
HAL Id: inria-00092846
https://cel.hal.science/inria-00092846v1

Submitted on 13 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tutorial on the event-based B method
Dominique Cansell, Dominique Méry

To cite this version:
Dominique Cansell, Dominique Méry. Tutorial on the event-based B method. IFIP FORTE 2006
Paris, 2006. �inria-00092846�

https://cel.hal.science/inria-00092846v1
https://hal.archives-ouvertes.fr

Tutorial on the event-based B method

Concepts and Case Studies

FORTE 2006

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and

Distributed Systems
September 26-29 2006, Paris, France

Dominique Cansell, Université de Metz

and

Dominique Méry, Université Henri Poincaré Nancy 1

LORIA & Université Henri Poincaré Nancy 1

BP 239,Campus Scientifique

54506 Vandoœuvre-lès-Nancy Cedex, FRANCE

cansell,mery@loria.fr

Edited on September 11, 2006

2

On the lectures

B is a method for specifying, designing and coding software systems. It is based on Zermelo-Fraenkel

set theory with the axiom of choice, the concept of generalized substitution and on structuring mechanisms

(machine,refinement, implementation). The concept of refinement is the key notion for developing B models

of (software) systems in an incremental way. B models are accompanied by mathematical proofs that justify

them. Proofs of B models convince the user (designer or specifier) that the (software) system is effectively

correct. We provide a survey of the underlying logic of the B method and the semantic concepts related

to the B method; we detail the B development process partially supported by the mechanical engine of the

prover. We can not talk or write on the B method without mentioning J.-R. Abrial, who has first invented

the Z specification language and then has invented the B method; Both Dominiques have worked on joint

works with Jean-Raymond and have been published; our lectures notes are produced from our lectures at

the universities of Lorraine, joint works with Jean-Raymond. We encourage readers to get the B book,

which is the seminal book on the B method and which contains a lot of B things and we advertise the

forthcoming book on the event-based B method. Tools are available at www.b4free.com for B4free and at

www.loria.fr/ cansell/cnp.html for Click’n’prove. Please, get and play.

3

4

Contents

1 Introduction 7

1.1 Overview of B . 7

1.2 Proof-based Development . 7

1.3 Scope of the B modelling . 8

1.4 Related techniques . 8

1.5 Summary . 9

2 The B language 11

2.1 The B language for sets, predicates and logical structures 11

2.1.1 Sets and predicates . 11

2.1.2 A simple case study . 11

2.1.3 Logical structures in B . 14

2.2 The B language of transitions . 14

2.2.1 Generalized Substitutions . 15

2.2.2 Operations and events . 20

3 B models 23

3.1 Modelling Systems . 23

3.1.1 Modelling Systems in the B classical approach 23

3.1.2 Modelling systems in the event-based B approach 25

3.1.3 Structuring mechanisms of the B method . 26

3.2 Proof-based development in B . 30

3.2.1 Refinement of B models . 30

3.2.2 Proof-based development in action . 32

4 Sequential algorithms 35

4.1 Primitive recursive functions . 35

4.1.1 The class of primitive recursive functions . 35

4.1.2 Modeling the computation of a primitive recursive function 35

4.1.3 Iterative Computations from Primitive Recursion 36

4.1.4 Applying the Development for Addition, Multiplication, Exponentiation 38

4.2 Other ways to compute addition and multiplication . 40

4.2.1 Developing a new multiplication algorithm . 40

4.2.2 Addition of two natural numbers . 42

4.2.3 Managing the carry . 45

4.2.4 Production of codes . 45

4.2.5 Properties of models . 48

4.3 Design of sequential algorithms . 48

5 Combining coordination and refinement for sorting 51

5.1 Introduction . 51

5.2 A famous case study: the sorting problem . 52

5.3 Applying two sorting paradigms . 53

5.3.1 Bottom Up Process MERGE_SORT . 53

5

6 CONTENTS

5.3.2 Top Down SPLIT_SORT . 54

5.3.3 Duality of sorting models . 56

5.4 Introducing a pivot and an index . 56

5.5 A set of bounds and a concrete pivot . 59

5.6 Implementation of the tuple space by a stack . 60

5.7 Conclusion . 62

6 Spanning trees algorithms 65

6.1 Introduction . 65

6.2 The Minimum Spanning Tree Problem . 65

6.3 Development of a spanning tree algorithm . 66

6.3.1 Formal specification of the spanning tree problem 66

6.3.2 Development of a simple spanning tree algorithm 67

6.3.3 A proof view of the spanning tree algorithm . 69

6.4 Development of Prim’s algorithm . 69

6.5 On the theory of trees . 72

7 Design of distributed algorithms by refinement 75

7.1 Design of distributed algorithms by refinement . 76

7.2 The IEEE 1394 tree identify protocol . 76

7.2.1 Introduction . 76

7.2.2 The Case Study: Basic Approach . 77

7.2.3 Refining the First Model . 78

7.2.4 Last Refinement: Localization . 82

7.2.5 Conclusion . 83

7.3 A new leader election distributed algorithm . 84

7.3.1 The Basic Mathematical Structure . 84

7.3.2 The First Model leaderelection0: the one-shot election 85

7.3.3 Refining the First Model leaderelection0 . 85

7.3.4 Last Refinements: Localization . 91

8 Conclusion 97

8.1 Work on B and with B . 97

8.1.1 Extending the B method . 97

8.1.2 Combining B with another formalim . 97

8.2 On the proof process . 98

8.3 Final remarks . 98

Chapter 1

Introduction

1.1 Overview of B

Classical B is a state-based method developed by Abrial for specifying, designing and coding software

systems. It is based on Zermelo-Fraenkel set theory with the axiom of choice. Sets are used for data

modelling, Generalised Substitutions are used to describe state modifications, the refinement calculus is

used to relate models at varying levels of abstraction, and there are a number of structuring mechanisms

(machine, refinement, implementation) which are used in the organisation of a development. The first

version of the B method is extensively described in The B-Book [21]. It is supported by the Atelier B

tool [55] and by the B Toolkit [77].

Central to the classical B approach is the idea of a software operation which will perform according to a

given specification if called within a given pre-condition. Subsequent to the formulation of the classical

approach, Abrial and others have developed a more general approach in which the notion of event is funda-

mental. An event has a firing condition (a guard) as opposed to a pre-condition. It may fire when its guard

is true. Event based models have proved useful in requirement analysis, modelling distributed systems and

in the discovery/design of both distributed and sequential programming algorithms.

After extensive experience with B, current work by Abrial is proposing the formulation of a second version

of the method [8]. This distills experience gained with the event based approach and provides a general

framework for the development of discrete systems. Although this widens the scope of the method, the

mathematical foundations of both versions of the method are the same.

1.2 Proof-based Development

Proof-based development methods [25, 21, 83] integrate formal proof techniques in the development of

software systems. The main idea is to start with a very abstract model of the system under development.

Details are gradually added to this first model by building a sequence of more concrete ones. The relation-

ship between two successive models in this sequence is that of refinement [25, 21, 52, 24]. The essence of

the refinement relationship is that it preserves already proved system properties including safety properties

and termination.

A development gives rise to a number of, so-called, proof obligations, which guarantee its correctness.

Such proof obligations are discharged by the proof tool using automatic and interactive proof procedures

supported by a proof engine [55, 56].

At the most abstract level it is obligatory to describe the static properties of a model’s data by means of

an invariant predicate. This gives rise to proof obligations relating to the consistency of the model. They

are required to ensure that data properties which are claimed to be invariant are preserved by the events

or operations of the model. Each refinement step is associated with a further invariant which relates the

data of the more concrete model to that of the abstract model and states any additional invariant properties

of the (possibly richer) concrete data model. These invariants, so-called gluing invariants are used in the

formulation of the refinement proof obligations.

The goal of a B development is to obtain a proved model. Since the development process leads to a large

number of proof obligations, the mastering of proof complexity is a crucial issue. Even if a proof tool is

7

8 CHAPTER 1. INTRODUCTION

available, its effective power is limited by classical results over logical theories and we must distribute the

complexity of proofs over the components of the current development, e.g. by refinement. Refinement has

the potential to decrease the complexity of the proof process whilst allowing for traceability of requirements.

B Models rarely need to make assumptions about the size of a system being modelled, e.g. the number

of nodes in a network. This is in contrast to model checking approaches [54]. The price to pay is to

face possibly complex mathematical theories and difficult proofs. The re-use of developed models and the

structuring mechanisms available in B help in decreasing the complexity. Where B has been exercised on

known difficult problems, the result has often been a simpler proof development than has been achieved by

users of other more monolithic techniques [82].

1.3 Scope of the B modelling

The scope of the B method concerns the complete process of software and system development. Initially,

the B method was mainly restricted to the development of software systems [27, 32, 68] but a wider scope

for the method has emerged with the incorporation of the event based approach [1, 13, 7, 8, 38, 36, 93]

and is related to the systematic derivation of reactive distributed systems. Events are simply expressed in

the rich syntax of the B language. Abrial and Mussat [13] introduce elements to handle liveness properties.

The refinement of the event-based B method does not deal with fairness constraints but introduces explicit

counters to ensure the happening of abstract events, while new events are introduced in a refined model.

Among case studies developed in B, we can mention the METEOR project [27] for controlling train traffic,

the PCI protocol [41], the IEEE 1394 Tree Identify Protocol [12]. Finally, B has been combined with CSP

for handling communications systems [36, 35] and with action systems [38, 93].

The proposal can be compared to action systems [23], UNITY programs [52] and TLA [71] specifications

but there is no notion of abstract fairness like in TLA or in UNITY.

1.4 Related techniques

The B method is a state-based method integrating set theory, predicate calculus and generalized substitution

language. We briefly compare it to related notations.

Like Z [94], B is based on the ZF set theory; both notations share the same roots, but we can point to a

number of interesting differences. Z expresses state change by use of before and after predicates, whereas

the predicate transformer semantics of B allows a notation which is closer to programming. Invariants in Z

are incorporated into operation descriptions and alter their meaning, whereas the invariant in B is checked

against the state changes described by operations and events to ensure consistency. Finally B makes a careful

distinction between the logical properties of pre-conditions and guards, which are not clearly distinguished

in Z.

The refinement calculus used in B for defining the refinement between models in the event-based B approach

is very close to Back’s action systems, but tool support for action systems appears to be less mechanized

than B.

TLA+ [72] can be compared to B, since it includes set theory with the ǫ operator of Hilbert. The semantics

of TLA temporal operators is expressed over traces of states whereas the semantics of B actions is expressed

in the weakest precondition calculus. Both semantics are equivalent with respect to safety properties, but

the trace semantics of TLA+ allows an expression of fairness and eventuality properties that is not directly

available in B.

VDM [69] is a method with similar objectives to classical B. Like B it uses partial functions to model data,

which can lead to meaningless terms and predicates e.g. when a function is a applied outside its domain.

VDM uses a special three valued logic to deal with undefinedness. B retains classical two valued logic,

which simplifies proof at the expense of requiring more care with undefinedness. Recent approaches to this

problem will be mentioned later.

ASM [65, 39] and B share common objectives related to the design and the analysis of (software/hardware)

systems. Both methods bridge the gap between human understanding and formulation of real-world prob-

lems and the deployment of their computer-based solutions. Each has a simple scientific foundation: B is

1.5. SUMMARY 9

based on set theory and ASM is based on the algebraic framework with an abstract state change mecha-

nism. An Abstract State Machine is defined by a signature, an abstract state, a finite collection of rules and

a specific rule; rules provide an operational style very useful for modelling specification and programming

mechanisms. Like B, ASM includes a refinement relation for the incremental design of systems; the tool

support of ASM is under development but it allows one to verify and to analyse ASMs. In applications, B

seems to be more mature than ASM, even if ASM has several real successes like the validation [95] of Java

and the Java Virtual Machine.

1.5 Summary

Next sections provide a short description of event B:

• the B language and elements on the classical B method: syntax and semantics of operations, events,

assertions, predicates, machines, models.

• the B modelling language and a simple introductory example: event B, refinement, proof-based de-

velopment.

• other sections illustrate the event B modelling method by case studies:

– Sequential algorithms.

– Combining coordination and refinement for sorting.

– Spanning trees algorithms.

– A distributed leader election algorithm.

• Final section concludes the chapter on the B modelling techniques and on ongoing researches.

10 CHAPTER 1. INTRODUCTION

Chapter 2

The B language

2.1 The B language for sets, predicates and logical structures

The development of a model starts by an analysis of the mathematical structure: sets, constants and proper-

ties over sets and constants and we produce the mathematical landscape by requirements elicitation. How-

ever, the statement of mathematical properties can be expressed using different assumed properties; for

instance, a constant n is a natural number and is supposed to be greater than 3 - classically and formally

written like n ∈ N ∧ n ≥ 3 - or a set of persons is not empty - classically and formally written like

persons 6= ∅. Abrial et al [9] develop a structure language which allows to one to encode mathemati-

cal structures and their accompanying theorems. Structures improve the possibility of mechanized proofs

but they are not yet in the current version of the B tools; there is a close connection with the structuring

mechanisms and the algebraic structures [62], but the main difference is in the use of sets rather than of

abstract data types. B mathematical structures are built with notations of set theory and we list the main

notations (and their meanings) used in further subsections; the complete notation is described in the B book

of Abrial [21].

2.1.1 Sets and predicates

Constants can be defined using first order logic and set-theoretical notations of B. A set can be defined

using either the comprehension schema { x | x ∈ s ∧ P (x)}, or the Cartesian product schema s × t or

using operators over sets like power P(s), intersection ∩ and union ∪. y ∈ s is a predicate which can be

sometimes simplified either from y ∈ { x | x ∈ s ∧ P (x)} into y ∈ s ∧ P (y), or from x 7→ y ∈
s × t into x ∈ s ∧ y ∈ t, or from t ∈ P(s) into ∀ x . (x ∈ t ⇒ x ∈ s) where x is a fresh variable.

A pair is denoted either (x , y) or x 7→ y .

A relation over two sets s and t is an element of P(s × t); a relation r has a domain dom(r) and a co-domain

ran(r). A function f from the set s to the set t is a relation such that each element of dom(f) is related to

at most one element of the set t.

A function f is either partial f ∈ A 7→ B, or total f ∈ A → B. Then, we can define the term f(x) for

every element x in dom(f) using the choice function (f(x) = choice(f [{x}]) where f [{x}] is the subset of

t, whose elements are related to x by f . The choice function assumes that there exists at least one element

in the set, which is not the case of the ǫ operator that can be applied to an empty set and returns some value.

If x 7→ y ∈ f then y = f(x) and f(x) is well defined, only if f is a function and x is in dom(f).
We summarize in figure 2.1, set-theoretical notations that can be used in the writing of formal definitions

related to constants. In fact, the modelling of data is oriented by sets, relations and functions; the task of the

specifier is then to use effectively those notations.

2.1.2 A simple case study

Since we have a short space for explaining B concepts, we use a very simple case study, namely the de-

velopment of models for computing the factorial function; we can illustrate the expressivity of the B

language of predicates. Other case studies can be found in complete work separately published (see for

instance,[21, 1, 7, 5, 2, 11, 41, 12]). When considering the definition of a function, we can use different

11

12 CHAPTER 2. THE B LANGUAGE

Name Syntax Definition

Binary Relation s ↔ t P(s×t)
Composition of relations r1; r2 {x, y |x ∈ a ∧ y ∈ b ∧

∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}
Inverse relation r−1 {x, y|x ∈ P(a) ∧ y ∈ P(b) ∧ y, x ∈ r}

Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}
Range ran(r) dom(r−1)

Identity id(s) {x, y|x ∈ s ∧ y ∈ s ∧ x = y}
Restriction s � r id(s); r

Co-restriction r � s r; id(s)
Anti-restriction s ⊳− r (dom(r)−s) � r

Anti-co-restriction r ⊲− s r � (ran(r)−s)
Image r[w] ran(w � r)

Overriding q ⊳− r (dom(r) ⊳− q)∪r

Partial Function s 7→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}

Figure 2.1: Set-theoretical notations

styles to characterize it. A function is mathematically defined as a (binary) relation over two sets, called

source and target and it satisfies the functionality property. The set-theoretical framework of B invites us

to follow this way for defining functions; however, a recursive definition of a given function is generally

used. The recursive definition states that a given mathematical object exists and that it is the least solution

of a fixed-point equation. Hence, a first step of the B development proves that the function defined by a

relation is the least fixed-point of the given equation. Properties of the function might be assumed, but we

prefer to advocate a style of fully proved development with respect to a minimal set of assumptions. The

first step enumerates a list of basic properties considered as axioms and the final step reaches a point where

both definitions are proved to be equivalent.

First, we define the mathematical function factorial, in a classical way; the first line states that factorial is

a total function from N into N and the next lines state that factorial satisfies a fixed-point and, by default, it

is supposed to be the least fixed-point. factorial is a B constant and has B properties:

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ≥ 0 ⇒ factorial(n+1) = (n+1)×factorial(n))

In previous work on B [43], we use this definition and write it as a B property (a logical assumption or

an axiom of the current theory) but nothing tells us that the definition is consistent and that it defines an

existing function. A solution is to define the factorial function using a fixed-point schema such that the

factorial function is the least fixed-point of the given equation over relations. The factorial function is the

smallest relation satisfying some conditions and especially the functionality; the functionality is stated as

a logical consequence of the B properties. The point is not new but we are able to introduce notions to

students putting together fixed-point theory, set theory, theory of relations and functions and the process

of validation by proof (mechanically done by the prover). The computation of the factorial function starts

by a definition of the factorial function which is carefully and formally justified using the theorem prover.

factorial is still a B constant but it is differently defined.

The factorial function is a relation over natural numbers and it is defined by its graph over pairs of natural

numbers:

(axioms or B properties)

factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧

∀(n, fn) ·

n 7→ fn ∈ factorial

⇒
n+1 7→ (n+1)×fn ∈ factorial

2.1. THE B LANGUAGE FOR SETS, PREDICATES AND LOGICAL STRUCTURES 13

The factorial function satisfies the fixed-point equation and is the least fixed-point:

(axioms or B properties)

∀f ·

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f

These last statements are B properties of the factorial function and from these B properties, we should

derive the functionality of the resulting least fixed-point: factorial is a function is a logical consequence of

the new definition of factorial.

(consequences or B assertions)

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

Now, factorial is proved to be a function and no assumption concerning the functionality is left unspecified

or simply an assumption. Proofs are carried out using the first order predicate calculus together with set

theory and arithmetic. When we have proved that factorial is a function, it means that every derived property

is effectively obtained by a mechanical process of proof; the proof can be reused in another case study, if

necessary. The proof is an application of the induction principle; every inductive property mentions a

property over values of the underlying structure namely P(n); hence we should quantify over predicates

and derive theorems in higher order logic [9]. Using a quantification over subsets of a set, we can get

higher order theorems. For instance, P(n) is represented by the following set {n|n ∈ NATURAL ∧
P(n)} and the inductive property is stated as follows; the first expression is given in the B language and

the second expression (equivalent to the first one) in classical mathematical notation (succ denotes the

successor function defined over natural numbers):

B statement

∀P ·

P ⊆ N ∧
0 ∈ P ∧
succ[P] ⊆ P

⇒
N ⊆ P)

classical logical statement

∀P ·

P(n) a property on N ∧
P(0) ∧
∀n ≥ 0 · (P(n) ⇒ P(n+1))

⇒
∀n ≥ 0 · P(n)

The higher-order aspect is achieved by the use of set theory, which offers the possibility to quantify over all

the subsets of a set. Such quantification give indeed the possibility to climb up to higher-order in a way that

is always framed.

The structure language introduced by Abrial et al [9] can be useful to provide the reuse of already for-

mally validated properties. It is then clear that the first step of our modelling process is an analysis of the

mathematical landscape. The analysis of properties is essential, when dealing with the undefinedness of

expressions and the work of Abrial et al [9] or the doctoral thesis of Burdy [34] propose different ways to

deal with this question. For instance, the existence of a function like factorial may appear obvious but the

technique of modelling might lead to silly models, if no proof of definedness is done. The proof of the

functionality of factorial necessitates to instantiate the variable P in the inductive property by the following

set:

{n|n ∈ N ∧ 0..n � factorial ∈ 0..n −→ N}

Now, we consider the structures in B used for organizing axioms, definitions, theorems and theories.

14 CHAPTER 2. THE B LANGUAGE

2.1.3 Logical structures in B

The B language of predicates denoted BP for expressing data and properties combine set theory and first

order predicate calculus with a simple arithmetic theory. The B environment can be used to derive theorems

from axioms; B provides a simple way to express axioms and theorems using abstract machines without

variables. It is a way to use the underlying B prover and to implement the proof process that we have already

described.

machine

m

sets

s

constants

c

properties

P (s, c)
assertions

A(x)
end

An abstract machine has a name m; the clause sets contains definitions of

sets in the problem; the clause constants allows one to introduce infor-

mation related to the mathematical structure of the problem to solve and

the clause properties contains the effective definitions of constants: it is

very important to list carefully properties of constants in a way that can

be easily used by the tool. The clause assertions contains the list of the-

orems to be discharged by the proof engine. The proof process is based

on the sequent calculus and the prover provides (semi-)decision proce-

dures [55] for proving the validity of a given logical fact called a sequent

and allows one to build interactively the proof by applying possible rules

of sequent calculus.

For instance, the machine FACTORIAL_DEF introduces a new constant called factorial satisfying given

properties in the previous lines. The functionality of factorial is derived from the assumptions in the clause

assertions.

machine

FACTORIAL_DEF

constants

factorial

properties

factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)timesfn ∈ factorial) ∧

∀f ·

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f

assertions

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

end

The interactive prover breaks a sequent into simpler-to-prove sequents but the user must know the global

structure of the final proof. BP allows us to define underlying mathematical structures required for a given

problem; now we should introduce how to specify states and how to describe transitions over states.

2.2 The B language of transitions

The B language is not restricted to classical set-theoretical notations and the sequent calculus; it includes

notations for defining transitions over states of the model, called generalized substitutions. In its simple

form, x := E(x), a generalized substitution looks like an assignment; the B language of generalized sub-

stitutions called GSL (Generalized Substitution Language) (see figure 2.2) contains syntactical structures

for expressing different kinds of (states) transitions. Generalized substitutions of GSL allow us to write

2.2. THE B LANGUAGE OF TRANSITIONS 15

operations in the classical B approach [21]; a restriction over GSL leads to events in the so called event-

based B approach [13, 8]. In the following sub-subsections, we address the semantical issues of generalized

substitutions and the differences between operations and events.

2.2.1 Generalized Substitutions

Generalized substitutions provide a way to express transformations of state variables of a given model. In

the construct x := E(x), x denotes a vector of state variables of the model, and E(x) a vector of expressions

of the same size as the vector x. The interpretation we shall give here to this statement is not however that

of an assignment statement. The class of generalized substitutions contains the following possible forms of

generalized substitutions:

• x := E (assignment).

• skip (stuttering).

• P | S (precondition) (or PRE P THEN S END).

• S [] T (bounded choice) (or CHOICE S1 OR S2 END).

• P ⇒ S (guard) (or SELECT(orWHEN) P THEN S END).

• @z.S (unbounded choice).

• x :∈ S (set choice), x : R(x0, x) (generalized assignment).

• S1;S2 (sequencing).

• WHILE B DO S INVARIANT J VARIANT V END.

The meaning of a generalized substitution S is defined in the weakest-precondition calculus [60, 61] by

the predicate transformer λP ∈ BP.[S]P where [S]P means that S establishes P . Intuitively, it means

that every accepted execution of S starting from a state s satisfying [S]P terminates in a state satisfying

P ; certain substitutions can be feasibly executed (or accepted for execution) by any physical computational

device; it means also that S terminates for every state of [S]P . The weakest-precondition operator has prop-

erties related to implication over predicates: λP ∈ BP.[S]P is monotonic with respect to the implication,

it is distributive with respect to the conjunction of predicates. The properties of the weakest-precondition

operator are known, since the work of Dijkstra [60, 61] on the semantics defined by predicate transformers.

The definition of λP ∈ BP.[S]P is inductively expressed over the syntax of B predicates and the syntax

of generalized substitutions. [S]P can be reduced to a B predicate, which is used by the proof-obligations

generator. Figure 2.2 contains the inductive definition of [S]P .

We say that two substitutions S1 and S2 are equivalent, denoted S1 = S2, if for any predicate P of the

B language, [S1]P ≡ [S2]P . The relation defines a way to compare substitutions. Abrial [21] proves a

theorem for normalized form related to any substitution and it proves that a substitution is characterized by

a precondition and a computation relation over variables.

Théorème 1 [21]

For any substitution S, there exists two predicates P and Q where x′ is not free in P such that: S =
P |@x′.(Q =⇒ x := x′).

The theorem tells us the importance of the precondition of a substitution, which should be true, when the

substitution is applied to the current state, else the resulting state is not consistent with the transformation.

Q is a relation between the initial state x and the next state x′. In fact, a substitution should be applied

to a state satisfying the invariant and should preserve it. Intuitively, it means that, when one applies the

substitution, one has to check that the initial state is correct. The weakest-precondition operator allows to

define specific conditions over substitutions:

• Aborted computations: abt(S)
def
= for any predicate R,¬[S]R and it defines the set of states that can

not establish any predicate R and that are the non-terminating states.

16 CHAPTER 2. THE B LANGUAGE

Name Generalized substitution : S [S]P

Assignment x := E P (E/x)

Skip skip P

Parallel Composition x := E||y := F [x, y := E,F]P

Non-deterministic x :∈ S ∀v.(v ∈ S ⇒ P (v/x))
Choice in a Set

Relational Assignment x : R(x0, x) ∀v.(R(x0, v) ⇒ P (v/x))

Unbounded Choice @x.S ∀x.[S]P

Bounded Choice choice S1 or S2 end [S1]P ∧ [S2]P
(or equivalently S1[]S2)

Guard select G then T end G ⇒ [T]P
(or equivalently G =⇒ S2)

Precondition pre G then T end G ∧ [T]P
(or equivalently G|T)

Generalized Guard any t where G ∀ t· (G ⇒ [T]P)
then T end

Sequential Composition S;T [S][T]P

Figure 2.2: Definition of GSL and [S]P

2.2. THE B LANGUAGE OF TRANSITIONS 17

Generalized substitution : S trm(S)

x := E TRUE

skip TRUE

x :∈ S TRUE

x : R(x0, x) TRUE

@x.S ∀x.trm(S)

choice S1 or S2 end trm(S1) ∧ trm(S2)
(or equivalently S1[]S2)

select G then T end G ⇒ trm(T)
(or equivalently G =⇒ S2)

pre G then T end G ∧ trm(T)
(or equivalently G|T)

any t where G then T end ∀ t· (G ⇒ trm(T))

Figure 2.3: Examples of definitions for trm(S)

• Terminating computations: trm(S)
def
= ¬abt(S) and it defines the termination condition for the

substitution S.

• Miraculous computations: mir(S)
def
= for any predicate R, [S]R and means that among states, some

states may establish every predicate R, for instance FALSE, and they are called miraculous states,

since they establish a miracle.

• Feasible computations: fis(S)
def
= ¬mir(S) Miraculous states correspond to non-feasible computa-

tions and the feasibility condition ensures that the computation is realistic.

Terminating computations and feasible computations play a central role in the analysis of generalized sub-

stitutions, whose the expressivity if very important. The figures 2.3 and 2.4 provide two lists of rules for

simplifying trm(S) and fis(S) into the B predicates language; both lists are not complete (see Abrial [21]

for complete lists).

For instance, fis(select FALSE then x := 0 end) is FALSE and mir(select FALSE then x := 0 end) is

TRUE; the substitution select FALSE then x := 0 end establishes any predicate and is not feasible. We

can not implement such a substitution in a programming language.

A relational predicate can be defined using the weakest-precondition semantics, namely prdx(S), by the

expression ¬[S](x 6= x′) which is the relation characterizing the computations of S. The figure 2.5 contains

a list of definitions of the predicate with respect to the syntax.

18 CHAPTER 2. THE B LANGUAGE

Generalized substitution : S fis(S)

x := E TRUE

skip TRUE

x :∈ S S 6= ∅

x : R(x0, x) ∃v.(R(x0, v)

@x.S ∃x.fis(S)

choice S1 or S2 end fis(S1) ∨ fis(S2)
(or equivalently S1[]S2)

select G then T end G ∧ fis(T)
(or equivalently G =⇒ S2)

pre G then T end G ⇒ fis(T)
(or equivalently G|T)

any t where G then T end ∃ t· (G ∧ fis(T))

Figure 2.4: Examples of definitions for fis(S)

2.2. THE B LANGUAGE OF TRANSITIONS 19

Generalized substitution : S prdx(S)

x := E x′ = E

skip x′ = x

x :∈ S x′ ∈ S

x : R(x0, x) R(x, x′)

@z.S ∃z.prdx(S) if z 6= x′

choice S1 or S2 end prdx(S1) ∨ prdx(S2)
(or equivalently S1[]S2)

select G then T end G ∧ prdx(T)
(or equivalently G =⇒ S2)

pre G then T end G ⇒ prdx(T)
(or equivalently G|T)

any t where G then T end ∃ t· (G ∧ prdx(T))

Figure 2.5: Examples of definitions for prdx(S)

20 CHAPTER 2. THE B LANGUAGE

The next property is proved by Abrial and shows the relationship between weakest-precondition and rela-

tional semantics. Predicates trm(S) and prdx(S) are respectively defined in figure 2.3 and figure 2.5.

Théorème 2 [21]

For any substitution S, we have: S = trm(S)|@x′.(prdx(S) =⇒ x := x′)

Both theorems emphasize the role of the precondition and the relation in the semantical definition of a

substitution. The refinement of two substitutions is simply defined using the weakest-precondition calculus

as follows: S is refined by T (written S ⊑ T), if for any predicate P , [S]P ⇒ [T]P . We can give

an equivalent version of the refinement that shows that it decreases the non-determinism. Let us define

the following sets: pre(S) = {x|x ∈ s ∧ trm(S)}, rel(S) = {x, x′|x ∈ s ∧ x′ ∈ s ∧ prdx(S)} and

dom(S) = {x|x ∈ s ∧ fis(S)} where s is supposed to be the global set of states. The refinement can be

defined equivalently using the set-theoretical versions: S is refined by T , if, and only if, pre(S) ⊆ pre(T)
and rel(T) ⊆ rel(S). We can also use previous notations and define equivalently the refinement of two

substitutions by the expression: trm(S) ⇒ trm(T) and prdx(T) ⇒ prdx(S). The predicate prdx(S)
relates S to a relation over x and x′; it means that a substitution can be seen like a relation over pairs of states.

The weakest-precondition semantics over generalized substitutions provides the semantical foundation of

the generator of proof obligations; in the next sub-subsections we introduce operations and events, which

are two ways to use the B method.

2.2.2 Operations and events

Generalized substitutions are used to construct operations of abstract machines or events of abstract models.

Both notions will be detailed in the next subsection. However, we should explain the difference between

those two notions. A (abstract) machine is a structure with a part defining data (sets, constants, properties),

a part defining state (variables,invariant) and a part defining operations (operations, initialisation); it only

gives its potential user the ability to activate the operations, not to access its state directly and this aspect is

very important for refining the machine by making changes of variables and of operations, while keeping

their names. An operation has a precondition and the precondition should be true, when one calls the

operation. Operations are characterized by generalized substitutions and their semantics is based on the

semantics of generalized substitutions (either in the weakest-precondition-based style, or in the relational

style). It means that the condition of preservation of the invariant is simply written as follows:

I ∧ trm(O) ⇒ [O]I (2.1)

If one calls the operation, when the precondition is false, any state can be reached and the invariant is not

ensured. The style of programming is called generous but it assumes that an operation is always called

when the precondition is true. An operation can have input and output parameters and it is called in a state

satisfying the invariant and it is a passive object, since it requires to be called to have an effect.

On the other hand, an event has a guard and is triggered in a state validating the guard. Both operation

and event have a name, but an event has no input and output parameters. An event is observed or not

observed. and possible changes of variables should maintain the invariant of the current model: the style

is called defensive. Like an operation, an event is characterized by a generalized substitution and it can be

defined by a relation over variables and primed variables: a before-after predicate denoted BA(e)(x, x′).
An event is essentially a reactive object and reacts with respect to its guard grd(e)(x). However, there is a

restriction over the language GSL used for defining events and we authorize only three kinds of generalized

substitutions (see the figure 2.6). In the definition of an event, three basic substitutions are used to write an

event (x := E(x), x : ∈ S(x), x : P (x0, x)) and the last substitution is the normal form of the three ones.

An event should be feasible and the feasibility is related to the feasibility of the generalized substitution of

the event: some next state must be reachable from a given state. Since events are reactive objects, related

proof obligations should guarantee that the current state satisfying the invariant should be feasible. The

figure 2.7 contains the definition of guards of events. We leave the classical abstract machines of the B

classical approach and we illustrate the system modelling through events and models.

When using the relational style for defining the semantics of events, we use the style advocated by Lam-

port [71] in TLA; an event is seen as a transformation between states before the transformation and states

after the transformation. Lamport uses the priming of variables to separate before values from after val-

ues. Using this notation and supposing that x0 denotes the value of x before the transition of the event,

2.2. THE B LANGUAGE OF TRANSITIONS 21

Event : E Before-After Predicate

begin x : P (x0, x) end P (x, x′)

when G(x) then x : P (x0, x) end G(x) ∧ P (x, x′)

any t where G(t, x) then x : P (x0, x, t) end ∃ t· (G(t, x) ∧ P (x, x′, t))

Figure 2.6: Definition of events and before-after predicates of events

Event : E Guard: grd(E)

begin S end TRUE

when G(x) then T end G(x)

any t where G(t, x) then T end ∃ t· G(t, x)

Figure 2.7: Definition of events and guards of events

events can get a semantics defined over primed and unprimed variables in figure 2.6. The before-after

predicate is already defined in the B book as the predicate prdx(S) defined for every substitution S (see

sub-subsection 2.2.1).

Any event e 2.7 has a guard defining the enabledness condition over the current state and it expresses the

existence of a next state. For instance, the disjunction of all guards is used for strengthening the invariant

of a B system of events to include the deadlock freedom of the current model. The new syntax of event B

accepts both equivalent expressions: x : E(x0, x) or e : |E(x0, x). Before to introduce B models, we give

the expression stating the preservation of a property by a given event e:

I(x) ⇒ [e] I(x) (2.2)

or equivalently in a relational style

I(x) ∧ BA(e)(x, x′) ⇒ I(x′) (2.3)

BA(e)(x, x′) is the before-after relation of the event e and I(x) is a state predicate over variables x. The

equation 2.1 states the proof obligation of the operation O using the weakest-precondition operator and

the equation 2.3 defines the proof obligation for the preservation of I(x), while e is observed. Since the

two approaches are semantically equivalent, the proof-obligations generator of the Atelier B can be reused

for generating those assertions in the B environment. The SELECT event is the previous notation for the

WHEN event; both are equivalent; however, the WHEN notation captures the idea of reactivity of guarded

events; B♯ [14] will provide other notations for combining events. In the next subsection, we detail abstract

machines and abstract models, which are using operations and events.

22 CHAPTER 2. THE B LANGUAGE

Chapter 3

B models

3.1 Modelling Systems

Systems under consideration are software systems, control systems, protocols, sequential and distributed

algorithms, operating systems, circuits; they are generally very complex and have parts interacting with an

environment. A discrete abstraction of such systems constitutes an adequate framework: such an abstraction

is called a discrete model. A discrete model is more generally known as a discrete transition system and

provides a view of the current system; the development of a model in B follows an incremental process

validated by the refinement. A system is modelled by a sequence of models related by the refinement and

managed in a project.

A project [21, 8] in B contains information for editing, proving, analysing, mapping and exporting models

or components. A B component has two separate forms: a first form concerns the development of software

models and B components are abstract machine, refinement, implementation; a second form is related to

modelling reactive systems using the event-based B approach and B components are simply called models.

Each form corresponds to a specific approach for developing B components; the first form is fully supported

by the B tools [55, 77] and the second one is partly supported by tools [55]. In the next sub-subsections, we

overview each approach based on the same logical and mathematical concepts.

3.1.1 Modelling Systems in the B classical approach

The B method [21] is historically applied to software systems and has helped in developing safe software

controlling trains [27]. The scope of the method is not restricted to the specification step but includes

facilities for designing larger models or machines gathered in a project. The basic model is called an

abstract machine and is defined in the A(bstract) M(achine) N(otation) language. We describe an abstract

machine in the next figure. An abstract machine encapsulates variables defining the state of the system; the

state should conform to the invariant and each operation should be called, when the current state satisfies

the invariant. Each operation should preserve the invariant, when it is called.

An operation may have input/output parameters and only operations can change state variables. An abstract

machine looks like a desk calculator and each time a user presses the button of an operation, he should

check that the precondition of the operation is true, else no preservation of invariant can be ensured (for

instance, division by zero). Structuring mechanisms will be reviewed in the sub-subsection 3.1.3. An

abstract machine has a name m; the clause sets contains definitions of sets; the clause constants allows

one to introduce information related to the mathematical structure of the problem to solve and the clause

properties contains the effective definitions of constants: it is very important to list carefully properties of

constants in a way that can be easily used by the tool. We do not mention structuring mechanisms like sees,

includes, extends, promotes, uses, imports but they can help in the management of proof obligations.

23

24 CHAPTER 3. B MODELS

machine

FACTORIAL_MAC

constants

factorial,m

constants

factorial

properties

m ∈ N ∧
factorial ∈ N ↔ N ∧

∀f ·

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f

variables

result

invariant

result ∈ N

assertions

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

initialisation

result :∈ N

operations

computation = begin result := factorial(m) end

end

Figure 3.1: An example of an abstract machine for the factorial computation

machine

m

sets

s

constants

c

properties

P (s, c)
variables

x

invariant

I(x)
assertions

A(x)
initialisation

<substitution>

operations

<list of operations>

end

The second part of the abstract machine defines dynamic as-

pects of state variables and properties over variables using the

invariant generally called inductive invariant and using asser-

tions generally called safety properties. The invariant I(x) types

the variable x, which is assumed to be initialized with respect to

the initial conditions and which is supposed to be preserved by

operations (or transitions) of the list of operations. Conditions of

verification called proof obligations are generated from the text

of the model using the first part for defining the mathematical

theory and the second part is used to generate proof obligations

for the preservation (when calling the operation) of the invariant

and proof obligations stating the correctness of safety properties

with respect to the invariant. The figure 3.1 contains an example

of an abstract machine with only one operation setting the vari-

able result to the value of the factorial(m), with m a constant.

3.1. MODELLING SYSTEMS 25

3.1.2 Modelling systems in the event-based B approach

Abstract machines are based on classical mechanisms like the call of operation or the input/output mech-

anisms. On the other hand, reactive systems reacts to the environment with respect to external stimuli;

abstract models of the event-based B approach intend to integrate the reactivity to stimuli by promoting

events rather than operations. Contrary to operations, events have no parameters and there is no access to

state variables. At most one event is observed at any time of the system.

A (abstract) model is made up of a part defining mathematical structures related to the problem to solve and

a part containing elements on state variables, transitions and (safety and invariance) properties of the model.

Proof obligations are generated from the model to ensure that properties are effectively holding: it is called

internal consistency of the model. A model is assumed to be closed and it means that every possible change

over state variables is defined by transitions; transitions correspond to events observed by the specifier. A

model m is defined by the following structure. A model has a name m; the clause sets contains definitions

of sets of the problem; the clause constants allows one to introduce information related to the mathematical

structure of the problem to solve and the clause properties contains the effective definitions of constants:

it is very important to list carefully properties of constants in a way that can be easily used by the tool.

Another point is the fact that sets and constants can be considered like parameters and extensions of the B

method exploit this aspect to introduce parametrization techniques in the development process of B models.

The second part of the model defines dynamic aspects of state variables and properties over variables using

the invariant called generally inductive invariant and using assertions called generally safety properties. The

invariant I(x) types the variable x, which is assumed to be initialized with respect to the initial conditions

and which is preserved by events (or transitions) of the list of events.

Conditions of verification called proof obligations are generated from the text of the model using the first

part for defining the mathematical theory and the second part is used to generate proof obligations for the

preservation of the invariant and proof obligations stating the correctness of safety properties with respect

to the invariant. The predicate A(x) states properties derivable from the model invariant. A model states

that state variables are always in a given set of possible values defined by the invariant and it contains the

only possible transitions operating over state variables.

A model is not a program and no control flow is related to it; however, it requires a validation but we

first define the mathematics for stating sets, properties over sets, invariants, safety properties. Conditions

of consistency of the model are called proof obligations and they express the preservation of invariant

properties and avoidance of deadlock.

model

m

sets

s

constants

c

properties

P (s, c)
variables

x

invariant

I(x)
assertions

A(x)
initialisation

<substitution>

events

<list of events>

end

Proof obligation

(INV1) Init(x) ⇒ I(x)

(INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)

(DEAD) I(x) ⇒ (grd(e1) ∨ . . . grd(en))

e1, . . . , en is the list of events of the model m. (INV1)

states the initial condition which should establish the invariant.

(INV2) should be checked for every event e of the model, where

BA(e)(x, x′) is the before-after predicate of e. (DEAD) is the

condition of deadlock-freedom: at least one event is enabled.

Finally, predicates in the clause assertions should be implied by the predicates of the clause invariant; the

condition is simply formalized as follows:

26 CHAPTER 3. B MODELS

P (s, c) ∧ I(x) ⇒ A(x)

Finally, the substitution of an event must be feasible; an event is feasible with respect to its guard and the

invariant I(x), if there is always a possible transition of this event or equivalently, there exists a next value

x′ satisfying the before-after predicate of the event. The feasibility of the initialisation event requires that

at least one value exists for the predicate defining the initial conditions. The feasibility of an event leads

to a readability of the form of the event; the recognition of the guard in the text of the event simplifies the

semantical reading of the event and it simplifies the translation process of the tool: no guard is hidden inside

the event. We summarize the feasibility conditions in the next table.

Event : E Feasibility : fis(E)

x : Init(x) ∃x · Init(x)

begin x : P (x0, x) end I(x) ⇒ ∃x′ · P (x, x′)

when G(x)
then x : P (x0, x) end I(x) ∧ G(x) ⇒ ∃x′ · P (x, x′)

any l where G(l, x)
then x : P (x0, x, l) end

I(x) ∧ G(l, x) ⇒ ∃x′ · P (x, x′, l)

Proof obligations for a model are generated by the proof-obligations generator of the B environment; the

sequent calculus is used to state the validity of the proof obligations in the current mathematical environment

defined by constants, properties. Several proof techniques are available but the proof tool is not able to prove

automatically every proof obligation and interactions with the prover should lead to prove every generated

proof obligation. We say that the model is internally consistent when every proof obligation is proved.

A model uses only three kinds of events, while the generalized substitutions are richer; but the objectives

are to provide a simple and powerful framework for modelling reactive systems. Since the consistency of

a model is defined, we should introduce the refinement of models using the refinement of events defined

like the substitution refinement. We reconsider the example of the factorial function and its computation

and we propose the model of the figure 3.2. As you notice, the abstract machine fac and the abstract

model fac are very close and the main difference is in the use of events rather than operations: the event

computation eventually appears or is executed, because of the properties of the mathematical function

called factorial. The operation computation of the machine in the figure 3.1 is passive, but the event

computation of the model in the figure 3.2 is reactive, when it is possible. Moreover, events may hide

other ones and the refinement of models will play a central role in the development process. We present in

the next sub-subsection classical mechanisms for structuring developed components of specification.

3.1.3 Structuring mechanisms of the B method

In the last two sub-subsections, we have introduced B models following the classification into two main

categories abstract machines and models; both are called components but they are not dealing with the

same approach. We detail structuring mechanisms of both approaches to be complete on references of work

on B.

Sharing B components

The AMN notation provides clauses related to structuring mechanisms in components like abstract ma-

chines but also like refinements or implementations. The B development process starts from basic compo-

3.1. MODELLING SYSTEMS 27

model

FACTORIAL_EVENTS

constants

factorial,m

constants

factorial

properties

m ∈ N ∧
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)×fn ∈ factorial) ∧

∀f ·

f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f

variables

result

invariant

result ∈ N

assertions

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

initialisation

result :∈ N

events

computation = begin result := factorial(m) end

end

Figure 3.2: An example of an abstract model for the factorial computation

28 CHAPTER 3. B MODELS

nents mainly abstract machines and is layered development; the goal is to obtain implementation compo-

nents through structuring mechanisms like includes, sees, uses, extends, promotes, imports, refines. The

clauses includes, sees, uses, extends, promotes, imports, refines allow one to compose B components in the

classical B approach and every clause leads to specific conditions for use. Several authors [87, 40] analyse

the limits of existing B primitives to share data, while refining and composing B components; it is clear

that the B primitives for structuring B components can be used following strong conditions on the sharing

of data and operations. The limits are mainly due to the reuse of already proved B components; reuse of

variables, invariants, constants, properties, operations. In fact, the problem to solve is the management of

interferences among components and the seminal solution of Owicki and Gries [85] faces the combinatorial

explosion of the number of proof obligations. The problem is to compose components according to given

constraints of correctness. The new event-based B approach considers a different way to cope with structur-

ing mechanisms and considers only two primitives: the refines primitive and the decomposition primitive.

B classical primitives for combining components

We focus on the meaning and the use of five primitives for sharing data and operations among B components,

namely includes,sees, uses, extends, promotes. Each primitive is related to a clause of the AMN notation

and allows access to data or operations of already developed components; specific proof obligations state

conditions to ensure a sound composition. A structuring primitive makes accessed components visible under

various degrees from the accessing component.

The includes primitive can be used in an abstract machine or in a refinement; the included component allows

the including component to modify included variables by included operations; the included invariant is

preserved by the including component and is really used by the tool for deriving proofs of proof obligations

of the including component. The including component can not modify included variables but it can use them

in read access. No interference is possible under those constraints. The uses primitives can only appear in

abstract machines and using machines have a read-only access to the used machine, which can be shared by

other machines. Using machines can refer to shared variables in their invariants and data of the used machine

are shared among using machines. When a machine uses another machine, the current project must contain

another machine including the using and the used machines. The refinement is related to the including

machine and the using machine can not be refined. The sees primitive refers to an abstract machine imported

in another branch of the tree structure of the project and sets, constants and variables can be consulted

without change. Several machines can see the same machine. Finally, the extends primitive can only be

applied to abstract machines and only one machine can extend a given machine; the extends primitive is

equivalent to the includes primitive followed by the promotes primitive for every operation of the included

machine. For instance, we can illustrate the implementation and we can show that the implementation of

the figure 3.3 implements (refines) the machine of the figure 3.1. The operation computation is refined

or implemented by a while statement; proof obligations should take into account the termination of the

operation in the implementation: the variant establishes the termination. Specific proof obligations are

produced to check the absence of overflow of variables.

Organizing components in a project

The B development process is based on a structure defined by a collection of components which are either

abstract machines, refinements or implementations. An implementation corresponds to a stage of develop-

ment leading to the production of codes when the language of substitutions is restricted to the B0 language.

The B0 language is a subset of the language of substitutions and translation to C, C++ or ADA is possible

in tools. The links between components are defined by the B primitives previously mentioned and by the

refinement.

When building a software system, the development starts from a document which may be written in a semi-

formal specification language; the system is decomposed into subsystems and a model is progressively

built using B primitives for composing B components. We emphasize the role of structuring primitives,

since they allow to distribute the global proof complexity. The B development process covers the classical

life cycle: requirements analysis, specification development, (formal) design and validation through the

proof process and animation. K. Lano [73] illustrates an object-oriented approach of the B development

and it identifies the layered development paradigm that we have already mentioned through B primitives.

3.1. MODELLING SYSTEMS 29

implementation

FACTORIAL_IMP

refines

FACTORIAL_MAC

values

m = 5
concrete_variables

result, x

invariant

x ∈ 0..n ∧
result = factorial(x)

assertions

factorial(5) = 120 ∧
result ≤ 120

initialisation

result := 1;x := 0
operations

computation =
while x < m do

x := x+1; fn := x×fn

invariant

x ∈ 0..m

result = factorial(x)
result ≤ factorial(m)

variant

m−x

end

end

Figure 3.3: An example of an implementation for the factorial computation

30 CHAPTER 3. B MODELS

Finally, implementations are B components that are close to real code; in an implementation component, an

operation can be refined by a while loop and the checking should prove that the while loop is terminating.

Structures for the event-based B approach

While the B classical approach is based on the B components and B structuring primitives, the event-based

B approach promotes two concepts: the refinement of models and the decomposition of models [7, 8].

As we have already mentioned, the classical B primitives have limits in the scope of their use; we need

mainly to manage sharing data but without generating too many proof obligations. So the main idea of

Abrial is not to compose, but to decompose a first model and to refine models obtained after decomposition

step. The new proposed approach simplifies the B method and focuses on the refinement. It means that

previous development in the B classical approach can be replayed in the event-based B one. Moreover,

the foundations of B remain useful and usable in the current environment of the Atelier B. In the next

subsection, we describe the mathematical foundations of B and we illustrate B concepts in the event-based

B approach.

Summary on structuring mechanisms

We have reviewed structuring mechanisms of the classical B approach and the new ones proposed for

the event-based B approach. While the classical approach provides several mechanisms for structuring

machines, only two mechanisms supports the event-based approach. In fact, the crucial point is to compose

abstract models or abstract machines; the limit of composition is related upon the production of a too high

number of proof obligations. The specifier wants to share state variables in read and write mode; the

structuring mechanisms of classical B do not allow the sharing of variable, but in read mode. Our work

on the feature interaction problem [42] illustrates the use of refinement for composing features and other

approaches based on the detection of interaction by using a model checker on finite models, do not cope

the global problem because of finite models. Finally, we think that the choice of events with the refinement

provides a simple way to integrate proof into the development of complex systems and conforms to the view

of systems through different abstractions, thanks to the stuttering [71].

3.2 Proof-based development in B

3.2.1 Refinement of B models

The refinement of a formal model allows one to enrich a model in a step by step approach. Refinement

provides a way to construct stronger invariants and also to add details in a model. It is also used to transform

an abstract model in a more concrete version by modifying the state description. This is essentially done

by extending the list of state variables (possibly suppressing some of them), by refining each abstract event

into a corresponding concrete version, and by adding new events. The abstract state variables, x, and the

concrete ones, y, are linked together by means of a, so-called, gluing invariant J(x, y). A number of proof

obligations ensure that (1) each abstract event is correctly refined by its corresponding concrete version, (2)

each new event refines skip, (3) no new event take control for ever, and (4) relative deadlockfreeness is

preserved. We detail proof obligations of a refinement after the introduction of the syntax of a refinement:

3.2. PROOF-BASED DEVELOPMENT IN B 31

refinement

r

refines

m

sets

t

constants

d

properties

Q(t, d)
variables

y

invariant

J(x, y)
variant

V (y)
assertions

B(y)
initialisation

y : INIT (y)
events

<list of events>

end

A refinement has a name r; it is a model refining a model m in

the clause refines and m can be a refinement. New sets, new

constants and new properties can be declared in the clauses sets,

constants or properties. New variables y are declared in the

clause variables and are the concrete variables; variables x of

the refined model m are called the abstract variables. The gluing

invariant defines a mapping between abstract variables and con-

crete ones; when a concrete event occurs, there must be a cor-

responding one in the abstract model: the concrete model simu-

lates the abstract model. The clause variant controls new events,

which can not take the control over others events of the system.

In a refinement, new events may appear and are refining an event

SKIP; events of the refined model can be strengthened and one

should prove that the new model does not contain more deadlock

configurations than the refined one: if a guard is strengthened too

much, it can lead to a dead refined event.

The refinement r of a model m is a system; its trace semantics is based on traces of states over variables

x and y and the projection of concrete traces on abstract traces is a stuttering-free traces semantics of

the abstract model. The mapping between abstract and concrete traces is called a refinement mapping by

Lamport [71] and the stuttering is the key concept for refining events systems. When an event e of m is

triggered, it modifies variables y and the abstract event refining e modifies x. Proof obligations make precise

the relationship between abstract model and concrete model.

The abstract system is m and the concrete system is r; INIT (y) denotes the initial condition of the concrete

model; I(x) is the invariant of the refined model m; BAC(y, y′) is the concrete before-after relation of an

event of the concrete system r and BAA(x, x′) is the abstract before-after relation of the event of the

abstract system m; G1(x), . . . Gn(x) are the guards of the n abstract events of m; H1(y), . . . , Hk(y) are

the guards of k concrete events of r. Formally, the refinement of a model is defined as follows:

• (REF1) INIT (y) ⇒ ∃x·(Init(x) ∧ J(x, y)) :

The initial condition of the refinement model imply that there exists an abstract value in the abstract

model such that that value satisfies the initial conditions of the abstract one and implies the new

invariant of the refinement model.

• (REF2) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′) ∧ J(x′, y′)) :

The invariant in the refinement model is preserved by the refined event and the activation of the refined

event triggers the corresponding abstract event.

• (REF3) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ J(x, y′) :

The invariant in the refinement model is preserved by the refined event but the event of the refinement

model is a new event which was not visible in the abstract model; the new event refines skip.

32 CHAPTER 3. B MODELS

• (REF4) I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) :

The guards of events in the refinement model are strengthened and we have to prove that the refine-

ment model is not more blocked than the abstract.

• (REF5) I(x) ∧ J(x, y)) ⇒ V (y) ∈ N and

• (REF6) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y′) < V (y) :

New events should not block forever abstract ones.

The refinement of models by refining events is close to the refinement of action systems [25], the refinement

of UNITY and the TLA refinement, even if there is no explicit semantics based on traces but one can

consider the refinement of events like a relation between abstract traces and concrete traces. The stuttering

plays a central role in the global process of development where new events can be added into the refinement

model. When one refines a model, one can either refine an existing event by strengthening the guard or/and

the before-after predicate (removing non-determinism), or add a new event which is supposed to refine the

skip event. When one refines a model by another one, it means that the set of traces of the refined model

contains the traces of the resulting model with respect to the stuttering relationship. Models and refined

models are defined and can be validated through the proofs of proof obligations; the refinement supports the

proof-based development and we illustrate it by a case study on the development of a program for computing

the factorial function.

3.2.2 Proof-based development in action

The B language of predicates, the B language of events, the B language of models and the B refinement

constitute the B method; however, the objectives of the B method are to provide a framework for developing

models and finally programs. The development is based on proofs and should be validated by a tool. The

current version of Atelier B groups B models into projects; a project is a set of B models related to a given

problem. The statement of the problem is expressed in a mathematical framework defined by constants,

properties, structures and the development of a problem starts from a very high level model which is simply

stating the problem in an event-based style. The proof tool is central in the B method, since it allows us to

write models and to validate step-by-step each decision of development; it is an assistant used by the user

to integrate decisions into the models, especially by refining them. The proof process is fundamental and

the interaction of a user in the proof process is a very critical point. We examine the different aspects of the

development by an example. The problem is to compute the value of the factorial function for a given data

n. We have already proved that the (mathematical) factorial function exists and we can reuse its definition

and its properties. Three successive models are provided by development, namely Fac1 (the initial model

stating in one-shot the computation of factorial(n)), Fac2 (refinement of the model Fac1 computing step

by step factorial(n)), Fac3 (completing the development of an algorithm for factorial(n)).
We begin by writing a first model which is re-phrasing the problem and we simply state that an event is

calculating the value factorial(n) where n is a natural number. The model has only one event and is the

one-shot model:

computation =
begin

fn := factorial(n)
end

fn is the variable containing the value computed by the program; the expression one-shot means that we

show a solution just by assigning the value of mathematical function to fn. It is clear that the one-shot

event is not satisfactory, since it does not describe the algorithmic process for computing the result. Proofs

are not difficult, since they are based on the properties stated in the preliminary part. Our next model will

be a refinement of Fac1. It will introduce an iterative process of computation based on the mathematical

definition of factorial. We therefore add a new event prog which is extending the partial function under

3.2. PROOF-BASED DEVELOPMENT IN B 33

construction called fac that contains a partial definition of the factorial function. The initialisation is

simply to set fac to the value for 0.

fac := {0 7→ 1}

and there is a new event progress which simulates the progress by adding the next pair in the function fac.

prog =
when n /∈ DOM(fac) then

any x where

x ∈ N ∧
x ∈ DOM(fac) ∧
x+1 /∈ DOM(fac)

then

fac(x+1) := (x+1)×fac(x)
end

end

Secondly, the event computation is refined by the following event stating that the process stops when the

fac variable is defined for n.

computation =
when n ∈ DOM(fac) then

fn := fac(n)
end;

The computation is based on the calculation of the fixed-point of the equation defining factorial and the

ordering is the set inclusion over domains of functions; fac is a variable satisfying the following invariant

property:

fac ∈ N 7→ N ∧ fac ⊆ factorial ∧
dom(fac) ⊆ 0..n ∧ dom(fac) 6= ∅

fac is a relation over natural numbers and it contains a partial definition of the factorial function; as long

as n is not defined for fac, the computing process adds a new pair in fac. The system is deadlock-free,

since the disjunction of the guards n ∈ dom(fac), or n /∈ dom(fac) is trivially true. The event progress

increases the domain of fac: dom(fac) ⊆ 0..n. The proof obligations for the refinement are effectively

proved by the proof tool:

n ∈ dom(fac) ∨
(n /∈ dom(fac) ∧ ∃x.(x ∈ N ∧ x ∈
dom(fac) ∧ x+1 /∈ dom(fac)))

The model is more algorithmic than the first one and it can be refined into a third one called Fac3 closer to

the classical algorithmic solution. Two new variables are introduced: a variable i plays the role of index and

a variable fq is an accumulator. A gluing invariant define relations between old and new variables:

i ∈ N ∧ 0..i = dom(fac) ∧ fq = fac(i)

The two events of the second model are refined into the two next events.

computation =
when i = n then

fn := fq

end;
prog =

when i 6= n then

i := i+1‖ fq := (i+1)×fq

end

34 CHAPTER 3. B MODELS

Proof obligations are completely discharged with the proof tool and we derive easily the algorithm by

analysing guards of the last model.

i := 0 ‖ fq := 1
while i 6= n do

i := i+1‖ fq := (i+1)×fq

end

fn := fq

We can simplify the algorithm by removing the parallel operator and we transform it as follows:

i := 0;
fq := 1;
while i 6= n do

i := i+1;
fq := i×fq

end

Case studies provide information over the development process; different domains have been considered for

illustrating the event-based B approach: sequential programs [5, 11], distributed systems [2, 12, 41, 45, 18],

circuits [4], information systems [46]. In the next sections, we illustrate the event B modelling method by

case studies:

• Sequential algorithms

• Combining coordination and refinement for sorting

• Spanning trees algorithms

• A distributed leader election algorithm

Chapter 4

Sequential algorithms

4.1 Primitive recursive functions

4.1.1 The class of primitive recursive functions

In the computability theory [90], the primitive recursive functions contitute a strict sub-class of general

recursive functions also called the class or computable functions. Many computable functions are primitive

recursive as the addition, the multiplication, the exponetitaion, the sign, . . . ; in fact, a primitive function

corresponds to a bounded (for) loop and we show how to derive the (for) algorithm from the definition of

the primitive recursive function.

The primitive recursive functions are defined by initial functions (the 0-place zero function ζ, the k-place

projection function πi
k, the successor function σ) and by two combining rules, namely the composition rule

and the primitive recursive rule. More precisely, we give the definition of functions and rules:

• ζ() = 0

• ∀i ∈ {1, . . . , k} : ∀x1, . . . , xk ∈ N : πi
k(x1, . . . , xk) = xi

• ∀x ∈ N : σ(n) = n+1

• If g is a l-place function, if h1, . . . , hl are n-place functions and if the function f is defined by:

∀x1, . . . , xn ∈ N : f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hl(xl, . . . , xn)),

then f is obtained from g and h1, . . . , hl by composition.

• If g is a l-place function, if h is a (l+2)-place function and if the function f is defined by: ∀x1, . . . , xl, x ∈
N,{

f(x1, . . . , xl, 0) = g(x1, . . . , xl)
f(x1, . . . , xl, x+1) = h(x1, . . . , xl, x, f(x1, . . . , xl, x))

,

then f is obtained from g and h by primitive recursion.

A function f is primitive recursive, if it is an initial function or can be generated from initial functions

by some finite sequence of the operations of composition and primitive recursion. A primitive recursive

function is computed by an iteration and we define a general framework for stating the development of

functions defined by primitive recursion using predicate diagrams.

4.1.2 Modeling the computation of a primitive recursive function

The first step is to define the mathematical function to compute the value of f(u, v) where u and v are two

natural numbers; the primitive recursive rule is stated as follows:

35

36 CHAPTER 4. SEQUENTIAL ALGORITHMS

CONSTANTS

u, v, g, h, f

• u, v, g, h, f are constants corre-

sponding to values and functions.

• u, v, g, h are supposed to be given.

• g, h are total and two primitive re-

cursive functions.

• f is defined by a fixed-point-based

rule.

PROPERTIES

u ∈ N ∧
v ∈ N ∧
g ∈ N −→ N ∧
h ∈ N × N × N −→ N ∧
f ∈ N × N −→ N ∧
∀ (a, b). ((a ∈ N ∧ b ∈ N) ⇒ (f(a, 0) = g(a))) ∧
∀ (a, b). ((a ∈ N ∧ b ∈ N) ⇒ (f(a, b+1) = h(a, b, f(a, b)))) ∧

From the characterization of the constants, the totality of f is derived, since both g and h are total. The

reader should be very careful on the functional notation f(a, 0) which intends to mean the functional appli-

cation but also the membership (a, 0) ∈ f , when f is not yet proved to be functional. The system uses three

variables: two variables are the input values and the third one is the output value: VARIABLES result.

The required properties are the invariance of the INVARIANT clause and the partial correctness of the

system with respect to the pre and postconditions of the computation of the function defined by the primitive

recursion rule. The invariant property is very simple to establish:

INVARIANT

result ∈ N

INITIALIZATION

result :∈ N

The INVARIANT clause is very simple for

the first model and is in fact a typing invari-

ant.

computation =
begin

result := f(u, v)
end

The first model has only one visible event and others events are hidden by the stuttering step; the computation

event models or simulates the computation of the resulting value and it simulates the end of a hidden loop.

The loop will appear in the further model which is a refinement of the current one.

4.1.3 Iterative Computations from Primitive Recursion

The next model primrec1 is a refinement of primrec0; it introduces a new event called step and step is

simulating the progression of an iterative process satisfying a loop invariant.

4.1. PRIMITIVE RECURSIVE FUNCTIONS 37

REFINEMENT primrec1
REFINES primrec0
VARIABLES cx, cy, cresult, result

INVARIANT

cx ∈ N ∧
cy ∈ N ∧
cresult ∈ N ∧
cresult = f(cx, cy) ∧
cx = u ∧
0 ≤ cy ∧
cy ≤ v

INITIALISATION

cx := u ‖ cy := 0 ‖ cresult := g(u) ‖
result :∈ N

EVENTS

computation =
when

v − cy = 0
then

result := cresult

end;
step =

when

v − cy 6= 0
then

cy := cy +1 ‖
cresult := h(cx, cy, cresult)

end

end

The new system has two visible events:

1. The first event computation intends to model the end of the iteration and it concretizes the event

computation.

2. The second event step is the visible underlying step of the previous stuttering step.

The computation process is organized by the two guards of the two events; it leads us to the following

algorithm, which captures the essence of the last B models.

precondition : u, v ∈ N

postcondition : result = f(u, v)

local variables : cx, cy, cresult ∈ N

cx := u;

cy := 0;

cresult := G(u);
while cy ≤ v do

Invariant : 0 ≤ cy ∧ cy ≤ v ∧ cx = u ∧ cresult = f [cx, cy]

cresult := H[cx, cy, cresult];
cy := cy+1;

;

result := cresult;

Algorithme 1: Iterative algorithm F for computing the primitive recursive function f

38 CHAPTER 4. SEQUENTIAL ALGORITHMS

The final development includes two B models related by the refinement relationship and provides an algo-

rithm for computing the specified function. The resulting algorithm is called F and it uses the algorithms

of g and h. The invariant is derived from the B model and does not need further proofs. The development

can be instantiated with respect to functions g and h which are supposed to be primitive recursive.

4.1.4 Applying the Development for Addition, Multiplication, Exponentiation

Addition

The mathematical function addition is defined by the following rules:

∀x, y ∈ N :

{
addition(x, 0) = π1

1(x)
addition(x, y+1) = σ(addition(x, y))

,

We assign to g the primitive recursive function ζ and to h the primitive recursive function σ; the primrec

development can be replayed. The resulting algorithm is given by substituting g and h respectively by ζ

and σ. The algorithm is denoted ADDITION .

precondition : x, y ∈ N

postcondition : result = ADDITION(x, y)

local variables : cx, cy, cresult ∈ N

cx := x;

cy := 0;

cresult := π1
1(x);

while cy ≤ y do

Invariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x ∧ cresult = ADDITION [cx, cy]

cresult := σ[cresult];
cy := cy+1;

;

result := cresult;

Algorithme 2: Iterative algorithm ADDITION for computing the primitive recursive function addition

Multiplication

The mathematical function multiplication is defined by the following rules:

∀x, y ∈ N :

{
multiplication(x, 0) = ζ()
multiplication(x, y+1) = addition(x,multiplication(x, y))

,

We assign to g the primitive recursive function ζ() and to h the primitive recursive function addition; the

primrec development can be replayed. The resulting algorithm is given by substituting g and h respectively

by π1
1 and addition . The algorithm is denoted MULTIPLICATION .

Exponentiation

The mathematical function exponentiation is defined by the following rules:

∀x, y ∈ N :

{
exponentiation(x, 0) = σ(ζ())
exponentiation(x, y+1) = multiplication(x, exponentiation(x, y))

,

We assign to g the primitive recursive function σ(ζ()) (since the composition of two primitive recursive

functions is still primitive recursive) and to h the primitive recursive function multiplication; the primrec

development can be replayed. The resulting algorithm is given by substituting g and h respectively by

σ(ζ()) and multiplication. The algorithm is denoted EXPONENTIATION .

4.1. PRIMITIVE RECURSIVE FUNCTIONS 39

precondition : x, y ∈ N

postcondition : result = multiplication(x, y)

local variables : cx, cy, cresult ∈ N

cx := x;

cy := 0;

cresult := ζ();
while cy ≤ y do

Invariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x ∧ cresult = multiplication[cx, cy]

cresult := addition[cx, cresult];
cy := cy+1;

;

result := cresult;

Algorithme 3: Iterative algorithm MULTIPLICATION for computing the primitive recursive function

multiplication

precondition : x, y ∈ N

postcondition : result = exponentiation(x, y)

local variables : cx, cy, cresult ∈ N

cx := x;

cy := 0;

cresult := σ(ζ());
while cy ≤ y do

Invariant : 0 ≤ cy ∧ cy ≤ y ∧ cx = x ∧ cresult = exponentiation[cx, cy]

cresult := MULTIPLICATION [cx, cresult];
cy := cy+1;

;

result := cresult;

Algorithme 4: Iterative algorithm EXPONENTIATION for computing the primitive recursive func-

tion exponentiation

40 CHAPTER 4. SEQUENTIAL ALGORITHMS

4.2 Other ways to compute addition and multiplication

If we consider the development for the functions addition and multiplication, we can reuse the first

model of each one and improve the final resulting algorithms. We assume that the mathematical functions

are supported by the B prover and we do not need to define them. The proved models can be reused in other

developments and we are going to refine, in a different way, both functions.

4.2.1 Developing a new multiplication algorithm

The first model states the problem to solve namely the multiplication of two natural numbers; the second

one provides the essence of the algorithmic solution and the last one implements naturals by sequences of

digits. Let a and b two naturals. The problem is to compute the value of the expression a·, where · is the

mathematical function standing for natural multiplication. The function multiplication is defined by an

infix operator ·. The first model is a one-shot model computing in one step the result.

MODEL multiplication0
CONSTANTS a, b

PROPERTIES

a ∈ NAT ∧
b ∈ NAT

VARIABLES

x, y, m

INVARIANT

x ∈ N ∧
y ∈ N ∧
x = a ∧
y = b ∧
m ∈ N

INITIALISATION

x := a ‖ y := b ‖ m :∈ N

EVENTS

computation =
begin

m := a · b

end

end

Now, we should get an idea and apply it on the model multiplication0. There are several ways to define

the multiplication: either (a−1)·b (primitive recursive function) or a·b = (2·a)·(b/2). We choose the last

one, since it is the faster one and simple to implement. We define two new variables namely cx et cy, for

taking care of initial values of a and b (values-passing mechanism). The induction step will be driven by B

which is strictly decreasing. The new variable M stores any value of cx when cy is odd.

VARIABLES

cx, cy, x, y,M,m

INVARIANT

cx ∈ N ∧
cy ∈ N ∧
M ∈ N ∧
cx · cy + M = x · y

INITIALISATION

cx, cy, x, y,m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0

The event computation occurs, when cy is equal to 0. The gluing invariant allows us to conclude that M

contains the value of a·.

4.2. OTHER WAYS TO COMPUTE ADDITION AND MULTIPLICATION 41

computation =
when

(cy = 0)
then

m := M

end

Two new events prog1 and prog2 will help in the progression of cy towards 0.

prog1 =
when

(cy 6= 0) ∧ even(cy)
then

cx := cx · 2 ‖ cy := cy/2
end

prog2 =
when

(cy 6= 0) ∧ odd(cy)
then

cx := cx·2 ‖
cy := cy/2 ‖
M := M+cx

end

Where even(cy) = ∃x · (x ∈ N ∧ cy = 2·x) and odd(cy) = ∃x · (x ∈ N ∧ cy = 2·x+1). The proofs are

not hard; Atelier B generated 18 proof obligations only 3 are discharged interactively. Finally, we obtain

the model multiplication1:

42 CHAPTER 4. SEQUENTIAL ALGORITHMS

REFINEMENT multiplication1
REFINES multiplication0
VARIABLES

cx, cy, x, y,M,m

INVARIANT

cx ∈ N ∧
cy ∈ N ∧
M ∈ N ∧
cx · cy + M = x · y

INITIALISATION

cx, cy, x, y,m :∈ (x = a ∧ y = b ∧ cx = a ∧ cy = b ∧ m ∈ N) ‖
M := 0

EVENTS

computation =
when

(cy = 0)
then

m := M

end

prog1 =
when

(cy 6= 0) ∧ even(cy)
then

cx := cx · 2 ‖ cy := cy/2
end

prog2 =
when

(cy 6= 0) ∧ odd(cy)
then

cx := cx·2 ‖
cy := cy/2 ‖
M := M+cx

end

end

A further refinement may lead to the implementation of natural numbers by sequences of digits; The division

and the multiplication by two are implemented by shifting digits. On the other hand, one can derive a well-

known algorithm 5 for computing the multiplication function.

4.2.2 Addition of two natural numbers

The addition function can also be redeveloped. The development is decomposed into three steps. The first

step writes a one-shot model computing in one step the required result, namely the addition of two natural

numbers. Let a and b be two naturals. The problem is to compute the value of the expression a+b, where

+ is the mathematical function standing for the natural addition.

4.2. OTHER WAYS TO COMPUTE ADDITION AND MULTIPLICATION 43

precondition : a, b ∈ N

postcondition : m = multiplication(x, y)

local variables : cx, cy, x, y, m,M ∈ N

x := a;

y := b;

cx := x;

cy := y;

M := 0;

while cy 6= 0 do

Invariant : 0 ≤ M ∧ 0 ≤ cy ∧ cy ≤ y ∧ cx·cy+M = x·y ∧ x = a ∧ y = b

if (cy 6= 0) ∧ even(cy) then

cx := cx·2||cy := cy/2

;

if (cy 6= 0) ∧ odd(cy) then

cx := cx·2||cy := cy/2||M := M+cx

;

;

m := M ;

Algorithme 5: New Iterative algorithm MULTIPLICATION for computing the primitive recursive

function multiplication

MODEL addition0
CONSTANTS a, b

PROPERTIES

a ∈ NAT ∧
b ∈ NAT

VARIABLES

x, y, result

INVARIANT

x ∈ N ∧
y ∈ N ∧
x = a ∧
y = b ∧
result ∈ N

INITIALISATION

x := a ‖ y := b ‖ result :∈ N

EVENTS

computation =
begin

result := a ◦ b

end

end

The definition of a+b using a/2 (and b/2) is based on the following properties:

a b a+b

2·n 2·m 2·(n+m)
2·n 2·m+1 2·(n+m)+1

2·n+1 2·m 2·(n+m)+1
2·n+1 2·m+1 2·(n+m)+2

Using the four properties, we try to obtain a general induction schema verified by variables and the four

44 CHAPTER 4. SEQUENTIAL ALGORITHMS

properties lead to the general form: (a+b)·C+P . The discovery of the relation is based on the analysis

of possible transformations over variables; Manna [78] has given hints for stating an inductive assertion

from properties over values of variables. Associativity and the commutativity of the mathematical addition

justify the form. Moreover, the form can also be justified by the binary coding of A and B as follows:

(
n∑

i=0

Ai2
i

)
+

(
n∑

i=0

Bi2
i

)
=

n∑

i=0

(Ai+Bi) 2i (4.1)

n∑

i=0

(Ai+Bi) 2i =

((
n∑

i=1

Ai2
i−1

)
+

(
n∑

i=1

Bi2
i−1

))
.2+(A0+B0) (4.2)

(
n∑

i=0

Ai2
i

)
+

(
n∑

i=0

Bi2
i

)
=

((
n∑

i=1

Ai2
i−1

)
+

(
n∑

i=1

Bi2
i−1

))
.2+(A0+B0) (4.3)

The last equation 4.3 tells us that we obtain a binary addition of the last digits of the two numbers and we

have to store powers of 2, while computing. Two new variables are introduced: C for storing the powers of

2 and P for storing the partial result. We derive the following invariant and the initial conditions:

variables

A,B, P, a, b, p, C

invariant

A ∈ N ∧ B ∈ N ∧ P ∈ N ∧ C ∈ N ∧
(A+B)·C+P = a+b

initialisation

a, b, A,B, p : (a ∈ N ∧ b ∈ N

∧ p ∈ N ∧ P ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
P,C := 0, 1

The one-shot event of the previous model is then refined by the next event; the result is in the variable P ,

when A and B are two variables containing 0.

add =̂
when (B = 0) ∧ (A = 0)
then

p := P

end;

Four new events are added to the current model; each event corresponds to a case of properties given in

the array above. Four cases are under consideration. The four new events introduced in this model are the

following

prog1 =
when

even(A) ∧ even(B)
then

A := A/2 || B := B/2 ||
C := 2·C

end;

prog2 =
when

odd(A) ∧ even(B)
then

A := A/2 || B := B/2 ||
C := 2·C || P := C+P

end;

prog3 =
when

even(A) ∧ odd(B)
then

A := A/2 || B := B/2 ||
C := 2·C || P := C+P

end;

prog4 =
when

odd(A) ∧ odd(B)
then

A := A/2 || B := B/2 ||
C := 2·C || P := 2·C+P

end

4.2. OTHER WAYS TO COMPUTE ADDITION AND MULTIPLICATION 45

We have to code basic operations for computing C+P , 2·C and 2·C+P . C+P is solved by storing a 1
digit in the corresponding location. 2·C is a shifting operation. 2·C+P is solved by managing a carry.

Now, we can refine the current model.

4.2.3 Managing the carry

The goal of the carry is to implement the basic operation 2·C+P ; P is concretized by the store Q and the

carry R.

variables

A,B, Q, R, a, b, p, C

invariant

Q ∈ N ∧ R ∈ N ∧ (R = 0 ∨ R = 1) ∧
P = C·R+Q

initialisation

a, b, A,B, p : (a ∈ N ∧ b ∈ N ∧ p ∈ N ∧ P ∈ N ∧ C ∈ N ∧ A = a ∧ B = b) ||
Q,R,C := 0, 0, 1

The refined event add uses the new variables Q and C. The gluing invariant (thanks to it) maintains the

relationship over P and the new variables.

add = when (B = 0) ∧ (A = 0) then p := C·R+Q end;

Events prog1, prog2, prog3, prog4 are refined and modified by introducing the two new variables. The

new variables are modified according to P .

prog1 =
when

even(A) ∧ even(B)
then

A := A/2 || B := B/2 || C := 2·C ||
Q := C·R+Q || R := 0

end;

prog4 =
when

odd(A) ∧ odd(B)
then

A := A/2 || B := B/2 || C := 2·C ||
Q := C·R+Q || R := 1

end

prog2 =
when

odd(A) ∧ even(B)
then

A := A/2 || B := B/2 || C := 2·C ||
if R = 0 then

Q := C+Q

end

end;

prog3 =
when

even(A) ∧ odd(B)
then

A := A/2 || B := B/2 || C := 2·C ||
if R = 0 then

Q := C+Q

end

end;

This model is validated by the tool Atelier B [55] which generate 56 proof obligations and 15 are dis-

charched interactively. Details are incrementally added; each model provides a view of the computing

function. The models are related by the refinement relationship and the last model can now be refined to

produce codes.

4.2.4 Production of codes

The refinement process leads to basic operations over natural numbers that can be implemented by oper-

ations over bits. The B language provides sequences but experience shows that proofs are harder when

sequences are used in a given model and we use the following definitions of sequences:

46 CHAPTER 4. SEQUENTIAL ALGORITHMS

sets

bit = {ZERO,ONE}
constants

code

properties

code ∈ N×Z −→ (Z 7→ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅ ∧
∀(n, k) · (n ∈ N ∧ n 6= 0 ∧ k ∈ Z ⇒ code(2·n, k) = {k 7→ ZERO} ∪ code(n, k+1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒ code(2·n+1, k) = {k 7→ ONE} ∪ code(n, k+1))) ∧
∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom(code(n, k)) ⇒ x ≥ k)

The recursive definition is validated by our previous works [44] on the development of recursive functions

using the B event-based method. We have defined schemas allowing to evaluate those functions. A sequence

is coded by an integer interval. For instance, we give an example of the second model of the multiplication:

shifting of digits is implemented by an insertion of 0 at the head of the sequence; removing a bit at the

head corresponds to the multiplication by 2. Questions on the reusability and the decomposition of systems

remain to be solved and will be part of further works making the method more practical.

variables

A,B, P, a, b, p, cA, cB, kA, kB

invariant

kA ∈ Z ∧ kB ∈ Z ∧
cA ∈ Z 7→ bit ∧ cA = code(A, kA) ∧
cB ∈ Z 7→ bit ∧ cB = code(B, kB)

prog1 =
when (cB 6= ∅) ∧ cB(kB) = ZERO then

if cA 6= ∅ then cA := {kA−1 7→ ZERO}∪cA || kA := kA−1 end ||
cB := {kB} ⊳− cB || kB := kB+1 || A := 2·A || B := B/2

end;

prog2 =
when (cB 6= ∅) ∧ cB(kB) = ONE then

if cA 6= ∅ then cA := {kA−1 7→ ZERO}∪cA || kA := kA−1 end ||
cB := {kB} ⊳− cB || kB := kB+1 || A := 2·A || B := B/2 || M := M+A

end

The coding allows us to implement the addition C+Q, since C is a power of two and since C is greater

than Q.

code(C+Q, 0) = code(C, 0) ⊳− code(Q, 0)

These properties (and other ones) are really proved in another B machine using only the properties and

assertions clauses like in the work on structure [9]. Atelier B generated 10 proof obligations which are

discharged interactively. The reader can find this machine in the annex.

We can give a refinement of the addition but only two events are really given. cp is the code of p, cQ the

code of Q and cC the code of C.

add =
when cB = ∅ ∧ cA = ∅ then

if R = 1 then cp := cC ⊳− cQ

else cp := cQ

end

end;

4.2. OTHER WAYS TO COMPUTE ADDITION AND MULTIPLICATION 47

prog1 =
when

cB(kB) 6= ONE ∧ cA(kA) 6= ONE then

cB := {kB} ⊳− cB || kB := kB+1 || cA := {kA} ⊳− cA || kA := kA+1||
cC := {0 7→ ZERO}∪shift(cC) || R := 0 ||
if R = 1 then cQ := cC ⊳− cQ end

end;

The function shift shifts any value of a sequence (to begin always by 0). Atelier B generated 95 proof

obligations and 53 are discharched interactively but we can do better using the assertion clauses.

A stronger refinement can now be obtained from the current developed model. A coding on finite sequence

of bits (bs+1) constrains the abstract code to contain a bounded number of bits. We consider the natural

numbers a and b are codable and we obtain a concrete code for variables A and B, namely CA and CB.

CA, CB : (CA ∈ 0..bs → bit ∧ CA = code(a, 0) ∪ ((0..bs)−dom(code(a, 0)))×{ZERO} ∧
CB ∈ 0..bs → bit ∧ CB = code(b, 0) ∪ ((0..bs)−dom(code(b, 0)))×{ZERO})

A variable K plays the role of kA and kB and the process halts, when k is bs+1. The gluing invariant for

variables A, B, p and Q (Cp and CQ are the concrete code) is the following one:

K ∈ 0..bs+1 ∧ K = kA ∧ K = kB ∧ LO ∈ −1..K−1 ∧
CA ∈ 0..bs → bit ∧
((K..bs) � CA) = cA ∪ ((K..bs)−dom(cA))×{ZERO} ∧
CB ∈ 0..bs → bit ∧
((K..bs) � CB) = cB ∪ ((K..bs)−dom(cB))×{ZERO} ∧
Cp ∈ 0..bs+1 → bit ∧
CQ ∈ 0..bs → bit ∧
(0..LO � CQ = cQ) ∧
(LO ≥ 0 ⇒ CQ(LO) = ONE) ∧
∀i · (i ∈ (LO+1)..bs ⇒ CQ(i) = ZERO)

Where LO is a new variable; it is the position of the last ONE in CQ. Events add and prog1 are refined

in the following concrete events:

add =
when K = bs+1 then

if R = 1 then Cp := CQ ⊳−{bs+1 7→ ONE}
else Cp := CQ ⊳−{bs+1 7→ ZERO}
end

end;

prog1 =
when K ≤ bs ∧ CB(K) 6= ONE ∧ CA(K) 6= ONE then

K := K+1 || R := 0 ||
if R = 1 then CQ(K) := ONE || LO := K end

end;

We have to express that the coding of the result is in 0..bs+1 → bit and that it might have an overflow.

Multiplication by two (K := K+1), division by 2 (K := K+1) and addition (CQ(K) := ONE) are im-

plemented using this coding. Atelier B generated 81 proof obligations and 25 are discharched interactively.

48 CHAPTER 4. SEQUENTIAL ALGORITHMS

4.2.5 Properties of models

In the following machine, we have proved all properties used on the abstract coding. Two induction theo-

rems are also proved in this machine (the second and third assertion).

machine

Code

sets

bit = {ZERO, ONE}
constants

divtwo, code, power2, suc, shift, pred1
properties

Definition of divtwo

divtwo ∈ N → N ∧
∀x · (x ∈ N ⇒ divtwo(x) = x/2) ∧

Definition of suc (successor)

suc ∈ N → N ∧
∀x · (x ∈ N ⇒ suc(x) = x+1) ∧

Definition of code

code ∈ N×Z → (Z ↔ bit) ∧
∀k · (k ∈ Z ⇒ code(0, k) = ∅) ∧
∀(n, k) · (n ∈ N ∧ n 6= 0 ∧ k ∈ Z ⇒ code(2·n, k) = {k 7→ ZERO}∪ code(n, k+1)) ∧
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒ code(2·n+1, k) = {k 7→ ONE}∪ code(n, k+1))) ∧

Definition of power2 (2n)

power2 ∈ N → N ∧
power2(0) = 1 ∧
∀k · (k ∈ N ⇒ power2(k+1) = 2·power2(k)) ∧

Definition of pred1 (predecessor)

pred1 ∈ Z → Z ∧
∀x · (x ∈ Z ⇒ pred1(x) = x−1) ∧

Definition of shift (shift code)

shift ∈ (Z 7→ bit) → (Z 7→ bit) ∧
∀y · (y ∈ Z 7→ bit ⇒ shift(y) = (pred1; y))

assertions

∀c · (c ∈ N ⇒ ∃y · (y ∈ N ∧ (c = 2·y ∨ c = 2·y+1)));

A number c is odd or even

∀P · (P ⊆ N ∧ 0 ∈ P ∧ suc[P] ⊆ P ⇒ N ⊆ P);

It’s the recurrence theorem. P is the set of all value which satify a property

∀K · (K ⊆ N ∧ 0 ∈ K ∧ divtwo−1[K] ⊆ K ⇒ N ⊆ K);

It’s another recurrence theorem, like P (n/2) ⇒ P (n) ..

∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom(code(n, k)) ⇒ x ≥ k);

All value in dom(code(n, k)) are greater or equals than k

code ∈ N×Z → (Z 7→ bit);

Now a code is a partial function

∀n · (n ∈ N ⇒ power2(n) > 0);

2n is always greater than 0

∀(n, c, k) · (n ∈ N ∧ c ∈ N ∧ power2(n) > c ∧ k ∈ Z ⇒
code(power2(n)+c, k) = code(power2(n), k) ⊳− code(c, k));

It’s our property to implement the addition

∀(n, k, x) · (n ∈ N ∧ k ∈ Z ∧ x ∈ dom(shift(code(n, k))) ⇒ x > k);
∀(n, k) · (n ∈ N ∧ k ∈ Z ⇒ shift(code(n, k)) = code(n, k+1))

A useful property of shift (it’s now a shift)

∀n · (n ∈ N ⇒ code(power2(n), 0) = (0..n−1)×ZERO∪{n 7→ ONE})

A property which evaluates the code of 2n

end

4.3 Design of sequential algorithms

The design of a sequential algorithm starts by the statement of the specification of the algorithm; the spec-

ification of the algorithm is expressed by a precondition over input data, a postcondition over output data

and a relation betwenn input and output data. The extension of the guarded command language by C. Mor-

gan [83] allows to initiate a development by refinement according to a set of rules. However, no mechanical

tool allows one to check the refinement; the notation x : [pre, post] intends to mean a statement which is

correct with respect to the pre and post conditions. It is exactly the case, when one starts an event-B devel-

opment, since one should state a magical event which is correct with respect to the pre and post conditions.

If we consider x : [pre, post] and if we assume that x is free in pre and post, x : [pre, post] is a statement

which may modify x but only x and which satisfies the HOARE triple:

{pre} x : [pre, post] {post} (4.4)

An equivalent event is defined as follows:

4.3. DESIGN OF SEQUENTIAL ALGORITHMS 49

event =
any z

where

pre(x) ∧ post(x, z)
then

x := z

end

We have illustrated the event B method by simple sequential algorithms and we have emphasized the possi-

bility to reuse the previous development. In the next section, we developed a sorting algorithm.

50 CHAPTER 4. SEQUENTIAL ALGORITHMS

Chapter 5

Combining coordination and refinement

for sorting

The coordination paradigm improves the development of concurrent/distributed solutions, because it pro-

vides simple way to communicate between processes via a data structure called a tuple space. Coordination

principles and event-driven system development principles can be fruitfully combined to develop systems

and to analyse the development of different solutions of a given problem. Benefits are inherited from both

frameworks: the B event-driven approach provides the refinement and the coordination framework provides

a simple computation model. The sorting problem is redeveloped in the B event-driven method using coor-

dination principles for algorithms and two programming paradigms are applied ie merging and splitting list

to sort.

5.1 Introduction

Overview The coordination paradigm [92, 50] improves the development of concurrent/distributed solu-

tions, because it provides simple way to communicate between processes via a data structure called a tuple

space. Coordination and event-driven system development can be fruitfully combined to construct sequen-

tial recursive programs and to analyse the development of different solutions of a given problem, namely

the sorting problem. The combination exploits the fundamental refinement relationship defined in the B

event-driven approach [7, 22, 10, 3, 6, 12, 41, 11] and leads to a practical framework for addressing the

analysis of programs development.

Coordination The coordination paradigm appears in different programming environments as LINDA [92,

50]; the main idea is really simple: a collection of processes or agents can cooperate, communicate and

exchange data through a unique structure called a tuple space. A tuple space is a heap that can contains

items and several operations are authorized to processes, namely to put an item in the tuple space, to with-

draw an item or to consult. Implementation details are hidden. Any programming language can be extended

by specific operations related to the tuple space, as for instance the C LINDA environment which extends

the C programming language. The coordination paradigm focuses on the development of activities that

are inherently concurrent and that are simply made coherent through the coordination primitives. As soon

as a coordination program is written, tools as compilers provide a translation into a lower level which

manages communications; it means that communications are used without toil, since we do not take care

how communications are really implemented. The coordination computation model is developed in the

GAMMA [26] model and a kernel of a methodology related to the proof if given; Chaudron [53] defines a

refinement in a language of coordination for GAMMA close to techniques of bisimulation. We do not define

new refinements. The CHAM (Chemical Abstract Machine) is a chemical view of the coordination compu-

tation model. However, even if GAMMA intends to promote the methodological aspects of programming

development, nothing is clearly studied for the relationship with the refinement of events systems.

Integration of coordination and event-driven systems Event-driven systems are incrementally derived from

a very abstract model into a final concrete model through refinement steps. The B event-driven technique

is based on the validation by proof of each refinement step and it starts by a system analysis where math-

ematical details are carefully analysed and proved or disproved by the proof tool. The idea is to add the

51

52 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

coordination primitives as events which modify the tuple space an to get for free a refinement in the coor-

dination framework. A consequence is to provide a way to execute event-driven systems as coordinative

events set and to allows the refinement of general coordinative structures. This exercise focuses on the use

of both techniques for analysing the sorting problem; we apply two main sorting paradigm namely the split-

ting (quicksort) or the merging. Finally, we obtain a final concrete model which is a sequential algorithm

using a stack and which gives a non recursive algorithm in the quicksort family.

The coordination paradigm was introduced and implemented in LINDA [92, 50] and a C LINDA com-

piler was effectively developed. The original idea is to synchronise processes or agents through a shared

data space called a tuple space, using specific primitives extending the programming language. The pro-

gramming language can be C, SML or a Prolog-like one; coordination primitives manage communication

among processes or agents. Coordination is information-driven and makes interaction protocols simple and

expressive. For instance, the implementation of Galibert [64] provides a simple way to program in C++

and to use a powerful high performant computer namely the Origin 2000 SGI. Here, we use coordination

as a simple way to state actions on data; it is a less structured approach contrary to classical programming

languages. Every abstract model (in the B event-based approach) can be transformed into a coordinative

program; however, we refine as much as possible to obtain a sequential algorithm.

When one write a coordinative program, one has to identify processes or agents of the system; processes

are expressed in a programming notation and the coordination framework allows to state communications

between processes through the tuple space. Coordination primitives includes the reading of a value in the

tuple space, the writing of a value in the tuple space, the waiting of a value in the tuple space, . . . Events

play the rôle of actions of agents or processes and cooperate to the global computation, if any.

5.2 A famous case study: the sorting problem

Sorting a list of values means that one tries to find a permutation of values such that the resulting list is

sorted. We define two constants, f and m, with the following properties:

m ∈ N1 ∧
f ∈ 1..m N

f stands for the abstract array which contains m natural numbers. All elements of the list are different. The

variable g initially set to the initial value f of the list, contains the sorted list in an ascending way. The

invariant must state that values are preserved between g and f .

g ∈ 1..m −→ N ∧
RAN(g) = RAN(f)

The invariant holds at the beginning, since g = f ; the unique event of the system is sorting and it sorts in

one step g.

sorting = begin

g : (g ∈ 1..m N ∧
RAN(g) = RAN(f)∧
∀xx.(xx ∈ 1..m−1 ⇒ g(xx) ≤ g(xx+1))
)

end;

We know that there is one (and only one) permutation for sorting the list. The event sorting is then enabled.

The simplicity of the sorting event allows us to derive the correctness of the abstract system. The sorting is

done in one step, which may seem to be magical. The abstract system is refined into another event system

which implements a sorting technique as for instance the quicksort, the merge sort, The main idea is to

use the coordination paradigm to remove the recursiveness of the solution. The first abstract model is called

BASIC_SORTING.

5.3. APPLYING TWO SORTING PARADIGMS 53

5.3 Applying two sorting paradigms

The previous system is an abstract view of the sorting process and sorting algorithms are based on specific

paradigms leading to well known solutions. In our case, we consider two paradigms:

• MERGING TWO SORTED LISTS TO PRODUCE A SORTED LIST: merge sorts and insertion sorts use

the basic technique of merging two sorted lists; the way for combining sorted lists may be different

and the size of the two list may be also different. The insertion sort combines a list with only one

element and any other sorted list. The Von Neuman sort combines two lists having the same size.

Nevertheless, the basic technique is the merging of two sorted lists and the global process increments

the size of intermediate lists, which is a termination condition.

• SPLITTING A LIST INTO TWO LISTS TO OBTAIN TWO PARTITIONED LISTS: on the contrary, a list

can be splitted into two lists such that elements of the first list are smaller than elements of the second

one; the famous quicksort is an application of the paradigm; the introduction of the pivot is very

important for the complexity of the sort. The selection sort is another example of sorting technique

and is an extreme case of the quicksort - ie the pivot is the extreme left or right position in the splitted

list. The process converge to a list of one-element sorted lists, which are correctly located.

The coordination paradigm provides us a computation model and we use the event-driven paradigm for

defining operations on the tuple space. The data structures are supported by the tuple space. A list is defined

as an interval over the set of discrete values 1..m where m is a constant of the problem. An interval contains

successive values, when non empty. An interval is a subset of 1..m with consecutive values and intervals

are a partition of 1..m. The invariant will be strengthened to take into account properties of intervals later.

For the moment the following invariant says that the tuple space TS is a partition of 1..m; operations on

the tuple space are expressed by events modifying the variable TS.

TS ⊆ P(1..m)∧
∀I.(I ∈ TS ⇒ I 6= ∅) ∧
∀(I, J).(I ∈ TS ∧

J ∈ TS ∧
I 6= J

⇒
I∩J = ∅) ∧

∀i.(i ∈ 1..m ⇒ ∃I.(I ∈ TS∧i ∈ I))

The refinement of the current model BASIC_MODEL leads us either to split intervals, or to combine

intervals; we obtain two possible refined models:

• MERGE_SORT merging two intervals to produce an interval: the sorting process will stop when

only one interval is remaining in the tuple space.

• SPLIT_SORT splitting an interval into two intervals : the splitting sorting will stop when no more

splitting will be possible.

We give no more details about the way intervals are chosen, since these details may appear later in the

refinement process. Both models are still to refine to detail operations of merging and splitting. No imple-

mentation detail is addressing the problem of parallel execution, since it is an abstract model.

5.3.1 Bottom Up Process MERGE_SORT

The bottom up process combines intervals by maintaining the invariant of the sorting problem. The merging

of two intervals assumes that the restriction of g on each interval is sorted. The property is added to the

previous invariant.

54 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

∀I.(I ∈ TS

⇒
∀(i, j).(i ∈ I ∧

j ∈ I ∧
i ≤ j

⇒
g(i) ≤ g(j)))

Initial conditions state that the tuple space contains only intervals with one element; there is an interval for

every possible values of 1..m; g is set to the initial value of the list to sort.

Init = begin

g := f

‖ TS := {x|x ⊆ 1..m∧∃i.(i ∈ 1..m∧x = i..i)}
end

We recall that the merge process stops, when only one interval is in the tuple space and it contains only

1..m. Using the invariant we can prove that g is sorted. The refined sorting event is

sorting = when 1..m ∈ TS then

SKIP

end;

The sorting process is detailed in a way that identifies intermediate states of the variable g; these interme-

diate states state that the set of intervals is converging towards a unique interval modeling the sorted list.

A progress event is defined to model the computation of a merging step. The new event merge_progress

withdraws two intervals from TS and deposits a new interval which is the merging of the two withdrawn in-

tervals in TS. The merging of two intervals decrements the number of intervals and helps in the convergence

of the process.

merge_progress =
any I, J , gp where

I ∈ TS ∧
J ∈ TS ∧
I 6= J ∧
gp ∈ I ∪ J −→ N ∧
RAN(gp) = RAN((I ∪ J) � g)
∀(i1, i2).(i1 ∈ I ∪ J ∧

i2 ∈ I ∪ J ∧
i1 ≤ i2
⇒

gp(i1) ≤ gp(i2))
then

g := g ⊳− gp ‖
TS := TS −{I, J} ∪ {I ∪ J}

end

The model is not yet the merging sort, since it is not efficiently implemented. However, the essence of the

merging sort is expressed in the current model. Further refinements introduce details to obtain different

sorting algorithms based on the merging paradigm, as the merging sort, the insertion sort or the Von Neu-

mann sort. At this point, we not really an interval, since I∪J is not necessarily an interval, but a further

refinement will be able to choose adequately intervals to satisfy that constraint.

5.3.2 Top Down SPLIT_SORT

The quicksort is based on a strategy of decomposition called splitting list and the refinement of the model

BASIC_SORTING adds a new invariant expressing the states of intervals resulting from splitting them. The

final goal is to obtain a tuple space containing only intervals with one element. Remember that the quicksort

5.3. APPLYING TWO SORTING PARADIGMS 55

splits an interval into two intervals in a way such that elements of the first interval are smaller than elements

of the second one. The invariant is strengthened by the property, that intervals can be sorted with respect to

their values.

∀(I, J).(I ∈ TS ∧
J ∈ TS ∧
I 6= J

⇒
(∀(i, j).(i ∈ I ∧

j ∈ J ∧
i < j

⇒
g(i) ≤ g(j))))

When two numbers are in an interval, values between those two values are also in the interval.

∀I.(I ∈ TS ⇒ (∀(i, j).(i ∈ I

j ∈ I

⇒
i..j ⊆ I)))

Initial conditions satisfy the invariant by setting a unique interval into the tuple space: only 1..m is in the

tuple space.

Init = begin

g := f

‖ TS := {1..m}
end

The split process starts in a tuple space with only one interval and halts, when every interval i..i (for every

value i in 1..m) is in the tuple space. In fact, no more splitting event is possible.

sorting = when ∀i.(i ∈ 1..m ⇒ i..i ∈ TS) then

SKIP

end;

The progress of the global process is achieved by splitting as long as possible intervals of the tuple space;

only intervals with at least two elements can be splitted. The new event chooses a value called a pivot: it

splits an interval into two smaller ones and it updates g. Obviously, the way to update g is very crucial for

the implementation, as well as the choice of the pivot. The selection sorting is one possible refined model

that can be derived, if the choice of the pivot is specially done: the pivot is the greatest or the smallest value

of the interval.

split_progress =
any I, k, gp, x where

I ∈ TS ∧
k ∈ I ∧
∃j.(j ∈ I ∧ j > k) ∧
gp ∈ I −→ N ∧
x ∈ RAN(gp) ∧
RAN(gp) = RAN(I � g) ∧
∀z.(z ∈ I ∧ z ≤ k ⇒ gp(z) ≤ x) ∧
∀z.(z ∈ I ∧ z > k ⇒ gp(z) ≥ x)

then

g := g ⊳− gp

‖ TS := TS −{I} ∪ {{y|y ∈ I∧y ≤ k}, {y|y ∈ I∧y > k}}
end

The model has two main events; one event splits the intervals as long as there is at least one interval with

two values and an event for completing the process.

56 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

..

◗
◗

◗
◗

◗
◗

◗
◗

◗s

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✟✙

basic_sort

merge_sort split_sort

Figure 5.1: Sorting development

5.3.3 Duality of sorting models

Two models refine the basic model for the sorting problem; the tuple space frees the designer from imple-

mentation details and structure the computation process. In the figure 5.1, we summarize the refinement

relationship between the three models developed in the previous subsections. Two families of sorting tech-

niques can be redeveloped and we will develop the family of sorting techniques based on the split paradigm.

We do not develop, in this paper, sorting algorithms of the merge family and we restrict our illustration to

the split family.

5.4 Introducing a pivot and an index

The quicksort splits arrays by choosing a pivot variable and it reorganizes both intervals such that any value

of the first interval is smaller than any value of the second interval. The next refinement defines a pivot (piv)

and a concrete index (k), which allows to split the current interval (I). Two index variables, namely (binf)

and bsup), define the middle part of an interval. The middle part is not processed by the partitioning process.

The partitioning algorithm is not used in our current process, since it can split the current interval in three

parts. The control of binf and bsup is fundamental: the increasing of binf and the decreasing of bsup. The

new invariant is enriched by statements on properties satisfied by the new variables, namely piv,k, binf and

bsup. The variable ToSplit detects what is the phase of the partitioning process; it can contain three values:

No, when no split phase is running; Yes if the partitioning process is progressing, End when the partitioning

process for a given interval is completed.

The resulting invariant expresses intuitive properties over variables; the proof assistant generates proof

obligations for validating the refinement and helps us to add details over variables that were missing. When

developing abstract models, a proof assistant like Atelier B is crucial and it avoids errors in brain-aided

proofs. The proof helps us to choose the correct index (k) to partition the resulting interval, when the

splitting process stops (ToSplit = End). Explications are necessary to read and to understand the invariant.

The first part expresses typing information. I is the current interval, which satisfies properties resulting

from the guard of choice_interval event.

5.4. INTRODUCING A PIVOT AND AN INDEX 57

ToSplit ∈ {No, Yes, End} ∧
I ⊆ 1..m ∧
piv ∈ N ∧
binf ∈ 1..m ∧
bsup ∈ 1..m ∧
k ∈ N ∧
(ToSplit 6= No ⇒ piv ∈ RAN(I � g)) ∧
(ToSplit 6= No ⇒ I ∈ TS) ∧
(ToSplit 6= No ⇒ I −{MAX(I)} 6= ∅) ∧
(ToSplit = Yes ⇒ binf ∈ I) ∧
(ToSplit = Yes ⇒ bsup ∈ I) ∧

The splitting of the current interval in two intervals is made possible by controling the two variables binf

and bsup. binf may increase and bsup may decrease: left_partition can increase binf and right_partition can

decrease binf . Both events are possibly occuring when binf < bsup and are complementary with respect

to guards. The swap event is enabled, when both left_partition and right_partition are no more enabled and

when the two bounds are still satisfying the relationship binf < bsup. In this case, e must decide the new

bound k which must split the interval in two non-empty intervals:

(ToSplit = End ⇒ k ∈ I−{MAX(I)}).
If one choosesbinf−1 or bsup, these values must be different to the initial value of the greater bound. So, if

this greater bound does not change, the other bound must be less and the pivot is still in the first part.

(ToSplit = Yes ∧ binf = MIN(I) ⇒ piv /∈ RAN(bsup+1..MAX(I) � g)) ∧
(ToSplit = Yes ∧ bsup = MAX(I) ⇒ binf < bsup) ∧
(ToSplit = Yes ∧ bsup = MAX(I) ⇒ piv /∈ RAN(MIN(I)..binf−1 � g)) ∧
(ToSplit = Yes ∧ bsup = MAX(I) ⇒ piv ∈ RAN(I−{MAX(I)} � g))
(ToSplit = Yes ⇒ ∀z.(z ∈ MIN(I)..binf−1 ⇒ g(z) ≤ piv)) ∧
(ToSplit = Yes ⇒ ∀z.(z ∈ (bsup+1)..MAX(I) ⇒ g(z) ≥ piv)) ∧
(ToSplit = Yes ∧ bsup < binf ⇒ binf ≤ MAX(I)) ∧
(ToSplit = Yes ∧ bsup ≤ binf ⇒ (binf = bsup ∨ binf = bsup+1)) ∧
(binf = bsup ⇒ bsup < MAX(I)) ∧

(ToSplit = End ⇒ k ∈ I−{MAX(I)}) ∧
(ToSplit = End ⇒ ∀z.(z ∈ MIN(I)..k ⇒ g(z) ≤ piv)) ∧
(ToSplit = End ⇒ ∀z.(z ∈ k+1..MAX(I) ⇒ g(z) ≥ piv))

Safety properties can be proved from the invariant and are stated in the clause ASSERTIONS of the B

machine. These properties are useful to validate the system itself.

(ToSplit = Yes ⇒ I −{MAX(I)} = MIN(I)..MAX(I)−1) ∧
(ToSplit = Yes ⇒ MIN(I)..MAX(I) ⊆ I) ∧
(ToSplit = Yes ⇒ binf..bsup ⊆ I)

The invariant is proved to be satisfied by the refined events and we list the refined events; the first one is

the initialisation event called Init. The tuple space contains only one interval, namely 1..m and the splitting

process is not running at the initialisation state.

Init = begin

q := f

‖ TS := {1..m}
‖ ToSplit := No

‖ I := ∅
‖ piv :∈ N

‖ binf :∈ 1..m

‖ bsup :∈ 1..m

‖ k :∈ 1..m

end

58 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

The event sorting does not change; the guard of split_progress is very simple. When the partition process

is finished (ToSplit = End), k is the index result for the partition (see event partition)

split_progress =
when

ToSplit = End

then

ToSplit := No

‖ TS := TS −{I} ∪ {{y|y ∈ I∧y ≤ k}, {y|y ∈ I∧y > k}}
end;

We introduce five new events. The first one, namely choice_interval, chooses an interval (not a singleton)

in the tuple space and initializes both index and the pivot. After the activation of this event, we can cut the

current interval (ToSplit = Yes).

choice_interval = when ToSplit = No then

any J, PIV where

J ∈ TS ∧
PIV ∈ RAN((J−{MAX(J)}) � g) ∧
MIN(J) < MAX(J)

then

I := J ‖
piv := PIV ‖
ToSplit := Yes ‖
binf := MIN(J) ‖
bsup := MAX(J)

end

end;

The three next events move the index to leave element less than pivot before binf and greater than pivot

after bsup.

left_partition = when

ToSplit = Yes ∧ binf < bsup ∧ g(binf) < piv

then

binf := binf+1
end;

right_partition = when

ToSplit = Yes ∧ binf < bsup ∧
g(binf) ≥ piv ∧ g(bsup) > piv

then

bsup := bsup−1
end;

swp = when

ToSplit = Yes ∧ binf < bsup ∧
g(binf) ≥ piv ∧ g(bsup) ≤ piv

then

binf, bsup := binf+1, bsup−1
‖ g := g ⊳− {binf 7→ g(bsup)} ⊳− {bsup 7→ g(binf)}

end;

The last one stops the partitioning process and defines the index k, which makes progress possible (see event

split_progress).

5.5. A SET OF BOUNDS AND A CONCRETE PIVOT 59

partition = when

ToSplit = Yes ∧ binf ≥ bsup

then

ToSplit := End ‖
if binf = bsup then

if g(binf) ≤ piv then

k := binf

else

k := binf−1
end

else

k := bsup

end

end

5.5 A set of bounds and a concrete pivot

The goal of the next refinement is to implement the tuple space by a set of initial bounds from every interval

in the abstract tuple space. Initially, we have tried to introduce this implementation in the first refinement

but it leads us to a unique proof obligation, whose proof was very long. Hence, we have found another

abstraction, which produces more proof obligations than the initial choice but they were easier to prove.

The implementation of the pivot is the middle of the chosen interval and now, the choice is deterministic.

The relationship between pairs of bounds of the new tuple space (TB) and the tuple space (TS) is stated by

a gluing invariant and the relationship is a one to one relation.

TB ⊆ 1..m+1 ∧
∀(a, b).(a ∈ TB ∧ b ∈ TB ∧

a < b ∧ a+1..b−1 ∩ TB = ∅
⇒ a..b−1 ∈ TS)

We add two new variables, namely A and B, which are the bounds of the current abstract interval I .

Variables satisfy the following gluing invariant: invariant:

(ToSplit = Yes ⇒ A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A+1..B−1 ∩ TB = ∅ ∧
A..B−1 = I) ∧

(ToSplit = End ⇒ A ∈ TB ∧ B ∈ TB ∧
A < B ∧ A+1..B−1 ∩ TB = ∅ ∧
A..B−1 = I)

Two new safety properties are derived from the current invariant:

∀I.(I ∈ TS ⇒ MIN(I) ∈ TB ∧ MAX(I)+1 ∈ TB);

∀(a, b, c).(a ∈ TB ∧ c ∈ TB ∧ b ∈ TB ∧ a < b ∧ b < c ∧
TB ∩ a+1..b−1 = ∅ ∧ TB∩b+1..c−1 = ∅
⇒
∀(x, y).(x ∈ a..b−1 ∧ y ∈ b..c−1 ⇒ g(x) ≤ g(y)))

We refine only two events. The event split_progress adds the unique value k+1 in the concrete tuple space

(TB).

split_progress = when

ToSplit = End

then

ToSplit := No

‖ TB := TB ∪ {k+1}
end;

60 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

The event choice_interval initializes the concrete bounds A and B of the abstract interval I . It chooses the

pivot as the value g((a+b−1)/2) at the middle of the chosen interval.

choice_interval = when ToSplit = No then

any a, b, p where

a ∈ TB ∧
b ∈ TB ∧
a < b−1 ∧
a+1..b−1 ∩ TB = ∅ ∧
p = g((a+b−1)/2)

then

A := a ‖
B := b ‖
piv := p ‖
ToSplit := Yes ‖
binf := a ‖
bsup := b−1

end

end;

5.6 Implementation of the tuple space by a stack

The next step plans to use a stack for implementing the tuple space; it is clear that the current abstract

model might be directly implemented in a coordination language as C LINDA for instance. However, we

recall that the coordination paradigm is a methodological support for the development. In this refinement,

we implement the tuple space by a stack. We use three new variables TA, top, S, which stands for the old

variables TB. S (Single) contains all bounds interval which are singletons and which were on the top of the

stack TA. All bounds in TB are single one (∈ S) or in the codomain of TA and vice versa, according to our

gluing invariant. Two consecutive bounds in TB are given by two consecutive index of the stack (array).

The concrete tuple space TA is sorted. top is the dimension of TA. Notice that top is always between 1 and

m+1. No stack overflow can occur.

top ∈ 1..m+1 ∧
TA ∈ 1..top −→ 1..m+1 ∧
S ⊆ TB ∧
TB = RAN(TA) ∪ S ∧
∀(i, j).(i ∈ DOM(TA) ∧

j ∈ DOM(TA) ∧
i < j

⇒
TA(i) < TA(j)) ∧

When S is empty, the greater bound in the codomain of TA is m+1 and, when S is not empty, it contains

consecutive index from m+1 and the greater bound in the codomain of TA and the minimum of S are

consecutive. Using this technical invariant, it is easier to prove the previous gluing invariant.

(S = ∅ ⇒ MAX(RAN(TA)) = m+1) ∧
(S 6= ∅ ⇒ S = MIN(S)..m+1) ∧
(S 6= ∅ ⇒ MAX(RAN(TA))+1 = MIN(S)) ∧

The following properties are proved from the invariant.

(ToSplit 6= No ⇒ (top 7→ B) ∈ TA) ∧
(ToSplit 6= No ⇒ (top−1 7→ A) ∈ TA) ∧
(ToSplit 6= No ⇒ top > 1) ∧
(ToSplit 6= No ⇒ top ≤ m)

5.6. IMPLEMENTATION OF THE TUPLE SPACE BY A STACK 61

TA ∈ 1..top 1..m+1 ∧
MAX(RAN(TA)) = TA(top) ∧
RAN(TA) ∩ S = ∅ ∧

∀(h, n).(n ∈ 1..m+1 ∧
h ∈ 1..n 1..n ∧
∀(x, y).(x ∈ 1..n ∧

y ∈ 1..n ∧
x < y

⇒
h(x) < h(y))

⇒
h = ID(1..n))

The last one is very important in proving that there is no run stack overflow on our stack. It expresses

that the unique increasing into function between 1..m+1 and 1..m+1 is the identity. We have proved it in

another B machine with other preliminary lemmas like previous assertions. The initial event is written from

the previous one.

Init = begin

g := f

‖ TA := {1 7→ 1, 2 7→ m+1}
‖ S := ∅
‖ top := 2
‖ ToSplit := No

‖ A, B := m+1, 1
‖ piv :∈ N

‖ binf :∈ 1..m

‖ bsup :∈ 1..m

‖ k :∈ 1..m

end

Only three old events change. Now, the guard of sorting is top = 1: remember that the proof of the

refinement assumes that in this case all intervals are singleton. The implementation is very close.

sorting = when top = 1 then

SKIP

end;

split_progress =
when ToSplit = End then

ToSplit := No

‖ top := top + 1
‖ TA := (TA ⊳−{ top 7→ k+1}) ⊳− {top+1 7→ BB }

end;

The event which chooses the interval is now completely deterministic. The bounds of the chosen interval

are on the top of the stack TA. Notice, that the chosen interval is not a singleton (TA(top−1)+1 6= TA(top).
Singleton on the top of the stack is removed by a new event as follows:

62 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

choice_interval =
when

top > 1 ∧
(TA(top−1)+1 6= TA(top)) ∧
ToSplit = No

then

ToSplit := Yes ‖
A, B, piv, binf, bsup ∈ (A = TA(top−1) ∧

B = TA(top) ∧
piv = g((A+B−1)/2) ∧
binf = A ∧
bsup = B−1)

end;

New event, so-called elim_single, eliminates every singleton on the top of the stack.

elim_single = when

top > 1 ∧
TA(top−1)+1 = TA(top) ∧
ToSplit = No

then

S := S ∪ {TA(top)}
‖ top := top−1
‖ TA := 1.. top−1 � TA

end;

All guards of the previous system are very simple to implement and all events are deterministic. We can

easily derive from this system an iterative program using array and loops. The set of singleton S is not

important in this implementation. If somebody wants to use it, one can store it in TA from the index m in a

decreasing way. The iterative version of the algorithm is given in the figure 5.2.

5.7 Conclusion

The iterative algorithm is three times faster that the quicksort; it is obtained by combining the coordination

paradigm and the event-driven paradigm. Every abstract model can be implemented by a coordination

program but we use the coordination paradigm as a computation model and the refinement allows us to

transit from the coordination model to the classical sequential model. Moreover, it provides us a way to

develop a split algorithm without use of recursive aspect. The experience shows that coordination gives

a simple way to think on the activity of events and it helps in explaining what is really happening, when,

for instance, a paradigm is applied for sorting. We have not completely explored the promise land of

coordination and we have not compared our works to refinements for coordination.

5.7. CONCLUSION 63

g := f ;
TA[1] := 1;
TA[2] := m+1;
top := 2;
ToSplit = No

while top 6= 1 do

while top > 1 ∧ TA[top−1]+1 = TA[top] do

top := top−1
end;
if top > 1 then

A := TA[top−1];
B := TA[top];
binf := A;
bsup := B−1;
piv := g[(binf+bsup) div 2];

ToSplit = Yes

while (binf < bsup) do

while binf < bsup ∧ g[binf] < piv do

binf := binf+1
end;
while binf < bsup ∧ g[bsup] > piv do

bsup := bsup−1
end;
if binf < bsup then

temp := g[binf];
g[binf] := g[bsup];
g[bsup] := temp;
binf := binf+1;
bsup := bsup−1

end

end;
if binf = bsup then

if g[binf] ≤ piv then

k := binf

else

k := binf−1
end

else

k := bsup

end;
ToSplit = End

TA[top] := k+1;
top := top+1;
TA[top] := B

ToSplit = No

end

end

Figure 5.2: A correct iterative program

64 CHAPTER 5. COMBINING COORDINATION AND REFINEMENT FOR SORTING

Chapter 6

Spanning trees algorithms

6.1 Introduction

Graphs algorithms and graph-theoretical problems provide a challenging battle field for the incremental

development of proved models. The B event-based approach implements the incremental and proved devel-

opment of abstract models which are translated into algorithms; we focus our methodology on the minimum

spanning tree problem and on Prim’s algorithm. The correctness of the resulting solution is based on prop-

erties over trees and we show how the greedy strategy is efficient in this case. We compare properties

proven mechanically to the properties found in a classical algorithms textbook. This section analyses the

proof-based development of Minimal Spanning Tree algorithms and Prim’s algorithm in particular [88] is

produced in fine.

6.2 The Minimum Spanning Tree Problem

The Minimum Spanning Tree Problem, Minimal Spanning Tree problem for short, is the problem of finding

a minimum spanning tree with respect to a connected graph. The literature contains several algorithmic

solutions like Prim’s algorithm [88] or Kruskal’s algorithm [70]. Both algorithms implement the greedy

method. Typically, we assume that a cost function is related to every edge and the problem is to infer a

globally minimum spanning tree, which covers the initial graph. The cost function returns integer values.

The Minimal Spanning Tree problem is strongly related to practical problems like the optimisation of cir-

cuitry and the greedy strategy advocates making the choice that is the best one at the moment; It does not

always guarantee the optimality but certain greedy strategies yield a Minimal Spanning Tree.

Prim’s algorithm is easy to explain but it underlies mathematical properties related to the graph theory and

especially the general theory of trees. We consider two kinds of solutions; a first one is called generic

algorithm because it does not use a cost function. This first generic solution allows us to develop a second

solution: the Minimal Spanning Tree one.

Let us summarize how Prim’s algorithm works. The state of the algorithm while executing contains two sets

of nodes of the current graphs. A first set of nodes, equipped with a restriction of the relation over the global

set of nodes, defines the current spanning tree starting from a special node called the root of the spanning

tree. A second set of nodes is the complement of the first set. The acyclicity of the spanning tree must be

preserved, while adding a new edge in the current spanning tree and the basic computation step consists of

taking an edge between a node in the current spanning tree and a node which is in the other set. The choice

leads to maintaining the acyclicity of the current spanning tree with the new node, since both sets of nodes

are disjoint. The process is repeated as long as the set of remaining and unchosen nodes is empty. The final

computed tree is a spanning tree computed by the generic algorithm. Now, if one adds the cost function,

one gets Prim’s algorithm by modifying the choice of the new node and edge to add to the current spanning

tree. In fact, the minimum edge is chosen and the final spanning tree is then the minimum spanning tree.

However, the addition of the cost function is a refinement of the generic solution.

The generic Minimal Spanning Tree algorithm without cost function is sketched as follows:

• Precondition: A undirected connected graph, g, over a set of nodes ND and a node r

65

66 CHAPTER 6. SPANNING TREES ALGORITHMS

• Initial Step tr_nodes (the current set of nodes) contains only r and is included into ND and tr (the

current set of edges) is empty

• Computation Step If ND−tr_nodes is not empty, then choose a node x in tr_nodes and a node y in

ND−tr_nodes such that the link (x, y) is in g with the minimum cost and add it to tr; then add y to

tr_nodes and (x, y) to tr

• Termination Step If ND−tr_nodes is empty (ND = tr_nodes), then tr is a minimum spanning tree

on ND

• Postcondition (ND, tr) is a minimum spanning tree

The termination of the algorithm is ensured by decreasing the set ND−tr_nodes. The genericity of the

solution leads us to the refinement by introducing the cost function in the computation step. We have a clear

simple abstract view of the problem and of the solution. We can, in fact, state the problem in the B event-

based framework. It remains to prove the optimality of the resulting spanning tree and that will be derived

using tools and models. Before starting the modeling, we recall the B-event-based modeling technique.

6.3 Development of a spanning tree algorithm

6.3.1 Formal specification of the spanning tree problem

First we define elements of the current graph namely g over the set of nodes namely ND. The graph is

assumed to be undirected, which is modeled by the symmetry of the relation of the graph. Node r is the

root of the resulting tree and we obtain the following B definitions:

g ⊆ ND×ND ∧
g = g−1 ∧
r ∈ ND

The termination of the algorithm is clearly related to properties of the current graph; the existence of the

spanning tree is based on the connectivity of the graph. The modelling of a tree uses the acyclicity of the

graph. A tree is defined by a root r, a node: r ∈ ND, and a parent function t (each node has an unique

parent node, but the root): t ∈ ND−{r} −→ ND. A tree is an acyclic graph. A cycle c in a finite

graph t built on a set ND, is a subset of ND whose elements are members of the inverse image of c under

t, formally c ⊆ t−1[c]. To fulfill the requirement of acyclicity, the only set c that enjoys this property

is necessarily the empty set. We formalize it by the left predicate that follows, which can be proved to be

equivalent to the one on the right, which can be used as an induction rule:

∀c · (
c ⊆ ND ∧
c ⊆ t−1 [c]

⇒
c = ∅)

⇔

∀q · (
q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q

⇒
ND = q)

We prove the equivalence using Atelier B. We can now define a spanning tree (rooted by r and with the

parent function t) of a graph g as one whose parent function is included in g, formally:

spanning (t, g) =̂

t ∈ ND−{r} −→ ND ∧
∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q) ∧
t ⊆ g

Now we can define the set tree (g) of all spanning trees (with root r) of the graph g, formally:

6.3. DEVELOPMENT OF A SPANNING TREE ALGORITHM 67

tree (g) = {t|spanning (t, g)}

We define the property of being a connected graph by connected(g):

connected (g) =̂(
g ∈ ND ↔ ND ∧
∀S · (S ⊆ ND ∧ r ∈ S ∧ g [S] ⊆ S ⇒ ND = S)

)

The graph g and the node r are two global constants of our problem and must satisfy properties stated above.

Moreover, we assert that there is at least one solution to our problem. The optimality of the solution will

be analyzed later, while introducing the cost function. Now, we build the first model which computes the

solution in one shot. The event span corresponds to producing a spanning tree among the non-empty set of

possible spanning trees for g. The variable st contains the resulting spanning tree.

span =̂
begin

st :∈ tree(g)
end

The invariant is very simple and only a type invariant.

st ∈ ND ↔ ND

The initialization establishes this invariant.

The current model is in fact the specification of the simple spanning tree problem; we have not yet mentioned

the cost function. The next step is to refine the current model into a simple spanning tree algorithm.

6.3.2 Development of a simple spanning tree algorithm

The second model introduces a new event which gradually computes the spanning tree by constructing the

spanning tree in a progressive way. The new event adds a new edge to the current tree tr which partly spans

g. The chosen edge is such that the first component of the pair is in tr_nodes and the second one is in

remaining_nodes. These two new variables partition the set of nodes and we obtain the following new

properties to add to the invariant of the current model.

tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅

A new event, progress, simulates the computation step of the current solution by choosing a pair maintain-

ing the updated invariant.

progress =̂
select

remaining_nodes 6= ∅
then

any x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes×remaining_nodes

then

tr := tr ∪ {y 7→ x} ||
tr_nodes := tr_nodes∪ {y} ||
remaining_nodes := remaining_nodes−{y}

end

end

68 CHAPTER 6. SPANNING TREES ALGORITHMS

The event span is simply refined by modifying the guard of the previous instance of the event in the abstract

model. The event is triggered when the set of remaining nodes is empty: the variable st contains a spanning

tree for the graph g.

span =̂
select

remaining_nodes = ∅
then

st := tr

end

The invariant of the new model states the properties of the two new variables and relates them to previous

ones.

tr_nodes ⊆ ND ∧
remaining_nodes ⊆ ND ∧
tr_nodes ∪ remaining_nodes = ND ∧
tr_nodes ∩ remaining_nodes = ∅ ∧
tr ∈ tr_nodes−{r} −→ tr_nodes ∧
∀q · (q ⊆ tr_nodes ∧ r ∈ q ∧ tr−1 [q] ⊆ q ⇒ tr_nodes = q)

The following initialization establishes the invariant:

tr := ∅ ||
tr_nodes := {r} ||
remaining_nodes := ND−{r}

The expression of the absence of deadlock is simply stated as follows:

remaining_nodes = ∅ ∨

remaining_nodes 6= ∅ ∧ ∃(x, y)·

(
x, y ∈ g ∧
x, y ∈ tr_nodes×remaining_nodes

)

We have obtained a simple iterative solution for the simple Minimal Spanning Tree problem; the solution

follows the sketch of the algorithm given in the subsection describing the so called generic algorithm in the

book of Cormen et al. [58]. We can derive the following algorithm from the current model:

algorithm generic_MST

tr := ∅;
tr_nodes = {r};
while remaining_nodes 6= ∅ do

let x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes×remaining_nodes

then

tr := tr ∪ {y 7→ x};
tr_nodes := tr_nodes∪ {y};
remaining_nodes := remaining_nodes−{y}

end

end_while

st := tr

The next step refines the current model into a model where the cost function is effectively used.

6.4. DEVELOPMENT OF PRIM’S ALGORITHM 69

6.3.3 A proof view of the spanning tree algorithm

The previous model computes a spanning tree, when the graph is connected. This algorithm looks like a

proof of existence of a spanning tree; the following lemma allows us to prove that the set of spanning trees

is not empty and hence a minimum spanning tree exists:

Propriété 6.1 (Existence of a spanning tree)

connected (g) ⇒ tree (g) 6= ∅

However, the previous lemma requires to construct a tree from the hypothesis related to the connectivity of

the graph. Hence, we must prove a first inductive theorem on finite sets, which will include the existence

of a tree. We suppose that the set ND is finite and there exists a function from ND to 1..n, where n is the

cardinality of ND.

Propriété 6.2 (An inductive theorem on finite sets)

∀P · (
P ⊆ P(ND) ∧
∅ ∈ P ∧
∀A · (A ∈ P ∧ A 6= ND ⇒ ∃a · (a ∈ ND−A ∧ A∪{a} ∈ P))

⇒
ND ∈ P)

We can use the previous lemma with the following set:

{A|A ⊆ ND ∧ ∃f ·

f ∈ A−{r} −→ A ∧
f ⊆ g ∧

∀S ·

S ⊆ ND ∧ r ∈ S ∧ f−1[S] ⊆ S

⇒
A ⊆ S

}

to prove that the set of spanning trees of g is not empty.

6.4 Development of Prim’s algorithm

The cost function is defined on the set of edges and is extended over the global set of possible pairs of nodes.

cost : g −→ Z ∧
∀(x, y) · (x, y ∈ g ⇒ cost(x 7→ y) = cost(y 7→ x)) ∧
Cost : P(g) −→ Z ∧
Cost({}) = 0 ∧

∀(s, x, y) ·

s ∈ P(g) ∧ x, y ∈ g−s

⇒
Cost(s∪{x 7→ y}) = Cost(s)+cost(x 7→ y)

We have proved that tree(g) is not empty, since the graph g is connected; the mst_set(g) containing every

minimum spanning tree of the graph g is defined as follows:

mst_set(g) =
{mst|mst ∈ tree(g) ∧ ∀tr · (tr ∈ tree(g) ⇒ Cost(mst) ≤ Cost(tr))}

70 CHAPTER 6. SPANNING TREES ALGORITHMS

The set mst_set(g) is clearly not empty. The first «one shot» model is refined into the new model which

contains only one event span. We strengthen the definition of the choice of the resulting tree by strength-

ening the condition over the set and by choosing a candidate in the set of possible Minimal Spanning Tree

trees.

span =̂
begin

st :∈ mst_set(g)
end

The second model gradually computes the spanning tree by adding a new edge to the current «under con-

struction» tree tr spanning a part of g. The tree tr is defined over the set of already treated nodes, called

tr_nodes. The event progress is modified to handle the minimality criterion: the guard is modified to

integrate the choice of the minimum edge among the remaining possible ones.

progress =̂
select

remaining_nodes 6= ∅
then

any x, y where

x, y ∈ g ∧ x, y ∈ tr_nodes×remaining_nodes ∧
∀(a, b) · (a ∈ tr_nodes ∧

b ∈ remaining_nodes ∧
a, b ∈ g

⇒
cost(y 7→ x) ≤ cost(b 7→ a))

then

tr := tr ∪ {y 7→ x} ||
tr_nodes := tr_nodes∪ {y} ||
remaining_nodes := remaining_nodes−{y}

end

end

The event span remains unchanged:

span =̂
select

remaining_nodes = ∅
then

st := tr

end

The invariant includes the invariant of the refined model of the generic refinement and we add that the

current spanning tree tr is a part of a minimum spanning tree of the graph g:

∃T · (T ∈ mst_set(g) ∧ tr ⊆ T)

The invariant implies that after completion, when the event span occurs, the current spanning tree tr is

finally a minimal one. Since tree(g) is not empty, then mst_set(g) is not empty and a tree can be chosen in

this non-empty set to prove that a Minimal Spanning Tree exists (this Minimal Spanning Tree contains ∅).

So the invariant holds for the initialization, using the lemma 1. The difficult task is to prove that the event

progress maintains the invariant. We can take the minimum spanning tree given by the invariant, if y 7→ x

is in this tree. Or else we must provide another minimum tree which includes the current one and the new

edge y 7→ x.

6.4. DEVELOPMENT OF PRIM’S ALGORITHM 71

In fact, textbooks provide algorithms implementing the greedy strategy and we refer our explanations to the

book of Cormen et al. [58]. The authors prove a theorem page 501 numbered 24.1 to assert that the choice

of the two edges is done following a given requirement, namely a safe edge (a safe edge is a edge allowing

the progress of the algorithm). We recall the theorem:

Théorème 3 (24.1, p 501from [58])

Let g be a connected, undirected graph on ND (set of nodes) with a real-valued weight function cost

defined on g (edges). Let tr be a subset of g that is included in some minimum spanning tree for g, let

(tr_nodes,ND−tr_nodes) be any cut of g that respects tr_nodes, and let (x, y) be a light edge crossing

(tr_nodes,ND−tr_nodes). Then edge (x, y) is safe for tr_nodes.

Let us explain notions of cut, crosses and light edge. A cut

(tr_nodes,ND−tr_nodes)) of an undirected graph g is a partition of ND. An edge (x, y) crosses the cut

(tr_nodes,ND−tr_nodes) if one of its endpoints is in tr_nodes and the other is in ND−tr_nodes. An

edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut. A light edge is

not unique.

Proof: Let T be a minimum spanning tree that includes tr, and assume that T does not contain the light

edge (x, y), since if it does, we are done. We shall construct another minimum spanning tree T ′ that includes

tr ∪ {(x, y)} by using a cut-and-paste technique, thereby showing that (x, y) is a safe edge for tr. The

edge (x, y) forms a cycle with the edges on the path p from x to y in T . Since x and y are on opposite sides

of the cut (tr_nodes,ND−tr_nodes), there is at least one edge in T on the path p that also crosses the

cut. Let (a, b) be any such edge. The edge (a, b) is not in tr, because the cut respects tr. Since (a,b) is on

the unique path from x to y in T , removing (a, b) breaks T into two components. Adding (x, y) reconnects

them to form a new spanning tree T ′ = T−{(a, b)} ∪ {(x, y)}. We next show that T ′ is a minimum

spanning tree. Since (x, y) is a light edge crossing (tr_nodes,ND−tr_nodes) and (a, b) also crosses this

cut, cost(x, y) ≤ cost(a, b). Therefore,

Cost(T ′) = Cost(T)−cost(a, b)+cost(x, y)
≤ Cost(T)

But T is a minimum spanning tree, so that Cost(T) ≤ Cost(T ′); thus, T ′ must be a minimum spanning

tree also. It remains to show that (x, y) is actually a safe edge for tr. We have tr ⊆ T ′, since tr ⊆ T and

(a, b) /∈ tr ; thus, tr∪{(x, y)} ⊆ T ′. Consequently, since T ′ is a minimum spanning tree, (x, y) is safe for

tr. 2

We have to prove the property above that has been in fact adapted into the B proof engine. However, it is

not a simple exercise of translation but a complete formulation of graph-theoretical aspects; moreover, the

proof has been completely mechanized, as we will show in the next subsection. Let us compare the theorem

and our formulation. The pair (tr_nodes,ND−tr_nodes) is a cut in the left part of the implication; the

restriction of the tree f to the set of nodes tr_nodes is a tree rooted by r; (x, y) crosses the cut. Those

assumptions imply that there exists a spanning tree sp rooted by r that is minimum on tr_nodes and such

that there exists a light cut (a, b) preserving the minimality property.

We must give a formal description of this theorem. We introduce a predicate atree(root, nodes, tree)
stating that a structure tree is a tree on the set nodes and whose root is root:

atree(root, nodes, tree) =̂

root ∈ nodes ∧
tree ∈ nodes−{root} −→ nodes ∧
∀q · (q ⊆ nodes ∧ root ∈ q ∧ tree−1 [q] ⊆ q ⇒ nodes = q)

Hence, we must add the following property which is proved separately.

72 CHAPTER 6. SPANNING TREES ALGORITHMS

∀(T, tr_nodes, x, y) · (
tr_nodes ⊆ ND ∧
y ∈ ND ∧
atree(r, ND, T)
r ∈ tr_nodes ∧
x ∈ tr_nodes ∧
(y /∈ tr_nodes) ∧
atree(r, tr_nodes, (tr_nodes−{r} � T � tr_nodes)) ∧
∀S · (S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S ⇒ S∩tr_nodes 6= ∅)

⇒
∃(a, b, T ′) · (

a, b ∈ T ∧ a /∈ tr_nodes ∧ b ∈ tr_nodes ∧
atree(r, ND, T ′) ∧
T ′ ⊆ (T ∪ T−1−{b 7→ a, a 7→ b})∪{y 7→ x} ∧
Cost(T ′) = Cost(T)−cost(b 7→ a)+cost(y 7→ x) ∧
y 7→ x ∈ T ′ ∧
(tr_nodes−{r} � T � tr_nodes) ⊆ T ′))

The property is the key result for ensuring the optimality of the greedy strategy in this process. In the next

subsection, we detail the proof of our theorem.

6.5 On the theory of trees

As we have mentioned previously, trees play a central role in the justification of the algorithm; the optimal-

ity of the greedy strategy is mainly based on the proof of the theorem used by Cormen et al. [58]. We should

now detail the theory of trees and intermediate lemmas required for deriving the theorem. Both the devel-

opment of the tree identification protocol IEEE 1394 [12] and the development of recursive functions [44]

require proofs related to the closure of relations; we apply the same technique for the closure of a function

defining a tree.

Let (T, r) be a tree defined by a tree function T and a root r; they satisfy the following axioms atree(r, ND, T).
The closure cl of T−1 is the smallest relation containing id(ND) and stable by application of T−1, that is:

cl ∈ ND ↔ ND ∧
id(ND) ⊆ cl ∧
(cl;T−1) ⊆ cl ∧
∀r · (

r ∈ ND ↔ ND ∧
id(ND) ⊆ r ∧
(r;T−1) ⊆ r ∧

⇒
cl ⊆ r

)

Useful properties on the closure can be derived from those definitions; for instance, the closure is a fix-

point; the root r is connected to every node of the connected component; the closure is transitive, etc. We

summarize those properties using our notations:

cl = id(ND) ∪ (cl;T−1);
r×ND ⊆ cl;
(T−1; cl) ⊆ cl;
(cl; cl) ⊆ cl;
T ∩ cl = ∅;
cl ∩ cl−1 ⊆ id(ND);

6.5. ON THE THEORY OF TREES 73

Figure ?? contains a tree with the edge b 7→ a and without the edge y 7→ x. The construction of a new tree

which contains the edge y 7→ x but not the edge b 7→ a is done according to the following points (see the

result in Figure ??):

1. remove the edge b 7→ a

2. reverse all edges between y to b (dashed arrows)

3. add the edge y 7→ x

The resulting object seems to be a tree rooted by r.

Propriété 6.3 (Concatenation of two separate trees)

Let T1, r1, N1, T2, r2, N2, x be such that:

atree(r1, N1, T1)
atree(r2, N2, T2

N1∩N2 = ∅
N1∪N2 = ND

x ∈ N1

Then atree(r1, ND, T1∪T2∪{r2 7→ x}).

Proof Sketch: The proof is made up of several steps. A first step proves that the concatenation is a total

function over the set N1∪N2. A second one leads to a more technical task and we should prove the inductive

property over trees using a splitting of the inductive variable S (S ∩ N1 and S ∩ N2). 2

Propriété 6.4 (Subtree property)

Let (T, r) be a tree on ND (atree(r, ND, T)) and b a node in ND.

Then atree(b, cl[{b}], (cl[{b}]−{b} � T))

Proof Sketch: The main difficulty is related to the inductive part. We must prove that, if S ⊆ cl[{b}],
b ∈ S and (cl[{b}]−{b} � T)−1[S] ⊆ S, then cl[{b}] ⊆ S. We use the inductive property on T with the

set S ∪ ND−cl[{b}]. 2

Propriété 6.5 (Complement of a sub-tree)

Let (T, r) be a tree on ND and b a node in ND.

Then atree(r, ND−cl[{b}], (cl[{b}] ⊳−T)).

Proof Sketch: We should prove that, if S ⊆ ND−cl[{b}], b ∈ S and (cl[{b}] ⊳−T)−1[S] ⊆ S, then

ND−cl[{b}] ⊆ S. A hint is to use the inductive property on T with the set S ∪ cl[{b}]. 2

Now, we must characterize the sub-tree, where we have reversed the edge between y to the root b. Let

subtree(T, b) be the subtree of T with b as root (it’s cl[{b}]−{b} � T). This following function seems to

be a good choice:

(cl−1[{y}] ⊳− subtree(T, b)) ∪ (cl−1[{y}] � subtree(T, b))−1

(cl−1[{y}] � subtree(T, b))−1 is exactly all reverse edges. cl−1[{y}] is the set of all parents of y.

Propriété 6.6 (Reverse from y to b produces a tree)

Let b, y such that:

{
b ∈ ND

y ∈ cl[{b}]

Then atree(y, cl[{b}], (cl−1[{y}] ⊳− subtree(T, b)) ∪ (cl−1[{y}] � subtree(T, b))−1)

74 CHAPTER 6. SPANNING TREES ALGORITHMS

Proof Sketch: In this case we must use an induction on the tree cl[{b}] and sometimes use an second

induction with the inductive property in hypothesis.2

Propriété 6.7 (Existence of a spanning tree)

Let a, b, x, y such that

b, a ∈ T

y ∈ cl[{b}]
x : ND−cl[{b}]

Then there exists a tree T ′ such that:

T ′ ⊆ (T ∪ T−1−{a 7→ b, b 7→ a}) ∪ {y 7→ x}
atree(r, ND, T ′)
Cost(T ′) = Cost(T)−cost(b 7→ a)+cost(y 7→ x)
y 7→ x ∈ T ′

cl[{b}] ⊳−T ⊆ T ′

Proof Sketch: T ′ is obtained by concatenation of . the two trees identified in the two previous lemmas.

Both trees are linked by the edge y 7→ x. 2

Finally, we have to prove the existence of an edge b 7→ a which is safe in the sense of the greedy strategy.

Propriété 6.8 (Existence of b 7→ a)

Let tr_nodes, y such that:

tr_nodes ⊆ ND

y ∈ ND−tr_nodes

r ∈ tr_nodes

∀S ·

S ⊆ ND ∧ y ∈ S ∧ T [S] ⊆ S

⇒
S∩tr_nodes 6= ∅

Then there exists a and b such that:

a ∈ tr_nodes

b 7→ a ∈ T

b /∈ tr_nodes

b ∈ cl−1[{y}]

.

The property of the existence of a minimum spanning tree can now be derived using lemmas and the proof

of the property is then completely mechanized. The development of Prim’s algorithm leads us to state

and to prove properties over trees. The inductive definition of trees helps in deriving intermediate lemmas

asserting that the growing tree converges to the Minimal Spanning Tree, according to the greedy strategy.

The resulting algorithm is completely proved and we can partially reuse current developed models to obtain

Dijkstra’s algorithm or Kruskal’s one. The greedy strategy is not always efficient and the optimality of the

resulting algorithm is proved by the theorem 24.1 [58]. The greedy method is based on optimisation criteria

and we have developed a collection of models [49] which can be used to be instantiated, when the greedy

strategy is applicable and when some optimisation criterion is verified.

Chapter 7

Design of distributed algorithms by

refinement

Sommaire

7.1 Design of distributed algorithms by refinement . 76

7.2 The IEEE 1394 tree identify protocol . 76

7.2.1 Introduction . 76

7.2.2 The Case Study: Basic Approach . 77

7.2.3 Refining the First Model . 78

7.2.4 Last Refinement: Localization . 82

7.2.5 Conclusion . 83

7.3 A new leader election distributed algorithm . 84

7.3.1 The Basic Mathematical Structure . 84

7.3.2 The First Model leaderelection0: the one-shot election 85

7.3.3 Refining the First Model leaderelection0 . 85

7.3.4 Last Refinements: Localization . 91

75

76 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

7.1 Design of distributed algorithms by refinement

Developing distributed algorithms can be made simpler and safer by the use of refinement techniques.

Refinement allows one to gradually develop a distributed algorithm step by step, and to tackle complex

problems like the PCI Transaction Ordering Problem [47] or the IEEE 1394 [19]. The B event-based

method [14] provides a framework integrating refinement for deriving models solving distributed problems.

The systems under consideration for our technique are general software systems, control systems, protocols,

sequential and distributed algorithms, operating systems and circuits; these are generally very complex

and have parts interacting with an environment. A discrete abstraction of such systems constitutes an

adequate framework: such an abstraction is called a discrete model. A discrete model is more generally

known as a discrete transition system and provides a view of the current system; the development of a

model in B follows an incremental process validated by refinement. A system is modeled by a sequence of

models related by the refinement and managed in a project. We limit the scope of our work to distributed

algorithms modeled under the local computation rule [51] in graphs and we specialize the proof obligations

with respect to the target of the development which is a distributed algorithm fitting safety and liveness

requirements.

The goal of the IEEE 1394 protocol is to elect in a finite time a specific node, called the leader, in a

network made of various nodes linked by some communication channels. Once the leader is elected, each

non-leader node in the network should have a well defined way to communicate with it. This election of

the leader has to be done in a distributed and non-deterministic way. The current development partially

replays the IEEE 1394 protocol development: the resulting algorithm is not the IEEE 1394 protocol. In

fact, we are presenting the development of a distributed leader election and we partially reuse the models

of the IEEE 1394 protocol development: the first, second and third models are reused from our paper [19]

and the contention is solved by assigning a static priority to each site. The resulting algorithm is derived

from the last B model. The first development is the IEEE 1394 tree identify protocol and the second one

is discovered from the first development.

7.2 The IEEE 1394 tree identify protocol

7.2.1 Introduction

Overview. Distributed systems are inherently complex to understand, to design and to verify. In order

to master this complexity, people have developed various approach such as model-checking and theorem

proving. In this paper, we illustrate the latter by applying it to the IEEE 1394 protocol [12].

Proof-based Development. Proof-based development methods integrate formal proof techniques in the

development of software systems. The main idea is to start with a very abstract model of the system under

development. We then gradually add details to this first model by building a sequence of more concrete

ones. The relationship between two successive models in this sequence is that of refinement [25, 21, 52]. It

is controlled by means of a number of, so-called, proofs obligations, which guarantee the correctness of the

development. Such proof obligations are proved by automatic (and interactive) proof procedures supported

by a proof engine. The essence of the refinement relationship is that it preserves already proved system

properties including safety properties and termination properties. The invariant of an abstract model plays a

central rôle for deriving safety properties and our methodology focuses on the incremental discovery of the

invariant; the goal is to obtain a formal statement of properties through the final invariant of the last refined

abstract model. When developing formal models for the IEEE 1394 protocol, we use the environment Ate-

lier B [55] for generating and proving proof obligations.

Understanding Distributed Systems. As already mentioned, a distributed system is complex. In this paper,

the IEEE 1394 protocol is used to illustrate a method for understanding how a typical distributed system is

working. Understanding a distributed system means that we are able to explain why it is working safely and

how it meets its requirements. In the case of the IEEE 1394 protocol, the same piece of code is duplicated

at each node of an acyclic and connected network. And the process that should be performed by these codes,

each working concurrently but with a limited knowledge, is the leader election: in other words, at the end of

the process a node should be given a special status, that of the leader, and other nodes should have a means

7.2. THE IEEE 1394 TREE IDENTIFY PROTOCOL 77

to eventually communicate with it. It is, in fact, not clear at all that these distributed local computations

indeed converge towards the leader election, which is a global result. The refinement technique we use al-

lows us to decompose the IEEE 1394 system into four embedded models, each one providing an additional

view by bringing more informations into the current invariant. For instance, the first two models contains

the essence of the underlying structure of the acyclic and connected graph representing the network. They

also convey the main ideas of the distributed computation. They express the way the protocol works at a

very high level abstraction. The third model formalizes how the nodes communicate by means of various

kinds of messages: it helps us understanding the contention problem, which is one of the critical question

of the IEEE 1394 protocol. The last model deals with the localization of the abstract data structures used

in the previous models.

Related works. The IEEE 1394 protocol is a distributed algorithm for electing a leader in a network. The

idea of the algorithm has already been sketched by N. Lynch [?](page 501). This sketch fits our second

formal model. The PVS verification [59] derives the correctness of the IEEE 1394 protocol for an I/O

automaton SPEC, which corresponds to our third formal model. We notice that this I/O automaton is not

detailed enough to express the confirmation event, which appears in our third model. Their proofs are not

really helpful for understanding the rôle of the underlying structure in the convergence of the algorithmic

solution. The expressiveness of their invariant is not really clear. The PVS models includes an I/O automa-

ton TIP that corresponds to our first formal model. A specific refinement relation is used to define the link

between the two I/O automata, but it is not really useful to derive safety properties. Our approach keeps a

link with the documentation and tends to explain in a formal way why the current abstract model is working

correctly. We are really close to the IEEE 1394 protocol in our fourth abstract model. We shall not com-

pare our approach to that of model checking, since our modeling is completely proved and is not restricted

to a given network.

7.2.2 The Case Study: Basic Approach

The goal of the IEEE 1394 protocol is to elect in a finite time a specific node, called the leader, in a network

made of various nodes linked by some communication channels. Once the leader is elected, each non-leader

node in the network should have a well defined way to communicate with it. This election of the leader has

to be done in a distributed and non-deterministic way.

The Basic Mathematical Structure

Before considering details of the protocol, we choose to give a very solid definition to the main topology of

the network. It is essentially formalized by means of a set ND of nodes subjected to the following assump-

tions:

1. the network is represented by a graph g built on ND,

2. all nodes are concerned with the network,

3. the links between the nodes are bidirectional,

4. a node is not directly connected to itself .

g ⊆ ND×ND

dom (g) = ND

g = g−1

id(ND) ∩ g = ∅

Items 2 and 3 above are formally represented by a symmetric graph whose domain (and thus co-domain

too) corresponds to the entire finite set of nodes. The symmetry of the graph is due to the representation

of the non-oriented graph by pairs of nodes and the link x−y is represented by the two pairs x 7→ y and

y 7→ x. Item 4 is rendered by saying that the graph is not reflexive.

There are two other very important properties of the graph: it is connected and acyclic. Both these properties

are formalized by claiming that the relation between each node and the spanning trees of the graph having

that node as a root, that this relation is total and functional. In other words, each node in the graph can

be associated with one and exactly one tree rooted at that node and spanning the graph. We can model a

tree by a root r, which is a node: r ∈ ND, and a father functions t (each node has an unique father node,

except the root): t ∈ ND−{r} −→ ND. The tree is an acyclic graph. A cycle c in a finite graph t built

78 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

on a set ND is a subset of ND whose elements are members of the inverse image of c under t, formally:

c ⊆ t−1[c]. To fulfil the requirement of acyclicity, the only set c that enjoys this property is thus the empty

set. This can be formalized by the left predicate that follows, which can be proved to be equivalent to the

one situated on the right, which can be used as an induction rule:

∀c · (c ⊆ ND ∧ c ⊆ t−1 [c] ⇒ c = ∅) ⇔

∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q)

We prove the equivalence using the tool Atelier B. We can now define a spanning tree (with root r and

father function t) of a graph g as one whose father function is included in g, formally:

spanning (r, t, g) =̂

r ∈ ND ∧
t ∈ ND−{r} −→ ND ∧
∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q) ∧
t ⊆ g

As mentioned above, each node in the graph can be associated with exactly one tree rooted at that node and

which spans the graph. For this, we define the following total function f connecting each node r of the

graph with its spanning tree f(r):

f ∈ ND → (ND 7→ ND)

∀(r, t) ·

r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)

The graph g and the function f are thus two global constants of the problem.

The First Model

From the basic mathematical structure developed in previous section, the essence of the abstract algorithm

implemented by the protocol is very simple: it consists in building gradually (and non-deterministically)

one of the spanning trees of the graph. Once this is done, then the root of that tree is the elected leader and

the communication structure between the other nodes and the leader is obviously the spanning tree itself .

The protocol, considered globally, has thus two variables: (1) the future spanning tree, sp, and (2) the future

leader, ld.

The first formal model of the development contains the definitions and properties of the two global constants

(the above graph g and function f together with their properties), and the definition of the two mentioned

global variables sp and ld typed in a very loose way: sp is a binary relation built on ND and ld is a node.

The dynamic aspect of the protocol is essentially made of one event, called elect, which claims what the

result of the protocol is, when it is completed. In other words, at this level, there is no protocol, just the

formal definition of its intended result, namely a spanning tree sp and its root ld.

elect =̂
begin

ld, sp : spanning (ld, sp, g)
end

As can be seen, the election is done in one step.

In other words, the spanning tree appears at once.

The analogy of someone closing and opening eyes

can be used here to “explain” the process of elec-

tion at this very abstract level.

7.2.3 Refining the First Model

In this section, we present two successive refinements of the previous initial model. In the first one, we

give the essence of the distributed algorithm. In the second refinement, we introduce some communication

mechanisms between the nodes.

7.2. THE IEEE 1394 TREE IDENTIFY PROTOCOL 79

First Refinement: Gradual Construction of a Spanning Tree

In the first model, the construction of the spanning tree was performed in “one shot”. Of course, in a more

realistic (concrete) formalization, this is not the case any more. In fact, the tree is constructed on a step

by step basis. For this, a new variable, called tr, and a new event, called progress, are introduced. The

variable tr represents a sub-graph of g, it is made of several trees (it is thus a forest) which will gradually

converge to the final tree, which we intend to build eventually. This convergence is performed by the event

progress. This event involves two nodes x and y, which are neighbours in the graph g. Moreover, x and

y are supposed to be both outside the domain of tr. In other words, each of them has no “father” yet in

tr. However, the node x is the father of all its other neighbours (if any) in g. This last condition can be

formalized by means of the predicate g[{x}] = tr−1[{x}] ∪ {y} since the set of neighbours of x in g

is g[{x}] while the set of sons of x in tr is tr−1[{x}]. When these conditions are fulfiled, then the event

progress can be enabled and its action has the effect of making the node y the father of x in tr. The abstract

event elect is now refined. Its new version is concerned with a node x which happens to be the father of

all its neighbours in g. This condition is formalized by the predicate g[{x}] = tr−1[{x}]. When this

condition is fulfiled the action of elect makes x the leader ld and tr the spanning tree sp. Next are the

formal representations of these events

progress =̂
any x, y where

x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then

tr := tr ∪ {x 7→ y}
end

elect =̂
any x where

x ∈ ND ∧
g[{x}] = tr−1[{x}]

then

ld, sp := x, tr

end

The new event progress clearly refines skip since it only updates the variable tr which is a new variable

of this refinement with no existence in the abstraction. Also notice that progress clearly decreases the

quantity card(g)−card(tr). The situation is far less clear concerning the refinement of event elect. We

have to prove that when its guard is true then tr is indeed a spanning tree of the graph g whose root is

precisely x. Formally, this leads to proving the following

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ spanning (x, tr, g))

According to the definition of the constant function f , the previous property is clearly equivalent to

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x))

This means that tr and f(x) should have the same domain, namely ND−{x}, and that for all n in

ND−{x}, tr(n) is equal to f(x)(n). This amounts to proving the following:

ND = {x} ∪ {n |n ∈ ND−{x} ∧ f(x)(n) = tr(n) }

This is done using the inductive property associated with each spanning tree f(x). Notice that we also need

the following invariants:

tr ∈ ND 7→ ND

dom (tr) ⊳ (tr ∪ tr−1) = dom (tr) ⊳ g

tr ∩ tr−1 = ∅

This new model, although more concrete than the previous one, is nevertheless still an abstraction of the

“real” protocol: it just explains how the leader can be eventually elected by the gradual transformation of

the forest tr into a unique tree spanning the graph g.

80 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

Second Refinement: Introducing Communication Channels

In the previous refinement, the event progress was still very abstract: as soon as two nodes x and y with

the required properties were detected, the corresponding action took place immediately: in other words,

y became the father of x “in one shot”. In the “real” protocol things are not so “magic”: once a node x

has detected that it is the father of all its neighbours except one y, it sends a request to y in order to ask

it to become its father. Node y then acknowledges this request and finally node x establishes the “father”

connection with node y. This connection, which is thus established in three distributed steps, is clearly

closer to what happens in the real protocol. We shall see however in the next refinement that what we have

just described is not yet the final word. But let us formalized this for the moment. In order to do so, we need

to define at least two new variables: req, to handle the requests, and ack, to handle the acknowledgements.

req is a partial function from ND to itself. When a pair x 7→ y belongs to req it means that node x has

send a request to node y asking it to become its father: the functionality of req is due to the fact that x has

only one father. Clearly, req is also included in the graph g. When node y sends an acknowledgement to x

this is because y has already received a request from x: ack is thus a partial function included in req.

req ∈ ND 7→ ND

req ⊆ g

ack ⊆ req

tr ⊆ ack

ack ∩ ack−1 = ∅

Notice that when a pair x 7→ y belongs to ack, it means that y has sent an

acknowledgment to x (clearly y can send several acknowledgements since it

might be the father of several nodes). It is also clear that it is not possible in this

case for the pair y 7→ x to belong to ack. The final connection between x and

y is still represented by the function tr. Thus tr is included in ack. All this can

be formalized as shown.

Two new events are defined in order to manage requests and acknowledgements: send_req, and send_ack.

As we shall see, event progress is modified, whereas event elect is left unchanged. Here are the new events

and the refined version of progress:

send_req =̂
any x, y where

x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then

req := req ∪ {x 7→ y}
end

send_ack =̂
any x, y where

x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)

then

ack := ack ∪ {x 7→ y}
end

progress =̂
any x, y where

x, y ∈ ack ∧
x /∈ dom (tr)

then

tr := tr ∪ {x 7→ y}
end

Event send_req is enabled when a node x discovers that it is the father of all its neighbours except one

y: g[{x}] = tr−1[{x}] ∪ {y}. Notice that, as expected, this condition is exactly the one that allowed event

progress in the previous model to be enabled. Moreover x must not have sent already a request to any

node: x /∈ dom (req). Finally x must not have already sent an acknowledgement to node y: y, x /∈ ack.

When these conditions are fulfiled then the pair x 7→ y is added to req. Event send_ack is enabled when a

node y receives a request from node x, moreover y must not have already sent an acknowledgement to node

x: x, y ∈ req and x, y /∈ ack. Finally node y must not have sent a request to any node: y /∈ dom (req) (we

shall see very soon what happens when this condition does not hold). When these conditions are fulfiled,

node y sends an acknowledgement to node x: the pair x 7→ y is thus added to ack. Event progress is

enabled when a node x receives an acknowledgement from node y: x, y ∈ ack. Moreover node x has not

yet established any father connection: x /∈ dom (tr). When these conditions are fulfiled the connection is

established: the pair x 7→ y is added to tr.

Events send_req and send_ack clearly refine skip. Moreover their actions increment the cardinal of req

and ack respectively (these cardinals are bounded by that d g). It remains for us to prove that the new version

of event progress is a correct refinement of its abstraction. The actions being the same, it just remains for

us to prove that the concrete guard implies the abstract one. This amounts to proving the following left

predicate, which is added as an invariant:

7.2. THE IEEE 1394 TREE IDENTIFY PROTOCOL 81

∀ (x, y) ·

x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

∀ (x, y) ·

x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

When trying to prove that the left predicate is maintained by event send_ack, we find that the right predi-

cate above must also be proved. It is thus added as a new invariant, which is, this time, easily proved to be

maintained by all events.

The problem of contention. The guard of the event send_ack above contains the condition y /∈ dom (req).
If this condition does not hold while the other two guarding conditions hold, that is x, y ∈ req and x, y /∈
ack hold, then clearly x has sent a request to y and y has sent a request to x: each one of them wants the

other to be its father! This problem is called the contention problem. In this case, no acknowledgements

should be sent since then each node x and y would be the father of the other. In the “real” protocol the

problem is “solved” by means of timers. As soon as a node y discovers a contention with node x, it waits

for very a short delay in order to be certain that the other node x has also discovered the problem. The very

short delay in question is at least equal to the message transfer time between nodes (such a time is supposed

to be bounded). After this, each node randomly chooses (with probability 1/2) to wait for either a “short”

or a “large” delay (the difference between the two is at least twice the message transfer time). After the

chosen delay has passed each node sends a new request to the other if it is in the situation to do so. Clearly,

if both nodes choose the same delay, the contention situation will reappear. However if they do not choose

the same delay, then the one with the largest delay becomes the father of the other: when it wakes up, it

discovers the request from the other while it has not itself already sent its own request, it can therefore send

an acknowledgement and thus become the father. According to the law of large numbers, the probability

for both nodes to indefinitely choose the same delay is null. Thus, at some point, they will (in probability)

choose different delays and one of them will thus become the father of the other. We shall only present here

a partial formalization of the contention problem. The idea is to introduce a virtual channel called cnt.

cnt ⊆ req

ack ∩ cnt = ∅

When this “channel” contains a pair x 7→ y, this means that y has discovered the

contention with node x. When both pairs x 7→ y and y 7→ x are present in cnt,

this means that both nodes x and y have discovered the contention. Notice that

cnt is included in req and clearly disjoint with ack, as shown. We have two new

events.

The first one is called discover_cnt. The only difference with the guard of event send_ack concerns the

condition y ∈ dom (req), which is true in discover_cnt and false in send_ack. The action of this event

adds the pair x 7→ y to cnt. The second new event is called solve_cnt. It is enabled when both pairs x 7→ y

and y 7→ x are present in cnt. The action removes these pairs from req and resets cnt. This formalizes

what happens after the “very short delay”. Notice that this event is not part of the protocol: it corresponds

to a “deamon” acting when the very short delay has just passed. Here are the events

82 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

discover_cnt =̂
any x, y where

x, y ∈ req−ack ∧
y ∈ dom (req)

then

cnt := cnt ∪ {x 7→ y}
end

solve_cnt =̂
any x, y where

x, y ∈ cnt ∧
y, x ∈ cnt

then

req, cnt := req−cnt, ∅
end

In order to prove the invariant ack ∩ cnt = ∅, we need the following extra invariants

∀ (x, y) ·

x, y ∈ req−ack ∧
y ∈ dom (req)

⇒
y, x ∈ req−ack

 ∀ (x, y) ·

x, y ∈ req−ack ∧
y /∈ dom (req)

⇒
x, y /∈ cnt

The complete formalization of the contention solution of the real IEEE 1394 protocol (involving the timers

and the random choices) is not difficult, just a little too long to be presented within the framework of this

paper.

7.2.4 Last Refinement: Localization

In the previous refinement, the guards of the various events were defined in terms of some global con-

stants or variables such as g, tr, req, ack. A closer look at this refinement shows that these constants or

variables are used in expressions of the following shapes: g−1[{x}], tr−1[{x}], ack−1[{x}], dom (req),
and dom (tr). These shapes dictate the kind of data refinement we now undertake. We declare five new

variables nb (for neighbours), ch (for children), ac (for acknowledged), dr (for domain of req), and dt (for

domain of tr). Next are the declarations of these variables together with their simple definitions in terms of

the global variables.

nb ∈ ND → P(ND)
ch ∈ ND → P(ND)
ac ∈ ND → P(ND)
dr ⊆ ND

dt ⊆ ND

∀x · (x ∈ ND ⇒ nb(x) = g−1[{x}])
∀x · (x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}])
∀x · (x ∈ ND ⇒ ac(x) = ack−1[{x}])
dr = dom (req)
dt = dom (tr)

Given a node x, the sets nb(x), ch(x), and ac(x) are supposed to be “stored” locally within the node. As the

varying sets ch(x) and ac(x) are subsets of the constant set nb(x), it is certainly possible to further refine

their encoding. Likewise the two sets dr and dt still appears to be global, but they can clearly be encoded

locally in each node by means of local boolean variables.

It is worth noticing that the “definition” of variable ch above is not given in terms of an equality, rather in

terms of an inclusion (this is thus not really a definition). This is due to the fact that the set ch(y) cannot be

updated while the event progress takes place: this is because this event can only act on its local data. A

new event, receive_cnf (for receive confirmation) is thus necessary to update the set ch(y). Next are the

refinement of the various events.

elect =̂
any x where

x ∈ ND ∧
nb(x) = ch(x)

then

ld := x

end

send_req =̂
any x, y where

x ∈ ND−dr ∧
y ∈ ND−ac(x) ∧
nb(x) = ch(x) ∪ {y}

then

req := req ∪ {x 7→ y} ‖
dr := dr ∪ {x}

end

send_ack =̂
any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y /∈ dr

then

ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end

7.2. THE IEEE 1394 TREE IDENTIFY PROTOCOL 83

progress =̂
any x, y where

x, y ∈ ack ∧
x /∈ bt then

tr := tr ∪ {x 7→ y} ‖
dt := dt ∪ {x}

end

receive_cnf =̂
any x, y where

x, y ∈ tr ∧
x /∈ ch(y)

then

ch(y) := ch(y) ∪ {x}
end

The proofs that these events correctly refine their respective abstractions are technically trivial. We now

give in the following table, the local node “in charge” of each event as encoded above

event node

elect x

send_req x

send_ack y

progress x

receive_cnf y

The reader could be surprised to still see formulas such as req := req ∪ {x 7→ y} or x, y ∈ req. They

correspond in fact to writing and reading operations done by corresponding local nodes as explained in the

following table:

formula explanation

req := req ∪ {x 7→ y} x sends a request to y

x, y ∈ req y reads a request from x

ack := ack ∪ {x 7→ y} y sends an acknowledgement to x

x, y ∈ ack x reads an acknowledgement from y

tr := tr ∪ {x 7→ y} x sends a confirmation to y

x, y ∈ tr y reads a confirmation from y

7.2.5 Conclusion

The total number of proofs (all done mechanically with Atelier B) amounts to 106, where 24 required an

easy interaction. Proofs help us to understand the contention problem and the rôle of graph properties in

the correctness of the solution. The refinements gradually introduce the various invariants of the system.

No assumption is made on the size of the network. The proof leads us to the discovery of the confirmation

event to get the complete correctness, which was not the case of the I/O automata modelling.

In our opinion, this text, whose notation is very close to that of classical mathematics, is very simple to

understand (provided, of course, the corresponding mathematical concepts, namely sets, functions, rela-

tions, and the like are well mastered), with the exception of our formulation of tree structures described

under the form of the father function together with a universal quantification formalizing the corresponding

induction rule. This formulation requires some more mathematical background. The question concerning

the mythical average programmer understanding our solution is a bit irrelevant here: this problem is first,

we believe, an abstract algorithm problem requiring a certain background in discrete mathematics. The lack

of such background may lead to very awkward solutions due to the fact that they precisely try to convince

the famous average programmer. In fact, in these solutions, the mathematical essence of the problem is

hidden behind a curtain of technicalities all presented in a flat manner (no abstraction, thus no refinement,

hence proof obligation explosion).

The essence of our approach is the methodology of separation of concerns: first prove the algorithm at

an abstract (mathematical) level, then, and only then, gradually introduce the peculiarity of the specific

protocol. What is important about our approach is that the fundamental properties we have proved at the

beginning, namely the reachability and the uniqueness of a solution, are kept through the refinement process

(provided, of course, the required proofs are done). It seems to us that this sort of approach is highly ignored

in the literature of protocol developments where, most of the time, things are presented in a flat manner

directly at the level of the final protocol itself.

84 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

7.3 A new leader election distributed algorithm

7.3.1 The Basic Mathematical Structure

Before considering details of the protocol, we choose to give a very solid definition to the main topology of

the network. It is essentially formalized by means of a set ND of nodes subjected to the following assump-

tions:

1. the network is represented by a graph g built on ND,

2. the links between the nodes are bidirectional,

3. a node is not directly connected to itself .

g ⊆ ND×ND

g = g−1

id(ND) ∩ g = ∅

Items 2 and 3 above are formally represented by a symmetric graph whose domain (and thus co-domain

too) corresponds to the entire finite set of nodes. The symmetry of the graph is due to the representation

of the non-oriented graph by pairs of nodes and the link x−y is represented by the two pairs x 7→ y and

y 7→ x. Item 4 is rendered by saying that the graph is not reflexive.

There are two other very important properties of the graph: it is connected and acyclic. Both these properties

are formalized by claiming that the relation between each node and the spanning trees of the graph having

that node as a root, that this relation is total and functional. In other words, each node in the graph can be

associated with one and exactly one tree rooted at that node and spanning the graph. We can model a tree

by a root r, which is a node: r ∈ ND, and a parent function t (each node has an unique parent node, except

the root): t ∈ ND−{r} −→ ND. The tree is an acyclic graph. A cycle c in a finite graph t built on

a set N < D is a subset of ND whose elements are members of the inverse image of c under t, formally:

c ⊆ t−1[c]. To fulfil the requirement of acyclicity, the only set c that enjoys this property is thus the empty

set. This can be formalized by the left predicate that follows, which can be proved to be equivalent to the

one situated on the right, which can be used as an induction rule:

∀c · (c ⊆ ND ∧ c ⊆ t−1 [c] ⇒ c = ∅) ⇔

∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q)

We prove the equivalence using the tools Atelier B [55] and B4free/Click’n’Prove [56]. We can now define

a spanning tree (with root r and parent function t) of a graph g as one whose parent function is included in

g, formally:

spanning (r, t, g) =̂

r ∈ ND ∧
t ∈ ND−{r} −→ ND ∧
∀q · (q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q) ∧
t ⊆ g

As mentioned above, each node in the graph can be associated with exactly one tree rooted at that node and

which spans the graph. For this, we define the following total function f connecting each node r of the

graph with its spanning tree f(r):

f ∈ ND → (ND 7→ ND)

∀(r, t) ·

r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = f(r) ⇔ spanning (r, t, g)

The graph g and the function f are thus two global constants of the problem. Since g and f are not

instantiated, we have not to deal with the size of network and automatic techniques based on model checking

7.3. A NEW LEADER ELECTION DISTRIBUTED ALGORITHM 85

are not helpful for understanding how the algorithm is working. The special issue [57] presents a collection

of verification techniques using model checking and the size of the network is clearly a practical bound. On

the contrary, the verification using PVS [59] and I/O automata is more adequate than model checking, but

invariants and proofs remain very difficult to understand. It is why we advocate the use of the refinement

which provides and incremental way to derive both the algorithm and the proof. Moreover, the refinement

allows us to derive a new leader election distributed algorithm, which is not possible in the verification-

oriented approach.

7.3.2 The First Model leaderelection0: the one-shot election

From the basic mathematical structure developed in previous section, the essence of the abstract algorithm

implemented by the protocol is very simple: it consists in building gradually (and non-deterministically)

one of the spanning trees of the graph. Once this is done, then the root of that tree is the elected leader and

the communication structure between the other nodes and the leader is obviously the spanning tree itself .

The protocol, considered globally, has thus two variables: (1) the future spanning tree, sp, and (2) the future

leader, ld. The gradual construction of the spanning tree simulates induction steps.

The first formal model of the development contains definitions and properties of the two global constants

(the above graph g and function f together with their properties), and the definition of the two mentioned

global variables sp and ld typed in a very loose way: sp is a binary relation built on ND and ld is a node.

The dynamic aspect of the protocol is essentially made of one event, called elect, which claims what the

result of the protocol is, when it is completed. In other words, at this level, there is no protocol, just the

formal definition of its intended result, namely a spanning tree sp and its root ld.

elect =̂
begin

ld, sp : spanning (ld, sp, g)
end

As can be seen, the election is done in one step.

In other words, the spanning tree appears at once.

The analogy of someone closing and opening eyes

can be used here to explain the process of election

at this very abstract level.

7.3.3 Refining the First Model leaderelection0

In this section, we present two successive refinements of the previous initial model. In the first one, we

give the essence of the distributed algorithm. In the second refinement, we introduce some communication

mechanisms between the nodes.

First Refinement leaderelection1: Gradual Construction of a Spanning Tree

In the first model leaderelection0, the construction of the spanning tree was performed in one shot. Of

course, in a more realistic (concrete) formalization, this is not the case any more. In fact, the tree is con-

structed on a step by step basis. For this, a new variable, called tr, and a new event, called progress, are

introduced. The variable tr represents a sub-graph of g, it is made of several trees (it is thus a forest) which

will gradually converge to the final tree, which we intend to build eventually. This convergence is performed

by the event progress. This event involves two nodes x and y, which are neighbours in the graph g. More-

over, x and y are supposed to be both outside the domain of tr. In other words, each of them has no parent

yet in tr. However, the node x is the parent of all its other neighbours (if any) in g. This last condition

can be formalized by means of the predicate g[{x}] = tr−1[{x}] ∪ {y} since the set of neighbours of

x in g is g[{x}] while the set of sons of x in tr is tr−1[{x}]. When these conditions are fulfilled, then the

event progress can be enabled and its action has the effect of making the node y the parent of x in tr. The

abstract event elect is now refined. Its new version is concerned with a node x which happens to be the

parent of all its neighbours in g. This condition is formalized by the predicate g[{x}] = tr−1[{x}]. When

this condition is fulfilled the action of elect makes x the leader ld and tr the spanning tree sp. Next are the

formal representations of these events

86 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

MODEL

leaderelection0
SETS

ND

CONSTANTS

g, f

DEFINITIONS

spanning(r, t, g) ==
(r ∈ ND ∧
t ∈ ND−{r} −→ ND ∧
t ⊆ g ∧
∀S.(S ⊆ ND ∧

r ∈ S ∧
t−1[S] ⊆ S

⇒
ND ⊆ S

))
PROPERTIES

g ∈ ND ↔ ND ∧
g = g−1 ∧
ID(ND) ∩ g = ∅ ∧
f ∈ ND ↔ (ND 7→ ND) ∧
∀(n, fi).(n ∈ ND ∧

fi ∈ ND 7→ ND

⇒
(

((n, fi) ∈ f)
⇔

spanning(n, fi, g)
)

) ∧
f ∈ ND −→ (ND 7→ ND)

VARIABLES

ld, ts

INVARIANT

ld ∈ ND ∧
sp ∈ ND 7→ ND

ASSERTIONS

∀(n, fi).(n ∈ ND ∧ fi ∈ ND 7→ ND ∧ (n, fi) ∈ f

⇒
fi∩fi−1 = ∅

)
INITIALISATION

ld :∈ ND ‖ sp :∈ ND 7→ ND

EVENTS

elect =
begin

ld, sp ∈ | (ld ∈ ND ∧ sp = f(ld))
end

end

Figure 7.1: First model leaderelection0 for the distributed leader election algorithm

7.3. A NEW LEADER ELECTION DISTRIBUTED ALGORITHM 87

progress =̂
any x, y where

x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr)
∧ g[{x}] = tr−1[{x}] ∪ {y}

then

tr := tr ∪ {x 7→ y}
end

elect =̂
any x where

x ∈ ND ∧
g[{x}] = tr−1[{x}]

then

ld, sp := x, tr

end

The new event progress clearly refines skip since it only updates the variable tr which is a new variable

of this refinement with no existence in the abstraction. Also notice that progress clearly decreases the

quantity card(g)−card(tr). The situation is far less clear concerning the refinement of event elect. We

have to prove that when its guard is true then tr is indeed a spanning tree of the graph g whose root is

precisely x. Formally, this leads to proving the following

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ spanning (x, tr, g))

According to the definition of the constant function f , the previous property is clearly equivalent to

∀x · (x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x))

This means that tr and f(x) should have the same domain, namely ND−{x}, and that for all n in

ND−{x}, tr(n) is equal to f(x)(n). This amounts to proving the following:

ND = {x} ∪ {n |n ∈ ND−{x} ∧ f(x)(n) = tr(n) }

This is done using the inductive property associated with each spanning tree f(x). Notice that we also need

the following invariants:

tr ∈ ND 7→ ND

dom (tr) ⊳ (tr ∪ tr−1) = dom (tr) ⊳ g

tr ∩ tr−1 = ∅

This new model, although more concrete than the previous one, is nevertheless still an abstraction of the

real protocol: it just explains how the leader can be eventually elected by the gradual transformation of the

forest tr into a unique tree spanning the graph g.

Second Refinement leaderelection2: Introducing Communication Channels

In the previous refinement, the event progress was still very abstract: as soon as two nodes x and y with

the required properties were detected, the corresponding action took place immediately: in other words, y

became the parent of x in one shot. In the real protocol things are not so magic: once a node x has detected

that it is the parent of all its neighbours except one y, it sends a request to y in order to ask it to become

its parent. Node y then acknowledges this request and finally node x establishes the parent connection

with node y. This connection, which is thus established in three distributed steps, is clearly closer to what

happens in the real protocol. We shall see however in the next refinement that what we have just described

is not yet the final word. But let us formalized this for the moment. In order to do so, we need to define

at least two new variables: req, to handle the requests, and ack, to handle the acknowledgements. req is

a partial function from ND to itself. When a pair x 7→ y belongs to req it means that node x has send a

request to node y asking it to become its parent: the functionality of req is due to the fact that x has only

one parent. Clearly, req is also included in the graph g. When node y sends an acknowledgement to x this

is because y has already received a request from x: ack is thus a partial function included in req.

88 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

REFINEMENT

leaderelection1
REFINES

leaderelection0
VARIABLES

ld, sp, tr

INVARIANT

tr ∈ ND 7→ ND ∧
DOM(tr) � (tr∪tr−1) = DOM(tr) � g ∧
tr∩tr−1 = ∅

ASSERTIONS

∀x.(x ∈ ND ∧
g[{x}] = tr−1[{x}]

⇒
f(x) = tr

);
∀x.(x ∈ ND ∧

g[{x}] = tr−1[{x}]
⇒

(x, tr) ∈ f

)
INITIALISATION

ld :∈ ND ‖ sp :∈ ND 7→ ND ‖ tr := ∅
EVENTS

elect =
any x where

x ∈ ND ∧
g[{x}] = tr−1[{x}]

then

ld, sp := x, tr

end ;
progress =

any x, y where

x, y ∈ g ∧
x /∈ DOM(tr) ∧ y /∈ DOM(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then

tr := tr ∪ {x 7→ y}
end

end

Figure 7.2: Second model leaderelection1 for the distributed leader election algorithm

7.3. A NEW LEADER ELECTION DISTRIBUTED ALGORITHM 89

req ∈ ND 7→ ND

req ⊆ g

ack ⊆ req

tr ⊆ ack

ack ∩ ack−1 = ∅

Notice that when a pair x 7→ y belongs to ack, it means that y has sent

an acknowledgment to x (clearly y can send several acknowledgements

since it might be the parent of several nodes). It is also clear that it is

not possible in this case for the pair y 7→ x to belong to ack. The final

connection between x and y is still represented by the function tr. Thus

tr is included in ack. All this can be formalized as shown.

Two new events are defined in order to manage requests and acknowledgements: send_req, and send_ack.

As we shall see, event progress is modified, whereas event elect is left unchanged. Here are the new events

and the refined version of progress:

send_req =̂
any x, y where

x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then

req := req ∪ {x 7→ y}
end

send_ack =̂
any x, y where

x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)

then

ack := ack ∪ {x 7→ y}
end

progress =̂
any x, y where

x, y ∈ ack ∧
x /∈ dom (tr)

then

tr := tr ∪ {x 7→ y}
end

Event send_req is enabled when a node x discovers that it is the parent of all its neighbours except one

y: g[{x}] = tr−1[{x}] ∪ {y}. Notice that, as expected, this condition is exactly the one that allowed event

progress in the previous model to be enabled. Moreover x must not have sent already a request to any

node: x /∈ dom (req). Finally x must not have already sent an acknowledgement to node y: y, x /∈ ack.

When these conditions are fulfilled then the pair x 7→ y is added to req. Event send_ack is enabled when a

node y receives a request from node x, moreover y must not have already sent an acknowledgement to node

x: x, y ∈ req and x, y /∈ ack. Finally node y must not have sent a request to any node: y /∈ dom (req) (we

shall see very soon what happens when this condition does not hold). When these conditions are fulfilled,

node y sends an acknowledgement to node x: the pair x 7→ y is thus added to ack. Event progress is

enabled when a node x receives an acknowledgement from node y: x, y ∈ ack. Moreover node x has not

yet established any parent connection: x /∈ dom (tr). When these conditions are fulfilled the connection is

established: the pair x 7→ y is added to tr.

Events send_req and send_ack clearly refine skip. Moreover their actions increment the cardinal of req

and ack respectively (these cardinals are bounded by that d g). It remains for us to prove that the new version

of event progress is a correct refinement of its abstraction. The actions being the same, it just remains for

us to prove that the concrete guard implies the abstract one. This amounts to proving the following left

predicate, which is added as an invariant:

∀ (x, y) ·

x, y ∈ ack ∧
x /∈ dom (tr)

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

90 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

∀ (x, y) ·

x, y ∈ req ∧
x, y /∈ ack

⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

When trying to prove that the left predicate is maintained by event send_ack, we find that the right predicate

above must also be proved. It is thus added as a new invariant, which is, this time, easily proved to be

maintained by all events.

The problem of contention. The guard of the event send_ack above contains the condition y /∈ dom (req).
If this condition does not hold while the other two guarding conditions hold, that is x, y ∈ req and x, y /∈
ack hold, then clearly x has sent a request to y and y has sent a request to x: each one of them wants the

other to be its parent! This problem is called the contention problem. In this case, no acknowledgements

should be sent since then each node x and y would be the parent of the other. In the real protocol the

problem is solved by means of timers. As soon as a node y discovers a contention with node x, it waits for

very a short delay in order to be certain that the other node x has also discovered the problem. The very

short delay in question is at least equal to the message transfer time between nodes (such a time is supposed

to be bounded). After this, each node randomly chooses (with probability 1/2) to wait for either a short or

a large delay (the difference between the two is at least twice the message transfer time). After the chosen

delay has passed each node sends a new request to the other if it is in the situation to do so. Clearly, if

both nodes choose the same delay, the contention situation will reappear. However if they do not choose

the same delay, then the one with the largest delay becomes the parent of the other: when it wakes up, it

discovers the request from the other while it has not itself already sent its own request, it can therefore send

an acknowledgement and thus become the parent. According to the law of large numbers, the probability

for both nodes to indefinitely choose the same delay is null. Thus, at some point, they will (in probability)

choose different delays and one of them will thus become the parent of the other. Rather than to reuse the

complete IEEE 1394 development [12], we reuse a part of the development and develop a new solution for

solving the contention problem; the new algorithm was discovered after a misunderstanding of the IEEE

1394 initial solution.

When two nodes are in contention (and at most two nodes can be in contention, it has been proved me-

chanically and formally), each node can not send an acknowlegment to the other node; one of them should

not be able to send this ack and the other one must do it. The main idea is to introduce a unique counter

called ctr and it means that each node is uniquely identified and must be identifiable. In a real network, one

can assume that equipments might be uniquely identified by an unique address, for instance, but it not the

general rule. The IEEE 1394 protocol does not make any assumption on the identification of nodes.

ctr ∈ ND N

The new event is called solve_cnt. Like for send_ack, the action of this event adds the pair x 7→ y to ack.

The two differences with the guard of event send_ack concern the condition y ∈ dom (req), which is true

in solve_cnt and false in send_ack and the guard ctr(x) < ctr(y) is added to the event solve_cnt. Since

ctr is an injection, both nodes x and y can not both trigger this event.

solve_cnt =̂
any x, y where

x, y ∈ req−ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

then

ack := ack ∪ {x 7→ y}
end

The proof of the invariant requires the following extra invariants:

7.3. A NEW LEADER ELECTION DISTRIBUTED ALGORITHM 91

∀ (x, y) ·

x, y ∈ req−ack ∧
y ∈ dom (req)

⇒
y, x ∈ req

 ∀ (x, y) ·

x, y ∈ req−ack ∧
y ∈ dom (req) ∧
ctr(x) < ctr(y)

⇒
x, y /∈ ack

∀ (x, y, z) ·

x, y ∈ req ∧
z ∈ g[{x}] ∧
z 6= y

⇒
z, x ∈ tr

The complete formalization of the contention solution of the real IEEE 1394 protocol (involving the timers

and the random choices) is not addressed neither in the current development, nor in the paper [19]. Further

work on the integration of timers should be done.

7.3.4 Last Refinements: Localization

In the previous refinement, the guards of the various events were defined in terms of global constants or

variables such as g, tr, req, ack. A closer look at this refinement shows that these constants or variables are

used in expressions of the following shapes: g−1[{x}], tr−1[{x}], ack−1[{x}], dom (req), and dom (tr).
These shapes dictate the kind of data refinement we now undertake. Fourth, fifth and sixth models pro-

gressively introduce local informations, which are related to abstract global values. The models are in the

figures 7.4 and 7.5; the model leaderelection5 introduces messages communications (TR, REQ, ACK).

We declare five new variables nb (for neighbours), ch (for children), ac (for acknowledged), dr (for domain

of req), and dt (for domain of tr). Next are the declarations of these variables together with their simple

definitions in terms of the global variables.

nb ∈ ND → P(ND)
ch ∈ ND → P(ND)
ac ∈ ND → P(ND)
dr ⊆ ND

dt ⊆ ND

∀x · (x ∈ ND ⇒ nb(x) = g−1[{x}])
∀x · (x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}])
∀x · (x ∈ ND ⇒ ac(x) = ack−1[{x}])
dr = dom (req)
dt = dom (tr)

Given a node x, the sets nb(x), ch(x), and ac(x) are supposed to be stored locally within the node. As the

varying sets ch(x) and ac(x) are subsets of the constant set nb(x), it is certainly possible to further refine

their encoding. Likewise the two sets dr and dt still appears to be global, but they can clearly be encoded

locally in each node by means of local boolean variables.

It is worth noticing that the definition of variable ch above is not given in terms of an equality, rather in

terms of an inclusion (this is thus not really a definition). This is due to the fact that the set ch(y) cannot

be updated while the event progress takes place: this is because this event can only act on its local data.

A new event in leaderelection3, receive_cnf (for receive confirmation) is thus necessary to update the set

ch(y). Next are the refinement of the various events.

elect =̂
any x where

x ∈ ND ∧
nb(x) = ch(x)

then

ld := x

end

send_req =̂
any x, y where

x ∈ ND−dr ∧
y ∈ ND−ac(x) ∧
nb(x) = ch(x) ∪ {y}

then

req := req ∪ {x 7→ y} ‖
dr := dr ∪ {x}

end

92 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

REFINEMENT

leaderelection2
REFINES

leaderelection1
CONSTANTS

ctr

PROPERTIES

ctr ∈ ND N

VARIABLES

ld, tr, req, ack

INVARIANT

req ∈ ND 7→ ND ∧
ack ∈ ND 7→ ND ∧
tr ⊆ ack ∧
ack ⊆ req ∧
req ⊆ g ∧
∀(x, y).(x, y ∈ req−ack

⇒
(x, y) ∈ g ∧
x /∈ DOM(tr) ∧

g[{x}] = tr−1[{x}] ∪ {y}
) ∧

∀(x, y).(x, y ∈ ack ∧
x /∈ DOM(tr)
⇒
(x, y) ∈ g ∧
x /∈ DOM(tr) ∧y /∈ DOM(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

) ∧
ack ∩ ack−1 = ∅ ∧

∀(x, y).(x, y ∈ req

⇒
∀z.(z ∈ g[{x}] ∧ z 6= y ⇒ z, x ∈ tr)

) ∧
∀(x, y).(x, y ∈ req−ack ∧

y ∈ DOM(req)
⇒
(y, x) ∈ req) ∧

∀(x, y).(x, y ∈ req−ack ∧
y ∈ DOM(req) ∧
ctr(x) < ctr(y)
⇒
(y, x) /∈ ack)

ASSERTIONS

ack ∩ i d(ND) = ∅ ∧
req ∩ i d(ND) = ∅ ∧
tr ∩ ID (ND) = ∅

INITIALISATION

ld :∈ ND ‖ tr := ∅ ‖
req := { } ‖ ack := ∅

EVENTS

elect =
any x where

x ∈ ND ∧
g[{x}] = tr−1[{x}]

then

ld := x

end;
send_req =
any x, y where

x, y ∈ g ∧
(y, x) /∈ ack ∧
g[{x}] = tr−1[{x}] ∪ {y} ∧
x /∈ DOM(req)

then

req := req ∪ {x 7→ y}
end ;

send_ack =
any x, y where

x, y ∈ req−ack ∧
y /∈ DOM(req)

then

ack := ack ∪ {x 7→ y}
end;

solve_cont =
any x, y where

x, y ∈ req−ack ∧
y ∈ DOM(req) ∧
ctr(x) < ctr(y)

then

ack := ack ∪ {x 7→ y}
end;

progress =
any x, y where

x, y ∈ ack ∧
x /∈ DOM(tr)

then

tr := tr ∪ {x 7→ y}
end

end

Figure 7.3: Third model leaderelection2 for the distributed leader election algorithm

7.3. A NEW LEADER ELECTION DISTRIBUTED ALGORITHM 93

REFINEMENT

leaderelection3
REFINES

leaderelection2
CONSTANTS

nb

PROPERTIES

nb ∈ ND −→ P(ND) ∧
∀x.(x ∈ ND ⇒ nb(x) = g[{x}])

VARIABLES

ld, ch, tr, req, ack

INVARIANT

ch ∈ ND −→ P(ND) ∧
∀x.(x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}])

INITIALISATION

ld :∈ ND ‖ ch := ND×{∅} ‖
req := ∅ ‖ ack := ∅ ‖ tr := ∅

EVENTS

Local node x

elect =
any x where

x ∈ ND ∧ nb(x) = ch(x)
then

ld := x

end;

Local node x

send_req =
any x, y where

x ∈ ND ∧ y ∈ ND ∧
x /∈ DOM(req) ∧ (y, x) /∈ ack ∧
nb(x) = ch(x) ∪ {y}

then

req := req ∪ {x 7→ y}

sending the message x to y

end ;
Local node y

receive_cnf =
any x, y where

x, y ∈ tr ∧ x /∈ ch(y)

y is reading the x confirmation

then

ch(y) := ch(y) ∪ {x}
end

end

REFINEMENT

leaderelection4
REFINES

leaderelection3
VARIABLES

ld, ch, tr, req, ack, dr, ac, dt

INVARIANT

dr = DOM(req) ∧
ac ∈ ND −→ P(ND) ∧
∀x.(x ∈ ND ⇒ ac(x) = ack−1[{x}]) ∧
dt = DOM(tr)

INITIALISATION

ld :∈ ND ‖ ch := ND×{∅} ‖
req := ∅ ‖ ack := ∅ ‖
tr := ∅ ‖ dr, dt := ∅, ∅ ‖
ac := ND×{∅}

EVENTS

Local node x

elect =
any x where

x ∈ ND ∧ nb(x) = ch(x)
then

ld := x

end;

Local node x

send_req =
any x, y where

x ∈ ND ∧ y ∈ ND ∧
x /∈ dr ∧ y /∈ ac(x) ∧
nb(x) = ch(x) ∪ {y}

then

req := req ∪ {x 7→ y} ‖
dr := dr ∪ {x}

end ;
Local node y

send_ack =
any x, y where

x, y ∈ req ∧ x /∈ ac(y) ∧ y /∈ dr

then

ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end;
Local node y

solve_cont =
any x, y where

x, y ∈ req ∧ x /∈ ac(y) ∧ y ∈ dr ∧
cpt(x) < cpt(y)

then

ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end;
progress =

any x, y where

x, y ∈ ack ∧ x /∈ dt

then

tr := tr ∪ {x 7→ y} ‖
dt := dt ∪ {x}

end ;
Local node y

receive_cnf =
any x, y where

x, y ∈ tr ∧ x /∈ ch(y)
then

ch(y) := ch(y) ∪ {x}
end

end

Figure 7.4: Fourth and fifth models leaderelection3 and leaderelection4 for the distributed leader election

algorithm

94 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

REFINEMENT leaderelection5
REFINES leaderelection4
VARIABLES

ld, ch, dr, ac, dt, REQ, ACK, TR

INVARIANT

REQ ∈ ND ↔ ND ∧
req = REQ ∪ ack ∧
REQ ∩ ack = ∅ ∧
ACK ∈ ND ↔ ND ∧
TR ∈ ND ↔ ND ∧
TR ⊆ tr ∧
ack = ACK ∪ tr ∧
ACK ∩ tr = ∅ ∧
∀(x, y).(x, y ∈ TR ⇒ x /∈ ch(y))

INITIALISATION

ld :∈ ND ‖ ch := ND×{∅} ‖
REQ := ∅ ‖ ACK := ∅ ‖
TR := ∅ ‖ dr, dt := ∅, ∅ ‖
ac := ND×{∅}

EVENTS

send_req =
any x, y where

x ∈ ND ∧ y ∈ ND ∧ x /∈ dr ∧
y /∈ ac(x) ∧ nb(x) = ch(x) ∪ {y}

then

REQ := REQ ∪ {x 7→ y} ‖
dr := dr ∪ {x}

end ;
send_ack =
any x, y where

x, y ∈ REQ ∧ x /∈ ac(y) ∧ y /∈ dr

then

REQ := REQ − {x 7→ y} ‖
ACK := ACK ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end;
solve_cont =
any x, y where

x, y ∈ REQ ∧ x /∈ ac(y) ∧
y ∈ dr ∧ ctr(x) < ctr(y)

then

REQ := REQ − {x 7→ y} ‖
ACK := ACK ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end;
progress =

any x, y where

x, y ∈ ACK ∧ x /∈ dt

then

ACK := ACK − {x 7→ y} ‖
TR := TR ∪ {x 7→ y} ‖
dt := dt ∪ {x}

end;
receive_cnf =
any x, y where

x, y ∈ TR

then

TR := TR − {x 7→ y} ‖
ch(y) := ch(y) ∪ {x}

end

end

Figure 7.5: Sixth model leaderelection5 for the distributed leader election algorithm

7.3. A NEW LEADER ELECTION DISTRIBUTED ALGORITHM 95

send_ack =̂
any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y /∈ dr

then

ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end

solve_cnt =̂
any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y ∈ dr ∧
ctr(x) < ctr(y)

then

ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end

progress =̂
any x, y where

x, y ∈ ack ∧
x /∈ dt

then

tr := tr ∪ {x 7→ y} ‖
dt := dt ∪ {x}

end

receive_cnf =̂
any x, y where

x, y ∈ tr ∧
x /∈ ch(y)

then

ch(y) := ch(y) ∪ {x}
end

Proofs that these events correctly refine their respective abstractions are technically trivial. We now give in

the following table, the local node in charge of each event as encoded above

event node

elect x

send_req x

send_ack y

solve_cnt y

progress x

receive_cnf y

The reader could be surprised yet to see formulas such as req := req ∪ {x 7→ y} or x, y ∈ req. They

correspond in fact to writing and reading operations done by corresponding local nodes as explained in the

following table:

formula explanation

req := req ∪ {x 7→ y} x sends a request to y

x, y ∈ req y reads a request from x

ack := ack ∪ {x 7→ y} y sends an acknowledgement to x

x, y ∈ ack x reads an acknowledgement from y

tr := tr ∪ {x 7→ y} x sends a confirmation to y

x, y ∈ tr y reads a confirmation from y

The total number of proofs (all done mechanically with Atelier B [55] and B4free/Click’n’Prove [56])

amounts to 106, where 24 required an easy interaction. Proofs help us to understand the contention problem

and the rôle of graph properties in the correctness of the solution. The refinements gradually introduce the

various invariants of the system. No assumption is made on the size of the network. The proof leads us

to the discovery of the confirmation event to get the complete correctness and we choose to introduce a

priority mechanism to solve the contention, which is not the solution of the IEEE 1394 protocol: a new

leader election distributed algorithm is proposed. ACK,REQ and TR model communication channels;

they contain messages which are currently sent and not yet received. We give the algorithm for the local

node x and x sends messages to another node y. We assume that each site has a unique number and ctr is

defined by this assignment.

96 CHAPTER 7. DESIGN OF DISTRIBUTED ALGORITHMS BY REFINEMENT

Leader Election Algorithm

Local Node x ∈ ND

Local variables nb, ch, ac ⊆ ND, ld ∈ ND, dr, dt ∈ Bool

if nb = ch then ld := x fi

if mes(y, ack) ∈ ACK ∧ y /∈ dt

then

send(mes(x, tr), y) ‖ dt := dt∪{y} ‖
ACK := ACK−{mes(y, ack)} fi

if ¬dr ∧ y /∈ ac ∧ nb = ch∪{y}
then

send(mes(x, req), y) ‖ dr := TRUE fi

if mes(y, req) ∈ REQ ∧ y /∈ ac ∧ ¬dr

then

send(mes(x, ack), y) ‖ ac := ac∪{y} ‖
REQ := REQ−{mes(y, req)} fi

if mes(y, req) ∈ REQ ∧ y /∈ ac ∧ dr ∧ ctr(y) < ctr(x)
then

send(mes(x, ack), y) ‖ ac := ac∪{y} ‖
REQ := REQ−{mes(y, req)} fi

if mes(y, tr) ∈ TR ∧ y /∈ ch

then

ch := ch∪{y} ‖ TR := TR−{mes(y, tr)} fi

We have used programming-like notations for modelling messages communications (see model leaderelection5 7.5)

and we detail the meaning of each communication primitive:

• send(mes(x, req), y) adds the message mes(x, req) to REQ.

• send(mes(x, ack), y) adds the message mes(x, req) to ACK.

• send(mes(x, tr), y) adds the message mes(x, req) to TR.

Our algorithm is correct with respect to the invariant of the development; we have not mentionned the

question of termination. The termination is derived, when one assumes a minimal fairness for each site: if

a site can trigger an event, it will eventually trigger it, as long as it remains enabled.

Chapter 8

Conclusion

B gathers a large community of users whose contributions go beyond the scope of this document; we focus

our topics on the event B approach to illustrate the foundations of B. Before to conclude our text, we should

complete the B landscape by an outline of work on B and with B.

8.1 Work on B and with B

The series of conferences [66, 29, 33, 30, 31] on B (in association with the Z community) and books [21,

73, 67, 93, 63] on B demonstrate the strong activity on B. The expressivity of the B language lead to three

kinds of work using concepts of B: extension of the B method, combination of B with another approach and

applications of B. We have already mentioned applications of the B method in the introduction and, now,

we sketch extensions of B and proposals to integrate B with other methods:

8.1.1 Extending the B method

The concept of event as introduced in B by Abrial [1] acts on the global state space of the system and

has no parameter; on the contrary, Papatsaras and Stoddart [86] contrast this global style of development

with one based on interacting components which communicate by means of shared events; parameters in

events are permitted. The parametrisation of events is also considered by Butler and Walden [38] who are

implementing action systems in the B AMN.

Events may or may not happen and new modalities are required to manage them; the language of assertions

of B is becoming too poor to express temporal properties like liveness, for instance. Abrial and Mus-

sat [13] introduce modalities into abstract systems and develop proof obligations related to liveness proper-

ties; Méry [80] shows how the B concepts can be easily used to deal with liveness and fairness properties.

Bellegarde et al [28] analyse the extension of B using the LTL logic and the impact on the refinement of

event systems. Problems are related to the refinement of systems while maintaining liveness and even fair-

ness properties; it is difficult and in many cases not possible, because the refinement maintains previously

validated properties of the abstract model and it can not maintain every liveness property.

Recently, McIver et al [79] extend the Generalized Substitution Language to handle probability in B; an

abstract probabilistic choice is added to B operators. A methodology is proposed to use this extension.

8.1.2 Combining B with another formalim

The limited expressivity of the B language has inspired work on several proposals. Butler [36] investigates

a mixed language including B AMN and CSP; CSP is used to structure abstract machines; the idea is

exploited by Schneider and Treharne [96, 91] who control B machines.

Since diagrammatic formalisms offer a visual representation of models, another integration of B with UML

is achieved by Butler [37] and by Le Dang et al [75, 74, 76]; B provides a semantical framework to UML

components and allows one to analyse UML models. An interesting problem would be to study the impact

of the B refinement into UML models.

97

98 CHAPTER 8. CONCLUSION

Mikhailov and Butler [81] combine the theorem proving and the model checking and focus on the B-method

and a theorem proving tool associated with it, and the Alloy specification notation and its model checker

Alloy Constraint Analyser. Software development in B can be assisted using Alloy and Alloy can be used

for verifying refinement of abstract specifications.

8.2 On the proof process

The proof process is supported by a proof assistant which is either a part of the environment called Atelier

B [55] , or an environment called Click’n’Prove [17]. A free version is available [56]. Works on theories

and reusing theories have been addressed by J.-R. Abrial et all in [9].

8.3 Final remarks

The design of (software) systems is an activity based on logico-mathematical concepts such as set-theoretical

definitions; it gives rise to proof obligations that capture the essence of its correctness. The use of theo-

retical concepts is mainly due to the requirements of safety and quality of developed systems; it appears

that the mathematics can help in improving the quality of software systems. B is a method that can help

the designers to construct safer systems and it provides a realistic framework for developing a pragmatic

engineering. Mathematical theories [9] can be derived from scratch or reused; in forthcoming work, mech-

anisms for re-usability of developments will demonstrate the increasing power of the applicability of B to

realistic case studies [12, 45, 18]. Tools are already very helpful and will evolve towards a tool-set for de-

veloping systems. The proof tool is probably a crucial element in the B approach and recent developments

of the prover, combined with the refinement, validates the applicability of the B method to derive correct

reactive systems from abstract specifications. Another promising point is the introduction of patterns in the

event B methodology. In [8], Abrial describes the new B method mainly related to B events; the project

RODIN [89] aims to create a methodology and supporting open tool platform for the cost effective rigorous

development of dependable complex software systems and services, especially using the event B method; it

will provide a suitable framework for further work on event B.

Acknowledgements

We thank J.-R. Abrial for his permanent help, support and comments; Dines Bjoerner and Martin Henson

have accepted a long delay for obtaining LATEXfiles and we thank them for their support. It was a pleasure to

spend two weeks with Dines and Martin in Slovakia and we especially enjoy the daily pedagogical meetings.

Thanks!

99

100 CHAPTER 8. CONCLUSION

Bibliography

[1] J.-R. Abrial. Extending B without changing it (for developing distributed systems). In H. Habrias,

editor, 1st Conference on the B method, pages 169–190, November 1996.

[2] J.-R. Abrial. Event driven distributed program construction. Internal note, Consultant, August 2001.

jr@.abrial.org.

[3] J.-R. Abrial. Event driven distributed program construction. Internal Note Version 5(Août 2001),

Consultant, août 2001.

[4] J.-R. Abrial. Event driven electronic circuit construction. Internal note, Consultant, August 2001.

jr@.abrial.org.

[5] J.-R. Abrial. Event driven sequential program construction. Internal note, Consultant, August 2001.

jr@.abrial.org.

[6] J.-R. Abrial. Formal construction of proved circuits. Internal Note Version 4(Août 2001), Consultant,

août 2001.

[7] J.-R. Abrial. Discrete system models. Internal note, Consultant, February 2002. jr@.abrial.org.

[8] J.-R. Abrial. B#: Toward a synthesis between z and b. In D. Bert and M. Walden, editors, 3nd

International Conference of B and Z Users - ZB 2003, Turku, Finland, Lectures Notes in Computer

Science. Springer Verlag, June 2003.

[9] J.-R. Abrial, D. Cansell, and G. Laffitte. Higher-Order Mathematics in B. In D. Bert, J.P. Bowen,

M.C. Henson, and K. Robinson, editors, Formal Specification and Development in Z and B - ZB’2002,

Grenoble, France, volume 2272 of Lecture Notes in Computer Science, pages 370–393. Springer

Verlag, January 2002.

[10] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental development of the

IEEE 1394 Tree Identify Protocol . Technical report, LORIA, March 2001.

[11] J.-R. Abrial, D. Cansell, and D. Méry. Formal derivation of spanning trees algorithms. In D. Bert

and M. Walden, editors, 3nd International Conference of B and Z Users - ZB 2003, Turku, Finland,

Lectures Notes in Computer Science. Springer Verlag, June 2003.

[12] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental development of IEEE

1394 Tree Identify Protocol. Formal Aspects of Computing, 14(3), April 2003.

[13] J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert, editor, B’98 :Recent

Advances in the Development and Use of the B Method, volume 1393 of Lecture Notes in Computer

Science. Springer Verlag, 1998.

[14] Jean-Raymond Abrial. B#: Toward a synthesis between z and b. In Didier Bert, Jonathan P. Bowen,

Steve King, and Marina A. Waldén, editors, ZB, volume 2651 of Lecture Notes in Computer Science,

pages 168–177. Springer, 2003.

[15] Jean-Raymond Abrial. Event based sequential program development: Application to constructing a

pointer program. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME, volume 2805

of Lecture Notes in Computer Science, pages 51–74. Springer, 2003.

101

102 BIBLIOGRAPHY

[16] Jean-Raymond Abrial. Formal methods in industry: achievements, problems, future. In Leon J.

Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors, ICSE, pages 761–768. ACM, 2006.

[17] Jean-Raymond Abrial and Dominique Cansell. Click’n’prove: Interactive proofs within set theory. In

David Basin and Burkhart Wolff, editors, 16th Intl. Conf. Theorem Proving in Higher Order Logics

(TPHOLs’2003), volume 2758 of Lecture Notes in Computer Science, pages 1–24. Springer Verlag,

September 2003.

[18] Jean-Raymond Abrial and Dominique Cansell. Formal construction of a non-blocking concurrent

queue algorithm (a case study in atomicity). J. UCS, 11(5):744–770, 2005.

[19] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically proved and incre-

mental development of ieee 1394 tree identify protocol. Formal Asp. Comput., 14(3):215–227, 2003.

[20] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Refinement and reachability in

eventb. In Treharne et al. [97], pages 222–241.

[21] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University Press, 1996. ISBN

0-521-49619-5.

[22] J.R. Abrial. Event-driven sequential programs. ps file, March 2000.

[23] R.-J. Back. A calculus of refinements for program derivations. Acta Informatica, 25:593–624, 1998.

[24] R.-J. Back and J. von Wright. Refinement Calculus. Springer Verlag, 1998.

[25] R. J. R. Back. On correct refinement of programs. Journal of Computer and System Sciences,

23(1):49–68, 1979.

[26] J. P. Banâtre, A. Coutant, and D. Le Métayer. The γ-model and its discipline of programming. Science

of Computer Programming, 15:55–77, 1990.

[27] P. Behm, P. Benoit, A. Faivre, and J.-M.Meynadier. METEOR : A successful application of B in

a large project. In Proceedings of FM’99: World Congress on Formal Methods, Lecture Notes in

Computer Science, pages 369–387, 1999.

[28] F. Bellegarde, C. Darlot, J. Julliand, and O. Kouchnarenko. Reformulate dynamic properties during

B refinement and forget variants and loop invariants. In J. P. Bowen, S. Dunne, A. Galloway, and

S. King, editors, ZB 2000: Formal Specification and Development in Z and B - First International

Conference of B and Z Users, York,UK, August 29 - September 2 2000.

[29] D. Bert, editor. B’98: Recent Advances in the Development and Use of the B Method, volume 1393 of

Lecture Notes in Computer Science, Montpellier, France, April 22-24 1998. Springer Verlag.

[30] D. Bert, J.-P. Bowen, M. C. Henson, and K. Robinson, editors. ZB 2002: Formal Specification and

Development in Z and B - 2nd International Conference of B and Z Users, volume 2272 of Lecture

Notes in Computer Science, Grenoble, France, January 2002. Springer Verlag.

[31] D. Bert, J.-P. Bowen, S. King, and M. Waldén, editors. ZB 2003: Formal Specification and Develop-

ment in Z and B - Third International Conference of B and Z Users, volume 2651 of Lecture Notes in

Computer Science, Turku, Finland, January 2003. Springer Verlag.

[32] J. Bicarregui, D. Clutterbuck, G. Finnie, H. Haughton, K. Lano, H. Lesan, W. Marsh, B. Matthews,

M. Moulding, A. Newton, B. Ritchie, T. Rushton, and P. Scharbach. Formal methods into practise:

Case studies in the application of the B method. Internal report, BUT Project, 1995.

[33] J. P. Bowen, S. Dunne, A. Galloway, and S. King, editors. ZB 2000: Formal Specification and De-

velopment in Z and B - First International Conference of B and Z Users, York,UK, August 29 -

September 2 2000.

[34] L. Burdy. Traitrement des expressions dépourvues de sens de la théorie des ensembles Application à

la méthode B. PhD thesis, CNAM, 2000.

BIBLIOGRAPHY 103

[35] M. Butler. Stepwise refinement of communicating systems. Science of Computer Programming,

27:139–173, 1996.

[36] M. Butler. csp2b: A practical approach to combining csp and b. Formal Aspects of Computing,

12:182–196, 200.

[37] M. Butler and C. Snook. Verifying dynamic properties of UML models by translation to the B lan-

guage and toolkit. In UML 2000 WORKSHOP Dynamic Behaviour in UML Models: Semantic Ques-

tions, October 2000.

[38] M. Butler and M. Walden. Parallel Programming with the B Method. In Program Development

by Refinement Cases Studies Using the B Method, volume [93] of FACIT, pages 183–195. Springer

Verlag, 1998.

[39] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Anal-

ysis. Springer Verlag, April 2003.

[40] M. Büchi and R. Back. Compositional symmetric sharing in B. In J. M. Wing, J. Woodcock, and

J. Davies, editors, FM’99 Formal Methods, volume 1708 of Lecture Notes in Computer Science.

Springer Verlag, 1999.

[41] D. Cansell, G. Gopalakrishnan, M. Jones, D. Méry, and A. Weinzoepflen. Incremental proof of the

producer/consumer property for the PCI protocol. In D. Bert, editor, Formal Specification and Devel-

opment in Z and B - ZB’2002, Grenoble, France, volume 2272 of Lecture Notes in Computer Science.

Springer Verlag, January 2002.

[42] D. Cansell and D. Méry. Abstraction and refinement of features. In Ryan Stephen, Gilmore et Mark,

editor, Language Constructs for Designing Features. Springer Verlag, 2000.

[43] D. Cansell and D. Méry. Développement de fonctions définies récursivement en B : Application du

B événementiel. Rapport de recherche, LORIA UMR 7503, January 2002.

[44] D. Cansell and D. Méry. Développement de fonctions définies récursivement en B : Application du

B événementiel. Rapport de recherche, LORIA UMR 7503, January 2002.

[45] D. Cansell and D. Méry. Formal and incremental construction of distributed algorithms: On the dis-

tributed reference counting algorithm. Theoretical Computer Science, 2006.

[46] D. Cansell and D. Méry. Software Specification Methods An Overview Using a Case Study, chapter

Event B. Hermès, 2006. ISBN: 1905209347.

[47] Dominique Cansell, Ganesh Gopalakrishnan, Michael D. Jones, Dominique Méry, and Airy Wein-

zoepflen. Incremental proof of the producer/consumer property for the pci protocol. In Didier Bert,

Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, ZB, volume 2272 of Lecture Notes

in Computer Science, pages 22–41. Springer, 2002.

[48] Dominique Cansell and Dominique Méry. Foundations of the b method. Computers and Informatics,

22, 2003.

[49] Dominique Cansell and Dominique Méry. Incremental parametric development of greedy algorithms.

In S. Merz and T. Nipkow, editors, AVOCS’O6 Sixth International Workshop on Automated Verifica-

tion of Critical Systems, 18-19 September 2006.

[50] N. Cariero and D. Gelernter. How to write parallel programs: a first course. The MIT Press, 1990.

[51] Jérémie Chalopin and Yves Métivier. A bridge between the asynchronous message passing model

and local computations in graphs. In Joanna Jedrzejowicz and Andrzej Szepietowski, editors, MFCS,

volume 3618 of Lecture Notes in Computer Science, pages 212–223. Springer, 2005.

[52] K. M. Chandy and J. Misra. Parallel Program Design A Foundation. Addison-Wesley Publishing

Company, 1988. ISBN 0-201-05866-9.

104 BIBLIOGRAPHY

[53] Michel Chaudron. Notions of Refinement for a Coordination Language for GAMMA. Technical

report, Leiden University, The Netherlands, 1997.

[54] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.

[55] ClearSy, Aix-en-Provence (F). Atelier B, 2002. Version 3.6.

[56] ClearSy. Web site b4free set of tools for development of b models.

http://www.b4free.com/index.php, 2004.

[57] John Cooke, Savi Maharaj, Judi Romijn, and Carron Shankland, editors. Formal Aspects of Comput-

ing, volume 14. Springer, April 2003.

[58] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction to Algo-

rithms. MIT Press and McGraw-Hill, 2001.

[59] M. Devillers, D. Griffioen, J. Romin, and F. Vaandrager. Verification of a Leader Election Proto-

col: Formal Methods Applied to IEEE 1394. Formal Methods in System Design, 16:307–320, 2000.

Kluwer Academic Publishers.

[60] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[61] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Texts and Monographs

in Computer Science. Springer Verlag, 1990.

[62] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and Initial Semantics.

EATCS Monographs on Theoretical Computer Science. Springer Verlag, w. brauer and r. rozenberg

and a. salomaa edition, 1985.

[63] M. Frappier and H. Habrias, editors. Software Specification Methods An Overview Using a Case

Study. Hermes Science Publishing, London, England, April 2006. ISBN: 1905209347.

[64] Olivier Galibert. YLC - Linda C++, 1997. 1997.

[65] Y. Gurevitch. Specification and Validation Methods, chapter "Evolving Algebras 1993: Lipari Guide",

pages 9–36. Oxford University Press, 1995. Ed. E. Börger.

[66] H. Habrias, editor. First Conference on the B Method, Nantes, France, April 22-24 1996. IRIN-IUT

de Nantes. ISBN 2-906082-25-2.

[67] H. Habrias. Spécification formelle avec B. Hermès, 2001.

[68] J. Hoare. The use of B in CICS. In Applications of Formal Methods, 1995.

[69] C. B. Jones. Sytematic Software Development Using VDM. Prentice-Hall International, 1986.

[70] J. B. Kruskal. On the shortest spanning subtree and the traveling salesman problem. Proc. Am. Math.

Soc., 7:48–50, 1956.

[71] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and

Systems, 16(3):872–923, May 1994.

[72] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engi-

neers. Addison-Wesley, 2002.

[73] K. Lano. The B Language and Method - A Guide to rPactical Formal Development. FACIT. Springer

Verlag, 1996.

[74] Hung Ledang and Jeanine Souquières. Formalizing UML behavioral diagrams with B. In Tenth

OOPSLA Workshop on Behavioral Semantics : Back to Basics , Tampa Bay, Florida, USA, Oct 2001.

[75] Hung Ledang and Jeanine Souquières. Modeling class operations in B : application to UML behav-

ioral diagrams. In IEEE Computer Society, editor, 16th IEEE International Conference on Automated

Software Engineering - ASE’2001, Loews Coronado Bay, San Diego, USA, Nov 2001.

BIBLIOGRAPHY 105

[76] Hung Ledang and Jeanine Souquières. Contributions for modelling UML state-charts in B. In Springer

Verlag, editor, Third International Conference on Integrated Formal Methods - IFM’2002, Turku,

Finland, May 2002.

[77] B-Core(UK) Ltd. B-Toolkit User’s Manual, relase 3.2 edition, 1996.

[78] Z. Manna. Mathematical Theory of Computation. Mac Graw Hill, 1974.

[79] A. McIver, C. Morgan, and T. S. Hoang. Probabilistic termination in B. In D. Bert, J.-P. Bowen,

S. King, and M. Waldén, editors, ZB 2003: Formal Specification and Development in Z and B - Third

International Conference of B and Z Users, volume 2651 of Lecture Notes in Computer Science,

Turku, Finland, January 2003. Springer Verlag.

[80] D. Méry. Requirements for a temporal B : Assigning Temporal Meaning to Abstract Machines ... and

to Abstract Systems. In A. Galloway and K. Taguchi, editors, IFM’99 Integrated Formal Methods

1999, Workshop on Computing Science, YORK, June 1999.

[81] L. Mikhailov and M. Butler. An approach to combining B and Alloy. In D. Bert, J.-P. Bowen, M. C.

Henson, and K. Robinson, editors, ZB 2002: Formal Specification and Development in Z and B -

2nd International Conference of B and Z Users, volume 2272 of Lecture Notes in Computer Science,

Grenoble, France, January 2002. Springer Verlag.

[82] L. Moreau. Distributed directory service and message routing for mobile agents. Science of Computer

Programming, 39(2–3):249–272, 2001.

[83] C. Morgan. Programming from Specifications. Prentice Hall International Series in Computer Science.

Prentice Hall, 1990.

[84] Carroll Morgan, Thai Son Hoang, and Jean-Raymond Abrial. The challenge of probabilistic vent b -

extended abstract. In Treharne et al. [97], pages 162–171.

[85] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i. Acta Informatica,

6:319–340, 1976.

[86] A. Papatsaras and B. Stoddart. Global and communicating state machine models in event driven b:

A simple railway case study. In D. Bert, J.-P. Bowen, M. C. Henson, and K. Robinson, editors, ZB

2002: Formal Specification and Development in Z and B - 2nd International Conference of B and Z

Users, volume 2272 of Lecture Notes in Computer Science, Grenoble, France, January 2002. Springer

Verlag.

[87] M.-L. Potet and Y. Rouzeau. Composition and refinement in the B method. In B’98: Recent Advances

in the Development and Use of the B Method, volume 1393 of Lecture Notes in Computer Science.

Springer Verlag, 1998.

[88] R. C. Prim. Shortest connection and some generalizations. Bell Syst. Tech. J., 36, 1957.

[89] project RODIN. Rigorous open development environment for complex systems. http://rodin-b-

sharp.sourceforge.net/, 2004. 2004–2007.

[90] H. Jr Rogers. Theory of Recursive Functions and Effective Computability. The MIT Press, 1967.

[91] S. Schneider and H. Treharne. Communicating B machines. In D. Bert, J.-P. Bowen, M. C. Henson,

and K. Robinson, editors, ZB 2002: Formal Specification and Development in Z and B - 2nd Inter-

national Conference of B and Z Users, volume 2272 of Lecture Notes in Computer Science, pages

416–435, Grenoble, France, January 2002. Springer Verlag.

[92] Scientific Computing Associates inc, 246 Church Street, Suite 307 New Haven, CT 06510 USA.

Original LINDA C-Linda Reference manual, 1990.

[93] E. Sekerinski and K. Sere, editors. Program Development by Refinement - Cases Studies Using the B

Method. FACIT. Springer Verlag, 1998.

106 BIBLIOGRAPHY

[94] J. M. Spivey. The Z notation, A Reference Manual. Prentice Hall, 1989.

[95] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer Verlag, 1998.

[96] H. Treharne and S. Schneider. How to drive a B machine. In J. P. Bowen, S. Dunne, A. Galloway, and

S. King, editors, ZB 2000: Formal Specification and Development in Z and B - First International

Conference of B and Z Users, York,UK, August 29 - September 2 2000.

[97] Helen Treharne, Steve King, Martin C. Henson, and Steve A. Schneider, editors. ZB 2005: Formal

Specification and Development in Z and B, 4th International Conference of B and Z Users, Guildford,

UK, April 13-15, 2005, Proceedings, volume 3455 of Lecture Notes in Computer Science. Springer,

2005.

