associated
integer indices called Morse indices which are the semiclassical analogues
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of the discontinuity of the phase in going from wave optics to geometrical
optics. These indices will play an important rôle in the Trace Formulae that
will be studied in Chapter 5.

Summary

A Lagrangian manifold is a manifold in phase-space Z generated by
S(q, p, t). At some points q = Q there may have two different trajectories of
the classical flow φtH for initial data on some initial Lagrangian manifold M.
This generates so-called “caustic problems” that can be avoided, starting
from a “good” M by letting t to be small enough so that this doesn’t occur.

Thus the “caustics problems” appear if one wants to project the Lagran-
gian manifold φtHM on configuration space when t becomes large. They
can however be avoided if one works entirely in phase-space for the
Quantum Propagator. We do precisely this by studying the semiclassical
propagation of coherent states.

3.3 Semiclassical Propagation of Coherent States

In order to circumvent the limitation to small times introduced by caustic
problems, we work entirely in phase space. For doing this, a good idea is
to use the coherent states which, as we have shown above, “imitate ” at
most as possible classical points in phase-space, at least in the semiclassical
limit. (Their Wigner function, gaussian and nonnegative is localized around
a phase space point in a ball if radius

√
h̄).

Along a tradition which goes back to Hepp,(1974), one can start by “fol-
lowing” a coherent state along its semiclassical evolution. We shall establish
the following result :
starting from a coherent state |z〉 at time t=0, its quantum evolution stays
close to a “squeezed state”

T̂ (zt)R̂(Ft)|0〉

centered around the point zt := φtH(z), with a “dispersion” governed by a
symplectic matrix Ft that we shall make precise later. This approximation
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is of order O(h̄ε) as long as time doesn’t go beyond the so-called Ehren-
fest time TE := λ−1 log h̄−1. Intuitively the phase-space directions where
the wavepacket spreads are the unstable directions of the classical flow,
whereas those along which they are squeezed are the stable ones ; those
stable and unstable directions are encoded in the symplectic matrix Ft.

All that follows will be true for a very general class of Hamiltonians
(possibly time-dependent) :

∃m,M,K > 0 : (1 + z2)−M/2|∂γzH(z, t)| ≤ K ∀|γ| ≥ m (3.20)

unifomly for (z, t) ∈ [−T, T ]× Z

such that the classical and quantum evolutions respectively (for the clas-
sical symbol and its Weyl quantization resp.) exist for t ∈ [−T, T ].

It is well-known that the stability of the classical Hamiltonian evolution
governed by H(z, t) is given by the following linear system :

Ḟ = JMtF (3.21)

where Mt is the 2n × 2n Hessian matrix of H at point zt of the classical
trajectory :

(Mt)j,k :=

 ∂2H

∂zj∂zk


j,k

(zt, t) (3.22)

is symmetric real, and the initial datum is

F (0) ≡ 1l (3.23)

Consider the purely quadratic Hamiltonian (time-dependent) :

Ĥ0(t) :=
1

2
Ẑ.MtẐ (3.24)

It induces a quantum evolution U0(t, t
′) via

ih̄
∂

∂t
U0(t, t

′) = Ĥ0(t)U0(t, t
′) (3.25)

which is entirely explicit :
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Lemma 3.3.1 Let Ft be the 2n × 2n symplectic matrix solution or equ.
(3.21)-(3.23). We note by R̂(Ft) the metaplectic associated operator, unitary
in H. We have :

U0(t, 0) = R̂(Ft) (3.26)

and therefore by the chain rule :

U0(t, t
′) = R̂(Ft)R̂(F−1

t′ ) (3.27)

This result can be easily obtained by use of the “generalized coherent
states” of Perelomov. It encompasses the physical intuition that , for Ha-
miltonians purely quadratic the quantum dynamics is exactly solvable in
terms of the classical one. Namely the linear equ. (3.21) is nothing but the
classical Hamilton’s equations for the quadratic Hamiltonian (3.24).

In fact R̂(Ft) decomposes itself into the product of two unitaries,(built
from the symplectic matrix Ft)
-one expressing the “squeezing”
-one expressing the “rotation”

Lemma 3.3.2 From Ft can be built two 2n × 2n matrices Et and Γt such
that :

R̂(Ft) = Ŝ(Et)R̂(t) (3.28)

Ŝ(Et) := exp

(
1

2
(a†.Eta

† − a.E∗
t a)

)
(3.29)

R̂(t) = exp

(
i

2
(a†.Γ̃a+ a.Γa†)

)
(3.30)

Morally, in dimension n=1, R̂(t) has the simple form

exp

(
iγt
2

(Q̂2 + P̂ 2)

)

which is simply a rotation by the real angle γt.

Let us consider the Taylor expansion up to order 2 of Hamiltonian H(z,
t) around the point z = zt := (qt, pt) of the classical trajectory at time t :

H2(t) := H(zt, t) + (z − zt).∇H(zt, t) +
1

2
(z − zt).Mt(z − zt) (3.31)



46

By quantization it yields :

Ĥ2(t) = H(zt, t)1l + (Ẑ − zt).∇H(zt, t) +
1

2
(Ẑ − zt).Mt(Ẑ − zt) (3.32)

Let U2(t, s) be the quantum propagator for Hamiltonian Ĥ2(t). We have :

Proposition 3.3.3

U2(t, s) = ei(δt−δs)/h̄T̂ (zt)R̂(Ft)R̂(F−1
s )T̂ (−zs) (3.33)

where

δt := St(z)−
qt.pt − q.p

2
(3.34)

and St(z) =
∫
ds(q̇s.ps−H(zs, s)) is the classical action along the trajectory

z → zt

In fact this propagator which, being constucted via generators of the
coherent/squeezed states acts in a simple manner on coherent states, and
appears to be a good approximation of the full propagator UH(t, s) in the
classical limit, when acting on coherent states :

U2(t, 0) = eiδt/h̄T̂ (zt)Ŝ(Et)R̂(t)T̂ (−z)
U2(t, 0)|z〉 = eiδt/h̄T̂ (zt)Ŝ(Et)R̂(t)|0〉

= eiδt/h̄+γtT̂ (zt)Ŝ(Et)|0〉
where γt = 1

2trΓt
The state

Φ(z, t) := T̂ (zt)Ŝ(Et)|0〉 (3.35)

is simply a squeezed state centered in zt, with a “squeezing” given by matrix
Et.

Theorem 3.3.4 Let H be an Hamiltonian satisfying the assumptions (3.20)
and the existence of classical and quantum flows for t ∈ [−T, T ]. Then we
have, uniformly for (t, z) ∈ [−T, T ]× Z :

‖UH(t, 0)ϕz − eiδt/h̄+γtΦ(z, t)‖ ≤ Cµ(z, t)P |t|
√
h̄θ(z, t)3 (3.36)
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P being a constant only depending on M and m, and

µ(z, t) := Sup0≤s≤t(1 + |zs|)

θ(z, t) := Sup0≤s≤t(trF
∗
s Fs)

1/2

The estimate (3.36) contains the dependance in t, h̄, z of the semiclassical
error term. One hopes that this error remains small when h̄→ 0, provided
that z belongs to some compact set of phase-space, and |t| is not too large.

Typically
θ(z, t) ' etλ

where λ is some Lyapunov exponent that expresses the “classical instability”
near the classical trajectory. The RHS of equ. (3.36) is therefore O(h̄ε/2)
provided

|t| < 1− ε

6λ
log h̄−1 (3.37)

which is typically the Ehrenfest time, up to a factor 1/6 that is probably
inessential.

Remark 3.3.5 Theorem (3.3.4) can be modified (and therefore also the
state Φ(z, t)) to have an estimate in

µ(z, t)lP
l∑

j=1

|t|
h̄

j (
√
h̄θ(z, t))2j+l

and therefore typically O(h̄l/2) with l ∈ IN as large as one wants. The squee-
zed state however now depends on l, and is typically a finite linear combi-
nation of wavepackets of the form :

T̂ (zt)R̂(Ft)|Ψµ〉

where the Ψµ are excited levels of the Harmonic Oscillator in dimension n.



Chapitre 4

A Semiclassical Approach of the
so-called Quantum Chaos Problems

4.1 A first view on the problems for Billiards

Billiars are generally planar domains Ω ⊂ IR2 with a boundary ∂Ω piece-
wise regular. Two kinds of problems, a priori not related, are the following :

•(1) The classical mechanics of a material point moving with constant
velocity inside the billiard, with specular reflexions on the boundary

•(2) The wave mechanics inside the billiard, which is related to the Helm-
hotz problem, namely to the spectral properties of the Laplacean

∆Ω :=
∂2

∂y2
1

+
∂2

∂y2
2

with Dirichlet boundary conditions on ∂Ω.
This second problem imitates a “quantum problem” with Hamitonian −∆+
V where the potential V is zero inside Ω and infinite outside of it.

(1) The classical flow of a material point in Ω can be very complicated,
and even “unpredictable”, as we’ll see, in a vast majority of cases.

(2) It is well known since a long time that there exists a basis of ortho-
normal states of ∆Ω :

−∆Ωϕj = λjϕj ϕj ≡ 0 y ∈ ∂Ω

48
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ϕj ∈ L2(Ω) λ0 ≤ λ1 ≤ ... ≤ λn...

with limj→∞ λj = ∞ and that each eigenstate is of finite multiplicity. This
collection of (λj)j∈IN constitutes the discrete spectrum of −∆Ω. The λj ’s are
considered physically as the “energy levels” of the corresponding quantum
problem.

BIBLIOGRAPHY
Reed-Simon : vol 4

A natural Question to ask (which is a variant of the famous one addressed
by V. Kac : can we hear the shape of a drum?) is the following :

Can one obtain informations, at least statistical ones, on the asymptotic
behavior j →∞ of the λj’s and ϕj’s (Problem (2)) in terms of informations
on the classical flow (Problem (1)) ?

Conjecture, (vague) :
• If the classical flow is regular (= predictible), then the spectrum (λj) is
asymptotically irregular (random, decollerated)
• If the classical flow is irregular (= unpredictible, “chaotic”), then the
spectrum (λj) is regular (= correlated)

Many numerical experiments corroborate this conjecture. However very
few exact results.

A rather general assumption on the classical flow, - the ergodicity pro-
perty that we shall make explicit in the next section - reflects itself in a
property of equidistribution of the eigenstates ϕj. This result, known as
the Schnirelman Theorem that we’ll expose in Section 3 goes far beyond
the case of “billiards”, but we shall express it here for the case of billiards,
in order to provide a “physical” motivation to this Chapter.

The assumption for the classical flow of being “ergodic” implies that if
B ⊂ Ω is a measurable subset of Ω, then the mean-time spent by a “typical”
trajectory y → yt is proportional to the Lebesgue measure |B| of B :

lim
T→∞

T−1| {t ≤ T : yt ∈ B} | =
|B|
|Ω|

(4.1)
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Under this property, then, “almost surely” the eigenstates ϕj equidistri-
bute on Ω asymtotically as j →∞ :

more precisely there exists a subsequence of density 1 of eigenstates ϕjk
such that ∀B ⊂ Ω , measurable, we have :

lim
k→∞

∫
B
dy|ϕjk(y)|2 =

|B|
|Ω|

(4.2)

A strictly monotone sequence of intejers jk ∈ IN is said to be “of density
one” (or more generally a < 1) if

lim
J→∞

J−1] {k ∈ IN : jk ≤ J} = a

Remembering that
∫
Ω |ϕj(y)|2dy = 1, and thus that |ϕj|2 represents the

quantum probability density at point y ∈ Ω we see that morally :

lim
k→∞

|ϕjk(y)|2 =
1

|Ω|
∀y ∈ Ω

which expresses the (almost sure) equidistribution of eigenstates ϕj for er-
godic billiards, asymptotically when j becomes large.

But which are the ergodic Billiards ?
Clearly circular billiards are non-ergodic as can be checked on the figure.
So are “elliptic” ones.
On the contrary the “Bunimovitch Billiard , or Stadium (two Half-Circles
separated by a strip as small as we want) can be shown to be ergodic.
Joyce : J. Acoustic Soc. Am. 58, 643-655 (1975)
gives a fascinating application of the study of ergodic billiards (in dimension
3) to the Acoustics of an Auditorium !
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Une autre façon de penser à la différence entre les dynamiques régulière
et “chaotique” des 2 billards est la suivante :

• supposons que l’on connaisse la position initiale et la vitesse initiale de
la boule de billard seulement avec une précision ε.
Dans le billard circulaire, deux données initiales distantes de ε se séparent
LINÉAIREMENT au cours du temps ; donc les trajectoires correspon-
dantes seront à une distance de l’ordre de 1 après un temps de l’ordre de 1

ε

.
Ceci implique qu’au bout de ce temps, vous avez perdu toute information
utile sur votre boule : tout ce que vous pouvez dire c’est qu’elle est quelque
part sur le billard !
Si ε = 10−4 (ce qui est une très bonne précision pour un joueur de billard !),
le temps au bout duquel vous ne pouvez plus prédire où est la boule est de
104 rebonds !

• Pour le billard de Sinai, le temps au bout duquel on a “perdu le
boule” est de l’ordre de Logε ce qui est très peu : 8 rebonds seulement si
ε = 10−4. La perte d’information est très rapide dans ce cas.

Une instabilité exponentielle comme celle du billard de Sinai se mani-
feste dans de nombreux systèmes dynamiques et se définit mathématiquement
par la notion d’hyperbolicité. Elle est souvent appelée CHAOS DÉTERMINISTE
par la communauté des physiciens. Une telle dynamique est souvent dite
aussi irrégulière, imprédictible ou simplement chaotique.

Bibliographie : Tabachnikov , Billiards Panorama et Synthèses 1, SMF
(1995)



52

4.2 UN PARFUM DE THÉORIE ERGODIQUE

Les propriétés statistiques de systèmes dynamiques (en termes de leurs
mesures invariantes), et tout particulièrement le comportement à grand
temps des “moyennes” dans l’espace de phase est l’objet de la THÉORIE
ERGODIQUE, ce qui est un sujet :

•mathématiquement très bien fondé

•physiquement très fructueux, tant sur le plan des modèles expérimentaux
que numériques.

Ce que les physiciens appellent CHAOS, et dont on a vu une illustration
avec le billard de Sinai, semble décourager investigation à grand temps
de la dynamique, du moins si on cherche à suivre des orbites particulières.
Néanmoins les propriétés STATISTIQUES permettent de connâıtre que des
points typiques de l’espace de phase vont passer un certain temps dans
une région de l’espace de phase. C’est le B.A.-BA de la THÉORIE ER-
GODIQUE.

En poussant un cran plus loin, on va essayer de voir comment un système
“CHAOTIQUE” va, dans un sens statistique, faire qu’une dynamique
parfaitement DÉTERMINISTE approche en un certain sens, À GRAND
TEMPS, un système aléatoire, c’est à dire à quel taux la MÉMOIRE des
conditions initiales se PERD quand le temps évolue.
C’est le B.A.-BA de la notion de MÉLANGE que l’on abordera dans un
2ème temps

Bibliographie :
Cornfeld, Fomin, Sinai. :Erdodic theory
Petersen : idem
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Walters :An introduction to ergodic theory

Dans ce cours on se contentera d’effleurer le sujet, afin d’en dégager le
PARFUM SUBTIL...

Soit M un espace sur lequel vit une dynamique notée Φt :

a ∈ M 7→ Φt a ∈ M

et une mesure de probabilité µ (µ ≥ 0,
∫
A dµ = 1).

Typiquement, pour un système Hamilttonien classique, d’Hamiltonien H ,
et pour un niveau d’énergie E non-critique (∇H 6= 0 si H = E), on
prend :

A = ΣE surface d’énergie

Φt
H flot Hamiltonien engendré par H

dν := dσE = dΣE

|∇H| mesure de Liouville

que l’on normalise à 1 pour donner la mesure microcanonique :

dµ =
dσE∫

ΣE
dσE

(4.3)

4.2.1 ERGODICITÉ

Definition 4.2.1 Soit M un espace de probabilité, un flot Φt défini sur
M et une mesure de probabilité µ invariante par Φt. On dit que le système
dynamique représenté par (M,Φt, µ) est ergodique si pour toute fonction
f définie sur M , suffisamment régulière, la moyenne de f le long d’une
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orbite quelconque dans M est indépendante du point de départ a de l’orbite
(à t = 0), pour µ -presque tout a et égale la moyenne de f sur M :

lim
T→∞

T−1
∫ T
0
dt f(Φta) =

∫
M
f(z) dµ(z) (4.4)

pour µ-presque tout a ∈ M

Remark En réalite ceci constitue le Théorème ergodique de Birkhoff.

On a vu au paragraphe précédent que la dynamique classique sur un
billard circulaire ou elliptique est non-ergodique (ces billards sont
classiquement complètement intégrables), mais que la dynamique sur
le billard de Bunimovitch est ergodique. On s’attend à ce qu’elle soit même
très irrégulière, et une première approche de cette notion d’irrégularité
(ou chaos) est la propriété de MÉLANGE.

4.2.2 Le MÉLANGE comme une mesure de l’irrégularité de la
dynamique

Question (Q) : Soient A et B deux sous-ensembles de M (M par ex.
surface d’énergie). Á un instant t donné, quelle est le probabilité pour une
trajectoire ayant démarré en un point a de B, d’aboutir dans A à l’instant
t ?

(a ∈ B Φta ∈ A)

Intuitivement, si la dynamique est imprédictible à long terme, alors on
ne sait pas prévoir où les trajectoires vont aller plus t est grand, et donc la
réponse ne devrait pas dépendre d’où A est situé sur M .
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ni d’ailleurs de la position, de la forme ou de la taille de B.

Par contre la réponse à la question (Q) dépend de la taille de A :

( si A = M alors cette probabilité est évidemment égale à 1, tandis que
si A est petit, elle sera nécessairement petite.)

µ étant une mesure de probabilité, la quantité :

µ(Φt(B) ∩A)

µ(B)
(4.5)

est donc la fraction de toutes les trajectoires partant de B (à l’instant 0)
et aboutissent dans A à l’instant t.

On s’attend donc, pour une dynamique imprédictible à long terme,
à ce que cette fraction (2) égale la TAILLE de A (au sens de la mesure µ,
ie µ(A)). D’où la propriété :

lim
t→∞

µ(Φt(B) ∩A)

µ(B)
= µ(A) (4.6)

CETTE PROPRIÉTÉ EST APPELÉE PROPRIÉTÉ DE MÉLANGE

(au sens fort ; il existe des versions “faibles” de cette propriété).

Definition 4.2.2 Le flot Hamiltonien Φt
H est dit MÉLANGEANT sur la

couche d’énergie ΣE si quels que soient A, B ⊂ ΣE mesurables, on a :

lim
t→∞

µE(Φt
H ∩A) = µE(B)µE(A) (4.7)

où µE est la mesure microcanonique sur ΣE définie par (1).
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Remarque : Cette notion reste encore assez vague, bien que fortement in-
tuitive (voir figure). En effet, la dynamique sera d’autant plus imprédictible
à long terme que la limite (5) sera atteinte rapidement. Le summum étant
le MÉLANGE EXPONENTIEL, où :

µE(Φt
E(B) ∩A) − µE(A)µE(B) ∼ Ce−γt (4.8)

pour un C et γ > 0

4.2.3 INSTABILITÉ EXPONENTIELLE ⇒? MÉLANGE EX-
PONENTIEL

On s’attendrait à ce qu’une INSTABILITÉ EXPONENTIELLE de la dy-
namique, au sens de l’existence d’exposants de Lyapunov positifs, implique
le MÉLANGE EXPONENTIEL.

It is well-known that if a system has vanishing Lyapunov exponents, then
the DECAY of correlations can be arbitrarily slow. (Collet-Eckmann, 2003)

Ce problème est en réalité beaucoup plus subtil que cela n’en a l’air, et
nous n’entrerons pas plus avant dans le sujet.

Definition 4.2.3 (autre formulation de la PROPRIÉTÉ DE MÉLANGE)

∀f, g ∈ L2(ΣE, dµE)

we have :

lim
t→∞

(∫
ΣE

dµE(z) f ◦ Φt
H(z) g(z) −

∫
ΣE

dµE(z) f(z)
∫
ΣE

dµE(z) g(z)
)

(4.9)
La quantité entre parentheses de (4.9) s’appelle la fonction de corrélation
classique de f et g à l’instant t (ou fonction d’autocorrélation si f = g).

Lemma 4.2.4 Si le flot Hamiltonien Φt
H est MÉLANGEANT sur ΣE,

alors il est aussi ergodique (pour la mesure microcanonique). Plus généralement :

(A, Φt, µ) mélangeant ⇒ (A, Φt, µ) ergodique
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Preuve : (cas discret : Φt = T n pour une “évolution en temps discret” T
et n ∈ IN)
Montrons que (A, T, µ) est ergodique
⇐⇒ limn→∞

∑n−1
0 µ(T−jA ∩B) = µ(A)µ(B).

On a, en prenant pour f la fonction caractéristique de l’ensemble A : χA

lim
n→∞

n−1∑
0
χA(T−jx) = µ(A) (4.10)

On multiplie par χB, puis on intègre sur x :

1

n

n−1∑
0
χA(T−jx)χB(x) → µ(A)χB(x) (4.11)

1

n

n−1∑
0

(T−jA ∩B) → µ(A) µ(B)

quand n → ∞.

Or,on a : an → 0 ⇒ 1
n

∑n
0 aj → 0, et le résultat suit en prenant :

an = µ(T−nA ∩B) − µ(A)µ(B)

Exemple Il a été prouvé que le billard de Sinai est mélangeant.

En réalité la propriété de MÉLANGE a été prouvée pour peu de systèmes
Hamiltoniens en temps continu. C’est pourquoi beaucoup d’auteurs se sont
intéressés à des systèmes dynamiques en temps discret qui préservent
la mesure de façon à imiter au mieux le flot Hamiltonien ;



58

par exemple des dynamiques discrètes sur le tore comme :

• le CHAT d’Arnold

• la transformation dite du BOULANGER

De même que l’ERGODICITÉ classique exprime l’équidistribution à grand
temps des trajectoires classiques sur le domaine de l’espace de phase dis-
ponible (usuellement la SURFACE D’ÉNERGIE ΣE) ,

de même le THÉORÈME DE SCHNIRELMAN en est une traduction
“SEMICLASSIQUE” en terme d’équidistribution sur ΣE des fonctions
propres du Hamiltonien quantique.

4.3 Le Théorème de Schnirelman

Esquissé plus haut dans le cas particulier des billards, le théorème de
Schnirelman exprime que :

L’Ergodicité du flot ⇒ L’Équidistribution des fonctions propres

CLASSIQUE du HAMILTONIEN QUANTIQUE

A LA LIMITE h̄ → 0

(dans le cas des billards, la LIMITE SEMICLASSIQUE était simplement
l’asymptotique à Haute Énergie)

Depuis sa formulation par Schnirelman en 1974, le théorème a connu
beaucoup d’AVATARS
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(au sens étymologique de “réincarnations successives” !), en particulier dans :

• l’Opérateur de Laplace-Beltrami sur des variétés compactes à courbure
négative

• des Billards à courbure irrégulière

• des Opérateurs de Schrödinger à potentiel régulier

Assumptions

(H1) H(h̄, z) � ∑∞
j=0 h̄

jHj(z) Hj : Z 7→ IR ∈ C∞(Z)

(H2) H0 bounded from below and

0 ≤ H0(z) + γ0 ≤ C(H0(z
′) + γ0)(1 + |z − z′|)M ∀z, z′ ∈ Z

(H3) ∀j ∈ IN, ∀γ ∈ IN2n |∂γzHj(z)| ≤ C(H0(z) + γ0)

(H4) |∂γz (H(h̄, z) − ∑N
0 h̄

jHj(z))| ≤ C(N, γ)h̄N+1 ∀h̄ ∈ (0, 1)
uniformly for z ∈ Z

(H5) Let Icl :=]λ−, λ+[ be an interval of classical energy, thenH−1
0 (Icl)

is bounded in IR2n (the energy surfaces for E ∈ Icl are all compact)

(H6) E is a noncritical value for H0 namely H0(z) = E ⇒ ∇zH0 6= 0

(H7) The dynamical system (ΣE, dLE, φ
t
H0

) is ergodic (recall that dLE
is the Liouville measure defined in (1.4))

Let Ĥ be the Weyl quantization of H(h̄, z). It is a selfadjoint operator
in H. The assumptions H1-H5 imply that for any interval J ⊂ Icl and for
h̄ small enough, the spectrum of Ĥ in J is pure point :

sp(Ĥ)
⋂
J = {Ej(h̄)}Nj=1 forN := N(h̄) = O(h̄−n)
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Denote by ϕj the corresponding eigenstates.

Lemma 4.3.1 Let J = [E−, E+] with E± non critical for H0. We have :

NJ(h̄) = h−nV olZ(H−1
0 (J)) + O(h̄1−n) (4.12)

Which is known as the Weyl asymptotic formula

Intuition A quantum state in H occupates a phase-space volume of size
hn, as we have for instance explicited for coherent states. Thus a volume
A ⊂ Z contains V ol(A)

hn “quantum states” asymptotically as h → 0.

We shall now consider a small energy interval around E ∈ Icl :

I(h̄) = [E − δ(h̄), E + δ(h̄)] (4.13)

where δ(h̄) ≥ εh̄ for some ε > 0.

Λ(h̄) := {j : Ej(h̄) ∈ I(h̄)} (4.14)

Nh̄ = ]Λ(h̄) (4.15)

ConsiderA ∈ O(0) a classical observable, with Â its Weyl quantization.
We define :

Aj,k := 〈ϕj, Âϕk〉 (4.16)

the matrix element of Â in the eigenstates of Ĥ for j, k ∈ Λ(h̄)

Theorem 4.3.2 Schnirelman Theorem
Under assumptions H1-H7 for H, and for any classical observable A ∈
O(0), ∀h̄ sufficiently small ∃M(h̄) ⊆ Λ(h̄) depending only on H
such that :

lim
h̄→0

]M(h̄)

]Λ(h̄)
= 1 (4.17)

and
lim
h̄→0

Aj,j =
∫
ΣE

A(z)dLE(z) (4.18)
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We shall not give here the proof that is relatively sophisticated. We shall
content ourselves to indicate in which respect this expresses the “almost
sure” equidistribution of eigenstates ϕj on ΣE.

We have shown that, by denotingWϕj
the Wigner distribution associated

to some eigenstate ϕj ∈ H :

〈ϕj, Âϕj〉 =
∫
Z
A(z)Wϕj

(z)dz (4.19)

Therefore rewritting the RHS of (4.18) as∫
Z A(z)δ(H(z) − E)dz∫

Z δ(H(z) − E)dz

we see that, at least along the subsequence of j’s in Mj(h̄) :

lim
h̄→0,j→∞

Wϕj
(z) =

1

|ΣE|
δ(H(z) − E) (4.20)

which “morally” expresses the almost sure equidistribution semiclassi-
cally in phase space in the highly excited levels ϕj on the energy shell ΣE.

We can say a bit more when the system is not only ergodic but also
mixing :

Theorem 4.3.3 Under assumptions H1-H6, and that the classical flow is
mixing on ΣE, (property (3.42)), then ∀A ∈ O(m), we have for M(h̄)
as in Theorem 4.3.2 that ∀j ∈ M(h̄), k ∈ Λ(h̄), j 6= k :

lim
h̄→0,j,k→∞

Aj,k = 0 (4.21)

This expresses that the off-diagonal terms of any observable Â vanish at
the semiclassical limit, even for unbounded observables.



Chapitre 5

Trace Formulas. Mathematical
Approach

5.1 First Prototype : The Poisson summation For-

mula

Under suitable definition of the Fourier Transform f → f̃ , we have :

+∞∑
n=−∞

f(n) =
+∞∑

k=−∞
f̃(2kπ) (5.1)

which holds true for any f ∈ S(IRn) (that implies of course that also
f̃ ∈ S(IRn)), and which is therefore perfectly symmetric between f, f̃ .

Why do we mean that it is a Trace Formula ?

Consider the quantum operator in dimension 1 : P̂ = −i d
dx

acting on
L2([0, 2π]), with periodic boundary conditions u(0) = u(2π). It is an
unbounded operator, whose spectrum if purely discrete :

sp(P̂ ) = ZZ

Therefore the LHS of equ. (4.1) is nothing but trf(P̂ ).

What does the RHS represents physically ?

Imagine a classical Hamiltonian H(q, p) := p, where q ∈ [0, 2π]. (P̂
is actually the Weyl quantization (for h̄ = 1) of H in L2([0, 2π]) with
Periodic Boundary conditions).

62
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The associated Hamilton’s equations are

q̇ = 1 , ṗ = 0

anf thus : q = t (mod 2π)

The classical trajectories are thus all closed ie periodic in phase space,
and are k-repetitions of the primitive orbit of period 2π, ∀k ∈ ZZ.
This means that the periods of the classical flow are of the form 2kπ k ∈
ZZ.

The summation Poisson Formula thus expresses that the trace of a
function of a quantum Hamiltonian of a very peculiar form is the
sum on the periodic orbits of the corresponding classical flow of
the Fourier Transform of that function taken at the periods of the classical
flow.

5.2 Second Prototype : The Harmonic Oscillator in

dimension 1

Ĥ0 :=
P̂ 2 + Q̂2

2
(5.2)

acting in L2(IR) has spectrum n + 1
2 (here again we let h̄ = 1), where

n ∈ IN.

Take f ∈ S([0,+∞]). Then obviously

trf(Ĥ0) =
∞∑
n=0

f(n+
1

2
) (5.3)

Replace f by T̂ (q, 0)f = f(.+ q) in equ. (5.1). It becomes∑
n∈ZZ

f(n+ q) =
∑
k∈ZZ

e2iπkqf̃(2kπ)

Thus taking q = 1/2 eikπ = (−1)k which yields :

∞∑
n=0

f(n+
1

2
) =

∑
k∈ZZ

(−1)kf̃(2kπ) (5.4)
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Since the classical trajectories of the classical Harmonic Oscillator are of
the form

q(t) = Asin(t+ α)

every orbit is therefore periodic, with a period which is a k-repetition of the
primitive orbit of period 2π. The periods of the closed orbits of the classical
flow are thus {2kπ}k∈ZZ.

We see here a factor (−1)k ≡ e(2k)iπ/2 which is here the first manifes-
tation of a “Maslov Index” 2k.

Here again, equ. (5.3) expresses that the trace of the function of a Quan-
tum Hamiltonian can be written as a sum over the periodic orbits of the
corresponding classical flow of the Fourier Transform of that function, ta-
ken at the periods of the classical flow, up to some factor of the form
eσkiπ/2 where σk is the Maslov index of the orbit.

5.3 Generalisation. The case of classically chaotic Sys-

tems

The examples provided in the two previous sections are in dimension 1
and therefore integrable, since the “energy” is the unique conserved quan-
tity, but there can be only one in this case. For systems in dimension n > 1
that are completely integrable, ie have exactly n conserved quantities
(among which is the energy), the space-phase is folliated into n invariant
tori determined by the conserved quantities, and Berry-Tabor have heuristi-
cally established that the trace of f(Ĥ) (or the so-called “density of states”
in the sense of distributions) is written as a sum on the invariant tori of
quantities involving f̃ and characteristics of these tori. The mathematical
proof of it was in advance, since in 1973, Colin de Verdière established the
result for compact manifolds.

In the case of non-completely integrable systems, thus having some “chao-
tic properties” in the rather vague physical terminology, Poincaré was the
first to notice, in the very beginning of the last century, that the family
of periodic orbits, generally unstable constitutes the “skeleton” around
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which the dynamics organizes so to say, although it is in general rather
irregular and unpredictable.

However this remark has remained largely ignored until the years 1972-
73, where independently, Balian and Bloch, and Gutzwiller proposed Trace
Formulae for these systems, as a (highly divergent ) sum over the unstable
periodic orbits of the classical flow (and thus on the “skeleton”of the cor-
responding classical dynamics), of quantities involving :

-The periods of these orbits

-The classical action along these orbits

- Maslov indices for them

-The so-called “Poincaré map” or monodromy matrix of these orbits.

Rigorous proofs of such Trace Formulas were multiple, and do not over-
come the difficulties inherent to the exponential proliferation of such orbits
when time (period) becomes large. Contrarily to the formulas (5.1) and (5.3)
they violate the symmetry between f, f̃ , and thus the quantum/classical
symmetry. In the Semiclassical Trace Formulae, f̃ is assumed to have com-
pact support, which has the effect of truncating the sum on periodic orbits,
since f̃(Tγ) = 0 for Tγ , the period of the closed orbit γ, being sufficiently
large.

Let us open for a while a heuristic parenthesis on billiards

For billiards, the “quantum/classical duality” of trace formulae is expres-
sed in terms of

-The wave-number k for the quantum equation (−∆Ω + k2)ψ = 0

-The lengths Lj of the periodic orbits inside Ω.
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On the quantum side :
In the sense of distributions, the “density of states” (or rather the density
of wavenumbers) is :

ρ(k) :=
∑
n
δ(k − kn)

where the kn’s satisfy

(−∆Ω + k2
n)ψn = 0, ψn ∈ L2(Ω)

The dominant (semiclassical) term of ρ(k) is the Weyl term of the form

ρ̄(k) = Cd|Ω|kd−1, Ω ∈ IRd

ie for billiards in dimension d.

We are interested in the fluctuations, or oscillations of ρ(k) around its
semiclassical mean value ρ̄(k) :

ρosc(k) := ρ(k) − ρ̄(k)

On the classical side :

The “classical spectrum” of lengths of periodic orbits indide Ω is denoted
{Lj}.(note that there is a priori no operator of which it is the “spectrum”
in the spectral theory of operators sense, and thus it is an abuse of language,
just put forward in order to manifest the duality quantum/classical). To
each Lj corresponds a primitive orbit of length Lp :

Lj = rLp, r ∈ IN∗

and we denote νj, Mj the Maslov index and Monodromy matrix respecti-
vely. We assume (“Gutzwiller Hypothesis”) thatMj doesn’t have eigenvalue
1. Let Aj be of the following form :

Aj :=
Lpe

iνjπ/2

| det(Mj − 1l)|1/2
(5.5)

One defines a classical distribution of length with the help of these
weigths Aj :

ρcl(L) :=
∑
j

Ajδ(L− Lj)
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and as in the quantum case we substract to it its “mean value” in a suitable
sense, thus defining :

ρosccl (L) = ρcl(L) − ρ̄cl(L)

Then the quantum/classical duality is expressed via a Semiclassical
Trace Formula which is simply, in distributional sense :

ρosc(k) ∼k→∞ Fρosccl (L) (5.6)

where by F we simply denote the Fourier Transform.

We close this parenthesis on this formula which seems rather appealing,
although completely heuristic, and gives the flavor of what a Semiclassical
Trace Formula can be.

In what follows we give a mathematical content to Semiclassical Trace
Formula, in the case of regular Hamiltonian Systems.

Theorem 5.3.1 Let H satisfy (H1)-H6, and Ĥ its Weyl quantization.
Consider the classical flow φtH0

of H0 on ΣE : {H0(z) = E}, and denote
by γ the periodic orbits of this flow. We assume in addition (Gutzwiller
Hypothesis) that the Poincaré map Pγ dosn’t have 1 as eigenvalue, namely
that the orbits γ are nondegenerate. Then for any ϕ ∈ S : ϕ̃ ∈ C∞

0 ,
we have, asymptotically as h̄ → 0 :

trϕ

Ĥ − E

h̄

 � h−n
ϕ̃(0)|ΣE|h̄+

∑
j≥2

h̄jc0,j(ϕ̃)

 (5.7)

+
∑
γ

eiSγ/h̄ + iσγπ/2

| det(1l − Pγ)1/2|

ϕ̃(Tγ)
T ∗
γ

2π
e−i

∫
γ
H1 +

∑
j≥1

h̄jcγ,j(ϕ̃)


where :
γ∗ is the primitive orbit corresponding to γ
Tγ (resp. T ∗

γ ) is the period of γ (resp. γ∗)
σγ is the Maslov index of γ
Sγ is the classical action along γ
Pγ is the Poincaré map of γ
c0,j are distributions supported in {0}
cγ,j are distributions supported in {Tγ}
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Note that the duality Quantum/Classical is violated by the condition
that ϕ̃ is of compact support.
The First line of (5.7) corresponds to the “regular part” in h̄, and we reco-
gnize the dominant Weyl term (with corrections in h̄ that Gutzwiller had
“omitted”, or neglected...)
The Second line corresponds to the “oscillating part” in h̄, which is, as ex-
pected, a sum over the periodic orbits of the classical flow (here truncated
since ϕ̃(Tγ) = 0 for γ large).

The first proofs of Theorem 5.3.1 used the sophisticated theory of FIO,
and thus encounters “caustic problems”. We shall indicate very briefly how
the use of coherent states allows to work entirely in phase-space, and thus
avoids this difficulty.

trϕ

Ĥ − E

h̄

 = tr
(∫
dteit(E−Ĥ)/h̄ϕ̃(t)

)

= h−n
∫
dteitE/h̄ϕ̃(t)

∫
Z
dz〈z|e−itĤ/h̄|z〉

Replacing the expectation value in |z〉 by its semiclassical approximation,
we can replace it (to dominant order in h̄) by :

eiγt+iδt/h̄〈z|Φ(z, t)〉

The above scalar product is explicit since Φ(z, t) is simply Gaussian, and
therefore the overall integrand in (t,z) is ot the form

amplitude× eiPhase/h̄

and we can use Stationary Phase Theorems. The Phase will be stationary
iff

z = zt z ∈ ΣE

which leads to the first line for t = 0, z ∈ ΣE

and to the second line if t = Tγ, z ∈ γ ∈ ΣE.


