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CoInduction in Coq

Yves Bertot

March 29, 2006

When providing a collection of constructors to define an inductive type, we actually
also define a dual operation: a destructor. This destructor is always defined using the
same structure of pattern-matching, so that we have a tendency to forget that we do
extend the “pattern-matching” capability with a new destructor at each definition.

Constructors and destructors play a dual role in the definition of inductive types.
Constructors produce elements of the inductive type, destructors consume elements of
the inductive type.

The inductive type itself is defined as the smallest collection of elements that is stable
with respect to the constructors: it must contain all constants that are declared to be
in the inductive type and all results of the constructors when the arguments of these
constructors are already found to be in the inductive type. When considering structural
recursion, recursive definitions are functions that consume elements of the inductive type.
The discipline of structural recursion imposes that recursive calls consume data that is
obtained through the destructor.

The inductive type uses the constructors and destructors in a specific way. Co-
inductive types are the types one obtains when using them in a dual fashion. A co-
inductive type will appear as the largest collection of elements that is stable with respect
to the destructor. It contains every object that can be destructed by pattern-matching.

The duality goes on when considering the definition of recursive functions. Co-
recursive functions are function that produce elements of the co-inductive type. The
discipline of guarded co-recursion imposes that co-recursive calls produce data that is
consumed by a constructor. The main practical consequence is that co-inductive types
contain objects that look like infinite objects.

This rough sketch is more of a philosophical nature. When looking at the details,
there are some aspects of co-inductive types that are not so simple to derive from a mere
reflection of what happens with inductive types.

The possibility to have co-inductive types in theorem proving tools was studied by
Coquand [7], Paulson [19], Leclerc and Paulin-Mohring [16], and Gimenez [13]. Most of
these authors were inspired by Aczel [1]. The paper [2] provides a short presentation of
terms and (possibly infinite) trees, mainly in set-theoretic terms; it also explains recursion
and co-recursion.

In this document, we only consider the use of co-inductive types as it is provided in
Coq.
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1 Defining a co-inductive types

Since defining a set of constructors automatically defines a destructor, the definition of co-
inductive types also relies on the definition of constructors. The same rules of positivity
as for inductive types apply. Here are three simple examples of co-inductive types:

CoInductive Llist (A:Set) : Set :=

Lcons : A -> Llist A -> Llist A | Lnil : Llist A.

CoInductive stream (A:Set) : Set :=

Cons : A -> stream A -> stream A.

CoInductive Ltree (A:Set) : Set :=

Lnode : A -> Ltree A -> Ltree A -> Ltree A | Lleaf : Ltree A.

As for inductive types, this defines the type and the constructors, it also defines
the destructor, so that every element of the co-inductive can be analysed by pattern-
matching. However, the definition does not provide an induction principle. The reason
for the absence of an induction principle can be explained in two ways, philosophical or
technical. Philosophically, the induction principle of an inductive type expresses that
this inductive type is minimal (it is a least fixed point), but the co-inductive type is
rather viewed as greatest fixed point. Technically, the induction principle actually is a
consumption tool, that consumes elements of an inductive type to produce proofs in some
other type, programed by recursion. However, a co-recursive function can only be used
to produce elements of the co-recursive type, so that the only way to deduce anything
from an element of a co-inductive type is by pattern-matching.

The type Llist given above comes with constructors Lcons and Lnil. These con-
structors will make it possible to produce lists, exactly like the lists that we could produce
in the inductive type list. Here are a few examples.

Implicit Arguments Lcons.

Implicit Arguments Cons.

Definition ll123 := Lcons 1 (Lcons 2 (Lcons 3 (Lnil nat))).

Require Import List.

Fixpoint list_to_llist (A:Set) (l:list A)

{struct l} : Llist A :=

match l with

nil => Lnil A

| a::tl => Lcons a (list_to_llist A tl)

end.

Definition ll123’ := list_to_llist nat (1::2::3::nil).

The function list to llist is recursive and produces elements in a co-inductive type,
but we did not make it rely on co-recursion. Rather, it relies on structural recursion as
it is provided with the inductive type list.
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Similar examples which do not rely on co-recursion cannot be provided for the type
stream, because elements of this type cannot be given with a finite number of uses of
the constructor. There is always a need for another element of the co-inductive type.
Co-recursion is the solution.

In the coq system, co-recursion is only allowed under a form that can ensure the
strong normalization properties that are already satisfied by the inductive part of the
calculus. The decision was taken to impose a syntactic criterion: co-recursive values
can only appear as argument to constructors and inside branches of pattern-matching
constructs. Here is a simple example:

CoFixpoint ones : stream nat := Cons 1 ones.

This definition underlines a funny aspect of co-recursion: a co-recursive value is not
necessarily a function, because it is only constrained to produce an element of the co-
inductive type. The definition contains a usage of the constructor Cons and a reference
to the co-recursive value itself, but this co-recursive value is used as an argument to the
constructor.

A similar value can be defined in the type Llist.

CoFixpoint lones : Llist nat := Lcons 1 lones.

Clearly, the list that we obtain is not a list that we could have obtained using the function
list to llist. The type Llist is “larger” than the type list.

Some co-recursive functions can be defined to perform exactly like similar recursive
functions on inductive types. Here is an instance:

Fixpoint map (A B:Set)(f:A -> B)(l:list A) {struct l} : list B :=

match l with

nil => nil

| a::tl => f a::map A B f tl

end.

CoFixpoint lmap (A B:Set)(f:A -> B)(l:Llist A) : Llist B :=

match l with

Lnil => Lnil B

| Lcons a tl => Lcons (f a) (lmap A B f tl)

end.

The two functions look similar, but we should bear in mind that the second one can also
process infinite lists like lones.

2 Computing with co-recursive values

When we manipulate elements of inductive types, we implicitely expect to look at these
values in constructor form: constructors applied to other terms in constructor form.
However, attempting to put a value like lones in constructor form would require an
infinity of unfoldings of its value, this would make the computation non-normalizing. For
this reason, a co-recursive value is by default considered to be a normal form. This can
be verified by requesting a computation on such a value.
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Eval simpl in lones.

= lones : Llist nat

However destructing a co-recursive value (with the help of a pattern-matching construct)
corresponds to a regular redex and we can check that the first element of lones indeed
is 1.

Eval simpl in

match lones with Lnil => 0 | Lcons a _ => a end.

= 1 : nat

3 Proving properties of co-inductive values

It is possible to prove that two co-inductive values are equal. The usual approach, identi-
cal to what happens in the inductive setting is to show that the two values have the same
head constructor applied to the same arguments. However, making the head constructor
appear is tricky, because the computation of co-recursive values is usually not performed.
One way to provoke this computation is to rely on the following function and theorem.

Definition Llist_decompose (A:Set)(l:Llist A) : Llist A :=

match l with Lnil => Lnil A | Lcons a tl => Lcons a tl end.

Implicit Arguments Llist_decompose.

Theorem Llist_dec_thm :

forall (A:Set)(l:Llist A), l = Llist_decompose l.

Proof.

intros A l; case l; simpl; trivial.

Qed.

Now, here is an example using this theorem:

Theorem lones_cons : lones = Lcons 1 lones.

Proof.

pattern lones at 1; rewrite Llist_dec_thm; simpl.

...

============================

Lcons 1 lones = Lcons 1 lones

trivial.

Qed.

This is not a proof by co-recursion, just a proof by pattern-matching.
There are proofs of equality that seem obvious but cannot be performed in the calculus

of inductive constructions as it is defined now. This happens when the proofs seems to
require some sort of inductive argument. Here is an instance of an impossible proof:

Theorem lmap_id : forall (A:Set)(l:Llist A),

lmap A A (fun x:A => x) l = l.
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One would like to have an argument of the following form: if the list is nil, then the proof
is trivial, if the list is not nil, then the head on both sides of the equality are naturally the
same, and the equality for the tails should hold by some “inductive” argument. However,
there is no induction hypothesis, because there is no inductive list in this statement and
the proof of equality can only be proved by using the constructor of equality (because
equality is itself an inductive type).

The solution for this kind of problem is to use a co-inductive proposition that expresses
the equality of two lists by stating that they have the same elements. Here is the co-
inductive definition for this proposition:

CoInductive bisimilar (A:Set) : Llist A -> Llist A -> Prop :=

bisim0 : bisimilar A (Lnil A) (Lnil A)

| bisim1 : forall a l l’,

bisimilar A l l’ -> bisimilar A (Lcons a l)(Lcons a l’).

Proofs that two lists have the same elements can now also be obtained by using co-
recursive values, as long as we use the bisimilar relation instead of equality. Here is an
example of a proof, displayed as term of the calculus of inductive constructions to make
the general structure visible. Please note that rewrites using the theorems eq ind r and
Llist dec thm are performed to introduce the function Llist decompose and force the
expansion of the co-recursive function.

CoFixpoint lmap_bi (A:Set)(l:Llist A) :

bisimilar A (lmap A A (fun x:A => x) l) l :=

@eq_ind_r (Llist A) (Llist_decompose (lmap A A (fun x=> x) l))

(fun x => bisimilar A x l)

match l return bisimilar A

(Llist_decompose (lmap A A (fun x=>x) l))

l with

Lnil => bisim0 A

| Lcons a k =>

bisim1 A a (lmap A A (fun x=> x) k) k (lmap_bi A k)

end

(lmap A A (fun x => x) l)

(Llist_dec_thm A (lmap A A (fun x=>x) l))

.

The manual construction of co-inductive proofs is difficult. The alternative approach is
to use tactics. The following script performs the same proof, but relying on tactics.

Theorem lmap_bi’ : forall (A:Set)(l:Llist A),

bisimilar A (lmap A A (fun x => x) l) l.

cofix.

intros A l; rewrite (Llist_dec_thm _ (lmap A A (fun x=>x) l)).

case l.

intros a k; simpl.

apply bisim1; apply lmap_bi’.
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simpl; apply bisim0.

Qed.

The tactic cofix is the tactic that declares that the current proof will be a co-recursive
value. It introduces a new assumption in the context so that the co-recursive value can
be used inside its own definition. However, the same constraints as before exist: the
co-recursive value can only be used as input to a constructor. In the case of lmap bi, the
use of lmap bi’ at the end of the proof is justified by the previous use of the constructor
bisim1: lmap bi’ is thus used to provide an argument to bisim1.

In general, the constraint that co-recursive calls are used in correct conditions is only
checked at the end of the proof. This sometimes has the unpleasant effect that one believes
to have completed a proof and is only rebuked when the Qed or Defined commands
announce that the constructed term is not well-formed. This problem is compounded by
the fact that it is hard to control the hypotheses that are used by automatic tactics. Even
though we believe the proof of a subgoal should not rely on the co-recursive assumption,
it may happen that some tactic like intuition uses this assumption in a bad way. One
solution to this problem is to use the clear tactic to remove the co-recursive assumption
before using strong automatic tactics. A second important tool to avoid this problem is a
command called Guarded, this command can be used at any time during the interactive
proofs and it checks whether illegal uses of the co-recursive tactic have already been
performed.

4 Applications

Co-inductive types can be used to reason about hardware descriptions [9] concurrent
programming [14], finite state automata and infinite traces of execution, and temporal
logic [5, 8]. The guarded by constructors structure of co-recursive functions is adapted
to representing finite state automata. A few concrete examples are also given in [4].

Co-inductive types are especially well suited to model and reason about lazy functional
programs that compute on infinite lists. However, the constraints of having co-recursive
calls guarded by constructors imposes that one scrutinizes the structure of recursive func-
tions to understand whether they really can be encoded in the language. One approach,
used in [3] is to show that co-inductive objects also satisfy some inductive properties,
which make it possible to define functions that have a recursive part, with usual struc-
tural recursive calls with respect to these inductive properties, and guarded co-recursive
parts.

5 An example: introduction to exact real arithmetics

The work presented in this section is my own, but it is greatly inspired by reading the
lecture notes [10] and the thesis [17] and derived papers [18, 15], and by [6]. These papers
should be consulted for further references about exact real arithmetics, lazy computation,
and co-inductive types.

We are going to represent real numbers between 0 and 1 (included) as infinite se-
quences of intervals I

n
, where I0 = [0, 1], I

n+1 ⊂ I
n

and the size of I
n+1 is half the size of

I
n
. Moreover, I

n+1 will be obtained from I
n

in only one of three possible ways:
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1. I
n+1 is the left half of I

n
,

2. I
n+1 is the right half of I

n+1,

3. I
n+1 is the center of I

n+1: if a and b are the bounds of I
n
, then a + (b − a)/4 and

a + 3(b − a)/4 are the bounds of I
n

+ 1.

We can represent any of the intervals I
n

using lists of idigit, where the type idigit is the
three element enumerated type containing L, R, C. For instance, the interval [0,1] is given
by the empty list, the interval [1/4,3/8] can be represented by the lists L::C::R::nil,
L::R::L::nil, or C::L::L::nil. It is fairly easy to write a function of type list

idigit->R that maps every list to the lower and upper bound of the interval it represents.
We are going to represent real numbers by infinite sequences of intervals using the type
stream idigit.

There is also an easy correspondence from floating-point numbers in binary represen-
tation to this representation. Let us first recall what the binary floating-point represen-
tation is. Any “binary” floating point is a list of boolean values. Interpreting true as
the 1 bit and false as the 0 bit, a boolean list is interpreted as a real number in the
following way:

Fixpoint bit_list_to_R (l:list boolean) : Rdefinitions.R :=

match l with

nil => 0

| b::tl => let x := bit_list_to_R tl in

if b then (1+x)/2 else x/2

end.

We can inject the boolean values into the type idigit mapping true to L and false to
R. It is fairly easy to show that this correspondance can be lifted to lists of booleans and
idigits, so that the real number represented by a list is element of the interval represented
by the corresponding list.

We represent real numbers by streams of idigit elements. The construction relies
on associating a sequence of real numbers to each stream (actually the lower bounds of
the intervals) and to show that this sequence converges to a limit. To ease our reasoning,
we will also describe the relation between a stream and a real value using a co-inductive
property:

CoInductive represents : stream idigit -> Rdefinitions.R -> Prop :=

reprL : forall s r, represents s r -> (0 <= r <= 1)%R ->

represents (Cons L s) (r/2)

| reprR : forall s r, represents s r -> (0 <= r <= 1)%R ->

represents (Cons R s) ((r+1)/2)

| reprC : forall s r, represents s r -> (0 <= r <= 1)%R ->

represents (Cons C s) ((2*r+1)/4).

We could also use infinite lists of booleans to represent real numbers. This is the
usual representation of numbers. This representation also corresponds to sequences of
intervals, but it has bad programming properties. In this representation, if we know
that a number is very close to 1/2 but we don’t know whether it is larger or smaller,

7



we cannot produce the first bit. For instance, the number 1/3 is represented by the
infinite sequence .0101. . . and the number 1/6 is represented by the infinite sequence
.0010101. . . Adding the two numbers should yield the number 1/2. However, every finite
prefix of .010101. . . represents an interval that contains numbers that are larger than 1/3
and numbers that are smaller than 1/3. Similarly, every finite prefix of .0010101. . . contains
a numbers that are larger than 1/6 and numbers that are smaller. By only looking at a
finite prefix of both numbers, we cannot decide whether the first bit of the result should
be a 0 or a 1, because no number larger than 1/2 can be represented by a sequence start-
ing with a 0 and no number smaller than 1/2 can be represented by a sequence starting
with a 1.

With the extra digit, C, we can perform the computation as follows:

1. having observed that the first number has the form x = LRx′, we know that this
number is between 1/4 and 1/2,

2. having observed that the second number has the form y = LLy′, we know that this
number is between 0 and 1/4,

3. we know that the sum is between 1/4 and 3/4. therefore, we know that the sum is
an element of the interval represented by C::nil, and we can output this digit.

We can also go on to output the following digits. In usual binary representation, if v is
the number represented by the sequence s, then the number represented by the sequence
0s is v/2 and the number represented by the sequence 1s is (v+1)/2. This interpretation
carries over to the digits L and R, respectively. For the digit C, we know that the sequence
Cs represents (2v + 1)/4. Thus, if we come back to the computation of 1/3 + 1/6, we
know that x′ is 4 ∗ x − 1, y′ is 4 ∗ y, and the result should have the form C::z, where z
is the representation of (x′ + y′ + 1)/4 (since x′ + y′ + 1)/4 is 1/2, we see that the result
of the sum is going to be an infinite sequence of C digits.

We are now going to provide a few functions on streams. As a first example, the
function rat to stream maps any two integers a b to a stream. When a/b is between 0
and 1, the result stream is the representation of this rational number.

CoFixpoint rat_to_stream (a b:Z) : stream idigit :=

if Z_le_gt_dec (2*a) b then

Cons L (rat_to_stream (2*a) b)

else

Cons R (rat_to_stream (2*a-b) b)

For the second example, we compute an affine combination of two numbers with rational
coefficients. We will define the function that constructs the representation of the following
formula.

a

a′
v1 +

b

b′
v2 +

c

c′

The numbers a, a′, . . . are positive integers and a′, b′, and c′ are non-zero (this sign
restriction only serves to make the example shorter).

We choose to define a one-argument function, where the argument is a record holding
all the values a, a′, . . . , v1, v2. We define a type for this record and a predicate to express
the sign conditions.
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Record affine_data : Set :=

{m_a : Z; m_a’ : Z; m_b : Z; m_b’ : Z; m_c : Z; m_c’ : Z;

m_v1 : stream idigit; m_v2 : stream idigit}.

Definition positive_coefficients (x:affine_data) :=

0 <= m_a x /\ 0 < m_a’ x /\ 0 <= m_b x /\ 0 < m_b’ x

/\ 0 <= m_c x /\ 0 < m_c’ x.

We define a function axbyc of type

forall x, positive_coefficients x -> stream idigit.

The algorithm contains two categories of computing steps. In computing steps of the
first category, a digit of type idigit is produced, because analysing the values of a, a′,
. . .makes it possible to infer that the result will be in a precise part of the interval. The
result then takes the form

Cons d (axbyc 〈a1, a
′

1, b1, b
′

1, c1, c
′

1, v1, v2〉)

Where d is a digit and the values of a1, a′

1, . . . depend on the digit.

1. if c/c′ ≥ 1/2, then the result is sure to be in the right part of the interval, the digit
d is R and the new parameters are chosen so that a1/a

′

1 = 2a/a′, b1/b
′

1 = 2b/b′,
c1/c

′

1 = (2c − c′)/c′, because of the following equality:

1

2
(
2a

a′
v1 +

2b

b′
v2 +

2c − c′

c′
) +

1

2
=

a

a′
v1 +

b

b′
v2 +

c

c′

2. if 2(ab′c′ + ba′c′ + a′b′c) ≤ a′b′c′, then the result is sure to be in the left part of the
interval, the digit d is L and the new parameters are chosen so that a1/a

′

1 = 2a/a′,
b1/b

′

1 = 2b/b′, c1/c
′

1 = 2c/c′ (we do not detail the justification),

3. if (4(ab′c′ + ba′c′ + a′b′c) ≤ 3a′b′c′ and 4 ∗ c ≥ c′, then the result is sure to belong to
the center sub-interval, the digit d is C and the new parameters are chosen so that
a1/a

′

1 = 2a/a′, b1/b
′

1 = 2b/b′, c1/c
′

1 = (4c − c′)/2c′.

The various cases of these productive steps are described using the following functions:

Definition prod_R x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(2*m_c x - m_c’ x) (m_c’ x) (m_v1 x) (m_v2 x).

Definition prod_L x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(2*m_c x) (m_c’ x) (m_v1 x) (m_v2 x).

Definition prod_C x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(4*m_c x - m_c’ x) (2*m_c’ x) (m_v1 x) (m_v2 x).
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In the second category of computing steps the values v1 and v2 are scrutinized, so
that the interval for the potential values of the result is reduced as one learns more
information about the inputs. If the values v1 and v2 have the form Cons d1 v′

1 and Cons

d2 v′

2 respectively, The result then takes the form

axbyc 〈a, 2a′, b, 2b′, c1, c
′

1, v
′

1, v
′

2〉

Only the parameters c1 and c′1 take a different form depending on the values of d1 and
d2. The correspondance is given in the following table.

d1 d2 c1 c′1
L L c c′

L R bc′ + 2cb′ 2b′c′

R L ac′ + 2ca′ 2a′c′

L C bc′ + 4cb′ 4b′c′

C L ac′ + 4ca′ 4a′c′

R C 2ba′c′ + ab′c′ + 4cb′a′ 4a′b′c′

C R 2ba′c′ + ab′c′ + 4cb′a′ 4b′a′c′

R R ab′c′ + ba′c′ + 2ca′b′ 2a′b′c′

C C ba′c′ + ab′c′ + 4cb′a′ 4b′a′c′

For justification, let us look only at the case where v1 = Rv′

1 and v2 = Cv′

2. In this case
we have the following equations:

a

a′
v1 +

b

b′
v2 +

c

c′
=

a

a′
(
1

2
v′

1 +
1

2
) +

b

b′
(
1

2
v′

2 +
1

4
) +

c

c′

=
a

2a′
v′

1 +
b

2b′
v′

2 +
2ba′c′ + ab′c′ + 4cb′a′

4a′b′c′

This category of computation is taken care of by a function with the following form:

Definition axbyc_consume (x:affine_data) :=

let (a,a’,b,b’,c,c’,v1,v2) := x in

let (d1,v1’) := v1 in let (d2,v2’) := v2 in

let (c1,c1’) :=

match d1,d2 with

| L,L => (c, c’)

| L,R => (b*c’+2*c*b’, 2*b’*c’)

| R,L => (a*c’+2*c*a’, 2*a’*c’)

| L,C => (b*c’+4*c*b’, 4*b’*c’)

| C,L => (a*c’+4*c*a’, 4*a’*c’)

| R,C => (2*a*b’*c’+b*a’*c’+4*c*a’*b’, 4*a’*b’*c’)

| C,R => (2*b*a’*c’+a*b’*c’+4*c*b’*a’, 4*b’*a’*c’)

| R,R => (a*b’*c’+b*a’*c’+2*c*a’*b’, 2*a’*b’*c’)

| C,C => (b*a’*c’+a*b’*c’+4*c*b’*a’, 4*b’*a’*c’)

end in

Build_affine_data a (2*a’) b (2*b’) c1 c1’ v1’ v2’.
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From the point of view of co-recursive programming, the first category of comput-
ing steps gives regular guarded-by-constructor corecursive calls. The second category of
computing steps does not give any guarded corecursion. We need to separate the second
category in an auxiliary function. We choose to define this auxiliary function by well-
founded induction. The recursive function performs the various tests with the help of an
auxiliary test function:

Parameter axbyc_test :

forall x,

positive_coefficients x ->

m_c’ x <= 2*m_c x+

2*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

m_a’ x*m_b’ x*m_c’ x+

4*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

3*m_a’ x*m_b’ x*m_c’ x /\ m_c’ x <= 4*m_c x+

m_a’ x < 8*m_a x m_b’ x < 8*m_b x.

In the first three cases, the recursive function just returns the value that it received,
together with the proofs of the properties. To carry these agregates of values and proofs,
we defined a specific type to combine these values and proofs.

Inductive decision_data : Set :=

caseR : forall x:affine_data, positive_coefficients x ->

m_c’ x <= 2*m_c x -> decision_data

| caseL : forall x:affine_data, positive_coefficients x ->

2*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

m_a’ x*m_b’ x*m_c’ x -> decision_data

| caseC : forall x:affine_data, positive_coefficients x ->

4*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

3*m_a’ x*m_b’ x*m_c’ x -> m_c’ x <= 4*m_c x ->

decision_data.

The recursive function will thus have the type

forall x, positive_coefficient x -> decision_data.

The definition has the following form:

Definition axbyc_rec_aux (x:affine_data)

: (forall y, order y x ->

positive_coefficients y -> decision_data)->

positive_coefficients x -> decision_data :=

fun f Hp =>

match A.axbyc_test x Hp with

inleft (inleft (left H)) => caseR x Hp H

11



| inleft (inleft (right H)) => caseL x Hp H

| inleft (inright (conj H1 H2)) => caseC x Hp H1 H2

| inright H =>

f (axbyc_consume x)

(A.axbyc_consume_decrease x Hp H)

(A.axbyc_consume_pos x Hp)

end.

Definition axbyc_rec :=

well_founded_induction A.order_wf

(fun x => positive_coefficients x -> decision_data)

axbyc_rec_aux.

The definition of axbyc rec of course relies on proofs to ensure that axbyc consume

preserves the sign conditions and make the measure decrease, we do not include these
proofs in these notes.

The main co-recursive function relies on the auxiliary recursive function to perform all
the recursive calls that are not productive, the value returned by the auxiliary function
is suited to produce data and co-recursive calls are then allowed.

CoFixpoint axbyc (x:affine_data)

(h:positive_coefficients x):stream idigit :=

match axbyc_rec x h with

caseR y Hpos H => Cons R (axbyc (prod_R y) (A.prod_R_pos y Hpos H))

| caseL y Hpos H => Cons L (axbyc (prod_L y) (A.prod_L_pos y Hpos))

| caseC y Hpos H1 H2 =>

Cons C (axbyc (prod_C y) (A.prod_C_pos y Hpos H2))

end.

This function relies on auxiliary functions to perform the relevant updates of the various
coefficients. For instance, here is the function prod C:

Definition prod_C x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(4*m_c x-m_c’ x) (m_c’ x) (m_v1 x) (m_v2 x).

For each of these functions, it is also necessary to prove that they preserve the sign
conditions, these proofs are fairly trivial.

It requires more work to prove that the function is correct, in the sense that it does
produce the representation of the right real number, but this proof is too long to fit in
these short tutorial notes. More work is also required to make the function more efficient,
for instance by dividing a (resp. b, c) and a’ (resp. b’, c’) by they greatest common
divisor at each step.

The representation for real numbers proposed in [10] is very close to the representation
used in these notes, except that the initial interval is [-1,1], and the three digits are
interpreted as the sub-intervals [-1,0], [0,-1], [-1/2,1/2]. The whole set of real numbers is
then encoded by multiplying a number in [-1,1] by an exponent of 2 (as in usual scientific,
floating point notation). The work presented in [17] shows that both the representation
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in these notes and the representation in [10] are a particular case of a general framework
based on overlapping intervals and proposes a few other solutions. In these notes, we
have decided to restrict ourselves to affine binary operations, which makes it possible to
obtain addition and multiplication by a rational number, but the most general setting
relies on homographic and quadratic functions, which make it possible to obtain addition,
multiplication, and division, all in one shot.

The method of separating a recursive part from a co-recursive part in a function
definition was already present in [3]. However, the example of [3] is more complex because
the functions are partial: there are streams for which eventual productivity is not ensured
and a stronger description technique is required. This stronger technique is described in
[4] as ad-hoc recursion. The papers [11, 12] propose an alternative foundation to functions
that mix recursive and co-recursive parts.

6 Exercises

increasing streams Define a co-inductive predicate that is satisfied by any stream such
that, if n and m are consecutive elements, then n ≤ m.

Fibonnacci streams Define a co-inductive predicate, called local fib, that is satisfied
by any stream such that, if n, m, p are consecutive elements, then p = n+m. Define
a co-recursive function that constructs a fibonacci stream whose first two elements
are 1. Prove that the stream that is created satisfies the two predicates (increasing
and local fib).

13



7 Solutions

Require Export Omega.

CoInductive increasing : stream nat -> Prop :=

ci : forall a b tl, a <= b -> increasing (Cons b tl) ->

increasing (Cons a (Cons b tl)).

CoInductive local_fib : stream nat -> Prop :=

clf : forall a b tl, local_fib (Cons b (Cons (a+b) tl)) ->

local_fib (Cons a (Cons b (Cons (a+b) tl))).

CoFixpoint fibo_str (a b:nat) : stream nat := Cons a (fibo_str b (a + b)).

Definition str_decompose (A:Set)(s:stream A) : stream A :=

match s with Cons a tl => Cons a tl end.

Implicit Arguments str_decompose.

Theorem str_dec_thm : forall (A:Set)(s:stream A), str_decompose s = s.

Proof.

intros A [a tl];reflexivity.

Qed.

Implicit Arguments str_dec_thm.

Theorem increasing_fibo_str :

forall a b, a <= b -> increasing (fibo_str a b).

Proof.

Cofix.

intros a b Hle.

rewrite <- (str_dec_thm (fibo_str a b));simpl

assert (Heq:(fibo_str b (a+b))=(Cons b (fibo_str (a+b) (b+(a+b))))).

rewrite <- (str_dec_thm (fibo_str b (a+b)));simpl;auto.

rewrite Heq.

constructor.

assumption.

rewrite <- Heq.

apply increasing_fibo_str.

omega.

Qed.

Theorem increasing_fib : increasing (fibo_str 1 1).

Proof.

apply increasing_fibo_str;omega.

Qed.
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Theorem local_fib_str :

forall a b, local_fib (fibo_str a b).

Proof.

cofix.

intros a b.

assert (Heq :

(fibo_str b (a+b)) =

(Cons b (Cons (a+b)(fibo_str (b+(a+b))((a+b)+(b+(a+b))))))).

rewrite <- (str_dec_thm (fibo_str b (a+b))); simpl.

rewrite <- (str_dec_thm (fibo_str (a+b) (b+(a+b)))); simpl;auto.

rewrite <- (str_dec_thm (fibo_str a b)); simpl.

rewrite Heq.

constructor.

rewrite <- Heq.

apply local_fib_str.

Qed.

Theorem local_fib_fib : local_fib (fibo_str 1 1).

Proof.

apply local_fib_str.

Qed.
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