Efficient C++ finite element computing with Rheolef - CEL - Cours en ligne
Cours Année : 2016

Efficient C++ finite element computing with Rheolef

Pierre Saramito

Résumé

Rheolef is a programming environment for finite element method computing.

This Book presents in details how some simple and more complex problems from solid and fluid mechanics can be solved, most of them in less than 20 lines of code. The concision and readability of codes written with Rheolef is certainly a major keypoint of this environment.

Data structures fit the variational formulation concept of partial differential equations: fields, bilinear forms and functional spaces are C++ types for variables. They can be combined in expressions, as you write it on the paper. As a Lego game, these bricks allows the user to solve most complex nonlinear problems. Algorithms refer to the most up-to-date ones: preconditioned sparse solvers for linear systems, incompressible elasticity, Stokes and Navier-Stokes flows, characteristic method for convection dominated heat problems, etc. Also nonlinear generic algorithms such as fixed point and damped Newton methods.

Software home page is: http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef
Fichier principal
Vignette du fichier
rheolef.pdf (12.39 Mo) Télécharger le fichier

Dates et versions

cel-00573970 , version 1 (06-03-2011)
cel-00573970 , version 2 (27-02-2012)
cel-00573970 , version 3 (10-04-2012)
cel-00573970 , version 4 (22-05-2012)
cel-00573970 , version 5 (22-06-2012)
cel-00573970 , version 6 (02-07-2012)
cel-00573970 , version 7 (20-10-2012)
cel-00573970 , version 8 (08-05-2013)
cel-00573970 , version 9 (17-09-2013)
cel-00573970 , version 10 (18-09-2013)
cel-00573970 , version 11 (15-04-2014)
cel-00573970 , version 12 (12-09-2015)
cel-00573970 , version 13 (03-06-2016)
cel-00573970 , version 14 (21-02-2018)
cel-00573970 , version 15 (25-03-2020)
cel-00573970 , version 16 (02-06-2022)

Identifiants

  • HAL Id : cel-00573970 , version 13

Citer

Pierre Saramito. Efficient C++ finite element computing with Rheolef. DEA. Grenoble, France, France. 2016, pp.176. ⟨cel-00573970v13⟩
5220 Consultations
8449 Téléchargements

Partager

More