Approche numérique à l'usage du physicien pour résoudre les équations différentielles ordinaires. IV. Integration numérique de la trajectoire d’une particule dans un potentiel central attractif, et dans un potentiel de type Hénon-Heiles. Trajectoires régulières et chaotiques. - CEL - Cours en ligne Access content directly
Lectures Year : 2015

Approche numérique à l'usage du physicien pour résoudre les équations différentielles ordinaires. IV. Integration numérique de la trajectoire d’une particule dans un potentiel central attractif, et dans un potentiel de type Hénon-Heiles. Trajectoires régulières et chaotiques.

Abstract

Dans ce chapitre, nous explorons les trajectoires d'une particule dans un potentiel général bi-dimensionnel. On considère d'abord des potentiels attractifs centraux de type U (r). Les cas Képlérien (U (r) = −k/r , avec k > 0) et harmonique (U (r) = kr^2 , avec k > 0) sont des cas particuliers déjà vus au chapitre précédent. Puis, on explore le fameux potentiel (non central) de Hénon-Heiles, connu pour donner des trajectoires chaotiques. La méthode numérique utilisée est le schéma le plus performant rencontré dans les chapitres précédents, la méthode symplectique d'ordre 4.
Fichier principal
Vignette du fichier
bouq4.pdf (16.01 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02395340 , version 1 (05-12-2019)

Identifiers

  • HAL Id : hal-02395340 , version 1

Cite

Hubert Baty. Approche numérique à l'usage du physicien pour résoudre les équations différentielles ordinaires. IV. Integration numérique de la trajectoire d’une particule dans un potentiel central attractif, et dans un potentiel de type Hénon-Heiles. Trajectoires régulières et chaotiques.. Master. France. 2015. ⟨hal-02395340⟩
188 View
110 Download

Share

Gmail Facebook X LinkedIn More