Yves Bertot

Coq in a Hurry

Keywords:

, which also provides an extensive collection of exercises to train on.

This version has been checked with coq-8.7

1 Expressions and logical formulas

The Coq system provides a language in which one handles formulas, verifies that they are well-formed, and proves them. Formulas may also contain functions and limited forms of computations are provided for these functions.

Writing correct formulas

The first thing you need to know is how you can check whether a formula is well-formed. The command is called Check. Here are a few examples, which use a few of the basic objects and types of the system. Commands are always terminated by a period. In the following, text in this style is text that the user sends to the Coq system, while text in this style is the answer of the system.

Check True.

<= 6 : Prop

The notation A :B is used for two purposes: the first is to indicate that the type of the expression A is the expression B, the second purpose which will appear later is to express that A is a proof of B. This notation can also be used in expressions we build, if we want to be explicit about the type an expression should have: Check (3,3=5):nat*Prop.

(3,3=5):nat * Prop : nat * Prop Among the formulas, some can be read as logical propositions (they have type Prop), others may be read as numbers (they have type nat), others may be read as elements of more complex data structures. You can also try to check badly formed formulas and in this case the Coq system returns an informative error statement.

Complex formulas can be constructed by combining propositions with logical connectives, or other expressions with addition, multiplication, the pairing construct, and so on. You can also construct a new function by using the keyword fun, which replaces the λ symbol of lambda calculus and similar theories. The following Check command contains the description of a function that takes a number x of type nat as input and returns the proposition that x is equal to 3. The next Check command contains a logical proposition which can be read as For every natural number x, either x is less than 3 or there exists a natural number y such that x = y + 3.

Check (fun x:nat => x = 3). fun x : nat => x = 3 : nat -> Prop Check (forall x:nat, x < 3 \/ (exists y:nat, x = y + 3)). forall x : nat, x < 3 \/ (exists y : nat, x = y + 3) : Prop

The following Check command illustrates the use of a let .. in construct, which makes it possible to give a temporary name to an expression. In this case the expression is a function that takes as input a number and returns a pair of numbers. In this example, we also see that the notation for applying a function f to a value, here 3, is simply written with the function name f and the argument 3 side-by-side. Contrary to usual mathematical practice, parentheses around the argument are not mandatory.

Check (let f := fun x => (x * 3,x) in f 3). let f := fun x : nat => (x * 3, x) in f 3 : nat * nat Please note that some notations are overloaded. For instance, the * sign is used both to represent conventional multiplication on numbers and the cartesian product on types. One can find the function hidden behind a notation by using the Locate command.

Locate "_ <= _". Notation Scope "n <= m" := le n m : nat_scope (default interpretation)

The conditions for terms to be well-formed have two origins: first, the syntax must be respected (parentheses must be balanced, binary operators must have two arguments, etc); second, expressions must respect a type discipline. The Check command not only checks that expressions are well-formed but it also gives the type of expressions. For instance we can use the Check command to verify progressively that some expressions are well-formed. The last example also shows that the notation /\ is an infix notation for the function and. You can check this by using the Locate command.

Check

Evaluating expressions

You can also force the Coq system to evaluate an expression, here is an example of evaluation:

Compute let f := fun x => (x * 3, x) in f 3. = (9, 3) : nat * nat After executing this command, the function f is not defined, it was just defined temporarily inside the expression that was evaluated. Here f can be used only inside the expression f 3.

Exercise on functions (exercise 2.5 from [START_REF] Bertot | Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions[END_REF]) Write a function that takes five arguments and returns their sum, use Check to verify that your description is wellformed, use Compute to force its computation on a sample of values. solutions to all exercises are given at the end of these notes.

Programming in Coq

In the Coq system, programs are usually represented by functions. Simple programs can be executed in the Coq system itself, more complex Coq programs can be transformed into programs in more conventional languages and executed outside Coq (see the Extraction command in the Coq manual [START_REF]The Coq proof Assistant Reference Manual[END_REF]).

Defining new constants

You can define a new constant by using the keyword Definition. Here is an example:

Definition example1 := fun x : nat => x*x+2*x+1.

An alternative, exactly equivalent, definition could be:

Definition example1 (x : nat) := x*x+2*x+1.

After executing one of these commands, the function can be used in other commands:

Check example1. example1 : nat -> nat Compute example1 1. = 4 : nat Sometimes, you may want to forget a definition that you just made. This is done using the Reset command, giving as argument the name you just defined. Moreover, if you want to see the definition of an object, you can use the Print command. When using a specialized environment for developing your proofs, like Coqide or Proof-general, you simply need to move the point of execution from one place of the document to another, using arrows that are provided at the top of the working window.

boolean conditional expressions

One of the basic pre-defined types of Coq is the type of boolean values. This type contains two values true and false. However, to use boolean expressions fully, one needs to load a library, called Bool, this brings the definitions of boolean conjunction, boolean disjunction, boolean negation, etc.

Require Import Bool.

Boolean values can be tested with an if ...then ...else ... construct, as in the following example:

Compute if true then 3 else 5.

= 3 : nat

Knowing what functions are provided for this datatype can be done using the commands SearchPattern and Search. For instance, here is the result of the SearchPattern command.

SearchPattern bool.

false: bool true: bool negb: bool -> bool implb: bool -> bool -> bool orb: bool -> bool -> bool eqb: bool -> bool -> bool xorb: bool -> bool -> bool andb: bool -> bool -> bool Nat.odd: nat -> bool Nat.even: nat -> bool ifb: bool -> bool -> bool -> bool Nat.leb: nat -> nat -> bool Nat.eqb: nat -> nat -> bool Nat.testbit: nat -> nat -> bool Nat.ltb: nat -> nat -> bool

The command SearchPattern takes a pattern as argument and returns any symbol whose type finishes with that pattern. The command Search takes a list of patterns as arguments and returns any symbol whose type contains all the patterns in the list.

Computing with natural numbers

Another of the basic pre-defined types of Coq is the type of natural numbers. Again, to use this datatype fully, one needs to load a library called Arith.

Require Import Arith.

For natural numbers (numbers from 0 to infinity), there is another way to describe conditional computation. The idea is to express that every number satisfies one of two cases: either it is 0, or it is the successor of another natural number p, and this is written S p. Thus, 1 is actually S 0, 2 is S (S 0) and so on.

Thus, there are two cases for a natural number, either it is 0 or it is the successor of another number. Expressing the distinction between the two cases is written as in the following function, which returns a boolean value. This boolean value is true exactly when the argument is 0.

Definition is_zero (n:nat) := match n with 0 => true | S p => false end.

The expression match ...with ...end is called a pattern-matching construct. The value of the expression depends on the pattern that n satisfies: if n fits in the pattern 0, then the value of the expression is true. If n fits in the pattern S p, then the value is false. In the pattern S p, the symbol S is used to describe the concept of successor, so intuitively, if n fits the pattern S p, this means that we detected that n is the successor of some number. The occurrence of p in this pattern introduces a local variable, which receives the value of which n is the successor, and p can be used in the right hand side of the => arrow sign.

Pattern-matching is used frequently to compute on natural numbers. For instance, the Coq system contains a function named pred, which maps any successor number larger than 0 to its predecessor and which maps 0 to itself.

Print pred.

Notation pred := Init.Nat.pred Print Init.Nat.pred.

Init.Nat.pred = fun n : nat => match n with | 0 => n | S u => u end : nat -> nat Argument scope is [nat_scope]
The definition of pred uses the pattern-matching construct to express that any number of the form S u will be mapped to u and any number of the form 0 will be mapped to itself.

Another feature that is used frequently to compute on natural numbers is recursivity. When defining a function using pattern matching, we are allowed to use the function that we are defining on the predecessor of the argument. Coq is very sensitive to recursive definitions, and we have to use a specific keyword to express that recursion will be used in the definition. This keyword is called Fixpoint. Here is an example of a recursive function that adds the first natural numbers: Fixpoint sum_n n := match n with 0 => 0 | S p => p + sum_n p end.

When describing a recursive function, we have to respect a constraint called structural recursion. The recursive call can only be made on a subterm of the initial argument. More precisely the argument of the recursive call must be a variable, and this variable must have been obtained from the initial argument through pattern matching. This constraint is used to ensure that every computation terminates, even if it involves recursive functions. The definition of sum n is well-formed, because sum n is only used on p, which is a variable in the pattern S p used to match the initial argument n.

For instance, the following definition is not accepted because it fails to respect the contraint of structural recursion.

Fixpoint rec_bad n := match n with 0 => 0 | S p => rec_bad (S p) end. Error: Recursive definition of rec_bad is ill-formed. In environment rec_bad : nat -> nat n : nat p : nat Recursive call to rec_bad has principal argument equal to "S p" instead of p.

Recursive functions may have several arguments. In this case, the constraint of structural recursion must be satisfied by one of the argument positions. For instance, the following function takes an extra argument and adds the first natural numbers to this extra argument. The constraint of structural recursion is satisfied for the first argument: in the recursive call, p is the argument in first position and it is obtained by patternmatching from the initial argument in first position, n: Fixpoint sum_n2 n s := match n with 0 => s | S p => sum_n2 p (p + s) end.

We can also define recursive functions that return values in other datatypes, like the type of boolean values, as in the following function that computes whether its argument is even:

Fixpoint evenb n := match n with 0 => true | 1 => false | S (S p) => evenb p end.
This function also shows new possibilities: we can use deep pattern-matching and have more than two cases in the pattern-matching construct. However, Coq will still check that all cases are covered, and recursive calls are still allowed only on variables obtained through pattern-matching.

Computing with lists

Several pieces of data of the same type can be grouped in lists. To use this, we need to tell Coq to load another library.

Require Import List.

To group several elements in the same list, we simply need to write them together, separated by two columns '::', and to add '::nil' at the end.

Check 1::2::3::nil. 1 :: 2 :: 3 :: nil : list nat

The notation '::' is actually used to add an element at the head of another list. Thus, nil represents an empty list, 3::nil represents a list with only the element 3, and 2::3::nil represents a list with 2 at the head of a list with only the element 3.

There are a few pre-defined functions on lists. For instance, there is a list concatenation function, named app, and usually noted with ++, and there is a list processing function map that takes as inputs a function and a list of values, and returns the list of results of this function applied to these values.

Compute map (fun x => x + 3) (1::3::2::nil). = 4::6::5::nil : list nat Compute map S (1::22::3::nil). = 2::23::4::nil : list nat Compute let l := (1::2::3::nil) in l ++ map (fun x => x + 3) l. = 1::2::3::4::5::6::nil : list nat

Finding more functions

The Coq system provides a few tools to help find the functions that have already been defined in the libraries. The first tool is the SearchPattern command. For instance, if one is looking for a testing function to compare if two natural numbers are equal, we can foresee that such a function should take two natural numbers as arguments and return a boolean value. It is thus useful to ask Coq to enumerate all the functions that return a value of type nat -> nat -> bool.

SearchPattern (nat -> nat -> bool).

If the Require commands for Arith, List, and Bool have already been executed, then this command produces about 8 lines of result. From the names of the functions, it seems that Nat.eqb could be the one we are looking for. We can now ask to have more information about these functions, for instance by asking what theorems are known about Nat.eqb. The command Search returns all the known theorems that mention a given symbol.

Search Nat.eqb. Nat.eqb_refl: forall x : nat, (x =? x) = true beq_nat_refl: forall n : nat, true = (n =? n) Nat.eqb_sym: forall x y : nat, (x =? y) = (y =? x) Nat.eqb_spec: forall x y : nat, reflect (x = y) (x =? y) beq_nat_eq: forall n m : nat, true = (n =? m) -> n = m beq_nat_true: forall n m : nat, (n =? m) = true -> n = m Nat.eqb_eq: forall n m : nat, (n =? m) = true <-> n = m beq_nat_false: forall n m : nat, (n =? m) = false -> n <> m ... It is puzzling to see no occurrence of the symbol Nat.eqb in these statements, but it is hidden in one of the notations.

Locate "_ =? _". Notation Scope "x =? y" := Nat.eqb x y : nat_scope (default interpretation)

The statements of these theorems simply express that x =? y returns true exactly when the two arguments are equal. It is an interesting feature of the Coq system that the functions it contains are documented by the theorems that are known about these functions. And the system verifies that the documentation is consistent with the functions behavior, because each of the theorems has been verified! Exercise on lists, map, and app Define a function that takes as input a number n and returns a list with n elements, from 0 to n -1.

To access the elements of a list, we can use the same pattern-matching construct as the one we used for natural numbers, with a small change. A list can satisfy one of two cases: either it is the empty list, or it has an element at the head of another list. In the second case, the pattern-matching construct makes it possible to give names to the first element and the rest of the list. See in the following example, which returns true if the argument list has at least one element and the first element is even: Definition head_evb l := match l with nil => false | a::tl => evenb a end.

We can also use recursion on lists, with the same kind of structural recursion constraint as for recursion on natural numbers. Recursive calls can only be made on direct sublists. For instance, the following function adds up all the elements present in a list of numbers:

Fixpoint sum_list l := match l with nil => 0 | n::tl => n + sum_list tl end.

As an example, we can write a simple program that sorts a list of natural numbers, knowing that the Coq system already provides a function noted x <=? y to compare two natural numbers and return a boolean value.

Fixpoint insert n l := match l with nil => n::nil | a::tl => if n <=? a then n::l else a::insert n tl end.

Fixpoint sort l := match l with nil => nil | a::tl => insert a (sort tl) end.

We can then test this function on a simple example:

Compute sort (1::4::3::22::5::16::7::nil). 1::3::4::5::7::16::22::nil : list nat Exercise on sorting Define a function that takes a list as input and returns true when it has less than 2 elements or when the first element is smaller than or equal to the second one. Then define a function that takes a list as input and returns true exactly when this list is sorted (Hint: when the list has at least two elements, the first element must be smaller than the second element and the tail must be sorted, use the first function to write the second one).

Exercise on counting Knowing that the Coq system provides a function Nat.eqb to compare two natural numbers (Nat.eqb n p returns true exactly when n = p), define a function count list that takes a natural number and a list and returns the number of times the natural number occurs in the list.

Propositions and proofs

The notation t:B is actually used for several purposes in the Coq system. One of these purposes is to express that t is a proof for the logical formula B1 .

To construct proofs of formulas, we can simply look for existing proofs. Alternatively, we can construct new proofs and give them a name.

Finding existing proofs

One can find already existing proofs of facts by using the commands Search and SearchPattern. The argument of this command should always be an identifier. The theorem le S uses a function S, this function maps any natural number x to its successor x + 1 (we already saw this function S when describing pattern-matching on natural numbers). Actually, the notation 3 is only a notation for S (S (S O)). The statement of le S reads as : for every n and m, numbers of type nat, if n is less than or equal to m, then n is less than or equal to the successor of m. The arrow, ->, which was already used to represent function types is used here to represent implication between propositions. In practice, the ambiguity between the two uses of -> is never a problem.

Search

The command SearchPattern takes a pattern as argument, where some of the arguments of a predicate can be replaced by incomplete expressions (we use a special anonymous variable to represent holes in incomplete expressions).

SearchPattern (_ + _ <= _ + _).

plus_le_compat_r: forall n m p : nat, n <= m -> n + p <= m + p plus_le_compat_l: forall n m p : nat, n <= m -> p + n <= p + m Nat.add_le_mono: forall n m p q : nat, n <= m -> p <= q -> n + p <= m + q plus_le_compat: forall n m p q : nat, n <= m -> p <= q -> n + p <= m + q Nat.crossmul_le_addsquare:

forall a b : nat, 0 <= a -> 0 <= b -> b * a + a * b <= a * a + b * b
The command SearchRewrite is similar, but it only looks for rewriting theorems, that is, theorems where the proved predicate is an equality. The listed theorems are those for which the pattern fits one of the members of the equality in the conclusion.

SearchRewrite (_ + (_ -_))

.

le_plus_minus: forall n m : nat, n <= m -> m = n + (m -n) le_plus_minus_r: forall n m : nat, n <= m -> n + (m -n) = m Nat.add_sub_assoc: forall n m p : nat, p <= m -> n + (m -p) = n + m -p

Constructing new proofs

The usual approach to construct proofs is known as goal directed proof, with the following type of scenario:

1. the user enters a statement that they want to prove, using the command Theorem or Lemma, at the same time giving a name for later reference, 2. the Coq system displays the formula as a formula to be proved, possibly giving a context of local facts that can be used for this proof (the context is displayed above a horizontal line written =====, the goal is displayed under the horizontal line), 3. the user enters a command to decompose the goal into simpler ones, 4. the Coq system displays a list of formulas that still need to be proved, 5. back to step 3.

The commands used at step 3 are called tactics. Some of these tactics actually decrease the number of goals. When there are no more goals the proof is complete, it needs to be saved, this is performed when the user sends the command Qed. The effect of this command is to save a new theorem whose name was given at step 1. Here is an example:

Lemma example2 : forall a b:Prop, a /\ b -> b /\ a. 1 subgoal ============================ forall a b : Prop, a /\ b -> b /\ a Proof. intros a b H. 1 subgoal a, b : Prop H : a /\ b ============================ b /\ a split. 2 subgoals ... H : a /\ b ============================ b subgoal 2 is: a destruct H as [H1 H2]. ... H1 : a H2 : b ============================ b exact H2. 1 subgoal ... H : a /\ b ============================ a intuition.
No more subgoals

Qed. example2 is defined

The theorem that is defined is called example2, it can later be used in other tactics. This proof uses several steps to describe elementary reasoning steps. There is a large collection of tactics in the Coq system, each of which is adapted to a shape of goal. Each goal actually has two parts, a context and a conclusion. The elements of the context usually have the form a : type or H : formula , and we call them hypotheses. They represent facts that we can temporarily assume to hold. The tactic destruct H as [H1 H2] was used because the hypothesis H was a proof of a conjunction of two propositions. The effect of the tactic was to add two new hypotheses in the context, named H1 and H2 and to remove H.

It is worthwhile remembering a collection of tactics for the basic logical connectives. We list basic tactics in the following table, inspired from the table in [START_REF] Bertot | Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions[END_REF] (p. 130). To use this table, you should remember that each connective can appear either in an hypothesis of the context (and we assume this hypothesis is named H) or in the conclusion of the goal. The tactic to be used in each case is not the same. When working on hypothesis, you should use the tactics listed in rows starting with "Hypothesis". For instance, the first step of the proof of example2 works on a universal quantification, in the conclusion, hence the tactic that is used is intros. This intros tactic has three arguments a, b, and H, so it actually processes the first three connectives of the conclusion: two universal quantifications and one implication. The second step works on a conjunction /\ and in the conclusion, hence the tactic is split. The third step works on a conjunction and in the hypothesis H, hence the tactic is destruct H as [H1 H2]. The fourth step is not referenced in the table: the tactic exact H2 simply expresses that we want to prove a statement that is present in the context, in the hypothesis H2. A tactic assumption could also have been used to express that we want Coq to look for one hypothesis whose statement is the same as the conclusion. The fifth step performs a less elementary step: it calls an automatic tactic called intuition. When using the tactic elim or case, this usually creates new facts that are placed in the conclusion of resulting goals as premises of newly created implications. These premises must then be introduced in the context using the intros tactic, which is the tactic to work on implication when they are in the conclusion, according to the table. A quicker tactic does the two operations at once, this tactic is called destruct.

⇒

All tactics that work on hypotheses and take hypothesis names as arguments, like destruct, apply, or rewrite, can also take theorem names as arguments. Thus, every theorem you prove and save can later be used in other proofs.

More examples using tactics

We can illustrate these tactics on the proof of yet another example:

Lemma example3 : forall A B, A \/ B -> B \/ A.
The purpose of this proof is to show that the "or" logical connective is commutative. In English, the statement can be read as "for any two propositions A and B, if A \/ B holds (read this as A or B), then B \/ A holds". Our first reasoning step handles the universal quantification and the implication. It introduces the universally quantified propositions and the hypothesis in the context. The semi-column ';' is used to compose several tactics together. More precisely, the tactic on the right hand side is applied to all the goals produced by the tactic on the left hand side. Here, the tactic right transforms the goal's conclusion B \/ A into A (it states that we want to prove the right-hand part of the 'or' statement); then the tactic assumption proves this by finding an assumption with A as statement, namely H1. Because the tactic right; assumption solves the first goal, the Coq system answers by displaying only the second goal, which is now the only one. We can solve this goal in a similar manner by choosing to prove the left-hand side.

Proof

left; assumption.

No more subgoals.

Qed.

As usual we finish our proof by writing Qed. This saves the proof as a theorem that we can use later.

Examples using apply

According to the Then the tactic apply th replaces the current goal with n goals, whose statements are A1 a1 ... ak, . . . An a1 ... ak. This works well when all the variables that are universally quantified (here x1 . . . xn) appear in the goal conclusion. By matching the theorem's conclusion with the goal conclusion, the Coq system is able to infer that x1 has to be a1, x2 has to be a2, and so on. When a variable does not occur in the theorem's conclusion, the Coq system is not able to infer the value this variable must take, but the user can specify its value using a directive with.

Let's illustrate this with two examples. In the first example, we only illustrate the simple use of apply. We use two theorems about comparisons between natural numbers. We need to remember that 3 is actually a notation for S (S (S 0)) and 5 is a notation for S (S (S (S (S 0)))). Now, in a first step, we can apply the theorem le S. This will match the theorem's conclusion n <= S m with the goal 3 <= 5, thus finding the right choice for the variables n and m is 3 and 4 respectively. A new goal, corresponding to the theorem's premise is created.

Proof. apply le_S. ============================ 3 <= 4

In a second step, we can apply again the same theorem. This time the Coq system figures out that n has to be 3 and m has to be 3. apply le_S.

============================ 3 <= 3

Now we get a goal that is an instance of le n. This is again checked by the apply tactic, but this time there is no new suboal generated and we can save the proof.

apply le_n.

No more subgoals. Qed.

In a second example, let's illustrate the case where some variable that is universally quantified in the hypothesis or theorem statement does not appear in the theorem's conclusion. A typical theorem that exhibits this characteristic is a transitivity theorem, like the transitivity theorem for the order "less than or equal to" on natural numbers. If we try to use le trans with the apply tactic as before, we get an error message.

apply le_trans.

Error: Unable to find an instance for the variable m.

The variable m does not occur in the conclusion of the theorem. Matching the respective conclusions of the theorem and the goal does not help finding the value for this variable.

The user can give the value by hand:

apply le_trans with (m := 10).

subgoals ============================

x <= 10 subgoal 2 is: 10 <= y assumption. assumption. Qed.

Examples using rewrite

Equality is one of the most common way to express properties of programs. As a consequence, many theorems have a conclusion that is an equality. The most practical tactic to use these theorems is rewrite.

Most theorems are universally quantified and the values of the quantified variables must be guessed when the theorems are used. The rewrite tactic guesses the values of the quantified variables by finding patterns of the left-hand side in the goal's conclusion and instanciating the variables accordingly. Let's illustrate this on an example. Lemma example6 : forall x y, (x + y) * (x + y) = x*x + 2*x*y + y*y. Proof. intros x y.

At this point we would like to use a theorem expressing distributivity, let's search for this theorem using the SearchRewrite command. We can observe that the Coq system found on its own that the universally quantified variables had to be instanciated in the following manner: n had to be (x + y), m had to be x, and p had to be y. We can now use a similar distributivity theorem where multiplication is on the right-hand side to progress in our proof. In the last step, there were two possible choices of instanciation, one where p had to be x and one where p had to be y. The Coq system chose the former, but we could have been more directive and have written rewrite Nat.mul add distr r with (p:=x). In the next steps, we look for theorems that make it possible to reshape the left-hand side of the equality, and then we work on the right-hand side. At this point, we want to proceed step-by-step to show that x * y + x * y is the same as 2 * x * y, and we know that 2 is a notation for S 1. We look for rewriting theorems with the relevant shape. In our goal, we have two occurrences of the expression (x * y) and we want to rewrite only one of them with mult 1 l from right to left. This is possible, using a variant of the rewrite tactic that limits its application to the first instance where it applies. We can now conclude using reflexivity as prescribed by the table page 15.

reflexivity.

No more subgoals. Qed.

Sometimes rewriting theorems have premises stating that the equality is valid only under some condition. When rewriting is performed using these theorems, the corresponding instance of premises is added as extra goals to be proved later.

Examples using unfold

Sometimes we only want to replace an expression with another expression which is the same by definition, just by developing, or unfolding definitions. For instance, we know that the function pred is already defined in the Coq system and we would like to prove a simple fact about it.

Print Nat.pred.

Nat.pred = fun n : nat => match n with | 0 => n | S u => u end : nat -> nat Lemma pred_S_eq : forall x y, x = S y -> Nat.pred x = y.

Proof. intros x y q. 1 subgoal

x : nat y : nat q : x = S y ============================ pred x = y

At this point, we would like to make it visible that pred x is actually a pattern-matching construct on x, because of the definition of pred.

unfold Nat.pred. ...

============================ match x with | 0 => x | S u => u end = y

We can then conclude by rewriting with the hypothesis q. This actually forces the pattern-matching construct to choose the right branch. rewrite q. ... ============================ y = y reflexivity. No more subgoals. Qed.

More advanced tactics

A common approach to proving difficult propositions is to assert intermediary steps using a tactic called assert. Given an argument of the form (H : P), this tactic yields two goals, where the first one is to prove P , while the second one is to prove the same statement as before, but in a context where a hypothesis named H and with the statement P is added. Some automatic tactics are also provided for a variety of purposes, intuition and tauto are often useful to prove facts that are tautologies in propositional logic (try it whenever the proof only involves manipulations of conjunction, disjunction, and negation, for instance example2 could have been solved by only one call to intuition); firstorder can be used for tautologies in first-order logic (try it whenever the proof only involves the same connectives as for tauto, plus existential and universal quantification) auto is an extensible tactic that tries to apply a collection of theorems that were provided beforehand by the user, eauto is like auto, it is more powerful but also more timeconsuming, ring mostly does proofs of equality for expressions containing addition and multiplication, omega proves systems of linear inequations. To use omega you first need to require that Coq loads it into memory. An inequation is linear when it is of the form A ≤ B or A < B, and A and B are sums of terms of the form n * x, where x is a variable and n is a numeric constant, 1, 3, -15, etcetera). The tactic omega can also be used for problems, which are instances of systems of linear inequations. Here is an example, where f x is not a linear term, but the whole system of inequations is the instance of a linear system.

Require Import Omega.

Lemma omega_example :

forall f x y, 0 < x -> 0 < f x -> 3 * f x <= 2 * y -> f x <= y. Proof. intros; omega. Qed.

At this point, you should be able to perform the following two exercises.

Exercise on logical connectives (Exercise 5.6 from [START_REF] Bertot | Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions[END_REF]) Prove the following theorems: Two benefits can be taken from this exercise. In a first step you should try using only the basic tactics given in the table page 15. In a second step, you can verify which of these statements are directly solved by the tactic intuition.

Exercise on universal quantification Prove

forall A:Type, forall P Q: A->Prop, (forall x, P x)\/(forall y, Q y)->forall x, P x\/Q x.

4 Proving properties of programs on numbers

To prove properties of functions computing on natural numbers, one can often show that several computations are related in some way. When the function being studied is recursive, this usually involves a proof by induction. The tactics one needs to know are:

• induction will make it possible to perform a proof by induction on a natural number n. This decomposes the proof in two parts: first we need to verify that the property is satisfied when n is 0, second we need to prove the property for S p is a consequence of the same property for p (the hypothesis about the property for p is called the induction hypothesis, its name usually starts with IH). Two goals are created, one for 0 and one for S p.

• simpl will replace calls of a recursive function on a complex argument by the corresponding value, as stated by the definition of the function.

• discriminate will be usable when one hypothesis asserts that 0 = S e or true = false. Such an hypothesis is self-contradictory and goals containing this kind of hypothesis are automatically discarded by this tactic.

• injection will be usable when one hypothesis has the form S x = S y to deduce x = y.

A proof by induction

Let us look at an example proof. We want to show that the sum of the n first natural numbers satisfies a well-known polynomial formula. In the two generated goals, the first one has n replaced by 0, the second one has n replaced by S n, and an extra hypothesis (not displayed here) says that the statement is already true for n.

The first goal is very easy, because the definitions of sum n, addition and multiplication make that both members of the equality are 0. The tactic reflexivity solves this goal.

reflexivity.

After we send this tactic the second goal remains alone and is repeated in full. We can now see the induction hypothesis.

n : nat IHn : 2 * sum_n n + n = n * n ============================ 2 * sum_n (S n) + S n = S n * S n
In this goal, we need to think a little. We can expand S n * S n into a formula where n * n occurs, and then rewrite with IHn, from right to left. We use the assert tactic to describe an intermediate equality between S n * S n and n * n. We use the the ring tactic to show that this replacement is valid. The next step is to make sum n (S n) compute symbolically, so that its value is expressed using sum n n according to the definition. The next step is to make the ring tactic recognize that this equation is a consequence of associativity and commutativity of addition.

ring. Qed.

Stronger statements in induction

When the recursive function has several levels of pattern matching, it is worthwhile proving statements about several successive numbers, as in the following proof about the function evenb.

Lemma evenb_p : forall n, evenb n = true -> exists x, n = 2 * x. Proof. assert (Main: forall n, (evenb n = true -> exists x, n = 2 * x) /\ (evenb (S n) = true -> exists x, S n = 2 * x)).

At this point, we choose to prove a stronger statement, stating that the property we wish to prove is satisfied by both n and S n. We then proceed by a regular induction. Proving stronger statements by induction is a very common feature in proofs about recursive functions. The first goal has two parts, and for the first part, we need to work on an existential statement that occurs in the conclusion. Refering to the table of tactic on page 15, we see that we need to provide the existing value, using the exists tactic. Here the existing value for x is 0, since 0 = 2 * 0 is easy to prove. The second part is different: it is not possible to choose a value for x, but the hypothesis evenb 1 = true is inconsistent, because evenb 1 actually computes to false and the equality false = true is not possible. When such an inconsistent case is reached we can use the discriminate tactic.

split. exists 0; ring. simpl; intros H; discriminate H.

We do not detail the rest of the proof, but we give it for readers to try on their own computer.

split.

destruct IHn as [_ IHn']; exact IHn'. simpl evenb; intros H; destruct IHn as [IHn' _]. assert (H' : exists x, n = 2 * x).

apply IHn'; exact H. destruct H' as [x q]; exists (x + 1); rewrite q; ring.

Once the Main hypothesis is proved, we can come back to our initial statement. At this point, the tactic firstorder is strong enough to finish the proof, but for didactic purposes, we will show another approach. Here we can use a facility of the Coq system that we haven't mentioned yet: when the statement of a theorem is a universal quantification or an implication, we can use this theorem as if it was a function: when applied to an expression it gives a new theorem whose statement is instantiated on this expression. In our case, we can use the hypothesis Main and instantiate it on n. We thus obtain a conjunction which can be handled by destruct.

destruct (Main n) as [H _]; apply H; exact ev. Qed. Exercise on the sum of odd numbers The sum of the first n odd natural numbers is defined with the following function:

Exercise on addition, alternative definition

Fixpoint sum_odd_n (n:nat) : nat := match n with 0 => 0 | S p => 1 + 2 * p + sum_odd_n p end.

Prove the following statement:

forall n:nat, sum_odd_n n = n*n 5 Reasoning on conditional statements

Apparently, there are two kinds of conditional statements in the Coq programming language. The first kind is the if .. then .. else .. construct and the second kind is the pattern-matching construct. In fact they are the same, because if e 1 then e 2 else e 3 actually is a short-hand for the following pattern matching construct: match e 1 with true => e 2 | false => e 3 end When reasoning on Coq programs, we sometimes needs to handle these expressions. The usual trick is to use case, elim, induction, destruct on the expression that is being tested, the expression that appears just after the if keyword in an if .. then .. else .. construct or the expression that appears just after the match keyword in a pattern-matching construct.

In effect, this means that we will actually force our proof to treat separately the two possible behaviors of the program. In other words, the proof process corresponds to testing the program symbolically, and the case, elim, induction, or destruct tactics force us to have tests that cover all possible cases.

We have already seen examples of proofs on programs that compute on numbers, these programs contain a pattern-matching construct and a recursive call, and we used the induction tactic to reason on these programs. This is an instance of the advice given in this section.

Let us now look at a proof that uses the functions is zero and pred which we already saw in previous sections.

Lemma not_is_zero_pred :

forall x, is_zero x = false -> S (Nat.pred x) = x. Proof. intros x.

x : nat ============================ is_zero x = false -> S (Nat.pred x) = x

At this point, we can ask the Coq system to replace both is zero and pred by their definition, using the unfold tactic. The unfold tactic can take several function names as argument.

unfold is_zero, Nat.pred.

============================ match x with | 0 => true | S _ => false end = false -> S match x with | 0 => x | S u => u end = x
This goal shows that we have two pattern-matching constructs where the tested expression is x. This hints that calling the case or destruct tactic on x will help us progress in the proof. We will use the destruct tactic. This will replace x by the various possible cases of natural numbers, as described by the definition of the nat type. This definition of nat expresses that there are two cases: either x is O (also sometimes written 0), or x is of the form S n where n is some other natural number. Thus, when using destruct x, two goals will be created, corresponding to the two possible cases.

The destruct tactic gives us the possibility to choose the name of the sub-expressions given as argument to constructors. Here there is one sub-expression for the constructor S. We choose to name it p. The tactic generates two goals, in which the pattern-matching constructs have been reduce to the corresponding case.

destruct x as [| p]. 2 subgoals ============================ true = false -> 1 = 0 subgoal 2 is: false = false -> S p = S p
In the first goal, x is replaced with 0 and then the pattern matching constructs are reduced to corresponding behavior. We see that an inconsistent premise is created: this premise says that true = false. We can solve this case by using the discriminate tactic, which simply discards the goal, and then there is only the second goal remaining.

discriminate.

1 subgoal p : nat ============================ false = false -> S p = S p
In the second case, the expression x is replaced with S p and again the two patternmatching constructs are reduced accordingly. As a result, we only need to prove a trivial equality. This case is solved using the reflexivity tactic.

intros h; reflexivity. Qed.

Proving properties of programs on lists

When performing proofs on recursive functions that act on lists, we can also use proofs by induction, this time taking a list as the induction argument. Again, there will be two goals, the first one concerning the empty list, and the second one considering an arbitrary list of the form a::l, with an induction hypothesis on l.

Let us look at an example proof. We want to show that sorting a list with the insert and sort functions given earlier does not change the number of occurrences of each number in the list. The Coq system provides a function Nat.eqb with type nat -> nat -> bool which returns true exactly when its two arguments are the same number, with the notation x =? y for (Nat.eqb x y). With the help of this function, counting the number of occurrences of a number in a list is done with the following function:

Fixpoint count n l := match l with nil => 0 | a::tl => let r := count n tl in if n =? a then 1+r else r end.

We first want to show that inserting an element in a list always increases the number of occurrences for this number.

Lemma insert_incr : forall n l, count n (insert n l) = 1 + count n l. Proof. intros n l; induction l.

============================ count n (insert n nil) = 1 + count n nil

Here we use simpl to make Coq compute the various functions.

simpl. ============================ (if n =? n then 1 else 0) = 1

At this point, a little thinking makes us discover that n =? n should always return true.

To express this, we need to find existing theorems on =? .

Search (_ =? _). Nat.eqb_refl: forall x : nat, (x =? x) = true beq_nat_refl: forall n : nat, true = (n =? n) Nat.eqb_sym: forall x y : nat, (x =? y) = (y =? x) Nat.eqb_spec: forall x y : nat, reflect (x = y) (x =? y) ...

The existing theorem beq nat refl is useful for us, we use it with a rewrite tactic.

rewrite Nat.eqb_refl.

============================ 1 = 1

This goal is easily solved by reflexivity. The next goal is the step case of the proof by induction on lists. (if n =? a then S (count n (insert n l)) else count n (insert n l)) = S (if n =? a then S (count n l) else count n l)

We now have to reason by cases on the value of n =? a: case (n =? a). ... IHl : count n (insert n l) = 1 + count n l ============================ S (count n (insert n l)) = S (S (count n l))

subgoal 2 is: count n (insert n l) = S (count n l)

In the two goals that are produced, rewriting with the hypothesis IHl will obviously lead to equalities where both sides are the same. We conclude the proof with the following two commands.

rewrite IHl; reflexivity. rewrite IHl; reflexivity. Qed.

Defining new datatypes

Numbers, boolean values, and lists are all examples of datatypes. When programming, we often need to define new datatypes, for example to express that the data can be arranged in a certain collection of cases, where each case contains a certain number of fields. Coq provides simple facilities to express this kind of data organization.

Defining inductive types

Here is an example of an inductive type definition:

Inductive bin : Type := L : bin | N : bin -> bin -> bin.

This defines a new type bin, whose type is Type, and expresses that the data in this type respects two cases. In the first case, there is no field and the data is noted L, in the second case there are two fields of type bin and the data can be written as N t 1 t 2 . In other words, elements of the type bin can be obtained in two different ways, either by taking the constant L or by applying N to two objects of type bin.

Check N L (N L L). N L (N L L) : bin

The type bin contains binary trees with no extra information carried in the internal nodes or leaves.

Exercise on datatype definition Define a datatype where there are three cases: a constant, a case where there are three fields, where the first field is a number and the next two fields are in the datatype being defined, and a case with four fields, where the first field is a boolean value and the three other fields are in the datatype being defined.

Pattern matching

Elements of inductive types can be processed using functions that perform some patternmatching. For instance, we can write a function that returns the boolean value false when its argument is N L L and returns true otherwise.

Definition example7 (t : bin): bool := match t with N L L => false | _ => true end.

Pattern-matching constructs typically have as many cases as given in the data-type definition. For instance, the type bin has two cases given by the two constructors N and L and a typical pattern-matching construct on values in this type usually has two cases. Accordingly, reasoning tactics case, elim, induction, or destruct also generate a number of goals that corresponds to this number of cases.

Recursive function definition

We can define recursive functions on any inductive datatype using the Fixpoint command, but we have to respect the same structural recursion discipline as for natural numbers and lists: recursive calls can only be done on variables, and these variables must have been obtained from the initial argument through pattern-matching. Here are a few examples of recursive functions on our new datatype. Structural recursive functions on user-defined data-types can be computed in a similar way to functions defined on numbers and lists.

Compute flatten_aux (N L L) L. = N L (N L L) : bin

Proof by cases

Now that we have defined functions on our inductive type, we can prove properties of these functions. Here is a first example, where we perform a few case analyses on the elements of the type bin.

Lemma example7_size :

forall t, example7 t = false -> size t = 3. Proof. intros t; destruct t. The tactic destruct t actually observes the various possible cases for t according to the inductive type definition. The term t can only be either obtained by L, or obtained by N applied to two other trees t1 and t2. This is the reason why there are two subgoals.

We know the value that example7 and size should take for the tree L. We can direct the Coq system to compute it: After computation, we discover that assuming that the tree is L and that the value of example7 for this tree is false leads to an inconsistency, because example7 L computes to true while it is assumed to be false. We can use the following tactic to exploit this kind of inconsistency:

discriminate. 1 subgoal ... ============================ example7 (N t1 t2) = false -> size (N t1 t2) = 3
The answer shows that the first goal was solved. The tactic discriminate can be used whenever a premise of an implication or an hypothesis states that two different constructors of an inductive type return equal values. Such an assumption is inconsistent and the tactic directly exploits this inconsistency to express that the case described in this goal can never happen. Another important property of constructors of inductive types is that they are injective. The tactic to exploit this fact called injection. We illustrate it later in section 7.6.

For the second goal we still must do a case analysis on the values of t1 and t2, we do not detail the proof but it can be completed with the following sequence of tactics.

destruct t1. destruct t2. 3 subgoals ============================ example7 (N L L) = false -> size (N L L) = 3 subgoal 2 is: example7 (N L (N t2_1 t2_2)) = false -> size (N L (N t2_1 t2_2)) = 3 subgoal 3 is: example7 (N (N t1_1 t1_2) t2) = false -> size (N (N t1_1 t1_2) t2) = 3
For the first goal, we can again ask that the functions in the goal should be computed.

simpl.

3 subgoals ============================ false = false -> 3 = 3
Since the right hand side of the implication is a fact that is trivially true, we know that the automatic tactic of Coq can solve this goal (but using more elementary tactics from the table, we could use intro and reflexivity to prove it). The last two goals are solved in the same manner as the very first one, because example7 cannot possibly have the value false for the arguments that are given in these goals.

auto. simpl; discriminate. simpl; discriminate. Qed.

Proof by induction

The most general kind of proof that one can perform on inductive types is proof by induction. When we prove a property of the elements of an inductive type using a proof by induction, we actually consider a case for each constructor, as we did for proofs by cases. However there is a twist: when we consider a constructor that has arguments of the inductive type, we can assume that the property we want to establish holds for each of these arguments. When we do goal directed proof, the induction principle is invoked by the induction tactic. To illustrate this tactic, we will prove a simple fact about the flatten aux and size functions. There are two subgoals, the first goal requires that we prove the property when the first argument of flatten aux is L, the second one requires that we prove the property when the argument is N t1 1 t1 2. The proof progresses easily, using the definitions of the two functions, which are expanded when the Coq system executes the simpl tactic. We then obtain expressions that can be solved using the ring tactic. It also provides addition, multiplication, subtraction (with the special behavior that xy is 0 when x is smaller than y). This package also provides a tactic ring, which solves equalities between expressions modulo associativity and commutativity of addition and multiplication and distributivity. For natural numbers, ring does not handle subtraction well, because of its special behavior. As we already mentioned, there is a syntactic facility, so that 3 actually represents S (S (S O)).

Since natural numbers are given as an inductive type, we can define recursive functions with natural numbers as input. The constraints on recursive calls makes that functions that call themselves recursively on the predecessor of the initial argument will be easy to define. For instance, the following definition gives the factorial function: The following definition gives the Fibonacci function:

Fixpoint fib (n:nat) : nat := match n with O => 0 | S q => match q with O => 1 | S p => fib p + fib q end end.

The package named ZArith provides two inductive data-types to represent integers. The first inductive type, named positive, follows a binary representation to model the positive integers (from 1 to infinity) and the type Z is described as a type with three constructors, one for positive numbers, one for negative numbers, and one for 0. The package also provides orders and basic operations: addition, subtraction, multiplication, division, square root. The tactic ring also works for integers (this time, subtraction is well supported) The tactic omega works equally well to solve problems consisting of collections of comparisons between linear formulas for both natural numbers of type nat and integers of type Z. To load the package ZArith, type in the following command: Require Import ZArith.

When working with integers instead of natural numbers it is handy to instruct Coq to interpret all numeric notations as notations concerning integers. This is done with the following command:

Open Scope Z_scope.

The type Z is not suited for structural recursion, so that it is not easy to define recursive functions with positive or negative integers as input. The main solution is to use wellfounded recursion as described in [START_REF] Bertot | Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions[END_REF], chapter 15. An alternative approach, less powerful but easy to understand, is to rely on an iterator that repeats the same operation a given number of times, where the number is described as an integer. This iterator is called Z.iter. This information explains that we should not give the type argument name A when using Z.iter because this argument is guessed automatically by the system.

For instance, one can define the factorial function and test it as in the following dialog. We use an auxiliary function that takes a pair of numbers as input and returns a pair of numbers. When the input to the function fun p => ... contains n and n! the output contains n + 1 and (n + 1)!. We give this function as input to iter: Definition fact_aux (n:Z) := Z.iter n (fun p => (fst p + 1, snd p * (fst p + 1))) (0, 1). Definition Z_fact (n:Z) := snd (fact_aux n).

Compute Z_fact 100. 93326... Proving properties about functions defined using iter requires knowledge that goes beyond this short tutorial, but we give an example in the section that also contains the solutions to exercises at the end of this tutorial.

From now on, we will revert to only manipulating natural numbers, we tell the Coq system to give less priorities to the specific notations for integers.

Close Scope Z_scope.

Inductive properties

Inductive definitions can also be used to describe new predicates. A predicate on a type A is simply described as a function that takes as input elements of A and returns an element of the type of propositions, called Prop. The constructors of the inductive propositions are the theorems that characterize the predicate. In principle, every proof of a statement based on this predicate is obtained as a combination of the constructors, and only the constructors.

Solving the first goal reveals the next goal, which describes the case where even x is proved using the second constructor. In this case, there must be a variable x0 such that x is S (S x0), and the proposition even x0 must hold. In addition, the elim tactic generates an induction hypothesis corresponding to the proposition even x0. Unfortunately for our explanation, this variable x0 is renamed automatically in x, which makes the explanation slightly harder to follow. Thus x is supposed to satisfy the property that we want to prove for S (S x).

IHeven : exists y : nat, x = 2 * y ============================ exists y : nat, S (S x) = 2 * y Now, IHeven is the induction hypothesis. It says that we already know that there exists a value y that is the half of x. We can use this value to provide the half of S (S x). Here are the tactics that complete the proof.

destruct IHeven as [y Heq]; rewrite Heq. exists (S y); ring. Qed.

In this example, we used a variant of the destruct tactic that makes it possible to choose the name of the elements that destruct creates and introduces in the context. Actually, we could have used the same kind of variant for the induction tactic so that we state explicitly the names of elements added in the context. The line induction H would be better written induction H as [| x H IHeven].

The inversion tactic

The inversion tactic can be used to study the various ways in which the proof of a statement concerning an inductive proposition could have been made. This tactic analyses all the constructors of the inductive predicate, discards the ones that could not have been applied, and when some constructors could have been applied it creates a new goal where the premises of this constructor are added in the context. For instance, this tactic is perfectly suited to prove that 1 does not satisfy the even predicate, since no constructor can conclude to the proposition even 1 (using evenS would require that 1 = S (S x), hence 0 = S x because 1 is S 0 and S is injective, and using even0 would require that 1 = 0): Lemma not_even_1 : ~even 1. Proof. intros even1. ... even1 : even 1 ============================ False inversion even1. Qed.

Another example using the inversion tactic shows that when a number is even the predecessor of its predecessor is also even. In this statement, we write the first number as S (S x) and the predecessor of its predecessor as x.

Lemma even_inv : forall x, even (S (S x)) -> even x. Proof. intros x H.

H : even (S (S x)) ============================ even x

When the tactic analyzes the constructors of the even predicate, it recognizes that even0 could not prove the statement of the hypothesis H and only evenS could have been used. Therefore there must exist a variable x0 such that even x0 holds and S (S x) = S (S x0); in other words, even x holds. Please note that the statements of even inv and evenS are similar but inverted. This is the reason for the tactic name.

Inductive properties can be used to express very complex notions. For instance, the semantics of a programming language can be defined as an inductive definition, using dozens of constructors, each one describing an elementary step of computation.

Exercises

This section recapitulates the exercises from these notes. some are taken from [START_REF] Bertot | Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions[END_REF].

Exercise on functions Write a function that takes five arguments and returns their sum, use Check to verify that your description is well-formed, use Eval to force its computation on a sample of values.

Exercise on lists, map, and app Define a function that takes as input a number n and returns a list with n elements, from 0 to n -1.

Exercise on sorting Define a function that takes a list as input and returns true when it has less than 2 elements or when the first element is smaller than the second one.

 4) : nat * nat Check ((3=5)/\True). 3 = 5 /\ True : Prop Check nat -> Prop. nat -> Prop : Type Check (3 <= 6).

 True. True : Prop Check False. False : Prop Check and. and : Prop -> Prop -> Prop Check (and True False). True /\ False : Prop In the last example, and is a function that expects an argument of type Prop and returns a function of type Prop -> Prop. It can therefore be applied to True, which has the right type. But the function we obtain expects another argument of type Prop and it can be applied to the argument False. The notation a -> b -> c actually stands for a -> (b -> c) and the notation f a b actually stands for (f a) b.

 True. I : True SearchPattern (_ <= _). Nat.le_refl: forall n : nat, n <= n le_n: forall n : nat, n <= n Nat.le_0_l: forall n : nat, 0 <= n Nat.le_0_1: 0 <= 1 Peano.le_0_n: forall n : nat, 0 <= n Nat.le_pred_l: forall n : nat, Nat.pred n <= n ... le_S: forall n m : nat, n <= m -> n <= S m ... Search (_ <= _) (_ + _). Nat.le_add_r: forall n m : nat, n <= n + m le_plus_r: forall n m : nat, m <= n + m le_plus_l: forall n m : nat, n <= n + m Nat.sub_add_le: forall n m : nat, n <= n -m + m le_plus_trans: forall n m p : nat, n <= m -> n <= m + p plus_le_reg_l: forall n m p : nat, p + n <= p + m -> n <= m plus_le_compat_l: forall n m p : nat, n <= m -> p + n <= p + m plus_le_compat_r: forall n m p : nat, n <= m -> n + p <= m + p

 Check le_n. le_n : forall n : nat, n <= n Check le_S. le_S : forall n m : nat, n <= m -> n <= S m Lemma example4 : 3 <= 5.

 Check le_trans. Nat.le_trans : forall n m p : nat, n <= m -> m <= p -> n <= p Lemma example5 : forall x y, x <= 10 -> 10 <= y -> x <= y.

 SearchRewrite (_ * (_ + _)). Nat.mul_add_distr_l: forall n m p : nat, n * (m + p) = n * m + n * p We can tell the Coq system to rewrite with this theorem. rewrite Nat.mul_add_distr_l. ============================ (x + y) * x + (x + y) * y = x * x + 2 * x * y + y * y

 SearchRewrite ((_ + _) * _). Nat.mul_add_distr_r: forall n m p : nat, (n + m) * p = n * p + m * p rewrite Nat.mul_add_distr_r. ============================ x * x + y * x + (x + y) * y = x * x + 2 * x * y + y * y

rewrite

 Nat.mul_add_distr_r. ============================ x * x + y * x + (x * y + y * y) = x * x + 2 * x * y + y * y SearchRewrite (_ + (_ + _)). Nat.add_shuffle3: forall n m p : nat, n + (m + p) = m + (n + p) Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p) Nat.add_shuffle1: forall n m p q : nat, n + m + (p + q) = n + p + (m + q) Nat.add_shuffle2: forall n m p q : nat, n + m + (p + q) = n + q + (m + p) rewrite Nat.add_assoc. ============================ x * x + y * x + x * y + y * y = x * x + 2 * x * y + y * y At this point, we would like to rewrite with a theorem from right to left, this is possible using the <-modifier. rewrite <-Nat.add_assoc with (n := x * x). ============================ x * x + (y * x + x * y) + y * y = x * x + 2 * x * y + y * y Now we want to use commutativity for multiplication. We can find the relevant theorem using the SearchPattern command. SearchPattern (?x * ?y = ?y * ?x). Nat.mul_comm: forall n m : nat, n * m = m * n rewrite Nat.mul_comm with (n:= y) (m:=x). ============================ x * x + (x * y + x * y) + y * y = x * x + 2 * x * y + y * y

 SearchRewrite (S _ * _). Nat.mul_1_l: forall n : nat, 1 * n = n Nat.double_twice: forall n : nat, Nat.double n = 2 * n Nat.mul_succ_l: forall n m : nat, S n * m = n * m + m Nnat.N2Nat.inj_double: forall a : BinNums.N, BinNat.N.to_nat (BinNat.N.double a) = 2 * BinNat.N.to_nat a Pnat.Pos2Nat.inj_xO: forall p : BinNums.positive, BinPos.Pos.to_nat (BinNums.xO p) = 2 * BinPos.Pos.to_nat p ...

 rewrite <-(Nat.mul_1_l (x * y)) at 1. ============================ x * x + (1 * (x * y) + x * y) + y * y = x * x + 2 * x * y + y * y rewrite <-Nat.mul_succ_l. ============================ x * x + 2 * (x * y) + y * y = x * x + 2 * x * y + y * y At this point, we only need to use the associativity of multiplication. SearchRewrite (_ * (_ * _)). Nat.mul_shuffle3: forall n m p : nat, n * (m * p) = m * (n * p) Nat.mul_assoc: forall n m p : nat, n * (m * p) = n * m * p mult_assoc_reverse: forall n m p : nat, n * m * p = n * (m * p) Nat.mul_shuffle1: forall n m p q : nat, n * m * (p * q) = n * p * (m * q) Nat.mul_shuffle2: forall n m p q : nat, n * m * (p * q) = n * q * (m * p) rewrite Nat.mul_assoc. ============================ x * x + 2 * x * y + y * y = x * x + 2 * x * y + y * y

 forall A B C:Prop, A/\(B/\C)->(A/\B)/\C forall A B C D: Prop,(A->B)/\(C->D)/\A/\C -> B/\D forall A: Prop, ~(A/\~A) forall A B C: Prop, A\/(B\/C)->(A\/B)\/C forall A B: Prop, (A\/B)/\~A -> B

 Lemma sum_n_p : forall n, 2 * sum_n n + n = n * n. Proof. induction n. ============================ 2 * sum_n 0 + 0 = 0 * 0 subgoal 2 is: 2 * sum_n (S n) + S n = S n * S n

 assert (SnSn : S n * S n = n * n + 2 * n + 1). ============================ S n * S n = n * n + 2 * n + 1 ring. n : nat IHn : 2 * sum_n n + n = n * n SnSn : S n * S n = n * n + 2 * n + 1 ============================ 2 * sum_n (S n) + S n = S n * S n rewrite SnSn. n : nat IHn : 2 * sum_n n + n = n * n SnSn : S n * S n = n * n + 2 * n + 1 ============================ 2 * sum_n (S n) + S n = n * n + 2 * n + 1 We attack this goal by rewriting with the induction hypothesis, this replaces occurrences of the induction hypothesis right-hand side with the left-hand side. rewrite <-IHn. ============================ 2 * sum_n (S n) + S n = 2 * sum_n + n + 2 * n + 1

 n + sum_n n) + S n = 2 * sum_n n + n + 2 * n + 1

 true -> exists x : nat, 0 = 2 * x) /\ (evenb 1 = true -> exists x : nat, 1 = 2 * x) subgoal 2 is: (evenb (S n) = true -> exists x : nat, S n = 2 * x) /\ (evenb (S (S n)) = true -> exists x : nat, S (S n) = 2 * x) subgoal 3 is: forall n : nat, evenb n = true -> exists x : nat, n = 2 * x

 Main : forall n : nat, (evenb n = true -> exists x : nat, n = 2 * x) /\ (evenb (S n) = true -> exists x : nat, S n = 2 * x) ============================ forall n : nat, evenb n = true -> exists x : nat, n = 2 * x intros n ev. ... n : nat ev : evenb n = true ============================ exists x : nat, n = 2 * x

 We can define a new addition function on natural numbers: Fixpoint add n m := match n with 0 => m | S p => add p (S m) end. Prove the following statements. forall n m, add n (S m) = S (add n m) forall n m, add (S n) m = S (add n m) forall n m, add n m = n + m Remember that you may use a lemma you just proved when proving a new exercise.

 Inductive nat : Set := O : nat | S : nat -> nat For S: Argument scope is [nat_scope]

 n (insert n l) = 1 + count n l ============================ count n (insert n (a :: l)) = 1 + count n (a :: l) Again, we first ask Coq to compute the various functions.

Fixpoint

 flatten_aux (t1 t2:bin) : bin := match t1 with L => N L t2 | N t'1 t'2 => flatten_aux t'1 (flatten_aux t'2 t2) end. Fixpoint flatten (t:bin) : bin := match t with L => L | N t1 t2 => flatten_aux t1 (flatten t2) end. Fixpoint size (t:bin) : nat := match t with L => 1 | N t1 t2 => 1 + size t1 + size t2 end.

 false -> size L = 3 subgoal 2 is: example7 (N t1 t2) = false -> size (N t1 t2) = 3

 Lemma flatten_aux_size : forall t1 t2, size (flatten_aux t1 t2) = size t1 + size t2 + 1. Proof. induction t1. ============================ forall t2 : bin, size (flatten_aux L t2) = size L + size t2 + 1 subgoal 2 is: forall t2 : bin, size (flatten_aux (N t1_1 t1_2) t2) = size (N t1_1 t1_2) + size t2 + 1

 t2 : bin, size (flatten_aux t1_1 t2) = size t1_1 + size t2 + 1 IHt1_2 : forall t2 : bin, size (flatten_aux t1_2 t2) = size t1_2 + size t2 + 1 ============================ forall t2 : bin, size (flatten_aux (N t1_1 t1_2) t2) = size (N t1_1 t1_2) + size t2 + 1In the second goal, we see that two induction hypotheses have been provided for the two subterms t1 1 and t1 2. We can again request that Coq computes symbolically the values of the two functions size and flatten aux. Then, we can use the induction hypotheses. intros t2; simpl. ... ============================ size (flatten_aux t1_1 (flatten_aux t1_2 t2)) = S (size t1_1 + size t1_2 + size t2 + 1) rewrite IHt1_1. ... Print nat. Inductive nat : Set := O : nat | S : nat -> nat

Fixpoint

 nat_fact (n:nat) : nat := match n with O => 1 | S p => S p * nat_fact p end.

 About Z.iter. Z.iter : Z -> forall A : Type, (A -> A) -> A -> A Argument A is implicit and maximally inserted Argument scopes are [Z_scope type_scope _ _] Z.iter is transparent Expands to: Constant Coq.ZArith.BinInt.Z.iter

 Intuitively, this reasoning step corresponds to the sentence "let's fix two propositions A and B and let's assume that A \/ B holds, now we only have to prove B \/ A." After this, we need to think a little about how to attack the problem. To prove A \/ B, we could choose to work on the conclusion. This would correspond to choosing to prove either A or B (using the tactics left or right). However, if we only know that A \/ B holds, we cannot prove A, because A \/ B could be a consequence of the fact that B holds, but not A. Thus, working on the conclusion directly does not lead to a feasible proof. On the other hand, we can choose to work on the hypothesis. If A \/ B holds, there actually are two cases: either A holds or B holds, and we can ask to see these two cases independently. This is done by using the tactic destruct.

	.
	intros A B H.
	...
	A, B : Prop
	H : A \/ B
	============================
	B \/ A
	destruct H as [H1 | H1].
	...
	H1 : A
	============================
	B \/ A
	Subgoal 2 is
	B \/ A
	right; assumption.
	...
	H1 : B
	============================
	B \/ A

Two goals are generated, and the hypothesis H1 in the first goal tells us that we are in the case where we know that A holds. We are now in a situation where we can work directly on the conclusion, choosing to prove the right-hand part A, because we know that in this case, it holds.

 table page 15, the tactic apply is especially adapted to work on hypotheses or theorems whose main connective is a universal quantification or an implication. It actually works by separating the conclusion of a theorem from its premises, by matching the conclusion of the theorem with the conclusion of the current goal to guess as many universally quantified variables as possible, and by generating a new goal for each premise.

More precisely, if a theorem th has a statement of the form: forall x1 ... xk, A1 x1 ... xk -> A2 x1 ... xk -> ... -> An x1 ... xk -> C x1 ... xk and the current goal's conclusion has the shape ====================== C a1 ... ak

This custom of viewing types as logical propositions is called the Curry-Howard Isomorphism

simpl.

============================ count n (if n <=? a then n :: a :: l else a :: insert n l) = S (if n =? a then S (count n l) else count n l)

We first need to reason by cases on the expression n <=? a and then by cases on the expression n =? a. We use the tactic case (n <=? a) for the first reasoning step. It produces two goals, one where n <=? a is replaced by true, and one where it is replaced by false.

case (n <=? a). ... ============================ count n (n :: a :: l) = S (if n =? a then S (count n l) else count n l) subgoal 2 is: count n (a :: insert n l) = S (if n =? a then S (count n l) else count n l)

We can now simplify the expression. We see that n =? n appears again and we can re-use the theorem beq nat refl simpl.

... ============================ (if n =? n then S (if n =? a then S (count n l) else count n l) else if n =? a then S (count n l) else count n l) = S (if n =? a then S (count n l) else count n l) rewrite Nat.eqb_refl. ... ============================ S (if n =? a then S (count n l) else count n l) = S (if n =? a then S (count n l) else count n l)

reflexivity.

IHl : count n (insert n l) = 1 + count n l ============================ count n (a :: insert n l) = S (if n =? a then S (count n l) else count n l)

In the last goal, we first simplify the expression.

simpl.

IHl : count n (insert n l) = 1 + count n l ============================ ============================ size t1_1 + size (flatten_aux t1_2 t2) + 1 = S (size t1_1 + size t1_2 + size t2 + 1) rewrite IHt1_2. ... ============================ size t1_1 + (size t1_2 + size t2 + 1) + 1 = S (size t1_1 + size t1_2 + size t2 + 1)

ring.

No more subgoals. Qed.

At this point, you should be able to perform your own proof by induction.

Exercise on flatten and size Prove

Lemma flatten_size : forall t, size (flatten t) = size t.

Hint: you should use flatten aux size, either with the tactic apply or with the tactic rewrite.

An example using injection

Let us now look at an example that illustrates the injection tactic. We want to prove that no tree can be a subterm of itself.

Lemma not_subterm_self_l : forall x y, ~x = N x y. ============================ forall x y : bin, x <> N x y

When reading this goal, we observe that negation of an equality is actually displayed as <> . We will perform this proof by induction on x.

Proof. induction x. Since the goal's conclusion is a negation, we can use the corresponding tactic from the table on page 15. This example also shows that the negation of a fact actually is represented by a function that says "this fact implies False". intros y abs.

The hypothesis abs expresses the equality between N x1 x2 and N (N x1 x2) y. The constructor N is injective on both its arguments, so that this implies that x1 is equal to N x1 x2. This reasoning step is expressed by the tactic injection:

Two new equations have been added to the goal's conclusion, but as premises of implications. These equations can be introduced as new hypotheses.

The hypothesis h1 is actually contradictory with an instance of the hypothesis IHx1. We can express this with the following tactics.

assert (IHx1' : x1 <> N x1 x2). apply IHx1. case IHx1'. exact h1. Qed.

Numbers in the Coq system

In the Coq system, most usual data-types are represented as inductive types and packages provide a variety of properties, functions, and theorems around these data-types. The package named Arith contains a host of theorems about natural numbers (numbers from 0 to infinity), which are described as an inductive type with O (representing 0) and S as constructors:

Defining an inductive predicate

For example, a predicate on natural members that describes exactly the even numbers can be described by the following inductive definition.

Inductive even : nat -> Prop := even0 : even 0 | evenS : forall x:nat, even x -> even (S (S x)).

Whenever x is a natural number, even x is a proposition. The theorem even0 can be used to prove the proposition even 0. The theorem evenS can be used to deduce the proposition even 2 from the proposition even 0. Repeated uses of evenS can be used to prove that other numbers satisfy the even predicate.

As for inductive types, the tactics case, elim, induction and destruct can be used to reason about assumptions concerning inductive propositions. These tactics again generate one goal for each of the constructors in the inductive definition. In addition, the tactics elim and induction generate induction hypotheses whenever a constructor uses the inductive proposition among its premises.

Proofs by induction on inductive predicates

When a variable x satisfies an inductive property, it is often more efficient to prove properties about this variable using an induction on the inductive property than an induction on the variable itself. The following proof is an example: Lemma even_mult : forall x, even x -> exists y, x = 2*y. Proof. intros x H; induction H.

subgoals

x : nat H : even x ============================ exists y : nat, 0 = 2 * y

In the first goal, the system describes the case where even x is proved using the first constructor. In this case, the goal is displayed with the variable x replaced by 0. we can prove this goal by providing 0 for the variable y. exists 0; ring. 1 subgoal

x : nat H : even x IHeven : exists y : nat, x = 2 * y ============================ exists y : nat, S (S x) = 2 * y Then define a function that is takes a list as input and returns true exactly when this list is sorted (Hint: when the list has at least two elements, the first element must be smaller than the second element and the tail must be sorted).

Exercise on counting Knowing that the Coq system provides a function beq nat to compare two natural numbers, define a function that takes a natural number and a list and returns the number of times the natural number occurs in the list.

Exercise on logical connectives Prove the following theorems: Two benefits can be taken from this exercise. In a first step you should try using only the basic tactics given in the table page 15. In a second step, you can verify which of these statements are directly solved by the tactic intuition.

Exercise on universal quantification Prove

forall A:Type,forall P Q:A->Prop, (forall x, P x)\/(forall y, Q y)->forall x, P x\/Q x.

Exercise on addition, alternative definition We can define a new addition function on natural numbers:

Fixpoint add n m := match n with 0 => m | S p => add p (S m) end.

Prove the following statements (it is best to take them in order, as each can be used for the next one). Prove the following statement:

forall n:nat, sum_odd_n n = n*n

Exercise on datatype definition Define a datatype where there are three cases: a constant, a case where there are three fields, where the first field is a number and the next two fields are in the datatype being defined, and a case with four fields, where the first field is a boolean value and the three other fields are in the datatype being defined.

Exercise on flatten and size Prove Lemma flatten_size : forall t, size (flatten t) = size t.

Hint: you should use flatten aux size, either with the tactic apply or with the tactic rewrite.

Solutions

The solutions to the numbered exercises are available from the Internet (on the site associated to the reference [START_REF] Bertot | Interactive Theorem Proving and Program Development, Coq'Art:the Calculus of Inductive Constructions[END_REF]).

functions

lists, map and app

Require Import List.

Fixpoint first_n_aux (n:nat)(m:nat) := match n with 0 => nil | S p => m :: first_n_aux p (m+1) end.

Definition first_n (n:nat) := first_n_aux n 0.

sorting

Definition head_sorted (l : list nat) : bool := match l with a::b::_ => a <=? b | _ => true end.

Fixpoint sorted (l : list nat) : bool := match l with a::tl => if head_sorted (a::tl) then sorted tl else false | nil => true end.

counting

Fixpoint count (n : nat) (l : list nat) : nat := match l with nil => 0 | p::tl => if n =? p then 1 + count n tl else count n tl end.

logical connectives

universal quantification

This exercise could also be solved directly using the tactic firstorder.

Lemma ex1 : forall A:Type, forall P Q:A->Prop, (forall x, P x) \/ (forall y, Q y) -> forall x, P x \/ Q x. Proof.

flatten

Here is the solution to the exercise on flatten and size (this re-uses the lemma flatten aux size proved in these notes).

Lemma flatten_size : forall t, size(flatten t) = size t. Proof. intros t; elim t. simpl. reflexivity. intros t1 IH1 t2 IH2; simpl. rewrite flatten_aux_size. rewrite IH2. ring. Qed.

Proof about Z fact

We show that the factorial function computed on integers coincides with the factorial function computed on natural numbers. This is a simple proof by induction over natural numbers, but a lot of work is spent using the correspondances between integers and natural numbers. We need to first establish a lemma about the function iter to establish a correspondance with the corresponding iterator on natural numbers. This script uses tactics that have not been presented in this tutorial (unfold, replace, trivial) but whose documentation can be found in [START_REF]The Coq proof Assistant Reference Manual[END_REF].

Open Scope Z_scope. Lemma Z_fact_correct :

forall n:nat, Z_fact (Z_of_nat n) = Z_of_nat (nat_fact n). intros n; unfold Z_fact; rewrite fact_aux_correct; auto. Qed.